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Abstract. Bias evaluation methods focus either on individual bias or on
group bias, where groups are defined based on protected attributes such
as gender or ethnicity. More generally, however, descriptively relevant
combinations of feature values in the data space (profiles) may serve also
as anchors for biased decisions. This paper introduces therefore a semi-
hierarchical clustering method for profile extraction from mixed datasets.
It elaborates on how profiles can be used to reveal historical, representa-
tional, aggregation and evaluation biases in algorithmic decision-making
models, taking as example the German credit data set. Our experiments
show that the proposed profile-based evaluation method for bias assess-
ment on mixed datasets (PEBAM) can reveal forms of bias towards pro-
files expressed by the dataset that are undetected when using individual-
or group-bias metrics alone.

Keywords: Algorithmic fairness · Bias prevention · Bias evaluation ·
Clustering · Domain analysis

1 Introduction

The wider introduction of machine learning algorithms in decision-making pro-
cesses feeds an ongoing debate over algorithmic decision-making (ADM). To pre-
vent or correct ADM from taking biased decisions several fairness-aware machine
learning algorithms have been proposed [8]. However, these algorithms are not
always accessible to practitioners due to their ‘black-box’ nature [2]; they are
highly dependent on the data preprocessing phase [8]; and, at more fundamental
level, fairness and bias can be given technical meanings but cannot be captured
by one single definition [14,16]. Contemporary bias evaluation methods used
for fairness analysis generally focus either on individual bias or on group bias,
where groups are defined based on protected attributes such as gender or eth-
nicity, but this is not without drawbacks. For instance, analysing the German
credit dataset—a real world dataset1 collecting features of loan applicants and
a credit risk label good or bad assigned to them—the group of young individuals
1 Available at: https://www.kaggle.com/uciml/german-credit.
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(age below 25) obtains more often a false negative label than the group above
25, hence young individuals are discriminated when applying for a loan [11]. The
simplest solution would be to take this sensitive attribute out of consideration,
however there are multiple attributes that correlate with the “age” attribute (e.g.
“own house” [12]). From a more general standpoint, one may ask whether there
exist relevant descriptive combinations of feature values in the data space, that
we will call here profiles, which may act as anchors for (assessing the presence of)
biased decisions. As an additional source of complexity, we need also to take into
account that data is commonly presented in form of mixed datasets (i.e. includ-
ing both categorical and numeric features). Discretization of numeric dimensions,
or embedding of categorical dimensions, add further complexity and potentially
undesired effects. Given this context, we address the following research questions:
How can profiles be defined? How can we extract profiles from mixed datasets?
How can profiles be used to assess biases? How does a profile-based assessment
compare with existing individual- or group-based methods?The goal of this paper
is to develop and test a Profile-based Evaluation method for Bias Assessment
of algorithmic decision-making on Mixed datasets (PEBAM). Our contribution
is twofold: (i) we present an effective and computationally efficient method for
profile extraction on mixed datasets based on clustering; (ii) we show how pro-
files can be utilized to evaluate various forms of biases—most of them associated
to trained ADM models. The paper is structured as follows. Section 2 provide a
brief overview of relevant concepts. Section 3 presents the proposed methodol-
ogy. Section 4 elaborates on the experiments and results on the German credit
dataset. A note on future work ends the paper.

2 Theoretical Background

Types of Bias. Several types of bias have been identified in the literature (see
e.g. the 23 types in [14]), but for the scope of this research we will focus in
particular on biases that can arise during a ML-product lifecycle (see e.g. [16]).
For instance, during the data generation process, we may have: historical bias,
produced by the world as it is, and occurring even if data is perfectly measured
and sampled; representation bias, occurring when the training data for the ML
model under-represents parts of the population the algorithm will be used on.
During the model building and implementation phases, we may have: aggregation
bias, arising when a general model is used for all groups, while in reality different
groups have a different mapping from input features to labels (e.g. some ethnic
groups can have different indicators for a disease than others); evaluation bias,
occurring when the data on which the model is evaluated is a misrepresentation
of the target population. These four types of bias do not cover all possible sources
of bias, but they will be used as relevant examples about how to set up a profile-
based evaluation.
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Bias Evaluation Methods for Algorithmic Fairness. In their extensive literature
review, Mehrabi et al. [14] give an overview of the most widely used definitions
of fairness within machine learning, providing 3 definitions focused on individual
fairness, 6 on group fairness, in which groups are defined by protected attribute
classes (e.g. sex, ethnicity, etc.), 1 on subgroup fairness. In this work we will
build upon two (group-fairness) measures. The first is equal opportunity [10], a
criterion for fairness in binary algorithms. Reading the outcome y = 1 as the
“advantaged” outcome, and A as the protected class attribute, we have:

