
Santa Clara University Santa Clara University

Scholar Commons Scholar Commons

Computer Science and Engineering Senior
Theses Engineering Senior Theses

6-14-2023

A Hardware Platform for Wireless Beehive Monitoring A Hardware Platform for Wireless Beehive Monitoring

Erik Wrysinski

Jonathan Stock

Collin Paiz

Daniel Blanc

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

 Part of the Computer Engineering Commons

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/cseng_senior
https://scholarcommons.scu.edu/cseng_senior
https://scholarcommons.scu.edu/eng_senior_theses
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages

Santa Clara University

Department of Computer Science and Engineering

Date: June 14, 2023

I HEREBY RECOMMEND THAT THE THESIS PREPARED

UNDER MY SUPERVISION BY

Erik Wrysinski, Jonathan Stock, Collin Paiz, and Daniel Blanc

ENTITLED

A Hardware Platform for Wireless Beehive Monitoring

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Thesis Advisor
Dr. Behnam Dezfouli

Chairman of Department
Dr. Nam Ling

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

N. Ling (Jun 16, 2023 12:07 PDT)
N. Ling

A Hardware Platform for Wireless Beehive Monitoring

By

Erik Wrysinski, Jonathan Stock, Collin Paiz, and Daniel Blanc

Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science
in Computer Science and Engineering

in the School of Engineering at
Santa Clara University,

June 14, 2023

Santa Clara, California

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Acknowledgments

We would like to thank Gerhard and Lisa Eschelbeck, Wendy Mather, and Kian Nikzad

from the California Master Beekeeper Program for the project idea and their continued

support and advising throughout the project.

We would also like to thank our advisor Dr. Behnam Dezfouli for his help throughout

the past year on the project by providing insight whenever we would get stuck. He has

also been of great help when modifying content for our thesis.

Finally, we want to thank Cheng Zhang, Jason Fong, Tim Lu, Chan Nam Tieu, and

Niyibitanga Inosa for their contributions to our project through the development of the

machine learning model.

iii

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

A Hardware Platform For Wireless Beehive Monitoring

Erik Wrysinski, Jonathan Stock, Collin Paiz, and Daniel Blanc

Department of Computer Science and Engineering
Santa Clara University
Santa Clara, California

June 14, 2023

ABSTRACT

Traditional beehive monitoring systems suffer from many challenges. These monitoring
devices are expensive to set up, difficult to implement, and lack cross compatibility with
each other. Preexisting beehive monitoring solutions face all of these shortcomings. Our
beehive monitoring platform aims to overcome these issues by using inexpensive, off-the-
shelf, open-source hardware paired with a computer vision machine learning model to
accurately monitor the ingress and egress of bees into and out of the hive. This data is
presented to the beekeeper in a simple GUI which allows them to track hive activity over
time, and by extension, the overall health of the hive. All of the code in this project is
open-source while still maintaining a professional look. This enables users to customize
it to their needs. However, even if the user has no prior coding experience the proposed
solution is easy to setup and run. The final product should alleviate many challenges
that other beehive monitoring systems face and should hopefully create a disruption in
the beehive monitoring market that would inspire other companies to utilize more cost
efficient hardware and open-source software.

iv

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem . 2

1.3 Solution . 2

2 Related Work . 4

2.1 Arnia . 4

2.2 BroodMinder . 5

2.3 Eyesonhives . 5

3 System Architecture . 7

3.1 Web Application’s Dashboard . 7

3.2 Physical Hardware Platform . 16

4 Evaluation . 18

4.1 Web Application’s Dashboard . 18

4.2 Camera Streaming . 24

5 Future Work . 27

6 Ethical Considerations . 30

7 Conclusion . 32

Bibliography . 33

v

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

List of Figures

3.1 System Information Flow Chart . 16

4.1 Initial Dashboard Page Wire-frame Design. 19

4.2 Initial Settings Page Wire-frame Design. 20

4.3 Final Dashboard Page Design. 21

4.4 Final Manage Page Design 1. 22

4.5 Final Manage Page Design 2. 23

4.6 Watt Usage . 26

4.7 CPU Utilization . 26

vi

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

List of Tables

3.1 User Schema Table . 8

3.2 Apiary Schema Table . 10

3.3 Location Schema Table . 11

3.4 Member Schema Table . 12

3.5 Device Schema Table . 13

3.6 Data Schema Table . 14

3.7 Data-point Schema Table . 15

vii

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

List of Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CCD Colony Collapse Disorder

EPA Environmental Protection Agency

GUI Graphical User Interface

OBS Open Broadcaster Software

OS Operating System

SCU Santa Clara University

UI User Interface

viii

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 1

Introduction

1.1 Motivation

Bees (and other pollinators) play a fundamental role in the the ecosystem by facilitating

pollination, which is essential for the reproduction and survival of many plant species.

Bees pollinate plants allowing them to breed, thus producing fruit or seeds [1]. About

75 percent of our crop production is dependent on bees and other pollinator insects [2].

