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Abstract—Software-Defined Radios (SDRs) enable more flexible
connectivity solutions than traditional systems, but still face
several challenges hindering their widespread adoption. General-
Purpose Processor (GPP) based SDRs have generally been too
slow for low-latency protocols. Meanwhile Field Programmable
Gate Array (FPGA)-based SDR setups suffer from high prices
and a steep learning curve for developers. This paper investigates
the feasibility of implementing Bluetooth Low Energy (BLE) in a
GPP based Peripheral Component Interconnect Express (PCIe)
connected SDR. In particular, we focus on adhering to the timing
requirements of BLE in a practical SDR implementation. For
this, we propose a multi-threaded implementation based on a
subset of the open-source BLE library BTLE. Using a signal
generator and oscilloscope, we show that the SDR is able to
achieve a response time down to 105 µs and can accurately
respond in the required 150 ± 2 µs Inter Frame Space (IFS)
time window. Furthermore, we also validate that channel hopping
is supported by the SDR-based platform. To the best of our
knowledge, this is the first SDR implementation able to meet
the IFS requirements of BLE, hereby leading the way for more
complete fully software based BLE protocol stacks.
Keywords—Bluetooth Low Energy (BLE), Proof of Concept
(PoC), Software-Defined Radio (SDR), Timing.

I. INTRODUCTION

Reconfigurability is a key trait of softwarization, or the um-
brella term for software defined principles, Software Defined
everything (SDx) [1]. This term encompasses the paradigm
of software-defined functions and virtualization for dynamic
operations and cost savings. It allows to easily adapt, scale, and
update the network infrastructure by updating the software, as
opposed to the common cost-inefficient practice of replacing
the hardware components across the network elements.

Software-Defined Radios (SDRs) enables the same generic
piece of hardware to be used for different wireless technolo-
gies, by simply changing the software controlling it. Such
reconfigurability is key to achieving true “always connected-
ness” in Internet of Things (IoT)-systems, where it should be
possible to connect any IoT device to the internet, regardless of
the available IoT-technology providing coverage. An enabler
of this is the concept of a general IoT gateway [2], whose
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purpose is to provide connectivity and enable data collection
for IoT devices, potentially using different communication
protocols. An example of such implementation is an Field
Programmable Gate Array (FPGA)-based IoT gateway sup-
porting four different protocols [3]. Also, an architecture for
software defined functionalities in IoT has been proposed [4],
emphasizing added values such as openness, and reduction of
operational costs. The very nature of SDRs fits very well with
the IoT gateway architecture given that the support for multiple
protocols depends only on the software implementation.

The work by [5] describes different SDR platforms, the
hardware necessary for different design principles, and their
respective trade-offs. Four primary designs are considered,
namely, General-Purpose Processor (GPP), Digital Signal Pro-
cessor, FPGA and hybrid. The last three involve hardware
suited for signal processing. GPP is considered in two ways:
1) a pure GPP with just a Central Processing Unit (CPU), or
2) a GPP with a CPU and, e.g., a Graphics Processing Unit
(GPU) for signal processing. A particular challenge in pure
GPP-based platforms is to achieve the timing requirements of
typical IoT protocols [6]. In particular, it was observed in [6]
that the typical SDR-to-host latency for diverse platforms is
in the order of milliseconds, which is several magnitudes
higher than required by protocols such as WiFi and Bluetooth
Low Energy (BLE). Low latency protocols like BLE, with an
Inter Frame Space (IFS) of 150 ±2 µs, can generally only be
realized by using additional hardware, for example, an FPGA.
The IFS measured as the time between the end of a frame
and the beginning of the succeeding frame. While, success-
ful implementations of a GPP and GPU-based platform for
tracking and decoding traffic across the entire BLE spectrum
have been achieved [7], the protocol interactions have not been
considered.

This work is based on a Proof of Concept (PoC) for a BLE
Master using only an off-the-shelf CPU for the processing
tasks. The main contributions of this work are:

• Multi-threaded software design that allows to adhere to
BLE’s strict lower layer requirements, including the IFS.

• Experimental verification and performance evaluation of
the PoC to support a BLE implementation.
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Figure 1: Model of software components and hardware com-
ponents and latencies considered in an SDR implementation.

To the best of the authors’ knowledge, this is the first
instance of a successful GPP-based SDR setup only using the
CPU for signal processing to enable low layer communication
for BLE. The rest of the paper is organized as follows. Section
II describes our SDR latency model. Section III describes
the design and implementation of the software components
Section IV shows hardware and full system performance.
Section V concludes the paper.

