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a b s t r a c t

This paper studies semiparametric identification in linear index discrete response panel
data models with fixed effects. Departing from the classic binary response static panel
data model, this paper examines identification in the binary response dynamic panel
data model and the ordered response static panel data model. It is shown that under
mild distributional assumptions on the fixed effect and the time-varying unobservables
point-identification fails, but informative bounds on the regression coefficients can
still be derived. Partial identification is achieved by eliminating the fixed effect and
discovering features of the distribution of the unobservable time-varying components
that do not depend on the unobserved heterogeneity. Numerical analyses illustrate how
the identification bounds change as the support of the explanatory variables varies.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper provides new results on semiparametric identification in fixed effects linear index binary response dynamic
panel data models and ordered response static panel data models. Under mild distributional assumptions on the
fixed effect and the time-varying unobservables point-identification fails, but informative identification bounds on the
regression coefficients can still be derived. In the dynamic binary response setting, partial identification of the regression
coefficients is achieved by observing individuals who switch in two consecutive time periods, conditional on their initial
condition. In the static ordered response setting, in addition to the individuals who switch from one period to the next,
it is shown that individuals who choose the ‘‘in-between’’ category in two consecutive periods are also a useful source of
identification.

As pointed out by Heckman (1981a) intertemporal correlation in the decisions of individuals in panel data models
comes in general through the presence of time-invariant unobservables and lagged dependent variables in the underlying
functional form specification. Ignoring this dynamic behavior can result in inconsistent estimates of the regression
coefficients and other quantities of interest, while distinguishing between the causes of autocorrelation may have
important policy implications.

Linear panel data models with continuous dependent variables, can be seen as solving an omitted variables problem,
arising from the presence of this additively separable fixed effect. Even when this fixed effect is allowed to be correlated
with the explanatory variables, point-identification of the regression parameters can be achieved by differencing out this
fixed effect.
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In non-linear panel data models with additively separable fixed effects, the differencing approach cannot be directly
implemented. Identification and estimation in these models rely heavily on the assumptions placed on the individual
specific heterogeneity. The challenges these models pose have been well documented in the literature. Choosing between
random and fixed effects, how to deal with initial conditions and lagged dependent variables, as well as the incidental
parameters problem and the calculation of marginal effects, have all been extensively studied. A detailed summary of
developments can be found in Arellano and Honoré (2001) and more recently in Arellano and Bonhomme (2011).

This paper studies semiparametric identification in linear index discrete response panel data models in two different
settings. The first setting corresponds to the binary response dynamic panel data model, where the individuals’ choice
set consists of a binary outcome. The main focus is on eliminating the unrestricted fixed effect, which is allowed
to be correlated with the explanatory variables, without imposing distributional assumptions on the time-varying
unobservables. Partial identification is achieved by finding features of the distribution that are independent of the fixed
effect. Rosen and Weidner (2013,WP), thereafter RW2013, took such an approach for deriving bounds in the static binary
outcome model. This paper analyzes dynamic binary response models, where last period’s choice directly enters current
period’s decision rule. Conditioning on the initial condition, identification relies on individuals who switch choices from
one period to the next. It is shown that the joint probability of the choices these individuals make in two consecutive
periods is bounded by features of the distribution invariant to the fixed effect. Under an exogeneity condition for the
time-varying unobservables, this allows for partial identification of the coefficients of the contemporaneous explanatory
variables and the lagged dependent variable.

Point-identification of the regression parameters in binary response panel data models relies on strong and restrictive
assumptions which might be untestable and difficult to satisfy in many applications. Several papers including Chamberlain
(1984, 2010), Honoré (2002) and Honoré and Kyriazidou (2000), have shown that in linear index panel data models
with binary outcomes, parametric point-identification of the regression parameters when regressors have bounded
support can only be achieved under the assumption of independently and identically logistically distributed time-varying
unobservables. Manski (1987), using a conditional version of the maximum score estimator, shows that in the static
panel data binary response model inference is possible under a time-stationarity condition, when the strictly exogenous
explanatory variables vary enough over time with at least one component having unbounded support. Honoré and Lewbel
(2002) show point-identification in binary panel data models with predetermined regressors, if there exists a special
regressor that is independent of the fixed effect, conditional on the rest of the regressors and the instruments. This paper
provides partial identification results without imposing the logistic distributional assumption, or relying on the existence
of special regressors or regressors with unbounded support.

This paper falls within the general category of papers studying semiparametric and partial identification in panel data
models. For example, Chernozhukov et al. (2005) focus on nonparametric bound analysis in multinomial panel data models
with correlated random effects, while Chernozhukov et al. (2013) provide sharp identification sets for the average and
quantile treatment effects in fully parametric and semiparametric nonseparable panel data models. Honoré and Tamer
(2006) study bounds on parameters in dynamic discrete choice models, mainly focusing on the initial condition problem.
In linear panel data settings, Rosen (2012) studies the identifying power of conditional quantile restrictions in short panels
with fixed effects.

The second setting examined in this paper is the static ordered response setting, where the choice set consists of
more than two ordered alternatives. The shape restrictions imposed by the ordered response model allow for partial
identification of the parameters of interest, without imposing distributional assumptions on the unobserved time-varying
components or the fixed effect. The bounds are achieved by relying on observable implications in which the fixed effect
does not appear. In contrast to the binary case, where information on the parameters of interest only comes through
individuals who switch, in the ordered model it is shown that individuals who choose the ‘‘in-between’’ categories also
provide a useful source of information. The information provided by the individuals who stay with the same option might
be useful in comparing the behavior of switchers to non-switchers. Furthermore, the greater number of choice-pairs that
can be used in the ordered model in comparison to the binary model might help in achieving tighter bounds on the
regression parameters.

Several papers examined identification in multinomial response panel data models where the choice set includes a
variety of unordered alternatives. In a recent working paper, Pakes and Porter (2014) provide set identification results in
multinomial models with additively separable fixed effects, where the key assumption is a group homogeneity condition
on the disturbances conditional on the contemporaneous explanatory variables and the fixed effects. Shi et al. (2018)
develop a semiparametric identification and estimation approach to panel data multinomial choice models based on
cyclic monotonicity, which point-identifies the model parameters. Although, these papers provide clear identification
results, they usually require the comparison of each option against every other alternative, which might be intractable and
computationally heavy in practice. This paper departs from these models and imposes some additional shape restrictions
on the functional form, thus reducing the number of between alternatives comparisons needed to determine the optimal
choice.

Identification in panel data ordered response models has not been extensively studied in the literature. Following
the work by Honoré (1992) that shows how to consistently estimate the parameters in the truncated/censored panel
data model, this paper focuses on the ‘‘in-between’’ case of ordered outcomes. Since every ordered response model
can be expressed as a dichotomous/binary response model, parametric point-identification can be achieved under
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the assumptions of logistically distributed time-varying unobservables as in Chamberlain (1984, 2010). As discussed
in Baetschmann et al. (2015) the literature has estimated the fixed effects ordered logit model either with a single
dichotomization with constant or individual-specific thresholds, or by combining all possible dichotomizations by various
estimation methods. In a recent paper, Muris (2017) introduces a new estimator for the fixed effects ordered logit model
which allows for estimation of the differences in the cut points, in addition to a more efficient estimation of the regression
coefficients. This paper departs from these approaches, by relaxing the logistic distribution assumption and using the
complete structure of the ordered choice model.

The rest of the paper is structured as follows. Section 2 examines identification in the dynamic binary response model.
Section 3 extends the static binary response panel data model to a static ordered response panel data model and examines
identification under weak distributional conditions. Section 4 gives some numerical results for the models discussed.
Section 5 includes some general discussion and Section 6 concludes with some final remarks. All the proofs are provided
in the Appendix.