Definition 1. Equal opportunity A binary predictor ŷ satisfies equal opportu-
nity w.r.t. attribute A and ground truth y iff: Pr{ŷ = 1A = 0, y = 1} = Pr{ŷ =
1A = 1, y = 1}.

The second is contextual demographic (dis)parity (CDD)—based on conditional
(non-)discrimination by [12]—a measure found to be the most compatible with
the decisions of the European Court of Justice on cases of discrimination [18].

Definition 2. Conditional Demographic Disparity Let R be a given set of
attributes, Ar be the proportion of people belonging to a protected class in the
advantaged group and with attribute r ∈ R, and let Dr be the proportion of people
of protected class in the disadvantaged group with attribute r. A decision-making
process exhibits conditional demographic disparity iff: ∀r ∈ R : Dr > Ar

The conditions r in R should be explanatory [12], i.e. they should hypothetically
explain the outcome even in the absence of discrimination against the protected
class (e.g., different salaries between men and women might be due to different
working hours). Under this view, R is derived from domain expert knowledge.

Clustering Algorithm for Mixed Data. In ADM one very often has to deal with
mixed datasets, i.e. datasets that consist of both categorical and numerical fea-
tures. Various solutions have been proposed in the literature to the known diffi-
culty to capture distributions on mixed datasets [15]; the present work will rely in
particular on k-medoids clustering [5]. The main benefit of k-medoids clustering
over k-means is that it is more robust to noise and outliers; we also do not have
to come up with a measure to compute the mean for categorical features. On the
other hand, the k-medoids clustering problem is NP-hard to solve exactly. For
this reason, in our work we will make use of the heuristic Partitioning Around
Medoids (PAM) algorithm [4].

3 Methodology

PEBAM (Profile-based Evaluation for Bias Assessment for Mixed datasets) is
a method consisting of three main steps: (1) a profile selection—based on the
iteration of clustering controlled by a measure of variability—to extract pro-
files representative of the target domain from an input dataset; (2) profiles are
evaluated in terms of stability over repetitions of extractions; (3) a given ADM
classification model is evaluated for bias against those profiles.
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3.1 Profile-Selection Based on Clustering

Informally, profiles can be seen as relevant descriptive elements that, as a group,
act as a “summary” of the data space. Because individuals sharing to an ade-
quate extent similar attributes should intuitively be assigned to the same profile,
clustering can be deemed compatible with a profile selection task. We consider
then three different clustering algorithms to implement profile selection: (i) sim-
ple clustering ; (ii) a form of hierarchical clustering based on the iteration of the
first; and (iii) a novel semi-hierarchical clustering method based on adding static
and dynamic constraints to control the second. The first two algorithms will be
used as baselines to evaluate the third one, and will be described succintly.

(a) (b) (c)

Fig. 1. Schematic overview of the simple clustering algorithm with k = 4 (a), the
hierarchical clustering algorithm with k = 2 and l = 2 (b) and a possible outcome of
the semi-hierarchical clustering algorithm (c).

The simple clustering algorithm consists in the application of the chosen
clustering algorithm (in our case, k -medoids, Sect. 2), and results in a flat parti-
tion of the sample space (see e.g. Fig. 1a). The challenge is to determine the right
number of clusters k. Hierarchical clustering consists in the nested iteration
of the previous algorithm set with k clusters over l layers (see e.g. Figure 1b).
The benefit of this method is that the resulting tree-based structure gives further
insight on the basis of which feature clusters are created. The downside is that
we have to tune an extra hyperparameter besides k: the number of layers l.

