
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 13, 2023

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Brian Burnett
Jillian Coveney
Kristin Tong
Nanki Sekhon

ENTITLED

TwigeEnglish

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE & ENGINEERING

BACHELOR OF SCIENCE IN WEB DESIGN AND ENGINEERING

Thesis Advisor

Department Chair

1

N. Ling (Jun 26, 2023 11:45 PDT)
N. Ling

https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAA3L3aVy9GUzIdH4CfJC7qkN66fgIC5ihY
https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAA3L3aVy9GUzIdH4CfJC7qkN66fgIC5ihY

TwigeEnglish

by

Brian Burnett
Jillian Coveney

Kristin Tong
Nanki Sekhon

Submitted in partial fulfillment of the
requirements for the degree of

Bachelor of Science in Computer Science & Engineering
Bachelor of Science in Web Design & Engineering

School of Engineering
Santa Clara University

Santa Clara, California
Jun 13, 2023

2

TwigeEnglish

Brian Burnett
Jillian Coveney

Kristin Tong
Nanki Sekhon

Department of Computer Science and Engineering
Santa Clara University

Jun 13, 2023

ABSTRACT

TwigeEnglish is an educational platform aimed to teach English in a fun and interactive way. It comprises a
mobile application for students and a web application for pre-determined administrators. The mobile application
offers three key features which include: a pictionary-like game, a dictionary flash card game, and a user-friendly
interface for uploading photos to be used in both games. The web application will primarily focus on providing
administrators with an interface to manage the student-photo database. With moderation powers, administrators
can seamlessly review and make decisions to approve or deny the inclusion of photos in the active pictionary and
dictionary pools. This ensures that the content remains relevant, appropriate, and aligned with the platform's
educational goals.

3

Table of Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Solution . 8

2 Requirements 10

3 Use Cases 12

4 Activity Diagrams 15
4.1 Student Activity Diagram . 15
4.2 Administrator Activity Diagram . 16

5 Final Design 17
5.1 Mobile Application . 17
5.2 Web Application . 23

6 Technologies Used 31
6.1 Mobile Application . 31
6.2 Administrative Webpage . 31

7 Architectural Diagram 32

8 Design Rationale 34
8.1 Technologies Used . 34
8.2 Architecture . 34

9 Testing 35
9.1 Unit, Widget, and Integration Tests . 35
9.2 User Testing . 35

10 Risk Analysis 36

11 Societal Issues 37
11.1 Ethical . 37
11.2 Social . 37
11.3 Political . 37
11.4 Economic . 37
11.5 Health and Safety . 38
11.6 Manufacturability . 38
11.7 Usability and Security . 38
11.8 Compassion . 38

4

12 Conclusion 39
12.1 Risk Resolution . 39
12.2 Obstacles Encountered . 40
12.3 Future Work . 40
12.4 Lessons Learned . 40
12.5 Acknowledgements . 41

Appendix A 42

Appendix B 46

5

List of Figures

3.1 Use Case Diagram . 14

4.1 Student User Activity Diagram . 15
4.2 Administrative Users Activity Diagram. 16

5.1 Mobile Application Student Account Sign In. 17
5.2 Mobile Application Home Screen. 18
5.3 Mobile Application Upload Screen. 19
5.4 Mobile Application Play Pictionary Screen. 20
5.5 Mobile Application Play Pictionary Screen. 21
5.6 Mobile Application Play Pictionary Screen. 22

5.7 Administrative Website: Login. 23
5.8 Administrative Website: Register. 24
5.9 Administrative Website: Home. 25
5.10. Administrative Website: Approved Photos. 26
5.11 Administrative Website: Pending Uploads. 27
5.12 Administrative Website: List of Users. 27
5.13 Administrative Website: Add a User. 28
5.14 Administrative Website: View a User. 28

7.1 Architectural Diagram. 31

6

List of Tables

2.1 Functional Requirements . 10
2.2 Non-functional Requirements . 10
2.3 Design Constraints . 11

3.1 Upload Picture Use Case . 13
3.2 Manage Photos Use Case . 13
3.3 Play Pictionary Use Case. 13
3.4 Play Dictionary Use Case . 14

10.1 Risk Analysis . 34

7

Chapter 1

Introduction

1.1 Motivation

Rwanda is one of many African countries that has struggled with the lasting impacts of European

colonialism. The country’s oppressive and violent history has created a cultural divide and set back the

development and growth of Rwanda’s economic and social institutions. The World Bank reported a

significant economic boom in Rwanda in the early 2000s. Sadly, this promising growth was severely

stunted by the emergence of the COVID-19 pandemic in 2019. Additionally in 2019, the official language

of instruction in primary schools was abruptly changed to English. With ninety-nine percent of the

population speaking Kinyarwanda, that leaves less than one percent of French and English speakers. This

means rural, Kinyarwanda-speaking communities are struggling to acquire the educational resources they

need to learn English.

