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Abstract

Hemodynamics is crucial for the activation and aggregation of platelets in response to flow-

induced shear. In this paper, a novel image-based computational model simulating blood

flow through and around platelet aggregates is presented. The microstructure of aggregates

was captured by two different modalities of microscopy images of in vitro whole blood perfu-

sion experiments in microfluidic chambers coated with collagen. One set of images captured

the geometry of the aggregate outline, while the other employed platelet labelling to infer the

internal density. The platelet aggregates were modelled as a porous medium, the perme-

ability of which was calculated with the Kozeny-Carman equation. The computational model

was subsequently applied to study hemodynamics inside and around the platelet aggre-

gates. The blood flow velocity, shear stress and kinetic force exerted on the aggregates

were investigated and compared under 800 s−1, 1600 s−1 and 4000 s−1 wall shear rates.

The advection-diffusion balance of agonist transport inside the platelet aggregates was also

evaluated by local Péclet number. The findings show that the transport of agonists is not

only affected by the shear rate but also significantly influenced by the microstructure of the

aggregates. Moreover, large kinetic forces were found at the transition zone from shell to

core of the aggregates, which could contribute to identifying the boundary between the shell

and the core. The shear rate and the rate of elongation flow were investigated as well. The

results imply that the emerging shapes of aggregates are highly correlated to the shear rate

and the rate of elongation. The framework provides a way to incorporate the internal micro-

structure of the aggregates into the computational model and yields a better understanding

of the hemodynamics and physiology of platelet aggregates, hence laying the foundation for

predicting aggregation and deformation under different flow conditions.

Author summary

The initial step in the formation of an arterial thrombus is the rapid aggregation of the

tiny blood particles called platelets. This process significantly influences the formation
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and structure of the resulting thrombi. The mechanical properties of the aggregates

depend on their microstructure, which in turn is dictated by their interaction with the

flow during formation. However, due to currently existing technological limitations, it is

not possible to measure these interactions in sufficient detail experimentally. In this

paper, an image-based computational model is proposed based on two different modali-

ties of experimental images, that can complement the experiments and give detailed infor-

mation on hemodynamics during the aggregation. The image sets are captured from

whole blood perfused microfluidic chambers coated with collagen. One modality of

images captured the shape of the aggregate outline with high contrast, while the other

employed platelet labeling to infer the internal density. The platelet aggregates are consid-

ered as porous media in the simulations, informed by the images. This framework incor-

porates the internal microstructure of the aggregates into the computational model and

yields a better understanding of the hemodynamics and physiology of platelet aggregates,

hence laying the foundation for predicting aggregation and deformation under different

flow conditions.

This is a PLOS Computational Biology Methods paper.

Introduction

Platelet aggregation is the initial step of thrombus formation, that begins with platelet adhesion

to the sites of vascular injury [1–3]. It is a multistep dynamic process involving distinct recep-

tors and adhesive ligands such as GPIbα and αIIbβ3 receptors, von Willebrand factor (VWF),

fibrinogen and fibronectin [4]. Those receptor-ligand interactions regulate tethering, platelet-

platelet cohesion and stabilization of the formed aggregates. Blood flow also plays a critical

role in the process as distinct shear ranges lead to unique ways to form aggregates [4, 5].

Under low shear conditions, fibrinogen and integrin αIIbβ3 are known to be the predominant

factors of platelet aggregation while VWF and fibronectin have progressively increasing contri-

bution to the aggregation with the increase of the flow shear rate [6].

To better understand the impact of the hemodynamics on the formation and mechanics of

blood clots, several computational models were developed [7–12]. Since the porosity of the

forming aggregate influences its formation [13–16], a growing number of computational stud-

ies considered the thrombus as a porous medium. Tomaiuolo et al. [17] established a two-

dimensional computational model, in which the thrombus consists of two homogeneous

porous parts. One with highly activated, densely packed platelets was named core and the

other with lower levels of activation was named shell. Different permeabilities were assigned

for the core and shell, respectively. They have shown that the solute transport behaviour

changes with changes of the platelet packing density. Xu et al. [18] developed a similar novel

two-dimensional multi-phase computational model to characterise the interplay between the

main components of the clot. They showed that the shear force acting on the clot surface is

affected by the internal structure of clots. Also, their results indicated that the porosity of the

clots decreased as the flow shear rate increased.

The growing interest in the porous structure of thrombus or platelet aggregate has

prompted measurements of their permeability [19, 20]. Experimental studies have
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demonstrated several ways to measure the permeability of clots [20–24]. However, owing to

the significant differences in the setup, the composition of the flow and the heterogeneous

nature of the formation, the experimental results of permeability usually correspond to unique

conditions and are difficult to reuse in different scenarios. At present, the Kozeny-Carman for-

mula [25, 26] is one of the most widely applied methods to estimate permeability. It approxi-

mates the permeability based on the volume fraction and geometric properties of the solid

components that form the porous substance [14, 27].

