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Abstract

Background
Despite the recent progress in the field of causal inference, to date there is no agreed upon
methodology to glean treatment effect estimation from observational data. The consequence
on clinical practice is that, when lacking results from a randomized trial, medical personnel
is left without guidance on what seems to be effective in a real-world scenario. This article
showcases a pragmatic methodology to obtain preliminary estimation of treatment effect
from observational studies.

Methods
Our approach was tested to an open problem, the estimation of treatment effect of the
proning maneuver on oxygenation levels, on a cohort of COVID-19 Intensive Care patients.
We modeled our study design on a recent RCT for proning (the PROSEVA trial) in order
to select relevant covariates, outcome definition and inclusion criteria. Linear regression,
propensity score models such as blocking and doubly robust inverse probability weighting,
BART and two versions of Counterfactual Regression were employed to provide estimates
on observational data comprising first wave COVID-19 ICU patient data from 25 Dutch
hospitals.

Findings
6371 data points, from 745 mechanically ventilated patients, were included in the study.
Estimates for the early effect of proning – P/F ratio from 2 to 8 hours after proning – ranged
between 14·54 and 20·11 mm Hg depending on the model. Estimates for the late effect of
proning – oxygenation from 12 to 24 hours after proning – ranged between 13·53 and 15·26
mm Hg. All confidence interval being strictly above zero indicated that the effect of proning
on oxygenation for COVID-19 patient was positive and comparable in magnitude to the
effect on non COVID-19 patients.

Interpretation
These results provide further evidence on the effectiveness of proning on the treatment of
COVID-19 patients. This study, along with the accompanying open-source code, provides a
blueprint for treatment effect estimation in scenarios where RCT data is lacking.

Funding
SIDN fund, CovidPredict consortium, Pacmed.

1 Introduction

A central problem of causal inference is estimating treatment effects from observational data. A
vast body of literature has addressed the issue of finding the best method for this task, but there
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is no established winner.1 Most model comparisons are performed on synthetic data, and the
race for developing new methodologies is ongoing.2

However, clinicians in practice are often faced with the problem of not having guidance on
which treatment to use. A clear example of this phenomenon is the COVID-19 pandemic,
during which clinical staff had to treat patients with a novel condition for which no randomized
controlled trials (RCTs) on treatment effectiveness were available.3 When there is no RCT
data, clinicians are left to improvise based only on their clinical experience. This points to the
need for a methodology to achieve preliminary yet robust conclusions from observational data,
to guide clinicians’ behaviour while randomized trials are ongoing and to determine future
directions for RCTs. This need is highlighted by the increasing attention that regulatory bodies
in the US and Europe are placing on the use of observational evidence.4,5

In this paper we propose a procedure to arrive at sensible treatment effect estimation from
Electronic Health Records (EHRs). Our proposal is twofold. First, we suggest to emulate
a target RCT, whose results provide a meaningful point of reference.6,7 This is achieved by
carefully replicating as much as possible the design of the past trial, i.e. using the same inclusion
criteria, the same baseline covariates, and so forth. From a heuristic standpoint, this past RCT
can act as a ‘prior’, indicating how much the results obtained from EHR data diverge from what
was previously known. Second, we put forward a shortlist of methods to estimate treatment
effect, including well-established ones and more recent Machine Learning techniques, with
different theoretical guarantees. More than finding a single best-performing model, we intend to
measure the level of agreement between the candidate models.

If our procedure is successful in both respects, meaning one can successfully emulate the design
of similar RCTs from the past and the array of models provide relatively uniform estimations,
we argue that the conclusions can be regarded as robust enough to guide clinical practice. This
approach is ‘pragmatic’ in the sense that it can provide sought-after preliminary knowledge
when an RCT is not available. To showcase the usefulness and applicability of this strategy, we
test it on a real-world, large-scale use case, the estimation of the effect of proning on severely
hypoxemic mechanically ventilated COVID-19 patients in the Intensive Care unit (ICU). The
code to implement this strategy and to obtain the results described in the paper is fully available
online.

