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Abstract: Fast and accurate fault diagnosis is crucial to transformer safety and cost-effectiveness.
Recently, vibration analysis for transformer fault diagnosis is attracting increasing attention due to
its ease of implementation and low cost, while the complex operating environment and loads of
transformers also pose challenges. This study proposed a novel deep-learning-enabled method for
fault diagnosis of dry-type transformers using vibration signals. An experimental setup is designed
to simulate different faults and collect the corresponding vibration signals. To find out the fault
information hidden in the vibration signals, the continuous wavelet transform (CWT) is applied for
feature extraction, which can convert vibration signals to red-green-blue (RGB) images with the time–
frequency relationship. Then, an improved convolutional neural network (CNN) model is proposed
to complete the image recognition task of transformer fault diagnosis. Finally, the proposed CNN
model is trained and tested with the collected data, and its optimal structure and hyperparameters
are determined. The results show that the proposed intelligent diagnosis method achieves an overall
accuracy of 99.95%, which is superior to other compared machine learning methods.

Keywords: fault diagnosis; vibration analysis; deep learning; convolutional neural network (CNN);
power transformer

1. Introduction

As one of the most important and expensive piece of equipment in a power system,
the power transformer plays a vital role in power conversion and delivery [1]. Power
transformers are generally designed to have a lifetime of 20 to 35 years, and can actually
last up to 60 years with proper maintenance [2]. However, occasional in-service faults
of a transformer can cause catastrophic consequences for the power system and even
endanger personal safety; moreover, it is very costly to repair or replace transformers.
With the increase in operation time, under the long-term influence of mechanical stress,
thermal stress, etc., more and more transformers begin to deteriorate, which brings a
great potential threat to the power system and puts forward higher requirements for
fault diagnosis technology. In general, transformer faults can be classified as electrical,
mechanical, and thermal; how to prevent these faults and ensure a healthy working
condition of the transformer is a significant topic. Traditionally, scheduled maintenance
makes its plans for inspection and testing based on experience, trying to find a balance
between low-risk and low-cost, which can easily result in over-maintenance or under-
maintenance. Alternatively, by monitoring the characteristic parameters of a transformer
in real-time, condition-based maintenance (CBM) can detect the abnormal state of the
equipment and make a diagnosis at the first time, which can minimize the damage to
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the equipment by failure [3]. Thus, transformer condition monitoring and fault diagnosis
techniques have recently attracted extensive attention from researchers and engineers.

Generally, transformer fault diagnosis methods can be classified as offline and online
according to the working state of the transformer. The offline methods, due to their
simple principle and accurate results, are commonly used for annual maintenance and
fault analysis. For instance, frequency response analysis (FRA) can determine the condition
of the winding by measuring the impedance or admittance of the winding [4–6]. Short-
circuit impedance (SCI) is available to evaluate the transformer operating condition [7].
Similarly, the winding resistance measurement is used to evaluate the contact condition
of the winding conductors and the tap changer, and the winding ratio test can determine
if there are shorted turns or open winding circuits. However, these methods require
transformer shutdown during implementation.

By contrast, the online methods can be implemented while the transformer is in
operation. Dissolved gas analysis (DGA) can be used to diagnose latent transformer faults
by continuously detecting and analyzing the components of different gases dissolved in
the insulating oil [8,9]. Similarly, insulating oil quality (IOQ) tests can be used to analyze
the condition of the transformer-insulating oil [10]. However, the above approach is only
applicable to oil-immersed transformers but not to dry-type transformers. Recently, with
the rapid development of sensor technology and signal processing, some non-traditional
diagnostic methods are rapidly evolving, such as partial discharge (PD) testing which
is utilized to detect whether the partial discharge is occurring in the transformer [11,12].
Ultra-wideband (UWB) signals are used to diagnose mechanical faults in the transformer
winding [13]. In addition, the thermal imaging monitoring can detect abnormal thermal
faults in a transformer [14]. Nevertheless, some of these methods are expensive or not
accurate enough.

