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As autonomous electric vehicles and car-sharing services are becoming more popular, the contribution of shared autonomous
electric vehicles (SAEVs) to the future of urban transportation is getting more achievable. Like conventional electric vehicles,
SAEVs can provide power grids with ancillary services. Tis article proposes a new scheduling scheme for SAEV feets within a
cooperative plan to let power distribution networks beneft from the energy storage of vehicle batteries in recovering critical loads
after a predictable extreme event. According to a long-term contract, the detailed request of the distribution system operator
(DSO), together with desired constraints and perquisites, is sent to the SAEVs aggregator (SA) prior to the landfall of a predictable
extreme event. Afterward, SA runs a targeted algorithm to schedule trip assignments and charging cycles of SAEVs so that the
required constraints of DSO are satisfed. Te SAEV participants will continue carrying passengers within the scheduled time
horizon in addition to delivering energy to the distribution network at the scheduling deadline declared by DSO. Tis deadline is
the time instant when the capacity of the SAEV feet may be no more applicable to enhance the system preparedness against the
approaching event. Numerical results illustrated that the proposed scheme helps improve the power grid resilience by delivering
2396.1 kWh of energy to the distribution network in addition to increasing the total income of each participant SAEV by about
130%. Tus, it is implied that the proposed method ofers a win-win situation for both entities.

1. Introduction

Climate change has turned out as a worldwide concern
caused by greenhouse gas (GHG) emissions mainly due to
the transportation sector, in particular, fossil-fuel-powered
internal combustion engine vehicles (ICEVs) [1–3]. To al-
leviate this concern, governments have announced strict
deadlines to replace ICEVs with electric vehicles (EVs). For
instance, the European Union (EU) has introduced a plan to

ban the sale of ICEVs by 2035 [4–7]. Tese policies have
encouraged the automotive industry to invest in EVs, as it is
reported that it will spend at least $ 300 billion over the next
ten years to develop EVs [8]. Terefore, electric vehicles and
related issues have received increasing attention in recent
years. Among evolving EV types, Automated Electric Ve-
hicles (AEVs) have attracted more attention since they
employ artifcial intelligence (AI) technology to improve
service quality and driving fexibility. According to the
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Society of Automotive Engineers, the level of car automation
is graded from 0 to 5. Te more the level of automation, the
less the need for a driver to control the car. Ideally, vehicle
automation of level 5 introduces a driverless vehicle [9–11].
In this regard, the automation revolution in the trans-
portation sector has opened the door to a wide variety of
applications. For instance, in [12], a new public transit (PT)
system comprised of autonomous modular PT (AMPT)
vehicles is introduced. In the modular service operation, the
vehicle consists of smaller modular units/pods, which can be
assembled/dissembled at some specially designed transit
stations. Tis work focuses on accurately estimating the
minimum number of vehicle modules required to perform a
set of scheduled services. On this matter, another work in
[13] aims to minimize the operator and passengers’ total cost
while determining the station’s location and capacity and the
maximum number of modular units to provide an optimal
operation for future transit service systems with modular
vehicles. Another potential application of automation in the
transportation sector is Platoon operations that can afect
energy consumption, elevate roadway capacity, and enhance
trafc safety. Tis new emerging concept can potentially
improve the efciency of future transportation [14, 15].

As one of the most important applications of AEVs, a
new type of urban transportation called car-sharing service
has become popular recently. Among various companies
providing car-sharing services, Uber and Lyft could be
mentioned. Car-sharing service includes the shared use of a
vehicle for traveling to a predefned destination while the car
owner gets paid for providing this service [16, 17]. In such
transportation services, the service aggregator runs a cost/
proft optimization problem to schedule a feet of shared
electric vehicles (SEV) based on travel request data and
vehicles’ status. A group of researchers has presented feet
optimization models regarding technical considerations of
Charging/Discharging Stations (CDSs) and parking lots
[18–24]. References [25–28] have proposed a predictive feet
optimization model based on travel demand forecast data.
References [29–31] have analyzed feet size, pricing strate-
gies, and fare level impacts to give detailed insight, which
helps ft appropriate SEVs for a designated city or region.
Te modeling framework of car-sharing services is basically
summarized in two categories, namely, frst, modeling the
car-sharing system with a single agent/aggregator
[18–27, 29, 30]; second, modeling the car-sharing system
with multiple agents/aggregators [32–35]. However, to avoid
complexity and focus on the paper’s main aim, a single
aggregator model is presented in this work.