2. The dynamic binary response panel data model

Binary response panel data models are widely used to model situations where individuals are observed over time
making choices from a set that includes two alternatives, for example the choice of seeking employment or not or the
choice of traveling by train or by car in a specific period. The leading example in the literature has been the static binary
response model, where individuals’ choices are correlated across different periods only through the presence of a time-
invariant unobserved heterogeneity, as in Chamberlain (1984, 2010) and Manski (1987). In the simplest form of this model,
each individual in the population is observed for two time periods, t = 1 and t = 2, and in each time period the individual
can choose one option from the set Yt = {0, 1}. Therefore, each individual is characterized by a set of observables (Y , X)
such that Y = (Y1, Y2), X = (X1, X2), and a set of unobservables (V , α), where V = (V1, V2) and α ∈ R. Define by 1(·) the
indicator function which equals to 1 if (·) is true and 0 otherwise, then the static panel data binary response model is
given by,

Yt = 1(Xtβ + α + Vt > 0) (1)

RW2013 provide partial identification results in this kind of models and find features of the distribution that do not
depend on α, by considering less restrictive conditions on the distribution of the time-varying unobervables than the
ones discussed in Section 1.

This section extends the linear index binary response static model to the linear index binary response dynamic model.
This is of practical relevance because in panel data settings with repeated observations it is evident and natural to assume
that individuals’ past choices directly affect current and future decisions. For example, an individual’s decision to seek
employment in the current period is likely to be affected by his employment status last period in addition to other factors,
such as potential income and years of education. This allows for correlation in choices to come through two sources, the
fixed effect and the lagged dependent variable. The dynamic binary response panel data model that includes the lagged
dependent variable as an additional explanatory variable can be expressed as,

Yt = 1(Xtβ + Yt−1γ + α + Vt > 0) (2)

In this model each individual is observed for three periods, t = {0, 1, 2}, and is characterized by a set of observables
Y0, Y = (Y1, Y2), X = (X1, X2), and a set of unobservables (V , α), where V = (V1, V2) and α ∈ R. Like Honoré and
Kyriazidou (2000), the parameter γ measures the ‘‘impact’’ of choosing option Y = 1 in period t − 1, or the true state
dependence parameter, for example the effect of being employed in period t − 1, and β can be interpreted as the effect
of other personal characteristics on the employment decision. Last period’s choice directly affects the decision so the
choice in period t − 1 needs to be taken into account. This creates an initial condition problem in modeling the choice
in period t = 1, since the choice in period t = 1 depends on the choice in period t = 0.1 To deal with this issue, similar
to Wooldridge (2005), it is assumed that the outcome in period t = 0, Y0 = y0, is observed, however no assumptions
about its generation or its relation with the fixed effect are imposed, such that the set of conditioning covariates consists
of (x, y0) ∈ X × Y0. Section 2.1 formalizes the assumptions.

2.1. Model assumptions

Assumption 1 (Random Sampling). The observed data comprise a random sample of N individuals from the population.
For each individual (Y , Y0, X, V , α) are defined on the probability space (Ω,F,P), where F contains the Borel Sets. The
support of (Y0, X, V , α) is (Y0 × X × V × A) where V ⊆ R2 and A ⊆ R.

1 Period t = 0 denotes the first period observed in the sample. Unless this period coincides with the first period of the process, it will depend
on previous (not observed) periods, the exogenous variables in period t = 0 and the joint distribution of the outcome in the first period and
the unobserved heterogeneity. This joint distribution is (in general) different from the joint distribution of future outcomes and the unobserved
heterogeneity.
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ssumption 2 (Conditional Independence). X and V are stochastically independent conditional on Y0, i.e. V ⊥ X |Y0.

Assumption 1 defines the underlying probability space and notation for the support of the random variables
Y , Y0, X, V , α). Under this assumption the data comprise a random sample and therefore the conditional distribution
(y1, y2|x, y0) ≡ P(Y1 = y1∧Y2 = y2|X = x, Y0 = y0) is point-identified over the support of (Y1, Y2) for almost every x ∈ X

and y0 ∈ Y0. Assumption 2 imposes only conditional independence between X and V conditional on Y0,2 which is less
restrictive than the assumptions imposed in the literature, such as V ⊥ (X, Y0) or specifying the conditional distribution
V |X, Y0. This assumption allows for example for correlation between V0 and (V1, V2). α is allowed to be correlated with
oth V and X in an arbitrary way. The set of all possible (conditional) distributions of V , α given X, Y0 is F(V ,α)|X,Y0 and

the set of all possible (conditional) distributions of ∆V given X, Y0, where ∆V = V2 − V1, is F∆V |X,Y0 .
The potential correlation of the time-invariant unobservable with the explanatory variables, creates an additional

endogeneity problem, that needs to be addressed for identification and consistent estimation of the parameters of
interest.3 In linear panel data models with continuous outcomes differencing out the fixed effect guarantees point-
identification of the regression parameters, under some sufficient conditions. This paper mimics the approach used in
linear panel data models with continuous outcomes to solve the problem of the fixed effect.

Finally, define a structure S ≡ (β, γ , F(V ,α)|X,Y0 ) as a specified collection of parameters β and γ , and joint distributions
of the time-varying unobservables and the unobserved heterogeneity, F(V ,α)|X,Y0 . The set of admissible structures is thus
defined in Assumption 3.

Assumption 3 (Admissible Structures). The structure S admitted by the model belongs to a collection S of parameters β
and γ belonging to a parameter space Θ and joint distributions of the time-varying unobservables and the unobserved
heterogeneity, F(V ,α)|X,Y0 ∈ F(V ,α)|X,Y0 .

Following Assumptions 1–3, the identified set of admissible structures, denoted by S0, is characterized by,

S0
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(β, γ , F(V ,α)|X,Y0 ) ∈ S : ∀(y1, y2) ∈ (Y1 × Y2),

F(V ,α)|X,Y0

(
RDB

(y1,y2)
(x, y0; β, γ )

)
= P(y1, y2|x, y0)

a.e. x ∈ X and y0 ∈ Y0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

and the identified set for the model parameters (β, γ ) is then characterized by,

Θ0
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(β, γ ) ∈ Θ : ∃F(V ,α)|X,Y0 ∈ F(V ,α)|X,Y0 , ∀(y1, y2) ∈ (Y1 × Y2)

F(V ,α)|X,Y0

(
RDB

(y1,y2)
(x, y0; β, γ )

)
= P(y1, y2|x, y0)

a.e. x ∈ X and y0 ∈ Y0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

where following the definition of the dynamic binary response model (DB) in (2), RDB
(y1,y2)

(x, y0; β, γ ) are defined as the
regions of unobservables (V , α) that partition the supp(V , α) such that for all (V , α) ∈ (V,A), (Y1, Y2) = (y1, y2) when
X = x and Y0 = y0,

RDB
(y1,y2)(x, y0; β, γ ) = {(V , α) ∈ (V,A) : yt = 1(xtβ + yt−1γ + α + Vt > 0), t = 1, 2} (5)

Point-identification of the regression coefficients in the dynamic binary response model under the logistic distribution
assumption comes by observing individuals for (at least) four time periods who change their choice from period t = 1
and t = 2, as shown in Honoré and Kyriazidou (2000). This gives rise to features of the distribution that do not depend
on the unobserved heterogeneity. In the semiparametric approach of this paper, that relaxes the logistic distributional
assumption, finding features of the distribution that do not depend on the unobserved heterogeneity leads to partial
identification of the regression parameters.

2.2. Identification bounds: Binary response dynamic panel data model

Identification of the parameters of interest (β, γ ) in model (2) comes through features of the distribution that are
invariant to changes in α, by considering the joint probability of the choices individuals make in periods t = 1 and t = 2,
conditional on the choice in period t = 0.

