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Modeling Structure with Undirected Neural Networks

Tsvetomila Mihaylova 1 Vlad Niculae 2 André F.T. Martins 1 3 4

Abstract
Neural networks are powerful function estimators,
leading to their status as a paradigm of choice
for modeling structured data. However, unlike
other structured representations that emphasize
the modularity of the problem – e.g., factor graphs
– neural networks are usually monolithic mappings
from inputs to outputs, with a fixed computation
order. This limitation prevents them from cap-
turing different directions of computation and in-
teraction between the modeled variables. In this
paper, we combine the representational strengths
of factor graphs and of neural networks, propos-
ing undirected neural networks (UNNs): a flexi-
ble framework for specifying computations that
can be performed in any order. For particular
choices, our proposed models subsume and ex-
tend many existing architectures: feed-forward,
recurrent, self-attention networks, auto-encoders,
and networks with implicit layers. We demon-
strate the effectiveness of undirected neural archi-
tectures, both unstructured and structured, on a
range of tasks: tree-constrained dependency pars-
ing, convolutional image classification, and se-
quence completion with attention. By varying the
computation order, we show how a single UNN
can be used both as a classifier and a prototype
generator, and how it can fill in missing parts of
an input sequence, making them a promising field
for further research.

1. Introduction
Factor graphs have historically been a very appealing
toolbox for representing structured prediction problems
(Bakır et al., 2007; Smith, 2011; Nowozin et al., 2014),
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with wide applications to vision and natural language
processing applications. In recent years, neural networks
have taken over as the model of choice for tackling many
such applications. Unlike factor graphs – which emphasize
the modularity of the problem – neural networks typically
work end-to-end, relying on rich representations captured
at the encoder level (often pre-trained), which are then
propagated to a task-specific decoder.

In this paper, we combine the representational strengths of
factor graphs and neural networks by proposing undirected
neural networks (UNNs) – a framework in which outputs
are not computed by evaluating a composition of functions
in a given order, but are rather obtained implicitly by mini-
mizing an energy function which factors over a graph. For
particular choices of factor potentials, UNNs subsume many
existing architectures, including feedforward, recurrent, and
self-attention neural networks, auto-encoders, and networks
with implicit layers. When coupled with a coordinate de-
scent algorithm to minimize the energy, the computation
performed by an UNN is similar (but not equivalent) to a
neural network sharing parameters across multiple identical
layers. Since UNNs have no prescribed computation order,
the exact same network can be used to predict any group of
variables (outputs) given another group of variables (inputs),
or vice-versa (i.e., inputs from outputs) enabling new kinds
of joint models. In sum, our contributions are:

• We present UNNs and show how they extend many exist-
ing neural architectures.

• We provide a coordinate descent inference algorithm,
which, by an “unrolling lemma” (Lemma 1), can reuse
current building blocks from feed-forward networks in a
modular way.

• We develop and experiment with multiple factor graph
architectures, tackling both structured and unstructured
tasks, such as natural language parsing, image classifi-
cation, and image prototype generation. We develop a
new undirected attention mechanism and demonstrate its
suitability for sequence completion.1

Notation. We denote vector values as a, matrix and
tensor values as A, and abstract factor graph variables

1The source code is on https://github.com/deep-spin/unn.

https://github.com/deep-spin/unn
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as A. The Frobenius inner product of two tensors with
matching dimensions A,B ∈ Rd1×...×dn is ⟨A,B⟩ :=∑d1

i1=1 . . .
∑dn

in=1 ai1...inbi1...in . For vectors ⟨a, b⟩ = a⊤b

and for matrices ⟨A,B⟩ = Tr(A⊤B). The Frobenius norm
is ∥A∥ :=

√
⟨A,A⟩. Given two tensors A ∈ Rc1,...,cm , B ∈

Rd1,...,dn , their outer product is (A⊗ B)i1,...,im,j1,...,jn =
ai1,...,imbj1,...,jm . For vectors, a ⊗ b = ab⊤. We denote
the d-dimensional vector of ones as 1d (or tensor, if d is a
tuple.) The Fenchel conjugate of a function Ψ : Rd → R is
Ψ∗(t) := supx∈Rd⟨x, t⟩−Ψ(x). When Ψ is strictly convex,
Ψ∗ is differentiable, and (∇Ψ∗)(t) is the unique maximizer
argmaxx∈Rd⟨x, t⟩ − Ψ(x). We denote the non-negative
reals as Rd

+ := {x ∈ Rd : x ≥ 0}, and the (d − 1)-
dimensional simplex as △d := {α ∈ Rd

+, ⟨1d, α⟩ = 1}.
The Shannon entropy of a discrete distribution y ∈ △d is
H(y) := −

∑
i yi log yi. The indicator function ιX is de-

fined as ιX (x) := 0 if x ∈ X , and ιX (x) := +∞ otherwise.

2. Undirected Neural Networks
Let G = (V, F ) be a factor graph, i.e., a bipartite graph
consisting of a set of variable nodes V and a set of factor
nodes F , where each factor node f ∈ F ⊆ 2V is linked to
a subset of variable nodes. Each variable node X ∈ V is
associated with a representation vector x ∈ RdX . We define
unary energies for each variable EX(x), as well as higher-
order energies Ef (xf ), where xf denotes the values of all
variables linked to factor f . Then, an assignment defines a
total energy function

E(x1, . . . , xn) :=
∑
i

EXi(xi) +
∑
f

Ef (xf ). (1)

For simple factor graphs where there is no ambiguity, we
may refer to factors directly by the variables they link to.
For instance, a simple fully-connected factor graph with
only two variables X and Y is fully specified by E(x, y) =
EX(x) + EY(y) + EXY(x, y) .

The energy function in Eq. (1) induces preferences for cer-
tain configurations. For instance, a globally best configu-
ration can be found by solving argminx,y E(x, y), while
a best assignment for Y given a fixed value of X can be
found by solving argminy E(x, y).2 We may think of, or
suggest using notation, that X is an input and Y is an output.
However, intrinsically, factor graphs are not attached to a
static notion of input and output, and instead can be used to
infer any subset of variables given any other subset.