The Sheer Love Rwanda organization aims to support reintegrating street children with their community

and empowering their education. Sheer Love Rwanda estimates that ninety-five percent of the Sheer Love

Rwanda parents do not speak English and have not received basic education as a consequence of the 1994

Rwandan Genocide which halted education for many Rwandan communities. An estimated 7,000

Rwandan children are living on the streets because their families and homes have been left in fragile

conditions. Consequently, local communities are looking to prioritize proper education for these children

to secure their future.

1.2 Solution

There is a language barrier separating Rwanda’s current education system and its students. We developed

TwigeEnglish as a way to teach English in a more interactive and growing manner. This app gives the

power to the student to upload their own pictures to a shared image pool for others to learn from. Pending

requests are sent to an online administration website, where a teacher (administrator) has access to either

approve or deny any student submissions going into the database. The administrator’s responsibilities are

8

granted to teachers within the Sheer Love Rwanda organization for our case. They verify if the image is

of good quality, appropriate, not a duplicate, and if the English word in association is accurate.

From there, each student is distributed points depending on their number of approved dictionary uploads

and correct guesses when playing the pictionary game. The gamification element aims to reinforce

continuous student learning by offering a fun incentive. Points in a game are often used to encourage the

completion of tasks and inspire motivation. One recommendation from Sheer Love Rwanda is to help

keep students engaged with their language learning.

Our solution addresses the problem by providing a unified and easy-to-use platform accessible to all

users. The mobile application can be downloaded on both Android and IOS devices and used with

different orientations. The main challenge is the uncertainty of internet access that students will have at

home or outside the classroom. To mitigate this concern, the plan includes a task to integrate an “offline”

version of the app. This allows students to resume their language learning practice in the absence of WiFi

connection, but does sacrifice some device storage.

9

Chapter 2

Requirements
Establishing critical and recommended requirements helped streamline our development process and ensure that

we were meeting the needs of our partners at Sheer Love Rwanda. Our functional requirements are in Table 2.1,

our non-functional requirements can be seen in Table 2.2, and Table 2.3 shows the constraints limiting our design.

Table 2.1 Functional

Priority Requirements

Critical

Allow users to upload photos to image database
Allow users to add to add new words to the dictionary
Allow users to create an account using a phone number as password
Allow users to upload profile information
Administrator permissions for image/word databases
Dictionary mode to study words
Pictionary mode to for users to match images to study material

Recommended Create a points system to incentivize studying
Quick search for keywords

For our functional requirements, our application needs to provide student users with the ability to upload both

photos and vocabulary terms to the database where administrators oversee submissions. Once approved, the

students should be able to review their new terminology through the play pictionary and dictionary modes in the

mobile app. Some secondary functional requirements include implementing a points system to gamify the app

and encourage greater engagement. We also considered adding a quick search function in the dictionary mode to

assist students looking for a particular vocabulary word and image pair.

Table 2.2 Non-Functional

Priority Requirements

Critical
Ease of user photo upload
Fast user photo upload
Must be easy to vet and approve photos on administrator side

Recommended Offline accessibility

10

The non-functional requirements focus on the quality of our application. Student users should feel a seamless

experience when using the app. Upload processes for the images and terminology must be quick and easy so

students are not discouraged from frequently interacting with the app. A user-friendly approach can lead to more

dedicated users and more photo/word upload submissions makes for a larger dictionary.

On the administration side, we must guarantee that teachers can get through all of the photo/word requests. Our

application currently asks the administrators to manually approve any new submissions. This system demands a

simple process to help streamline efficiency. Another recommendation is to include an offline accessibility mode

for students who only have reliable internet at school. The lack of consistent WiFi connection is a barrier we need

to work on minimizing for students. We hope the students can engage with the same functionality when offline,

so offline upload requests will be saved and sent to the administrator side during the next time they connect to the

internet.

Table 2.3 Design Constraints

Constraints

Users must have offline access on Android devices but administrators must have online access to databases. Users
must also be able to connect online to submit images to administration.

The biggest constraint to assess is the variability of our users’ internet access. Offline access to the mobile app gives
students more accessibility and increases the likelihood of continued usage. However, this prevents images and
words from properly being uploaded to the database. Information that is stored on the mobile application will take
up more space and require greater storage costs. Additionally, administrators need access to WiFi to allow
communication with the student mobile application, to add users, and approve/deny photos.

11

Chapter 3

Use Cases
Our system delivers functionality to two primary actors through two distinct applications. The first

application is designed for students and can be accessed through any mobile device. Students can engage

with a flashcards game to continue aiding their English learning journey. This user-friendly application

allows students to upload original photos through the process outlined in Table 3.1. Those approved

photos are then added to the shared dictionary for all students to interact with.