Recent advances in electric vehicle charging technology
presented a solution for the long-standing challenge of EVs’
slow charging. With Tesla’s new generation chargers, Su-
percharger V3, EVs can be driven around 180 miles with a
15-minute charging process [36]. Such advances in charger
and battery technology have accelerated the inevitable
transition from ICEVs to EVs [37]. In this regard, car-
sharing service companies have recently extended associated
projects to electrify their feets. For instance, Revel is
launching the frst all-electric feet of car-sharing services
[38]. In addition, two major companies, Lyft and Uber, have

incentivized drivers and owners to electrify their vehicles.
On the other hand, some governments and organizations
have imposed strict restrictions on ICEVs [39], which in
turn will lead to the faster growth of EVs for car-sharing
services in the near future.

Regarding the concepts of AEVs and SEVs, a new
concept called Shared Autonomous Electric Vehicle (SAEV)
has been introduced, which is expected to signifcantly
contribute to urban transportation. Similar to SEVs, the
main function of SAEVs is to give service to passengers as a
car-sharing service; however, the autonomous technology,
along with real-time connection with feet aggregators,
enabled the operators to investigate the further application
of this concept. Commercial companies such as Uber and
Lyft have no control over their feet members’ charge/dis-
charge process; moreover, the trips are assigned to the feet
members just in favor of the vehicle owner with no regard to
the major objectives of the whole feet. However, with the
concept of SAEV, the feet aggregator can coordinate the
entire feet concerning the real-time condition and primary
objectives. Like conventional EVs, an important potential of
SAEVs is the ability to deliver the electrical energy stored in
their batteries to the power grid, called V2G capability. Tis
feature of SAEVs can provide the power system with various
ancillary services such as peak shaving [40–42], demand
response [43, 44], mitigating renewables generation vari-
ability and intermittency [45, 46], voltage, and frequency
regulation [47–52]. In addition, SAVEs can help distribution
networks in emergency conditions to make the grid more
resilient. In recent years, high-impact, low-probability
(HILP) events have been happening more frequently due to
global climate change [53, 54]. For instance, in 2022,
Hurricane Ian caused widespread damage across western
Cuba and the southeast United States. Heavy rainfall and
fooding resulted in a nationwide power outage and severe
damage to the infrastructure. It is reported that Hurricane
Ian raised over $100 billion in economic losses [55]. Te
purpose of resilience-enhancement actions is to make the
system bend rather than break in the face of HILP events
[56]. Te temporal performance of a power system against a
HILP event is sketched in Figure 1. Te system performance
indicator is one of the key elements in each system which
provides valuable information about the status of the system
function. Supplied load, supplied critical load, and the
number of connected customers have been selected as the
performance indicator in resilience studies of power sys-
tems. Te main purpose of the DSO in the proposed co-
operative contract with the SAEV aggregator is to provide an
additional source of energy to supply electrical loads at the
event landfall as much as possible. Tus, the amount of
supplied electrical load is mainly meant by the authors as the
system performance indicator in Figure 2. In the avoidance
phase, the system operator tries to identify potential risks
and take proactive measures to lessen the efects of the
upcoming event accordingly. Proactive measures may either
include planning-oriented actions, such as hardening the
assets, or short-term operation-oriented actions taken as the
event alert is declared, such as increasing the scheduled
energy reserves. In the survival phase, corrective measures



help the system absorb the external shocks imposed by the
HILP event. Finally, the system performance is rapidly re-
covered by adopting appropriate measures in the restoration
phase [57]. In this work, at the avoidance phase, the pro-
posed model tries to increase the system energy reserve by
increasing the electricity stored in each SAEV before the
event landfall while considering the SAEV feet profts. It is
evident that the distribution system with a higher level of
energy reserve and enhanced preparedness will react to the
HILP event more efciently, resulting in a higher level of
system resilience. However, the detailed resilience assess-
ment indexes and measures of the electricity network side
are out of the scope of this paper.

