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A B S T R A C T   

In force myography (FMG) limb movement is detected by measuring muscle contraction intensity in terms of 
forces. In this work, FMG is used to detect forearm movements i.e. flexion, extension, pronation, supination and 
steady-state. In FMG, sensors are conventionally located at supinator/pronator muscles to detect forearm pro-
nation/supination movement. In this paper, a new approach to detect forearm movements i.e. pronation/supi-
nation also including flexion/extension and steady-state posture, is proposed. This is achieved by designing a 
sensor distribution pattern on upper arm muscles and supported by bagged tree ensemble classification algorithm 
a unified classification model is obtained and tested on multiple subjects. Performance of the method is evaluated 
using accuracy, precision, and recall. Results have shown that with the proposed method a unified model can be 
developed for detecting forearm movements. An average of 0.91, 0.93 and 97.3% precision, recall and accuracy, 
respectively, is achieved.   

1. Introduction 

Human intention detection, i.e. movement type or assistance level 
detection, is one of the key component in the development of exo-
skeletons [1]. They provide the information that drives the exoskeleton 
according to user requirements. Therefore, in order to provide correct 
assistance accurate movement detection methods are required. 

Many methods to detect limb movement have been proposed. Of 
those methods EMG is used to detect the muscle activity in terms of 
electrical signals. This method has been used to detect upper limb [2–4] 
and lower limb activities [5,6] and has also been applied for the control 
of assistive exoskeletons and prosthesis [7]. FMG is another method to 
detect muscle activity by measuring lateral forces caused by muscle 
contraction/relaxation [8]. This method has also been applied to detect 
both upper and lower limb activities for controlling exoskeletons and 
prosthesis. While comparing both techniques, studies have shown that 
FMG has better performance than sEMG for gesture classification [9,10], 
forearm motion classification [11] and fingers force estimation [12] in 
terms of accuracy and stability w.r.t time. 

In the recent years many FMG based methods have been proposed to 
detect upper limb movements. The movements include hand gestures 

[13–19], grasps [15,20–22], grasp force [22,23], static and dynamic 
forearm gestures [24], joint torque [25], upper arm movements [26,27] 
and carried payload [28]. Besides, FMG has also been reported for 
detecting lower limb movements for the purpose of step counting [29], 
detecting ankle positions [30], estimating knee joint angle [31], loco-
motion detection [32,33] and gait phase detection [34–36]. 

In the existing literature forearm pronation/supination is detected by 
placing the sensors on forearm muscles [13,14,16,26,37]. As biceps 
brachii also acts as secondary muscle to perform supination, which 
implies that sensors placed on the upper arm muscles can also be used to 
detect pronation/supination. 

This study aims to investigated the use of upper arm muscles for the 
detection of forearm movements i.e. pronation/supination, flexion/ 
extension and steady-state posture. Furthermore, in order to reduce the 
time and effort used in the collection of training data a generalized 
model is developed and evaluated to detect these movements. 

This paper is organized as follows: Contributions made in this study 
are presented in Section 2. Section 3 describes the materials and 
methods to detect muscle activity, collect data and perform experiments 
and analysis, whereas results are presented in Section 4. Discussion is 
presented in Section 5 and finally, the work is concluded in Section 6. 
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2. Contributions 

Following are the contributions/novelty of the presented work,  

• Use of upper arm muscles, i.e. biceps and triceps, for detecting 
forearm pronation/supination movement.  

• A unified classification model that,  
• Detects forearm dynamic movements across multiple subjects.  
• Reduces the need of training data, hence improving applicability 

of motion detection methods in real-time applications.  
• Verification of the proposed approach by testing on multiple 

subjects. 

3. Method and materials 

3.1. Muscle activity detection with FMG sensors 

In FMG muscle activity is measured in terms of lateral force that is 
caused by muscle contraction. In this work we have used this method to 
detect forearm movements i.e. pronation/supination, and flexion/ 
extension and steady-state posture. Here, steady-state is defined as 
holding forearm in a fixed position. 