The semi-hierarchical clustering algorithm is an automatically controlled
version of the second algorithm. It is based on performing iteratively two opera-
tions. First, we apply a clustering method with k = 2, i.e. at every step we divide
input subsets into two new subsets (clusters). Then, we test each new subset to
decide whether we should continue clustering by looking at the variability of the
features it expresses, or at its cardinality. For variability of a feature f w.r.t. a
dataset D we intend a measure between 0 and 1 that indicates to what extent
the feature f is varying within D. A value close to 0 indicates that f is rather
stable over D, and a value close to 1 indicates that f mostly varies in D (and so
it is not relevant for describing it). The intuition behind using this measure is
that stable (i.e. not varying) features help to discriminate a profile over another
one. For instance, coffees are characterized by a black (or dark brown) colour,
so the colour feature is very stable to support discriminating coffee from other
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drinks; in contrast, colour is not a relevant feature to discriminate books from
other objects. In general, any feature can then be: (1) an irrelevant feature, when
the variability of a feature exceeds an upper bound cu, is deemed not to be a
characteristic property of the cluster; (2) a relevant feature: when the variabil-
ity of a feature is smaller than a lower bound cl, it means that the feature is
strongly characteristic of that cluster. When all features expressed by a subset
satisfy either case (1) or case (2), or the subset has less than a fixed amount of
elements nstop, there is no need to continue further clustering the input subset,
and therefore it is selected as a profile. The resulting structure is then a binary
tree, possibly unbalanced (see Fig. 1c), whose leaves are the selected profiles. The
benefit of semi-hierarchical clustering over simple and hierarchical clustering is
that we do not have to decide the numbers of clusters and layers in advance,
but requires setting the variability thresholds values cu and cl, as well as the
threshold cluster cardinality nstop.

In quantitative terms, when numerical features are not significant, we expect
that their distribution should approximate a uniform distribution. Let us assume
we have a numerical non-constant feature X; we can normalize X between 0
and 1 via (X − Xmin)/(Xmax − Xmin), and then compute the sample stan-
dard deviation s from the normalized samples. Theoretically, for a random
variable U ∼ Uniform(0, 1), we have μ = 1/2, and V ar(U) = E[(U − μ)2] =∫ 1

0
(x − 1/2)2dx = 1/12. Thus, the standard deviation of a random variable uni-

formly distributed is
√

1/12 ≈ 0.29. Therefore, if the sample standard deviation
s approximates 0.29, we can assume that the feature X is uniformly distributed
across the given cluster and is therefore not a unique property of species within
the cluster. On the other hand, when the standard deviation is close to zero,
this means that most sample points are close to the mean. This indicates that
feature X is very discriminating for that specific cluster. To obtain a measure of
variability, we need to compute the standardized standard deviation ss = s/0.29.

For categorical features, we consider the variability measure proposed in [1].
Let X a n-dimensional categorical variable consisting of q categories labelled
as 1, 2, ..., q. The relative frequency of each category i = 1, ..., q is given by
fi = ni/n, where ni is the number of samples that belongs to category i and n =
∑q

i=1 ni. Let �f = (f1, f2, ..., fq) be the vector with all the relative frequencies. We
define the variability of X as: vq = 1−||�f ||q. Allaj [1] shows that the variability is
bounded by 0 and 1 − 1/q, where an outcome close to 1 − 1/q associates to high
variability. We can also compute the standardized variability: vq,s = vq

1−1/
√
q ,

such that the variability lies between 0 and 1 for all number of categories q
where again a variability close to 1 implies a high variability and hence a non-
characteristic feature. A variability close to 0 indicates that the feature is highly
characteristic for that sample set.
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3.2 Evaluation of Clustering Methods for Profile Selection

Given a clustering method, we need to evaluate whether it is working properly
with respect to the profile selection task. Unfortunately, since this task is an
unsupervised problem, we do not have access to the ground truth, but we can
still focus on a related problem: Is our method stable? The stability of a clus-
tering method towards initialization of the clusters can be tested by running
the algorithm multiple times with different initial cluster settings (in our case,
different datapoints selected as the initial medoids), and check whether we end
up with the same sets of clusters (hereby called cluster combinations). When
the stability analysis results in two or more different cluster combinations, we
want to know how similar these combinations are, and for doing this, we will
introduce a measure of inter-clustering similarity.