Terefore, using the potential of SAEVs’ feet battery can
be helpful to recover the power grid more rapidly after
catastrophic HILP events such as extreme foods, wind-
storms, typhoons, and earthquakes. In this regard, [58]
proposed a model to investigate the potential of shared
autonomous electric vehicles (SAEVs) for improving the
self-sufciency and resilience of solar-powered urban
Microgrids (MGs).Te results demonstrated that depending
on the SAEV feet size, the MG self-sufciency could be
improved by up to 8.85%. However, this work merely
concentrated on the beneft of the SAEV feet for the power
system, while the rescheduling of the transportation side,
regarding the cooperation with the power grid, was ignored.

Relying on the intrinsic application of SAEV feets in the
transportation system for carrying passengers, several re-
search works have been published that exclusively aim to
optimally manage the SAEV feet and transportation in-
frastructure so that the total feet revenue is maximized. For
instance, in [59], a single-stage decision-making framework
has been designed and implemented to facilitate the opera-
tional performance of integrated feet management. Results
demonstrated that the proposed framework would result in
substantially more responded ride requests and, consequently,
more revenue. In addition, other potential benefts can be
reached under diferent SAEV feet sizes and charging
downtime. Reference [60] proposed a neural network ap-
proach in which the SAEV feet aggregator optimizes trip
pricing and EVdispatching decisions dynamically tomaximize
the SAEV feet revenue. Authors in [61] proposed a two-stage
stochastic integer program to improve the system proft. In the
frst stage, the long-term charging facility deployment at the
planning level (e.g., the sizing and confgurations of charging
facilities) is determined. In the second stage, the vehicle as-
signment, relocation, and charging decisions in the short-term
are also optimized at the operational level. Numerical results
showed that the proposed model could also increase the
system’s proft and improve its operational performance.
Reference [62] utilized a deep learning-based algorithm to
predict the optimal solution for idle vehicle relocation prob-
lems under various trafc conditions. Te results demon-
strated that the proposed strategy could drastically reduce
operational costs and wait times for on-demand services.

As illustrated in Figure 3, considering the literature
review on SAEV feets, it can be concluded that there is a
research gap for rescheduling the SAEV feets regarding the
limitations imposed on the transportation system by the

electricity distribution network within the cooperation
scheme. As illustrated in Figure 3, the recently published
works focused on either the transportation side or power
system infrastructure independently to highlight the SAEVs
revenue while no cooperation between the two systems is
studied. To fulfll this research gap, this paper presents a new
scheme for the targeted scheduling of a feet of SAEVs in
cooperation with distribution networks in extreme conditions
caused by HILP events. Te proposed scheme introduces a
new application of SAEVs to improve power grid resilience.

In this regard, a prior contract is signed by the DSO
and the SA to beneft from the energy stored in vehicle
batteries in exchange for a designated payment ahead of a
predicted extreme HILP event. Accordingly, several
constraints and perquisites are declared by DSO for the
SAEV owners willing to participate in the cooperation a
few hours ahead of the upcoming event. Tese constraints
include the minimum cumulative energy storage required,
the minimum state-of-charge (SOC) and discharge power
rate of SAEVs, the location of CDS, and the deadline at
which SAEVs are allowed to be present at the CDS. Tese
constraints are basically extracted from the resilience-
oriented proactive scheduling of the distribution system
under the predicted contingency to enhance the system
preparedness against the upcoming event, which is out of
the scope of this paper. From the declaration of required
constraints, the SAEVs aggregator runs a targeted algo-
rithm to schedule the SAEV participants for passenger
carrying and charging cycles so that the required con-
straints of DSO are satisfed. It will be shown via nu-
merical simulations that the total income of each
participant SAEV, including the income from carrying
passengers and the income earned from energy delivery to
CDS, is higher than that of other SAEVs. On the other
hand, SAEV participants play an infuential role in pro-
moting resilience and rapid recovery of critical loads of
the distribution system and earning more income com-
pared with other SAEVs not involved in the contract.

Temain contributions of this paper are listed as follows:
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Figure 1: Te temporal performance of a power system against an
HILP event and the scope of this work (green area).
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(i) Presenting a scheduling scheme for SAEV feets
considering joint transportation system revenue
and power system resilience considerations.

(ii) Presenting concepts and paradigms of the potential
application of SAEVs in resilience enhancement of
distribution networks.
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Figure 2: Literature review summary and research gap.
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Figure 3: Conceptual schematic of the proposed methodology.
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(iii) Proposing a new model for optimal scheduling of
SAEVs concerning distribution network resilience
considerations.