Conventionally, forearm pronation/supination is detected by placing 
the sensors on forearm. In this work we have proposed an alternative 
approach to detect pronation/supination, which is by placing the sen-
sors on upper arm muscles, as shown in Fig. 1(a). Upper arm muscles, i.e. 
biceps and triceps, are prime movers for elbow flexion/extension. Biceps 
Brachii, however, also assists in supination of the forearm. Therefore, by 
specific distribution of sensors on the upper arm, all of the aforemen-
tioned forearm motions can be detected. 

In this work, FMG of upper arm muscles is performed by using two 
similar sensor bands (Fig. 1(c)). Each is constructed by an array of eight 
force sensing resistor (FSR) sensors. One sensor band is placed at the 
center of the upper arm, SBa, where the deformation is maximum when 
the arm is flexed. The second sensor band is placed near elbow joint SBb, 
as shown in Fig. 2. FSR sensor is mounted on the sensor band as shown in 
Fig. 1(b). The inner most layer is the FSR. Afterwards, the layer beneath 
FSR is the ”FSR base”, which is comprised of both hard and soft material. 
It ensures the proper contact of FSR with the skin. Finally, on the 
outermost side it is band that is wrapped around the arm. 

FSR sensors used in the sensor bands are FSR402, which are devel-
oped by Interlink electronics. They can measure the forces in the range 
of 0.1–10 N. To acquire force data, FSR sensor is interfaced with 
Arduino, where the data is fetched and transmitted to MATLAB at the 
rate of 80 Hz. 

3.2. Data Processing 

3.2.1. Data collection protocol 
To collect data for each movement subjects were asked to stand with 

their upper arm positioned parallel to the body as shown in Fig. 1(b). 
Moreover, they were instructed to keep the upper arm as steady as 
possible while performing experiments. 

Steady-State data was recorded by keeping the forearm steady in 
three positions, i.e. at elbow joint angle approximately 10◦, 45◦ and 90◦. 
To collect data for flexion/extension, subjects were asked to perform 
flexion and extension of forearm between fully flexed position and 
neutral position of forearm. This movements sequence was performed 
repeatedly 16 times. The speed was kept normal as per subject’s 
perspective. The data for pronation/supination was obtained by per-
forming them in a continuum between fully pronated and supinated 
position, repeatedly for 16 times. These movements were performed at 
four different elbow joint angles, starting at neutral elbow position and 
at approximately 30◦, 60◦ and 90◦. At each of the aforementioned elbow 
joint angle pronation/supination was performed four times, hence 
making it 16 in total. All of the aforementioned movements are illus-
trated in Fig. 3. 

3.2.2. Features extraction 
RMS and slopes features obtained from raw data are shown in Fig. 4. 

In each figure, data samples 0–166 are of steady-state, from 167 to 332 
are of flexion and from 333–498, 499–664 and 665–830 are of exten-
sion, pronation and supination, respectively. Data shown for steady- 
state is from two different elbow joint angles. Whereas, for all the 
other movements several repetitions are shown together. 

Observing the data visually, it can be seen that signal amplitudes and 
patterns for RMS are quiet similar between the movements, whereas, 
very distinctive patterns can be observed for slope feature. Furthermore, 
signal amplitude is different from subject to subject, however, muscle 
contraction/relaxation behaviour is same e.g. to perform forearm 
flexion biceps will always contract resulting in positive slope for data 
read by FSR sensor and same is the case for other movements. Hence 
slope can provide more meaningful information to perform classification 
and develop a unified movement detection algorithm. Therefore, slope is 
used as input feature for the classifier training. Mathematically, slope is 
computed using the following equation, 

κ =
Ri − Ri− 1

tws
(1)  

here κ represents the slope feature, Ri represents the newest sample of 
RMS data and tws is the window time to extract features. 

3.3. Experiments 

Ten subjects participated in this experiment. Each of them was 
Fig. 1. (a, b) Placement of sensors on upper arm and (c) FSR sensors placed 
inside the band. 