In our proposed framework of UNNs, we define the compu-
tation performed by a neural network using a factor graph,
where each variable is a representation vector (e.g., anal-
ogous to the output of a layer in a standard network.) We

2In this work, we only consider deterministic inference in factor
graphs. Probabilistic models are a promising extension.

design the factor energy functions depending on the type of
each variable and the desired relationships between them.
Inference is performed by minimizing the joint energy with
respect to all unobserved variables (i.e., hidden and output
values). For instance, to construct a supervised UNN, we
may designate a particular variable as “input” X and an-
other as “output” Y, alongside several hidden variables Hi,
compute

ŷ = argmin
y

min
h1,...,hn

E(x, h1, . . . , hn, y) , (2)

and train by minimizing some loss ℓ(ŷ, y). However, UNNs
are not restricted to the supervised setting or to a single
input and output, as we shall explore.

While this framework is very flexible, Eq. (2) is a non-trivial
optimization problem. Therefore, we focus on a class of
energy functions that renders inference easier:

EXi
(xi) = −⟨bXi

, xi⟩+ΨXi
(xi) ,

Ef (xf ) = −

〈
Wf ,

⊗
Xj∈f

xj

〉
,

(3)

where each ΨXi
is a strictly convex regularizer, ⊗ denotes

the outer product, and Wf is a parameter tensor of matching
dimension. For pairwise factors f = {X,Y}, the factor
energy is bilinear and can be written simply as EXY(x, y) =
−x⊤Wy. In factor graphs of the form given in Eq. (3), the
energy is convex in each variable separately, and block-wise
minimization has a closed-form expression involving the
Fenchel conjugate of the regularizers. This suggests a block
coordinate descent optimization strategy: given an order π,
iteratively set:

xπj
← argmin

xπj

E(x1, . . . , xn) . (4)

This block coordinate descent algorithm is guaranteed to
decrease energy at every iteration and, for energies as in
Eq. (3), to converge to a Nash equilibrium (Xu & Yin, 2013,
Thm. 2.3); in addition, it is conveniently learning-rate free.
For training, to tackle the bi-level optimization problem, we
unroll the coordinate descent iterations, and minimize some
loss with standard deep learning optimizers, like stochastic
gradient or Adam (Kingma & Ba, 2015).

The following result, proved in Appendix A, shows that
the coordinate descent algorithm (Eq. (4)) for UNNs with
multilinear factor energies (Eq. (3)), corresponds to standard
forward propagation on an unrolled neural network.
Lemma 1 (Unrolling Lemma). Let G = (V, F ) be a pair-
wise factor graph, with multilinear higher-order energies
and strictly convex unary energies, as in Eq. (3). Then,
the coordinate descent updates (4) result in a chain of
affine transformations (i.e., pre-activations) followed by
non-linear activations, applied in the order π, yielding a
traditional computation graph.
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Table 1. Examples of regularizers Ψ(h) corresponding to some
common activation functions, where ϕ(t) = t log t.

Ψ(h) (∇Ψ∗)(t)

1
2
∥h∥2 t

1
2
∥h∥2 + ιR+(h) relu(t)∑
j

(
ϕ(hj) + ϕ(1− hj)

)
+ ι[0,1]d(h) sigmoid(t)∑

j

(
ϕ
(

1+hj

2

)
+ ϕ

(
1−hj

2

))
+ ι[−1,1]d(h) tanh(t)

−H(h) + ι∆(h) softmax(t)

We show next an undirected construction inspired by (di-
rected) multi-layer perceptrons.

Single pairwise factor The simplest possible UNN has
a pairwise factor connecting two variables X,H. We may
interpret X as an input, and H either as an output (in super-
vised learning) or a hidden representation in unsupervised
learning (Fig. 2(a)). Bilinear-convex energies as in Eq. (3)
yield:

EXH(x, h) = −⟨h,Wx⟩ ,
EX(x) = −⟨x, bX⟩+ΨX(x) ,

EH(h) = −⟨h, bH⟩+ΨH(h) .

(5)

This resembles a Boltzmann machine with continuous vari-
ables (Smolensky, 1986; Hinton, 2007; Welling et al., 2004);
however, in contrast to Boltzmann machines, we do not
model joint probability distributions, but instead use fac-
tor graphs as representations of deterministic computation,
more akin to computation graphs.

Given x, the updated h minimizing the energy is:

h⋆ = argmin
h∈RM

−(Wx+ bH)
⊤h+ΨH(h)

= (∇Ψ∗
H)(Wx+ bH),

(6)

where ∇Ψ∗
H is the gradient of the conjugate function of ΨH.

Analogously, the update for X given H is:

x⋆ = (∇Ψ∗
X)(W

⊤h+ bX) . (7)

Other than the connection to Boltzmann machines, one
round of updates of H and X in this order also de-
scribe the computation of an auto-encoder with shared en-
coder/decoder weights.

Table 1 shows examples of regularizers Ψ and their corre-
sponding ∇Ψ∗, In practice, we never evaluate Ψ or Ψ∗, but
only∇Ψ∗, which we choose among commonly-used neural
network activation functions like tanh, relu, and softmax.

Undirected multi-layer perceptron (MLP) Fig. 2(b)
shows the factor graph for an undirected MLP analogous

X H Y

X H* Y* H* Y* H*
Y*
=Y

Figure 1. Unrolling the computation graph for undirected MLP
with a single hidden layer. Top: MLP with one hidden layer.
Bottom: Unrolled graph for UNN with k = 3 iterations.

to a feed-forward one with input X, output Y, and a single
hidden layer H. As in Eq. (3), we have bilinear pairwise
factors

EXH(x, h) = −⟨h,Wx⟩ , EHY(h, y) = −⟨y, V h⟩ , (8)

and linear-plus-convex unaries EZ(x) = −⟨x, bZ⟩+ΨZ(x)
for Z ∈ {X,H,Y}. If x is observed (fixed), coordinate-wise
inference updates take the form:

h⋆ = (∇Ψ∗
H)(Wx+ V ⊤y + bH) ,

y⋆ = (∇Ψ∗
Y)(V h+ bY) .

(9)

Note that EX does not change anything if X is always ob-
served. The entire algorithm can be unrolled into a directed
computation graph, leading to a deep neural network with
shared parameters (Fig. 1).