Instead of considering the clot geometry as a simplified object such as half ellipse in the

model, the geometry of the clot can be obtained from in vivo or in vitro imaging data, contrib-

uting to further studies on the microstructure of platelet aggregates [28]. For example, in [29],

a two-dimensional model was developed to calculate the shear stress of the near-thrombus

region using the fluorescent labeling images captured in mice. They quantitatively measured

the thrombus dynamics in the early stages of hemostasis based on the images, but did not con-

sider the internal structure of the thrombus. Taylor et al. [30] and Pinar et al. [31] examined

the dynamics of the blood flow around the thrombus based on the in vitro experiments, but

both of them considered thrombi as impermeable solids. In [32], the porous geometry of the

clot was reconstructed from the experimental images. This setting is closer to reality compared

to the impermeable solid and provides the prediction of the transport of inert solutes in the

aggregates.

In this paper, an image-based method to capture the internal microstructure is proposed.

Based on this method, a three-dimensional computational model is developed, that can simu-

late the blood flows through the formed platelet aggregates in a microchannel accurately. In

this model, the platelet aggregates are considered as porous media and the microstructure of

platelet aggregates is based on in vitro experiments of whole blood perfusion in microfluidic

chambers coated with collagen. Two sets of images were used to capture the geometries and

internal structures of the aggregates. The images without platelet labeling captured the geome-

try of the aggregate outline, while the images with platelet labeling are employed to infer the

internal density of the aggregates and estimate the permeability. The computational model was

subsequently applied to study the hemodynamics inside and around the platelet aggregates.

The blood flow velocity, shear stress, kinetic forces of blood flow exerted on aggregates, flow

elongational rate and advection-diffusion balance of agonist transport inside the platelet aggre-

gates were investigated and compared under 800 s−1, 1600 s−1 and 4000 s−1 wall shear rates

(WSRs). The proposed model incorporating the internal microstructure of the aggregates pro-

vides an accurate estimate of the hemodynamics of platelet aggregates, and thus lays the foun-

dation for predicting further aggregation and deformation under different flow conditions.

Materials and methods

In vitro experiments

All the experiments were performed at the Laboratory for Thrombosis Research at KU Leuven.

A schematic diagram of the in vitro experiments of platelet aggregates is shown in Fig 1. Fresh

human blood was drawn into a citrated tube (3.8% sodium citrate, citrate:blood = 1:9) and

mixed with MitoTracker Deep Red (Invitrogen, USA). Citrate chelates extracellular calcium,

and without calcium coagulation cannot occur, hence fibrin cannot be formed. A temperature

control (Thermo Fisher Scientific, US) was used to ensure the blood was at a human-body

temperature. The chip μ−Slide VI 0.1 (Ibidi, Germany) was positioned under the microscope

and connected to the test tube with blood and the pump via tubing. Before the experiments,

the complete surface of the perfusion chamber was coated using 100 μg/ml Horm-collagen

(Takeda, Austria) and stood overnight, resulting in a uniform distribution of collagen fibrils
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over the complete perfused area. The pump (Harvard Apparatus, US), which was on the other

side of the chip, pulled the blood through the chamber with a preset WSR. After five minutes

of blood perfusion, for every one micrometer in the z-direction, the images of cross-sections of

the channel were captured under an Axio Observer Z1 inverted fluorescence microscope

(Zeiss, Germany) using differential interference contrast (DIC) and fluorescence microscopy

at 100x magnification. The perfusion time was chosen to ensure after which a stable clot was

formed in vitro. The three-dimensional structure of platelet aggregates was reconstructed by

stacking all the images over the z-direction later. Two types of images modality were captured

for the platelet aggregates. One set of images captured the shape of the aggregate outline with

non-labelled platelets (DIC images), while the other employed platelet labelling to infer the

internal density (fluorescent images).

Image data processing

A schematic workflow of the methodology employed in this work to transfer the experimental

image data to the computational model is provided in Fig 2.

The non-labelled images were segmented with 3D Slicer [33] manually and stacked together

over the z direction. As a final step to reconstruct the surface of the platelet aggregate, interpo-

lation was applied to fill between the image slices. Smoothing was applied to further improve

the surface quality of the platelet aggregate meshes. However, the surface mesh may still con-

tain low quality mesh elements, therefore it was remeshed with MeshLab [34] using the uni-

form resampling filter. After proceeding with the surface mesh, a corresponding volume mesh

was created in Gmsh [35] for use in the numerical simulations.

The intensity of the fluorescence in the labelled image data is proportional to the local den-

sity of the platelet aggregate, and can be further used to infer the porosity of the aggregates.

Therefore density measurements have been made to approximate the local density of aggre-

gates. This was done by manually counting and the details of it are described in S1 File. Fig 3

shows the results of this measurement which provide us with a mapping between the fluores-

cence intensity and density of the entire aggregates. The permeability of the aggregates was

subsequently inferred using the Kozeny-Carman equation. Further details on this are pre-

sented in the next subsection.