Inter-clustering similarity is a similarity score that tells to what extent
different outcomes of clustering are similar, by comparing how many elements
clusters belonging to the two clustering outputs have in common with each other.
This score can be computed by comparing the distribution of the elements over
the clusters of two combinations. We present the process through an example:
Example: Let us consider a dataset with 20 data points. Suppose the clustering algo-
rithm returns the following two different cluster combinations C1 and C2: where
C1 = (c11, c

1
2, c

1
3) = ((1, 4, 6, 7, 13, 17, 18, 20), (3, 5, 11, 12, 15, 16), (2, 8, 9, 10, 14, 19)), and

C2 = (c21, c
2
2, c

2
3) = ((1, 4, 6, 7, 13, 17, 18, 20), (3, 11, 12, 14, 15, 16, 19), (2, 5, 8, 9, 10)). For

every cluster c1i in C1 we compute its overlap with each cluster c2j in C2. For instance,
for the first cluster of C1, c11 = (1, 4, 6, 7, 13, 17, 18, 20) the max overlap is 1, since c12 of
C2 is exactly the same. For the second cluster c12 we have:

max
( |c12 ∩ c21|

|c12|
,
|c12 ∩ c22|

|c12|
,
|c12 ∩ c23|

|c12|
)

= max(0/6, 5/6, 1/6) = 0.83

Applying the same calculation on c13 returns 0.67. The similarity score of cluster-

combination C1 with respect to cluster-combination C2 is given by the mean over

all the three maximum overlap values, which in this case is 0.83.

3.3 Profile-Based Evaluation of a Given Classifier

By means of profiles, we can assess the historical, representational, aggregation
and evaluation biases (Sect. 2) of a certain ADM classification model.

Historical bias arises on the dataset used for training. We measure it using
conditional demographic disparity (Def. 2); however, the resulting value may be
wrong if an attribute r is not a relevant characteristic for grouping individu-
als. Therefore, we consider a profile-conditioned demographic disparity, differing
from [12,18] in as much each profile label ci acts as attribute r. In this way we
capture behavioural attitudes (w.r.t. assigning or not an advantageous label) of
the labeller-oracle towards elements belonging to that profile.
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For Representational bias, by clustering the dataset around profiles, we
may get insights if there are parts of the population which are overrepresented
and parts which are underrepresented. A domain expert can compare the result-
ing distribution of profiles with the expected distribution for the population on
which the decision-making algorithm is going to be used. When these two distri-
butions differ much from each other, one can bootstrap sampling from profiles to
get a more correct distribution in the training dataset. If no domain expertise is
available, one can consider using this method during deployment. By collecting
the data where the algorithm is applied on, once the dataset is sufficiently large
(e.g. about the size of the training dataset), one can divide the samples of the
collected dataset over the different known profiles based on distance towards the
medoids associated to profiles. If the distribution of the collected dataset over
the profiles relevantly differs from the distribution of the training dataset, we
can conclude that there is representation bias. Alternatively, one can repeat the
profile selection on the collected data, and evaluate how much they differ from
the ones identified in the training dataset.

In order to evaluate Aggregation bias, we need a good metric to evaluate
the performance of the trained model under assessment. Our goal is to evaluate
the model against all profiles, i.e. to test whether the model works equally well
on individuals with different profiles (i.e. individuals from different clusters). We
start from the definition of equal opportunity (Def. 1), but we reformulate it in
a way that equal opportunity is computed with respect to profiles instead of the
protected class:
Definition 3 (Equal opportunity w.r.t. a single profile). We say a binary
predictor ŷ satisfies equal opportunity with respect to a profile C equal to i and
outcome/ground truth y iff: Pr{ŷ = 1|C = i, y = 1} = Pr{ŷ = 1|C �= i, y = 1}
Definition 4 (General equal opportunity). A binary predictor ŷ satisfies
general equal opportunity iff it satisfies equal opportunity with respect to all pro-
files C ∈ {1, .., k} and ground truth y. In formula: Pr{ŷ = 1|C = 1, y = 1} =
. . . = Pr{ŷ = 1|C = k, y = 1}
In some cases, it might be that getting a wrong prediction for a ground truth or
positive outcome label occurs more often than with a negative outcome label,
and may be more valuable (e.g. in some medical disease treatment); looking at
distinct values of y may give insights on the overall functioning of the model.