From the regions in (5) and Fig. 1(a), it can be seen that the model in (2) is complete and coherent in the sense that
conditioning on any value of the explanatory variables and the initial condition, for every (V , α) the model predicts a
unique (y1, y2) outcome with probability one and identification bounds of the form of (3) and (4) can be derived. Since

2 For example, suppose that Y is an employment indicator and (X1, X2) is potential income in periods 1 and 2 and (V1, V2) contains the (unobserved)
amily size in periods 1 and 2. The employment status in period t = 0, Y0 , affects both potential income and family size. Therefore, potential income
nd family size will be correlated through Y0 , but uncorrelated conditional on Y0 .
3 In dynamic panel data models there is an endogeneity problem by construction since α is correlated with the lagged dependent variable, y .
t−1
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Fig. 1. Regions of unobservables for each (Y1, Y2) choice when γ < 0 and Y0 = 0.

the outcome in period t = 0 directly affects the outcome in period t = 1, all three periods t = {0, 1, 2} are used. No
restriction is imposed on the fixed effect and identification of the parameters β and γ , through the elimination of α,
comes only by observing individuals who switch in periods t = 1 and t = 2 for each of the values of y0 namely,

A = {Y0 = 0 ∧ Y1 = 0 ∧ Y2 = 1}
B = {Y0 = 0 ∧ Y1 = 1 ∧ Y2 = 0}
C = {Y0 = 1 ∧ Y1 = 0 ∧ Y2 = 1}
D = {Y0 = 1 ∧ Y1 = 1 ∧ Y2 = 0} (6)

Theorem 1. Let SDB = (βDB, γ DB, FDB
(V ,α)|X,Y0

) be a structure admitted by model (2) such that SDB ∈ S0, then under
Assumptions 1–3, (βDB, γ DB) satisfy the following inequalities

1 − P(0, 1|x, 0) ≥ P∆V |Y0 [∆V < −∆xβDB
|Y0 = 0]

P(1, 0|x, 0) ≤ P∆V |Y0 [∆V < −∆xβDB
− γ DB

|Y0 = 0]
1 − P(0, 1|x, 1) ≥ P∆V |Y0 [∆V < −∆xβDB

+ γ DB
|Y0 = 1]

P(1, 0|x, 1) ≤ P∆V |Y0 [∆V < −∆xβDB
|Y0 = 1]

where ∆X = X2 − X1 and ∆V = V2 − V1.

Proof. The proof is provided in Appendix A.1. □

The above relations provide restrictions on the distribution of ∆V |X, Y0 for any realization of x ∈ X and y0 ∈ Y0 that
do not depend on the fixed effect α.4 The events {Y1 = 0 ∧ Y2 = 0} and {Y1 = 1 ∧ Y2 = 1} provide no restrictions on
∆V and cannot be used to eliminate the fixed effect α. Similarly to the binary logit fixed effects model and as discussed
in Honoré (2002), the individuals who do not switch cannot be used to identify the regression parameters, since for any
value of (β, γ ) the choices these individuals make can be rationalized by extremely large or extremely small values of
the fixed effect. In other words, these events provide no restrictions on the values the fixed effect can take for any given
value of the regression parameters. Notice that in order for the bounds in Theorem 1 to be informative, there should exist
x ∈ X such that x1 ̸= x2 with positive probability.

Fig. 1(a) and (b) plot the regions of unobservables conditional on Y0 = 0 and γ < 0 given in equations (5) and provide
an outline of the main idea. It can be shown that the probability of any switching event is bounded by the probability of
an event that is independent of the fixed effect. Fig. 1(b) illustrates this result for the event (Y1, Y2) = (1, 0) conditional
on Y0 = 0 and γ < 0. Changing α moves the region of (1, 0)|Y0 = 0 up and down the line ∆V = −∆Xβ − γ . Therefore,
it is clear that (V ∗, α∗) ∈ RDB

(1,0)(x, 0; β, γ ) implies (V ∗, α∗) ∈ {(V , α) : ∆V < −∆xβ − γ } and P(1, 0|x, 0) ≤ P∆V |Y0 [∆V <
−∆xβ − γ |Y0 = 0].

4 The distribution of ∆V |X, Y ∼ F is equivalent to ∆V |Y ∼ F by Assumption 2.
0 ∆V |X,Y0 0 ∆V |Y0
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heorem 2. Following Theorem 1, under Assumptions 1–3 the bounds on β, γ are given by,

ΘDB
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β, γ ) ∈ Θ : ∀ω ∈ R,

sup
x:−∆xβ−γ≤ω

P(1, 0|x, 0) ≤ inf
x:−∆xβ≥ω

1 − P(0, 1|x, 0)

and

sup
x:−∆xβ≤ω

P(1, 0|x, 1) ≤ inf
x:−∆xβ+γ≥ω

1 − P(0, 1|x, 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
roof. The proof is provided in Appendix A.2. □

Notice that unlike the Honoré and Kyriazidou (2000) result, where point-identification in the dynamic binary panel
ata model is achieved if the errors are logistically distributed and 4 time periods are observed, the identification bounds
n Theorem 2 only require 3 time periods. Furthermore, the bounds in Theorem 2 may not be sharp. This is in contrast
o the static case in RW2013 in which sharpness was proved. The presence of the lagged dependent variable complicates
he analysis, therefore the focus of the current paper is only on deriving identification bounds on (β, γ ).

Finally, by replacing Assumption 2 of X ⊥ V |Y0, with the unconditional independence assumption, X ⊥ V , the
dentification bounds on β and γ can be expressed in terms of the unconditional probabilities, given in Theorem 3.

heorem 3. Let Assumptions 1, X ⊥ V and 3 hold. Then the (unconditional) identification bounds on (β, γ ) are given by,

ΘDB
U =

⎧⎨⎩ (β, γ ) ∈ Θ : ∀ω ∈ R,

sup
x∈X

{G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x)} ≤ inf
x∈X

{G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x)}

⎫⎬⎭
here

G(ω|x, 0) = P[(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0]
G(ω|x, 1) = P[(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1]
G(ω|x, 0) = 1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0]
G(ω|x, 1) = 1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1]

and

P(Y0 = 0|X = x) = P0(x)
P(Y0 = 1|X = x) = P1(x)

Proof. The proof is provided in Appendix A.3. □

2.3. Dynamic panel data model with more periods

In Section 2, informative bounds on the parameters (β, γ ), in the situation where each individual is observed for three
periods, t = {0, 1, 2}, were derived. The results can be extended to more periods, where each individual is observed for T
periods and is characterized by the set of observables Y0, Ỹ = (Y1, . . . , YT ), X̃ = (X1, . . . , XT ), and a set of unobservables
(Ṽ , α), where Ṽ = (V1, . . . , VT ) and α ∈ R. Define by V = (Vt , Vt+1), ∆V = Vt+1 − Vt and by X = (Xt , Xt+1). Under
the random sampling imposed by Assumption 1 P(yt , yt+1|x, yt−1) ≡ P(Yt = yt ∧ Yt+1 = yt+1|X = x, Yt−1 = yt−1) is
point-identified over the support of (Yt , Yt+1) for almost every x ∈ X and yt−1 ∈ Yt−1. By extending Assumption 2 of
(X1, X2) ⊥ (V1, V2)|Y0 to V ⊥ X |Yt−1 for all t = {1, . . . , T } the identification bounds on (β, γ ) can be characterized as in
Theorem 4.

Theorem 4. Let Assumptions 1, 3 and the extended version of Assumption 2 hold, then the bounds on β, γ are given by the
set ΘDB

= ∩1≤t≤T−1Θ
DB
t , where:

ΘDB
t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

x:−∆xβ−γ≤ω

P(1, 0|x, Yt−1 = 0) ≤ inf
x:−∆xβ≥ω

1 − P(0, 1|x, Yt−1 = 0)

and

sup
x:−∆xβ≤ω

P(1, 0|x, Yt−1 = 1) ≤ inf
x:−∆xβ+γ≥ω

1 − P(0, 1|x, Yt−1 = 1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Proof. The proof is an extension of the proofs of Theorems 1 and 2 and is omitted. □
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Increasing the number of time periods can lead to tighter identification bounds. However, if the conditional distribution
f (Yt , Yt+1|Xt , Xt+1, Yt−1) is stationary, i.e. invariant with respect to the choice of (t, t + 1), this will not result in tighter

bounds.5

3. The static ordered response panel data model

Section 2 studies identification in binary response panel data models. As discussed in Section 1, several papers,
including for example Chintagunta et al. (2001) and Pakes and Porter (2014), have extended the binary response panel
data model to multinomial response models, where individuals choose from a set of unordered alternatives. This paper
extends the binary response panel data model to one where the choice set consists of alternatives that can be ordered,
such as the choice between unemployment, part-time employment or full-time employment and the choice of flying first,
business or economy class. This approach might be beneficial in reducing the dimension of search for the identification
bounds, since the shape restrictions imposed by the ordering specification, reduce the between alternatives comparisons
needed to determine the optimal choice.