To simulate the blood flow around the platelet aggregates, a rectangular domain was created

and uniformly meshed to represent a part of the channel of the chip in the experiments, as

Fig 1. The schematic of the experiment set-up. The width and the height of the chamber is 1 mm and 100 μm,

respectively. The dimension of the recorded experimental domain is 125 μm × 100 μm × 100 μm.

https://doi.org/10.1371/journal.pcbi.1010965.g001
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shown in Fig 4. The platelet aggregates formed on the collagen coated bottom plate, approxi-

mately in the middle of the channel. The intensity data of platelet aggregates were interpolated

from the platelet aggregate volume mesh to the volume mesh of the flow domain. This interpo-

lation between two meshes allows us to assign the corresponding fluorescence intensity value

of the aggregate to a specific location in the simulated domain. Finally, this volume mesh of

the flow domain was then used as the spatial discretization of the finite element method to sim-

ulate the blood flow.

Computational blood flow model

Blood flow was modelled as an incompressible Newtonian fluid governed by the Navier-Stokes

equations, and the influence of the porous clot on the flow was introduced using a Darcy term:

r
@u
@t
þ u � ru

� �

¼ � rpþ mDu �
m

k
u; ð1Þ

r � u ¼ 0: ð2Þ

Fig 2. Flow diagram for the image-based modelling methodology implemented in this work. Experiment:
microscopy images of platelet aggregates with labelled and non-labelled platelets caught by differential interference

contrast microscopy with 100x magnification. Extracted information: reconstructed platelet aggregate geometry and

permeability distribution over the aggregate. Computational modelling: the simulated domain for blood flow.

https://doi.org/10.1371/journal.pcbi.1010965.g002

Fig 3. Fluorescence intensity (arbitrary units)—Density relation inside platelet aggregates. (a) 800 s−1 WSR. Slope = 0.0027. Intercept =

-0.19. (b) 1600 s−1 WSR. Slope = 0.0014. Intercept = 0.28. (c) 4000 s−1 WSR. Slope = 0.0004. Intercept = -0.23. The unit in each subfigure is

different due to the influence of external environment such as exposure level and labelling time.

https://doi.org/10.1371/journal.pcbi.1010965.g003
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Here, u is the velocity of the fluid, p is the pressure, ρ is the fluid density, and μ is the dynamic

viscosity. The last term on the right-hand side accounts for the momentum exchange between

the fluid and the solid phases of the porous medium. It is defined by Darcy’s law [36, 37],

which describes flow through a porous medium. In this term, k is the permeability of the plate-

let aggregates. Permeability is a function of the volume fraction of pore size and fiber or cell/

cell aggregate size [21] and was estimated using the Kozeny-Carman equation

k ¼ F2

s

�3D2
p

150ð1 � �Þ
2
: ð3Þ

HereFs, � and Dp are the sphericity of the platelets, the porosity of the aggregates and the plate-

let diameter, respectively.

The complete list of parameter values used in the model and their literature sources are

shown in Table 1. According to the inlet flow settings in experiments, the Reynolds numbers

for 800 s−1, 1600 s−1 and 4000 s−1 WSRs is 0.67, 1.37 and 3.33, respectively. We expect that the

flow velocity in the platelet aggregates are significantly smaller than the velocity in the channel

due to the porous structure, which fits the Stokes flow assumption of the Kozeny-Carman

equation. The time-step size was chosen to satisfy the Courant–Friedrichs–Lewy condition. A

mesh convergence study was carried out to select the appropriate mesh resolution for the sim-

ulation. Considering the computational cost and the convergence of the simulation, a mesh

with 3.0 million tetrahedral elements was chosen. The average element size of the mesh is

0.837 μm3, which is significantly smaller than the average size of a platelet (7.2 − 11.7 fL) [38].

As shown in Fig 4, the blood flowed through the domain from left to right (along the positive y

direction). Since the blood flow domain was considered as a small part of the channel in the x

Fig 4. Schematic diagram of the simulation domain. (a) Blood perfusion channel and the location of the simulated domain. (b) Top view of the blood

perfusion channel. (c) Domain of the blood flow simulation including the position of the platelet aggregate.

https://doi.org/10.1371/journal.pcbi.1010965.g004

Table 1. Parameter used in simulations.

Notation Description Value Unit Reference

ρ density of fluid 1.025 × 10−3 g mm−3 [39]

μ fluid viscosity 3 × 10−3 g mm−1 s−1 [32, 40]

Fs sphericity of activated platelet 0.71 — [41]

Dp platelet diameter 2 × 10−3 mm [42]

dt time-step size 10−5 s —

— average element size 0.837 μm3 —

https://doi.org/10.1371/journal.pcbi.1010965.t001
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direction, constant and parabolic velocity profiles were prescribed in the x and z directions

respectively at the inlet (for the coordinate system see Fig 4). A constant-pressure condition

was prescribed at the outlet. No-slip boundary conditions were imposed at the top and bottom

walls.