Evaluation bias arises when the model is evaluated on a population which
differs in distribution from the data that was used for training the model. It
has been shown [8] that fairness-preserving algorithms tend to be sensitive to
fluctuations in dataset composition, i.e. the performance of the algorithms is
affected by the train-test split. To ensure that we do not have evaluation bias,
we run a Monte Carlo simulation of the decision-making algorithm. This means
that we make M different train-test splits of the dataset. For each train-test split,
we train the decision-making algorithm on the train set and use the test set for
evaluation. For the model-evaluation, we use general equal opportunity (Def.
4). This gives us insights on which profiles are more sensitive towards train-test
splitting (and thus to evaluation bias).



216 M. Wilms et al.

4 Experiments and Results

We conducted two experiments to evaluate PEBAM.2 In the first, we considered
a small artificial dataset to test the processing pipeline in a context in which
we knew the ground truth. In the second, we focused on the German credit
dataset, used in multiple researches on fairness [7,8,11,13]. This dataset contains
8 attributes (both numerical and categorical) of 1000 individuals, including an
association of each individual to a credit risk score (good or bad). For the sake of
brevity, we will limit our focus here on the German credit dataset. All Python-
code that we run for obtaining the results is publicly available.3

Table 1. Stability analysis of the cluster combinations for all three clustering algo-
rithms applied on the German credit data set with varying parameter settings. ∗For
the semi-hierarchical clustering the number of clusters is not fixed, we reported the
number of clusters for the cluster combination that occurs most.

Algorithm l k # Clusters # Cluster comb Freq. most occurring comb Running time

Simple 1 20 20 15 43 3.956 ± 0.376 s

Simple 1 30 30 50 9 8.170 ± 0.777 s

Simple 1 40 40 17 26 12.068 ± 0.875 s

Hierarchical 2 4 16 31 24 1.119 ± 0.078 s

Hierarchical 2 5 25 21 28 1.152 ± 0.077 s

Hierarchical 2 6 36 18 32 1.298 ± 0.113 s

Hierarchical 3 3 27 54 12 1.144 ± 0.047 s

Hierarchical 4 2 16 18 29 1.450 ± 0.083 s

Hierarchical 5 2 32 39 20 1.614 ± 0.071 s

Semi-hierarchical – – 34∗ 47 23 2.264 ± 0.112 s

4.1 Evaluation of Clustering for Profile Selection

We evaluate the three clustering algorithm for profile selection specified in
Sect. 3.1 following the method described in Sect. 3.2. For all three clustering
algorithms, we used a k-medoids clustering algorithm with the Gower distance
[3,9]. The simple algorithm and the hierarchical clustering require the tuning
of hyperparameters as k (number of clusters), and l (number of layers), and
therefore have a fixed number of final clusters (in this context seen as profiles).
Since we do not know the correct number of profiles in advance, we tried several
hyperparameters. The semi-hierarchical clustering algorithm needs instead three
other parameters: cu, cl (upper and lower bounds of variability), and nstop (the
threshold for cluster cardinality). For our experiments, we chose to set cu = 0.9,

2 Experimental setup: Intel Core i7-10510u, 16 GB RAM, Windows-10 64-bit.
3 https://github.com/mcwilms/PEBAM.

https://github.com/mcwilms/PEBAM
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cl = 0.1, and nstop to 5% of the size of the dataset (i.e. 50 for the German credit
dataset).

As a first step, we test if clustering methods are stable enough. Table 1 gives
a summary of the stability analysis performed for all three clustering methods on
the German credit dataset, reporting (when relevant) the parameters l and c k,
the number of clusters (e.g. kl), the number of different outcomes after running
the clustering algorithm 100 times with different random initializations, how
often the most occurring cluster combinations occurs in these 100 runs, and the
mean running time. Amongst other things, Table 1 shows that, when running the
stability analysis with semi-hierarchical clustering, the German credit dataset
produces 47 different cluster combinations. However, several combinations occur
only once, and only one of the combination (number 0, the first one) occurs
significantly more often than the other combinations, see Fig. 2a.

