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Synthesizing Hard Training Data From Latent
Hierarchical Representations

Benjamin J. Høj and Andreas Møgelmose[0000−0003−0328−382X]

Visual Analysis and Perception Lab, Aalborg University, Denmark
{bejeho,anmo}@create.aau.dk

Abstract. This paper introduces a framework for creating augmented
hard samples, which are new images created to resemble those that a
classifier will struggle to classify. This is used for data from an auto-
matic visual defect inspection system, specifically images of vials with
and without chipped glass. The hard samples were found by training
ConvNeXt classifiers and using the confidences of the classifiers on the
training dataset. VQ-VAE2 was used to obtain the latent representations
of the hard samples, and a PixelSnail model was used to create new
high-frequency details while retaining low-frequency details. The Pixel-
Snail model was pre-trained on a large amount of non-defect images. The
augmentation method was applied to a dataset of 200 images and was
evaluated by training classifiers to test the effect of using the augmented
hard samples. Introducing the augmented hard samples into the dataset
was found to improve classifier performance, measured in Area Under
Curve (AUC) of the Receiver Operator Characteristic (ROC) curve, from
0.953 to 0.973. The method was tested with augmenting both defect and
non-defect images, and the somewhat surprising conclusion is that while
using augmented defect images didn’t yield improvements, augmenting
non-defect images did.

Keywords: Machine Learning · Automatic Visual Inspection · Data
Augmentation.

1 Introduction

Manufactured goods can in some cases have certain defects that makes them
unsuitable for use. Finding the defective products before they’re shipped is par-
ticularly important in the pharmaceutical industry as a defective product can
cause harm to the patient. Some of these inspection tasks are today performed
by humans, but humans, in addition to often finding the job tiresome, might not
discover all defects, which means an automatic visual inspection system might
be able to improve the detection rates. Some defects can be quite rare and does
therefore not yield a lot of data for training a deep learning model and results in
a significant class imbalance between defect and non-defect images. Manufactur-
ing these defects can be both expensive to do and hard to make representative
of real defects.
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This paper presents an approach to synthesizing images of hard samples for
an automatic visual inspection system in order to improve classifier performance
when trained on an imbalanced dataset with a limited amount of samples of one
class. Specifically, we introduce altered images of glass vials used for medicine,
as seen in Figure 1, into a classifier training set. This is done to allow classifiers
to train on more images with features that they tend to misclassify. Figure 2
shows the overall process of creating new samples from a training set using the
proposed method. The process uses the hiearchical latent representation of the
VQ-VAE2 architecture from [9] for augmenting hard samples. We define hard
samples as training samples with a high loss. These augmented samples are then
added to the training set, and a new iteration begins.

This work presents two contributions. The first is a method for creating aug-
mented images using a hierarchical latent space. The method utilizes the large
amount of non-defect data to create images, the augmented hard samples, that
will allow classifiers trained on them to improve their performance as described
in Section 5. The second is how this method can be implemented in an iterative
process to improve performance by continuously adding these synthesized train-
ing samples. The implementation in this paper can be used for datasets with
large class imbalances with few pictures of one class.1

Fig. 1. Medicinal glass bottle (vial)
with a chip highlighted in a red square.

Train classifier Find hard samples

Augment hard
samples

Add augmented
samples to dataset

Start

Fig. 2. Overview of the iterative aug-
mentation process.

1 The code for this project is available at https://github.com/xxxxxx
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2 Related Research

Augmentation methods are often used in order to improve the performance of
deep learning models. This project has a focus on creating new details in im-
ages for dataset augmentation as a complement to classical augmentation, and
this section will therefore give an overview of other methods that have done
similar work. Many algorithms [1, 11, 8, 12, 10] use some form of GAN for gen-
erating/augmenting data. Some [4, 2, 3] use classical methods but attempts to
find policies for which augmentations to use and for how augmented the im-
ages should be. Others [5, 6] combine multiple samples in order to create a new
training sample. These methods will be described in further detail below.

Antreas Antoniou et al. [1] proposed a Generative Adversarial Network (GAN)
model for data augmentation. The model obtains a latent representation for an
image and combines it with a sample from a standard Gaussian distribution,
which is passed through a generator to obtain a new sample. Jun-Yan Zhu and
Taesung Park et al. [11] propose the CycleGAN architecture, which use 2 GANs
that transforms images between two domains, for example switching winter land-
scapes to summer landscapes or vice versa, using unpaired images for training.
In [8], Guim Perarnau et al. propose an architecture that contains two encoders
for obtaining a latent representation of an image and an attribute vector. A con-
ditional GAN is then trained on both vectors, and an image can then be edited
by Yezi Zhu et al [12] created a framework for synthesizing training images where
a conditional GAN takes a mask as input and then fills out the mask. In [10]
by Simon Vandenhende et al., a conditional GAN was trained in order to create
hard samples. The GAN had, in addition to its discriminator, also a classifier.
The GAN was trained towards making samples that were hard for the classifier
to classify, but its images were kept realistic by the discriminator.