Alternatively, vibration analysis provides a new online diagnosis method for trans-
formers with easy and low-cost implementation, which has attracted increasing attention
in the recent years. The authors of [15] proved that the vibration intensity of a transformer
is related to its location and load current by investigating the distribution characteristics of
vibration signals. Different short-circuited turn conditions of the transformer can be recog-
nized by classifying the indicators extracted from vibration signals using support vector
machines (SVM), as reported in [16]. Similarly, using the total harmonic distortion (THD)
from vibration signals as a fault feature, ref. [17] effectively diagnosed the transformer
short-circuit faults. Based on vibration and reactance information, the loose state and
deformation of the transformer winding can be monitored, as reported in [18]. An effective
feature extraction method from transformer vibration signals was introduced in [19], which
decomposed the vibrations into multiple modes using variational mode decomposition
(VMD); then, they extracted the feature vector from those modes by wavelet transform.
However, most of the above methods require detailed parameters or information about the
transformer, which are highly dependent on the expertise and limits their development.

Recent research has shown that fault diagnosis methods with deep learning (DL) can
overcome the expertise dependence issue [20]; furthermore, they can also achieve higher
accuracy [21]. Typically, there are three main types in DL, which are deep belief network
(DBN), recurrent neural network (RNN), and CNN. Since the problem of gradient extinction
has been solved and the performance of the graphics processing unit (GPU) has improved,
DL has made remarkable progress, especially in the fields of speech recognition [22], image
recognition [23], and automatic driving [24]. Meanwhile, some achievements have also
been made in transformer fault diagnosis with DL. For instance, RNN was adopted in [3]
to capture the hidden patterns of vibration time series directly, which can diagnose the
abnormal excitation voltage and turn-to-turn short-circuit faults of the transformer. The
authors of [25] recognized converted vibrating images using CNN to identify three working
conditions of transformers. Similarly, a multi-scale fusion feature extraction model based
on CNN with attention mechanism was designed in [26], which can recognize the operating
conditions of the transformer with different voltages and loads. However, the types of
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faults they can identify are relatively limited; also, most of the current research has focused
on oil-immersed transformers, while little research has been done on dry-type transformers.
Therefore, it needs further research on how to quickly and effectively implement online
multiple fault diagnosis for dry-type transformers.

The main contributions of this study are summarized in the following.

(1) An intelligent fault diagnosis method for dry-type transformers using vibration
signals is proposed, which can quickly identify different faults under various loads of
the transformer with high accuracy.

(2) A CWT method is adopted to convert the raw vibration signals of the transformer
to RGB images, which could adequately extract fault features from the different
conditions.

(3) An improved CNN model is designed to accurately classify the RGB images for
transformer fault diagnosis, and its optimal structure and parameters are determined.

The rest of this article is organized as follows. Section 2 introduces the theoretical
background. Section 3 describes the experimental setup and data. Section 4 presents the
proposed method in detail, including the feature extraction and proposed CNN structure.
In Section 5, experimental and test results are presented to validate the performance of the
proposed method. Finally, the conclusion is drawn in Section 6.

2. Theoretical Background
2.1. Mechanism of Transformer Vibration

The transformer vibrates all the time in service with or without load, and the vibrations
are mainly caused by core vibration and winding vibration. Core vibrations are mainly
generated by magnetostriction since the geometry of magnetic material changes slightly
when it is in a magnetic field, and the vibration occurs when the strength of the magnetic
field varies considerably [16]. The fundamental frequency of the core vibration is twice
the source. It should be noted that the core vibration will also contain high-frequency
harmonics because of the nonlinear property of magnetostriction. The amplitude of core
vibrations is basically proportional to the voltage squared, which can be represented by

αcore ∝ U2, (1)

where αcore is the amplitude of core vibrations, U is the voltage.
The winding vibrations are mainly generated by electromagnetic forces due to the

interaction between the current in winding and the leakage flux field. Those electromagnetic
forces are proportional to the current squared [15]; since the current waveform is practically
sinusoidal, the fundamental frequency of the winding vibration is 100 Hz (in the case of a
50 Hz grid). The amplitude of winding vibration is basically proportional to the current
squared, which can be represented by

αwinding ∝ I2, (2)

where αwinding is the amplitude of winding vibrations, I is the current.
The vibration of a transformer is highly correlated with its condition [27]; therefore,

the vibration is employed in transformer fault diagnosis as a fault feature in this study.