The flow field was solved using the finite element method (FEM) [43] and implemented in

FreeFEM [44]. An iterative solver based on flexible generalized minimal residual (FGMRES)

method [45] was used and implemented via PETSc [46]. This work was carried out on the

Dutch national supercomputer Snelllius (SURF, Netherlands). Each simulation was performed

on AMD Rome 7H12 CPU × 2 and parallelized on 128 cores. The corresponding code of the

simulation is available at https://github.com/UvaCsl/AggregateFlowSimu/releases/tag/v1.0.0.

Results

The distribution of the fluorescence intensity obtained from the experimental images under

three WSRs is presented in Fig 5(a)–5(c). With the increase of the shear rate, the ratio of fluo-

rescence intensity clustering at the tail of the distribution increases, which means more parts

in the aggregates have a higher density. Note that the values of this fluorescence intensity are

in arbitrary units and not comparable under different scenarios due to the fact that they are

influenced by other factors such as initial labeling concentration and light intensity. By com-

puting the corresponding aggregate density from the fluorescence intensity via regression, the

average density and the distribution of this density inside the aggregates are demonstrated in

Fig 5(d) and Fig 5(e). Subsequently, Fig 5(f) shows the distribution of the permeability. The

denser the aggregate is, the lower the permeability.

To further study how fluorescence intensity, porosity and permeability distribute inside the

platelet aggregate, the corresponding results on the cross-sections of the aggregate formed

Fig 5. Distribution of fluorescence intensity, distribution of platelet aggregates density and permeability under 800 s−1, 1600 s−1 and 4000 s−1

WSRs. (a)-(c) Distributions of fluorescence intensity inside the platelet aggregates. (d) Average volume fraction of platelets of the platelet

aggregates. (e) Distribution of volume fraction of platelets inside the platelet aggregates. (f) Distribution of permeability inside the platelet

aggregates in log-scale.

https://doi.org/10.1371/journal.pcbi.1010965.g005
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under 1600 s−1 WSR are shown in Fig 6. In the core of the aggregate, the intensity is higher

than that in the shell. Correspondingly, the platelets in the core are positioned denser, which

leads to much lower permeability in this part. This non-homogeneity results in complex blood

flow behavior inside the platelet aggregates.

Flow within and around the platelet aggregate

The steady flow pattern on a cross-section under 1600 s−1 WSR is shown in Fig 7(a). Although

the platelet aggregate is considered as a porous medium, the permeability of the aggregates is

extremely small. Consequently, most of the blood flows over the aggregate and only a small

amount of the blood permeates the platelet aggregate. Fig 7(b) shows the corresponding blood

flow velocity inside the platelet aggregates on cross-sections. Although in the shell with rela-

tively high permeability, the blood flow velocity is significantly lower than the extra-thrombus

flow, it is still considerably higher than the velocity in the core with lower permeability. How-

ever, in the transition from the shell to the core, the magnitude of the velocity is greater than

that of some regions of the shell. After blood enters the core, its velocity becomes extremely

Fig 6. Intensity of the fluorescence, corresponding porosity and the permeability of the platelet aggregate under 1600 s−1 WSR. (a) Intensity of the

fluorescence obtained from the experimental data. (b) Corresponding porosity of the platelet aggregate. (c) Permeability of the platelet aggregate on the

cross-sections of the aggregate obtained from the Kozeny-Carman equation. The results inside the platelet aggregates formed under 800 s−1 and 4000 s−1

WSRs are demonstrated in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1010965.g006

Fig 7. Flow field at WSR of 1600 s−1. (a) The velocity field of the blood flow on a cross-section of the flow domain. The red arrow indicates the direction

of blood flow. (b) The velocity field of the blood flow inside the platelet aggregate on the cross-sections. The orange arrow points out the high flow velocity

area between the shell and the core.

https://doi.org/10.1371/journal.pcbi.1010965.g007
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low. The minimum velocity in the interior core reaches 10−11 mm/s, which means barely any

blood flow.

Stress analysis of the blood flow

Since the platelet aggregate is considered as a porous medium, the momentum of the flow

exerts a kinetic force inside the aggregate, which can lead to partial or complete aggregate

embolism [32]. These forces indicate the interaction between blood flow and platelet aggre-

gates under the assumption that the deformation of the aggregate is insignificant, and induce

stresses in the aggregate structure. However, these are not discussed in the current work. This

kinetic force was calculated by Darcy’s law, f ¼ � m

k u, and the result is shown in Fig 8(a). The

highest forces appear on the top outer layer of the platelet aggregate, due to the relatively high

fluid velocity over these parts. Also, similar to the blood velocity in the transition from the

shell to the core, there exists an area with higher kinetic force compared to the force in the

shell and core.