Without the help of bees, massive agricultural operations and natural processes that feed

the Earth as a whole would cease to function. In recent years, bee populations have been

on the decline due to external factors such as climate change and the use of pesticides on

crops. These harmful influences have resulted in widespread Colony Collapse Disorder

(CCD) [3]. CCD is a ”phenomenon that occurs when the majority of worker bees in a

colony disappear and leave behind a queen, plenty of food and a few nurse bees to care for

the remaining immature bees and the queen” [3]. CCD can result in catastrophic beehive

failure, but beehive monitoring systems can help identify this downward population trend

prior to a beehive’s collapse. Beekeepers serve a very important role in this respect, acting

as caretakers for the bees and the entire hive(s) altogether. Monitoring a beehive’s health,

is an exceptional way to support bees’ functions. One of the principal metrics that is used

to monitor the health of a hive is the amount of bee activity the hive experiences [4]. This

is something that can be easily observed in the field, but it can be difficult to accurately

track remotely; even with a remote camera, you need active monitoring to track the

1

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

number of bees entering and exiting the hive. Providing a solution to this problem would

not only make the lives of beekeepers easier, but it would also provide additional data in

order to help the beekeepers have an accurate measure of a hive’s health over time.

1.2 Problem

There is already a wide variety of existing solutions to this problem, ranging from Eye-

sonhives’s camera system [5], to Arnia’s hive scale [6], to Broodminder’s temperature

monitor [7], each of which measure different metrics in order to determine a hive’s activ-

ity and health.

Although these pre-existing solutions work well, they each have a number of short-

comings. The biggest concern which we are working to address is the cost of these devices.

Even a simple hive monitoring camera has a price point of over $350, and for more ad-

vanced systems such as Arnia’s scale ecosystem, prices can soar over $900. These prices

only include a single device, and for most beekeepers with numerous hives, these prices

put these useful technologies out of reach. Another drawback to the current solutions are

their closed-source ecosystems; beekeepers must purchase all components of the ecosystem

from the same company, indefinitely locking them into that company’s products/services.

1.3 Solution

While there are already multiple devices on the market which solve the problem we are

addressing, they fall short in the categories of affordability and open-sourced ecosystems.

The novelty of this solution is its low-cost and availability. We have built this device using

entirely off the shelf, easily-accessible parts such as the Raspberry Pi and affordable image

sensors. This will allow more beekeepers to acquire and use this valuable technology to

2

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

help track their hives’ health, as well as allow them to modify or repair it themselves at

a much lower cost than other solutions.

This system is easy to install and simple to use. The device can be easily deployed

to monitor a hive’s activity without needing outside input. This solution also uses a

computer vision model provided by a separate Senior Design group to track the number

of bees coming in and out of the hive. This data is viewable in a web dashboard, allowing

for easy monitoring of hive activity and viewing of aggregate data collected by the device.

This will allow beekeepers to more affordably track their hive activity, resulting in better

care for the bees and their hives. This data is very valuable to the beekeepers, as the hive

activity can be a direct indicator of hive strength. Additionally, the machine learning

model can be trained to recognize swarming as well as training flights from young, newly

emerged bees, which will allow the beekeepers to have a much better understanding of

their apiary.

3

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 2

Related Work

In this chapter, we will discuss related work by highlighting some of the preexisting

solutions to beehive monitoring.

2.1 Arnia

Arnia [6] is a hive-monitoring system designed around the use of digital scales and an

internal multi-purpose sensor which measures temperature, humidity, light, sound, and

movement within the hive. Arnia is one of the most advanced hive-monitoring systems

on the market, with a significant amount of data being captured for each hive. However,

this comes at a cost. At minimum, each hive requires an investment of over $700, which

includes a scale, gateway, and internal hive-sensor. In order to track an entire apiary

using Arnia’s equipment, a beekeeper is expected to invest thousands of dollars into

their tech-ecosystem. Additionally, Arnia’s systems require a yearly subscription to a

cellular data plan in order to send their data back to Arnia’s servers, which tacks on

an additional annual cost of $150 per hive gateway (one gateway supports up to eight

individual sensors). This is another major expense that a beekeeper would need to worry

about. The last problem Arnia’s ecosystem faces is its closed-source nature. This system

is entirely powered by Arnia’s proprietary servers. This prevents beekeepers from utilizing

any of their own data storage solutions, and forces them to continue to pay to use the

Arnia ecosystem.

4

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

2.2 BroodMinder

BroodMinder [7] is a scalable hive-monitoring system that uses temperature, humidity

sensors and scales to oversee a beehive. BroodMinder’s product is simpler than Arnia’s

and is cheaper as a result. This system is designed to be used in any configuration, so

beekeepers can choose to use as many, or as little sensors as they would like. However,

despite the simplicity, it is still a large investment for the beekeeper. Regardless of how

many sensors a beekeeper uses, they are still required to have a Wi-Fi hub, which costs

$220. On top of this, a single temperature sensor can cost over $65, and a scale can cost

over $200. More advanced data collection (sound and activity) is available, but costs

another $200 on top of the other costs. This puts the price of a BroodMinder system

out of reach for those with a large number of beehives. Additionally, BroodMinder faces

the same closed-source drawback as Arnia. Powered entirely by BroodMinder’s servers,

beekeepers have no choice but to continue to pay for the BroodMinder system.

