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a b s t r a c t

The bankruptcy problem is to divide a homogeneous divisible good (the ‘‘estate’’) between claimants,
when the sum of the claims exceeds the value of the estate. When the problem is looked at from
an ex-ante point of view (i.e. before the size of the estate is revealed), it is possible to formulate a
notion of Pareto efficiency that is stronger than when the more common ex-post perspective is taken.
Under the assumption of common beliefs, the strong notion of efficiency leads, in combination with the
requirement that all claims should be fulfilled when the value of the estate is equal to the sum of the
claims, to a uniquely defined division rule when utility functions for all agents are given. The resulting
rule can be represented in the form of a parametric function. For the case in which all agents are
equipped with the same utility function, the class of parametric functions that can be obtained in this
way is characterized. In particular, it is shown that two well-known division rules for the bankruptcy
problem, namely Constrained Equal Losses and Proportional Division, can be rationalized under strong
Pareto efficiency by constant absolute risk aversion and constant relative risk aversion respectively.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The present paper differs from the mainstream literature on
state division in terms of the formulation of the problem as
ell as in terms of the solution concept that is applied. These
eviations are motivated in the following two subsections.

.1. Why ex-ante?

The bankruptcy problem is concerned with the division of a
omogeneous good among a number of agents who hold certain
laims with respect to the amount to be divided (the ‘‘estate’’),
n a situation in which the sum of the claim values exceeds
he value of the estate. In the ex-post formulation, which is the
sual version, both the claim values and the size of the estate
re considered as given. Taking the size of the estate as known
s natural indeed, since typically this information is available at
he point in time at which arbitration takes place. Nevertheless,
he situation admits application of a principle of fairness used
n contract law, which calls for an ex-ante point of view. In
he terminology of contract law, the discovery that the size of
he estate falls short of the sum of the claims can be viewed
s an ‘‘unforeseen circumstance’’, which prevents implementa-
ion of the contract as originally agreed between the agents.
uch unforeseen circumstances arise quite frequently in com-
ercial business; indeed, it would not be practical for contract
arties to negotiate in advance about what should be done in

E-mail address: j.m.schumacher@uva.nl.
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every scenario that might possibly occur, but surprising events
do sometimes happen. In such cases, a court of arbitration may
be called upon. In taking its decision, the court should be guided
by a preformulated rule. How such a rule should be obtained is
described by Goetz and Scott (1983, p. 971) as follows: ‘‘Ideally,
the preformulated rules supplied by the state should mimic the
agreements contracting parties would reach were they costlessly
to bargain out each detail of the transaction.’’ In other words,
the court should imagine a situation in which the parties would
have negotiated a more comprehensive contract covering a wide
range of scenarios, including in particular the scenario that led to
the court case. The decision taken by the court for a particular
situation should be the one that the agents themselves would
have agreed upon as the one that should be followed in this
situation, if they would have negotiated the more comprehensive
contract beforehand.1 As a consequence, it is meaningful to take
an ex-ante point of view, even in a situation that is in fact ex-post.

The rule applied by the court of arbitration is based on hy-
pothetical, rather than actual, negotiations by the agents. Agents’
preferences are imputed by the court, rather than reported by
the agents themselves. The court does not need to model the
negotiation process as such; instead, it may rely on an axiomatic
characterization of the ex-ante negotiation outcome. This is in
contrast to a large part of the literature on the bankruptcy prob-
lem, which focuses on axioms for the ex-post outcome (Thomson,

1 The idea that a notion of justice can be formed by suppressing information
s present in the philosophical literature as well. The idea is seen, for instance,
n the ‘‘veil of ignorance’’ that appears in the work of Rawls (1971).
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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019, Ch. 3–12). An important difference is that the ex-ante
pproach is likely to bring in assumptions regarding agents’ pref-
rences, whereas such assumptions can be avoided in the ax-
omatic ex-post setting. A specific proposal for axiomatization
f the ex-ante outcome will be made below; this makes use
f the notion of expected utility, which is well-established in
conomics. Game-theoretic approaches to the bankruptcy prob-
em (Thomson, 2019, Ch. 14) also make use of utility; however,
his is frequently restricted to linear utility, and applied within
n ex-post framework. An example of a class of bankruptcy rules
hat is defined on the basis of a general notion of utility is the
lass of equal-sacrifice rules that has been proposed by Young
1988). The motivation for utility functions in the present paper is
ifferent however; see Section 4.4 for a comparison with Young’s
pproach.
From an operational perspective, the distinction between the

x-ante and ex-post viewpoints may appear rather subtle. Indeed,
he estate value is usually taken as a parameter in the ex-post
pproach, so that the solution is presented as a multivariate
unction that specifies the amount that will be received by each
f the agents (the awards vector) for any value that the estate
ay take. The solution in the ex-ante case is presented in exactly

he same way. The difference lies in the way that solutions are
onstructed. In the ex-ante formulation, a stronger notion of
fficiency can be applied, since trade-offs are possible between
llocations at different estate values. This is further discussed in
he next subsection.

.2. Strong Pareto efficiency

Generally speaking, one can define weaker or stronger notions
f Pareto efficiency by considering a smaller or a larger set of
lternatives to a proposed solution. A solution that is Pareto
fficient within a certain set may no longer be so if the range
f competitors is extended by relaxing requirements that solu-
ions should satisfy. In the specific context of the bankruptcy
roblem, a requirement that may be placed on solutions is that
he allotments to agents should be equal to the claims when the
state value is equal to the sum of the claims. This condition
ill be called compliance in this paper. While it is a very natural
estriction to impose, under certain circumstances agents may
ave reasons to deviate. To illustrate this, consider the following
xample of an ex-ante estate division problem. Suppose that
here are only two possible estate values, namely 50 and 100,
nd that each of these occurs with probability 0.5. There are two
gents A and B whose claims are 25 and 75, respectively. They are
oth subject to log utility so that their expected utilities under a
iven ex-ante division function x = (xA, xB) are given by

Ui = 0.5 log xi(50) + 0.5 log xi(100), i ∈ {A, B}.

A division function that satisfies compliance is given for instance
by

xA(50) = 5, xB(50) = 45, xA(100) = 25, xB(100) = 75.
(1.1)

The numerical values of the expected utilities are UA = 2.4142,
UB = 4.0621. Under the constraint of compliance, no Pareto
improvement of the rule (1.1) is possible. An alternative division
function, not constrained by compliance, is the following:

xA(50) = 8.5, xB(50) = 41.5, xA(100) = 17, xB(100) = 83.
(1.2)

The corresponding expected utilities are UA = 2.4866, UB =

4.0723. The unconstrained rule (1.2) is better for both agents
than the constrained rule (1.1). The requirement that the sum of
 p

11
awards cannot exceed the value of the estate is still satisfied by
the rule (1.2).

The example above indicates a certain type of vulnerability
of solutions that follow a particular constraint, but that are not
Pareto efficient within an extended set of solutions that violate
this constraint.2 A solution may be said to be strongly Pareto
efficient (with respect to a particular constraint) if it satisfies
the constraint, and is Pareto efficient not only with respect to
other solutions that satisfy that constraint but also with respect
to a larger set of solutions. In this paper, the notion of strong
Pareto efficiency with respect to the compliance constraint will
be used. The larger solution set that is used to test efficiency is
constrained only by the requirement that the sum of the awards
should not exceed the estate value. Under regularity assumptions,
it is shown below (Theorem 4.2) that, given preferences of agents
in expected-utility form, the constraints of compliance and strong
Pareto efficiency together determine a unique ex-ante division
function.

The origins of the notion of strong Pareto efficiency can be
traced back at least to work of Gale (1977) (see also Gale and
Sobel, 1979). The combination of compliance and strong Pareto
efficiency has been used in the actuarial literature as a solution
concept in the work on risk sharing of Bühlmann and Jewell
(1979), which builds on Gale (1977). In a different context (fixed-
price equilibria), the same solution concept appears in Balasko
(1979).

1.3. Related literature

The bankruptcy problem was originally formalized by O’Neill
(1982) and is extensively surveyed in Thomson (2019). The dis-
tinction between the ex-ante and ex-post viewpoints is discussed
for instance by Perles and Maschler (1981) in the context of Nash
bargaining games, and by Myerson (1981) in the context of social
choice functions. The ex-ante point of view in the bankruptcy
problem arises naturally when the problem is considered with
some form of uncertainty. Interval uncertainty concerning the
estate value (i.e. the estate value is only known to lie in a certain
interval, without a probabilistic model) is considered by Brânzei
et al. (2003), Brânzei and Alparslan Gök (2008), who relate the
problem to a cooperative interval game (Brânzei et al., 2010).
Papers that address stochastic uncertainty with respect to the
estate value include Habis and Herings (2013) and Koster and
Boonen (2019). Studies have been made as well of situations in
which also other features, such as claim sizes, are subject to un-
certainty; see for instance Ertemel and Kumar (2018), Hougaard
and Moulin (2018), and Xue (2018). The ex-ante viewpoint is
also natural in studies of incentives created by arbitration rules,
as for instance in Kıbrıs and Kıbrıs (2013), Karagözoğlu (2014),
and Boonen (2019). In the present paper, incentive effects are left
out of consideration.

Necessary and sufficient conditions for a division rule to be
derivable from a measure of collective welfare or from the prin-
ciple of equal sacrifice were obtained by Young (1987, Thm. 2)
and Young (1988, Thm. 2) respectively. A similar investigation of
rationalizability is undertaken in the present paper; see Section 6.
The rationalization problem can also be stated in a broader sense,
in which one seeks to characterize division rules that meet what
might be called basic criteria of rationality, such as antisymme-
try, transitivity, and independence of irrelevant alternatives; see
for instance Peters and Wakker (1991), Kıbrıs (2012), and the
references given therein.

