
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Variational Inference with Orthogonal Normalizing Flows

Hasenclever, L.; Tomczak, J.M.; van den Berg, R.; Welling, M.

Publication date
2017
Document Version
Final published version

Link to publication

Citation for published version (APA):
Hasenclever, L., Tomczak, J. M., van den Berg, R., & Welling, M. (2017). Variational
Inference with Orthogonal Normalizing Flows. Paper presented at Bayesian Deep Learning
Workshop NIPS 2017, Long Beach, United States.
http://bayesiandeeplearning.org/2017/papers/51.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:31 Aug 2023

https://dare.uva.nl/personal/pure/en/publications/variational-inference-with-orthogonal-normalizing-flows(1a454330-0448-4ad2-ac6a-1dc069ac7851).html
http://bayesiandeeplearning.org/2017/papers/51.pdf


Variational Inference with Orthogonal Normalizing
Flows

Leonard Hasenclever
University of Oxford

Jakub M. Tomczak
University of Amsterdam

Rianne van den Berg
University of Amsterdam

Max Welling
University of Amsterdam

1 Introduction

Normalizing flows Variational inference relies on flexible approximate posterior distributions. In
many settings very simple posteriors such as diagonal covariance Gaussians are used. Rezende
and Mohamed [2015] propose a way to construct more flexible posteriors by transforming a simple
base distribution with a series of invertible transformations with easily computable Jacobians. The
resulting transformed density after one such transformation is given by:

p1(z
′) = p0(z)

∣∣∣∣det(∂f(z)∂z

)∣∣∣∣−1 , (1)

where z′ = f(z), z, z′ ∈ RD and f : RD 7→ RD is an invertible function. While in general the cost
of computing the Jacobian will be O(D3), for practical use it is desirable to design transformations
with more efficiently computable Jacobians.

Planar flow Rezende and Mohamed [2015] propose two families of parametrized normalizing
flows that fulfill these criteria: planar and radial flows. Planar flows are given by the following
transformation:

z′ = z+ uh(wT z+ b), (2)

where u,w ∈ RD, b ∈ R and h is a suitable smooth activation function. Rezende and Mohamed
[2015] show that given the choice of activation function h = tanh, transformations of this kind
are invertible as long as uTw ≥ −1. By the Matrix Determinant Lemma the Jacobian of this
transformation is given by:

det
∂z′

∂z
= det

(
I+ uh′(wT z+ b)wT

)
= 1 + uTh′(wT z+ b)w. (3)

This lemma is a special case of Sylvester’s determinant identity:
Theorem 1 (Sylvester’s determinant identity). For all A ∈ RM×D,B ∈ RD×M ,

det (IM +AB) = det (ID +BA) , (4)

where IM and ID are M and D-dimensional identity matrices, respectively.

After applying K flows, the final latent stochastic variables are given by zK = fK ◦ . . . f2 ◦ f1(z0),
with the initial simple posterior density for z0 given by a diagonal Gaussian N (z0|µ, σ2I). In the
amortized variational inference model of Rezende and Mohamed [2015], both µ and σ, as well as all
of the flow parameters {u(k),w(k), b(k)}Kk=1 are produced by the outputs of a deep neural inference
network that maps an input vector x to these parameters.
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Paper contribution In this paper we use Sylvester’s determinant identity to introduce a new
normalizing flow. In order to guarantee invertible flows and to ensure efficient computation of the
Jacobian determinant we use orthogonal weight matrices in the flow. We refer to the resulting flow as
the orthogonal normalizing flow.

2 Orthogonal Normalizing Flows

In practice, many planar flow transformations are required to transform a simple base distribution
into a flexible distribution, especially for high dimensional latent spaces. In addition, planar flows
tend to be hard to train and sensitive to initializations. Kingma et al. [2016] argue that is this due to
the fact that the activation function effectively acts as a single-unit MLP. This raises the question if
we can construct more powerful invertible transformations with easily computable Jacobians.

Let us consider the following transformation:

z′ = z+Ah(Bz+ b), (5)

where A ∈ RD×M ,B ∈ RM×D and b ∈ RM . This transformation has Jacobian determinant:

det
∂z′

∂z
= det (IM + diag (h′(Bz+ b))BA) , (6)

which follows from Sylvester’s determinant identity. This trick reduces the determinant of a D ×D
matrix to a determinant of an M ×M matrix. However, in general this transformation will not neces-
sarily be invertible. Therefore, we propose the following special case of the above transformation:

z′ = z+WDh(D̃WT z+ b) = φ(z), (7)

where D and D̃ are diagonal matrices, and W = (w1 . . .wM ) with the columns wm forming an
orthonormal set. By theorem 1 the determinant of the Jacobian of this transformation reduces to:

det
∂z′

∂z
= det

(
IM + diag

(
h′(D̃WT z+ b)

)
D̃WTWD

)
(8)

= det
(
IM + diag

(
h′(D̃WT z+ b)

)
D̃D

)
, (9)

which is efficient to compute. The following theorem gives a sufficient condition for this transforma-
tion to be invertible.
Theorem 2. Let h : R −→ R be a smooth function with bounded, positive derivative. Then, if the
diagonal entries of D and D̃ satisfy did̃i > −1/‖h′‖∞ the transformation given by (7) is invertible.