The two main ways students interact with the dictionary are through playing the pictionary game or

reviewing the dictionary flashcards, as outlined in Tables 3.3 and 3.4, respectively. Both games are easily

located as large buttons on the homescreen for the mobile application. The pictionary game will present a

photo from the student dictionary and return a list of random letters. Among those letters, are the correct

letters needed to spell the word represented in the image. It is the student’s objective to correctly identify

the English word and determine the proper spelling. Additionally, the dictionary game offers digital

flashcards as a way to provide an easy way to practice learning vocabulary terms. It is important to note

that any requested uploads from a student are not included in any games until an administrator approves

it.

The second application is specifically designed for administrators and can be accessed through a web

browser. The teachers have the power to moderate participating students and handle pending upload

requests. A dashboard will appear as the landing page after they sign in using an administrator’s email

and password. Here, users can efficiently manage the pending requests and view the number of students

with accounts. Using the labeled sections on the navigation menu, administrators may view and edit the

dictionary database at any time as described in Table 3.2. This ensures that the learning environment for

the students remains safe and relevant.

12

Table 3.1 Upload Picture Use Case

Goal Allow actors to upload photos to database where they will be used for games

Actor(s) Student

Precondition(s) Actor has photographed one or more objects and has submitted them under the
proper tab in the phone application

Postcondition(s) Photo is now viewable from the admin portal. If a photo is appropriate it will be
added to the dictionary and pictionary games for all students to see

Exception(s) Actor is unable to upload photo because of lack of internet

Table 3.2 Manage Photos Use Case

Goal Maintain an appropriate and accurate dictionary database

Actor(s) Admin

Precondition(s) Access to all approved and unapproved student uploads in the dictionary
database. Actor controls the addition and deletion of words to the dictionary.

Postcondition(s) Actor verifies the photo or deems it inappropriate. Photo is discarded or will be
visible to all in the verified photo pool.

Exception(s) Students have not uploaded photos so there are none to process

Table 3.3 Play Pictionary Use Case

Goal Play game with seamless integration of student uploaded photos

Actor(s) Student

Precondition(s) Actor has made an account and is able to log into the phone application, has
studied words in either school or dictionary game, and wants to test their ability

Postcondition(s) Actor is shown an image and given a set of letters. Actor must guess the English
word represented by the image and use a set of letters to spell it out

Exception(s) Students have not uploaded photos and/or words so there are none to process

13

Table 3.4 Play Dictionary Game Use Case

Goal Study word pairs

Actor(s) Student

Precondition(s) Actor has an account and has uploaded words into the database.

Postcondition(s) Actor is shown Kinyarwanda - English word pairs to study

Exception(s) Student has not uploaded words into the database

Figure 3.1 Use Case Diagram

14

Chapter 4

Activity Diagrams
The two user groups consist of students and teacher administrators. Students will be using the mobile

app to learn English and the administrators can make alterations to the Firebase databases using the

admin website.

4.1 Student Activity Diagram

As shown in figure 4.1, Students will be able to login, upload words and pictures to their mobile

Pictionary, and view their profile information. They will have two study options, a game to match

letters of a word when presented a picture and a pool of letters, and another option to practice their

understanding with flashcards. The Pictionary game will repeat the same vocabulary term until the

student guesses correctly or explicitly chooses to skip to the next word. In contrast, the dictionary game

enables the student to scroll freely throughout the dictionary list to spend more time focusing on less

familiar words.

Figure 4.1 Student User Activity Diagram

15

4.2 Administrator Activity Diagram

As shown in figure 4.2 Administrators will launch a web browser and login with their verified

credentials. The dashboard presents the admin with the total user count for the app and a preview of

pending requests from students. In the Pending approvals section, Administrators are responsible for

determining the appropriateness and accuracy of a submission. If the dictionary or student databases

need to be modified after creation, edits can be done in their respective sections. Administrators will

have permission to make changes to both databases at any time.

Figure 4.2 Administrative Users Activity Diagram

16

Chapter 5

Final Design
Users interact with TwigeEnglish in two ways: students upload and review English words and their

accompanying pictures through a mobile application, while administrators accept or deny submissions

through an administrative web portal. The figures in Section 5.1 represent the final user interface of the

mobile application, and in Section 5.2 they represent the final user interface for the administration

website.

5.1 Mobile Application

Upon launching the application, a user is prompted to sign in to their account using their full name and

a phone number, which serves as their password. The account must already be created by an

administrator.

Figure 5.1 Mobile Application Student Account Sign In

17

Students are presented with the option to play the primary pictionary game or review the

comprehensive dictionary. The bottom navigation bar can redirect students to the upload, profile or

home screen based on need.