2 Of course, this vulnerability is only relevant with respect to constraints that
an in principle be violated, unlike for instance the constraint in the bankruptcy
roblem that the sum of the awards does not exceed the estate value.
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.4. Contributions and outline of the paper

To the author’s best knowledge, the division principle that
s developed in this paper, based on strong efficiency and com-
liance, has not been proposed before in the literature on the
ankruptcy problem. The main technical contributions of the
aper are the following:

(i) to show that the proposed principle is valid, in the sense
that it leads to a uniquely defined division rule;

(ii) to show that the divisions that follow from the proposed
principle have a utilitarian interpretation, in the sense that
they can also be obtained from optimization of a certain
social welfare function, as well as an interpretation in terms
of equal sacrifice;

(iii) under homogeneous utility, to describe the extent to which
rationalizations are unique, and to give verifiable neces-
sary and sufficient conditions for rationalizability of a given
parametric division rule.

he organization of the paper is as follows. Terminology and
otation are discussed in Section 2 and basic definitions are col-
ected in Section 3. The design method is worked out in Section 4,
here items (i) and (ii) above are covered. The treatment here
llows agents to have different utility functions. This context is
pecialized in Section 5, using the concept of a ‘‘social norm utility
unction’’. Division rules in this framework are derived, and the
niqueness question (first part of item (iii) above) is answered.
inally, the second part of item (iii) is covered in Section 6, where
arious criteria for rationalizability under the principle proposed
n this paper are given. Conclusions are stated in Section 7. Most
f the proofs have been collected in Appendix.

. Notation and terminology

The notation and terminology in this paper largely follow
homson (2019), with a few idiosyncrasies that partly relate
o the ex-ante point of view taken in this paper. The set of
onnegative real numbers and the set of positive real numbers
re denoted by R+ and R++ respectively. The terms ‘‘increasing’’,
‘decreasing’’, and ‘‘monotonic’’ are used in the strict sense. For
nstance, when a function f (x) is said to be increasing, this means
hat f (y) > f (x) for all y with y > x. A function that satisfies
(y) ≥ f (x) for y ≥ x is said to be nondecreasing. On the other
and, the terms ‘‘convex’’ and ‘‘concave’’ are used in the non-strict
ense. Strict convexity and concavity will be named as such.

.1. Division rules

Throughout the paper, a finite set N = {1, 2, . . . , n} is sup-
osed to be given, representing a group of agents (also more
pecifically called claimants) among whom an estate has to be
ivided. In the ex-ante point of view of the estate division prob-
em, claimants are not concerned with the division of a given
fixed) amount of money, but rather with the choice of a division
unction.

efinition 2.1. A division function defined on the interval [0,M]

s a piecewise continuous3 function s from [0,M] to RN
+
such that∑

i∈N

si(E) ≤ E for all E ∈ [0,M]. (2.1)

3 In this paper, a real-valued function f defined on an interval [a, b] is said
o be piecewise continuous if there exists a partition a = x0 < x1 < · · · < xk = b
such that, for each i = 0, . . . , k − 1, the restriction of f to the interval (xi, xi+1)
is continuous, and the limits lim f (x) and lim f (x) both exist.
x↓xi x↑xi+1 w

12
For i ∈ N and 0 ≤ E ≤ M , the number si(E) represents the
amount received by agent i in case the estate value is equal to
E. The piecewise continuity requirement in Definition 2.1 helps
avoid the trivial source of nonuniqueness that arises in solutions
of optimization problems when agents’ preferences are specified
by an integral across a continuum of possible future outcomes,
and consequently the agents are indifferent with respect to mod-
ifications on a set of measure zero. The component functions si(·)
of a division function s will be referred to as allotment functions.
Under the efficiency requirements that will be used in this paper,
the sum of the allotments must always be equal to the estate
value. This is expressed as follows.

Definition 2.2. A division function defined on [0,M] is said to
achieve balance if the inequality in (2.1) is satisfied with equality
for all E ∈ [0,M].

In bankruptcy problems, there is a claim ci > 0 associated to
each agent. The vector c of claims is called the claims vector. The
sum of the claims is denoted by cN .

Definition 2.3. A division rule is a mapping that associates to any
claims vector c ∈ RN

++
a division function defined on [0, cN ].4

The division function that is associated by a division rule S to
a claims vector c is denoted by S(c; ·). The awards vector in case
the estate value is equal to E is consequently written as S(c; E).5
A division rule can be viewed as a family of division functions
parametrized by claims vectors.

In some cases, it may be desirable to take more information
about agents explicitly into account, for instance seniority or
contract date. Such information can be gathered in what might be
called the ‘‘type’’ of an agent. The notion of type space has been
introduced by Kaminski (2006). A function called ‘‘max’’ is used to
indicate the maximum award that an agent of a given type can
receive; this function can be thought of as extracting the claim
size from the type information.

Definition 2.4. A division method with type space T and maximum-
award function max : T → R+ is a mapping that associates to
any type vector t ∈ TN a division function defined on [0,

∑
i∈N

max(ti)].

A division method can be viewed as a family of division
functions parametrized by type vectors.

2.2. Parametric descriptions

Many well known division rules can be constructed by the
‘‘parametric’’ method that was introduced by Young (1987) and
later generalized by Kaminski (2006). The development in the
present paper leads naturally to representations in parametric
form, as will be shown below. Formal definitions can be stated
as follows; see also Thomson (2019, §2.2.2).

Definition 2.5. A Young–Kaminski parametrization is a triple
(T ,max, f ) where T is a set called the type space, max : T → R+

is a function called the maximum-award function, and f : T ×

[0, 1] → R+ is a mapping such that, for each t ∈ T ,

4 The definition can be stated more formally by introducing S as the set
f all pairs (M, s) where M > 0 and s is a division function defined on [0,M],
nd the mapping m : (M, s) ↦→ M which projects an element of S to its first
omponent. A division rule may then be defined as a mapping S from RN

++
to

S such that m(S(c)) = cN for all c ∈ RN
++

.
5 The notational device of writing the awards vector as S(c; E) instead of
(c, E) as usual is meant to emphasize the ex-ante point of view in this paper,
hich takes the claims vector c as known and the estate value E as unknown.
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(i) the mapping f (t, ·) : [0, 1] → R+ is continuous and
nondecreasing;

(ii) f (t, 0) = 0 and f (t, 1) = max(t).

efinition 2.6. A Young parametrization is a Young–Kaminski
arametrization (T ,max, f ) in which T = R+ and max is the
dentity function, i.e. max(c0) = c0 for c0 ∈ R+.

The mapping f in the definition above is formally a function
f two variables, but it is more natural to look at it as a family of
unctions of c0, parametrized by λ ∈ [0, 1]. This point of view mo-
ivates referring to f as a ‘‘parametric function’’.6 In the case of a
oung parametrization, this function defines the parametrization
ompletely. Standard examples of parametric functions can be
escribed as follows, with omission of explicit parametrization.

(i) The family consisting of all linear functions with slope in
[0, 1]. The corresponding division rule is the proportional
rule (PRO).

(ii) The family consisting of all convex piecewise linear func-
tions that take the value 0 at 0 and whose slope, at points of
differentiability, is equal to either 0 or 1. The corresponding
division rule is Constrained Equal Losses (CEL).

(iii) The family consisting of all concave piecewise linear func-
tions that take the value 0 at 0 and whose slope, at points of
differentiability, is equal to either 0 or 1. The corresponding
division rule is Constrained Equal Awards (CEA).

he proposition below describes the way in which Young
-Kaminski) parametrizations can be used to obtain division
ethods.

roposition 2.7. Let (T ,max, f ) be a Young–Kaminski parametriza-
ion. For each t ∈ TN , a mapping Sf (t; ·) : [0,M] → RN

+
where

=
∑

i∈N max(ti) can be unambiguously defined by

Sf (t; E))i = f (ti, λ) (i ∈ N), with λ s.t.
∑
i∈N

f (ti, λ) = E.

(2.2)

The mapping Sf : t ↦→ Sf (t; ·) is a division method defined on [0,M].

The proof of the proposition can be given in the same way as in
the ex-post case; see Young (1987), Kaminski (2006),
Thomson (2019, § 2.2.2). The division method (2.2) will be re-
ferred to as the method induced by the Young–Kaminski
parametrization (T ,max, f ). Analogously, in case of a Young
parametrization f (c0, λ), the rule induced by f (c0, λ) is the one
given by (2.2) when specialized to Young parametrizations.

2.3. Further conventions

Suppose that g is a continuous decreasing function from
(0, ∞) to (0, ∞).7 For such a function, the limits limx↓0 g(x) and
limx→∞ g(x) are well-defined (allowing the value ∞ for the limit
at 0), since these numbers are equal to the supremum and the
infimum respectively of the set {g(x) | x > 0}. It will be
convenient to write

g(0) := lim
x↓0

g(x), g(∞) := lim
x→∞

g(x)

6 A more intrinsic definition of families of functions that can be parametrized
ubject to conditions (i) and (ii) in Definition 2.5 is possible by making use of the
otion of ‘‘linear continuum’’ from point set topology (see for instance Munkres,
000, §3.24).
7 The notational conventions introduced in this paragraph will in particular
e applied to marginal utilities, i.e. derivatives of utility functions.
 d

13
and to extend in this way the function g to a function from [0, ∞]

to [0, ∞] that will still be denoted by g (strictly speaking, this
is an abuse of notation). As a mapping from (0, ∞) to (0, ∞),
the function g has a standard functional inverse denoted by g−1,
which is defined as a function from (g(∞), g(0)) to (0, ∞) by
the prescription g(x) = y ⇔ x = g−1(y). On the interval
(g(∞), g(0)), the inverse function is continuous and decreasing;
the limit values are limy↓g(∞) g−1(y) = ∞ and limy↑g(0) g−1(y) =

0. This function can be extended to a continuous and nonincreas-
ing function from [0, ∞] to [0, ∞], which will still be denoted by
g−1, by defining g−1(y) = ∞ for 0 ≤ y ≤ g(∞), and g−1(y) = 0
for g(0) ≤ y ≤ ∞. The function that is defined in this way
will be called the extended functional inverse of g . Note that, for
x ∈ [0, ∞), we have

x = g−1(y) ⇔ x > 0 and g(x) = y, or x = 0 and g(x) ≤ y.
(2.3)

The logarithmic function can be extended to a continuous func-
tion from [0, ∞] to [−∞, ∞] by defining log 0 = −∞ and
log∞ = ∞. Again, no distinction in notation is made between
the usual and the extended version.

Subscript notation will be used for partial derivatives. This
means for instance that, given a sufficiently smooth function f =

f (x, y), its partial derivative ∂3f
∂2x ∂y

(x, y) will be written as fxxy(x, y).
Sometimes the arguments are dropped as well, so that in that
case the notation is simply fxxy.