Fig. 2. Mounting of FSR sensor on the sensor band.  
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healthy and belonged to age group of 25 to 40 years. Ethical approval to 
conduct these experiments was obtained from ethical committee, Region 
Nordjylland, Denmark. Prior the experiments, subjects were instructed 
about the tasks and were asked to sign consent forms. 

Three experiments are performed in this study. (a) Experiment A: In 
first experiment, data recorded from ten subjects was divided into two 
subsets. Data from first five subjects was used as training dataset and 
data from other five subjects was placed under testing dataset. 25 ms 
window was used for feature extraction and ensemble learning algo-
rithm bagged trees was used to perform classification. (b) Experiment 
B: In second experiment, effect of window size for features extraction is 
studied. To perform this experiment classification technique, and 
training and testing dataset used are same as that of Experiment A. 
However, window size is varied from 25ms to 125ms with the step of 
25ms. (c) Experiment C: In third and last experiment, testing dataset, 
window size for features extraction and classification technique used is 
same as that of Experiment A. The motion detection performance is 
investigated by varying the size of training data. 

3.4. Analysis 

The performances of above mentioned experiments are analyzed by 
computing precision, recall and accuracy. Correctly detected samples 
from total number of samples detected as a movement gives precision. 
Whereas, in recall it is calculated that from the number of times a task 
was performed, how many times the classifier was able to detect it 
correctly. Finally, accuracy is the measure of correct samples from total 
number of samples collected. Mathematically these parameters are 
calculated as 

Ppre =
NTP

NTP + NFP
(2)  

Prec =
NTP

NTP + NFN
(3)  

Pacc =
NTP + NTN

NTP + NTN + NFP + NFN
(4)  

here TP, TN, FP and FN are true positive, true negative, false positive 

and false negative samples, whereas NTP, NTN, NFP and NFN represents 
the number of samples that are true positive, true negative, false positive 
and false negative respectively. Ppre, Prec and Pacc represents precision, 
recall and accuracy respectively. Precision and recall are defined in the 
range of 0–1, whereas, accuracy is expressed in percentage. 

4. Results 

4.1. Experiment A 

The results of the experiment are shown in Tables 1, 2, and Figs. 5, 6. 

4.1.1. Results w.r.t subjects 
Results shown in Table 1 and Fig. 5 presents movement detection 

performance w.r.t each subject. From these results it can be seen that 
precision is lowest i.e. 0.86, for subject 2 and highest i.e. 0.94 for subject 
5. Similarly, recall is achieved lowest for subject 2 and highest for 
subject 5 i.e. 0.89 and 0.96 respectively. However, best results for ac-
curacy are seen for subject 4 and lowest for subject 2, which are 95.35% 
and 98.37% respectively. In these results it can be noticed that for each 
subject the results of recall are better than precision. Eqs. (2) and (3) 
depicts that performance of recall depends upon FN samples and pre-
cision depends on FP samples. The less the FN samples are the better is 
the recall and similarly, the less the FP samples are the better is the 
precision. It implies that for each subject FN were less then FP samples. 
Therefore, results of recall were better than precision. 

4.1.2. Results w.r.t motion type 
In previous section the results showed that FP samples were higher 

then FN samples. This means that relatively larger number of samples 
detected as a movement were miss-classifications. In this section the 
results are analyzed from the perspective of each motion type, in order 
to investigate which movements were miss-classified and reasons for it 
by studying the confusion matrix shown in Table 2. 

Steady-State: The results from confusion matrix exhibits that none of 
the steady-state data sample was miss-classified as any other motion 
type. In other words there were no FN samples detected for steady-state 
dataset. Hence, the recall of steady-state was 1, which can also be seen in 

Fig. 3. Movements performed for data collection.  
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Fig. 6(b). However, data samples from other motion types i.e. flexion, 
extension, pronation and supination were miss-classified as steady-state. 
These samples are termed FP, affecting the precision of predicting 
steady-state, which can be visualized in Fig. 6(a). Among all the motion 
types, flexion contributed the most and supination contributed the least 
number of FP samples for steady-state. 