As a second step, we compute the inter-clustering similarity to test if the
different cluster combinations are adequately similar. Figure 2b shows the inter-
clustering similarity of the different cluster combinations we obtain on the Ger-
man credit dataset via the semi-hierarchical clustering algorithm, showing only
the cluster combinations that occur more than once. A dark blue tile means that
two clusters are very similar (max 100%), and a white tile means that they have
50% or less of the clusters in common.

(a) (b) (c)

Fig. 2. Stability and variability analysis of the semi-hierarchical clustering algorithm
applied on the German credit dataset: (a) frequency of each clustering outcome (or
cluster combination) obtained over 100 runs; (b) inter-clustering similarity for cluster
combinations that occur more than once; (c) variability of the different features for
each profile in the most recurrent cluster combination.

As a confirmation that the algorithms end up on profiles which are descrip-
tive attractors, we compute the feature variability of each cluster (supposedly
a profile) within the most occurring clustering outcome. The variability plot of
Fig. 2c shows for each profile (columns) the variability of the features (rows),
where dark blue indicates a low variability and dark red a high variability. In
tendency, qualitative features becomes stable, whereas numerical features show
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still a certain variability at the level of profiles. For each profile, however, the
majority of features becomes stable.

4.2 Profile-Based Evaluation of Bias

We now apply the bias evaluation methods described in Sect. 3.3 with the profiles
obtained by applying the semi-hierarchical clustering algorithm on classifiers
trained on the German credit data set via three commonly used machine learning
algorithms: logistic regression classifier, XGboost classifier, and support vector
machine (SVM) classifier (e.g. [2]).4 Following the standard practice of removing
protected attributes (gender, ethnicity, etc.) as input features during training, we
do not use the feature “Sex” provided by the German credit dataset for training
the classifiers.

For Representational bias, Fig. 3 gives an overview of the presence of
the identified profiles within the German credit dataset. We see that not all
profiles are equally frequent; this is not necessarily an error, as long as this
profile distribution is a good representation of the data on which ADM will be
applied in practice. Expert knowledge or actual data collection can be used to
test this assumption.

Fig. 3. Absolute frequencies of profiles obtained after performing the semi-hierarchical
clustering algorithm on the German credit dataset.

To assess Historical bias, we first test for (general) demographic disparity
with respect to protected attributes. A disadvantaged group with attribute x
(DGx) is the group with risk-label ‘bad’ and attribute x, whereas an advantaged
group with attribute x (AGx) is the group with risk-label ‘good’ and attribute
x. Denoting with A the proportion of people from the full dataset belonging to
the protected class (female) in the advantaged group over all people (female and
male) in the advantaged group, and D for the proportion of people belonging to
the protected class in the disadvantaged group over all people, we find:

D =
#DGf

#DGf+m
= 0.36 > 0.29 =

#AGf

#AGf+m
= A

and hence we conclude that, at aggregate level, the German credit data exhibit
demographic disparity. We now will do the same computation for each profile
4 Note however that the same approach will apply with any choice of profile selection

method or of ML method used to train the classifier.
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subset of the German credit dataset, to test whether there is demographic dis-
parity for profiles. We write Ac for the proportion of people belonging to the
protected class (female) in the advantaged group of cluster c over all people in
the advantaged group of cluster c, and Dc for the proportion of people belonging
to the protected class in the disadvantaged group of cluster c over all disadvan-
taged people in cluster c. Table 2 shows that there are 3 profiles (7, 20 and
28) that show demographic disparity. The fact that profiles show demographic
disparity indicates that it might be possible that for some profiles other (not-
protected) attributes correlate with the protected attribute, and so the protected
attribute can indirectly be used in the training-process of the model.