Figure 5.2 Mobile Application Home Screen

18

Students may select an image from the photo library on their mobile device to upload for review. They

must enter the correct Kinyarwandan and English spelling of the word represented in the selected

image.

Figure 5.3 Mobile Application Upload Screen

19

Students must tap on the letters in the correct order to spell out the word that is best represented in the

image above (e.g., "C-A-T"). If a student enters the word incorrectly, the letters reset and they may

either guess again or go to a new word.

Figure 5.4 Mobile Application Play Pictionary Screen

20

Students can review the vocabulary terms through the digital flashcards. They are first presented with

the Kinyarwandan word (left image) and the English word is revealed on the back when tapped (right

image). Other dictionary words are accessed using the arrows underneath the cards.

Figure 5.5 Mobile Application Play Pictionary Screen

21

Students may view their profile information including name, phone number, score, and a brief personal

introduction. The introduction can be modified by tapping on the pencil icon. Users will logout of their

accounts using the “Logout” button on this screen.

Figure 5.6 Mobile Application Play Pictionary Screen

22

5.2 Web Application

The login page authenticates a registered user to have access to the administrative web application and

all of its functionality.

Figure 5.7 Administrative Website: Login

23

The registration page serves to create a new administrator to have the powers to add or delete students

and approve uploaded photos.

Figure 5.8 Administrative Website: Register

24

The home page is the main page of the website. It provides accurate information for the active users in

the classroom and pending uploading. A list view on the left side makes it easy to go to the different

pages involving user management, pending uploads, and already approved photos.

Figure 5.9 Administrative Website: Home

25

The approving uploads page is a block list view of the photos students have uploaded. Every photo also

has an accompanying correct English and Kinyarwanda word.

Figure 5.10 Administrative Website: Approved Photos

26

The pending uploads page displays the guesses students make for different pictures and the correlated

English word. Currently, there are no requests so it appears blank.

Figure 5.11 Administrative Website: Pending Uploads

27

The user management page lists out all the students who have accounts and access to the mobile

application.

Figure 5.12 Administrative Website: List of Users

28

By clicking the ‘Add User’ button on the upper-righthand corner, the administrator can enter a student

name and phone number that will then have access to the mobile application.

Figure 5.13 Administrative Website: Add a User

29

Clicking on a student’s name under the list of users will open an overlay that displays their username,

phone number, and any accumulated points they may have.

Figure 5.14 Administrative Website: View a User

30

Chapter 6

Technologies Used

6.1 Mobile Application

The mobile application is an interface for students available for both Android and iOS devices. It is the

result of cross-platform development utilizing the Flutter framework.

6.2 Administrative Webpage

The webpage was constructed with the help of several useful technologies:

• Framework: Flutter

• Database: Firebase

• Other:

– Dart

31

Chapter 7

Architectural Diagram
The application shown in figure 8.1 is based on a data-centric architecture. A central server/database

will house the data, and the web-app and mobile application will be able to connect as clients and

receive updates and push new data. Note that both code for the front end and back end are stored on the

same code-base.

On the mobile application, students must sign in and match pre-populated account information on

Firestore to gain access to the components. On uploading a photo from a personal library (C1), photos

are pushed to Firebase's Cloud Storage solution where they are tagged and stored as

‘/unapproved_photos ’. Playing the Dictionary or Pictionary Games (C2 & C3) pulls photos tagged and

stored as ‘/approved_photos’, not before checking if those photos have already been downloaded which

then could be pulled from the application’s cache.

Data from the 3 utilized Firebase services: Cloud Storage, Authentication, and Firestore is aggregated

onto the Webapp. Verified administrators on the web-app can directly manipulate information on

firebase, including but not limited to, verifying and rejecting photos, adding student accounts, and

deleting student accounts.

32

Figure 7.1 Architectural Diagram

33

Chapter 8

Design Rationale

8.1 Technology Used

The Flutter framework was primarily used for developing the front-end layout of our mobile

application and the administrative webpage. There are many advantages that come with Flutter

including its single cross-platform development for iOS and Android applications. Interfaces designed

with Flutter take advantage of the native components on a device and use basic element trees to

structure the code. Flutter UI elements are known as widgets and can be reused infinitely. Flutter is a

trusted software development kit built by Google and has three forms of testing: unit, widget, and

integration. All three forms were thoroughly used throughout the coding process to ensure the app

would be fully functional for launch.

All of the backend is facilitated through Firebase. Firebase is scalable and accessible for mobile app

development. Additionally, it comes with its own built-in authentication, databases, and user models

which can easily be integrated into our application. As TwigeEnglish continues to develop, a strong

backend with Firebase grants flexibility of storing and accessing larger and more complex data.

8.2 Architecture

The design is based on a hybridized data-centric and layered architecture. Our requirements specify the

need to store and manipulate data related to each student phone number. Using a data-centric

architecture should help ensure that all of this data is stored and easily accessible in a central place.