2.3 Eyesonhives

Eyesonhives [5] is a hive-monitoring system that shares many similarities to the device

that we are developing. It uses a camera pointed at the entrance of a hive, alongside

machine vision analytics to determine hive activity. One major difference between Eye-

sonhives’s implementation and ours is the camera location. In Eyesonhives’s system, the

camera is pointed towards the front of the hive from a distance, rather than from the

side with close proximity to the hive’s entrance. This system also faces similar problems

as the ecosystems previously mentioned. A single camera is $380, with an additional

cost for the analytics service, which is necessary for the system’s continued functionality.

However, this cost is not mentioned on their website, as each camera comes with one year

5

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

of free service. This may result in some beekeepers investing in Eyesonhives’s ecosystem,

only to find out a year down the line that they need to continue paying a substantial

amount to continue using Eyesonhives’s monitoring software. This system also struggles

with the same closed-source issues as discussed with the previous solutions.

6

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 3

System Architecture

After highlighting the drawbacks of other beehive monitoring systems, we can now look

at how this solution aims to solve these problems. This chapter serves as an overview of

this project’s fundamental system design.

3.1 Web Application’s Dashboard

The Dashboard User Interface utilizes a wide variety of industry-standard technology to

deliver a state-of-the-art user experience. The web application dashboard is built using

the MERN stack, a popular full-stack software development technology collection; these

tools serve as the foundation for the web app. This interface provides the user (beekeeper)

the ability to view and monitor the bee activity data of a beehive from their Raspberry

Pi device, including the beehive’s metrics such as inflow and outflow of bees over time,

temperature, humidity, and wind-speed; the user has direct access to their beehive’s data

analytics and device status (online/offline).

The MERN stack was chosen because of its versatility and open-source nature, which

matched the goals for this project. ExpressJS is the back-end framework, which helps to

manage the routes and servers necessary to make calls to the back-end database, serviced

by MongoDB. The back-end also utilizes Mongoose to model the data that exists in the

database. On the front-end, the web application is primarly built using ReactJS and

JavaScript, and utilizes powerful front-end development tools such as Material UI, a

7

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

React-component UI library, Redux, which manages the application’s state, and Axios,

which allows the front-end to make back-end requests. And lastly, NodeJS serves as this

application’s runtime environment for development and scalability.

The back-end and database structure can be broken up into three separate document

models. The first document model is reserved for users. Users are comprised of a name,

an email, and a password, which is hashed using BCryptJS, upon registration. When

a user logs in, JSON Web Token is used for authorization across the web app. A user

must be ’authorized’ to access certain routes, such as the dashboard, as well as make

certain requests to the API. An example of each field and datatype for the User schema

is described in Table 3.1 along with its requirement and uniqueness.

Field Type Required Unique Example Value Description

name String Yes No ”John Doe” The user’s name.

email String Yes Yes ”johndoe@example.com” The user’s email

address. Must

be unique.

password String Yes No ”$2a$10$V7X9I...jMx7” The user’s pass-

word.

createdAt Date No No ”2022-01-01T00:00:00.000Z” The timestamp

for when the

user was created

updatedAt Date No No ”2022-01-01T00:00:00.000Z” The timestamp

for when the

user was last

updated

Table 3.1: User Schema Table

The second document model is built for apiaries, each of which include a name

8

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

(unique), a location, a members array, and a devices array. The location is defined

by a geographical sub-schema that includes spherical coordinates to determine a location

for the apiary. The members array is another sub-schema that contains a reference to

a user, and a specification if they are an owner of the apiary, or not (a viewer). Users

specified as an ”owner” of an apiary have the ability to edit that apiary; i.e. change

its name, add/update/delete members, and add/update/delete devices. And lastly, each

device in the devices array includes a serial number (from the Raspberry Pi device), a

name, and time-series data provided by the machine-learning team. The data provided

from the machine-learning team contains five main properties, a date provided from the

system itself, raw x and y coordinates of the bees, temperature, humidity, and wind

speed provided from a weather API, predicted x and y coordinates of the bees, and a

last predicted deviation provided after multiple data points have been calculated. The

first four properties are required with the deviation being left as optional because you

cannot calculate this number without first receiving enough data points. An example of

each field and datatype for the Apiary schema is described in Table 3.2 along with its

requirement and uniqueness; some data fields such as the location, members and devices

fields have sub-schema datatypes that are described in following tables.

9

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Field Type Required Unique Example Value Description

name String No No ”My Apiary” The name of the

Apiary

location Object of type

geoSchema

No No See geoSchema The coordinates

of the Apiary

members Array of Objects

of type member-

Schema

Yes No See memberSchema An array of

members asso-

ciated with the

Apiary

devices Array of Ob-

jects of type

deviceSchema

No No See deviceSchema An array of de-

vices associated

with the Apiary

createdAt Date No No ”2022-01-01T00:00:00.000Z” The date when

the Apiary was

created

updatedAt Date No No ”2022-01-01T00:00:00.000Z” The date when

the Apiary was

last updated

Table 3.2: Apiary Schema Table

The location sub-schema is another data object model that holds a location type

(defaulted to ”Point”), point coordinates, a formatted address, and a place ID (provided

by the Google Places API). An example of each field and datatype for the Location

sub-schema is described in Table 3.3 along with its requirement and uniqueness.