This section extends the model in (1) to a model of three ordered outcomes, where in every period t = 1 and t = 2
each individual chooses one option from the set Yt = {0, 1, 2}. Such a model could be used, for example, in describing
consumers’ choices when faced with vertically differentiated alternatives such that if all the options were offered at the
same price everyone would choose option Y = 2 and Y = 0 denotes the outside option, that corresponds to not choosing
any of the available alternatives. The static panel data ordered response model for each individual can be expressed as,

Yt =

{0 if Xtβ + α + Vt ≤ c1
1 if c1 < Xtβ + α + Vt ≤ c2
2 if c2 < Xtβ + α + Vt

(7)

where Xt are observed individual characteristics, α is the unobserved time-invariant individual heterogeneity, Vt is the
ime-varying unobserved component and c = (c1, c2) ∈ C are the (unknown) threshold parameters in the ordered
esponse model, such that C ⊆ R2 and c2 > c1.6 Furthermore, it is clear that the model in (7) is observationally equivalent
o the model with, c̃1 = 0, α̃ = α − c1 and c̃2 = c2 − c1, therefore c1 is normalized to zero.

As already discussed in Section 1, the ordered response panel data model has not been extensively studied in the
iterature, and the work has mainly focused in redefining the ordered response model as a set of binary response models
ith logistically distributed unobservables. This paper departs from this approach and uses the ordered structure of
he model to characterize the identification bounds, without imposing distributional assumptions on the unobserved
ime-varying components or the fixed effect. Such an approach utilizes more information than the binary response
epresentation and provides informative identification bounds on the regression parameters. Section 3.1 formalizes the
ssumptions imposed on model (7).

.1. Model assumptions

ssumption 4 (Random Sampling). The observed data comprise a random sample of N individuals from the population. For
ach individual (Y , X, V , α) are defined on the probability space (Ω,F,P), where F contains the Borel Sets. The support

of (X, V , α) is (X × V × A) where V ⊆ R2 and A ⊆ R.

ssumption 5 (Independence). X and V are stochastically independent.

Assumption 4 defines the underlying probability space and notation for the support of the random variables
Y , X, V , α). Under this assumption the data comprise a random sample and therefore the conditional distribution
(y1, y2|x) ≡ P(Y1 = y1 ∧ Y2 = y2|X = x) is point-identified over the support of (Y1, Y2) for almost every x ∈ X .
ssumption 5 imposes independence of X and V ,7 but allows α to be arbitrary correlated with both V and X . The set of
ll possible (conditional) distributions of V , α given X is F(V ,α)|X and the set of all possible (conditional) distributions of
V given X , where ∆V = V2 − V1, is F∆V |X .
Finally define a structure S ≡ (β, c2, F(V ,α)|X ) as a specified collection of parameters β and c2, and joint distributions of

he time-varying unobservables and the unobserved heterogeneity, F(V ,α)|X . The set of admissible structures is thus defined
n Assumption 6.

5 I would like to thank an anonymous referee for pointing this out.
6 The threshold parameters are assumed to be constant over time as in many applications of panel data ordered response models. In a recent

working paper, Botosaru and Muris (2017) consider estimation of the regression parameters and the thresholds in a fixed effects ordered logit model
with a time-varying link function.
7 This is the strict exogeneity assumption imposed in many panel data settings. The model can be applied to settings of vertically differentiated

alternatives where higher values of Y correspond to better quality products. In this setting the regressors might be consumer characteristics which
are uncorrelated with demand shocks.
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Fig. 2. Regions of unobservables for each (Y1, Y2) choice.

Assumption 6 (Admissible Structures). The structure S admitted by the model belongs to a collection S of parameters β
and c2 belonging to a parameter space Θ and joint distributions of the time-varying unobservables and the unobserved
heterogeneity, F(V ,α)|X ∈ F(V ,α)|X .

Under Assumptions 4–6 the identified set of admissible structures, denoted by S0, is characterized by,

S0
=

⎧⎪⎨⎪⎩
(β, c2, F(V ,α)|X ) ∈ S : ∀(y1, y2) ∈ (Y1 × Y2)
F(V ,α)|X (RSO

(y1,y2)
(x; β, c2)) = P(y1, y2|x)

a.e. x ∈ X

⎫⎪⎬⎪⎭
and the identified set for the model parameters (β, c2) is given by,

Θ0
=

⎧⎪⎨⎪⎩
(β, c2) ∈ Θ : ∃F(V ,α)|X ∈ F(V ,α)|X , ∀(y1, y2) ∈ (Y1,Y2),

F(V ,α)|X (RSO
(y1,y2)

(x; β, c2)) = P(y1, y2|x)

a.e. x ∈ X

⎫⎪⎬⎪⎭
where following the definition of the static ordered response model (SO) in (7), RSO

(y1,y2)
(x; β, c2) are defined as the regions

of unobservables (V , α) that partition the support of (V , α) such that (Y1, Y2) = (y1, y2) when X = x.

3.2. Identification bounds: Ordered response static panel data model

When no assumptions are imposed on the fixed effect, identification bounds on the regression parameters, (β, c2), are
derived by finding features of the distribution that do not depend on α. Fig. 2 plots the regions RSO

(y1,y2)
(x; β, c2) for any

ixed x. The model in (7) is complete and coherent in the sense that conditional on any value of the explanatory variables
∈ X , for every (V , α) the model predicts a unique (y1, y2) outcome with probability one.
Similarly to the binary panel data model, individuals who switch from period t = 1 to t = 2, can be used for

dentification of the parameters (β, c2), without imposing any assumptions on the fixed effect. The transitions that are
nformative are therefore,

{Y1 = i ∧ Y2 = j}, ∀i, j = 0, 1, 2 and i ̸= j. (8)

In addition, information that is independent of α is also provided by considering individuals who choose the same
ption, Y = 1, in periods t = 1 and t = 2 such that,

{Y1 = 1 ∧ Y2 = 1}. (9)

heorem 5. Let SSO =
(
βSO, cSO2 , F SO

(V ,α)|X

)
be a structure admitted by model (7). Under Assumptions 4–6, if SSO ∈ S0 then, for

any x ∈ X , (βSO, cSO2 ) satisfy,

P(1, 0|x) ≤ F∆V [−∆xβSO
]

SO
F∆V [−∆xβ ] ≤ 1 − P(0, 1|x)
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P(2, 0|x) ≤ F∆V [−∆xβSO
− cSO2 ]

F∆V [−∆xβSO
+ cSO2 ] ≤ 1 − P(0, 2|x)

P(2, 1|x) ≤ F∆V [−∆xβSO
]

F∆V [−∆xβSO
] ≤ 1 − P(1, 2|x)

P(1, 1|x) ≤ P∆V [−∆xβSO
+ cSO2 > ∆V > −∆xβSO

− cSO2 ]

where ∆X = X2 − X1 and ∆V = V2 − V1.

Proof. The proof is provided in Appendix A.4. □

Notice that in addition to the probabilities of the switching events, the conditional probability of the ‘‘in-between’’
event (1, 1) is also bounded by a conditional probability invariant to the fixed effect. As it can also be seen from Fig. 2,
the choice (Y1, Y2) = (1, 1) provides restrictions on the possible values the fixed effect can take for each value of (β, c2),
and hence can be used to identify the regression coefficients. Similar to the dynamic binary model in Section 2, in the
ordered model the events (0, 0) and (2, 2) give no information on β and c2 since these cases can be matched by extremely
small or extremely large values of α regardless of the value of (β, c2).

Theorem 5 has two important implications. It is known that each ordered response model can be expressed as a binary
response model. Consider the situation where the model in (7) is re-expressed as a binary response model where the
choices (Yt = 1, Yt = 2) were merged together. Then, following the same identification strategy, Theorem 5 would only
include P(1, 0|x) ≤ F∆V [−∆xβ] < 1 − P(0, 1|x). It is thus evident that the set of inequalities defining the identification
bounds in the ordered response contains the set of inequalities defining the identification bounds in the binary response
representation. Furthermore, in the binary response model identifying restrictions involve only individuals who switch.
In the ordered response model non-switchers also provide information which might prove helpful when comparing the
behavior of switchers to non-switchers. Theorem 6 formalizes the identification bounds on (β, c2).