Ting-Yao Hu[4] created an augmentation framework that ranks the samples
based on their loss and uses more significant augmentations on samples with
low loss. [2] by Ekin D. Cubuk et al. presents a reinforcement learning approach
where the model learns to predict an augmentation policy. The policy include
probabilities for using different augmentations and their magnitudes. The poli-
cies are learned by assessing the validation accuracy of a trained model using
the augmentation policies. In [3] by Chengyue Gong et al., saliency maps are
used to guide classical augmentation methods such as cutout, so that they don’t
remove the most important high-frequency details for the classification.

In [5], Lemley et al. uses a network to learn how to generate an augmented
image by combining multiple images of the same class. This is done using the
error of a classifier and a loss function that causes the output of the generator
to be similar to other images of that class. Han Liu et al. [6] uses a VQ-VAE to
interpolate between two samples in the latent representation. They do this by
obtaining the latent representation in two medical images of different medical
conditions. These are then linearly combined and passed through the decoder.
To obtain realistic images for the interpolation points, they train the generator
to generate realistic images for combined latent representation.
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There are many methods for data augmentation, including several that com-
bine images to obtain new images or others that looks into how to best apply
classical augmentation. To the best of the authors’ knowledge, no other research
has been done to augment images by obtaining a hierarchical latent representa-
tion and then augmenting by resampling a shallow representation to obtain new
high-frequency details. The work in this paper is based on the VQ-VAE2 model
[9] by Ali Razavi, Aäron van den Oord and Oriol Vinyals, and we opted to go
with VQ-VAE2 rather than GANs due to more promising results in preliminary
testing.

3 Data

The data used in this project consists of medicinal vials with freeze-dried prod-
uct. There are many different kinds of defects that can happen on the production
line, such as plastic particles in the product, loose packaging components, etc.
This project focuses on vials with chipped glass due to it being one of the defects
with the most data for testing, which means more data can be used for evalu-
ating the performance of the proposed method. Our dataset contains 66 defect
vials with 30 images of each vial as it rotates, each with a resolution of 576x892.
The chips aren’t visible in all of the images, so the ones showing no defects were
removed. The 66 vials were randomly split up into 8 for training (100 images),
10 for validation (170 images) and 48 for testing (833 images). We deliberately
limit the amount of training data to resemble the training data quantities for
defects with less data. There are 250k images from vials without defects for
training and 30k for validation and testing, so images were randomly sampled to
have a 1:1 ratio of images with defects to images without for all defect images.
The test and validation sets will remain static. Due to the large class imbalance,
the non-defect images will be used for pre-training as both classes are identical
except for the chipped area of the glass. An example of an image with a chip
can be seen in Figure 1. The defect vials used were chipped by hand (again due
to the real defects being exceedingly rare), but were judged to be realistic by a
human inspector. This does not impact the academic evaluation of the proposed
method as all data came from the same population and were randomly split into
training, validation and testing sets.

4 Choosing and Augmenting Samples

This section will cover the implementation and details of the proposed solution.
Section 4.1 will go into the framework for implementing the solution and selecting
images to augment. Section 4.2 will then go into the VQ-VAE2 and PixelSnail
implementation for the augmentation.

4.1 Framework

The implementation followed four repeating steps:
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1. Train 20 classifiers
2. Find images in the training set with the highest loss across classifiers
3. Synthesize images from the hard samples found in step 2
4. Augment dataset with the synthesized images

The ConvNeXt tiny architecture presented by Zhuang Liu et al in [7] was used
as the classifier due to having a low inference time, which is good for training
many classifiers, and due to high performance. Its output was softmaxed for
obtaining confidences. It was trained for 150 epochs using Stochastic Gradient
Descent with a learning rate of 0.001, momentum of 0.9 and a batch size of 32.
Hard samples were found by using the confidences of the trained classifiers on
the training set and then choosing the samples with the lowest confidences in the
true label. The chosen samples would be augmented with new high-frequency
features, added to the training dataset, and the process would then repeat. Two
synthesized images are added to the dataset per iteration, chosen due to having
two GPUs for synthesizing images. All models in this project were trained by
using the images resized to 512x512.