II. LATENCY REQUIREMENTS

The primary requirement of the developed PoC is that
the response must be transmitted within the IFS interval
[148, 152] µs. In an SDR implementation, both software and
hardware processes introduce latency to the communication,
which is non-deterministic and, hence, can be modeled as
a random variable. For an acknowledgment to be made,
first the analog data must be received and converted to
digital form, with latency LSDR-Rx, and passed through the
SDR-to-host interface with latency LIF. These processes are
performed in hardware and the result is the input to the
CPU. The samples are then processed by the CPU using a
software implementation with overall latency LSW to generate
a response. The response is then given to the SDR through
the SDR-to-host interface. Then, the data is converted back
from digital to analog in hardware, which takes LSDR-Tx.
Data can be transmitted immediately afterwards. The complete
process is illustrated in Figure 1, where all components within
the box are implemented in software and those outside are
implemented on hardware. Thus, as described in [6], the
overall latency is given by the sum of random variables (RVs)
LHW +LSW, where the latency at the hardware components is

LHW = LSDR-Rx + 2LIF + LSDR-Tx. (1)

The necessary criterion to fulfil is that all steps in hardware
and software, are completed within the IFS. Therefore, we
define the reliability of an SDR implementation as

rSDR = Pr [148 ≤ LHW + LSW ≤ 152] . (2)

That is, it is necessary to ensure that neither bounds of the IFS
are violated. As shown in Fig. 1, the latency of the software
components LSW is constituted by the time the CPU takes to
demodulate, decode, create and modulate the response:

LSW = Ldemodulate + Ldecode + Lresponse + Lmodulate. (3)

The multi-threaded software implementation included in the
PoC achieves the demodulation and decoding in parallel so that
the symbols are processed one by one and the overall latency
is reduced. Naturally, characterizing THW + TSW analytically
is extremely complicated and goes beyond the scope of this

paper. Nevertheless, we characterize the empirical distribution
for the specific PoC in Section IV and estimate its reliability
after fitting a well-known distribution to the empirical data.

III. SYSTEM DESIGN AND IMPLEMENTATION

The software implementation is based on a third-party
library BTLE [8]. The original version contained individual
RX and TX modules, which can be found on the Github [8]. A
sniffer for BLE and a module to create, modulate, and transmit
BLE frames. Both were meant for an implementation with
HackRF or BladeRF. Modifications were made to the original
BLTE library to reduce the processing time to meet the IFS
requirement. Specifically, with our configuration for the SDR
the sniffer could not operate in real time, and the other module
took 170ms to create I/Q samples. Our BLE implementation
is divided into modules that can run in parallel and, hence,
minimize the idle periods on the CPU. The modules and their
internal interaction are specified in the following.

• Rx Thread: Continuously read samples from the SDR’s
antenna and store them in a buffer for Mod Thread

• Mod Thread: Receive samples from Rx Thread and
start detecting access address. If found, demodulate the
header and extract packet length, and immediately start
ACK & NACK response. Depending on Cyclic Redun-
dancy Code (CRC) give response to TX Thread.

• Tx Thread: Receive samples and response transmission
time from Rx Thread. When transmission time is, for-
ward the samples to the antenna and transmit the samples.

A timeline perspective is shown in Figure 2, which illus-
trates how parallelization helps reduce the response time. The
average execution time of each module is listed above each
function. These were measured individually in microseconds,
with little to no observed variation between measurements.
Two things to note is that, firstly the Payload parsing and CRC
check start only when the entire packet is received. Secondly,
demodulation of received samples occur before any further
decoding of the frame. The execution time is measured when
all bits associated with that part of the frame are demodulated.
Demodulation gains the most from parallelization as samples
are received parallel to the construction of the received frame.
Samples must always be received to not lose data. Samples are
received every 3 µs, which resulted in the highest stable rate
for the platform, and the packet is built discretely over time.
At the end of the frame 8 µs are spent for CRC to pick ACK
or NACK. Scheduling the response and the write latency are
106 µs combined. The total latency of 117 µs remains well
below the IFS, leaving a comfortable headroom that allows
for dealing with variations in modulation time or variation in
software execution time. We note that demodulation and mod-
ulation steps are executed sequentially in the Mod Thread.