Furthermore, the local shear stress has a significant influence on platelet activation, aggre-

gation and adhesion [47]. It has been shown in [48] and [49] that high levels of shear stress

could initiate platelet aggregation. Fig 8(b) demonstrates the fluid shear stress on the surface of

such platelet aggregate under 1600 s−1 WSR condition. These fluid-induced shear stress mag-

nitude σ is estimated by:

s ¼ m � _g; ð4Þ

where _g is the shear rate magnitude obtained by:

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� D : D
p

: ð5Þ

Here, D represents the strain rate tensor which is defined as D ¼ 1

2
ðruþruTÞ. As expected,

shear stress at the top part of the aggregate is several-fold higher than at the bottom. This is

because the aggregate protrudes into the center of the channel and is exposed to a higher

blood flow velocity. This result agrees with the shear stress distribution reported in [28] and

[32].

Fig 8. Stress analysis of the blood flow and the platelet aggregate under 1600 s−1 WSR. (a) The kinetic force exerted on the platelet aggregate. (b) The

fluid shear stress on the surface of the platelet aggregate. The simulation results inside the platelet aggregates formed under 800 s−1 and 4000 s−1 WSRs are

shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1010965.g008
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Advection versus diffusion

Biochemical processes involving different agonists such as adenosine-50-diphosphate (ADP),

require a certain amount of time to take place. In the advection-dominated region, if such a

process takes more time than the characteristic time of agonist advection (i.e. the average time

of the agonist to be convected over a distance of platelet), this process is hindered since the

flow velocity is high enough to wash away the agonists before any reaction takes place. There-

fore, identifying the advection-dominated region is critical for understanding the dynamics of

the aggregation process. The advection- and diffusion-dominated regions of inner chemicals

were evaluated by Péclet number, a ratio of advection and diffusion time:

PeL ¼
u=L
D=L2

; ð6Þ

where u denotes the magnitude of local flow velocity, D is the mass diffusion coefficient and L
denotes the characteristic length. In our simulation, the characteristic length is defined as the

platelet diameter, therefore the advection time in the denominator of PeL indicates the time

required to move the distance of a platelet diameter. When the Péclet number equals one,

advection and diffusion contribute to mass transport equally. If PeL> 1, the diffusion time of

the chemical is longer than the advection time in such area, which means the motion of the

chemical is advection-dominated. Otherwise, it is diffusion-dominated.

Three agonists, Calcium (Ca2+), ADP and Factor X, were evaluated in this work (see

Table 2). Ca2+ contributes to multiple stages of cellular activation in platelets [50]. It has the

lowest molecular weight of these three chemicals but the highest diffusion coefficient. The

second one is ADP, an agonist that plays an important role in platelet activation. Finally, Fac-

tor X, an enzyme in the coagulation cascade that can increase the thrombosis propensity

[51]. It has the highest molecular weight and the lowest diffusion coefficient among the three

agonists. The results demonstrate that the advection-dominated volume in the platelet aggre-

gate increases with the decrease of the diffusion velocities of agonists. Furthermore, Fig 9

visualises the distribution of the advection- and diffusion-dominated areas under the same

flow condition. It can be observed that for the highly diffusive agonists only minuscule parts

of the platelet aggregate are advection-dominated, even in the shell region. However for Fac-

tor X, advection takes over the transport at almost the entire outer layer of the aggregate. In

conclusion, with the decrease of the diffusion coefficient, advection gradually dominates the

transport of chemicals in the shell region of the platelet aggregate. This aligns well with previ-

ous findings predicting such behaviour within the core-shell structure of platelet aggregates

[13, 17].

Effects of increasing WSR

Under all three shear rate conditions, the average intrathrombus velocity is at least two orders

of magnitude lower than the average extra-thrombus velocity, as shown in Table 3. This is

Table 2. Intrathrombus transport simulation for coagulation factors with different molecular weights at WSR of 1600 s−1.

Molecular weight [gmol−1] Diffusion coefficient [mm2s−1] Advection dominated volume [%]

Ca2+ 40.08 6.64 × 10−4 [32] 4.67

ADP 472.201 2.57 × 10−4 [52] 11.78

Factor X 59000 5 × 10−5 [53] 31.61

https://doi.org/10.1371/journal.pcbi.1010965.t002
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comparable to the previously reported results on the microscale thrombus aggregate simula-

tion [16, 54]. Furthermore, the increase in inlet blood velocity leads to higher average intra-

thrombus velocity and stronger kinetic forces on platelet aggregates.

In order to explore how the inlet WSRs affect the solute transport, the average Péclet

number and advection-dominated volume inside the platelet aggregates are also computed.

The result indicates that the average Péclet number inside the aggregates has a positive corre-

lation with WSRs, while the relation between advection-dominated volume and WSRs is not

clear.

To further understand the influence of the blood flow velocity on the platelet aggregate for-

mation, the shapes of the platelet aggregates formed under three shear rates are shown in Fig

10. It can be observed that the platelet aggregate formed under a high shear rate condition

(4000 s−1) has a distinctly different shape. It is the tallest out of the three, while the shape of the

aggregate formed under low shear rates is the flattest.