Theorem 6. Let Assumptions 4–6 hold. Using the definitions in (10), the identification bounds on (β, c2) are given by the set:

ΘSO
=

{
(β, c2) ∈ Θ : ∀ω ∈ R,

max[s(1,0)(ω), s(2,0)(ω), s(2,1)(ω), s(1,1)(ω)] ≤ min[i(0,1)(ω), i(0,2)(ω), i(1,2)(ω), i(1,1)(ω)]

}
where,

s(1,0)(ω) = sup
x:−∆xβ≤ω

P(1, 0|x)

s(2,0)(ω) = sup
x:−∆xβ−c2≤ω

P(2, 0|x)

s(2,1)(ω) = sup
x:−∆xβ≤ω

P(2, 1|x)

s(1,1)(ω) = sup
x:−∆xβ+c2≤ω

P(1, 1|x)

i(0,1)(ω) = inf
x:−∆xβ≥ω

[1 − P(0, 1|x)]

i(0,2)(ω) = inf
x:−∆xβ+c2≥ω

[1 − P(0, 2|x)]

i(1,2)(ω) = inf
x:−∆xβ≥ω

[1 − P(1, 2|x)]

i(1,1)(ω) = inf
x:−∆xβ−c2≥ω

[1 − P(1, 1|x)] (10)

roof. The proof is provided in Appendix A.5. □

Similarly to Theorem 2, the identification bounds on (β, c2) in Theorem 6 might not be sharp.

.3. Static ordered response panel data model with more choices

Consider now the extension of model (7) where Yt = {0, . . . , K } and c = (c1, c2, . . . , cK ), with c1 < c2 < · · · < cK and
c1 normalized to zero, such that,

Yt =

⎧⎪⎨⎪⎩
0 if Xtβ + α + Vt ≤ 0
1 if 0 < Xtβ + α + Vt ≤ c2
. . .

K if cK < Xtβ + α + Vt

(11)

In this case any combination (Yt , Yt+1) except (Yt , Yt+1) = (0, 0) and (Yt , Yt+1) = (K , K ), provides information on
(β, c2, . . . , cK ). The increased number of inequalities might result in tighter bounds.

If model (7) or model (11) is extended to more periods t ∈ {1, . . . , T }, then the bounds on (β, c) might also become

tighter than in the case of two periods, unless the conditional distribution of (Yt , Yt+1|Xt , Xt+1) is stationary.
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Table 1
Identified sets for β2 under Probit and Logit specifications with symmetric support for (X1t , X2t ) around zero.

Support of (X1t , X2t )

{−1, 0, 1} {−2, −1, 0, 1, 2} {−3, −2, −1, 0, 1, 2, 3}

Vt
iid
∼ N (0, 1) (0, ∞) (0.5, 2) (0.667, 1.5)

Vt
iid
∼ N

(
0, π2

3

)
(−0.5, ∞) (0.286, 2.667) (0.545, 1.714)

Logistic (−0.5, ∞) (0.286, 2.667) (0.545, 1.714)

Table 2
Identified sets for β2 under Probit and Logit specifications with asymmetric support for (X1t , X2t ) around zero.

Support of (X1t , X2t )

{−1, 0, 1, 2, 3} {−2, −1, 0, 1, 2, 3, 4} {−4, −3, −2, −1, 0, 1, 2}

Vt
iid
∼ N (0, 1) (0.5, 6) (0.667, 2) (0.667, 2)

Vt
iid
∼ N

(
0, π2

3

)
(0.286, ∞) (0.545, 2.5) (0.545, 2.5)

Logistic (0.286, ∞) (0.545, 2.5) (0.545, 2.5)

4. Numerical examples

This section provides numerical illustrations of the identification bounds derived in Sections 2 and 3 for the dynamic
inary response model and the static ordered response model under different support conditions and probability
enerating processes (PGP). For expositional purposes this section starts with some numerical illustrations of the identified
ets for the binary response static panel data model derived in RW2013. All the models examined in this section have
iscrete support for the explanatory variables, X . Even though point-identification fails, the numerical examples illustrate
hat informative bounds can be achieved as the support of the discrete explanatory variables increases.

.1. Static binary response panel data model

.1.1. Example 1
Consider the two time period static binary response panel data model,

Yt = 1(Xtβ + α + Vt > 0) (12)

here Xt = (X1t , X2t ), β = (β1, β2)′, α|X ∼ N(Xδ, 1) with X =
1
2 (X1 + X2) and δ = (1, −1)′ and Vt |X, α

iid
∼ f (). The true

value of β2 = 1 after the normalization of β1 = 1.8
Tables 1 and 2 give the identified sets for β2 under different specifications for the distribution of the time-varying

unobservables and as the support of the discrete explanatory variables (X1t , X2t ) changes. The first Probit specification
in Table 1 with Vt |X, α

iid
∼ N(0, 1) is the same as in RW2013. Table 1 also provides identified sets under the probit

specification with Vt |X, α
iid
∼ N

(
0, π2

3

)
and the standard logit specification Vt ⊥ (X, α) with iid logistic distribution.

From Tables 1 and 2 two main conclusions can be drawn. The first one is that as the support of the explanatory
ariables increases the identified sets become narrower. This suggests that even though the model only partially identifies
he regression parameters, those sets shrink around the true value as the support of the explanatory variables increases.
econdly, it is evident that the model with Vt

iid
∼ N

(
0, π2

3

)
errors and the standard logit model give similar identified

ets. As discussed in Amemiya (1981) and Maddala (1983) the two distributions are very close to each other except at
he tails. Since the observable implications used for identification provide restrictions on the realization of ∆V , extreme
values of ∆V are unlikely, making the identified sets indistinguishable.

4.1.2. Example 2
Consider the two period static binary response panel data model as in (12),

Yt = 1(Xtβ + α + Vt > 0)

where Xt = (X1t , X2t , X3t ) with X3t ∈ {0, 1}, β = (β1, β2, β3)′, α|X ∼ N(Xδ, 1) with X =
1
2 (X1 + X2) and δ = (1, −1, 0)′

and Vt |X, α
iid
∼ N(0, 1). The true values of β2 = 1 and β3 = 1 after normalizing β1 = 1. Fig. 3 provides the joint identified

ets for (β2, β3) as the support of (X1t , X2t ) changes.9 Similarly to Example 1, the sets shrink as the support of the discrete
explanatory variables (X1t , X2t ) increases, even if the support of X3 remains fixed.

8 This baseline PGP is similar to the one used in RW2013. The Normal distribution for the fixed effect was approximated on a grid with 100
venly spaced support points on [Xδ − 4, Xδ + 4], and the approximation error should be small.
9 The identified sets were constructed for values of β in the grid [−1,3].
3
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Fig. 3. Joint identified sets for (β2, β3) when X3t ∈ {0, 1}.

Table 3
Identification bounds on β2 under Probit and Logit specifications with symmetric support for (X1t , X2t ) around
zero and known γ = 0.5.

Support of (X1t , X2t )

{−1, 0, 1} {−2, −1, 0, 1, 2} {−3, −2, −1, 0, 1, 2, 3}

Vt
iid
∼ N (0, 1) (−0.125, ∞) (0.438, 2.5) (0.625, 1.643)

Vt
iid
∼ N

(
0, π2

3

)
(−0.375, ∞) (0.313, 3.75) (0.542, 1.917)

Logistic (−0.375, ∞) (0.313, 3.75) (0.542, 1.917)

Table 4
Identification bounds on β2 under Probit and Logit specifications with asymmetric support for (X1t , X2t )
around zero and known γ = 0.5.

Support of (X1t , X2t )

{−1, 0, 1, 2, 3} {−2, −1, 0, 1, 2, 3, 4} {−4, −3, −2, −1, 0, 1, 2}

Vt
iid
∼ N (0, 1) (0.438, ∞) (0.625, 2.125) (0.625, 1.9)

Vt
iid
∼ N

(
0, π2

3

)
(0.313, ∞) (0.542, 2.833) (0.542, 2.375)

Logistic (0.313, ∞) (0.542, 2.833) (0.542, 2.375)

Table 5
Identification bounds on β2 with symmetric support and asymmetric support for (X1t , X2t ) around zero and
known β3 = 0.5 when X3t ∈ {0, 1}.