4.2 Synthesizing Augmented Images

Creating new samples was done by using the VQ-VAE2 and PixelSnail models
using the implementation from Kim Seonghyeon.2 The VQ-VAE2 architecture
uses two encoders in order to obtain two latent images, one for global structure of
the image (structural map) and another for more local details (local map). The
pixels of these latent images consists of vectors of dimension 64. The local map
have a size of 128x128 while the structural map have a size of 64x64. There is a
codebook of learned vectors for each latent space, and the vectors in the latent
images are then mapped to the nearest vector in the codebook measured in L2-
space. The new latent images, with each pixel vector replaced by the nearest
codebook vector, will then be passed to the decoders, which will then recreate
the image. The architecture has three loss terms. The first is a simple recreation
loss which in the original VQ-VAE2 paper uses the L2 loss, but in this paper the
L1 loss is used instead and was found to give a lower recreation loss than the
L2. The second loss function is using exponential moving averages to learn the
codebook vectors, which will get closer to the encoder outputs. Lastly, there is
an encoder loss term, which trains the encoders to output vectors closer to those
in the codebook by using the L2 loss between them.

Sampling from the VQ-VAE2 architecture was done using a PixelSnail au-
toregressive model like in the original VQ-VAE2 paper. The PixelSnail model in
this project would only sample the local map and would be conditioned on the
structural map. This allows the model to use the structural map to recreate the
image but with new high-frequency details. An augmented image can be seen in
Figure 3, which also shows the augmentation process.

2 Code at https://github.com/rosinality/vq-vae-2-pytorch
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Local map

VQ-VAE2
Encoders

VQ-VAE2
Decoders 

PixelSnailDiscarded

Structural map

Sampled local map

Fig. 3. The augmentation process. The VQ-VAE2 latent representations are acquired.
The local map is then discarded, and another conditioned on the structural map is
created. The augmented image is then created using these latent representations.

5 Evaluation

The proposed augmentation was assessed by training classifiers as the quality of
the dataset is tied to the performance of models trained on it. The Area Under
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve was used as
the metric for this performance, where higher is better. For each iteration of the
training set, 20 different classifiers were trained to get a more stable performance
metric and to select hard samples. The final metric to evaluate the dataset at
that iteration is then the mean of the AUCs for the 20 models. A baseline mean
AUC was calculated using the defect images from the classifier training set and
randomly sampling from the 250k non-defect images to utilize the large amount
of data available. Sampling from the 250k data was done every time a non-defect
sample was loaded such that the model was trained with as much varied data
as possible. This yielded a mean AUC of 0.953 compared to a mean AUC of
0.951 when trained on only the training dataset of 100 defect images and 100
non-defect images. 0.953 was chosen as the baseline result to beat due to being
the best AUC obtained by simple training using the data available.

Two experiments were done using the same trained VQ-VAE2 and PixelSnail
model. The training is described in Section 5.1. Though two images were sampled
for each iteration, only the loss was used for finding hard samples rather than
choosing one image from each class, which would keep class balance. This was
done to focus more on the images that the classifiers struggled to correctly
classify. The first experiment augmented the two hardest samples regardless of
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them being defect or non-defect images and is detailed in Section 5.2. The second
experiment in Section 5.3 only augmented hard non-defect images.

5.1 Model Training

The VQ-VAE was first trained on the 250k good images for 11 epochs such that
it would learn to recreate a large amount of vial variance. It was then trained for
258 epochs on the classifier training dataset (see Section 3) where training was
terminated once the recreation loss started stagnating. The PixelSnail model
was trained for 3 epochs on the 250k images before it was trained on the clas-
sifier training dataset for 112 epochs, where overfitting started after 28 epochs.
Training the PixelSnail on the 250k non-defect images was shown in a test to be
important as it would otherwise fail to produce an image without severe arti-
facts. As the augmented image should retain a high amount of the same features
as the unaugmented image, we opted to use an overfitted model. The PixelSnail
architecture allows for sampling only an area of the latent map, so an area with
a chip was resampled for each epoch and qualitatively inspected. The training
parameters after 66 epochs were chosen as it would preserve most of the features
with small variations and was therefore chosen for the augmentation process.