To a function f (x, y) of two variables that is monotonic in both
variables and that has continuous second partial derivatives, one
can associate a function f ×(x, y) as follows:

f ×(x, y) =
fxy(x, y)

fx(x, y)fy(x, y)
. (2.4)

he derived function f × occurs naturally in the problem discussed
n Section 6. It will be referred to below as the normalized cross
erivative of the function f , in view of the fact that fx(x, y) and

fy(x, y) represent the scalings that should be applied to the x and y
variable respectively, locally around (x, y), to ensure that a small
increment in x (resp. y) leads to an increment of the same size
in f (x, y). It is readily verified that the following property holds
with respect to monotonic transformations of variables: if g is
defined by g(x, y) = f (h1(x), h2(y)) where h1 and h2 are smooth
onotonic functions, then g×(x, y) = f ×(h1(x), h2(y)).

. Definitions

In the ex-ante framework, division problems are stated with-
ut specification of the estate value, and the solution is a division
unction (a vector-valued function defined on an interval of the
orm [0,M]), rather than a division (a vector). Preferences of
gents must be specified across allotment functions.8 This can be
one in several ways; in this paper, for concreteness, the classical
xpected utility (EU) model (Savage, 1954) will be used. Con-
itions on utility functions and subjective probability measures
hat are required to make the model meaningful will be kept
acit for the moment; specific regularity assumptions are stated
n Definition 3.3. It will be convenient to allow utility functions
o take the value −∞.

8 Recall that an allotment function is a component of a division function.
f one wants to allow other-regarding preferences, perhaps in analogy with
he ‘‘no-envy’’ condition that plays an important role in the theory of fair
ivision (Brams and Taylor, 1996), then preferences should be defined across
ivision functions.
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efinition 3.1. An EU division problem is a collection
(
N,M,

(ui, µi)i∈N
)
consisting of a nonempty finite set N , a positive num-

ber M , and, for each i ∈ N , a utility function ui defined on [0, ∞)
with values in [−∞, ∞), as well as a probability measure µi on
[0,M].

Given an EU division problem
(
N,M, (ui, µi)i∈N

)
and a division

function s defined on [0,M], one can define for each agent i ∈ N
a quantity Ui(s) by

Ui(s) =

∫ M

0
ui(si(E)) dµi(E). (3.1)

This number will be called the felicity of agent i. The use of this
terminology implies in no way a claim that a scale for ‘‘happiness’’
can be given that would allow interpersonal comparisons; felici-
ties, although expressed as numbers, will only be used for ordinal
purposes below. In particular, the notion of Pareto efficiency
requires only ordinal properties.

Definition 3.2. Let an EU division problem
(
N,M, (ui, µi)i∈N

)
be given. A division function s defined on [0,M] is said to be
Pareto efficient if there does not exist another division function
s̃ : [0,M] → RN

+
such that Ui(s̃) ≥ Ui(s) for all i ∈ N , and

Ui(s̃) > Ui(s) for at least one agent i ∈ N .

For convenience, rather strong regularity assumptions as
stated in the definition below will be used throughout the paper.

Definition 3.3. An EU division problem
(
N,M, (ui, µi)i∈N

)
is said

to be regular if, for all i ∈ N ,

(i) the restriction of ui(·) to (0, ∞) is finite-valued, increasing,
strictly concave, and twice continuously differentiable, and
ui(0) = limx↓0 ui(x);

(ii) the probability measure µi is absolutely continuous with re-
spect to Lebesgue measure on [0,M], with positive density.

The following definitions state homogeneity properties.

Definition 3.4. An EU division problem
(
N,M, (ui, µi)i∈N

)
is said

to satisfy homogeneous utilities if there is a utility function u :

[0, ∞) → [−∞, ∞) such that ui = u for all i ∈ N .

The common utility function u that appears in the definition
above will be referred to as a social-norm utility.

Definition 3.5. An EU division problem
(
N,M, (ui, µi)i∈N

)
is said

to satisfy homogeneous beliefs if there is a probability measure µ

defined on [0,M] such that µi = µ for all i ∈ N .

In the usual terminology, an ‘‘estate division problem’’ is char-
acterized by the presence of additional information, namely the
claim sizes of agents.

Definition 3.6. An EU estate division problem is a collection(
N, c, (ui, µi)i∈N

)
with c ∈ RN

++
, such that

(
N, cN , (ui, µi)i∈N

)
is

an EU division problem.

Terminology that has been introduced above for division prob-
lems (regularity, homogeneity) will likewise be used for estate
division problems. The key properties of division functions for
estate division problems that will be used in this paper are for-
mally stated in the definition below. The term ‘‘strongly efficient’’
is used for reasons that were discussed in the introduction.

Definition 3.7. Let an EU estate division problem(
N, c, (ui, µi)i∈N

)
be given. A division function s defined on [0, cN ]
is said to satisfy η

14
(i) Strong Efficiency if s is Pareto efficient for the associated EU
division problem;

(ii) Compliance if s(cN ) = c .

These terms are extended to division rules and division methods
in the natural way: a division rule or method is said to be strongly
efficient (compliant) if the division functions generated by it are
strongly efficient (compliant).

4. Division under strong efficiency and compliance

The main purpose of this section is to show that, subject to
homogeneous beliefs and given utility functions of the agents,
the combination of strong efficiency and compliance leads to
a uniquely defined division function. The rule that is obtained
in this way is called the SEC rule. The section begins with a
standard result on risk sharing known as Borch’s theorem. Using
this, the main uniqueness result is derived in Theorem 4.2. After
a few comments on properties of the SEC rule, Proposition 4.7
shows a formulation of the rule in terms of a Young–Kaminski
parametrization. Subsequently, it is shown how the SEC rule can
be interpreted as a welfare-maximizing rule and as an equal-
sacrifice rule. A numerical illustration of the rule is provided at
the end of Section 4.3.

4.1. Borch’s theorem

For a class of division problems that is closely related to the
class of problems considered here, Borch (1962) has shown how
to parametrize the ex-ante efficient solutions under EU prefer-
ences. His result is fundamental for risk sharing and is well known
in actuarial science. In the standard Borch theorem, division is
described in terms of random variables, which represent the al-
lotments to the agents, and whose sum must be equal to a given
random variable, namely the total risk. For the purposes of the
present paper, an adaptation is needed which describes the al-
lotments to agents more explicitly as being obtained by applying
a division function to the estate. A second adaptation is needed
in order to accommodate nonnegativity constraints on divisions.
For details of the proof in the random-variable setting, one may
for instance refer to DuMouchel (1968), Gerber (1978), Gerber
and Pafumi (1998) and Barrieu and Scandolo (2008). In partic-
ular, Gerber (1978) deals with nonnegativity constraints. Since
the formulation of Borch’s theorem as given here differs from
the usual one, an independent proof is provided in Appendix A.1.
Recall the notational conventions that were introduced in the first
paragraph of Section 2.3.

Theorem 4.1. Let
(
N,M, (ui)i∈N , µ

)
be a regular EU division

problem with homogeneous beliefs. A division function s : [0,M] →

Rn
+

is Pareto efficient if and only if there exist a nonempty index
set N ′

⊂ N, positive constants (αi)i∈N ′ , and a continuous function
: [0,M] → [0, ∞] such that, for i ∈ N ′,

αiu′

i(si(E)) ≤ λ(E) for all E ∈ [0,M] (4.1a)

iu′

i(si(E)) = λ(E) for all E ∈ [0,M] such that si(E) > 0 (4.1b)

nd, for i ̸∈ N ′, si(E) = 0 for all E ∈ [0,M].

aking use of the concept of the extended functional inverse as
efined in Section 2.3, one can replace the two lines in (4.1) by a
ingle one:

i(E) = (u′

i)
−1(λ(E)/αi

)
for all E ∈ [0,M]. (4.2)

ote that the function λ(·) and the constants αi appearing in
he above conditions are not uniquely determined: if λ(·) and αi
i ∈ N ′) are such that (4.1) is satisfied, then the same holds for

λ(·) and ηαi, where η is any positive constant.
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.2. The SEC rule

The following theorem is essential for the present paper.

heorem 4.2. For every regular EU estate division problem with
homogeneous beliefs, there exists a uniquely determined division
function that is both strongly efficient and compliant.

Proof. Let
(
N, c, (ui)i∈N , µ

)
be a regular EU problem with homo-

geneous beliefs. A division function that is both strongly efficient
and compliant can be constructed as follows. On the interval
[1, ∞], define a function ϕ by

ϕ(λ) =

∑
i∈N

(u′

i)
−1(λu′

i(ci)
)
. (4.3)

We have ϕ(1) = cN , and ϕ(λ) = 0 for all λ ≥ Λ, where Λ

(possibly equal to ∞) is defined by Λ = maxi∈N u′

i(0)/u
′

i(ci). If
< Λ, then there is at least one i ∈ N such that λu′

i(ci) < u′

i(0),
so that ϕ(λ) > 0 for λ ∈ [1, Λ). Moreover, the function ϕ(λ)
s continuous and decreasing on the interval [1, Λ]. This shows
hat a continuous decreasing function λ : [0, cN ] → [1, Λ] can be
efined implicitly by

(λ(E)) = E. (4.4)

ow define a function s : [0, cN ] → RN
+

by

i(E) = (u′

i)
−1(λ(E)u′

i(ci)) (0 ≤ E ≤ cN , i ∈ N). (4.5)

ote that
∑

i∈N si(E) = ϕ(λ(E)) = E for all 0 ≤ E ≤ cN , so that
the function s is a division function. Moreover, s is of the form
described in Theorem 4.1, with N ′

= N and αi = 1/u′

i(ci), and
therefore it is strongly efficient. Furthermore, since λ(cN ) = 1,
compliance is satisfied as well.