In the computation of the (dis)-advantage fraction of Table 2 we still looked
at the protected group female, however, we can also compute the measures A∗

c

(D∗
c ) as the fraction of (dis)advantaged individuals in a profile c over the total

individuals within that profile (without distinguishing the protected class in it):

A∗
c =

#AGc

#AGc + #DGc
D∗

c =
#DGc

#AGc + #DGc

By doing so, we get an indication of how informative a profile is for belonging
to the (dis)advantaged group. Table 3 shows the fraction of advantaged and
disadvantaged individuals for each profile. Note that there are profiles for which
the majority of the samples is clearly advantaged (e.g. 0, 1, 2, ...), a few have
some tendency towards disadvantaged outcomes (e.g. 3, 15), but in comparison
could be put together with other profiles that have no clear majority (e.g. 9,
10, ...). Plausibly, for profiles exhibiting a mixed distribution of the risk label,
there may be factors outside the given dataset that determine the label. Since
the ADM models also do not have access to these external features, it may be
relevant to evaluate performance on these profiles to evaluate this hypothesis.

Table 2. Fractions of disadvantaged (D) and advantaged (A) individuals with pro-
tected attribute female in each profile c.

c Dc Ac c Dc Ac c Dc Ac c Dc Ac c Dc Ac

0 0.00 0.00 7 0.36 0.25 14 0.00 0.19 21 0.00 0.03 28 0.96 0.90

1 0.00 0.00 8 0.00 0.00 15 1.00 1.00 22 0.00 0.00 29 0.00 0.00

2 0.00 0.00 9 0.00 0.00 16 1.00 1.00 23 0.00 0.00 30 1.00 1.00

3 0.00 0.00 10 1.00 1.00 17 1.00 0.86 24 0.00 0.00 31 1.00 1.00

4 0.00 0.07 11 0.00 0.00 18 0.00 0.00 25 0.00 0.03 32 0.00 0.00

5 1.00 1.00 12 0.00 0.00 19 0.06 0.06 26 1.00 1.00 33 0.00 0.09

6 0.00 0.08 13 0.00 0.00 20 0.24 0.00 27 0.00 0.00
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Table 3. Fractions of disadvantaged (D∗) and advantaged (A∗) individuals in each
profile c.

c D∗ A∗ c D∗ A∗ c D∗ A∗ c D∗ A∗ c D∗ A∗

0 0.00 1.00 7 0.58 0.42 14 0.09 0.91 21 0.05 0.95 28 0.52 0.48

1 0.11 0.89 8 0.58 0.42 15 0.62 0.38 22 0.36 0.64 29 0.40 0.60

2 0.14 0.86 9 0.47 0.53 16 0.38 0.62 23 0.15 0.85 30 0.09 0.91

3 0.62 0.38 10 0.53 0.47 17 0.25 0.75 24 0.37 0.63 31 0.22 0.78

4 0.12 0.88 11 0.18 0.82 18 0.19 0.81 25 0.20 0.71 32 0.13 0.87

5 0.12 0.88 12 0.35 0.65 19 0.50 0.50 26 0.45 0.55 33 0.06 0.94

6 0.32 0.68 13 0.52 0.48 20 0.52 0.48 27 0.14 0.86

For the Aggregation bias we look at the blue dots in Fig. 4a, which indicate
the mean performances of the algorithm over training the algorithm 100 times
on different train-test splits. Looking at performance over each profile gives us
a visual way to see to what extent general equal opportunity (Def. 4) is satis-
fied; we consider the average to provide a more robust indication. We see that
the XGboost classifier performs the best of the three algorithms with respect
to predicting the labels correctly, however we also observe some difference in
performance depending on profile. In contrast, the SVM classifier has very low
probabilities of getting an unjustified disadvantage label (Fig. 4b), while the
probability of getting a correct label is not very high.

For the Evaluation bias, we look at the performance ranges of the different
classification methods (visualized in terms of standard deviations). We see that
the SVM classifier is the least sensitive towards the train-test split. The logistic
regression classifier is already slightly more sensitive, however the XGboost clas-
sifier is by far the most sensitive towards the train-test split. All three algorithms
are equally sensitive towards small profiles as much as larger profiles.