Meanwhile, our mobile application was layered so it can handle caching of the data when the internet is

unreliable. This includes a presentation, middleware, services, repository, and final database layer.

34

Chapter 9

Testing
To ensure that our system works properly and conforms to our requirements, we applied standard

industry testing practices to our project. Flutter has an automated system built-in that works to perform

unit, widget, and integration tests which we used throughout the development stage to debug for edge

cases. Over this summer, TwigeEnglish will be deployed to be used in the Share Love Rwanda

classroom by SCU graduate students for our final user testing as well as a beta release for our project.

9.1 Unit, Widget, and Integration Tests

Flutter’s testing package helped simplify testing during the development process. As functions and

additional features were built out, automatic cases were written and run in Dart. The unit testing

consisted of checks made to ensure that all functions worked as expected and errors were caught

depending on the different data inputs. Widget testing was a step up from unit testing and expanded its

verification with bigger widgets. Widgets in Flutter is a graphical user interface that shows information

or provides interaction with information to the user; widget can either be stateless which means they

don’t change (i.e., Icon) or stateful which means it is dynamic (i.e., Slider). Lastly, integration tests

target a screen’s functionality and communication with other pages in the project. For example, how

can a user navigate from the Home page to the Upload screen and what checks have to be in place.

This process ensured project requirements had properly been implemented and met end-user approval

in the final product.

9.3 User Testing

Our final stage of testing will be a beta release to a subset of the users in the Sheer Love Rwanda

Program. These are 39 students from varying ages enrolled in the Sheer Love Rwanda empowerment

program. The purpose of doing so will be to observe how students may interact with TwigeEnglish,

where their intuitiveness may lead them, and additional functionalities to add in the future.

35

Chapter 10

Risk Analysis
This table shows an overview of probable issues that may have arisen during development, along with

details about their consequences, likelihood of occurrence, severity, and potential solutions. These

probabilities are general estimates of how likely we think these issues were to arise rather than being

computed in a particular way. The probability and severity numbers are multiplied to create the impact

values, which produce a normalized impact rating on a scale from 1 to 10.

Table 10.1 Risk Analysis

Risk Consequences Probability Severity Impact Mitigation

Insufficient
Time

The desired application
is missing some
features.

0.5 9 4.5 Maintain a strict
timeline.

Missing
Requirements

The final application
does not satisfy the
customer needs and
leads to a redesign.

0.3 8 2.4 Establish clear and
consistent
communication with
the client.

Unfamiliar
Technologies

Team members must
learn new technologies
prior to implementation
which may affect the
final product quality.

0.9 6 5.4 Actively learn and
research
technologies.

Bugs The application does not
perform as expected.
Delays the launch.

0.9 4 3.6 Test features as they
are developed with
clear expectations.

36

Chapter 11

Societal Issues
11.1 Ethical

There are a few ethical dilemmas we faced when building TwigeEnglish. There are concerns of

accuracy and fairness of the admin powers towards uploaded photos from the students. Admin has the

power to approve or disapprove any uploaded image. An approved image should be a clear image with

a correct English word. But, there is no system for monitoring if both factors are true. There is also no

safety net giving the admin the correct English word in situations where they do not know. These

situations may lead to unfair evaluation of accepted photos.

11.2 Social

A potential concern of our project was that by building an application for Share Love Rwanda, we are

taking an opportunity from entrepreneurs in Rwanda to build their own solution. In the beginning

stages of planning and designing our product, however, we identified inefficiencies and stagnations that

could prevent local people from building a prior solution. Learning English in Rwanda is being pushed

to better prepare their people for more opportunities. Thus, TwigeEnglish’s positive impacts outweigh

the possibility of taking an opportunity away from young people in Rwanda.

11.3 Political

As a mobile and web application, our product has no direct political concerns.

11.4 Economic

The first long term costs of maintaining our solution is extended code-base maintenance which will be

provided by SCU Graduate Students. The other cost will be upkeep on our cloud services/databases

which we have verified will be more than affordable for our clients.

37

11.5 Health and Safety

As a mobile and web application, our product has no direct health concerns.

11.6 Manufacturability

Our software has already been manufactured and is ready for a beta level deployment.

11.7 Usability and Security

Since our project will be used by real world clients, usability has been a big goal of ours. The student

can sign in by phone number for ease of access. This was setup to help eliminate barriers of using

TwigeEnglish. But in doing so, a number of different security concerns rise. Different classmates have

the ability to “hack” into other classmate profiles and upload obscene images from there. Although, we

implemented a system to text the user when they login and have them be prompted to enter a security

code. There are ways to get around this by taking a classmate's phone and entering the information

from there. In our future product, we hope to make changes to this current system.