(iv) Tackling the stochastic parameters of the scheduling
scheme by employing a Monte Carlo-based simu-
lation algorithm and random values for uncertain
parameters.

Te rest of the paper is organized as follows: Te pro-
posed methodology is described in detail in Section 2.
Numerical results and discussions are presented in Sections
3 and 4 to show the model’s validity and efciency. Te
sensitivity analysis is presented in Section 5. Finally, con-
clusive remarks are given in Section 6.

2. Materials and Methods

As the alert for the upcoming HILP event is declared a few
hours ahead of the incidence, DSO runs a damage assess-
ment analysis to fnd out the distribution system load supply
performance under the predicted contingency. Proactive
measures are then accordingly taken to enhance the system
preparedness prior to the event’s landfall. Among possible
measures, the potential of SAEV batteries introduces a
portable energy source for restoring critical loads post the
event. Tis potential can be realized in practice through a
mutual cooperation between DSO and SAEV aggregators. In
this regard, relying on the results of the damage assessment
analysis and the set of scheduled proactive measures, DSO
determines the following constraints for the SAEV aggre-
gator: (I) minimum cumulative energy storage required, (II)
the minimum desired SOC and discharge power rate of
SAEV participants, (III) the location of CDS, and (IV) the
deadline at which SAEVs are allowed to be present at the
CDS. It is noted that the damage assessment analysis of the
distribution system is not within the scope of this paper,
while the focus will be on the SAEV scheduling considering
the DSO constraints. As depicted in Figure 4, relying on a
long-term contract between DSO and the SAEV aggregator,
the required negotiations will be made prior to the event to
implement the contract.

Te SAEV participants will continue carrying passengers
in the scheduling time horizon in addition to delivering
energy to the CDS at the deadline. Te SAEVs will be paid
for energy delivery based on a predefned fee close to the
interruption cost of critical loads in the distribution system.
In addition, they are paid for carrying passengers according
to transportation tarifs. Tus, the primary purpose of the
proposed model is to schedule trips and the charging/dis-
charging of SAEV participants under the constraints re-
ceived from the DSO. It is noted that the CDS shown in
Figure 4 is a bidirectional charging/discharging point ca-
pable of supporting the grid-to-vehicle (G2V) mode as a
charging station and the vehicle-to-grid (V2G) operation
mode.

Moreover, the concept of car-sharing service imple-
mented in this work is based on the one-way car-sharing
framework [63]. In this framework, after assigning the trip
request driver, drives through a trip origin to pick up the

passenger and drop them of at the defned destination in the
trip request. Te common trip assignment used for the one-
way car-sharing framework is the dynamic trip assignment
[64]. In this method, contrary to frst-come and frst-serve
method, the SAEV feet moves on a road network, and trip
requests arrive continuously.

Te problem of dispatching SAEV feets with dynamic
trip assignments includes nonlinearity and numerous binary
and nonbinary variables which makes it an NP-hard
problemþ.þ In addition, the time-consuming process of
optimization methods for NP-hard problemsmakes it rather
impossible to exchange data within an acceptable time in-
terval in SAEV scheduling problems [64–66]. Hence, in this
work, a concise heuristic algorithm is considered to avoid
complexity and focus on the main goals of the proposed
model.

Te chronological timeline of the proposed model is
comprised of two phases as depicted in Figure 5. In the
passenger delivery phase, by running the heuristic algorithm
at T� 0, the SAEV aggregator dispatches the SAEV feet
considering joint transportation system revenue and power
system considerations. In this regard, the SAEV participants
will continue carrying passengers within the scheduled time
horizon. However, as the energy delivery phase starts at the
scheduling time horizon TH, all SAEV participants are on
standby in the CDS to deliver the stored energy to the
distribution system.

As illustrated in Figure 5, the proposed framework for
SAEV scheduling comprises three stages as follows: (1) data
entry, (2) SAEV charge management and (3) SAEV trip
assignment. Te detailed procedure of the proposed model
is illustrated in this fgure and will be discussed in the
following part: It is noted that stages 2 and 3 are repeated
for all SAEVs. In this fgure, the grey area describes the
Monte Carlo simulation process. In order to randomize the
initial parameters of SAEVs and trip requests, a Monte
Carlo simulation is run for each case. Each iteration starts
with a random initial value of SOC and location for SAEVs.
In the next step, the three stages of the scheduling process
are executed based on the randomized data entry; while
having checked the iteration number, if the number reaches
the predefned value of simulation samples, the simulation
ends.