IV. RESULTS

The platform utilizes an off the shelf PC with i9-9900k
processor, 32GB DDR4-2666 RAM and a heatsink for cooling.
Initially, the platform was tested with respect to the time it
takes to receive and respond to a signal, without any signal
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Figure 2: Threaded perspective of function execution with their
average execution time. New samples are retrieved every 3 µs.

processing or processing of a response. This result indicates
the limitations of the hardware platform itself. After this, ca-
pabilities of the platform and protocol implementation to stay
within the IFS were analyzed. To characterize the performance
of the SDR a Signal Generator and Oscilloscope were used.
In both tests, the Signal generator initially transmits a frame.
In the first test, the SDR responds immediately to gauge the
hardware latency. In the second test, the SDR will aim to
respond within the IFS to measure the accuracy. Components
used for the tests included an MSOX4154 oscilloscope, an
N5182A MXG signal generator.

Traditionally for GPP-based SDRs is the LHW limiting
factor. By retrieving samples more often it can be reduced,
and the SDR has one such feature called DMA buffer size for
this purpose. By setting it small, we retrieve samples often and
found that 3 µs being optimal for stability and responsiveness.
If too small the program would crash. Different values for the
sample rate were also tested. It was found that at 40 MHz
the performance was stable and highly responsive. Evaluation
of the LHW is based on sending a frame from the signal
generator. A response is made once an increased voltage is
observed at the host. This involves minimal host processing,
and is practically only the hardware. Figure 3, shows the
achieved response time of 105 µs. The first increase on the
yellow signal (SDR) is leakage from the signal generator.
105 µs after the green signal(generator) is high the yellow
signal goes high as the response is received at the oscilloscope.
While the response-time is found to be around 105 µs, further
investigation found that the latency of samples is not always 3
µs, as expected from the DMA buffer size, effectively making
it less responsive.

Latency of new samples, returned by the read function,
ranged from 3 to 40 µs. We noted that 99.14% of all these
occur at 3µs and 4µs, hence late samples are rare. The
effective responsiveness is therefore between 105 and 142 µs
when accounting for stuck samples, waiting to be retrieved
and processed. While late samples influences the performance
for the PoC, it is primarily an issue at the end of the frame.
It should be emphasized that the worst case of 40 µs happens
very rarely – it was only observed 2 times over 100 million
samples. A thing to note in this context is that performance
evaluation only occurs on executions of the SDR where it
performs correctly. When started, the SDR may perform sub-
par, with read operations taking more than 100 µs. This is,
however, fast to measure and find out within the first minute.
If it does not happen in this period, it does not happen
afterward. It was found out in run-time, and the SDR rebooted

Figure 3: Fastest response-time measure can be seen at the H.

automatically until a correct instance is found. For that reason,
only the correct instances are evaluated.

The response-time performance of the full implementation
is analyzed by using an oscilloscope to measure voltage levels.
In Figure 4a all signals from the signal generator and SDR
have been plotted on top of each other by applying the
modulus function on the data with the generator periodicity
interval of 460 µs. While the rising and falling edges of
the voltage profile of the signal generator are very similar
for all instances, the SDR response signal shows temporal
variation at the beginning and end of the transmission. On
the falling edge, two different time offsets separated by 3
µs can be distinguished. The same is visible at the rising
edge, however visually less apparent due to the smoother rise.
Finally, we noticed an outlier (shown in green) that is too
short to be a correct frame can also be seen. We believe this
is an example of one of the last samples being late, thereby
causing delayed start of transmission. However, since the end
of transmission is specified as an absolute timestamp in the
code, the transmission ends at the designated time resulting
in an incomplete frame. From the measurements, we cannot
immediately read the response-time, which is the time between
the end of the generator signal until the SDR response starts.

First, to find the end time of the generator signal, we use
the knowledge that the transmitted signal from the generator
is 88 µs long. Centering this interval between the flanks of the
generator signal, we can determine the end time. As the SDR
response has a smooth rising edge, we consider the end of
the signal to be when the falling edge goes below the level of
variation around the mean in the high part of the signal. From
this point, we subtract the duration of the response signal, 80
µs, to get the start timestamp of the response signal, from
which the response time is calculated. A PDF of the resulting
response time measurements can be seen in figure 4b, where
424 of the frames were correctly placed within the IFS. The
outlier from previously is not shown as it was incorrect, it was
too small and considered an automatic failure. This leads to
the performance of the implementation upholding the IFS in
424 out of 425 instances. All 424 correct frames were within
the IFS ± 2 µs, showing that the SDR implementation fulfill
the IFS requirement. Further, we notice that the distribution
resembles that of a mixture of two Gaussian random variables:
X = c1X1 + c1X1 where Xi ∼ N (µi, σ

2
i ) and ci are mixing

coefficients, i ∈ {1, 2}. The reason for this characteristic is
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(a) Observed signals for the 425 SDR frames, plotted on top of each
other. Each color corresponds to a different frame.
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(b) Empirical distribution of the response time obtained from PoC
measurements for the correct frames and fitted Gaussian distribution.