2.2. Wavelet Transform

Wavelet transform is a popular tool for extracting time–frequency information from
time-domain signals [28]. It inherits and develops the localization idea of short-time
Fourier transform (STFT), and overcomes its shortcomings of a non-changing window
size with frequency [29]. The wavelet transform can provide a “time–frequency” window
that changes with frequency. Then, the time subdivision at high frequency and frequency
subdivision at low frequency can be realized. There are two main types of the wavelet
transform, CWT [30] and discrete wavelet transform (DWT) [31]. The difference between
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them is that CWT operates on all possible combinations of shifting and compression, while
the DWT only operates on a specific subset of shifting and compression.

CWT is defined by the wavelet coefficients which are produced by the convolution of
the original signal x(t) with the mother wavelet function ψ(t). Through the translation (shift
in time) and dilation (compression in time) by the mother wavelet function ψ(t), a multi-
scale refinement of the original signal x(t) is gradually carried out. The transformation
process can be described by

WC(a, b) =
1√
|a|

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, (3)

where WC is the wavelet coefficient, a is the scale of the mother wavelet, and b is the
translation of the mother wavelet. DWT can transform the discrete input data sequence
f = { fn} = { f0, f1, . . . , fN−1} to a vector matrix form as

α = W f , (4)

where α is composed of N wavelet coefficients, and W is an orthogonal matrix.
Wavelet decomposition is implemented through two filters: the low-pass filter (scaling

filter) and the high-pass filter (wavelet filter) [32]. They share the same set of wavelet filter
coefficients, but with alternating signs and in reversed order, which means they complement
each other. After the signal down-sampling operation for each decomposition level, the
signal reconstruction process is done by applying the inverse way to the decomposition
process. Each reconstruction level is followed by a signal up-sampling operation, which is
known as the Mallat algorithm, and the procedure is illustrated in Figure 1.

LD

2↓  

HD

Decomposition

Fliters

2↑ 2↓  

2↑ 

LR

HR

Reconstruction

Fliters

LF&HF

Coefficients

LF

Component

HF

Component

ƒ

Figure 1. Mallat algorithm of wavelet decomposition and reconstruction.

2.3. CNN

CNN is a typical deep learning algorithm, inspired by the concept of the visual
nervous system [33], which can reduce image dimensionality and improve the efficiency
and accuracy of image processing. It has made great achievements in computer vision [34],
natural language processing [35], etc.

The typical CNN structure consists of three types of layers, which are the convolu-
tional layer, pooling layer, and fully connected layer. The process of pooling operation is
illustrated in Figure 2. According to task requirements, these layers are combined in differ-
ent ways to form different CNN models, such as LeNet-5 [36], ResNet [37], EfficientNet [38],
and 1-D CNN [39].
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Figure 2. Process of the pooling operation.

3. Experimental Setup and Data
3.1. Experimental Setup

The transformer under study is a customized 50 kVA dry-type transformer with two
terminals A and B, which can easily simulate turn-to-turn short circuit faults. Its main
parameters are shown in Table 1. The output terminal of the transformer was connected to
an adjustable load cabinet, whose power ranges from 0 to 200 kW.

Two accelerometers with the sensitivity of 500 mV/g of type CA-YD-188T were used
to collect vibration signals of the transformer. Then, the collected raw signals are processed
by the SIRIUSm-4xACC data acquisition instrument with a sampling rate of 8000 Hz,
and saved by the Devesoft X3 software. Considering the structural characteristics and
insulation safety of the studied transformer, as shown in Figure 3, the above accelerometers
were fixed in the vertical direction (CH1) and horizontal direction (CH2) of the core clamp,
respectively. The whole experimental system is shown in Figure 4.