To show the uniqueness, suppose that another compliant and
strongly efficient division function is given by s̃(·). Efficiency
implies that the conditions of Theorem 4.1 are satisfied for s̃,
say with a function λ̃(·) and constants α̃i. Due to the compliance
requirement, the index set N ′ that is mentioned in the theorem
must be equal to the set N of all agents. Applying the condi-
tion (4.1b) at E = cN , one finds (using also the compliance condi-
tion) that α̃iu′

i(ci) = λ̃(cN ). The condition
∑

i∈N (u
′

i)
−1

(
λ̃(E)/α̃i

)
=

E, which follows from the balance requirement, can therefore
also be written as

∑
i∈N (u

′

i)
−1

(
λ̃(E)u′

i(ci)/λ̃(cN )
)

= E, or in other
words as ϕ(λ̃(E)/λ̃(cN )) = E for all 0 ≤ E ≤ cN . It follows
that λ̃(E)/λ̃(cN ) = λ(E) for 0 < E ≤ cN . Inserting the relations
α̃i = λ̃(cN )/u′

i(ci) and λ̃(E) = λ(E)/λ̃(cN ) in Borch’s equation (4.2),
one finds that s̃(E) = s(E) for all E > 0. Of course, for E = 0, the
divisions must be equal as well. □

Given a group of agents with utility functions ui and homo-
geneous beliefs, a division rule S as in Definition 2.3 can now be
obtained by associating to a given claims vector c the division
function defined by (4.3), (4.4), and (4.5). This division rule is
called the SEC rule (strongly efficient and compliant). The rule
can be stated as follows in a form that avoids the use of the
extended functional inverse: given a regular EU problem with
homogeneous beliefs

(
N, c, (ui)i∈N , µ

)
and an estate value E ∈

[0, cN ], the division of the estate according to the SEC rule is the
unique vector (x1, . . . , xn) ∈ RN

+
that satisfies∑

i∈N

xi = E, and ∃λ ∈ [1, ∞]: ∀i ∈ N : xi > 0 and

u′

i(xi)
u′

i(ci)
= λ, or xi = 0 and

u′

i(xi)
u′

i(ci)
≤ λ. (4.6)
15
Remark 4.3. A division rule is said to satisfy Claims Boundedness
if agents do not receive more than their claim values, assuming
that the estate value does not exceed the sum of the claims. The
function λ(E) defined by (4.4) satisfies λ(E) ≥ 1 for all 0 ≤ E ≤ cN ,
o that the allotment si(E) defined in (4.5) satisfies si(E) ≤ ci
for all 0 ≤ E ≤ cN . In other words, SEC rules satisfy Claims
Boundedness, even though the Compliance axiom only requires
this property to hold at E = cN . As is seen from (4.5), the SEC di-
vision rule S(c; E) is jointly continuous in E and c. In other words,
SEC rules satisfy the Continuity property (Thomson, 2019, p. 63).
Moreover, for values of E and c for which Si(c; E) > 0, the awards
Si(c; E) are increasing functions of E. Consequently, SEC rules
satisfy Null-Compensation-Conditional Strict Endowment Mono-
tonicity (Thomson, 2019, p. 96). Furthermore, for a given estate
value and a given claims vector, the expression (4.5) shows that
si(E) > sj(E) for i, j ∈ N such that ci > cj and si(E) > 0. It follows
that SEC rules satisfy Order Preservation in Awards (Thomson,
2019, p. 89), and in fact strict order preservation holds except in
the case of claimants who receive zero awards.

Remark 4.4. The observation that strong efficiency in com-
bination with a single equality constraint for each agent can
lead to unique solutions appears in Gale (1977); see also Gale
and Sobel (1979, 1982) and Bühlmann and Jewell (1978, 1979).
The equality constraint, which represents a fairness condition, is
expressed in terms of expectation under a measure which in the
work of Gale and co-authors is assumed to be the same as the
measure that is used in the specification of agents’ preferences.
This assumption is used in their proof technique, which is based
on a clever transformation from the original multi-objective prob-
lem to an associated single-objective problem. Bühlmann and
Jewell use essentially the same method of proof, while weakening
the assumption that the two measures should be the same to
only the requirement that they should be equivalent.9 More
recently, Pazdera et al. (2017) developed a different approach,
which does not require the equivalence assumption. The analo-
gous equality constraint in the contract completion approach to
the bankruptcy problem, as developed in the present paper, is
expressed in terms of evaluation at the point cN , which may be
viewed as expectation with respect to the measure that consists
of a point mass concentrated at cN . This measure is not equivalent
to measures that are typically used to define preferences via (3.1).
The proof of Theorem 4.2 above therefore follows Pazdera et al.
(2017), with substantial simplifications that are possible due to
the special structure of the bankruptcy problem. In particular, the
weights αi can be determined easily, in contrast to the situation
in the cited papers where the determination of the weights αi is
nontrivial and calls for an iterative solution process.

Remark 4.5. Suppose that the utility functions ui(x) are replaced
by ũi(x) = aiui(x) + bi for positive a1, . . . , an and arbitrary
b1, . . . , bn. These replacements generate a monotonic transforma-
tion of agents’ felicities. Given the uniqueness of solutions and
the fact that the properties of strong efficiency and compliance
are not affected by such monotonic transformations, one should
expect that the solution will not be changed by substituting ũi(x)
for ui(x). This property can indeed readily be verified directly
from (4.6).

Remark 4.6. In the definition of a SEC rule as stated above,
it is assumed that agents do not adapt their utility functions

9 Recall that two measures P and Q defined on the same measurable space
re said to be equivalent if, for any measurable set A, P(A) = 0 implies Q (A) = 0

and vice versa.
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o the claim sizes. This can be viewed as a form of rational-
ty. In the context of taxation problems as discussed by Young
1988, 1990),10 the assumption implies that agents derive utility
from post-tax income, without regard to pre-tax income. Casual
observation may suggest, however, that the difference between
pre-tax income and post-tax income does have an impact on the
subjective welfare of at least some people. Such effects may be
modeled by allowing claim-dependent utility functions. Under
preference specifications of this form, the construction based on
(4.6) can still be used to define a division rule. Depending on
what forms of dependence on claim values are admitted, the class
of division rules that can be obtained in this way can be much
wider than the class of division rules that are obtainable from
claim-independent utility functions.

There are several ways to describe the division function (4.5)
n terms of a Young–Kaminski parametrization; for instance it
ay be done as follows. Recall the definition of the generalized

unctional inverse in Section 2.3. Define a triple (T ,max, f ) in the
following way:

(i) the type space T consists of the continuous decreasing func-
tions t from (0, ∞) to (0, ∞) such that t(0) > 1 > t(∞);

(ii) the maximum-award function max : T → R+ is given by
max(t) = t−1(1);

(iii) the parametric function f : T × [0, 1] → R+ is given by

f (t, λ) = t−1(h(λ)) (λ ∈ [0, 1], t ∈ T ) (4.7)

where h is any continuous decreasing function that maps
[0, 1] onto [1, ∞] (for instance h(λ) = 1/λ will do).

The terms used already anticipate that the triple that is defined
in this way is a Young–Kaminski parametrization, which is part
of the claim of the following proposition.

Proposition 4.7. The triple (T ,max, f ) given by (i)–(iii) above is a
Young–Kaminski parametrization. For any regular EU estate division
problem with homogeneous beliefs

(
N, c, (ui)i∈N , µ

)
, the functions ti

defined by

ti(x) =
u′

i(x)
u′

i(ci)
(0 < x < ∞) (4.8)

are elements of the type space T defined in (i). When the types of
agents are defined in this way, the division function determined by
the parametrization (i)–(iii) via Proposition 2.7 coincides with the
one given by the SEC rule (4.6).

The proof of the proposition is in Appendix A.2.

4.3. Utilitarian interpretation

For division rules given by a Young parametrization, it is
shown in Young (1987) that an interpretation is possible in terms
of a social welfare function. An analogous statement holds for SEC
rules. The proof of the following theorem is in Appendix A.3.

Theorem 4.8. Let
(
N, c, (ui)i∈N , µ

)
be a regular EU estate division

problem with homogeneous beliefs. For any estate value 0 ≤ E ≤

cN , there exists a unique solution (x1, . . . , xn) to the optimization
problem∑
i∈N

ui(xi)
u′

i(ci)
→ max subject to

∑
i∈N

xi = E, xi ≥ 0 (i ∈ N). (4.9)

10 The analogy between taxation and estate division can be constructed
s follows: pre-tax income corresponds to claim value, post-tax income to
llotment, and total pre-tax income minus required tax revenue corresponds
o the estate value.
 w

16
The division given by this solution coincides with the one given by
the SEC rule.

The theorem shows that the SEC division can be viewed as a
weighted-utilitarian solution, with weights given by the inverses
of marginal utility at the claim values. In other words, a social
planner desiring to follow the principles of strong efficiency and
compliance can do so by maximizing a Benthamite welfare func-
tion in which the agents’ individual utilities are normalized in
such a way that marginal utility at the claim value is equal for
all agents. The motivation of the SEC principle as given earlier
has, in philosophical terms, a contractarian feel to it, since it is
based on a form of Pareto optimality combined with the simple
requirement that all claims should be fulfilled when this is possi-
ble. Theorem 4.8 shows that the SEC rule can also be obtained
from a utilitarian perspective. However, it may not be easy to
motivate the weights in (4.9) (or equivalently, the normalizations
applied to utility functions) from a purely utilitarian perspective.

Looking at the weights in (4.9), one may be led to the suspicion
that the SEC scheme will favor the rich. Indeed, wealthier agents
are likely to have lower marginal utilities, and therefore receive
larger weights. A more detailed analysis produces a different
picture, however. Suppose that the estate value is sufficiently
close to the sum of the claim values, so that the nonnegativity
constraints are not active. The Karush–Kuhn–Tucker conditions
for the optimization problem can then be written in the form of
n + 1 equations in n + 1 unknowns, with the estate value E as a
parameter:

u′

i(xi) = λu′

i(ci),
∑
i∈N

xi = E. (4.10)

This set of equations defines the awards xi and the Lagrange
multiplier λ as functions of E. Writing xi = si(E) (to adapt to
earlier notation) and λ = λ(E), one finds by differentiation with
respect to E11:

s′i(E) = λ′(E)
u′

i(ci)
u′′

i (si(E))
,

∑
i∈N

s′i(E) = 1. (4.11)

t E = cN , we have si(E) = ci for all i ∈ N , so that from the above
ne finds

′

i(cN ) =
u′

i(ci)/u
′′

i (ci)∑
i∈N u′

i(ci)/u
′′

i (ci)
=

τi(ci)∑
i∈N τi(ci)

(4.12)

here τi(x) := −u′

i(x)/u
′′

i (x) is the risk tolerance function of agent
, which is the reciprocal of agent i’s Arrow–Pratt measure of
bsolute risk aversion. This implies that the estates close to the
evel cN are divided by the SEC rule in such a way that agents’
osses are proportional to their risk tolerances at the claim values.