Platelet adhesion has been demonstrated to be strongly influenced by the mechanosensitiv-

ity of VWF [55–58]. This protein uncoils and activates only under certain flow conditions

[59]. Previous studies have shown that VWF will unfold when the shear rate or the rate of elon-

gation exceeds a threshold [59, 60]. Therefore, high shear rate and elongation rate facilitate the

binding of platelets and can lead to platelet activation [61]. The appearing shear rate and elon-

gational rate in the three cases are investigated in Fig 10. The shear rate magnitude _g is

Fig 9. Advection-diffusion balance. Advection-diffusion balance of (a) Ca2+, (b) ADP and (c) Factor X on cross-sections inside the platelet aggregate

under 1600 s−1 WSR. The upper end of the color scale is set to 1. Therefore, areas with red color correspond to advection-dominated regions, while colors

towards the lower end of the scale denote diffusion-dominated regions.

https://doi.org/10.1371/journal.pcbi.1010965.g009

Table 3. Comparison of simulation results under various WSRs.

Wall shear rate [s−1] 800 1600 4000

Intrathrombus velocity [mms−1] 0.05 ± 0.09 0.06 ± 0.15 0.13 ± 0.34

Extra-thrombus velocity [mms−1] 13.78 ± 6.28 27.50 ± 12.79 69.06 ± 32.18

Kinetic force [N] (×10−12) 1.36 ± 2.07 4.07 ± 5.34 11.20 ± 19.34

Average Péclet number Ca2+ 0.16 ± 0.27 0.18 ± 0.44 0.38 ± 1.02

ADP 0.40 ± 0.69 0.45 ± 1.13 0.99 ± 3.64

Factor X 2.08 ± 3.56 2.33 ± 5.80 5.11 ± 13.59

Advection-dominated volume [%] Ca2+ 1.97 4.67 10.90

ADP 14.46 11.78 18.82

Factor X 37.82 31.61 33.83

Average intrathrombus velocity, average extra-thrombus velocity, average kinetic force, average Péclet number inside the aggregates and the advection-dominated

volume of Ca2+, ADP and Factor X inside the platelet aggregates under three WSRs.

https://doi.org/10.1371/journal.pcbi.1010965.t003
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computed based on the corresponding flow rates:

_g ¼
h
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;

ð7Þ

where u, v and w are the flow velocity in the x-, y- and z-directions, respectively. The rate of

the uni-axial elongation is defined as the magnitude of the diagonal elements of the rate of the

flow strain tensor [62, 63]:

_ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@u
@x
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þ
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� �2

þ
@w
@z

� �2
s

: ð8Þ

According to [59, 60, 64], the threshold of elongation rate for VWF to unfold is much

smaller than that of the shear rate: when the shear rates reach 5000s−1 or elongation flow strain

rates are higher than 1000 s−1, the compact conformation of VWF will change [60, 65]. Hence,

to observe the region where VWF unfolds in our cases, the color bar maxima for results of the

shear rate and the elongational flow are set to coincide with the thresholds reported by these

studies, namely 5000 s−1 and 1000 s−1, respectively. The figure indicates that under a high

shear rate condition (4000 s−1), the region where the shear rate or the elongation rate exceeds

the threshold, is considerably larger than the region in the case of low shear rate flow condi-

tions. This leads to a higher potential for platelets to aggregate and adhere under high shear

rates.

Fig 10. Platelet aggregates geometries, shear rates and the rate of elongation. (a)-(c) Geometries of the platelet aggregates under 800 s−1, 1600 s−1 and

4000 s−1 WSRs flow condition. (d)-(f) Cross-sectional shear rate profile under 800 s−1, 1600 s−1 and 4000 s−1 WSRs flow condition. (g)-(i) Cross-sectional

elongation rate profile under 800 s−1, 1600 s−1 and 4000 s−1 WSRs flow condition.

https://doi.org/10.1371/journal.pcbi.1010965.g010
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Comparison of different ranges of porosity

In this work, the porosity ranges are inferred from the local density of the platelets. The mea-

surement requires one to count the number of platelets manually in multiple regions of the

aggregate, which causes uncertainty (for further details see S1 File). Furthermore, aggregates

formed under different conditions might display different porosities. Therefore, a series of

simulations based on different porosity ranges were performed to quantify the possible influ-

ence of potential porosity ranges on the quantities of interest. Different porosity values and dif-

ferent ranges of porosity were chosen and considered to have a linear relation with

fluorescence intensity. Fig 11 visualises the changes in average blood flow velocity and advec-

tion-dominated volume inside the aggregates in terms of a fixed range of porosity under three

WSRs. With the same porosity settings, both the average velocity and the advection-dominated

volume are higher under a higher WSR, which is expected. Simultaneously, the increase of the

porosity, which means more permeable aggregates, leads to an increase of not only the average

velocity but also more advection-dominated areas inside the aggregates. Moreover, the blood

flow behaviour under various ranges of porosity was also investigated and the results are

shown in Fig 12. With a wider porosity setting, both the average velocity within the aggregates