The loosening faults of the core, winding, and connection bar were simulated by
adjusting the tightness of the clamp bolts from 50 to 80 Nm using a torque wrench, the
turn-to-turn short circuit fault was simulated by connecting a resistor between terminals
A and B. It is worth mentioning that all fault types have multiple load levels to represent
changing loads.

Figure 3. Position of the accelerometer on the studied transformer.
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Figure 4. Experimental system of transformer fault diagnosis.

Table 1. Main parameters of the studied transformer.

Categories Parameters

Rated power 50 kVA
Rated frequency 50 Hz
Type of cooling air natural cooling

Service condition Indoor
Host weight 330 kg
Shape size 740 × 460 × 790 mm

Rated voltage (primary) 10 kV
Rated voltage (secondary) 0.4 kV

3.2. Data Description and Preprocessing

As shown in Table 2, there are four different transformer faults, respectively, core
clamp looseness (CC), winding clamp looseness (WC), connection bar looseness (CB),
and turn-to-turn short circuit (TT), which were simulated in this study. Meanwhile, two
different load levels are applied for each fault, along with the normal state (NO), and a
total of 10 different working conditions are obtained.

Table 2. Working states of the studied transformer.

Working States Loads (kW) Categories

Normal state 20 NO20
40 NO40

Core clamp looseness 20 CC20
40 CC40

Winding clamp looseness 20 WC20
40 WC40

Connection bar looseness 20 CB20
40 CB40

Turn-to-turn short circuit 20 TT20
40 TT40

In order to train the proposed diagnosis model, 400 segments of the vibration signal
were collected for each working condition, which eventually constituted a total dataset of



Sensors 2023, 23, 4781 7 of 15

4000 samples, of which 70% were selected as the training dataset, 20% as the validation
dataset, and the remaining 10% as the test dataset. It should be noted that each sample can
only be assigned to one dataset, which means that the samples of the testing dataset are
completely different from the training dataset and validation dataset.

Figure 5 illustrates the converted RGB image of the normal state with load of 20 kW
(NO20), and the remaining 9 cases are shown in Figure 6. It is obvious that the RGB pictures
of different conditions have unique features in both the time domain and frequency domain,
which demonstrates that the proposed feature extraction method works effectively.

Figure 5. CWT conversion image of the normal state.

Figure 6. Converted RGB images of nine conditions.

4. Proposed Fault Diagnosis Method

The proposed transformer fault diagnosis method is presented in this section. After
the vibration signals are acquired from the transformer, they are converted into RGB images
by the CWT method described in Section 2.2. Then, the RGB images are classified by the
proposed diagnosis model.

4.1. Feature Extraction

Vibration signals are collected by the high-frequency accelerometers. In order to fully
collect transformer vibration characteristics, the sampling rate is usually around 10 kHz.
The collected time-domain signals contain rich characteristic information; however, it can
hardly be used directly for fault diagnosis. Therefore, a proper feature extraction method is
essential.
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For the purpose of extracting sufficient feature information from the original vibration
signal, CWT is used to process the vibration signal in this study. The length of the selected
raw signal segment is 1280 (i.e., 160 ms), and the cmor3-3 (Morlet wavelet) is employed as
the mother wavelet with a total scale of 256. It is worth mentioning that the sampling rate
is set to 8000 Hz since the vibration frequency of the transformer in this case is basically
below 4000 Hz. As shown in Figure 7, the time-domain vibration signals is converted to
RGB images after translation and dilation by the mother wavelet. Meanwhile, the images
are labeled and proportionally divided into training, validation, and testing datasets.

Sample Set

Time-domain Vibration Signal

RGB Image

CWT

Figure 7. Feature extraction procedure.