2 Research in context

Prone positioning, consisting of turning the patient from the supine to prone position, is a
commonly used technique for the treatment of severely hypoxemic mechanically ventilated
patients with acute respiratory distress syndrome (ARDS). The current definition of ARDS uses
the P/F ratio to classify disease severity. This ratio, defined as the partial pressure of O2 in an
arterial blood sample (PaO2) divided by the fraction of inspired oxygen (FiO2) ( PaO2

FiO2
in mm Hg),

subdivides patients in mild, moderate, and severe subgroups.
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2.1 Evidence before this study

Meta-analysis of eight RCTs reported that prone positioning applied for at least 12 hours a day
improved the P/F ratio on average by 23 mm Hg (95% CI: 12, 35) as compared to the supine
(not-proned, control) group. In the PROSEVA trial, it was found that applying prone positioning
for an average of 17 hours a day improved the P/F ratio on average by 15 mm Hg (95% CI: 3,
27) and therefore it is currently considered a cornerstone in the treatment of patients with ARDS
and a P/F ratio of <150 mm Hg.

Prone positioning has been used widely as adjuvant therapy for respiratory failure in severe
COVID-19 induced pneumonia similar to ARDS. However, increasing evidence suggests that
mechanisms underlying COVID-19 respiratory failure may be different from ‘classical’ ARDS
due to the frequent occurrence of pulmonary thrombosis. At the time of writing, no RCT has
been conducted on the effect of proning on intubated patients with COVID-19 induced ARDS;
furthermore, the available observational studies were conducted only on relatively small and
single-center cohorts.

2.2 Added value of this study

In our observational study based on patients from the Dutch Data Warehouse (DDW) - a multi-center,
large-scale ICU COVID-19 cohort comprising data from 25 Dutch hospitals - we found that
applying prone positioning improved the P/F ratio, with estimates varying between 14·54
and 20·11 mm Hg (depending on the model) in the time window 2-8 hours after proning and
between 13·53 and 15·26 mm Hg. in the time window 12-24 hours after proning (see Table
2). This aligns with results reported by previous RCTs and suggests a positive effect of prone
positioning on patients with COVID-19 induced ARDS.

To ensure validity of the causal inference methods and put the estimates in context, the study
design emulated the PROSEVA trial. To facilitate transportability of our results and replication
on other cohorts, we made both the data processing pipeline as well as the suite of causal
inference experiments available open source.

2.3 Implications of all the available evidence

Estimating treatment effects from observational data is a fundamental problem transcending
disciplinary boundaries. While multiple methods and strategies to arrive at causal quantities
of interests do exist, the task itself is claimed to be notoriously hard and not straightforward
to implement. While all the applied methodologies were developed separately beforehand, we
show how they can be combined together to arrive at clinically meaningful conclusions from
unprocessed, unstructured and highly noisy EHR data.
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3 Methods

We carefully designed our data set to emulate an RCT as much as possible, in order to provide
the most meaningful term of comparison. This means using the same inclusion criteria, selecting
the same covariates, measuring a similar outcome, and so forth. This strategy allowed us to
compare ATE estimates with the literature, and we were able to achieve a reasonable level of
confidence in the fulfillment of the identifiability assumptions, which are not testable from
observational data (see Appendix C.1 for a discussion).

Since current guidelines for prone positining in ARDS are based mainly on the results of the
PROSEVA trial,8 we specifically chose to emulate this RCT. We used data from the DDW9

to create a cohort with the same covariates and inclusion criteria as this trial. The DDW is
the result of a nationwide, large-scale ICU data sharing collaboration in the Netherlands that
was initiated during the COVID-19 pandemic. The collaboration and the data warehouse are
described in detail in Appendix A. The steps followed to defined the cohort are outlined in
Figure 1 and described in detail in the following sections.