The regularizers ΨH and ΨY may be selected based on what
we want∇Ψ∗ to look like, and the constraints or domains of
the variables. For instance, if Y is a multiclass classification
output, we may pick ΨY such that ∇Ψ∗

Y be the softmax
function, and ΨH to induce a relu nonlinearity. Initializing
y(0) = 0 and performing a single iteration of updating H fol-
lowed by Y results in a standard MLP with a single hidden
layer (see also Fig. 1). However, the UNN point of view lets
us decrease energy further by performing multiple iterations,
as well as use the same model to infer any variables given
any other ones, e.g., to predict x from y instead of y from x.
We demonstrate this power in Sections 3 to 5.

The above constructions provide a flexible framework for
defining UNNs. However, UNNs are more general and cover
more popular deep learning architectures. The following
constructions illustrate some such connections.

Feed-forward neural networks Any directed computa-
tion graph associated with a neural network is a particu-
lar case of an UNN. We illustrate this for a simple feed-
forward network, which chains the functions h = f(x)
and y = g(h), where x ∈ Rm, h ∈ Rd, y ∈ Rn are in-
put, hidden, and output variables, and f : Rm → Rd and
g : Rd → Rn are the functions associated to each layer
(e.g., an affine transformation followed by a non-linearity).



Modeling Structure with Undirected Neural Networks

X

Q K

V S

H

(e)

EXH(X,H)

EX(X) X

HM

Y

EHMY(H,M,Y)

(d)

EXM(X,M)

EH(H)

EY(Y)

X

H

(a)

X

H

Y

(b)

X

H1

H2

Y

(c)

Figure 2. Factor graphs for: (a) network without intermediate layers, (b-c) undirected MLPs with one or two layers, (d) undirected biaffine
dependency parser, (e) undirected self-attention. Energy labels ommitted for brevity with the exception of (d).

This factor graph is illustrated in Fig. 2(b). To see this, let
V = {X,H,Y} and F = {XH,HY} and define the ener-
gies as follows. Let d : Rd × Rd → R+ be any distance
function satisfying d(a, b) ≥ 0, with equality iff a = b; for
example d(a, b) = ∥a − b∥. Let all the unary energies be
zero and define the factor energies EXH(x, h) = d(h, f(x))
and EHY(h, y) = d(y, g(h)). Then the total energy satisfies
E(x, h, y) ≥ 0, with equality iff the equations h = f(x)
and y = g(h) are satisfied – therefore, the energy is min-
imized (and becomes zero) when y = g(f(x)), matching
the corresponding directed computation graph. This can be
generalized for an arbitrary deterministic neural network.
This way, we can form UNNs that are partly directed, partly
undirected, as the whole is still an UNN. We do this in our
experiments in Section 5, where we fine-tune a pretrained
BERT model appended to a UNN for parsing.

Implicit layers UNNs include networks with implicit lay-
ers (Duvenaud et al., 2020), a paradigm which, in contrast
with feed-forward layers, does not specify how to compute
the output from the input, but rather specifies conditions
that the output layer should specify, often related to mini-
mizing some function, e.g., computing a layer hi+1 given a
previous layer hi involves solving a possibly difficult prob-
lem argminh f(hi, h). Such a function f can be directly
interpreted as an energy in our model, i.e., EHiHi+1 = f .

3. Image Classification and Visualization
Unlike feed-forward networks, where the processing order is
hard-coded from inputs X to outputs Y, UNNs support pro-
cessing in any direction. We can thus use the same trained
network both for classification as well as for generating
prototypical examples for each class. We demonstrate this
on the MNIST dataset of handwritten digits (Deng, 2012),
showcasing convolutional UNN layers.

The architecture is shown in Fig. 2(c) and has the following
variables: the image X, the class label Y and two hidden
layer variables H{1,2}. Unlike the previous examples, the
two pairwise energies involving the image and the hidden
layers are convolutional, i.e., linear layers with internal
structure:

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ ,
EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ ,

(10)

where C1,2 are linear cross-correlation operators with stride
two and filter weights W1 ∈ R32×1×6×6 and W2 ∈
R64×32×4×4. The last layer is fully connected:

EH2Y(H2, y) = −⟨V, y ⊗H2⟩ . (11)

The unary energies for the hidden layers contain standard
(convolutional) bias term along with the binary entropy
term Ψtanh(H) such that∇Ψ∗

tanh(t) = tanh(t) (see Table 1).
Note that X is no longer a constant when generating X given
Y, therefore it is important to specify the unary energy EX.
Since pixel values are bounded, we set EX(x) = Ψtanh(x).
Initializing H1, H2, and y with zeroes and updating them
once blockwise in this order yields exactly a feed-forward
convolutional neural network. As our network is undirected,
we may propagate information in multiple passes, proceed-
ing in the order H1,H2,Y,H2 iteratively. The update for H1

involves a convolution of X and a deconvolution of H2; we
defer the other updates to Appendix F:

(H1)⋆= tanh(C1(X;W1)+C⊤2 (H2;W2)+b1⊗1d1
) , (12)

where b1 ∈ R32 are biases for each filter, and d1 = 12× 12
is the convolved image size. To generate digit prototype
X from a given class c ∈ {1, . . . , 10}, we may set y = ec,
initialize the other variables at zero (including X), and solve
X̂ = argminX minH1,2 E(X,H1, H2, y) by coordinate de-
scent in the reverse order H2,H1,X,H1 iteratively.
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Table 2. MNIST accuracy with convolutional UNN.

ITERATIONS ACCURACY

k = 1, γ = 0 (BASELINE) 98.80
k = 1 98.75
k = 2 98.74
k = 3 98.83
k = 4 98.78
k = 5 98.69

We train our model jointly for both tasks. For each labeled
pair (X, y) from the training data, we first predict ŷ given
X , then separately predict X̂ given y. The incurred loss is
a weighted combination ℓ(x, y) = ℓf (y, ŷ) + γℓb(X, X̂),
where ℓf is a 10-class cross-entropy loss, and ℓb is a binary
cross-entropy loss averaged over all 28 × 28 pixels of the
image. We use γ = .1 and an Adam learning rate of .0005.