Fig 11. Comparison of intrathrombus condition for different porosity values. (a) Average blood flow velocity inside the platelet aggregates under

various shear flow conditions. (b) Advection-dominated volume of ADP inside the platelet aggregates under various shear flow conditions. (c)

Advection-dominated volume of Ca2+, ADP and Factor X inside the platelet aggregates under WSR of 1600 s−1.

https://doi.org/10.1371/journal.pcbi.1010965.g011

Fig 12. Comparison of intrathrombus condition for different porosity ranges. (a) Average blood flow velocity inside the platelet aggregates under

various shear flow conditions. (b) Advection-dominated volume of ADP inside the platelet aggregates under various shear flow conditions. (c)

Advection-dominated volume of Ca2+, ADP and Factor X inside the platelet aggregates under WSR of 1600 s−1.

https://doi.org/10.1371/journal.pcbi.1010965.g012
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and the effect of advection on chemical transport increase. Overall, these changes in the poros-

ity lead to quantitative changes in the flow field, however, the observed trends remain unaf-

fected, implying the wider generality of the results.

Limitations

The proposed image-based computational model is based on several assumptions and has

some limitations. First, the porosity of the aggregates was inferred from the fluorescence inten-

sity of the images. However, the exposure time and exposure level in the experiments can have

an impact on the fluorescence intensity. How the fluorescence intensity changes with the expo-

sure time and level should also be investigated in more detail to provide a more precise estima-

tion of the platelet density. Second, the porosity of the platelet aggregates is approximated by

the ratio of the area occupied by platelets on the images. This process requires manually count-

ing the number of platelets, which involves uncertainty and contributes to the uncertainty in

the model outputs. However, the evaluation of interobserver variability was not performed.

Therefore, a comparison study based on different porosity settings was performed, and dem-

onstrated how the potential uncertainty in porosity ranges would affect quantities of interest,

such as average velocities and advection-dominated volume of agonists under three WSRs. No

qualitative changes have been observed due to the variety of porosity ranges. Furthermore, the

volume fraction result shown in Fig 6 follows our expectation on platelet aggregates formed

under different shear rates, i.e. the aggregates tend to be denser when formed under higher

shear rates. Moreover, in the computational model of blood flow, the viscosity in the lumen

was assumed to be constant. However, in actual flow, red blood cells in the microchannel

migrate toward the center of the lumen resulting in a red blood cell-free layer close to the ves-

sel wall [66, 67]. Such a phenomenon contributes to heterogeneity of viscosity in the lumen

and therefore influences the flow resistance and biological transport [68]. Also, the platelets

and red blood cells cannot penetrate platelet aggregates, which means the fluid inside the

aggregates is pure plasma. Its viscosity is smaller than whole blood [69, 70]. A simulation with

plasma viscosity has been carried out for comparison. The result (S3 Fig) shows that there is

no significant influence to the flow dynamics inside the aggregates. Finally, the platelet aggre-

gate pore wall presents barriers to the agonists, resulting in a smaller agonist diffusion coeffi-

cient, which contributes to a larger Péclet number. Since the knowledge of how large the effect

of the porous on the diffusion of agonists is unknown, we used the diffusion coefficients that

were measured in free flow.

Discussion

In this work, two different microscopy image modalities were used to capture the morphology

and microstructure of platelet aggregates formed under in vitro blood perfusion experiments.

The information extracted from the images yields the geometry and local porosity of the aggre-

gates, that are subsequently applied in the computational model. The image-based computa-

tional model enables an accurate prediction of intrathrombus flow under various flow

conditions. A separation of the core and shell of the aggregates in terms of the platelet density

can be observed in Fig 6. The core is composed of densely packed platelets, where the transport

of agonists is diffusion-dominated, while the outer layer is a loose association of platelets.

Furthermore, the blood flow velocity inside platelet aggregates observed has a qualitative

agreement with the result reported in [32]. However, a strip area with relatively high flow

velocity was found at the boundary between the shell and the core. To understand what hap-

pens here, the magnitude of the blood flow velocity under three WSRs was investigated. As Fig

13 shows, this situation occurs under all three WSRs. This might be because the platelets in the
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core were excessively dense, causing the circumferential flow around the core and contributing

to the increase of the blood flow velocity at the transition zone from shell to core. Correspond-

ingly, the large kinetic forces in the area were generated by the resistance when blood flowed

from the shell to the core, a much denser medium. This phenomenon may help to identify the

boundary between the shell and the core.

In Table 3, no clear relation is found between advection-dominated volume and WSRs.

This is mainly due to the density difference of the aggregates formed under three WSRs. As

mentioned before, the platelet aggregate is denser under 4000 s−1 WSR, implying that there are

more regions in the aggregate that large proteins, e.g. Factor X, cannot advect by the fluid.