We note that, since COVID-19 is a new disease, emulating an RCT does not mean replicating
it. As far as we know, the treatment effect of proning for COVID-19 ARDS could be different
from the one for standard ARDS, so the PROSEVA RCT should not be regarded as providing
the “true” effects that the models are trying to estimate. Nonetheless, the two pathologies are
still close enough that the PROSEVA trial can provide a meaningful term of comparison; indeed
this similarity is why proning has been employed for COVID-19 ARDS. For this reason the
PROSEVA trial can i) provide a blueprint for the kind of experiment we want to run for proning
on COVID-19 patients – in terms of covariates, inclusion criteria, outcome definition, etc – and
ii) serve to put the observational ATE estimates in context.

3.1 Constructing Observations

The data contained information of 2052 patients recorded in the DDW who were admitted to
the ICU between March and October 2020. All patients were diagnosed with COVID-19. For
all patients we extracted data concerning all supine and prone sessions. The data of each patient
was sliced into prone and supine sessions as exemplified in Figure 2. All created sessions were
later selected depending on adherence to the inclusion criteria (see Section 3.3).

We took sessions to be the observations of our study, meaning that a single patient can be
represented by multiple observations. A session was defined as a time interval throughout which
the patient was in the same position, either prone or supine.

Sessions were employed as observations to have a data point for every moment in which a
treatment decision of proning could have been made. Artificial supine sessions were created for
this reason, since during a supine session there are multiple occasions in which clinicians can
decide to turn the patient to prone position. An additional artificial supine session was created
if, at least 8h before the end of the original supine session, the patient’s blood gas (PaO2) and
ventilator values (PEEP, FiO2) were documented again. The newly created artificial session

6



Figure 1: Overview of our study design.

Figure 2: We describe how the data of a fictitious ICU patient would be converted into four
supine and two prone sessions. An artificial supine session is created from a long supine session
if there is a corresponding measurement allowing to check the inclusion criteria performed at
least 8h before the end of the original session.
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ended at the same time point at which the original supine session ended. Altogether, we created
45733 sessions of which 2762 were prone, 4080 were original supine sessions and 38891 were
artificial supine sessions.

3.2 Constructing Features and Outcomes

28 covariates were constructed from the data collected in the DDW. They correspond to all
covariates presented in the PROSEVA manuscript except for sepsis, McCabe and SAPS II
scores, which were not available in the DDW. We included two additional covariates, one
indicating morbid obesity (BMI > 35) and one for driving pressure, since plateau pressure
measurements were missing for the majority of observations, because most patients in Dutch
ICU’s were ventilated in a pressure controlled mode. The list of included covariates can be
found in Table 1.

For each session we constructed covariates from the DDW by taking the last measurement in
the eight hour interval before the start of the session. Since in practice there can be some delay
in the recording of such parameters, if a measurement was missing, the first measurement was
taken in the 30 minutes interval following the start of the session.

We defined two outcomes. The first outcome was the last P/F ratio measurement recorded in the
time interval from two hours up to eight hours from the start of the session but before the end
of the session. This outcome corresponded to the measurement taken just after the prone/supine
session started (‘early proning effect’). The second outcome was the last P/F ratio measurement
recorded in the time interval from 12h up to 24h from the start of the session but before end of
the session. Given the average length of prone sessions in this cohort (≈19 hours), this outcome
corresponded to the measurement taken just before the session ends (‘late proning effect’).
Consequently, all sessions shorter than 12h will not have a defined late proning effect.

Because of the way observations were defined, the outcomes measured the average treatment
effect of a single prone session on the P/F ratio, as opposed to measuring the treatment effect
of repeated proning sessions applied for a fixed time interval (e.g. three days for the PROSEVA
trial). Beside the medical relevance of intermediate outcomes, this methodological choice was
due to the fact that in practice patients were not proned for an identical amount of hours for a
few days in a row, so the exact administering of the proning sessions from the RCT cannot be
replicated. Furthermore, the aforementioned way of constructing covariates achieved perfect
separation between covariates and outcomes, i.e. covariates were always measured before the
outcomes, allowing for valid causal inference.