Support of (X1t , X2t )

{−1, 0, 1} {−2, −1, 0, 1, 2} {−3, −2, −1, 0, 1, 2, 3}

Vt
iid
∼ N (0, 1) (0, 5) (0.5, 1.8) (0.667, 1.444)

Support of (X1t , X2t )

{−1, 0, 1, 2, 3} {−2, −1, 0, 1, 2, 3, 4} {−4, −3, −2, −1, 0, 1, 2}

Vt
iid
∼ N (0, 1) (0.5, 5) (0.667, 1.8) (0.667, 1.667)
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.2. Dynamic binary response panel data model

.2.1. Example 3
Consider the three period dynamic binary response panel data model as the one described in Section 2,

Yt = 1(Xtβ + Yt−1γ + α + Vt > 0) (13)

where Xt = (X1t , X2t ), β = (β1, β2)′, α|X ∼ N(Xδ, 1) with X =
1
2 (X1 + X2) and δ = (1, −1)′ and Vt |X, Y0, α

iid
∼ f (). The true

values of β2 = 1 and γ = 0.5 after normalizing β1 = 1.
Tables 3 and 4 provide the identification bounds on β2 as described in Theorem 2, when γ = 0.5 is known,

under different specifications for the distribution of the time-varying unobservables and as the support of the discrete
explanatory variables (X1t , X2t ) changes.

It can be concluded that in the dynamic binary response panel data model with known γ , the identification bounds
on β2 shrink as the support of the explanatory variables increases. Furthermore, the identification bounds increase as the
variance of the time-varying unobservables increases. Finally, similarly to the binary response static panel data model,
the standard logit model and the model with Vt |X, Y0, α

iid
∼ N

(
0, π2

3

)
errors give similar identification bounds.

Consider now the static model discussed in Section 4.1. An interesting comparison would be to compare the
dentification bounds for the dynamic binary model with (X1t , X2t , Yt−1) with the static model with strictly exogenous
regressors (X1t , X2t , X3t ).10 Table 5 provides the identification bounds on β2, when X3 = {0, 1} and β3 = 0.5 and
Vt |X, α

iid
∼ N(0, 1). It is clear that in the case of binary exogenous X3 and β3 = 0.5 the identification bounds on β2 are

smaller in comparison to the dynamic model with a binary Yt−1 and γ = 0.5 given in Tables 3 and 4. This is a consequence
of the stronger assumptions in the static binary model, where X3 is restricted to be exogenous.

4.2.2. Example 4
Consider the binary response dynamic panel data model in (13) with Vt |X, Y0, α

iid
∼ N(0, 1), but assume no knowledge

of β2 or γ . Fig. 4 provides the joint identification bounds on (β2, γ ) as described in Theorem 2, when the true values of
β2 = 1 and γ = 0.5, as the support of (X1t , X2t ) changes.11

It is clear that for the specific range of values for the grid of γ chosen, the bounds on β2 shrink as the support of
the discrete explanatory variables (X1t , X2t ) increases, however with three periods γ is only bounded from above. In
an earlier paper, Honoré and Kyriazidou (2000) showed that in the dynamic binary response model with one lagged
dependent variable and logistically distributed unobservables the parameters are point-identified with at least four time
periods. This paper avoids making any parametric distributional assumptions, such as the logistic distribution, and draws
the attention to the three period model, which results in partial identification.

4.3. Static ordered response panel data model

4.3.1. Example 5
Consider the two period static ordered response panel data model as discussed in Section 3,

Yt =

{0 if Xtβ + α + Vt ≤ 0
1 if 0 < Xtβ + α + Vt ≤ c2
2 if c2 < Xtβ + α + Vt

(14)

where Xt = (X1t , X2t ), β = (β1, β2)′, α|X ∼ N(Xδ, 1) with X =
1
2 (X1 + X2) and δ = (1, −1)′ and Vt |X, α

iid
∼ N (0, 1).

The true value of β2 = 1 after normalizing β1 = 1. Tables 6 and 7 provide the identification bounds on β2 described in
Theorem 6 for different known values of c2, as the support of the discrete explanatory variables (X1t , X2t ) changes.12 For
any given c2 it is evident that as the support of Xt increases the bounds shrink. Furthermore, it is evident that the value
of the threshold parameter c2 affects the size of the identification bounds. This indicates that in the ordered response
model the threshold plays a crucial role in the identifying power of the model. In addition, the designs in this section are
one-to-one compatible with the designs in Section 4.1 where Vt

iid
∼ N(0, 1), and it is clear that the bounds in the ordered

response model are contained within the binary response model bounds.

4.3.2. Example 6
Consider the ordered response model in (14), with unknown β2 and c2. Fig. 5 provides the joint identification bounds

on (β2, c2) when the true values of β2 = 1 and c2 = 1.5, as the support of (X1t , X2t ) changes.13 Similarly to the previous
examples, the bounds shrink as the support of the explanatory variables increases.

10 I would like to thank an anonymous referee for this suggestion.
11 The identification bounds were constructed for values of γ in the grid [−1, 6].
12 The identification bounds were constructed by setting 50 grid points for β2 in the grid [−1, 4].
13 The bounds were constructed by setting 50 points for β in the grid [-1,4] and 20 points for c in the grid [0,3].
2 2
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Fig. 4. Joint identification bounds on (β2, γ ).

Table 6
Identification bounds on β2 under the Probit specification with symmetric support for (X1t , X2t ) around zero
and known values of c2 .

Support of (X1t , X2t )

{−1, 0, 1} {−2, −1, 0, 1, 2} {−3, −2, −1, 0, 1, 2, 3}

c2 = 0.5 (0.225, ∞)a (0.633, 1.551) (0.735, 1.245)
c2 = 1.5 (0.327, 2.674) (0.633, 1.551) (0.837, 1.245)
c2 = 2.5 (0.327, 2.265) (0.633, 1.551) (0.837, 1.347)

aThe upper bound for β2 was recorded as ∞ whenever it reached the upper bound of the grid for β2 .

Table 7
Identification bounds on β2 under the Probit specification with asymmetric support for (X1t , X2t ) around zero
and known values of c2 .

Support of (X1t , X2t )

{−1, 0, 1, 2, 3} {−2, −1, 0, 1, 2, 3, 4} {−4, −3, −2, −1, 0, 1, 2}

c2 = 0.5 (0.633, 2.98) (0.735, 1.551) (0.735, 1.551)
c2 = 1.5 (0.633, 1.653) (0.837, 1.347) (0.735, 1.551)
c2 = 2.5 (0.633, 1.551) (0.837, 1.245) (0.735, 1.551)

5. Discussion

Section 4 provides numerical illustrations of the models in Sections 2 and 3. An interesting discussion involves the
elementary theoretical properties of the identification bounds, such as whether the identification regions are convex and
bounded. These properties are important for estimation and inference.14 First, consider the identification bounds defined
in Theorem 2 for the dynamic binary response model. The identification bounds can be re-written as,15

ΘDB
=

⎧⎪⎨⎪⎩
(β, γ ) ∈ Θ :

∀(xi, xj), −(∆xi − ∆xj)β ≤ γ ⇒ P(1, 0|xi, 0) + P(0, 1|xj, 0) ≤ 1
and

∀(x̃i, x̃j), −(∆x̃i − ∆x̃j)β ≤ γ ⇒ P(1, 0|x̃i, 1) + P(0, 1|x̃j, 1) ≤ 1

⎫⎪⎬⎪⎭ (15)

14 See for example Beresteanu and Molinari (2008). Ho and Rosen (2017) provide a discussion of how inference can be performed in more general
settings.
15 This representation also appears in RW2013.
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Fig. 5. Joint identification bounds on (β2, c2).