Therefore, this leads to a smaller advection-dominated volume for Factor X under 4000 s−1

WSR than that under 800 s−1 WSR. In contrast, for the lighter agonists such as Ca2+, the trans-

port is not significantly hampered even if the aggregate becomes relatively denser in the core.

As a result, advection dominates more area for the transport of lighter agonists inside the

platelet aggregates with the increase of the blood shear rate.

As mentioned before, if the shear rate or the rate of elongation exceeds a threshold, the

VWF will unfold and expose the A1 domain, hence supporting platelet attachment. As shown

in Fig 10, under high shear rate flow conditions, the shear rate and the rate of elongation of

most of the area around the aggregate exceed the threshold, which means the aggregates are

exposed to a large amount of unfolded VWF. This might contribute to the easy attachment of

VWF to the surface of aggregates, especially on the top of the aggregates. It further explains the

phenomenon that the aggregates are prone to grow in parallel to the flow under a low shear

rate while the ones formed under a high shear rate show an aggregation tendency perpendicu-

lar to the flow direction. The results of the shear rate and the rate of elongation might be fur-

ther used to predict the aggregation process over time. However, this observation on clot

geometries is based on a limited number of experiments. More experiments are required to

show if it has statistical significance.

In this work, we considered the aggregates as porous media and mainly focused on the

blood flow behaviour and its influence on the aggregates. However the aggregate might

deform, contract, or even break away during this dynamic process. A model could be further

developed to study the mechanical behaviour of the platelet aggregates. The kinetic force

exerted on the platelet aggregates by the blood flow calculated from our model can be applied

to this mechanical model. Combined with the experiments, the break-away dynamics of the

Fig 13. Velocity magnitude of the blood flow inside the platelet aggregates under three WSRs. (a) 800 s−1, (b) 1600 s−1 and (c) 4000 s−1. The arrows

point out the high flow velocity area between the shell and the core.

https://doi.org/10.1371/journal.pcbi.1010965.g013
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aggregates and the mechanical stress forces under different environments can be further simu-

lated and analyzed.

Conclusion

In this work, we present an image-based computational blood flow model to simulate the

blood flowing through the platelet aggregates which are considered as porous media. The

shapes and the microstructures of the platelet aggregates are extracted from microscopy image

data of platelet aggregates formed in the blood perfusion experiments. The fluorescence inten-

sity of the platelet labelling is used to infer the porosity of the aggregates and the corresponding

permeability is calculated via the Kozeny-Carman equation. The imaged-base model allows us

to study the details of hemodynamic transport, such as the velocity, shear stress, and advec-

tion-diffusion of agonist transport inside and around the platelet aggregates. Relatively high

blood flow velocity and forces were found at the transition from the shell to the core due to the

compact distribution of platelets in the interior core. The large forces in the area could contrib-

ute to the activation of the platelets in the shell. Furthermore, the results demonstrate that both

the flow shear rate and aggregate microstructure have a substantial impact on the transport of

agonists. Finally, the shear rate and the rate of elongation flow have also been investigated and

the findings imply that there is a strong correlation between these values and the shapes of

growing platelet aggregates. Overall, the proposed computational model incorporates the

internal microstructure of the aggregates and enables a more precise prediction of the hemo-

dynamics in the platelet aggregates. Our work lays the foundation for predicting shear-depen-

dent aggregation and deformation under different flow conditions, which could subsequently

contribute to developing shear-selective anti-thrombotic or anti-platelet drugs.

Supporting information

S1 Fig. Intensity of the fluorescence, corresponding porosity and the permeability of the

platelet aggregates under 800 s−1 and 4000 s−1 WSRs. (a)-(c) Intensity of the fluorescence,

corresponding porosity and permeability of the platelet aggregate on the cross-sections of the

aggregate under 800 s−1 WSR. (d)-(f) Intensity of the fluorescence, corresponding porosity and

permeability of the platelet aggregate on the cross-sections of the aggregate under 4000 s−1

WSR.

(TIF)

S2 Fig. Stress analysis of the blood flow and the platelet aggregate under 800 s−1 and 4000

s−1 WSRs. (a)-(b) The kinetic force exerted on the platelet aggregate and the fluid shear stress

on the surface of the platelet aggregate under 800 s−1 WSR. (c)-(d) The kinetic force exerted on

the platelet aggregate and the fluid shear stress on the surface of the platelet aggregate under

4000 s−1 WSR.

(TIF)

S3 Fig. Flow field at WSR of 1600 s−1 with plasma viscosity. (a) The velocity field of the

blood flow on a cross-section of the flow domain. (b) The velocity field of the blood flow inside

the platelet aggregate on the cross-sections.

(TIF)

S1 File. Platelet density measurement.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Image-based flow simulation of platelet aggregates under different shear rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010965 July 10, 2023 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010965.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010965.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010965.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010965.s004
https://doi.org/10.1371/journal.pcbi.1010965


Author Contributions

Conceptualization: Yue Hao, Gábor Závodszky.
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