5.2 Augmenting Both Classes

For this test, 15 dataset iterations were done. The mean AUC for each iteration
can be seen in Figure 4. It can be seen that the mean AUCs have a general in-
creasing trend for the iterations but that some of the iterations also include some
dips, particularly iteration 14 that had a mean AUC lower than what was found
for the initial dataset. The augmented images included in the training dataset
for this iteration were both defect images and also showcases how drastic an
effect few images can have on classifier performance. The highest AUC obtained
was 0.971 at iteration 13, which is an increase of 0.18. In most of the iterations
that improved the AUC, non-defect images were augmented, which lead to the
experiment in Section 5.3 where only non-defect images were considered for aug-
mentation. A likely reason for decrease in performance when creating augmented
defect images is that the defect images chosen for augmentation had very small
or barely visible chips, meaning that small changes could make them no longer
resemble actual chips. The framework also had a tendency to reaugment already
augmented defect images, likely for this reason. As a test, the images added to
the datasets for iterations 2, 3, 5, 11 and 13 were manually selected and added
to the original dataset for training 20 new classifiers. These were selected as
their augmented images had improved the mean AUC compared to all previous
iterations. The images consist of 3 augmented defect images and 7 augmented
non-defect images, and was done in order to see how models trained on these
would perform. The experiment yielded a mean AUC of 0.966 and was compared
to a similar experiment but without the augmented defect images. This gave the
same mean AUC of 0.966, indicating that the augmented defect images do not
improve the classifier performance.
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Fig. 4. Mean AUCs for both experiments. For the first iteration, no new images were
introduced into the dataset. The 95% confidence interval is shown for each iteration.
The last two iterations for the graph, with both classes augmented, contain outlier
AUCs, resulting in a very large confidence interval.

5.3 Augmenting Non-defect Class

This test was done due to the results from Section 5.2 showing that the aug-
mented defect images didn’t improve classifier performance and was run for 11
iterations due to time constraints. The graph in Figure 4 shows that the mean
AUC rose higher than it did when both classes were considered for augmentation.
The highest mean AUC found was at iteration 7, which yielded a mean AUC
of 0.973, a clear improvement from the 0.953 baseline. Another experiment was
made in order to see if the improvement would also happen by simply copying
the all the unaugmented versions of the images in the iteration that gave a mean
AUC of 0.973 to the dataset. This means that if image A had been augmented
twice up to iteration 7, then the classifier would see this same image thrice in one
epoch. The result was a mean AUC of 0.963, which is an improvement over the
baseline by 0.01 but only half the improvement from introducing the augmented
images into the dataset.

6 Discussion

This paper has presented a method for going into the latent space using the VQ-
VAE2 architecture and augmenting an image therein using a PixelSnail model.
The training data used were 250k non-defect images and 100 defect images. A
test was done to see if the initial training on the 250k non-defect images were im-
portant, but without first training on these images, the model failed to augment
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images without very significant artifacts. A shortcoming of the model is that it
requires a human to subjectively decide which PixelSnail checkpoint to use for
generating local information, which might not correspond to the best checkpoint
that would create the biggest dataset improvements. The experiment augment-
ing samples from both classes showed that augmented hard defect images didn’t
improve the mean AUC. This could be because the PixelSnail model was pre-
trained on so many non-defect images that it could use that prior knowledge to
augment non-defect images properly but didn’t have enough prior knowledge on
chips. Despite the shortcoming on creating augmented images with chips, the
method was successfully used to increase the mean AUC of the trained model
to 0.973 from 0.953 by constraining the augmentation procedure to non-defect
images. The work done also shows that rather than training on many varied im-
ages, such as when establishing the baseline, it can be better to augment selected
images or train more on some, as shown in Section 5.3. This could mean that it
could potentially be applied to bigger datasets as well to improve performance
of classifiers.

7 Future Work

The main challenge of the proposed method is that it’s unclear when to stop the
overfitting for the PixelSnail as it is currently a subjective choice and might not
reflect what would best increase the classifier performance. Additionally, there
is no metric used for evaluating the created images except for the performance
on the training when added to the training set. As some images seemingly lower
the model accuracy, the model could likely benefit from some kind of filter to
decide on whether to use or discard a synthesized image.

8 Conclusion

This work introduces a method for utilizing the VQ-VAE2 architecture for cre-
ating augmented images that can be introduced into a training set for increasing
performance. Specifically, the method leverages the inherent split between high-
frequency and low-frequency details, such that the general shape of training im-
ages is maintained, while the details will be changed. This helps steer the process
away from too drastic changes. A baseline without this dataset augmentation
delivered a mean AUC of 0.953, improved by our method to 0.973 when applied
to a rather small classifier training dataset with 2 classes, each with 100 images.
This makes the method highly suitable for cases where only a few pictures from
one class can be obtained. It is worth noting, though, that the method requires
a significant number of samples for training the PixelSnail model to properly
augment the images without inducing significant artifacts and thus requires a
significant number of samples of the augmented class.
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