A numerical illustration is given in Fig. 1.12 The figure refers
o a situation in which there are two agents whose preferences
cross awards are both described by power utility (CRRA), i.e.
i(x) = x1−γi/(1 − γi) where γi is the coefficient of relative risk
version of agent i, and both agents have equal claims. It can
e verified that the SEC division depends only on the ratio of
he coefficients of relative risk aversion. The division functions
re shown for the case in which the ratio of the coefficients is
qual to 2, and also for the case in which the ratio is 10. It

11 A similar differential equation was obtained by Bühlmann (1984, Section 5)
in the context of risk sharing.
12 For the purpose of numerical calculation of division functions according to
the SEC rule, it is not necessary to carry out the computation of λ(E) as might
e suggested by (4.4). Instead, one can parametrize the awards functions as well
s the estate value in terms of λ. That is, one can compute the function values
ij = (u′

i)
−1(λju′

i(ci)) on a grid of values λj in the interval [1,maxi∈N u′

i(0)/u
′

i(ci)],
nd then plot the vectors zi· against their sum. This is especially convenient
hen the inverse marginal utilities are available in analytic form.
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Fig. 1. SEC divisions on the basis of power utility. The coefficients of relative risk aversion of the two agents are given by γ1 and γ2 . The claim value is 100 for
oth agents.
a
v
(
a

e

T
r

t
h
o
t
t
w
p
s
d
a

5

p
b
r
t
i
b
t
i
s
n

s seen that the SEC rule favors the more risk averse agent.13
he result may be contrasted with the well known fact (see
or instance Osborne and Rubinstein, 1994, § 15.2.3, Gintis, 2000,
15.3) that the more risk averse agent is at a disadvantage in the
x-post Nash bargaining solution.

.4. Equal sacrifice interpretation

The SEC rule can be compared to the notion of ‘‘equal sacrifice’’
hat has been discussed by Young (1987, 1988, 1990). Equal
bsolute sacrifice means that there exists λ ∈ R such that

i(ci) − ui(xi) = λ for all i. (4.13)

qual proportional sacrifice requires that there exists λ ∈ R
atisfying
ui(ci) − ui(xi)

ui(ci)
= λ for all i. (4.14)

s noted in Young (1988), the difference between the two for-
ulations is inessential in the sense that, if the utility functions
i provide a rationalization for a given division function on the
asis of the equal proportional sacrifice principle, then the utility
unctions log ui rationalize the same division function on the
asis of the equal absolute sacrifice principle.14 This justifies
peaking about the principle of equal sacrifice without further
ualification.
The SEC rule (4.6) calls for an allocation such that there exists

∈ R satisfying

u′

i(xi)/u
′

i(ci) = λ for all i such that xi > 0
≤ λ for all i such that xi = 0. (4.15)

he rule shares with the principle of equal proportional sacrifice
he desirable property that it is insensitive to multiplication of

13 Associating a higher value of the coefficient γ to lower wealth is not
traightforward, since γ represents risk aversion relative to wealth. However, the
tilities used in the SEC rule are defined across outcomes of the estate division,
ot across total wealth. When the claims that agents hold are relatively small
ompared to their total wealths, a less wealthy agent will therefore appear as
more risk averse claimant, even in terms of relative risk aversion. The strong
version to low payoffs that is expressed by applying power utility to estate
ivision can be interpreted as representing a psychological benchmark effect
ith respect to the zero payoff level.
14 However, it may happen that log u(x) is concave while u(x) is not. Therefore
here may still be a difference in rationalizability on the basis of the two
rinciples if the requirement is imposed, as is often done, that utility functions
hould be concave.
17
utility functions by a positive constant that may be different for
different agents. An alternative representation, in terms of the
Arrow–Pratt measure of risk aversion, is shown in the following
proposition. The proof of the proposition is in Appendix A.4.

Proposition 4.9. Let a regular EU estate division problem(
N, c, (ui)i∈N , µ

)
with homogeneous beliefs be given. For i ∈ N,

let ri(x) = −u′′

i (x)/u
′

i(x) denote the Arrow–Pratt measure of risk
version associated to the utility function ui(x). For any given estate
alue 0 ≤ E ≤ cN , there exist a uniquely determined vector
x1, . . . , xn) ∈ RN

+
and a constant λ ∈ R such that

∑
i∈N xi = E

nd, for all i ∈ N,

ither xi > 0 and
∫ ci

xi

ri(x) dx = λ,

or xi = 0 and
∫ ci

xi

ri(x) dx ≤ λ. (4.16)

he division (x1, . . . , xn) coincides with the one given by the SEC
ule.

The integral appearing in (4.16) extends from the award xi to
he claim ci and has the Arrow–Pratt function as its integrand;
ence it may be viewed as a risk-aversion-weighted measure
f the distance between agent i’s claim and the amount that
he agent actually receives. The proposition shows that an in-
erpretation of the SEC rule as an equal sacrifice rule is possible
hen sacrifice is measured in terms of this integral, with the
roviso that agents who receive nothing are always taken to have
acrificed already enough. The proposition shows moreover that
ivision according to the SEC rule is unchanged when the risk
versions of all agents are multiplied by the same constant.

. Homogeneous utility

Considerations of efficiency, consistency, and impartiality sup-
ort the argument that settlement courts should work on the
asis of criteria that are as ‘‘objective’’ as possible. The set of
elevant attributes of agents should preferably be small, in order
o reduce the costly and sensitive task of gathering and interpret-
ng information concerning the competing claimants. As argued
y Young (1990, p. 254), instead of thinking of the utility func-
ions ui as faithful representations of the preferences of distinct
ndividuals, one can also let the utility functions ui be all the
ame, and interpret the common utility function as a ‘‘social
orm’’. The use of social-norm utility does mean that the model
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hould not be applied without modification to situations in which
here are categorical differences between claimants.

When a social-norm utility function is fixed, Young’s prin-
iple of equal sacrifice leads to a division rule in the sense of
efinition 2.3, depending on claim sizes only. In other words, the
rinciple of equal sacrifice defines a mapping from social-norm
tility functions to division rules. Similarly, the SEC principle
efines a mapping from social-norm utility functions to division
ules. The nature of this mapping will be studied in this section
nd in Section 6.

.1. Representation by a parametric function

When beliefs are homogeneous and a social-norm utility func-
ion is taken as given, then all information that is relevant for
he SEC rule is contained in the claims vector, so that the Young–
aminski representation (4.7) can be replaced by a Young
arametrization, as shown in the following proposition.

roposition 5.1. Let (N, c, u, µ) be a regular EU estate division
roblem with homogeneous beliefs and homogeneous utilities. Let h
e any continuous decreasing function that maps the interval [0, 1]

onto the interval [1, u′(0)/u′(∞)], where u′(0)/u′(∞) is taken to be
qual to ∞ when u′(0) = ∞ and/or u′(∞) = 0. Then the parametric
unction f : R+ × [0, 1] → R+ defined by

(c0, λ) = (u′)−1(h(λ)u′(c0)
)

(5.1)

epresents the SEC division rule defined by (4.6).

In view of Proposition 2.7, the division function that is associ-
ted by the SEC rule to a given claims vector c can be described, in
he case of homogeneous utility, as follows. First define a function
(E), for 0 ≤ E ≤ cN , by the implicit specification∑
i∈N

(u′)−1(λ(E)u′(ci)
)

= E, 1 ≤ λ(E) ≤ max
i∈N

u′(0)
u′(ci)

. (5.2)

hen define the division function by

i(E) = (u′)−1(λ(E)u′(ci)
)

(i ∈ N). (5.3)

xample 5.2. For an example of division under the SEC principle
ith homogeneous utilities, take the social norm utility function
hat is specified in terms of marginal utility by

′(x) =
1
x
e−αx (5.4)

here α is a positive constant. The associated Arrow–Pratt func-
ion is given by r(x) = x−1

+ α which represents a mixture of
onstant absolute risk aversion and constant relative risk aver-
ion. Suppose that there are three claimants, with claims ci of
sizes 300, 200, and 100. The two panels in Fig. 2 show the cor-
responding allocations as a function of estate value for α = 0.05
and α = 0.005 respectively. The plot in the right panel shows
a nearly proportional allocation, while the left panel shows that
increasing the parameter α leads to an allocation that becomes
closer to Constrained Equal Losses.

5.2. Equivalence of utility functions

If two social norm utility functions generate the same SEC
division rule, they will be said to be equivalent. It follows from
Remark 4.5 that a positive affine transformation of social-norm
utility does not affect the division rule. As is well known, two
sufficiently smooth utility functions are connected by a positive
affine transformation if and only if their associated Arrow–Pratt

measures of risk aversion are the same. Proposition 4.9 shows

18
that two social-norm utility functions still lead to the same SEC
division rule when their corresponding Arrow–Pratt measures of
risk aversion are related by multiplication by a positive constant.
In fact, as shown by the following proposition, this property
characterizes equivalence of utility functions in the sense just
defined.

Proposition 5.3. Two social-norm utility functions that satisfy the
assumptions of Definition 3.3(i) generate the same SEC division rule
if and only if their associated Arrow–Pratt measures of risk aversion
are positively proportional.

The proof of the proposition is in Appendix A.5. For sufficiently
smooth utility functions, it is possible to define an associated
function that captures exactly the transformations that are ad-
mitted in the proposition above, in the same way as the Arrow–
Pratt measure of risk aversion captures exactly the positive affine
transformations.

Definition 5.4. The rate of decrease of risk aversion that corre-
sponds to a three times differentiable utility function u(x) with
Arrow–Pratt measure of risk aversion r(x) > 0 is the function
ρ(x) defined by

ρ(x) = −
d
dx

log r(x) =
u′′(x)
u′(x)

−
u′′′(x)
u′′(x)

. (5.5)

It is straightforward to show that two sufficiently smooth
social-norm utility functions are equivalent, in the sense that they
generate the same SEC division rule, if and only if their associated
rates of decrease of risk aversion are the same. Also, one can
verify that two utility functions u(x) and ũ(x) have the same rate
f decrease of risk aversion if and only if their corresponding
arginal utilities are related by a power transformation (i.e.

˜ ′(x) = (u′(x))p, with p > 0). The quantity u′′′(x)/u′′(x) that
ppears in (5.5) is known as prudence (Kimball, 1990).
Trivially, a utility function belongs to the CARA class (constant

bsolute risk aversion) if and only if its rate of decrease of risk
version is equal to 0. It is also not difficult to see that a utility
unction belongs to the CRRA class (constant relative risk aver-
ion) if and only if its rate of decrease of risk aversion is equal
o 1/x. It can be verified directly (but see also Examples 6.7 and
.8) that the SEC division rule corresponding to the CARA class
f utilities is Constrained Equal Losses, and that the SEC rule
orresponding to CRRA utilities is proportional allocation.