Proof. Recall that one-dimensional real functions with strictly positive derivatives are invertible.
Note that the columns of W are orthonormal, such that they span a (sub)space of RD. LetW =
span{w1, . . . ,wM} andW⊥ its orthogonal complement. We can decompose z = z‖ + z⊥, where
z‖ ∈ W and z⊥ ∈ W⊥. Similarly we can decompose z′ = z′‖ + z′⊥. Note that WWT z = z‖ and

WT z⊥ = 0 by definition. Clearly, WDh(D̃WT z+ b) ∈ W , hence leading to the unique solution
for the orthogonal component z⊥ = φ(z)⊥ = z′⊥ . Thus, it suffices to consider the transformation in
the directions of w1, . . . ,wm. Multiplying (7) by WT from the left gives:

WT z′︸ ︷︷ ︸
v′

= WT z︸ ︷︷ ︸
v

+Dh(D̃WT z︸ ︷︷ ︸
v

+b) = (f1(v1), . . . , fm(vm))T , (10)

where the vectors v and v′ contain the respective coordinates of z‖ and z′‖ in the directions of
w1, . . . ,wm. The dimensions in (10) are completely independent and each dimension is transformed
by a real function fi(v) = v + dih(d̃iv + bi). Consider a single dimension i of (10). Since
‖h′‖∞did̃i > −1, we have f ′i(v) > 0 and thus fi is invertible. In this transformation z⊥ is
left unchanged while z‖ is transformed in an invertible way. Hence the whole transformation is
invertible.

For the case of h(x) = tanh(x), creating two diagonal matrices with did̃i > −1/‖h′‖∞ = −1 can
be achieved by taking two random diagonal matrices D̂1 and D̂2 and transforming them according to
D = tanh(D̂1) and D̃ = tanh(D̂2), since −1 < tanh(x) < 1 ∀x ∈ R.
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Last but not least, the flow in Eq. (7) relies on the parameter matrix W remaining orthogonal
throughout the training process. We ensure this property by applying an iterative procedure proposed
by Björck and Bowie [1971], Kovarik [1970]:

W(k+1) = W(k)

(
I+

1

2

(
I−W(k)>W(k)

))
. (11)

with a sufficient condition for convergence given by ‖W(0)>W(0) − I‖2 < 1. Here the 2-norm of
a matrix X refers to ‖X‖2 = λmax(X), with λmax(X) representing the largest singular value of
X. In our experimental evaluations we ran the iterative procedure until ‖W(k)>W(k) − I‖F ≤ ε,
with ‖X‖F the Frobenius norm, and ε a small convergence threshold. We observed that running this
procedure up to 30 steps was sufficient to ensure convergence with respect to this threshold.

Planar flow

Orthogonal flow (M=2)

Original 
distribution

flow=1

flow=1 flow=5

flow=5 flow=10

flow=10

Figure 1: A transformation of a standard Gaussian
posterior in 2D using the planar flow (top) and the
orthogonal flow (bottom).

Since this orthogonalization procedure is differ-
entiable, it allows for the calculation of gradients
with respect to W(0) by backpropagation, such
that any standard optimization scheme such as
stochastic gradient descent can be used for up-
dating the flow weights.

In Figure 1, the effect of planar and orthogonal
normalizing flows for a Gaussian initial density
is shown. Note that since the latent space is only
of size 2 for this visualization, at most M = 2
orthogonal vectors can appear in the orthogonal
flow parameter matrix W. We expect the orthog-
onal normalizing flow to be especially effective
for higher dimensional latent spaces.

3 Results and discussion
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Figure 2: Results of the VAE with the newly pro-
posed orthogonal flow in terms of the negative
evidence lower bound (ELBO) on the test MNIST
data. For each run the means are shown, with the
shaded areas representing one standard deviation,
computed with three runs for each point.

In our experiments we compared the orthogo-
nal flow with the planar flow on the statically
binarized MNIST dataset. We utilized the nor-
malizing flow in the Variational Autoencoder
(VAE) [Kingma and Welling, 2013, Rezende
et al., 2014] with two hidden fully connected
layers (400 hidden units per layer) with softplus
non-linearity in the encoder and the decoder and
two simple output layers in the encoder giving
µ0 and σ0. The latent space of stochastic hid-
den units was set to 40. We used the standard
division of the data into sets of 50, 000, 10, 000
and 10, 000 images for training, validation and
testing, respectively. We apply warm-up for 100
epochs, and use the Adam optimizer [Kingma
and Ba, 2014] for parameter optimization. The results are presented in Figure 2. The results clearly
show that the model benefits both from more flows as well as a larger number of orthonormal vectors
per flow.

We used importance sampling [Rezende et al., 2014] to approximate the negative log-likelihood
(NLL). The NLL for K = 16 orthogonal flows with M = 16 is equal to 85.9, compared to 86.5,
85.7 and 85.1 for 20, 40 and 80 planar flows, respectively.1 This indicates that applying orthogonal
flows leads to almost the same level of performance as the best performing model with planar flows
while requiring four times fewer flows.

In the future, we plan to evaluate orthogonal normalizing flows more thoroughly as a tool in variational
inference and explore other applications such as semi-supervised learning.

1The results for the planar flow are taken from [Rezende and Mohamed, 2015] where a different architecture
than ours was used.
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