2.1. Data Entry. Te trip request data, including trip origin/
destination and trip fee, are sent to SA and updated at
predefned time instances. Moreover, SA acquires needed
information from DSO and SAEVs. In addition to contract
constraints received from DSO, SA receives SAEVs pa-
rameters, including initial SOC, initial location, battery
technical characteristics, and initial working state. It is noted
that working states include 0, 1, and 2, indicating free,
charging, and on a trip, respectively.

2.2. SAEV Charge Management. Te main purpose of this
stage is to recognize the working states of SAEVs so that they
can be scheduled accordingly. In this regard, for each time
slot within the scheduling horizon, T≤TH, the SAEV

Journal of Advanced Transportation 5



parameters are frst updated. Ten, the working state of each
SAEV is checked to recognize if the SAEV state is free (S� 0).
If the SAEV state is free, then the SOC is checked to ensure
that it is greater than the minimum technical level as shown
as follows:

SOC≥ SOCtec
min. (1)

If SOC is lower than the minimum level, the SAEV is
sent to the charging station and the SAEV state is set to 1
(S� 1). Te SAEV can be either fully or partially charged
according to the scheduling requirements. Otherwise, if SOC
is greater than the minimum level, the SAEV could be
considered for possible trip assignment in stage 3.

In addition to the minimum technical level, another
critical constraint should be monitored in each time slot so
that the desired minimum level of SOC declared by the DSO
is guaranteed at the end of the scheduling horizon for each
SAEV. In this regard, the potential level of SOC (SOCp) at
the end of the scheduling horizon is calculated for each time
step as shown as follows:

SOCp � SOCa + δe. (2)

In this equation, (SOCa) is the level of SOC at the arrival
to CDS if the SAEV is instantly assigned to make a hypo-
thetical trip to CDS. Moreover, (δe) denotes the SOC in-
crement if the SAEV is charged from the hypothetical arrival
till the end of the scheduling horizon. Ten, the potential
level of SOC is bounded to the minimum desired level
declared by DSO and the maximum technical level of the
battery as shown as follows:

SOCDSO
min ≤ SOCp ≤ SOC

tec
max. (3)

If this constraint is satisfed, the SAEV is sent to CDS to
participate in the contract, and the SAEV state is set to 1
(S� 1). Otherwise, if the constraint is not satisfed, the SAEV
could be considered for trip assignment in stage 3.

2.3. SAEVTripAssignment. Te trip requests contain origin,
destination, and trip fee, which are randomly generated for
each SAEV. Hence, in this stage, all active trip requests are
investigated to assign the most proftable set of trips satis-
fying the associated constraints. In this regard, the level of
SOC at the end of the requested trip ( SOCm

h ) is checked if it
will be kept over the minimum technical level as shown as
follows:

SOCm
h ≥ SOC

tec
min. (4)

If the constraint is not satisfed, the trip request is ig-
nored, and the algorithm checks the same constraint for the
subsequent trip request. However, if the constraint is sat-
isfed, the trip request is checked for an additional constraint
for a possible trip assignment. In other words, it should be
guaranteed that the SOC will be kept over the DSO desired
minimum level by the end of the scheduling horizon if the
trip request is assigned to the SAEV. In this regard, the
hypothetical potential level of SOC (SOCm

v ) is defned as
follows:

SOCm
v � SOCm

u + δm
f , (5)

where (SOCu) is the hypothetical SOC level of SAEV at the
arrival to CDS after an instant trip from the trip destination
to CDS as shown as follows:

SOCm
u � SOCT

− φm
T + φm

a( . (6)

In addition, (δm
f ) denotes the hypothetical amount of

charge that the SAEV can receive if it instantly starts to get
charged from the arrival to CDS till the end of the scheduling
horizon as shown as follows:

δm
f � TH − T

m
d + T

m
a( (  × U. (7)

To guarantee the DSO’s desired minimum level of SOC
at the end of the scheduling horizon, the following constraint
should be satisfed:

T=0 TH

Time

Passenger delivery Energy delivery

Figure 4: Te chronological timeline of the proposed model.

6 Journal of Advanced Transportation



SOCm
v ≥ SOC

DSO
min . (8)

Te trip request is passed to the next constraint only if
constraint (9) is satisfed; otherwise, the request is ignored, and
the algorithm will check other trip requests for this constraint.