The computation of the identification bounds was carried out by noticing that the identification bounds in equation
15) imply the following,

ΘDB
=

⎧⎪⎨⎪⎩
(β, γ ) ∈ Θ :

∀(xi, xj), P(1, 0|xi, 0) + P(0, 1|xj, 0) ≥ 1 ⇒ −(∆xi − ∆xj)β ≥ γ

and
∀(x̃i, x̃j), P(1, 0|x̃i, 1) + P(0, 1|x̃j, 1) ≥ 1 ⇒ −(∆x̃i − ∆x̃j)β ≥ γ

⎫⎪⎬⎪⎭ (16)

Since the last inequality takes the same form for both constraints, the computation of the identification bounds was
carried out by choosing all the (xi, xj) such that either P(1, 0|xi, 0) + P(0, 1|xj, 0) ≥ 1 or P(1, 0|xi, 1) + P(0, 1|xj, 1) ≥ 1
was satisfied, and then finding the values of β on the grid values of γ that satisfied the constraint −(∆xi − ∆xj)β ≥ γ .
Notice that regardless of the dimension of X , (16) implies

∆∆Xβ + γ ≤ 0 (17)

where ∆∆X = ∆xi − ∆xj and (xi, xj) satisfies P(1, 0|xi, 0) + P(0, 1|xj, 0) ≥ 1 or P(1, 0|xi, 1) + P(0, 1|xj, 1) ≥ 1. For every
∆∆X , (17) defines a half-space in (β, γ )-space, so (βDB, γ DB) must lie in the intersection of these half-spaces, and the
identifications bounds are convex.16

Whether the identification bounds are finite or not, subject to the normalization β1 = 1, depends on the matrix formed
by ∆∆X for the various (xi, xj). A necessary but not sufficient condition for boundedness is that the number of constraints
in (17) is at least dim(β)+1. This can be determined by linear programming.16 For example, consider the case of a single
β2 after the normalization of β1 = 1. The constraints in (17) can be shown to satisfy,

when ∆∆X2 > 0,
−∆∆X1 − γ

∆∆X2
≥ β2

when ∆∆X2 < 0,
−∆∆X1 − γ

∆∆X2
≤ β2 (18)

here ∆∆X1 = ∆x1i − ∆x1j and ∆∆X2 = ∆x2i − ∆x2j. If (Xi, Xj) varies enough to guarantee that P(∆∆X2 > 0) > 0 and
(∆∆X2 < 0) > 0 then for any fixed value of γ , β2 is bounded.
Turning to the ordered response model, convexity and boundedness of the identification regions, derived in Theorem 6,

annot be shown by standard arguments. This is due to the presence of many inequalities, which make the representation
f the identification bounds in the form of (16) not straight forward, as well as the presence of the sup and the inf functions

which imply different sets of X (β, c2) for different values of (β, c2).

16 I would like to thank an anonymous referee for pointing these simplifications and generalizations out.
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6. Conclusion

This paper studies identification in discrete response panel data models with fixed effects. Under fairly mild conditions,
informative identification bounds on the regression parameters in the dynamic binary and static ordered response models
are derived, without assuming distributional assumptions on the time-varying unobservables or the fixed effect. The
bounds are achieved by relying on observable implications in which the fixed effect does not appear. How tight and
informative these bounds are, depends on the observed probability distribution as well as on the variation on the
explanatory variables, with more observed implications and higher variation, leading (in general) to smaller bounds.
Nevertheless, as also shown in the numerical examples, these identification bounds can be presumably wide or even
infinite and the information content might be quite low especially when the support of the regressors is small. This is a
direct effect of the weak assumptions imposed that cannot be necessarily strengthened in all circumstances. When the
assumptions can be strengthened it might be possible to achieve tighter identification bounds, however this might come
to an expense of the credibility of the conclusions.17

As discussed in Section 1 when the time-varying unobservables are independent and identically distributed with a
logistic distribution, then the regression parameters in the linear index binary and ordered response panel data models
can be point-identified. Identification in this paper relies on weaker conditions than in the point-identified cases. The
feature of the distribution these papers use, that does not depend on the unobservable α, is the conditional probability
of the outcome variable in a specific period taking a specific value, conditional on the event that individuals change at
some period in the past. The feature of the distribution that does not depend on the unobserved heterogeneity in the
current paper is the joint probability of two outcome variables taking different values in two periods. These observable
implications use less restrictive assumptions and in particular no information on the distribution of the time-varying
unobservables. Therefore, even under the logistic distribution assumption, the bounds provided in this paper might still
fail to be singletons. Furthermore, the papers proving point-identification under the assumption that the time-varying
unobservables follow a logistic distribution, also impose independence of V and α. Assumptions 2 and 5 are less restrictive
since V is allowed to be correlated with α.

In conclusion, even though the identification bounds in this paper might not be singleton sets, they provide information
on the regression parameters under fairly weak conditions. Since the bounds do not depend on any distributional
assumption on the unobservables, they can provide information for a general class of linear index static and dynamic
discrete response panel data models with fixed effects. Furthermore, they are relatively simple to construct and therefore
might be easy to use for computation and inference.
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Appendix

A.1. Proof of Theorem 1

Consider event A = {Y0 = 0 ∧ Y1 = 0 ∧ Y2 = 1}. The conditional probability for the event (Y1, Y2) = (0, 1) conditional
on Y0 = 0 is,

P(0, 1|x, 0) = P(V ,α)|X,Y0 [{X1β + α + V1 ≤ 0} ∧ {X2β + α + V2 > 0}|X = x, Y0 = 0]
≤ PV |X,Y0 [(X2 − X1)β + V2 − V1 > 0|X = x, Y0 = 0]
= P∆V |X,Y0 [∆V > −∆Xβ|X = x, Y0 = 0]

Applying the same argument for the rest of the sequences of events in (6) implies that,

P(1, 0|x, 0) ≤ P∆V |X,Y0 [∆V < −∆Xβ − γ |X = x, Y0 = 0]
P(0, 1|x, 1) ≤ P∆V |X,Y0 [∆V > −∆Xβ + γ |X = x, Y0 = 1]
P(1, 0|x, 1) ≤ P∆V |X,Y0 [∆V < −∆Xβ|X = x, Y0 = 1]

17 As first introduced by Manski (2003) The Law of Decreasing Credibility states that ‘‘the credibility of inference decreases with the strength of
he assumptions maintained".
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or any fixed X = x and by applying Assumption 2, the above inequalities imply that

1 − P(0, 1|x, 0) ≥ P∆V |Y0 [∆V < −∆xβ|Y0 = 0]
P(1, 0|x, 0) ≤ P∆V |Y0 [∆V < −∆xβ − γ |Y0 = 0]

1 − P(0, 1|x, 1) ≥ P∆V |Y0 [∆V < −∆xβ + γ |Y0 = 1]
P(1, 0|x, 1) ≤ P∆V |Y0 [∆V < −∆xβ|Y0 = 1]

hich completes the proof.

.2. Proof of Theorem 2

Consider any constant ω ∈ R, conditioning on Y0 = 0 implies that,

(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω ⇒ ∆V < ω (A.1)

nd conditioning on Y0 = 1 implies that,

(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω ⇒ ∆V < ω (A.2)

The relations in (A.1) and (A.2) imply that, ∀ω ∈ R:

1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] ≥ P[∆V < ω|X = x, Y0 = 0]
P[(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0] ≤ P[∆V < ω|X = x, Y0 = 0]

1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1] ≥ P[∆V < ω|X = x, Y0 = 1]
P[(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1] ≤ P[∆V < ω|X = x, Y0 = 1] (A.3)

Consider the event A = {Y0 = 0 ∧ Y1 = 0 ∧ Y2 = 1}. When −∆Xβ ≥ ω,

P[(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] = P(0, 1|x, 0)

and when −∆Xβ < ω,

P[(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] = 0

Using the same argument, lower and upper bounds on the rest of the inequalities in (A.3) can be derived. These bounds
in combination with (A.1), (A.2) and Assumption 2 imply that,

inf
x:−∆xβ≥ω

1 − P(0, 1|x, 0) ≥ F∆V |Y0 (ω|0)

sup
x:−∆xβ−γ≤ω

P(1, 0|x, 0) ≤ F∆V |Y0 (ω|0)

inf
x:−∆xβ+γ≥ω

1 − P(0, 1|x, 1) ≥ F∆V |Y0 (ω|1)

sup
x:−∆xβ≤ω

P(1, 0|x, 1) ≤ F∆V |Y0 (ω|1)

⇐⇒

sup
x:−∆xβ−γ≤ω

P(1, 0|x, 0) ≤ F∆V |Y0 (ω|0) ≤ inf
x:−∆xβ≥ω

1 − P(0, 1|x, 0)

sup
x:−∆xβ≤ω

P(1, 0|x, 1) ≤ F∆V |Y0 (ω|1) ≤ inf
x:−∆xβ+γ≥ω

1 − P(0, 1|x, 1) (A.4)

which completes the proof.