10

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Field Type Required Unique Example Value Description

type String No No ”Point” The type of the

location data.

Default value is

”Point”.

coordinates Array of Number No No [−73.9857, 40.7484] An array of

longitude and

latitude coor-

dinates in that

order. Indexed

as a 2dsphere to

enable location-

based queries.

formattedAddress String No No ”123 Main St, New York, NY” The formatted

address of the

location.

placeID String No No ”ChIJd8BlQ2BZwokRAFUEcmqrcA” The place ID of

the location.

Table 3.3: Location Schema Table

The Member sub-schema includes a reference to a User object to identify the member

in this array, as well as a role that can have the value of ”user”, ”admin”, or ”creator”;

different roles have varying permissions for the apiary the user belongs to. ”Users” can

simply view the data, ”admins” can modify the apiary, and the ”creator” can perform any

of the previous functions in addition to deleting the apiary as a whole. An example of

each field and datatype for the Member sub-schema is described in Table 3.4 along with

its requirement and uniqueness.

11

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Field Type Required Unique Example Value Description

user ObjectId Yes No ”61579f9a53e7e8f2916d47b1” References a

user object asso-

ciated with the

member

role String No No ”USER” The role of

the member,

must be one

of ”USER”,

”ADMIN”, or

”CREATOR”

Table 3.4: Member Schema Table

The Device sub-schema includes various information regarding the device in an apiary,

such as the serial number of the Raspberry Pi device, a name for the device, a remote

link (deprecated), and a reference to a Data object that holds the device’s time-series

data. An example of each field and datatype for the Device sub-schema is described in

Table 3.5 along with its requirement and uniqueness.

12

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Field Type Required Unique Example Value Description

serial String Yes Yes ”ABC123” The serial num-

ber of the device

name String Yes No ”Device 1” The name of the

device

remote String Yes Yes ”https://remote.it/ABC123” The remote.it

URL of the

device

data ObjectId No No ”6154353e7eb3aa3b1886d051” The ID of the

data object asso-

ciated with the

device

createdAt Date No No ”2022-01-01T00:00:00.000Z” The date and

time when the

device was cre-

ated

updatedAt Date No No ”2022-01-02T00:00:00.000Z” The date and

time when the

device was last

updated

Table 3.5: Device Schema Table

And lastly, we have the third document model, split between the Data schema and

Data-point sub-schema. The Data schema holds an apiary object ID and serial number

string in order to reference an apiary model to ensure the data being pushed actually

belongs to a real monitoring device. There is also an array of data-points, which stores

the data-points that are sent to the Data-point sub-schema from the machine-learning

team. The Data-point schema includes a time, activity data, weather (temperature,

13

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

humidity, and wind-speed), and a prediction deviation. Each data-point is processed on

the device using the machine-learning model, which then creates a data object based

on the Data-point schema and pushes the point to the relevant Data object’s array in

MongoDB.

Field Type Required Unique Example Value Description

apiary ObjectId No No ”6154353e7eb3aa3b1886d051” Reference to the Api-

ary model

serial String Yes Yes ”ABC123” Unique identifier of

the device sending the

data

datapoints Array of dataPointSchema No No See dataPointSchema Array containing the

data points sent by

the device

Table 3.6: Data Schema Table

14

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Field Type Required Unique Example Value Description

time Date No No Date.now The time the data

point was recorded

raw activity.x Number Yes No 15 The x coordinate of

the raw activity data

raw activity.y Number Yes No 13 The y coordinate of

the raw activity data

weather.temp Number Yes No 25.4 The temperature in

Celsius at the time of

recording

weather.humidity Number Yes No 50.2 The humidity in per-

cent at the time of

recording

weather.windspeed Number Yes No 10.3 The wind speed in me-

ters per second at the

time of recording

prediction activity.x Number Yes No 2 The x coordinate of

the predicted activity

data

prediction activity.y Number Yes No 3 The y coordinate of

the predicted activity

data

last prediction deviation Number No No 2 The deviation be-

tween the raw and

predicted activity

data at the time of

recording

Table 3.7: Data-point Schema Table

Tables 3.6 and 3.7 describe the Data schema and Data-point schema, respectively

15

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

including the datatype of each variable, its requirements and uniqueness, and an example

value.

3.2 Physical Hardware Platform

Power
USB Power

Supply+
Power Meter

Camera
Sensor over

CSI Port

Webcam
over USB

Wi-Fi

Hardware (Raspberry Pi)
MongoDB Database

ML Data
Processing

Built-in
Wireless LAN

Processed
Data

Data

Users

Apiaries

Web Application

Register

Login

Pages

Manage

Dashboard

Redux State
Management

Fig. 3.1: System Information Flow Chart

The hardware we are using has all been selected due to its availability and open source

nature. We have selected the Raspberry Pi as the main hardware platform, as they are

well known to be easy to modify and use for custom systems such as ours. They are widely

available for a reasonably low cost. The device that was settled on for the final design is

the Raspberry Pi 4B. It is an extremely flexible platform, as it has built in USB, HDMI

and CSI camera interface ports, alongside internal Wi-Fi and Bluetooth connectivity. It

also has a large amount of processing headroom. The 4B has a 1.5GHz 64 bit quad-core

CPU with 8GB of RAM.