. Rationalization under homogeneous utility

The relation (5.1) associates a parametric function to a given
tility function. When a parametric function f (c0, λ) is obtained
n this way from a social norm utility function u(x), then it is
aid to be rationalized by the utility function u(x) under the SEC
rinciple. The division rule induced by f (c0, λ) is likewise said
o be rationalized by u(x). Rationalization of a given parametric
unction by a social norm utility function under the principle of
bsolute sacrifice has been discussed by Young (1988). Here we
tudy rationalizability under the SEC principle. The short term
‘rationalization’’ will henceforth be used to mean ‘‘rationalization
y a social norm utility function under the SEC principle’’. Two
reliminary remarks are in order.

emark 6.1. Under the condition u′(0) = ∞, which is satisfied
or instance by the class of power utilities, the relation (5.1)
mplies that f (c0, λ) > 0 for all 0 < λ ≤ 1 and all c0 > 0.
his means that rationalization by a social norm utility function
atisfying u′(0) = ∞ is only possible for rules that assign a
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ositive amount to every claimant whenever the size of the estate
s positive. Under such a rule, no agent is excluded from receiving
positive payment, as long as there is anything to divide. A rule
ith this property will therefore be called inclusive. PRO and CEA
re inclusive rules; CEL is not.

emark 6.2. Under the smoothness assumptions of Defini-
ion 3.3(i), the condition (5.1) implies that only rules whose
ivision functions are continuously differentiable and increasing
n the domain where they take positive values can be rational-
zed. Moreover, the same relation also implies that agents who
re awarded a nonzero allotment when the available amount is
t some given level will receive a share in any further positive
ncrement of the value of the estate. Consequently, the division
unction is loss-inclusive in the sense that, if there is a deficit,
ll agents will take a share in it. These properties are satisfied by
RO and CEL, but not by CEA. The restrictive nature of (5.1) is a
onsequence of the strong smoothness assumptions. Weakening
hese assumptions will not be undertaken in this paper.

It will be convenient to define the following domain of values
c0, λ) for a given parametric function f : R+ × [0, 1] → R+ :

Df = {(c0, λ) ∈ R++ × [0, 1] | 0 < λ < 1, f (c0, λ) > 0}. (6.1)

he general definition of a parametric function does not impose
moothness constraints on the functions λ → f (c0, λ). In fact,
ince a parametric function still defines the same division rule
hen the parameter λ is replaced by h(λ) where h is a monotonic

unction form [0, 1] to itself, and since such a monotonic trans-
formation need not be smooth, every division rule has parametric
representations that are not smooth. In the analysis below it
will be convenient, however, to use some amount of regularity
as expressed in the following definition. The conditions that are
stated in the definition are not restrictive in the sense that, if a
division rule can be rationalized by a social-norm utility function
that satisfies the regularity assumptions of Definition 3.3(i), then
the division rule can be represented by a parametric function that
satisfies these conditions.

Definition 6.3. A parametric function f : R+ × [0, 1] → R+ is
said to be regular if

• the restriction of f to Df is continuously differentiable in
both c0 and λ

• on the domain Df , the first partial derivative fc0 (c0, λ) takes
positive values and is continuously differentiable with re-
spect to λ

• for λ > 0, there exists c0 such that f (c0, λ) > 0.
19
t follows from Remark 4.3 and Remark 6.2 that the regularity as-
umptions with respect to c0 are in fact necessary conditions for a
arametric function to be rationalizable by a regular social-norm
tility function.
Proposition 5.1 shows that a parametric function f (c0, λ) is

ationalized by a social norm utility function u(x) via the SEC rule
5.1) if and only if there exists a surjective decreasing function
: [0, 1] → [1, u′(0)/u′(∞)] such that, for all λ ∈ [0, 1],

(λ)u′(c0) = u′
(
f (c0, λ)

)
(c0 > 0, f (c0, λ) > 0) (6.2a)

(λ)u′(c0) ≥ u′(0) (c0 > 0, f (c0, λ) = 0). (6.2b)

he following lemma indicates that it is sufficient to look for
unctions h that satisfy the equality (6.2a) for pairs (c0, λ) with

< λ < 1 and c0 in the range of values for which the award
(c0, λ) is positive. The proof is in Appendix A.6.

emma 6.4. A social norm utility function u(x) satisfying the
egularity assumptions of Definition 3.3(i) rationalizes a regular
arametric function f if and only if there exists a surjective decreas-
ng function h : [0, 1] → [1, u′(0)/u′(∞)] such that (6.2a) holds for
ll λ ∈ (0, 1).

When a regular parametric function is chosen, the function
that appears in the lemma above is necessarily differentiable.
aking derivatives with respect to λ, one obtains from (6.2a), for
c0, λ) ∈ Df :
′′
(
f (c0, λ)

)
fλ(c0, λ) = h′(λ)u′(c0).

aking use of (6.2a) again, this can be rewritten as

u′′
(
f (c0, λ)

)
u′

(
f (c0, λ)

) fλ(c0, λ) =
h′(λ)
h(λ)

. (6.3)

ote that h(λ) > 0 and h′(λ) < 0 for all λ; consequently,
6.3) implies that fλ(c0, λ) > 0 for all (c0, λ) ∈ Df , in line with
emark 6.2. Taking logarithms of the negatives of both sides of
6.3) and differentiating with respect to c0, we find, in terms
f the rate of decrease of risk aversion ρ(x) that is associated
o u(x):

(f (c0, λ))fc0 (c0, λ) − fc0λ(c0, λ)/fλ(c0, λ) = 0. (6.4)

his provides part of the proof of the following result; the proof
s completed in Appendix A.7. Recall the notation f × that was in-
troduced in Section 2.3 to denote the normalized cross derivative
of a scalar function of two variables.

Theorem 6.5. A necessary and sufficient condition for a reg-
ular parametric function f (c , λ) to be rationalizable by a social
0
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orm utility function satisfying the regularity assumptions of
efinition 3.3(i) under the SEC rule is that its normalized cross
erivative f ×(c0, λ), defined on Df , depends on c0 and λ only through
(c0, λ).

Unfortunately, it does not seem easy to give an intuitive in-
erpretation to the condition in the theorem. Another way of
ormulating the result given by the theorem is based on rec-
gnizing that, given the monotonic dependence of f on λ for
ny given fixed value of c0, it is possible to convert from (c0, λ)
oordinates to (c0, x) coordinates. Let λ(c0, x) denote the function
hat is defined implicitly, for c0 > 0 and 0 < x ≤ c0, by the
elation

(c0, λ(c0, x)) = x. (6.5)

he theorem may then be restated as follows.

orollary 6.6. Rationalizability of a given regular parametric
unction f (c0, λ) by a social norm utility function is possible under
he SEC rule if and only if the mapping (c0, x) ↦→ f ×(c0, λ(c0, x))
oes not depend on c0, where λ(c0, x) is defined by (6.5). If this is
atisfied, then the rationalizing rate of decrease of risk aversion is
iven by

(x) = f ×(c0, λ(c0, x)) (0 < x ≤ c0). (6.6)

n specific cases, it may however be simpler to obtain the ra-
ionalizing rate of decrease of risk aversion directly from the
quations ρ(x) = f ×(c0, λ) and f (c0, λ) = x.

xample 6.7. Consider the proportional division function, which
is given by the regular parametric function f (c0, λ) = c0λ. One
finds f ×(c0, λ) = 1/(c0λ) = 1/f (c0, λ) so that the condition of
Theorem 6.5 is satisfied. The rationalizing rate of decrease or risk
aversion is given by ρ(x) = 1/x; this corresponds to the class of
CRRA utilities.

Example 6.8. We can also reconsider the CEL rule, given by
the regular parametric function f (c0, λ) = max(c0 −

1
λ
, 0). The

normalized cross derivative, computed on the domain of positive
awards, is equal to 0. Again, the condition of Theorem 6.5 is
satisfied, with ρ(x) = 0. Consequently, the CEL rule is rationalized
under the SEC principle by any member of the class of CARA
utility functions.

Remark 6.9. The condition of Theorem 6.5 states that there
should exist a scalar function ρ(x) such that, for all c0 and λ, one
has f ×(c0, λ) = ρ(f (c0, λ)). If this condition holds, and sufficient
smoothness is present (i.e. the function f is three times contin-
uously differentiable in both arguments), then for all (c0, λ) ∈

Df we have15 ∇f ×(c0, λ) = ρ ′(f (c0, λ))∇f (c0, λ). Conversely, if
there exists a scalar function g(c0, λ) such that ∇f ×(c0, λ) =

g(c0, λ)∇f (c0, λ) for all (c0, λ) ∈ Df , then one can write, making
use of the function λ(c0, x) defined implicitly by (6.5)16:
∂

∂c0
f ×(c0, λ(c0, x)) = ∇f ×(c0, λ(c0, x))

[
1 λc0 (c0, x)

]T
= g(c0, λ(c0, x))∇f (c0, λ(c0, x))

[
1 λc0 (c0, x)

]T
= g(c0, λ(c0, x))

∂

∂c0
f (c0, λ(c0, x)) = 0.

his shows that the condition of Corollary 6.6 is satisfied. Since
he vector ∇f (c0, λ) is nonzero for all (c0, λ) ∈ Df , it follows
hat, under sufficient smoothness, a necessary and sufficient for

15 The symbol ∇ denotes gradient, written as a row vector.
16 Superscript T is used to indicate transposition.
20
rationalizability of the given division function f (c0, λ) by a social
norm utility function under the SEC rule is that the 2 × 2 matrix
ormed from ∇f (c0, λ) and ∇f ×(c0, λ) has rank 1 for all (c0, λ) ∈

f . In this way, a computational criterion for rationalizability
nder the SEC rule is obtained.