4.2. Proposed CNN Structure

After converting the raw signals to RGB images, there are n classes of images cor-
responding to n transformer working conditions. The RGB image can be divided into
3 monochrome layers to meet the requirements of the input format. In order to improve
the accuracy of image recognition, the input size of proposed model is set to 64 × 64 in
this study.

Based on experience and comparison, the proposed CNN structure was finally deter-
mined as shown in Figure 8. There are two alternating convolutional and pooling layers in
the proposed CNN structure. The size of the convolution kernels (filter) in the first and
second convolutional layers is 6@5 × 5 and 16@5 × 5, respectively, which determines the
number and dimensionality of the feature maps. The process of pooling operation can
reduce the size of the image by selecting the dominant pixels on the feature map, and the
kernel size of both pooling layers is 2 × 2. Meanwhile, to fully capture the features of the
images and control the size of feature maps, in this study, the strides of convolutional ker-
nels and pooling kernels are set to 1 and 2, respectively. In addition, three successive fully
connected layers are designed to calculate the final feature information by converting the
pooled feature maps to the 1-D vector. Eventually, the image classification is implemented
by a softmax process.
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Some other initial hyperparameters of the structure are set as follows: learning rate = 0.015,
batch size = 12. The optimal combination of the above parameters will be discussed in
Section 4. Finally, the flowchart of the proposed method is shown in Figure 9.

5×5

2×2

5×5
2×2

3@64×64 6@60×60
6@30×30

16@26×26
16@13×13

Convolutions Pooling Convolutions Pooling Full-connection

Input Feature maps
Pooled

feature maps
Feature maps Pooled

feature maps
Fully connected 

layer

Figure 8. The structure of the proposed diagnosis model.

Figure 9. Flowchart of the proposed diagnosis method.

5. Experimental Verification and Discussion

In this section, an experimental setup was designed to simulate different faults, and
the corresponding vibration signals were collected to train and test the proposed diagnosis
model. Moreover, the performances of different parameters in the proposed model were
compared to select the optimal combination. The CNN model is written in Python 3.7 with
PyTorch and runs on windows 10 with two Nvidia RTX 2080Ti GPUs.
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5.1. Comparison of Different Structures

The structure of the proposed model has a crucial impact on diagnosis accuracy. In
order to find the best combination of structures, the performances of different structures
were compared, and the results are shown in Table 3, where CNN-x-y-z means that there
are x, y, and z neurons in the first, second, and third fully connected layer, respectively. For
example, CNN-2704-126 means that there are 2704 neurons in the first layer, 126 neurons in
the second layer, and there is no third layer in this structure.

Each model was run ten times, and the maximum, minimum, mean, and standard
deviation (SD) of the testing accuracy were employed as criteria to evaluate the performance
of diagnostic models. From the results shown in Table 3, it can be concluded that the model
of CNN-2704-126-64 achieves the best performance on CH2. Its maximum, minimum,
mean, and SD of testing accuracy are 100%, 97.5%, 98%, and 1.96%, respectively. All of
those criteria are superior to the other structures compared. It should be noted that all six
models performed better on CH2 than CH1, which indicates that the horizontal component
of the transformer vibration signal contains richer fault characteristics than the vertical
component in this study.

Figure 10 shows the training process of CNN-2704-126-64. It can be seen that when
the epoch was around 70, the accuracy of the training dataset is close to 100%, and the
training loss is minimized accordingly, which indicates that the structure has good fitting
performance.

Table 3. Result of CNN models with different structures.