In order to make sure that the SAEV will be in the free
state by the end of the scheduling time horizon, the following
constraint should be satisfed:

T + T
m
d + T

m
a ≤TH. (9)

According to this constraint, considering the trip du-
ration, Tm

d , and the hypothetical duration of instant travel
from the trip destination to the CDS, Tm

EDS, the deadline of
the scheduling horizon should be observed. If constraint (10)
is not satisfed, the trip request is ignored, and the algorithm
checks for the subsequent available trip request. Otherwise,
the trip request is saved, and the algorithm is continued to
check the next trip request. Having investigated all trip
requests, the one with the highest income-to-duration ratio,
max Im/Lm{ }, is assigned to the SAEV. Te algorithm is
repeated for all SAEVs till the end of the time horizon.

3. Results

3.1. SystemDescription. As illustrated in Figure 6, a minimal
linear transportation network consisting of 14 areas is
considered with a pairwise distance of 10 km between areas
[67]. For the sake of simplicity, it is assumed that the trip
request in each area is abundant, and therefore, the repo-
sitioning problem of car-sharing services is ignored in this
study. Te SAEVs can drive with a mean speed of 61.2 km/h
through the network, and each area can be a possible origin
or destination for a designated trip. Moreover, it is assumed
that the targeted charging/discharging station of this work
has enough capacity for SAEVs to connect. In this way, there
is no concern about the charging behavior and relative
constraints of other SAEVs and stations. In this model, each
SAEV’s balance in the program is composed of the sum of
trip income and contract income subtracted by charging
cost. Meticulously, the trip income is the predefned fee paid
by the passenger after arriving at the destination, while the
contract income is the fee paid to each participant of SAEV
in the contract at the expense of delivering energy stored in
the vehicle battery. Te trip income for SAEVs is considered
a standard normal distribution with an average of 0.2 $/km
and a standard deviation of ±0.013 $/km to simulate real
conditions. All SAEVs have a battery capacity of 50 kWh
with a charge rate of 0.075 kWh/second and a power con-
sumption rate (PCR) of 0.4 kWh/km. It is assumed that
4 hours prior to the event landfall, DSO receives the event
prediction alert. Consequently, the request for activating the
contract is instantly sent to SA by the DSO. Te request
details are summarized as follows: (I) Provision of at least
1MWh energy storage from SAEVs feet. (II) A deadline of
4 hours to provide the energy at CDS. (III) Payment fee of
2 $/kWh for energy delivery to the distribution network.
(IV)Teminimum SOC level of 51 kWh or equivalently 85%
at the deadline of the end of the scheduling horizon for each
SAEV participating in the contract.

Te following assumptions are applied to the model
presented in this work:

(i) Te HILP event landfall is predictable with an ac-
ceptable range of a few hours.
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Figure 5: Detailed algorithm of the three-stage proposed model.
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Balance

LocationState of charge

State

1
2
3
4
5
6
7
8
9

10
11
12
13
14

N
od

e

1 2 3 40
Time (h)

1 2 3 40
Time (h)

0

10

20

30

40

Ba
la

nc
e (

$)

1 2 3 40
Time (h)

0

1

2

St
at

e

0

20

40

60

80

100

SO
C 

(%
)

1 2 3 40
Time (h)

Figure 7: Parameters of a sample SAEV in case 1.

8 Journal of Advanced Transportation



(ii) Te implementation environment of the model is
equipped with a robust protocol for uninterruptable
communication between SAEVs, DSO, and the
SAEV aggregator.

(iii) Te CDS remains undamaged from the adverse
impacts of the HILP event.

3.2.Case Studies. To verify the proposed methodology, three
case studies were defned as follows:

(i) Case 0: A feet of private nonautonomous con-
ventional SEV, including 50 vehicles, is considered.
It is noted that SEVs do not participate in the
contract with the DSO.

(ii) Case 1: A feet of SAEVs, including 50 vehicles, is
considered. SAEVs are free to make trips or get
charged with no attention to DSO constraints. In
other words, SAEVs do not participate in the
contract with the DSO.

(iii) Case 2: A feet of SAEVs containing 50 vehicles is
scheduled for participation in the contract.

In this section, the proposed model is demonstrated on a
test system with an Intel i7-3840QM processor and 8GB
memory in MATLAB R2021a. Te computation time for
case 0, case 1, and case 2 is reported as 6.1, 7.2, and
15.3 seconds, respectively.