11.8 Compassion

TwigeEnglish was built with compassion for students in the Share Love Rwanda program to help them

learn English. This has the potential to open more doors for them in their educational and work-related

future as it is practiced worldwide. The CEO, Alexis Amani Simbayobewe, founded Share Love

Rwanda with the mission to “give back and help other children like himself realize their dreams” and

have the support to follow through with them. We hope that TwigeEnglish better makes that idea into a

reality.

38

Chapter 12

Conclusion

12.1 Risk Resolution

When assessing our potential risks in the early stages of this project we identified four main concerns

with varying likelihoods and projected impacts on our work. The first was insufficient time which we

were able to overcome with regular meetings and check-ins to ensure that progress was being made at

all times. When we encountered problems that halted our work we were able to offer one another’s

perspectives and support.

The next concern we noted was the chance of missing required features in our app. We did not predict

that it would be a very likely event and we did a good job of focusing on the main functionalities that

our partners at Sheer Love Rwanda requested. We were clear with them about the limitations of our

efforts and were able to deliver an app that featured all of the core components we discussed with them.

The third risk we absolved was learning how to use unfamiliar technologies. We knew that this was

unavoidable given that none of our team members had ever used Flutter or Dart in a project before.

This was a high priority issue in the beginning of our work but the learning curve was steep and we

were able to offer help and support to each other during our weekly meetings. Our advisor also

provided us with invaluable guidance by connecting us with third party Flutter developers who were

able to teach us more about the new languages and frameworks we were introduced to.

Our last analysis was the likelihood of bugs which was projected very high. We knew that our initial

lack of knowledge and experience with Flutter and Dart would lead to more bugs and performance

issues down the line but we agreed to be thorough from the beginning and we were able to resolve bugs

during development which greatly decreased the amount of work that we had to do at the very end of

our experience.

39

12.2 Obstacles Encountered

This project was the first time any of our team members had worked with Dart or Flutter so we had to

familiarize ourselves with the language and framework quickly. The overall structure of these new

tools took some time to understand but once we were comfortable progress took off. The front end

developers struggled with the initial introduction to some of the built-in features like layouts, state

management, and response functions.

Our back end developers initially chose to work with AWS Amplify at the beginning of our project

development. This was difficult for them because AWS Amplify lacks robust documentation when

compared to other Backend-As-a-Service platforms. We made the decision to switch to Firebase

ultimately to minimize overhead and also to increase compatibility with Dart and Flutter which are

both provided by Google as well.

12.3 Future Work

We hope and anticipate that the Frugal Innovation Hub will continue to support and carry on this

project even further after we wrap up our contributions. Listed below are some of the ideas and features

we had hoped to incorporate into this application before deploying it for user testing:

● Reduce Firebase overhead

● Add points system to track app use/progress

● Audio to hear English pronunciation

● Local download functionality

● Offline app access

● User password recovery

● Admin contact page on mobile app

12.4 Lessons Learned

We learned many valuable lessons during the development of this project. One important takeaway is

that the simplest solution is not always the fastest or most efficient. We gained a lot of experience

working as a team of developers and learning not only new hard skills but also collaborative and

communicative skills. We utilized agile software development techniques and held regular team

meetings to maintain a productive and progressive direction throughout the project. These meetings

were essential to our success because we were able to touch base with new questions or obstacles as

40

well as offer and receive help and advice from one another.

Working on a year-long software project has allowed us to sharpen our approach to the design process

and stay current with new methods. We familiarized ourselves with Git to control code versions and

keep track of changes made by each team member. This process involved the most communication

between our group members because it allowed us to respect each other’s workflow and development

style while still constantly developing.

12.5 Acknowledgements

We would first like to thank the Frugal Innovation Hub. Through them we were put in contact with

Sheer Love Rwanda and its founder Alexis Amani Simbayobewe. Alexis and his foundation provided

us with the opportunity to work on this project. His feedback in the early stages of our project was

invaluable for our growth and direction. Prof. Silvia Figueira, our Advisor, served a crucial part at

every step of our project. She gave us guidance and support when we needed it and made sure we were

on track to complete our work in a timely manner. Her help can not be understated. Frugal Innovation

Hub also connected us with Graduate student Giulliano Silva Zanotti Siviero. He helped us in

numerous ways with learning Flutter and Firebase for both our front-end and back-end development

41

Appendix A

User Manual
Web (Administrators)