Flexion: Confusion matrix show that from total of 3323 flexion 
samples approx. 7% were miss-classified as other movements. There-
fore, recall of flexion was 0.93. On the other hand, from total number 
samples that were predicted as flexion approx. 4% were FP, hence 
precision is 0.96. Of all the FP samples majority of them were of 
pronation. 

Extension: Approx. 9% of the samples were miss-classified as FN, 
resulting in recall of 0.91 for extension. Whereas, samples that were 
predicted as extension 5% were FP, resulting in 0.95 precision. In 
contrast to flexion, majority of the FP extension samples actually were of 
supination. 

Pronation: The lowest performance in terms of precision is seen 
while detecting pronation. 16% of the samples predicted as pronation 
were FP, therefore precision of predicting pronation was 0.84. The 

Fig. 4. Example dataset of sensor data for forearm motions, (a) RMS and (b) slope.  

Table 1 
Average results for each subject from the testing dataset.  

Subjects 1 2 3 4 5 

Precision 0.90 0.86 0.94 0.92 0.94 
Recall 0.92 0.89 0.95 0.95 0.96 
Accuracy % 96.59 95.35 98.08 98.37 98.22  
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performance was mostly affected by extension samples, a total of 64% 
FP samples were actually of extension. 9% of pronation samples were 
predicted as FN, which resulted in recall of 0.91. 

Supination: Precision of predicting supination was slightly better 
than pronation. 15% of the total samples predicted as supination were 
FP. In contrast to pronation, mostly FP samples, i.e. 71%, were of 
flexion. On the other hand, recall for supination was slightly lower in 
comparison to pronation, 10% of supination samples were FN. 

The output of the FSR sensors placed at the center of the upper arm 
has different amplitudes but similar pattern for flexion/supination and 
extension/pronation, which can also be seen in Fig. 4. That explains why 
majority of the FP samples of supination are from flexion and for pro-
nation are from extension. Overall trend shows that precision is better 
than recall for flexion/extension movement. Whereas, recall of pre-
dicting steady-state, pronation and supination is better. However, if 
results are compared in perspective of each subject, Fig. 5, recall is found 
to be higher than precision of predicting all movements. 

4.2. Experiment B 

The results presented in the previous experiments were performed by 
keeping the window size fixed for features extraction process. In this 
section the performance of movement classification is briefly analyzed 
by varying the window size. Training and testing data is kept same as 
explained for Experiment A and window size is varied from 25ms to 
125ms with the step of 25ms. The results of the experiments are shown 

in Fig. 7. 
Results show that best performance is achieved when features are 

extracted using window size of 25ms. As, window size is increased the 
performance is degraded gradually for each parameter i.e. precision, 
recall and accuracy. 

4.3. Experiment C 

In all of the experiments reported earlier, training dataset comprised 
of the data from five subjects. Here performance of the motion detection 
is analyzed by varying the amount of training data, while keeping the 
testing data same as used for the previous experiments. Five combina-
tions of training data are tested i.e. data from one, two, three, four and 
finally from all five subjects. The results of this experiment are shown in 
Fig. 8. 

A significant change in performance can be seen when the training 
data is increased from 1 subject to 2 subjects. All three parameters i.e. 
precision, recall and accuracy showed improvement. However, as more 
and more training data is added the change in performance is almost 
similar, which implies that for the given test group training data from 
only two subjects is sufficient for detecting movements effectively and 
efficiently. 

5. Discussion 

Exoskeletons [38,39] and prosthesis [40] are the devices to help 

Table 2 
Confusion matrix computed for all the data samples from testing dataset.   