5 Conclusion

The paper introduced PEBAM: a new method for evaluating biases in ADM
models trained on mixed datasets, focusing in particular on profiles extracted
through a novel (semi-hierarchical) clustering method. Although we have proven
the feasibility of the overall pipeline, several aspects need further consolidation,
as for instance testing other measures of variability (e.g. to be compared with
entropy-based forms of clustering, e.g. [6]), similarity scores, and distance mea-
sures. Yet, the method was already able to find biases that were not revealed by
most used bias evaluation methods, since they would not test for biased decisions
against groups of individuals that are regrouped by non-protected attributed val-
ues only. For instance, profile 7, exhibiting demographic disparity against women
as historical bias, refers to applicants with little saving/checking accounts and
renting their house, who are asking credit for cars (see Appendix for details).
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Why, ceteris paribus (all other things being the same), men are preferred to
women for access to credit for buying cars, if not in presence of a prejudice?

(a) (b)

Fig. 4. (a) Probability of getting a correct prediction label. (b) Probability of getting
a disadvantage (‘bad’) label when the true label is the advantage (‘good’), for logistic
regression classifier, XGboost classifier, and SVM classifier on the different profiles.

At a technical level, although the proposed semi-hierarchical clustering algo-
rithms has shown a shorter running time than the baseline on the German credit
dataset, the PAM algorithm does not scale well to larger datasets. Tiwari et al.
propose BanditPAM as alternative for PAM [17], a method that reduces the com-
plexity of each PAM iteration from O(n2) to O(n log n). When using PEBAM
on large datasets one might consider using BanditPAM over PAM. This will be
investigated in future work.
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A Profiles on the German Credit Dataset

The following table reports the profiles selected on the German credit dataset
by applying the semi-hierarchical clustering proposed in the paper, as described
by their medoids:
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Profile Age Sex Job Housing Saving accounts Checking account Credit amount Duration Purpose Sample

0 26 Male 2 Rent Moderate Unknown 3577 9 Car 859

1 37 Male 2 Own Unknown Unknown 7409 36 Business 868

2 39 Male 3 Own Little Unknown 6458 18 Car 106

3 26 Male 2 Own Little Little 4370 42 Radio/TV 639

4 31 Male 2 Own Quite rich Unknown 3430 24 Radio/TV 19

5 38 Female 2 Own Unknown Unknown 1240 12 Radio/TV 135

6 43 Male 1 Own Little Little 1344 12 Car 929

7 36 Male 2 Rent Little Little 2799 9 Car 586

8 39 Male 2 Own Little Little 2522 30 Radio/TV 239

9 31 Male 2 Own Little Moderate 1935 24 Business 169

10 33 Female 2 Own Little Little 1131 18 Furniture/equipment 166

11 26 Male 1 Own Little Moderate 625 12 Radio/TV 220

12 23 Male 2 Own Unknown Moderate 1444 15 Radio/TV 632

13 42 Male 2 Own Little Little 4153 18 Furniture/equipment 899

14 29 Male 2 Own Unknown Unknown 3556 15 Car 962

15 37 Female 2 Own Little Moderate 3612 18 Furniture/equipment 537

16 27 Female 2 Own Little Little 2389 18 Radio/TV 866

17 26 Female 2 Rent Little Unknown 1388 9 Furniture/equipment 582

18 29 Male 2 Own Little Unknown 2743 28 Radio/TV 426

19 53 Male 2 Free Little Little 4870 24 Car 4

20 36 Male 2 Own Little Little 1721 15 Car 461

21 38 Male 2 Own Little Unknown 804 12 Radio/TV 997

22 29 Male 2 Own Little Moderate 1103 12 Radio/TV 696

23 43 Male 2 Own Unknown Unknown 2197 24 Car 406

24 27 Male 2 Own Little Little 3552 24 Furniture/equipment 558

25 30 Male 2 Own Little Moderate 1056 18 Car 580

26 24 Female 2 Own Little Moderate 2150 30 Car 252

27 34 Male 2 Own Little Unknown 2759 12 Furniture/equipment 452

28 24 Female 2 Rent Little Little 2124 18 Furniture/equipment 761

29 34 Male 2 Own Little Moderate 5800 36 Car 893

30 34 Female 2 Own Little Unknown 1493 12 Radio/TV 638

31 30 Female 2 Own Little Unknown 1055 18 Car 161

32 35 Male 2 Own Little Unknown 2346 24 Car 654

33 35 Male 2 Own Unknown Unknown 1979 15 Radio/TV 625
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