Login

1. Open your preferred web browser

2. Navigate to administrator website

3. Enter your approved email address and password in the designated fields

4. Click “Login now” button to redirect to administrator dashboard with access to controls and

features

Basic Use

1. Launch administrator website

2. Login using verified email and password

3. View pending word approvals, student account database, and dictionary database

4. Perform CRUD operations on the dictionary and student account databases

5. Use the navigation menu on the left column to explore other subpages

a. Subpages:

i. Pending Uploads

ii. Approved Uploads

iii. User Management

Add New Student User

1. Launch administrator website

2. Login using verified email and password

3. Navigate to “User Management” in the menu

4. Click on the add person icon in the top right corner

5. Enter the student’s name and phone number

6. Verify you have the correct information and click “Add User”

42

Evaluate Pending Uploads

1. Launch administrator website

2. Login using verified email and password

3. Pending word requests will appear on dashboard or navigate to pending uploads page

4. Click on the check mark to approve or the “X” to reject the word

5. If approved

a. Photo and word are added to approved uploads in dictionary database

6. If rejected

a. No edits are made to dictionary and student must resubmit

Modify Vocabulary Database

1. Launch administrator website

2. Login using verified email and password

3. Navigate to “Approved Uploads” in the menu

4. Select photo or word to edit

5. Save the necessary changes or delete word

Modify Student Database.

1. Launch administrator website

2. Login using verified email and password

3. Navigate to “User Management” in the menu

4. Select an existing user

5. Click on the trash icon to delete selected user

6. Approve changes by hitting save

43

Mobile

Installation

iOS

1. Download TwigeEnglish from the Apple App Store

Android

1. Download TwigeEnglish from the Google Play Store

Use

1. Student Login

a. Launch the application on a mobile device

b. Enter your approved phone number as a login credential

i. Teacher is responsible for administrative duties such as creating new accounts

with a phone number

c. Complete sign-in using the “Submit” button

d. Failed logins:

i. If you forgot your credentials, contact your teacher (administrator)

ii. If your internet connection failed, reconnect to wifi and please try again

2. Play Pictionary game

a. Launch mobile application

b. Select “Pictionary” button to start game

c. Use the randomized letters to guess the English word for the object in the photo

presented

i. If correct, new word is displayed with a new set of letters to guess from

ii. If incorrect,

1. letters will reset and user tries again

2. Or skip word

3. Play Dictionary game

a. Launch mobile application

b. Select “Dictionary” button to start game

44

c. Guess the English word for a photo and Kinrwandan word presented on the front of a

flashcard.

d. Tap to flip over the flashcard and view word in English

e. Use the arrow buttons for moving to the next and previous vocabulary terms

f. Scroll vertically to view a dynamic side-by-side list of all vocabulary terms in the

database

4. View Profile

a. Select profile icon on bottom right of navbar.

b. Guess the English word for a photo and Kinrwandan word presented on the front of a

flashcard.

c. Tap to flip over the flashcard and view word in English

d. Use the arrow buttons for moving to the next and previous vocabulary terms

e. Scroll vertically to view a dynamic list of all vocabulary words side-by-side

45

Appendix B

Development Manual
The entire code base for our project is hosted on GitHub and was passed off to the Frugal Innovation

Hub at Santa Clara University for future development in coordination Sheer Love Rwanda.

Web

Dependencies

Dependencies are located in pubspec.yaml

you can run flutter pub get to install all dependencies from the root folder …/TwigeEnglishAdmin

Code Structure

The codebase is stored in …/TwigeEnglishAdmin/lib

● models

○ firebase_file.dart

■ Defines a class called FirebaseFile with properties for referencing, naming,

URLs, and language translations of a file stored in Firebase Storage, along

with the user who uploaded it.

○ -user.dart

■ Defines a class called AdminUser with properties for the user's UID, email,

and approval status, while the second code snippet defines a class called

StudentUser with properties for the user's UID, name, phone number, and

points.

● screens

○ authenticate

■ authenticate.dart

● Implements a StatefulWidget called Authenticate that dynamically

switches between a sign-in screen and a registration screen based on

46

the value of a boolean variable.

■ register.dart

● Defines two classes, Reg and Register, where Reg is a StatefulWidget

that displays a Register widget containing a registration form with

email and password fields, and enables user registration using Firebase

Authentication.

■ sign_in.dart

● Includes two classes, SignIn and LoginDesktop, where SignIn is a

StatefulWidget that builds a Scaffold containing a LoginDesktop

widget with a login form that includes email and password fields, a

"Remember me" checkbox, and options for signing in or registering a

new account.

○ home

■ approved.dart

● Defines a StatefulWidget called ApprovedPage that displays a grid

view of approved uploads fetched from Firebase storage, including

metadata for each upload, such as English and Kinyarwanda

descriptions, and the source URL of the file.

■ home.dart

● Defines a Flutter app with multiple screens for an admin dashboard,

including features such as user management, pending uploads, and

approved uploads, along with a main home screen displaying various

statistics and actions.

■ uploads.dart

● Defines a Flutter widget called UploadsPage, which displays a list of

pending uploads fetched from Firebase Storage. It allows the user to

approve or reject each upload, showing a popup overlay with details

and options when an upload is tapped.