Structures

Testing Accuracy (%)

Max Min Mean SD

CH1 CH2 CH1 CH2 CH1 CH2 CH1 CH2

CNN-
2704-126

96.5 97.5 58.5 63 93.95 95.3 12.31 6.30

CNN-
2704-256

95 98 65.5 87 92.3 94.15 14.92 9.11

CNN-
2704-126-32

100 99.5 84 79.5 94.55 96.35 4.81 4.39

CNN-
2704-126-64

99 100 95.5 97.5 95.15 98 2.94 1.96

CNN-
2704-126-128

100 100 87.5 93.5 93.85 95.3 5.19 3.03

Figure 10. Training process of the proposed structure.
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5.2. Comparison of Different Hyperparameters

The batch size (BS) is one of the most important hyperparameters in deep learning,
which represents the number of samples picked for a training session. It affects the degree
of model optimization as well as the speed of optimization by changing the GPU memory
usage. In order to select the most suitable BS, the diagnosis performances of different BS
are compared, which are shown in Figure 11. The results show that the model achieves the
best performance when BS = 20; its maximum, minimum, mean, and SD of testing accuracy
are 100%, 97%, 99.2%, and 0.95%, respectively.

Figure 11. Diagnosis result of different batch sizes.

The learning rate (LR) determines whether and when the objective function can
converge to a local minimum. A suitable LR can make the objective function converge fast
and efficiently. To this end, the diagnostic performances of different LR are compared, and
the results are shown in Figure 12, from which it can be seen that the best performance
with a mean accuracy of 99.95% is achieved when LR = 0.02. In addition, it has a low
SD of 0.32%, which indicates that the proposed parameter combination has very stable
performance.

Figure 12. Diagnosis result of different learning rates.
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Based on the above comparison and analysis, the hyperparameters of the proposed
diagnosis model are finally determined as BS = 20 and LR = 0.02. The confusion matrix
of diagnosis results is illustrated in Figure 13, where the columns represent prediction
labels and the rows represent actual labels, and the intersection of them represents that the
predicted conditions are consistent with the actual conditions. As shown in Figure 13, all
the 400 testing samples, divided into 10 conditions, are matched with an accuracy rate of
100%, which demonstrates that the proposed method is quite effective in transformer fault
diagnosis.

Figure 13. Confusion matrix of the proposed method.

5.3. Verification of Superiority

To verify the superiority of the proposed diagnosis method in this study, the per-
formances of different methods are compared, including ANN [40], DBN [41], 1D-CNN,
Hilbert–Huang Transform (HHT)-CNN, short-time Fourier transform (STFT)-CNN, and
CWT-CNN. It is worth mentioning that the vibration signals used in all methods are col-
lected by CH2, and each method was run ten times. The results are shown in Table 4. It
can be seen that the proposed CWT-CNN method achieves the best performance, and the
maximum, minimum, mean, and SD of its prediction accuracy are 100%, 99.5%, 99.95%,
and 0.32%, respectively. Compared with other methods, CWT-CNN can perform better
feature extraction and identification from the raw vibration signal in this study.

Table 4. Diagnosis performance of different methods.

Methods
Testing Accuracy (%)

Max Min Mean SD

ANN 84.5 55.5 71.73 9.25
DBN 87.5 68 82.1 8.9

1D-CNN 92.5 84.5 91.52 5.47
HHT-CNN 95.5 89 93.25 2.84
STFT-CNN 95 87.5 94.14 3.93
CWT-CNN 100 99.5 99.95 0.32
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6. Conclusions

This study proposed a deep learning-based fault diagnosis method for transformers,
which converted vibration signals into RGB images to extract the corresponding fault
features using CWT and then achieved fault diagnosis through an improved CNN model.
In order to train and validate the proposed model, an experimental setup was designed
to simulate transformer faults, including core clamp looseness, winding clamp looseness,
connection bar looseness, and turn-to-turn short circuit. The optimal structural and hy-
perparameters of the proposed model were determined by comparing their diagnostic
performances. Compared with other methods, the proposed diagnosis method can achieve
the highest mean accuracy of 99.95% and the lowest SD of 0.32%. Moreover, due to the
offline training strategy, the feature extraction and diagnosis process took less than 7
s, which can provide fast and accurate online fault diagnosis for the transformer. This
study can expand the field of transformer fault diagnosis and offer technical support for
condition-based maintenance of operating transformers.
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