In this work, a Monte Carlo simulation is run with 1000
iterations to randomize the initial parameters of SAEVs and
trip requests.

4. Discussion

Figures 7 and 8 illustrate the parameters of two sample
SAEVs in cases 1 and 2. Regarding the SOC diagram, it is
evident that there are two charging cycles for SAEVs in case
2. Te former is related to the minimum technical level of
SOC, and the latter is associated with the DSO’s desired
minimum level of SOC at the deadline. In contrast, the SOC
diagram in case 1 has one charging cycle related to the
minimum technical level of SOC. Te location of SAEVs
changes as they make a trip or travel to the charging station
to get charged, as shown in Figures 8 and 9. Accordingly, the
state of SAEVs varies between 0, 1, and 2. Te SAEV balance
varies according to its working state, meaning getting paid
for making a trip increases the balance while paying for the
battery charging decreases the balance. It is evident from the
balance diagram of Figure 9 that the balance of the SAEV in
case 2 decreases at the end of the scheduling horizon since it
gets charged to increase the level of SOC so that the DSO-
desired minimum level is satisfed.

Figure 9 illustrates Monte Carlo simulation results for a
sample SAEV. Each dot in this 3-D diagram represents the
result of an iteration of the simulation. As shown in this
fgure, the average trip income of case 1 is about 2.6% higher
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than case 0, since the automation level of vehicles in case 1
helps choose the most proftable trip request instantly while
the private human-driven vehicles in case 0 lack this ad-
vantage resulting in lower trip income. SAEV parameters for
case 2 are spotted in a confned zone with a higher charging
cost and lower trip income compared to case 1. It is because
SAEVs in case 2 are scheduled to satisfy the minimum
desired level of SOC declared by the DSO in the contract.
Tus, fewer trips are made, and more charging cycles are
run. However, the SAEV in case 2 benefts from selling
energy to DSO based on the contract, while the SAEV in case
1 has no income from the contract.

Figure 10illustrates a cost/beneft analysis for a sample
SAEV. Accordingly, it can be implied for the SAEV in case
2 that the signifcant contract income compensates for
higher charging costs and lower trip income compared to
the SAEV in case 1. Tus, the net income earned by the
SAEV in case 2 is higher than that of case 1. According to
Figure 10, the net income in case 2 increased by about 130%
compared to case 1, indicating the proftability of partic-
ipation in the contract.

Regarding technical cooperation with the DSO, the
SAEV feet under study in case 2 delivers 2396.1 kWh of
energy to the distribution network, which can help recover
critical loads after the event’s landfall.

Table 1presents values of the average, standard devia-
tion, minimum, and maximum of the SAEV feet

parameters to give insight into the statistical distribution of
numerical results. It is implied that the SAEV parameters
lie within a narrow range of values maintaining the validity
and applicability of the proposed scheduling method for all
SAEVs.
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5. Sensitivity Analysis

In this work, sensitivity analysis is employed to assess the
uncertainty of the SAEV parameters and their impacts on the
total income and delivered energy of the scheduled SAEV feet.
In this regard, three main parameters, i.e., feet size, battery
capacity, and power consumption rate (PCR), are considered.
As illustrated in Table 2, the feet size directly afects the results.
For instance, by a 150% increase in the feet size from 20
vehicles to 50, the total income and delivered energy have
increased by about 151.2% and 150.8%, respectively. However,
with a 40% increase and reduction in the battery capacity, the
delivered energy alters at the same rate while the total income
changed by 31.6% and −34.6%, respectively. Moreover, the
variation of the PCR with a percentage of 25% resulted in
almost no change in the delivered energy. Finally, changing the
PCR by 25% imposed an 8% variation in total income.Tus, it
can be concluded that changes in the feet size and battery
capacity can majorly infuence the model outcomes while the
impact of PCR is negligible.