The classification results are shown in Table 2. The model
is able to achieve high classification accuracy, and multiple
iterations lead to a slight improvement. This result suggests
the reconstruction loss for X can also be seen as a regular-
izer, as the same model weights are used in both directions.
The more interesting impact of multiple energy updates
is the image prototype generation. In Fig. 3 we show the
generated digit prototypes after several iterations of energy
minimization, as well as for models with a single iteration.
The networks trained as UNNs produce recognizable digits,
and in particular the model with more iterations learns to use
the additional computation to produce clearer pictures. As
for the baseline, we may interpret it as an UNN and apply
the same process to extract prototypes, but this does not
result in meaningful digits (Fig. 3c). Note that our model
is not a generative model – in that experiment, we are not
sampling an image according to a probability distribution,
rather we are using energy minimization deterministically
to pick a prototype of a digit given its class.

Comparison of UNN to Unconstrained Model As per
Fig. 1, an unrolled UNN can be seen as a feed-forward net-
work with a specific architecture and with weight tying. To
confirm the benefit of the UNN framework, we compare
against an unconstrained model, i.e., with the same archi-
tecture but separate, untied weights for each unrolled layer.
We use as a base the model described in forward-only mode
and train a model with 2 to 5 layers with different weights
instead of shared weights as in the case with the UNN. De-
pending on the number of layers, we cut the number of
parameters in each layer, in order to obtain models with the
same number of parameters as the UNN for fair comparison.
The results from the experiment are described in Table 3.

t = 1 t = 2 t = 3 t = 4 t = 5

(a)

t = 1

(b)

t = 1

(c)

Figure 3. Digit prototypes generated by convolutional UNN. (a)
best UNN (k = 5, γ = .1), (b) single iteration UNN (k = 1, γ =
.1), (c): standard convnet (k = 1, γ = 0).

Table 3. Comparison of UNN with an unconstrained model with
the same number of layers as the UNN iterations. The number of
parameters of the UNN and the unconstrained model are roughtly
the same.

k = 1 k = 2 k = 3 k = 4 k = 5

ACC. 98.80 98.76 98.45 98.32 97.39

# PARAMS 50026 51220 51651 53608 51750

4. Undirected Attention Mechanism
Attention (Bahdanau et al., 2014; Vaswani et al., 2017) is
a key component that enables neural networks to handle
variable-length sequences as input. In this section, we pro-
pose an undirected attention mechanism (Fig. 2(e)). We
demonstrate this model on the task of completing missing
values in a sequence of dynamic length n, with the variable
X serving as both input and output, taking values X ∈ Rd×n,
queries, keys and values taking values Q,K, V ∈ Rn×d,
and attention weights S ∈ (△n)

n, where d is a fixed hid-
den layer size. Finally, H is an induced latent sequence
representation, with values H ∈ Rn×d. The only train-
able parameters are WQ,WK,WV ∈ Rd×d, and the input
embeddings. We model scaled dot-product attention given
with softmax(d−

1
2QK⊤)V . For all variables except S, we



Modeling Structure with Undirected Neural Networks

27 26 ? 24 23 22 ? 20 19 18 17 ? 15 14 13 12 11 10 9 8 7

27
26

?
24
23
22

?
20
19
18
17

?
15
14
13
12
11
10

9
8
7 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4. Undirected self-attention (one “forward-backward” pass)
identifies an off-diagonal pattern, allowing generalization.

set E·(·) = 1
2∥ · ∥

2. For the attention weights, we use
ES(S) = −

√
d
∑n

i=1H(Si). The higher-order energies
are:

EXQ(X,Q) = −⟨Q,WQ(X + P )⟩ ,
EXK(X,K) = −⟨K,WK(X + P )⟩ ,
EXV(X,V ) = −⟨V,WV(X + P )⟩ ,

EQKS(Q,K, S) = −⟨S,QK⊤⟩ ,
EVSH(V, S,H) = −⟨H,SV ⟩ ,

(13)

where P is a matrix of sine and cosine positional embed-
dings of same dimensions as X (Vaswani et al., 2017).

Minimizing the energy yields the blockwise updates:

Q⋆ = WZ(X + P ) + SK ,

K⋆ = WK(X + P ) + S⊤Q ,

V⋆ = WV(X + P ) + S⊤H ,

S⋆ = softmax
(
d−1/2(QK⊤ + V H⊤)

)
,

H⋆ = SV ,

X̄⋆ = V̄ WV + Q̄WQ + K̄WK,

(14)

where X̄ denotes only the rows of X corresponding to the
masked (missing) entries.

Provided zero initialization, updating in the order
(V/Q/K),S,H corresponds exactly to a forward pass in
a standard self-attention. However, in an UNN, our ex-
pressions allow backward propagation back toward X,
as well as iterating to an equilibrium. To ensure that
one round of updates propagates information through all
the variables, we employ the “forward-backward” order
Q,K,V,S,H,S,V,K,Q, X̄.

5 10 15 20 25 30 35 40 45
N. variable updates

30
40
50
60
70
80
90

100

Te
st

 a
cc

ur
ac

y

Random order
"Forward-backward"

Figure 5. Comparison of the test accuracy) for models with ran-
dom and “forward-backward” order of variable updates. Markers
indicate one full iteration.

We evaluate the performance of the undirected attention
with a toy task of sequence completion. We generate a toy
dataset of numerical sequences between 1 and 64, of length
at least 8 and at most 25, in either ascending or descending
consecutive order. We mask out up to 10% of the tokens
and generate all possible sequences, splitting them into
training and test sets with around 706K and 78K instances.
Undirected self-attention is applied to the input sequence.
Note that because of the flexibility of the architecture, the
update of the input variable X does not differ from the
updates of the remaining variables, because each variable
update corresponds to one step of coordinate descent. The
model incurs a cross-entropy loss for the missing elements
of the sequence and the parameters are updated using Adam
with learning rate 10−4. The hidden dimension is d = 256,
and gradients with magnitude beyond 10 are clipped.

Undirected attention is able to solve this task, reaching over
99.8% test accuracy, confirming viablity. Figure 4 shows
the attention weights for a model trained with k = 1. More
attention plots are shown in Appendix E.