3.3 Cohort Selection and Inclusion Criteria

All sessions that did not have corresponding PaO2, FiO2 and PEEP baseline measurements
were discarded. Since non-invasive mechanical ventilation for COVID-19 patients was rare
in the Netherlands (about 1%),9 all sessions reporting the combination of PEEP and FiO2
were considered to be sessions concerning mechanically ventilated patients. Furthermore, we
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discarded all proning sessions longer than 96 hours, since such sessions were extremely rare,
and from a medical perspective were most likely the result of data entry errors or omissions.
Following this, the inclusion criteria from the PROSEVA trial were applied for the resulting
sessions. These were P/F ratio < 150 mm Hg, FiO2 ≥ 60% and PEEP ≥ 5 cm of water. We chose
not to include the criterion ‘tidal volume about 6 ml/kg’, since the original PROSEVA paper did
not specify explicit cutoff values for tidal volume. In addition, current Dutch guidelines for
mechanical ventilation of COVID-19 patients already suggest to ventilate COVID-19 patients
similarly to ARDS patients with tidal volumes of about 6 ml/kg.10 For both outcomes, all
observations with a missing outcome were discarded. Consequently, for the late proning effect
we automatically discarded all sessions shorter than 12 hours, since they cannot have an outcome
in the window from 12 to 24 hours. For all numerical variables we imputed data with mean
values. All binary variables were imputed with the value False. Imputation was performed in
such a way to prevent any form of data leakages between data splits. This selection resulted in
6371 observations (from 745 patients) included in our study, 1260 (from 493 patients) of which
were prone, significantly more than the PROSEVA trial that included 466 observations (each
corresponding to a patient), 237 of which were prone.

3.4 Feature Characteristics and comparison to PROSEVA Trial

All the previous steps of our study design were defined in order to create a sub-population from
the available EHR data that emulates the PROSEVA trial. The characteristics of all observations
that fulfilled the inclusion criteria are summarized in Table 1.

Compared to the PROSEVA trial, the average COVID-19 patient was slightly older, with a
higher incidence of diabetes, chronic renal failure and COPD. The lower average SOFA score
is in line with the observation that COVID-19 patients suffer primarily from respiratory failure
but not from septic shock or multiple organ dysfunction syndrome that typically accompany
ARDS patients. On average, observations in our study had higher PEEP at similar or lower FiO2.
Tidal volume was slightly above the recommended 6 ml/kg PBW with lower respiratory rates
compared to the PROSEVA ARDS patients.

In our study higher levels of PEEP were applied and lower P/F ratios measured during prone
sessions compared to PROSEVA, which may be explained by delayed proning in overwhelmed
ICUs or uncertainty of effects of proning for COVID-19 patients. The most imbalanced variables
between the prone and supine sessions of our study were FiO2, PaO2, P/F ratio, PEEP, SOFA
Score and the usage of medications.

3.5 Models

A suite of causal inference models was employed to estimate the treatment effect of proning on
oxygenation, including classical techniques as well as modern Machine Learning estimators:

• Linear regression (LR)

• Propensity score model: Blocking
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• Propensity score model: doubly robust inverse probability weighting (DR-IPW)

• Bayesian Additive Regression Trees (BART)

• Treatment-Agnostic Representation Network (TARNet)

• Counterfactual Regression (CfR)

For an introduction to the potential outcome framework, details on the models as well as justification
for their choice we refer the reader to the Appendix Section C. Clarifications on the notation can
be found in Appendix B, while the specification on the models’ hyper-parameters are reported in
Appendix D.

4 Results

The goal of the study was to estimate the average treatment effect (ATE) of prone positioning
on P/F ratio as measured after a session starts (early proning effect) and just before an average
prone session ends (late proning effect). For each outcome the following procedure was instated.
To estimate the ATE we performed a 80/20 train/test split. Each model was trained on 100
bootstrap re-samples of the train set (we repeatedly sampled 95% of the train set with replacements)
and with each model an ATE estimate was calculated on the test set. We obtained the ATE
estimate (Table 2) by taking the average of ATE estimates for every bootstrap sample of the
train set. The 95% confidence intervals are calculated as bootstrap percentile intervals (as
in Section 8 of Wasserman12). Prior to calculating ATE estimates, a hyper-parameter search
was performed for some of the models. This search, as well as the strategy followed for the
estimation of the propensity scores, is described in Appendix D. As we could not measure the
accuracy of the estimated ATE, we evaluated the predictive performance for each model with
RMSE on the test set for each of the 100 different bootstrap samples and reported the average.
The 95% confidence intervals were calculated in the same way as for the ATE estimates.