Additionally, we are using inexpensive, widely available camera sensors that can

interface directly with the Pi’s CSI port, which is designed specifically for interfacing

with imaging sensors. We are also designing the system to be capable of using a USB

16

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

webcam, as they are also inexpensive and widely available. We selected a few different

camera modules to test, including the official Raspberry Pi HQ Camera, a 3rd party

Smraza camera module, and a Logitech C615 USB webcam. The goal is to record in

1080P resolution at 30 frames per second, and all of these cameras support this standard.

We settled on the Smraza camera for the final design due to its cost and flexibility for

the setup.

The developed platform will communicate with the cloud processing servers using

Wi-Fi, which will allow beekeepers to use their own Internet source. They can choose to

use their own Wi-Fi or cellular hotspot to connect these systems to the Internet, giving

them the flexibility to choose what works best for them. We used the built-in Wi-Fi

module on the Pi, as it supports all modern Wi-Fi standards and allows for less extra

cost compared to using an external adapter.

The system transmits the processed ML data over Wi-Fi to the MongoDB database,

where it is stored in the appropriate apiary. Users can create apiaries to sort their devices,

and allow multiple users to access these apiaries. It is common for an apiary to be man-

aged by multiple beekeepers, so this function is essential. The web application displays

this data, which is locked behind user accounts. Redux allows for state management,

keeping track of where users are in the application and ensuring that data is only shown

to users with the proper permissions. Although there is not much sensitive data being

stored in the database, we still need to ensure that user’s data is kept private and they

choose who can access it outside of themselves.

17

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 4

Evaluation

In this chapter we present the findings from the work we have done on the system through

design, development, and implementation.

4.1 Web Application’s Dashboard

In the original design for the web app, it was centered around a React-based applica-

tion that required users to manage their own back-end, simply supplying them with the

necessary means to manage their data. After design difficulties and some thought about

the awkwardness of this solution, we decided to pivot the proposed solution towards a

full-stack web application, built from back to front.

As a result of this change, the web application is built on the MERN stack, which uti-

lizes MongoDB as the back-end database, ExpressJS as the back-end framework, ReactJS

as a front-end library, and NodeJS as a JavaScript runtime environment for development

purposes. The MERN stack was chosen because of its open-source nature, adaptability,

and ease of development. It also allowed us to efficiently pivot from the original Reac-

tJS -only infrastructure, to a full-fledged web-application. Users (beekeepers) are able to

create an account, publish Apiaries, and setup devices that belong to beehives within an

apiary. Apiaries can then be shared with other users, so multiple beekeepers can keep

track of the same group of hives.

In the original mock-ups of the web app, there is a live video feed feature. To achieve

18

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

this, the Raspberry Pi’s camera footage would be linked to the host of the Raspberry Pi.

On an external computer, the Raspberry Pi’s video stream can be watched by using the

address and port of the Raspberry Pi. This can then be embedded directly within the

dashboard through a JavaScript library. Persisting issues getting a stable video feed from

the device to the application prevented us from fully integrating this feature, hence its

presence in the original wire-frames, and absence in the final design.

In the figure below, the dashboard presents a video feed (top left), a controls section

(bottom left), a quick-status section (top right), and a graph section (bottom right).

Fig. 4.1: Initial Dashboard Page Wire-frame Design.

The Dashboard User Interface also originally made use of Grafana’s data visualization

tools. The bee-count data would received from the machine-learning algorithm and saved

in each user’s own database with InfluxDB. To collect the data and input it into InfluxDB,

the user would use Telegraf which can take files as inputs and save them into a database.

The database stores the number of bees as an integer datatype, as well as the date/time

as a timestamp datatype. Next, this database would be fed into a Grafana dashboard

where it can be interpreted and displayed in a line-graph format. After the Grafana graph

19

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

has been set-up, it would be up to the user to directly embed it into the dashboard as a

component of the app.

In the following figure, the user has the ability to adjust their user settings (left), add

devices (middle), and embed their Grafana charts (right).

Fig. 4.2: Initial Settings Page Wire-frame Design.

The final design for the Dashboard Web Application’s user interface was built us-

ing JavaScript and the ReactJS library. To assist in building a modern, user-friendly

experience, we also utilized Material UI, a React UI tool that offers a comprehensive

component-library designed for developers to quickly create production-ready UI compo-

nents.

Another important tool on the front-end is Axios, which is used to make requests to

the back-end to gather data from the database. In addition to Axios, the web app also

utilizes Redux to manage the application’s current state; this allows the app to manage

what data and information it holds onto based on the current user, current route, and

recent requests. And lastly, we utilized the Recharts React library to build an interactive

20

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

data chart tool that clearly and effectively displays the user’s data.

In the application’s final design, the dashboard underwent some changes compared to

the original wireframe. The first major change is the lack of the live video section, which

as previously mentioned, had technical issues that we were unable to overcome before the

completion date. With this, we also decided that it would make more sense to put more

emphasis on the data analytics, which is what the user would be most interested in when

viewing the dashboard.