. Conclusions

The starting point in this paper has been the observation that
state division problems only arise in situations where claimants
ave not agreed in advance on a division rule for the case in
hich the estate value is less than the sum of the claims. Situ-
tions of this nature are not unusual, neither in business nor in
aily life; it is often impractical to negotiate in advance about
very possible situation that might arise. Arbitration may be
eeded to deal appropriately with the consequences of the un-
oreseen circumstance. A court of arbitration may be guided by
he principle that the rule should be followed that the agents
ould have agreed upon if, in contrast to the actual fact, they
ould have negotiated beforehand. Such a rule needs to be con-
tructed hypothetically, but the court may be able to make some
easonable assumptions regarding the preferences of the agents.
he court then needs to solve an ex-ante version of the estate
ivision problem.
When looked at in this way, the estate division problem is sim-

lar to risk sharing problems that have been studied in particular
n actuarial science, with the added feature that claim values need
o be taken into account. The closest analogy is with risk sharing
roblems in which a ‘‘financial fairness’’ constraint plays a role, as
tudied for instance in Bühlmann and Jewell (1979) and Pazdera
t al. (2017). On the basis of results from the actuarial science lit-
rature, with some modifications, it has been shown that a strong
otion of Pareto efficiency in combination with the requirement
hat all claims should be fulfilled when possible is sufficient to
efine uniquely a division rule when agents’ utilities are given,
nder the assumption that agents’ preferences can be described
y the classical expected utility model with homogeneous beliefs.
he rule, called the SEC rule, can be given a ‘‘utilitarian’’ as well
s an ‘‘equal sacrifice’’ interpretation.
If claimants are essentially of the same nature (i.e. they do

ot belong to different categories, such as employees and bond
olders in case of a firm bankruptcy), a court of arbitration may
se the same utility function for all of them. It has been shown
hat taking such a ‘‘social norm’’ utility function from the CRRA
lass leads to the proportional division rule, whereas taking it
rom the CARA class leads to the rule of Constrained Equal Losses.
criterion has been given by means of which it can be verified,

or a division rule described in terms of a sufficiently smooth
arametric function, whether or not it is possible to derive this
ule from a social norm utility function.

The analysis in this paper has several limitations. In the lit-
rature on the bankruptcy problem, many properties are dis-
ussed that division rules may or may not satisfy; see Thomson
2019) for an extensive survey. Relatively little attention has been
iven in the paper to determining which axioms are satisfied
y SEC rules. Claims Boundedness and monotonicity properties
ave been discussed in Remark 4.3. The satisfaction of symmetry
nd consistency properties can be inferred from the fact that SEC
ules form a subclass of Young–Kaminski rules (Young rules in the
ase of homogeneous utility), using the theorems that have been
roven for parametric families (Young, 1987, Thm. 1; Kaminski,
006, Thm. 1; Thomson, 2019, Ch. 10). It would be of interest to
ind further axioms that characterize SEC rules with homoge-
eous utility within the class of all Young rules. The condition
iven in Theorem 6.5 is necessary and sufficient and can effec-
ively be verified as indicated in Remark 6.9, but in the stated
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orm it is of a purely mathematical nature, without an axiomatic
nterpretation.

The smoothness assumptions that have been made in the
aper are fairly strong (in fact as strong as needed to avoid all
ifficulties relating to nonsmoothness). The assumptions could be
eakened by making use of the techniques of convex analysis.
he Arrow–Pratt measure of risk aversion, which has been used
or instance in Proposition 4.9, can still be given a meaning for
tility functions that are only supposed to be nondecreasing,
oncave, and upper semicontinuous (Würth and Schumacher,
011). The strict concavity assumption may be weakened as well;
t may then no longer be true, however, that the axioms of strong
fficiency and compliance lead to a uniquely defined division rule
hen agents’ utility functions are given.
The preference model that is expressed by social norm utility

ay be too strictly rational in many situations. The importance
f benchmarks has often been emphasized in the literature on
ehavioral economics; see for instance Kahneman and Tversky
1979). It may be reasonable at least to admit claim-dependent
tility functions, so that agents with different claims have dif-
erent utilities. SEC rules based on claim-dependent utilities are
till based on claim size only, so that rationalization by means
f claim-based utility functions is a meaningful question. It is to
e expected that, to obtain a degree of uniqueness, fairly strong
estrictions must be imposed on the way in which agents’ utilities
an depend on claims.
While the framework of expected utility has been followed

n this paper, there are of course many other models for mod-
ling preferences that have been proposed in the literature. The
xioms of strong Pareto efficiency and compliance can be used
n combination with such alternative preferences as well. In the
ontext of bankruptcy, it may in particular be of interest to use
ther-regarding preferences, which express that agents take not
nly their own awards into account, but also those received by
thers. A special question of interest is whether it would be pos-
ible to rationalize the Constrained Equal Awards rule by making
se of such preferences and/or by weakening of the regularity
ssumptions.
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ppendix. Proofs

.1. Proof of Theorem 4.1

Theorem 4.1 is a direct consequence of the following two
emmas. First, some notation: for a given finite nonempty index
et N , write

N = {s : [0,M] → RN
+

| s(·) piecewise continuous,∑
i∈N

si(E) = E for all 0 ≤ E ≤ M}.

Lemma A.1. Let (αi)i∈N be a set of positive weights indexed by a
finite nonempty set N, and let µ be a measure on [0,M] that has
positive density with respect to the Lebesgue measure. Furthermore,
for each i ∈ N, let ui(·) be a utility function satisfying the regularity
assumption of Definition 3.3(i). The optimization problem∑

αi

∫ M

ui(si(E)) dµ(E) → max (A.1)

i∈N 0 L

21
has a unique solution in SN . This solution is given by

si(E) = (u′)−1(λ(E)/αi
)

(A.2a)

here, for each E ≥ 0, λ(E) ∈ (0, ∞] is chosen such that∑
i∈N

(u′)−1(λ(E)/αi
)

= E. (A.2b)

he functions si(·) defined in (A.2) are continuous.

roof. To verify the claim that λ is uniquely defined by (A.2b),
ote that the function ϕ defined by ϕ(λ) =

∑
i∈N (u

′)−1(λ/αi) is
surjective decreasing mapping from [maxi∈N αiu′

i(∞),maxi∈N αi
′

i(0)] to [0, ∞]. Therefore there is a unique solution λ(E) ∈

maxi∈N αiu′

i(∞),maxi∈N αiu′

i(0)] to Eq. (A.2b), which depends
ontinuously on E. Since ϕ(λ) = ∞ for 0 ≤ λ ≤ maxi∈N αiu′

i(∞)
nd ϕ(λ) = 0 for λ ≥ maxi∈N αiu′

i(0), the functions si(E) are still
niquely defined even if the range of values from which λ(E) can
e chosen is extended to (0, ∞]. It follows that (A.2) uniquely
efines a continuous function s(E) = (si(E))i∈N . Now, for each
ixed E ∈ [0,M], one can consider the optimization problem

i∈N

αiui(xi) → max subject to xi ≥ 0,
∑
i∈N

xi ≤ E. (A.3)

standard application of the Karush–Kuhn–Tucker theorem
hows that the solution (xi)i∈N of this optimization problem is
iven by xi = si(E) as defined in (A.2).
To show that the function s is the unique optimizer, take a

unction s̃ ∈ SN that is not equal to s. Define f (E) for
∈ [0,M] by

(E) =

∑
i∈N

αi
(
ui(si(E)) − ui(s̃i(E))

)
.

ue to the pointwise optimality of s(E), we have f (E) ≥ 0 for all E,
nd since we assumed that s̃ ̸= s, we must have f (E) > 0 for some
. Because the function f is piecewise continuous, this implies
hat there exists an interval (a, b) ⊂ [0,M] such that f (E) > 0
or all a < E < b. Since the measure µ has positive density with
espect to Lebesgue measure on [0,M], it follows that

i∈N

αi

∫ M

0
ui(s̃i(E)) dµ(E) <

∑
i∈N

αi

∫ M

0
ui(si(E)) dµ(E).

onsequently, any element of SN that is different from s as
efined by (A.2) is strictly suboptimal. □

emma A.2. If s ∈ SN is Pareto efficient for the multicriteria
ptimization problem with objectives (3.1), i ∈ N, then there exist
onnegative weights (αi)i∈N , not all equal to 0, such that s is optimal
or the weighted-sum problem∑
i∈N

αi

∫ M

0
ui(si(E)) dµ(E) → max

subject to
∑
i∈N

si(E) = E, si(E) ≥ 0. (A.4)

roof. The statement follows from standard convexity argu-
ents; for the reader’s convenience, a brief summary follows.
et U : SN → (R ∪ {−∞})N denote the mapping that takes a
ivision function s to the corresponding vector of agents’ felicities
s determined by (3.1), and let U ⊂ (R ∪ {−∞})N denote the
ange of U . From the concavity of the utility functions, it follows
hat the set U + RN

−
, where RN

−
denotes the nonpositive cone

z ∈ RN
| z ≤ 0}, is convex; see for instance Aubin (1993,

rop. 2.6), or compare the use of ‘‘Condition C’’ in Gerber (1978).

et s ∈ SN be Pareto efficient; then, by definition, we have
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U(s) + RN
+

)
∩

(
U + RN

−

)
= {U(s)}. Since the relative interiors

f the two convex sets U(s) + RN
+

and U + RN
−

do not intersect,
he separation theorem of finite-dimensional convex analysis (see
or instance Rockafellar, 1997, Thm. 11.3) implies that there exists
nonzero vector α ∈ RN such that ⟨α,U(s)⟩ ≥ ⟨α,U(s̃)⟩ for all

s̃ ∈ SN , and ⟨α,U(s)⟩ ≤ ⟨α,U(s) + z⟩ for all z ≥ 0. The latter
condition implies that α ≥ 0, and the former that s is a maximizer
for the weighted-sum criterion stated in (A.4). □

Proof of Theorem 4.1. For the ‘‘if’’ part, assume that s(·) is a
division function satisfying the conditions of the theorem with
index set N ′ and weights (αi)i∈N ′ . Note that the function λ(·) that
appears in the statement of the theorem is related to the division
function s(·) via (A.2a) (see (4.2)), and hence (A.2b) holds. Suppose
that a Pareto improvement is possible, i.e. there exists s̃ ∈ SN ′

such that∫ M

0
ui(s̃i(E)) dµ(E) ≥

∫ M

0
ui(si(E)) dµ(E) for all i ∈ N (A.5)

with strict inequality for at least one i ∈ N . If
(
s̃i(·)

)
i∈N ′ ̸=(

si(·)
)
i∈N ′ , then the strict inequality∑

i∈N ′

αi

∫ M

0
ui(s̃i(E)) dµ(E) <

∑
i∈N ′

αi

∫ M

0
ui(si(E)) dµ(E) (A.6)

must hold since the expression on the right is uniquely optimized
by

(
si(·)

)
i∈N ′ by Lemma A.1. Because all (αi)i∈N ′ are positive, this

leads to a contradiction with (A.5). If
(
s̃i(·)

)
i∈N ′ =

(
si(·)

)
i∈N ′ , then

equality between si(E) and s̃i(E) for all i and E is forced by the
balance condition. Consequently, for no i ∈ N can there be a strict
inequality in (A.5), and again there is a contradiction.