The aim of the experiments was to assess whether the different frameworks for causal inference
examined in Section C.2 provided uniform ATE estimates. Moreover, we checked whether the
estimates were close to the ATE of 15 mm Hg reported by the PROSEVA trial. Comparing
the models’ ATE estimates with the result of the PROSEVA trial allowed us to gain further
confidence in the robustness of the models’ estimates.

4.1 Average Treatment Effect Estimation

The estimated mean ATEs ranged from 14·54 to 20·11 mm Hg for the early proning effect,
and from 13·53 to 15·26 mm Hg for the late proning effect. Confidence intervals for both
outcomes being strictly above zero indicated a positive treatment effect of proning on P/F ratio.
A summary of all estimates can be found in Table 2 and Figure 3.
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Figure 3: Distribution of the average treatment effects estimated on the test set for the early
proning effect (Left) and the late proning effect (Right). Each boxplot displays the beginning
of the 95% CI, the first quartile, the median, the third quartile and the end of the 95% CI of all
obtained ATE estimates. The black square indicates the sample mean, which is the final ATE
estimate reported in Table 2. The vertical, dotted line indicates the ATE (=15) from PROSEVA
trial.

4.1.1 Early Proning Effect

The unadjusted treatment effect, meaning the difference in the mean outcome in the treated and
control group, was 12·89 (95% CI: 7·88, 17·22). Linear Regression (LR) and propensity score
models (DR-IPW, blocking) provided the narrowest 95% CIs for the ATE while deep learning
methods (TARNet, CfR) the widest ones. This was probably due to the fact that the latter
models are more prone to overfitting on the different bootstrap samples. Linear Regression,
DR-IPW weighting and Blocking reported the ATE estimates closest to the PROSEVA trial,
with BART, TARNet and CfR giving slightly higher estimates.

The best performing model with respect to predictive performance was BART (RMSE: 48·62),
slightly outperforming TARNet and CfR (RMSE: 51·72 and 51·82 respectively). The performance
of the selected models was in line with experiments on synthetic data (Table 1 in Shalit, Johansson,
and Sontag13), where BART, CfR and TARNet reported comparable errors with respect to ATE
estimation (εAT E ) in out-of-sample testing on both IHDP and Jobs data sets. Linear Regression
and propensity models were outperformed by more recent techniques with respect to predictive
performance, probably due to the greater flexibility of the latter methods. This might explain
also why the ATE estimates were slightly higher for the non-linear models.

4.1.2 Late Proning Effect

The unadjusted treatment effect was equal to 11·88 (95% CI: 7·88, 16·91). Compared to the
early proning effect, all models provided lower ATE estimates. The estimates reported for the
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two outcomes differed significantly, with BART reporting the wider gap (20·11 vs. 13·99) as
opposed to Linear Regression giving more similar estimates (15·31 vs. 14·47). Compared to the
early proning effect, all estimates were closer to the treatment effect from the PROSEVA trial.

The predictive performance of BART, TARNet and CfR remained the strongest with similar
RMSE as for the early proning effect. Obtaining ATE estimates for the late proning effect
seemed to be an easier task for the Linear Regression and propensity models as they reported
smaller RMSE compared to the early proning effect. While non-linear models still outperformed
linear ones, the difference was much smaller in RMSE, indicating that perhaps non-linear
effects played less of a role for this outcome.