A.3. Proof of Theorem 3

To prove the unconditional identification bounds in Theorem 3, first notice that

F∆V |X (ω|x) = F∆V |X,Y0 (ω|x, 0)P(Y0 = 0|X = x) + F∆V |X,Y0 (ω|x, 1)P(Y0 = 1|X = x).

Define P(Y0 = 0|X = x) = P0(x) and P(Y0 = 1|X = x) = P1(x), which are fully observed, and define the relations in (A.3)
as,

G(ω|x, 0) = P[(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0]
G(ω|x, 1) = P[(Y , Y ) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y = 1]
1 2 0
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G(ω|x, 0) = 1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0]
G(ω|x, 1) = 1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1].

Then multiplying by P0(x) the probabilities conditional on Y0 = 0 and by P1(x) the probabilities conditional on Y0 = 1
imply that the relations in (A.3) can be expressed as

G(ω|x, 0)P0(x) ≤ F∆V |X,Y0 (ω|x, 0)P0(x) ≤ G(ω|x, 0)P0(x)

G(ω|x, 1)P1(x) ≤ F∆V |X,Y0 (ω|x, 1)P1(x) ≤ G(ω|x, 1)P1(x)

which imply,

G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x) ≤ F∆V |X (ω|x) ≤ G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x)

⇐⇒

G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x) ≤ F∆V (ω) ≤ G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x)
where the last result follows from Assumption V ⊥ X . The last relation implies that,

sup
x∈X

{G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x)} ≤ inf
x∈X

{G(ω|x, 0)P0(x) + G(ω|x, 1)P1(x)}.

his completes the proof.

.4. Proof of Theorem 5

The proof of Theorem 5 follows similar arguments as the proof of Theorem 1. For example consider the event
Y1 = 0 ∧ Y2 = 1}. It can be shown that,

P(0, 1|x) = P(V ,α)|X [{0 ≥ X1β + α + V1}

∧ {X2β + α + V2 > 0 ∧ 0 ≥ X2β + α + V2 − c2}|X = x]
≤ P(V ,α)|X ({0 ≥ X1β + α + V1} ∧ {X2β + α + V2 > 0}|X = x)
≤ PV |X (0 > (X1 − X2)β + (V1 − V2)|X = x)
= 1 − F∆V [−∆xβ]

where the last inequality follows from Assumption 5. Applying the same arguments for the rest of the relations in (8) it
can be shown that for any given X = x,

P(1, 0|x) ≤ F∆V [−∆xβ]

F∆V [−∆xβ] ≤ 1 − P(0, 1|x)
P(2, 0|x) ≤ F∆V [−∆xβ − c2]

F∆V [−∆xβ + c2] ≤ 1 − P(0, 2|x)
P(2, 1|x) ≤ F∆V [−∆xβ]

F∆V [−∆xβ] ≤ 1 − P(1, 2|x) (A.5)

he above relations show that changing choices from period t = 1 to t = 2 provide restrictions on the distribution of ∆V
hat do not depend on the fixed effect, α. In addition it can be shown that the ‘‘in-between’’ event, (Y1, Y2) = (1, 1), also
rovides information on (β, c2) without involving the fixed effect. To see that consider the joint probability of choosing
he event (9):

P(1, 1|x) = P(V ,α)|X [{X1β + α + V1 > 0 ∧ 0 ≥ X1β + α + V1 − c2}
∧ {X2β + α + V2 > 0 ∧ 0 ≥ X2β + α + V2 − c2}|X = x]

y combining

X1β + α + V1 > 0 and 0 ≥ X2β + α + V2 − c2

nd

0 ≥ X1β + α + V1 − c2 and X2β + α + V2 > 0

t can be shown that,

P(1, 1|x) ≤ PV [0 > (X2 − X1)β + (V2 − V1) − c2
∧ (X2 − X1)β + (V2 − V1) + c2 > 0|X = x]

P(1, 1|x) ≤ P∆V [−∆Xβ + c2 > ∆V > −∆Xβ − c2|X = x] (A.6)

hich does not depend on α. This completes the proof.
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A
.5. Proof of Theorem 6

As discussed in Section 3 the events {(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1), (1, 1)} provide restrictions on the distri-
bution of ∆V that do not depend on the unobserved heterogeneity, α. From the inequalities in (A.5) and (A.6) and for a
given set of arbitrary constants ω, ω′, ω′′

∈ R, such that ω′′ < ω < ω′ it follows that,

(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω ⇒ ∆V < ω

(Y1, Y2) = (0, 2) ∧ −∆Xβ + c2 ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (2, 0) ∧ −∆Xβ − c2 ≤ ω ⇒ ∆V < ω

(Y1, Y2) = (1, 2) ∧ −∆Xβ ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (2, 1) ∧ −∆Xβ ≤ ω ⇒ ∆V < ω

(Y1, Y2) = (1, 1) ∧ ω′
≥ −∆Xβ + c2 ∧ −∆Xβ − c2 ≥ ω ⇒ ω′ > ∆V > ω

(Y1, Y2) = (1, 1) ∧ ω ≥ −∆Xβ + c2 ∧ −∆Xβ − c2 ≥ ω′′
⇒ ω > ∆V > ω′′ (A.7)

The relations in (A.7) and Assumption 5 imply that,

1 − P[(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x] ≥ P[∆V < ω]

P[(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x] ≤ P[∆V < ω]

1 − P[(Y1, Y2) = (0, 2) ∧ −∆Xβ + c2 ≥ ω|X = x] ≥ P[∆V < ω]

P[(Y1, Y2) = (2, 0) ∧ −∆Xβ − c2 ≤ ω|X = x] ≤ P[∆V < ω]

1 − P[(Y1, Y2) = (1, 2) ∧ −∆Xβ ≥ ω|X = x] ≥ P[∆V < ω]

P[(Y1, Y2) = (2, 1) ∧ −∆Xβ ≤ ω|X = x] ≤ P[∆V < ω]

P[(Y1, Y2) = (1, 1) ∧ {ω′
≥ −∆Xβ + c2 ∧ −∆Xβ − c2 ≥ ω}|X = x]

≤ P[ω < ∆V < ω′
]

P[(Y1, Y2) = (1, 1) ∧ {ω ≥ −∆Xβ + c2 ∧ −∆Xβ − c2 ≥ ω′′
}|X = x]

≤ P[ω′′ < ∆V < ω] (A.8)

Following the same arguments as in proving Theorem 2 it can be shown that for any given ω′′ < ω < ω′
∈ R, depending

on the different values of x ∈ X the lower and upper bounds of the inequalities in (A.8) change. Since for any value of
(β, c2) in the identification bounds the relations in (A.8) should hold simultaneously the distribution of ∆V is shown to
be bounded by,

sup
x:−∆xβ≤ω

P(1, 0|x) ≤ F∆V (ω)

F∆V (ω) ≤ inf
x:−∆xβ≥ω

[1 − P(0, 1|x)]

sup
x:−∆xβ−c2≤ω

P(2, 0|x) ≤ F∆V (ω)

F∆V (ω) ≤ inf
x:−∆xβ+c2≥ω

[1 − P(0, 2|x)]

sup
x:−∆xβ≤ω

P(2, 1|x) ≤ F∆V (ω)

F∆V (ω) ≤ inf
x:−∆xβ≥ω

[1 − P(1, 2|x)]

sup
x∈X∗

P(1, 1|x) ≤ F∆V (ω′) − F∆V (ω)

sup
x∈X∗∗

P(1, 1|x) ≤ F∆V (ω) − F∆V (ω′′)

where

X∗
= {x : ω′

≥ −∆xβ + c2 ∧ −∆xβ − c2 ≥ ω}

X∗∗
= {x : ω ≥ −∆xβ + c2 ∧ −∆xβ − c2 ≥ ω′′

}.

Furthermore, notice that at the limit ω′
→ ∞ and ω′′

→ −∞,

P(1, 1|x) ≤ 1 − F∆V (ω) ⇔ F∆V (ω) ≤ 1 − P(1, 1|x), when x ∈ X∗

∗∗
P(1, 1|x) ≤ F∆V (ω), when x ∈ X
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and

F∆V (ω) ≤ inf
x:−∆xβ−c2≥ω

1 − P(1, 1|x)

sup
x:−∆xβ+c2≤ω

P(1, 1|x) ≤ F∆V (ω) (A.9)

hich completes the proof.
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