Impact of update order. The “forward-backward” order
is not the only possible order of updates in an UNN. In
Fig. 5 we compare its performance against a randomized
coordinate descent strategy, where at each round we pick a
permutation of Q,K,V,S,H. In both cases, X̄ is updated at
the end of each iteration. (Note that the “forward-backward”
order performs almost twice the number of updates per iter-
ation.) While the “forward-backward” order performs well
even with a single pass, given sufficient iterations, random
order updates can reach the same performance, suggest-
ing that hand-crafting a meaningful order helps but is not
necessary. Further analysis is reported in Appendix B.

5. Structured UNNs for Dependency Parsing
The concept of UNN can be applied to structured tasks – all
we need to do is to define structured factors, as shown next.

We experiment with a challenging structured prediction task
from natural language processing: unlabeled, non-projective
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dependency parsing (Kübler et al., 2009). Given a sentence
with n words, represented as a matrix X ∈ Rr×n (where r
is the embedding size), the goal is to predict the syntactic
relations as a dependency tree, i.e., a spanning tree which
has the words as nodes. The output can be represented as a
binary matrix Y ∈ Rn×n, where the (i, j)th entry indicates
if there is a directed arc i→ j connecting the ith word (the
head) and jth word (the modifier). Fig. 6 shows examples
of dependency trees produced by this model. We use a
probabilistic model where the output Y can more broadly
represent a probability distribution over trees, represented
by the matrix of arc marginals induced by this distribution
(illustrated in Appendix E.)

Biaffine parsing. A successful model for dependency
parsing is the biaffine one (Dozat & Manning, 2016; Kiper-
wasser & Goldberg, 2016). This model first computes head
representations H ∈ Rd×n and modifier representations
M ∈ Rd×n, via a neural network that takes X as input –
here, d denotes the hidden dimension of these representa-
tions. Then, it computes a score matrix as Z = H⊤VM ∈
Rn×n, where V ∈ Rd×d is a parameter matrix. Entries
of Z can be interpreted as scores for each candidate arc.
From Z, the best tree is found by the Chu-Liu-Edmonds
maximum spanning arborescence algorithm (Chu & Liu,
1965; Edmonds, 1967), and probabilities and marginals by
the matrix-tree theorem (Koo et al., 2007; Smith & Smith,
2007; McDonald & Satta, 2007; Kirchhoff, 1847).

UNN for parsing. We now construct an UNN with the
same building blocks as this biaffine model, leading to
the factor graph in Fig. 2(d). The variable nodes are
{X,H,M,Y}, and the factors are {XH,XM,HMY}. Given
parameter weight matrices V,WH,WM ∈ Rd×d and biases
bH, bM ∈ Rd, we use multilinear factor energies as follows:

EXH(X,H) = −⟨H,WHX⟩ ,
EXM(X,M) = −⟨M,WMX⟩ ,

EYHM(Y,H,M) = −⟨Y,H⊤VM⟩ .
(15)

For H and M, we use the ReLU regularizer,

EH(H) = −⟨bH ⊗ 1n, H⟩+
1

2
∥H∥2 + ι≥0(H)

EM(M) = −⟨bM ⊗ 1n,M⟩+
1

2
∥M∥2 + ι≥0(M) .

(16)

For Y, however, we employ a structured entropy regularizer:

EY(Y ) = −HM(Y ) + ιM(Y ) , (17)

whereM = conv(Y) is the marginal polytope (Wainwright
& Jordan, 2008; Martins et al., 2009), the convex hull of the
adjacency matrices of all valid non-projective dependency

trees (Fig. 9), andHM(Y ) is the maximal entropy over all
distribution over trees with arc marginals Y :

HM(Y ) := max
α∈△|Y|

H(α) s.t. EA∼α[A] = Y . (18)

Derivation of block coordinate descent updates. To min-
imize the total energy, we iterate between updating H , M
and Y k times, similar to the unstructured case.

The updates for the heads and modifiers work out to:

H⋆ = relu(WHX + bH ⊗ 1n + VMY ⊤) ,

M⋆ = relu(WMX + bM ⊗ 1n + V ⊤HY ) .
(19)

For Y, however, we must solve the problem

Y⋆ = argmin
Y ∈M

−⟨Y,H⊤VM⟩ − HM(Y ) . (20)

This combinatorial optimization problem corresponds to
marginal inference (Wainwright & Jordan, 2008), a well-
studied computational problem in structured prediction that
appears in all probabilistic models. While generally in-
tractable, for non-projective dependency parsing it may be
computed in time O(n3) via the aforementioned matrix-
tree theorem, the same algorithm required to compute the
structured likelihood loss.3

With zero initialization, the first iteration yields the same
hidden representations and output as the biaffine model,
assuming the updates are performed in the order described.
The extra terms involving VMY ⊤ and V ⊤HY enable the
current prediction for Y to influence neighboring words,
which leads to a more expressive model overall.

Experiments. We test the architecture on several datasets
from Universal Dependencies 2.7 (Zeman et al., 2020), cov-
ering different language families and dataset size: Afrikaans
(AfriBooms), Arabic (PADT), Czech (PDT), English (Par-
tut), Hungarian (Szeged), Italian (ISDT), Persian (Seraji),
Portuguese (Bosque), Swedish (Talbanken), and Telugu
(MTG). Performance is measured by three metrics:

• Unlabeled attachment score (UAS): a fine-grained, arc-
level accuracy metric.

• Modifier list accuracy: the percentage of head words for
which all modifiers were correctly predicted. For example,
in Fig. 6, the baseline correctly predicts all modifiers for
the words perspectiva, abre, longos, but not for the words
aplicações, prazo.

• Exact match: the percentage of sentences for which the
entire parse tree is correct; the harshest of the metrics.

3During training, the matrix-tree theorem can be invoked only
once to compute both the update to Y as well as the gradient of
the loss, since ∇ log p(Y = Ytrue) = Ytrue − Ŷ .
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(a) Baseline (biaffine attention)

Abre a perspectiva de aplicações por prazo mais longos .
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(b) UNN, k=2 (and gold tree)
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Figure 6. Examples of dependency trees produced by the parsing model for a sentence in Portuguese. The baseline model (a) erroneously
assigns the noun aplicações as the syntactic head of the adjective longos. The UNN with k = 2 iterations (b) matches the gold parse tree
for this sentence, eventually benefiting from the structural information propagated back from the node Y after the first iteration.