Models of a similar kind, both Linear Regression and propensity models, and CfR and TARNet
reported comparable ATE estimates and predictive performances. This was somewhat surprising,
since one would expect that the correction that propensity score models and CfR provide on top
of Linear Regression and TARNet (respectively) would improve their performance and possibly
modify their ATE. One of the possible explanations is that our data was rather balanced, with
high treatment assignment variation. As there was no observable metric to measure the accuracy
of CATE estimates and RCTs do not provide CATE estimates to compare with, it remains an
open question to what extent these models could be used for CATE estimation.

5 Discussion

In this article we addressed an urgent problem, namely the lack of guidance for clinicians when
RCT results are not available, by describing an approach to obtain information on treatment
effectiveness from EHR data. We suggested that a multi-viewpoint approach, where different
models are tested in parallel, coupled with an RCT-like experimental design can be employed to
reach a reasonable level of confidence in the result of an observational study. This approach was
tested on an important use case, namely treatment effect of the proning maneuver on COVID-19
patients on the ICU. Our experiments showed that our diverse set of models reached a relatively
uniform conclusion. Moreover, our findings suggested that mechanically ventilated COVID-19
patients benefit from proning to a similar extent as established by the PROSEVA trial. This
provides important medical knowledge in a situation when RCTs on proning for mechanically
ventilated COVID-19 patients are not yet available and observational evidence is limited to
single-center and relatively small cohorts.14,15,16,17,18

The extent to which results such as the ones presented here can be used to directly affect clinical
decision making, or can be contrasted with RCTs, should be a matter of further discussion, as
well as scrutiny from a regulatory perspective.19 These results cannot be considered definitive
and a randomized trial is required to formally establish the effectiveness of the treatment. Repetition
of these experiments on another observational COVID-19 cohort may also help in assessing
the robustness of the estimates; the fully documented and open-source code released with this
article facilitates and encourages such follow-up analyses. Despite their potential brittleness
and biases, observational studies such as the one presented here can help provide temporary
answers for clinicians while RCTs are developed, as well as accelerate and guide prospective
studies.20 Lastly, further improvement to the models’ predictive performance could warrant the

12



investigation of the effect of proning on subgroups or of the threshold on P/F ratio for which
proning is beneficial.

Limitations We now come to the limitations that should be considered when weighing the
result of this study. First, we do not compare randomized experiments and observational studies
with identical designs, such as in Shadish, Clark, and Steiner,21 since from the DDW data it is
clear that in practice the proning maneuver is not administered exactly as in the RCTs. This also
holds for the outcome: the difference in treatment led us to consider oxygenation after proning,
which differs from the oxygenation outcome after three days of repeated proning as defined
in the PROSEVA trial. It should be noted however that RCTs already display a great deal of
variability. The proning maneuver itself is performed differently in all RCTs, and the outcomes
are also measured at different time points, thus the discrepancy between our study and the RCTs
is arguably not greater than the one existing between RCTs. It also worth noting that the usage
of sessions introduces dependence between samples from the same patient and might lead to
over-representation of some individuals; sicker patients, for example, might stay longer in the
ICU and generate more sessions. However, we do not register any additional imbalance in the
distribution of baseline covariates, as reported in Table 1. Furthermore, we sought to mitigate
this problem by employing bootstrap samples. We note that the construction of multiple data
points per patients opens the possibility to study repeated or time-varying treatment by means of
causal inference methods for longitudinal data; this line of enquiry is left for future work.

Second, all models assume the absence of unmeasured confounders. To facilitate comparison
with previous RCTs, we decided to limit the set of covariates to those in the study by Guérin and
colleagues.8 While this expert-picked list ensures that most relevant variables are considered,
hence giving some measure of reassurance that the assumption is fulfilled, it is already known
that it might be relevant to add a few more covariates to have a more complete picture of the
patient, e.g. fluid balance. We believe that for our case study it is possible to minimize the
impact of this assumption, since the ICU routinely monitors patients in great detail. It is therefore
reasonable to assume that the vast majority, if not all, of relevant parameters are recorded in
EHRs, meaning that a future iteration of this study on a larger set of covariates could provide
more robust results.