In the figure below, the final dashboard design is shown; the data chart is displayed

on the left, with the quick-status section on the right. The data graph can be filtered by

date/time ranges, as well as by metric (bee activity, humidity, temperature, wind-speed).

The graph can also be scrubbed through to find more precise information about each

data-point on the graph. The quick overview section informs the user if their monitoring

device is online, and how many bees have been in and out within the past 24 hours, which

a good indicator of the hive’s activity.

Fig. 4.3: Final Dashboard Page Design.

Another important page to the web application is the settings, or management page.

This page was also altered, as it no longer needed some functionality from the original

21

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

wire-frames after pivoting to a full-stack application. Another major change that sparked

this change is the addition of ”apiaries”, which allows the user to organize their monitoring

devices according to their actual apiary of beehives. This also allows users to add other

members to their apiaries so that multiple beekeepers can monitor the same set of beehive

devices.

The two figures below demonstrate the management page. Each apiary is organized

as a card that can be expanded to access a list of members and associated monitoring

devices. Device and members can be added, updated, or deleted, depending on the user’s

privileges for the apiary (User, Admin, Creator).

Fig. 4.4: Final Manage Page Design 1.

22

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Fig. 4.5: Final Manage Page Design 2.

As mentioned before, the back-end is built using MongoDB, ExpressJS, and NodeJS.

ExpressJS, which runs within a NodeJS server, is responsible for communicating with the

back-end database using HTTP requests/responses, and bringing that information up to

the front-end interface. The MongoDB database stores all of the necessary information

for the users, including their registration credentials, apiaries, devices, and data points.

This information is divided between three separate document models, and can be accessed

through API calls.

As the back-end populates with data, we found that the front-end had trouble keeping

up with the amount of data that was necessary to fill the dashboard’s graph. So we made

necessary alterations to the back-end functionality to limit the amount of data that is

pulled when making GET requests to pull data into the interface.

Across the front-end and back-end, the change to create a full-stack application proved

to be a transformative decision for the web application. By seamlessly integrating both

ends of the application, we unlocked a multitude of benefits that enhanced the overall

functionality and effectiveness of the proposed solution compared to the original de-

sign/early implementation. The full-stack application allows for the gathering and pro-

23

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

cessing of real-time data from the beehives with remarkable efficiency, delivering valuable

insights to beekeepers on demand. After completing the implementation of the web appli-

cation, we found that the adoption of a full-stack architecture proved to be instrumental

to the success of this project, opening new doors of possibility and revolutionizing the

way beekeepers interact with their hives.

4.2 Camera Streaming

One of the most crucial functions of a beehive monitoring system is the ability to remotely

monitor the beehive from anywhere in the world. This remote viewing allows beekeepers

to keep an eye on the beehive and ensure everything is running smoothly. Unfortunately,

video streaming is very resource intensive, and given the relatively low power hardware

on a Raspberry Pi, it is difficult to establish a reliable stream that can maintain an

acceptable frame rate.

The first approach that was executed was attempting to stream using a service called

remote.it. This original approach essentially created a local website on the Raspberry

Pi machine that had a video frame in the HTML document. Then, using packages

downloaded from remote.it specifically designed for Linux, the Raspberry Pi was able to

broadcast that website along with a video stream to the open internet. However, due to

the limitations of Raspberry Pi hardware, the stream was very unstable, had an extremely

low resolution, used up too much CPU power, and often times didn’t display a video feed

altogether.

We then shifted our focus to streaming to YouTube, since YouTube has an open API

which should have been be easy to implement into the web application. However, due to

limitations of Linux software and how it processes video, the Raspberry Pi was unable to

stream video through the command line. Following this discovery, we tried shifting focus

24

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

to a software solution - OBS. OBS makes it easy to set up a live video stream and have

it transmitted to websites such as YouTube and Twitch. However, OBS does not have

native support for Raspbian, the Linux software which the Raspberry Pi is using. As

such, we had to use an unofficial build of the software that bypassed system requirements

to run. This effort was short lived as although OBS was able to launch, initiating the

stream prompted the software to immediately crash with no explanation other than ”You

are using OBS on an unsupported operating system”

Next, we pivoted to streaming using sockets programmed in Python. We were able

to successfully stream video feed over a local IP address, and expected implementation

of streaming to a public IP address to be relatively straightforward. The video feed

itself is 480p, which is a welcomed improvement over the original approach. However,

maintaining an acceptable frame rate is an area for improvement. We discovered that part

of the reason the frame rate is so low (2-10fps) is due to the way in which the Raspberry

Pi processes video. As of the time of publication, video processing isn’t included naively

in Raspberry Pi. As a result, we had to install FFmpeg, which converts pictures to video.

Unfortunately, we were unable to have FFmpeg output a greater frame rate. We needed

to find a solution that has better video processing libraries.