The latter, coarser measures can give more information
whether the model is able to learn global relations, not
just how to make local predictions correctly (i.e., when only
prediction of the arcs is evaluated).

Our architecture is as follows: First, we pass the sen-
tence through a BERT model (BERT-BASE-MULTILINGUAL-
CASED, fine-tuned during training, as directed networks can
be added as components to UNNs, as mentioned in Sec-
tion 2) and get the word representations of the last layer.
These representations are the input x in the UNN model.
Then, we apply the parsing model described in this section.
The baseline (k = 1) corresponds to a biaffine parser us-
ing BERT features. The learning rate for each language
is chosen via grid search for highest UAS on the valida-
tion set for the baseline model. We searched over the values
{0.1, 0.5, 1, 5, 10}×10−5. In the experiments, we use 10−5

for Italian and 5 × 10−5 for the other languages. We em-
ploy dropout regularization, using the same dropout mask
for each variable throughout the inner coordinate descent
iterations, so that dropped values do not leak.

The results from the parsing experiments are displayed in
Table 4. The numbers in the table show results on the test set
for the highest validation accuracy epoch. We see that some
of the languages seem to benefit from the iterative procedure
of UNNs (CS, HU, TE), while others do not (EN, AF), and
little difference is observed in the remaining languages. In
general, the baseline (k = 1) seems to attain higher accu-
racies in UAS (individual arcs), but most of the languages
have overall more accurate structures (as measured by mod-
ifier list accuracy and by exact match) for k > 1. Fig. 6
illustrates with one example in Portuguese.

6. Related Work
Besides the models mentioned in Section 2 which may be
regarded as particular cases of UNNs, other models and
architectures, next described, bear relation to our work.

Probabilistic modeling of joint distributions Our work
draws inspiration from the well-known Boltzmann machines
and Hopfield networks (Ackley et al., 1985; Smolensky,
1986; Hopfield, 1984). We consider deterministic networks

whose desired configurations minimize an energy function
which decomposes as a factor graph. In contrast, many
other works have studied probabilistic energy-based models
(EBM) defined as Gibbs distributions, as well as efficient
methods to learn those distributions and to sample from
them (Ngiam et al., 2011; Du & Mordatch, 2019). Similar
to how our convolutional UNN can be used for multiple
purposes in Section 3, Grathwohl et al. (2020a) reinterprets
standard discriminative classifiers p(Y|X) as an EBM of
a joint distribution p(X,Y). Training stochastic EBMs re-
quires Monte Carlo sampling or auxiliary networks (Grath-
wohl et al., 2020b); in contrast, our deterministic UNNs,
more aligned conceptually with deterministic EBMs (Le-
Cun et al., 2006), eschew probabilistic modeling in favor
of more direct training. Moreover, our UNN architectures
closely parallel feed-forward networks and reuse their build-
ing blocks, uniquely bridging the two paradigms.

Structured Prediction Energy Networks (SPENs) We
saw in Section 5 that UNNs can handle structured outputs.
An alternative framework for expressive structured predic-
tion is given by SPENs (Belanger & McCallum, 2016).
Most SPEN inference strategies require gradient descent, of-
ten with higher-order gradients for learning (Belanger et al.,
2017), or training separate inference networks (Tu et al.,
2020). UNNs in contrast, are well suited for coordinate de-
scent inference: a learning-rate free algorithm with updates
based on existing neural network building blocks. An undi-
rected variant of SPENs would be similar to the MLP factor
graph in Fig. 2(b), but with X and Y connected to a joint,
higher-order factor, rather than via a chain X− H− Y.

Universal transformers and Hopfield networks In Sec-
tion 4 we show how we can implement self-attention with
UNNs. Performing multiple energy updates resembles –
but is different from – transformers (Vaswani et al., 2017)
with shared weights between the layers. Our perspective
of minimizing UNNs with coordinate descent using a fixed
schedule and this unrolling is similar (but not exactly the
same due to the skip connections) to having deeper neural
networks which shared parameters for each layer. Such an
architecture is the Universal Transformer (Dehghani et al.,
2018), which applies a recurrent neural network to the trans-
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Table 4. Structured UNN parsing results. Columns show the num-
ber of UNN iterations. The best result per row is rendered in
bold.

LANGUAGE k = 1 k = 2 k = 3 k = 4 k = 5

UNLABELED ATTACHMENT SCORE

AF 89.09 88.98 88.40 87.77 88.46
AR 85.62 84.94 84.22 83.69 83.63
CS 93.79 93.83 93.82 93.60 93.77
EN 91.96 91.86 91.09 91.99 91.51
FA 83.41 83.27 82.95 83.37 83.27
HU 85.11 85.77 84.47 85.13 84.09
IT 94.76 94.43 94.35 94.59 94.45
PT 96.99 97.00 96.83 97.06 96.90
SW 91.42 90.92 91.30 91.08 90.98
TE 89.72 89.72 90.00 88.45 87.75

MODIFIER LIST ACCURACY

AF 74.10 72.60 72.90 71.78 72.01
AR 70.44 69.29 68.41 68.08 68.19
CS 84.46 84.82 84.93 84.12 84.49
EN 79.08 77.73 75.20 78.90 79.44
FA 64.80 66.75 65.28 66.67 65.85
HU 64.13 66.07 64.37 62.91 64.13
IT 85.32 83.59 83.71 83.94 84.05
PT 90.10 90.69 90.39 90.66 90.49
SW 79.07 78.37 78.52 78.60 78.24
TE 72.87 72.87 73.68 66.80 65.99

EXACT MATCH

AF 37.70 33.88 34.43 33.88 32.79
AR 19.44 19.29 18.36 19.91 18.36
CS 59.17 60.76 60.92 59.42 59.84
EN 48.59 44.37 40.14 43.66 44.37
FA 21.52 22.15 22.78 24.68 23.42
HU 21.13 23.40 24.15 23.40 21.51
IT 64.93 63.54 62.85 63.89 64.24
PT 73.24 74.86 73.89 74.43 74.11
SW 54.62 52.38 54.13 53.94 52.67
TE 75.69 77.08 79.17 71.53 70.14

former encoder and decoder. Recent work (Ramsauer et al.,
2020) shows that the self-attention layers of transformers
can be regarded as the update rule of a Hopfield network
with continuous states (Hopfield, 1984). This leads to a
“modern Hopfield network” with continuous states and an
update rule which ensures global convergence to station-
ary points of the energy (local minima or saddle points).
Like that model, UNNs also seek local minima of an energy
function, albeit with a different goal.