To show the necessity of the condition, let (αi)i∈N denote the
nonnegative weights that are provided by Lemma A.2. Define N ′

as the set of indices i such that αi > 0. The optimizer s ∈ SN for
problem (A.4) is such that si(·) = 0 for i ̸∈ N ′, and (si)i∈N ′ is an
optimizer for the problem (A.1). Lemma A.1 then implies that s is
of the form indicated in the theorem. □

A.2. Proof of Proposition 4.7

To verify that the triple (T ,max, f ) as specified is indeed a
Young–Kaminski parametrization, note that it follows from the
definition of the generalized functional inverse that its value at
∞ is equal to 0. Therefore, f (t, 0) = t−1(h(0)) = t−1(∞) = 0.
The condition t(0) > 1 > t(∞) guarantees that max(t) =

t−1(1) is well-defined as a finite positive number. Furthermore,
f (t, 1) = max(t) by definition. Finally, since t−1 is a continuous
and nonincreasing function from [0, ∞] to [0, ∞], it follows that
f (t, ·) is a continuous and nondecreasing function from [0, 1] to
[0,max(t)] for every fixed value of t .

The claim that the functions defined in (4.8) belong to the
space T follows from the regularity assumptions. In particular, be-
cause the marginal utilities u′

i(x) are decreasing, we have u′

i(0) >

u′

i(ci) > u′

i(∞) for all i ∈ N , so that ti(0) > 1 > ti(∞).
The division method defined by (2.2) in Proposition 2.7 gives

the division corresponding to an estate value E as the uniquely
determined vector (x1, . . . , xn) that satisfies

∑
i∈N xi = E and

xi = f (ti, λ) for some constant λ. Given the definitions (4.7) and
(4.8) and the definition of the generalized functional inverse, the
latter condition is equivalent to the existence of a constant λ such
that u′

i(xi)/u
′

i(ci) = λ for all i with xi > 0, and u′

i(xi)/u
′

i(ci) ≤ λ for
all i with x = 0.
i
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A.3. Proof of Theorem 4.8

The optimization problem (4.9) calls for maximization of a
strictly concave function on a convex and bounded domain; hence
there is a unique solution. The standard Karush–Kuhn–Tucker
conditions are necessary and sufficient for optimality, due to the
regularity assumptions that have been made. These conditions
state that there exist Lagrange multipliers λ ∈ R and νi ≤ 0 such
that, for all i ∈ N ,
u′

i(xi)
u′

i(ci)
= λ + νi, νi = 0 if xi > 0. (A.7)

These conditions are the same as the ones stated in (4.6). It
follows that the divisions induced by the optimization problem
and by the SEC rule are the same.

A.4. Proof of Proposition 4.9

Since the Arrow–Pratt measure of risk aversion is minus the
derivative of log marginal utility, we have∫ ci

xi

ri(x) dx = log u′

i(xi) − log u′

i(ci) for all i ∈ N.

herefore, the conditions in (4.16) can be rewritten in the form
A.7). Consequently, the division given by (4.16) in combination
ith the requirement

∑
i∈N xi = E coincides with the division

iven by the SEC rule.

.5. Proof of Proposition 5.3

Given the statements in Remark 4.5 and Proposition 4.9, it
nly remains to show the necessity of the condition. Suppose
hat u1 and u2 are utility functions that satisfy the conditions
f Definition 3.3(i) and that generate the same SEC division rule.
et f1 and f2 denote the corresponding parametric functions de-
ined via (5.1). Since these parametric functions generate the
ame division rule, they specify the same family of functions
f claim size c0, even though these families may be differently
arametrized. Consequently, there exists an increasing function
from [1, u′

1(0)/u
′

1(∞)] onto [1, u′

2(0)/u
′

2(∞)] such that, for all
0 > 0 and 0 < x ≤ c0,
′

1(x) = λu′

1(c0) ⇔ u′

2(x) = g(λ)u′

2(c0). (A.8)

or any fixed c0 > 0, one can write g(λ) = u′

2

(
(u′

1)
−1(λu′

1(c0))
)
/

′

2(c0). This shows that the mapping g is continuously differen-
iable on [1, u′

1(0)/u
′

1(∞)]. Define the function λ(c0, x) for c0 > 0
nd 0 < x ≤ c0 by λ(c0, x) = u′

1(x)/u
′

1(c0); then
′

2(x) = g(λ(x, c0))u′

2(c0). (A.9)

aking partial derivatives of both sides of the equality (A.9) with
espect to x, and using the definition of λ(c0, x), one finds that
′(λ(c0, x))u′′

1(x)/u
′

1(c0) = u′′

2(x)/u
′

2(c0). This, in combination with
he definition of λ(c0, x) and the relation (A.9), leads to the
quality

u′′

2(x)
u′

2(x)
=

g ′(λ(c0, x))
g(λ(c0, x))

λ(c0, x)
u′′

1(x)
u′

1(x)
(A.10)

hich holds for all c0 > 0 and 0 < x ≤ c0. Define a function G(λ)
for λ ∈ (1, u′

1(0)/u
′

1(∞)) by

(λ) =
g ′(λ)
g(λ)

λ.

From (A.10), it follows that the function (c0, x) ↦→ G(λ(c0, x))
actually depends on x only. Take λ1 and λ2 in (1, u′

1(0)/u
′

1(∞)),
ith λ < λ . Choose c1 > 0, and define x := f (c1, λ ) > 0.
1 2 0 1 0 1
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ecause limc0↓0 f1(c0, λ2) = 0 and f1(c10 , λ2) > f1(c10 , λ1) = x,
there exists c20 ∈ (0, c10 ) such that f1(c20 , λ2) = x. Then λ1 =

(c10 , x) and λ2 = λ(c20 , x). Since G(λ(c0, x)) depends on x only,
this implies that G(λ1) = G(λ2). It follows that the function
G(λ) is in fact constant. The relation (A.10) then shows that the
measures of risk aversion corresponding to u1 and u2 are related
by a multiplicative constant, which must be positive since both
utility functions have been assumed to be increasing and concave.

A.6. Proof of Lemma 6.4

Only the ‘‘if’’ part requires proof. Let h be as in the statement
of the lemma. It needs to be verified that the condition (6.2) is
satisfied for λ = 0, for λ = 1, and in all other cases (if any) in
which f (c0, λ) = 0. If λ = 0, we have f (c0, λ) = 0 by definition
of a parametric function, and condition (6.2b) is satisfied since
h(0) = u′(0)/u′(∞) and u′ is decreasing. For λ = 1, we have
f (c0, λ) = c0 for all c0 > 0; in this case, condition (6.2a) must be
checked, and it is indeed satisfied since h(1) = 1. Finally, assume
that (c0, λ) is such that λ > 0 and f (c0, λ) = 0. Due to items (ii)
and (iii) in Definition 6.3, there exists c∗

0 such that f (c0, λ) = 0
for all c0 ≤ c∗

0 and f (c0, λ) > 0 for all c0 > c∗

0 . Taking the limit as
c0 tends to c∗

0 from above, and making use of the continuity of u′,
one derives from (6.2a) that h(λ)u′(c∗

0 ) = u′(0). For c0 ≤ c∗

0 , the
fact that u′ is decreasing implies that h(λ)u′(c0) ≥ h(λ)u′(c∗

0 ) =
′(0). In other words, (6.2b) holds.

.7. Proof of Theorem 6.5

The necessity part follows directly from (6.4). Conversely, if
he condition of the theorem is satisfied, one can construct a
ationalizing utility function as follows. Given x > 0, take c0
ith c0 > x and let λ ∈ (0, 1) be such that f (c0, λ) = x (such
must exist because f (c0, 0) = 0, f (c0, 1) = c0, and f (c0, ·) is

ontinuous). Now define the function ρ(x) by ρ(x) = f ×(c0, λ)
or c0 and λ such that f (c0, λ) = x. The condition of the theorem
uarantees that this definition is unambiguous. Take any utility
unction u(x) that has the function ρ(x) as its rate of decrease
of risk aversion. By construction, the function ρ(x) satisfies the
relation (6.4). As a consequence, we have
∂

∂λ
log

(
r(f (c0, λ))fc0 (c0, λ)

)
= −ρ(f (c0, λ))fλ(c0, λ) +

fc0λ(c0, λ)
fc0 (c0, λ)

= 0

where r(·) denotes the Arrow–Pratt measure of risk aversion
corresponding to the utility function u(·). It follows from this that
the function

(c0, λ) ↦→
u′′(f (c0, λ))
u′(f (c0, λ))

fc0 (c0, λ) (A.11)

is constant as a function of λ. Given also the continuity of (A.11)
as a function of λ, it can be concluded that, for every c0 > 0, the
xpression given by (A.11) takes the same value in (c0, λ) as it
oes in (c0, 1). Given that f (c0, 1) = c0 for all c0 > 0 and hence
c0 (c0, 1) = 1, we find that

u′′(f (c0, λ))
u′(f (c0, λ))

fc0 (c0, λ) =
u′′(c0)
u′(c0)

.

his implies that

∂

∂c0

u′(f (c0, λ))
u′(c0)

=
u′′(f (c0, λ))fc0 (c0, λ)u

′(c0) − u′(f (c0, λ))u′′(c0)
(u′(c0))2

= 0.

(A.12)

ow, define a function h : [0, 1] → [1, u′(0)/u′(∞)] as follows.
or λ ∈ (0, 1), there exists c0 > 0 such that f (c0, λ) > 0. Define

(λ) =
u′(f (c0, λ))

.

u′(c0)

23
It is guaranteed by (A.12) that this definition is unambiguous
(i.e. the right hand side does not depend on the choice of c0).
Furthermore, define h(1) = 1 and h(0) = u′(0)/u′(∞). It follows
rom the monotonicity and continuity assumptions on f and
′ that the function h is continuous and decreasing on (0, 1).
oreover, from the equality f (c0, 1) = c0 and the continuity of
as a function of λ, it follows that h is continuous at 1. Since

f (c0, 0) = 0 for all c0, and again using the continuity of f as a
function of λ, we have that f (c0, λ) can be arbitrarily close to 0
ven when c0 is arbitrarily large, so that

up{u′(f (c0, λ))/u′(c0) | (c0, λ) ∈ Df } = u′(0)/u′(∞).

his proves that the function h as defined above is continuous
t 0. This function is therefore a continuous decreasing mapping
rom [0, 1] to [1, u′(0)/u′(∞)], taking the value u′(0)/u′(∞) at
and the value 1 at 1. It follows that h is surjective. More-

ver, the relation (6.2a) is satisfied. The result now follows from
emma 6.4.
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