Predicted Steady-State Flexion Extension Pronation Supination 
Actual  

Steady-State 1230 0 0 0 0 
Flexion 25 3089 27 39 143 

Extension 19 30 2327 131 57 
Pronation 17 63 25 1034 2 
Supination 2 26 73 34 1160  

Fig. 5. Results of motion detection w.r.t each subject, (a) Precision, (b) Recall and (c) Accuracy.  
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humans in gaining extra strength or restoring DOF lost due to amputa-
tion. In this paper, FMG based upper arm motion detection method is 
presented for exoskeleton control. It is shown that by placing FSR sen-
sors on upper arm muscle in a specific configuration, forearm flexion, 
extension, pronation, supination and steady-state can be detected. 
Moreover, using slope feature a generalized model can be developed to 
detect all these motions. 

Biceps brachii governs the movement of flexion and supination of 
forearm. Therefore, any assistive device designed to support elbow 
flexion/extension should be able to detect the muscle activity caused by 
pronation/supination, so that the assistance is provided correctly. For 

example, elbow exoskeleton presented in [41] is designed for power 
assist task during forearm flexion/extension movement. In many daily 
routine activities forearm pronation or supination is also performed e.g. 
during drinking, pouring or tightening, which can change the biceps 
muscle activity level and cause incorrect estimation of assistance level. 
The developed method can detect the bicep activity change due to 

Fig. 6. Results of motion detection w.r.t each motion type, (a) Precision, (b) Recall and (c) Accuracy.  

Fig. 7. Results of motion detection by varying window size for features 
extraction, (a) Precision, (b) Recall and (c) Accuracy. 

Fig. 8. Results of motion detection by varying training data, (a) Precision, (b) 
Recall and (c) Accuracy. 
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pronation/supination. This information can be used in a way so that the 
assistive torque is primarily adjusted only for flexion/extension 
movement. 

The method presented in this study has many more advantages. 
Obtaining training data for all the tasks can be challenging. By using the 
developed method effort and time in collecting training data can be 
reduced significantly. Conventionally, forearm pronation/supination is 
detected by placing the sensors on forearm. Forearm muscles are also 
prime movers of fingers, hand and wrist motions. Designing an algo-
rithm to detect all of these motion is computationally complex. This 
study has shown that pronation/supination can also be detected through 
biceps. Hence, the complexity of forearm, hand and wrist motion 
detection algorithms can be reduced because of additional sensory in-
formation obtained from biceps. 

In this study all the experiments were performed offline. In future 
studies, real-time testing will be performed to analyze online detecting 
performance. Moreover, the method will also be tested by integrating it 
with assistance control for elbow exoskeleton. Furthermore, In each of 
the experiment a contrasting performance is seen for flexion/extension 
and pronation/supination in terms of precision and recall. Beside, large 
number of FP samples that were observed in case of pronation and su-
pination were hypothesized as the result of similarity in data patterns. 
There can be many other factors that are causing this effect, which needs 
further analysis and testing. The other limitation of this study is vali-
dation on diverse age group and physical condition of a user. All of the 
experiments were performed on young and healthy subjects. However, 
results of generalized model might deviate when algorithm is tested with 
obese or weak users. It might happen that for the given physical con-
ditions or age group a different detection model is needed. Future ex-
periments will also cover these aspect. 

6. Conclusion 

In this work FMG of upper arm muscles is studied to detect forearm 
movements i.e. flexion, extension, pronation and supination, and 
steady-state posture. Moreover, a generalized model is developed and its 
performance is investigated to detect all of the aforementioned move-
ments. The objectives are achieved by placing FSR sensors on upper arm, 
at the center and near elbow joint. 

The results show that upper arm muscle can provide very clear ac-
tivity levels for classifying forearm motions. It is also shown that slope 
feature contributes significantly towards development of a generalized 
model. 

Furthermore, the results obtained in this study have great signifi-
cance while considering human effort and time to collect training data. 
The new method indicates that using slope feature a generalized model 
can be developed and effort in collecting right and enough amount of 
training data can be saved, which improves the usability in actual 
environment. Moreover, performance of detecting hand motions though 
forearm muscle can be improved by adding more sensors on upper arm 
near elbow joint. However, the validation of this method through real- 
time testing while performing routine activities is needed. 
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