Deep models as graphical model inference. This line of
work defines neural computation via approximate inference
in graphical models. Domke (2012) derives backpropagat-
ing versions of gradient descent, heavy-ball and LBFGS.
They require as input only routines to compute the gradient
of the energy with respect to the domain and parameters.

Domke (2012) studies learning with unrolled gradient-based
inference in general energy models. UNNs, in contrast, al-
low efficient, learning rate free, block-coordinate optimiza-
tion by design. An exciting line of work derives unrolled
architectures from inference in specific generative models
(Hershey et al., 2014; Li & Zemel, 2014; Lawson et al.,
2019)—a powerful construction at the cost of more chal-
lenging optimization. The former is closest to our strategy,
but by starting from probabilistic models the resulting up-
dates are farther from contemporary deep learning (e.g.,
convolutions, attention). In contrast, UNNs can reuse suc-
cessful implementations, modular pretrained models, as
well as structured factors, as we demonstrate in our parsing
experiments. We believe that our UNN construction can
shed new light over probabilistic inference models as well,
uncovering deeper connections between the paradigms.

7. Conclusions and Future Work
We presented UNNs – a structured energy-based model
which combines the power of factor graphs and neural net-
works. At inference time, the model energy is minimized
with a coordinate descent algorithm, allowing reuse of ex-
isting building blocks in a modular way with guarantees
of decreasing the energy at each step. We showed how
the proposed UNNs subsume many existing architectures,
conveniently combining supervised and unsupervised/self-
supervised learning, as demonstrated on the three tasks.

We hope our first steps in this work will spark multiple direc-
tions of future work on undirected networks. One promising
direction is on probabilistic UNNs with Gibbs sampling,
which have the potential to bring our modular architectures
to generative models. Another direction is to consider alter-
nate training strategies for UNNs. Our strategy of converting
UNNs to unrolled neural networks, enabled by Lemma 1,
makes gradient-based training easy to implement, but al-
ternate training strategies, perhaps based on equilibrium
conditions or dual decomposition, hold promise. Promising
directions could be using this framework for dealing with
missing data or learning the joint probability distribution.
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A., Lee, J., Lê Hồng, P., Lenci, A., Lertpradit, S., Le-
ung, H., Levina, M., Li, C. Y., Li, J., Li, K., Li, Y., Lim,

https://aclanthology.org/2020.spnlp-1.8


Modeling Structure with Undirected Neural Networks
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A. Proof of Lemma 1
We provide a more general proof for multilinear factor potentials, of which bilinear potentials are a special case. Let
G = (V, F ) be the factor graph underlying the UNN, with energy function E(x1, . . . , xn) =

∑
i EXi(xi) +

∑
f Ef (xf ).

We assume EXi
(xi) = −b⊤i xi + ΨXi

(xi) for each Xi ∈ V , with ΨXi
convex, and Ef (xf ) = −⟨Wf ,⊗j∈fxj⟩ for each

higher order factor f ∈ F (multilinear factor energy), where ⊗ is the outer product, and Wf is a parameter tensor of
matching dimension. For pairwise factors f = {Xi,Xj}, the factor energy is bilinear and can be written simply as
Ef (xi, xj) = −x⊤

i Wfxj .

The (block) coordinate descent algorithm updates each representation xi ∈ V sequentially, leaving the remaining represen-
tations fixed. Let F (Xi) = {f ∈ F : Xi ∈ f} ⊆ F denote the set of factors Xi is linked to. The updates can be written
as:

(xi)⋆ = argmin
xi

EXi
(xi) +

∑
f∈F (Xi)

Ef (xf )

= argmin
xi

ΨXi
(xi)−b⊤i xi −

∑
f∈F (Xi)

⟨Wf ,
⊗
j∈f

xj⟩︸ ︷︷ ︸
−z⊤

i xi

= (∇Ψ∗
Xi
)(zi), (21)

where zi is a pre-activation given by

zi =

 ∑
f∈F (Xi)

ρi(Wf )
⊗

j∈f,j ̸=i

xj

+ bi, (22)

and ρi is the linear operator that reshapes and rolls the axis of Wf corresponding to xi to the first position. If all factors are
pairwise, the update is more simply:

(xi)⋆ = (∇Ψ∗
Xi
)

 ∑
f={Xi,Xj}∈F (Xi)

ρi(Wf )xj + bi

 , (23)

where ρi is either the identity or the transpose operator. The update thus always consists in applying a (generally non-linear)
transformation∇Ψ∗

Xi
to an affine transformation of the neighbors of Xi in the graph (that is, the variables that co-participate

in some factor).

Therefore, given any topological order of the variable nodes in V , running k iterations of the coordinate descent algorithm
following that topological order is equivalent to performing forward propagation in an (unrolled) directed acyclic graph,
where each node applies affine transformations on input variables followed by the activation function∇Ψ∗

Xi
.

B. Analysis of Order and Number of Variable Updates
For one of the experiments - undirected self-attention, we analyze how the order of variable updates and the number of
update passes during training affect the model performance.

Order of variable updates. In Section 4 we showed that one pass of the “forward-backward” order or variable updates
(Q,K,V,S,H,S,V,K,Q, X̂) performs well enough for the of sequence completion. Since the flexibility of our model does
not limit us to a specific order, we compare it to a random order of updating the variables (a permutation of Q,K,V,S,H; X̂
is always updated last). One pass over the “forward-backward” order performs nine variable updates, and one pass over the
random order - five. In Fig. 5 we show how the two ways of order perform for different number of variable updates (for
example, 2 passes over the “forward-backward” model equal 18 variable updates, and over the random model - 10). The
“forward-backward” order performs best, but the random order can achieve similar performance after enough number of
updates.
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Figure 7. Learning curves for random number of variable update passes - for “forward-backward” and random order of operation updates.