The final solution, while rather obscure, involved downgrading the software running

on the Raspberry Pi to Buster OS. This operating system comes with more efficient built

in video processing libraries that can be called in python with the ”import picamera”

command. Then, we can send the output of the camera to an IP address which can be

loaded in any web browser on the same network. We were confident that this would be

compatible with the web application that was developed. With this solution, we were

able to achieve an acceptable frame rate of 30fps with a resolution of 480p.

While executing research and development, power consumption and resource utiliza-

tion was of utmost importance to us, given the relatively weak hardware of the Raspberry

25

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Pi. Below findings regarding power usage and CPU utilization with the 4 solutions that

were implemented for video streaming can be seen.

Fig. 4.6: Watt Usage

Fig. 4.7: CPU Utilization

In Figure 4.6 the solution with Buster OS only uses slightly more power than the other

solutions, likely due to being a slightly older OS with less efficient power consumption.

However, we found this power usage to be acceptable because we were able to maintain

a 30fps stream. Figure 4.7 highlights how the final solution is CPU-friendly, only using

about 3-5% at any given time which is only slightly more than the CPU utilization at

idle. You can also see OBS streaming, even if functional, would not be an acceptable

solution due to its extreme CPU usage. 26

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 5

Future Work

In this chapter we present what tasks we want to have done for the system if given more

time and resources to work on the project.

While this system is functional and achieves the goal of remote beehive monitoring,

there are many improvements that could be made. One issue that was ran into during

final deployment of the system was the fact that the Pi Camera library, which is used for

both the live streaming code and the machine learning code, can only attach the camera

to one process at a time. Due to the fact that the machine learning was developed

separately from the streaming code, this issue was not discovered until the system was

complete. This forced us to temporarily disable the live stream so that the machine

learning code could use the camera, as this functionality is essential for the system to

count bees. Future development could integrate the live streaming code into the machine

learning code, so that they could run as a single process together and utilize a single Pi

Camera virtual camera. While this integration would be ideal, another potential solution

could be to attach two cameras to the Raspberry Pi, one for video streaming and another

for video processing. Once this is achieved, the live video feed could be re-implemented

into the monitoring dashboard, allowing users to easily view the entrance of the hive

whenever needed.

Additionally, the remote Pi management is ran through Zero Tier, which is a subscrip-

tion based service that is locked to a single user account. If custom Pi management code

was created, this could allow remote management of the Pi through the web dashboard

27

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

without the need for an external service or subscription.

Another area of improvement that could be worked on is the hardware packaging.

As we were unaware of how much processing power would be needed for the system, we

utilized the most powerful Pi model available, the Pi 4B. However, after deployment, we

discovered that the resource utilization was much smaller than anticipated. This could

allow use of a smaller, cheaper, more efficient model such as the Pi Zero. If this is done,

the size, cost and energy usage of the system could be decreased significantly.

In terms of adjustments to the software, there are many improvements to be made

including various customizable features to user profiles, monitoring devices, and charts.

When logging into a user profile if one were to forget their password there is currently

no function to reset a password through an email verification or other type of personal

verification. This is a key component to any user login interface because it is good practice

to reset profile passwords every 90 days to constantly keep any account on the application

secure. Within profiles, users should be able to add and remove themselves from apiaries

but if a user is an administrator then they should have the ability to add and remove others

from their apiaries. While monitoring devices, in the event of a relocation of the beehive

the owner of the apiary should be able to change locations of the device. Currently this

feature is not enabled but it should be included for prevention of this situation. There is

also no solution to compare and contrast various monitoring devices at the same time. It

might be important to know how two different colonies are performing at the same time

and be able to view both of their graphs side by side. Regarding the graph, divisions of

time on the x-axis of the graph can be proven to be important if you want to see a detailed

view of the data. By including a more detailed view it allows the apiary owner to better

understand intraday data points and compare that data to other days throughout a period

of weeks, months, or years. The comparison between years is especially important because

as seasons change year over year due to climate change it can be difficult to tell what

28

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

patterns bees should be following versus what they are actually doing. One last thing that

should be included in the software is device analytics. Application owners should consider

monitoring the Raspberry Pi’s CPU utilization, memory allocation, storage capacity,

packets sent and received over the network which would then be outputted to a graph on

the web application. These analytics would help narrow down any issues that arise from

troubleshooting the application so that a manager of an apiary can know that it is not

the Raspberry Pi itself that is causing any issues. It would also be helpful to know when

it would be time to upgrade to a newer version of a Raspberry Pi if a device slows down

too much and the software is getting bottlenecked.

In addition to including new features, there should be consistent penetration testing of

the application to discover any bugs that might come up and resolve them immediately in

order to prevent disruption of service. Bugs can cause code to become insecure, program

crashes, inaccurate data on the graph, data corruption or data loss, and integration

issues with API’s or hardware components. Therefore, in future implementations of this

application, owners should develop significant tests to ensure every piece of the application

works as expected so that when errors do arise they can be easy to resolve.

When deploying the application on Heroku, the service seems relatively inexpensive,

stable, and easy to set up and use. However, future owners of the web application may

choose to utilize Amazon Web Services (AWS) in order to benefit from Santa Clara

University’s (SCU) ongoing relationship with AWS and its ability to scale rapidly if there

are too many users and too much stress on the application. This could be a possibility

along with other hosting solutions if Heroku ends up becoming costly as the application

scales.