■ users.dart

● Defines a Flutter widget called UserManagement that displays a list of

users fetched from Firestore. It allows adding and deleting users, as

well as showing user details in an overlay when a user is tapped. The

user information includes the username, phone number, and points.

○ wrapper.dart

47

■ Determines whether to display the home screen or the authentication screen

based on the authentication status of the user.

● services

○ Provides methods for authentication-related functionality such as signing in,

registering users, signing out, deleting users, and updating passwords.

○ database_manager.dart

■ Provides various static methods for interacting with Firebase Storage. It

includes methods for listing approved and unapproved files, downloading files,

deleting files, and uploading files. Additionally, there are methods for

retrieving metadata such as the English translation, Kinyarwanda translation,

and user associated with a file. The class also includes a method for moving a

file from unapproved to approved by downloading it to memory and

re-uploading it to the desired location.

○ firestore_database_admin.dart

■ Allows for updating admin data in the Firestore database based on the

provided email, password, and approval status.

○ firestore_database.dart

■ Allows for updating student data in the Firestore database based on the

provided name, phone number, and points, and provides a method to retrieve

the total number of students stored in the database.

● widgets

○ upload.dart

■ Used to display an image with corresponding English and Kinyarwanda text in

a container with a border.

● firebase_options.dart

○ Provides default Firebase options for different platforms such as web, Android, iOS,

and macOS when initializing Firebase in a Flutter app.

● main.dart

○ Sets up the main entry point for a Flutter app. It initializes Firebase, creates the MyApp

widget, and sets up providers for authentication and app state. The MyApp widget is a

MaterialApp that defines the app's title, theme, and initial route (Wrapper).

● styles.dart

○ Defines various constants and styles used for the app. This includes a list of dummy

Upload widgets representing uploaded content, approved uploads, and accepted users.

48

● userTile.dart

○ Defines two classes, UserTile and UserListTile, which represent user tiles and provide

functionality for displaying user information and deleting users.

Installation and Configuration

This installation assumes you have already done the following:

● Cloned the project to your development machine

● Installed the Firebase CLI

● Install the Flutter SDK

Please note that instructions for setting up the tools and project may be different if you are running on

Windows.

#Navigate into Web Folder

cd TwigeEnglishAdmin/lib

Pull the latest code from the github

git pull

Go back to root folder

cd ..

Run

Use Flutter Doctor to check if all correct dependencies and libraries are installed correctly

flutter doctor

You are now ready to run the flutter project through firebase

flutter run

49

Mobile

Libraries and Dependencies

Dependencies are located in pubspec.yaml

you can run flutter pub get to install all dependencies from the root folder …/TwigeEnglish

Code Structure

Models

○ Model for database objects

○ Includes fields for reference, name, image url, English word, Kinyarwandan definition

Router

○ Contains the navigation for the application as defined in routes.dart

Screens

○ All of the code for the user interface for each different frame

○ Widgets

■ Related and reused widgets/functionalities for each respective screen

Services

○ Database management and models

Widgets

○ Files for widgets that are heavily reused throughout development

○ Navigation bar, menu, custom buttons etc.

50

Install and Run

Pull up the most recent version of the code.

git pull

Download all the dependencies.

flutter pub get

Run the app.

flutter runar

51

TwigeEnglish Report
Final Audit Report 2023-06-26

Created: 2023-06-26

By: Valerie Woitte (vwoitte@scu.edu)

Status: Signed

Transaction ID: CBJCHBCAABAA3L3aVy9GUzIdH4CfJC7qkN66fgIC5ihY

"TwigeEnglish Report" History
Document created by Valerie Woitte (vwoitte@scu.edu)
2023-06-26 - 5:50:08 PM GMT

Document emailed to sfigueira@scu.edu for signature
2023-06-26 - 5:50:40 PM GMT

Email viewed by sfigueira@scu.edu
2023-06-26 - 5:50:54 PM GMT

Signer sfigueira@scu.edu entered name at signing as Silvia Figueira
2023-06-26 - 5:52:35 PM GMT

Document e-signed by Silvia Figueira (sfigueira@scu.edu)
Signature Date: 2023-06-26 - 5:52:37 PM GMT - Time Source: server

Document emailed to nling@scu.edu for signature
2023-06-26 - 5:52:38 PM GMT

Email viewed by nling@scu.edu
2023-06-26 - 6:19:10 PM GMT

Signer nling@scu.edu entered name at signing as N. Ling
2023-06-26 - 6:45:41 PM GMT

Document e-signed by N. Ling (nling@scu.edu)
Signature Date: 2023-06-26 - 6:45:43 PM GMT - Time Source: server

Agreement completed.
2023-06-26 - 6:45:43 PM GMT

		2023-06-26T11:45:46-0700
	Agreement certified by Adobe Acrobat Sign