Number of Energy Update Iterations In addition to comparing the number of energy update iterations k, we also try
setting a random number of updates during training. Instead of specifying a fixed number of iterations k, we take a random
k between 1 and 5 and train the model with it. We evaluate the performance on inference with k = 3 (the average value). In
Fig. 7 we compare the performance of the best model trained with random number of iterations k with the best performing
models trained with fixed k. As the plots show, the model trained with a random number of iterations performs on par with
the best models with fixed k, but takes more time to train.

C. Analysis of Alternative Initialization Strategies
In addition to the zero initialization for the output variable y, we also experiment with two more initialization strategies -
random and uniform initialization. We perform this comparison for the MNIST experiment from Section 3. For the random
initialization, we initialize y with random numbers from a uniform distribution on the interval [0, 1) and apply softmax.
For the uniform initialization, we assign equal values summing to one. We compare to the zero initialization strategy on
the MNIST forward-backward experiment with γ = .1. The results are presented in Table 5. Random initialization shows
promise, but the differences are small, and zero-init has the advantage of clearer parallels to the feed-forward case, so we
report that and use it throughout all other experiments. The alternative initialization strategies can be further explored in
further work.

Table 5. Comparison of different initialization strategies for the MNIST experiment from Section 3.

INITIALIZATION k = 1 k = 2 k = 3 k = 4 k = 5

ZERO 98.75 98.74 98.83 98.78 98.69
RANDOM 98.77 98.83 98.90 98.85 98.70
UNIFORM 98.76 98.74 98.83 98.78 98.68

D. Results for forward-only UNN for MNIST
In addition to the results for forward-backward training of the UNN, we also report results from training the UNN only in
forward mode with γ = 0, i.e. when the model is trained for image classification only. The results are in Table 6.

E. Additional visualizations
Undirected self-attention weights. In Fig. 8 we show an example of the weights of the undirected self-attention described
in Section 4. The attention weights are the values of the variable S calculated in the forward and backward pass.

Dependency tree packed representation Figure 9 shows an example of how the trees are represented in the output of the
model in Section 5.
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Table 6. MNIST accuracy with convolutional UNN in forward-only mode (i.e. γ = 0).

ITERATIONS ACCURACY

k = 1, γ = 0 (BASELINE) 98.80
k = 2 98.82
k = 3 98.75
k = 4 98.74
k = 5 98.69
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Figure 8. Example of the self-attention weights for models trained with k = 1 (left) and k = 2 after one iteration (middle) and two
iterations (right). For k = 2, the model is more like an unrolled two-layer attention mechanism, with the first step identifying an
off-diagonal pattern and the latter pooling information into an arbitrary token.
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Figure 9. “Packed” matrix representation of a dependency tree (left) and dependency arc marginals (right). Each element corresponds to
an arc h→m, and the diagonal corresponds to the arcs from the root, *→m. The marginals, computed via the matrix-tree theorem, are the
structured counterpart of softmax, and correpond to arc probabilities.

F. Derivation of updates for convolutional UNN
The two-layer convolutional UNN is defined by the pairwise energies

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ ,
EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ ,

EH2Y(H2, y) = −⟨y, V H2⟩ ,
(24)

and the unary energies

EX(X) =
1

2
∥X∥22 ,

EH1(H1) = −⟨H1, b1 ⊗ 1d1
⟩+Ψtanh(H1) ,

EH2(H2) = −⟨H2, b2 ⊗ 1d2
⟩+Ψtanh(H2) ,

EY(y) = −⟨b, y⟩ − H(y) .

(25)

Above, C1 and C2 are are linear cross-correlation (convolution) operators with stride two and filter weights W1 ∈ R32×1×6×6

and W2 ∈ R64×32×4×4, and b1 ∈ R32 and b2 ∈ R64 are vectors of biases for each convolutional filter. The hidden
activations have dimension H1 ∈ R32×(d1) and H2 ∈ R64×(d2), where d1 and d2 are tuples that depend on the input image
size; for MNIST, X ∈ R1×28×28 leading to d1 = 12× 12 and d2 = 5× 5.

To derive the energy updates, we use the fact that a real linear operator A interacts with the Frobenius inner product as:

⟨P,A(Q)⟩ = ⟨Q,A⊤(P )⟩ , (26)

where A⊤ is the transpose, or adjoint, operator.4 If C is a convolution (i.e., torch.conv2d) then C⊤ is a deconvolution (i.e.,
torch.conv_transpose2d) with the same filters. We then have

EXH1(X,H1) = −⟨H1, C1(X;W1)⟩ = −⟨X, C⊤1 (H1;W1)⟩ ,
EH1H2(H1, H2) = −⟨H2, C2(H1;W2)⟩ = −⟨H1, C⊤2 (H2;W2)⟩ .

(27)

Adding up all energies and ignoring the constant terms in each update, we get

X⋆ = argmin
X

−⟨X, C⊤1 (H1,W1)⟩+Ψtanh(X)

= tanh(C⊤1 (H1,W1)) ,

(H1)⋆ = argmin
H1

−⟨H1, C1(X,W1)⟩ − ⟨H1, C⊤2 (H2,W2)⟩ − ⟨H1, b1 ⊗ 1d1×d1
⟩+Ψtanh(H1)

= tanh(C1(X,W1) + C⊤2 (H2,W2) + b1 ⊗ 1d1×d1
) ,

(H2)⋆ = argmin
H2

−⟨H2, C2(H1,W2)⟩ − ⟨H2, σy(V )y⟩ − ⟨H2, b2 ⊗ 1d2×d2
⟩+Ψtanh(H2)

= tanh(C2(H1,W2) + σy(V )y + b2 ⊗ 1d2×d2) ,

y⋆ = −⟨y, V H2⟩ − ⟨y, b⟩ − Hy
= softmax(V H2 + b) .

(28)

4This generalizes the observation that p⊤Aq = q⊤A⊤p.
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Note that in our case, H2 ∈ R64×5×5, V ∈ R10×64×5×5 and thus V H2 ∈ R10 is a tensor contraction (e.g.,
torch.tensordot(V, H_2, dims=3)). The σy linear operator – opposite of ρ from Lemma 1 – rolls the axis of V
corresponding to y to the last position, such that σy(V ) ∈ R64×5×5×10, the tensor analogue of a transposition (e.g.,
torch.permute(V, (1, 2, 3, 0)).)