As for the choice of using MongoDB for the database, the application is currently

linked to a free cluster which might be inefficient later on if the application were to be

scaled for enterprise use. Therefore, future application owners should look into purchasing

a server subscription from MongoDB.
29

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 6

Ethical Considerations

Arguably one of the most important parts of any new innovation is ensuring that it

strictly abides to ethical standards. Given the project interacts with one of nature’s most

crucial linchpins, great effort was taken to design a system that would minimally disrupt

the bee’s natural behavior and habitat. This project has a responsibility to safeguard the

well-being of a bee, and in large part the essential role they play in this ecosystem. By

providing accurate information to the beekeeper, they can maintain healthy hives and

avoid potential CCD.

By looking at this project from a high level overview, being able to have insight

about a beehive’s health, and more specifically how many bees are entering and leaving

a beehive is very helpful to a beekeeper. This crucial information enables a beekeeper

to more adequately care for their hive, which leads to healthier bees, and in the long

run leads to a healthier ecosystem. Bees play a crucial part in making sure plants are

pollinated; without them a lot of the ecosystem would die off. This alone is enough

inspiration to build a solution.

Current solutions are quite expensive, often times costing upwards of $1000. This

large upfront cost is something that needed to be kept in mind when designing this

solution. By understanding that smaller backyard beekeepers cannot afford expensive

beehive monitors it helped define the requirements needed for this project. In turn,

this would hopefully cause a disruption int he market for other manufacturers to begin

to develop open-source software that could be paired with low cost hardware to make

30

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

beehive monitoring more accessible.

As mentioned earlier, great care was taken in ensuring that the solution has little to

zero interference with the hive, so that bees can go about their daily functions as usual.

Some competitors have large cameras that obstruct the entrance of a beehive, which

would disrupt a bees’ daily routine. This solution has a tiny camera placed above the

entrance of a beehive which in turn has minimal interference with the beehive and will not

change how a bee behaves around a beehive. In terms of the privacy considerations of this

camera, due to the downward facing orientation of the camera against a plain background

at the entrance of the hive there is no possibility for any personal information to be viewed

by the camera. When installing the camera it should be configured to avoid capturing

any sensitive or private areas beyond the scope of the intended area to be monitored.

When it comes to storing data such as login information and data points in MongoDB,

security and privacy considerations are important to take into account. It’s imperative to

ensure that the API keys for accessing the MongoDB cluster aren’t leaked onto GitHub

or shown anywhere publicly otherwise someone could potentially access the data or push

incorrect data to the database. It is also important to secure the MongoDB account

with a strong password so that nobody will be able to guess or get into the account.

Even activating multi-factor authentication was a consideration when trying to secure

the MongoDB account so that even if someone were to guess the password they wouldn’t

have access to the account. In terms of storing user login information, all of the passwords

for each account were hashed and salted to make sure that they weren’t stored in plaintext

to be viewed easily in case passwords were to be reused in other applications. A future

ethical consideration would be to include reminders every so often to remind users in the

application to reset their account passwords to prevent potential security breaches.

31

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Chapter 7

Conclusion

In this thesis, we proposed a creative and inventive solution to bring beehive monitoring

to smaller beekeepers. By analyzing various beehive monitoring solutions, we were able

to understand what is currently implemented and what is and isn’t implemented already

and for what price. Most of the pre-existing solutions are paid products and services that

are too expensive for backyard beekeepers to afford. Those solutions also don’t support

the software being open source so that anybody can contribute to new updates regarding

the monitoring application. The proposed solution would bring an inexpensive, easy to

install, and simple to use monitoring device and application to the everyday beekeeper so

that we can bring beehive monitoring to more people. Along with beekeepers, we are also

keeping future developers in mind by creating an affordable and open source platform to

host the beehive monitoring on so that future updates can be quick and abundant. Lastly,

the machine learning model used in this monitoring device can provide novel technology

to backyard beekeepers who often can’t afford technology with innovative solutions.

32

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

Bibliography

[1] AG, “Why bees are so important to the environment.” https://www.environment.

sa.gov.au/goodliving/posts/2016/10/bees.

[2] H. Ritchie, “How much of the world’s food production is dependent on pollinators?.”

https://ourworldindata.org/pollinator-dependence, Aug 2021.

[3] EPA, “Colony collapse disorder.” https://www.epa.gov/pollinator-protection/

colony-collapse-disorder.

[4] S. Sarah Myers, AgTech Marketing Manager, “5 ways to measure beehive health

with analytics and hive-streaming data.” https://www.sas.com/en_us/insights/

articles/big-data/measure-beehive-health-with-analytics.html.

[5] T. Kelton, “Eyes on hives.” https://www.eyesonhives.com/app/, May 2019.

[6] Arnia, “Remote beehive monitoring.” https://www.arnia.co/.

[7] Broodminder, “Every hive counts.” https://broodminder.com/.

33

DocuSign Envelope ID: E1801DBE-D3A0-4779-80E3-D5F4404313DB

	A Hardware Platform for Wireless Beehive Monitoring
	Signiture page 1
	A Hardware Platform for Wireless Beehive Monitoring