6. Conclusions

Tis paper proposes a new scheduling scheme for SAEV feets
within a cooperative contract to let distribution networks
beneft from the energy storage of vehicle batteries in

recovering critical loads after a predictable extreme event. Te
proposed method comprises three stages, namely, (i) data
entry, (ii) SAEV charge management, and (iii) SAEV trip
assignment. Once the adverse impacts of the predicted extreme
event are analyzed, the DSO request for the requiredminimum
energy storage, associated constraints on technical features of
SAEVs, and the deadline for delivering energy are sent to SA.
Ten, SAEV participants are scheduled so that the DSO
constraints are satisfed while the total income of each SAEV is
enhanced. In order to verify the proposed methodology, three
case studies were defned; (i) case 0 represented a feet of
human-driven SEVs, (ii) case 1 resembled a feet of non-
scheduled SAEVs that do not participate in the contract with
the DSO, and (iii) case 2 indicated a feet of scheduled SAEVs
that participate in the contract with the DSO. Numerical
simulations demonstrated that the average trip income of case
1 is about 2.6% higher than case 0 because an increment in the
automation level of vehicles could result in trip income im-
provement. In case 2, the total income of each participant
SAEV, including the income from carrying passengers and the
income earned from energy delivery to the distribution net-
work, increased by about 130% compared with other SAEVs.
Te scheduled SAEV feet under study delivered 2396.1 kWh of
energy to the distribution network, which plays an efective role
in the rapid recovery of critical loads and enhancing the
resilience of the distribution network. Moreover, a sensitivity

Table 1: Statistical distribution of numerical results.

Cost type Statistical parameter Case 0 Case 1 Case 2

Trip income ($)

σ 2.33 2.51 2.12
μ 73.6 76.2 61.5

Min 65.1 66.27 55.19
Max 81.4 75.6 61.2

Charging cost ($)

σ 1.54 1.32 1.73
μ 25.4 25.5 35.3

Min 18.13 18.73 29.86
Max 30.11 25.5 35.5

Contract income ($)

σ 0 0 0.53
μ 0 0 95.3

Min 0 0 93.4
Max 0 0 97.5

Net income ($)

σ 2.95 3.07 3.6
μ 48.6 50.7 116.7

Min 39.4 40.24 92.65
Max 57.24 60.64 131.44

Table 2: Results of sensitivity analysis on the main SAEV parameters.

Total income ($) Delivered energy (kWh)

Fleet size
20 2360.2 955.4
50 5928.8 2396.1
100 11680.1 4805.8

Battery capacity (kWh)
30 3875.0 1438.0
50 5928.8 2396.1
70 7803.5 3350.6

Power consumption rate (kWh/100 km)
0.3 6447.8 2395.1
0.4 5928.8 2396.1
0.5 5442.7 2396.4
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analysis is implied to investigate the infuence of the SAEV
feet’s main parameters on the model outputs. In conclu-
sion, the model presented in this work can be commercially
developed as a software package. Obtaining the required
data from real feets, the software package can provide the
SAEV’s aggregators with a higher proft in addition to a
reliable source of energy for the DSO in face of HILP
events. In future works, the proposed algorithm might be
implemented on a large-scale real transportation network
to examine the potential and shortcomings of the proposed
method in practical applications.

Abbreviations

Sets and Indices

n: Number of SAEVs
m: Trip request

Parameters

k: Number of trip requests
TH: Scheduling time horizon
TS: Scheduling time slots
V: SAEV mean speed
U: SAEV charging rate
SOCtec

max: SAEV maximum technical level of SOC

SOCtec
min: SAEV minimum technical level of SOC

SOCDSO
min : DSO desired minimum level of SOC for SAEVs

Variables

S: SAEV status (binary) indicating 0 for free, 1 for
charging, and 2 for discharging on a trip

δe: SOC increment of SAEV from the hypothetical
arrival to CDS till the end of the scheduling horizon

δm
f : SOC increment of SAEV from the hypothetical

arrival to CDS after making trip m till the of the
scheduling horizon

SOCT: SAEV SOC at time slot T
SOCa: SOC level after a hypothetical travel to CDS
SOCp: Te potential level of SOC at the end of the horizon
SOCm

v : Te potential level of SOC at the end of the
scheduling horizon in case of making trip m

SOCm
u : Hypothetical SOC level of SAEV after instant travel

from the destination of trip m to CDS
SOCm

h : SAEV level of SOC at the end of trip m
ϕm

T : SOC decrease of SAEV in trip m
ϕm

T : SOC decrease of SAEV in instant travel from the
destination of trip m to CDS

Tm
d : Duration of trip m

Tm
a : Duration of the travel from the destination tripm to

CDS
Im: SAEV income from trip m
L m: Distance of trip m.
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