Figure 4: Measurements of signals and response time.
Table I: Fitted parameters of Gaussian mixture distribution and
their 95% confidence interval.

i ci µi σi

1 0.77 148.49 ≤ µ ≤ 148.53 0.124 ≤ σ ≤ 0.145
2 0.23 151.47 ≤ µ ≤ 151.54 0.134 ≤ σ ≤ 0.179

uncertain, but could be related to oscilloscope resolution. The
Gaussian distributions have been fitted individually, resulting
in the parameters listed in Table I.

We notice that the fitted distributions are offset by 3 µs,
corresponding to the observed difference in the falling edge
of the SDR response, seen in figure 4a. A chi-square goodness
of fit test was performed on each of the Gaussian components.
The latter is a statistical hypothesis test used to evaluate
how likely observed data are to have been sampled from a
hypothesized distribution. A p-value, with p ∈ [0, 1], is used
as a threshold to determine if a null hypothesis can be rejected.
For our definition, the null hypothesis is that the observed data
are sampled from the fitted distribution. Typically, the null
hypothesis can only be rejected if p ≤ 0.05 and the resulting
p-values for our goodness of fit test are 0.77 and 0.84 for
the respective distributions. With these p-values, it is safe to
conclude that the values are sampled from the fitted Gaussian
distributions, and use this assumption for further evaluations.
Following, the probability of upholding the IFS requirement,
given by a = 148 and b = 152, can be calculated as:

Pr[a < X < b] = c1 Pr[a < X1 < b] + c2 Pr[a < X2 < b]

=
c1

σ1

√
2π

b∫
a

exp

(
− (t− µ1)

2

2σ2
1

)
dt

+
c2

σ2

√
2π

b∫
a

exp

(
− (t− µ2)

2

2σ2
2

)
dt

= 0.9998. (4)

The probability is evaluated to give rise to a more accurate
performance evaluation of the full implementation, when sam-
ples are not delayed as also previously seen. This is especially
required due to the small sample size of 424, from where
our estimated distribution, with a good fit, suggests an error
probability of 2 · 10−4. This error type is caused by the
inaccuracies in when the ACK frame starts.

Frequency hopping was also tested with N9020B MXA
signal analyzer by shifting the I/Q samples from the center
frequency to the new channel. We found that we can shift these
before transmission, by pre-computing the shift in samples.
With the current configuration we support half the BLE
spectrum with 40 MHz sampling, as the SDR’s AD9361 chip
samples orthogonally meaning effectively at 80 MHz. We
could likely fully support the entirety with 2 individual SDR.

V. CONCLUSION

In this paper, we presented the design of our PoC for a
BLE Master using a GPP-based Peripheral Component Inter-
connect Express (PCIe) SDR. The PoC is based on a multi-
threaded partial implementation of the BLE controller, which
enables low granularity of sampling and fast demodulation.
The results show a 2 · 10−4 error rate for upholding the
IFS while supporting the channel hopping functionality of
BLE. These results highlight the advancements made possible
with new PCIe-SDRs and serve as a stepping stone towards
implementing the full BLE stack in SDRs, which is not yet
supported. Future directions include combining multiple SDRs
to cover the entire spectrum of the BLE and systematic testing
to compare the SDR implementations against commercial BLE
products, and ensure full protocol stack support. Besides, the
promising results indicate that our software design can be
adapted to other protocols not currently supported in SDR such
as LTE, LoRa, 802.11ah. Ultimately, SDR solutions might lead
to a fully reconfigurable IoT gateway, where support for new
protocols is added through software updates.

REFERENCES

[1] Deloitte. Software-definedeverything. [Online]. Available:
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-
services/us-fsi-software-defined-everything.pdf

[2] H. Chen, X. Jia, and H. Li, “A brief introduction to IoT gateway,” in
Proc. IET International Conference on Communication Technology and
Application (ICCTA 2011), 2011, pp. 610–613.
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