Third, it could be argued that a different or wider selection of models is more appropriate. The
guiding principle of our choice of models was to represent both traditional methods used in the
medical community as well as top performers from previous causal inference competitions, to
arrive at modern Machine Learning techniques with strong theoretical guarantees. The extension
of this selection, which could provide additional information (as long as the list of models is
fixed prior to the experiments), will be investigated in the future.

Finally, a further point of improvement for our approach is the enhancement of the comparison
between the different models. We adopted simple and well-known metrics such as RMSE, but
more advanced techniques are becoming available for observational studies, such as those by
Alaa and van der Schaar,22 allowing for a more fine-grained analysis of the models’ differences.

In conclusion, these results provide further evidence on the effectiveness of proning for the
treatment of mechanically ventilated COVID-19 patients. The design of this study, implemented
in fully open-source code, allows for reproducibility on other COVID-19 cohorts and provides a
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blueprint for treatment effect estimation in scenarios where RCT data is lacking.

6 Data Sharing

Within the boundaries of privacy laws and ethics, access to the DDW can be requested on the
portal of the consortium: www.icudata.nl. The code used to process the data, implement
the causal inference models and perform the experiments is available online at github.com/
Pacmed/causal_inference.
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A Dutch Data Warehouse

The DDW was constructed by combining, unifying, and structuring EHR data from 25 different
ICUs in the Netherlands. A dedicated team of ICU clinicians, data scientists, and IT staff put
great effort in the medical validation of the data by assessing data quality at several stages in
the extensive data validation process.9 Since raw EHR data contains all routinely and frequently
captured clinical information, this whole endeavour eventuated in a unique dataset containing
highly granular data of COVID-19 patients throughout their entire ICU stay.

The DDW includes data on demographics, comorbidities, monitoring and life support devices,
laboratory results, clinical observations, medications, fluid balance, and outcomes. While the
DDW is continuously growing, it contained over 400 million data points from 2052 COVID-19
patients at the moment of accessing.

B Notation

Throughout the text we associate each observation with an index i, j,k ∈ N. The covariate
(feature) space X ⊆ Rd and outcome space Y ⊆ R are defined as usual. We denote random
variables with capital letters X ,Y,Z. We define the covariate vector X , outcome vector Y and
treatment indicator T and write Xi,Yi,Ti, if they correspond to an observation i. We denote
realizations of random variables with corresponding lower case letters x,y,z. If a realization
of a random variable X is associated with the observation i, then we add a subscript xi. When
not necessary, we omit the corresponding subscripts. When a random variable X follows a
distribution p, we will write E[X ] instead of Ex∼p(x)[x] to denote the expected value.

C Potential outcome framework and models

C.1 Average Treatment Effect Estimation

We frame our problem of estimating the average treatment effect of proning using Rubin’s
potential outcome framework.23 Let X be a vector of observed covariates (features) and T a
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binary treatment variable, where T = 1 means treated. In the potential outcomes framework
we introduce two new random variables Y 1,Y 0 called potential outcomes. We call the observed
potential outcome the factual outcome Y and the unobserved one the counterfactual outcome Y ∗.
We assume that the data is generated from a fixed and unknown distribution p(X ,T,(Y 1,Y 0))
such that the standard identifiability criteria hold, namely consistency Y = TY 1 +(1− T )Y 0,
positivity p(t | x) > 0, for all x, t and ignorability

(
T ⊥⊥ (Y 1,Y 0)

)
| X . In our observational

setting, for each sample we observe only the factual outcome, hence the data is of the form
(X1,T1,Y1),(X2,T2,Y2), . . . ,(Xn,Tn,Yn).

We define the average treatment effect as ATE = E[Y 1−Y 0] and the conditional average treatment
effect (CATE) as τ(x) = E[Y 1 −Y 0 | X = x]. Under the identifiability criteria we can treat
observational data as a RCT on covariate values and CATE can be estimated from data as

τ(x) = E[Y | X = x,T = 1]−E[Y | X = x,T = 0].

C.1.1 Model Evaluation

In the task of estimating the average treatment effect of proning we are interested in assessing
how close our estimate ÂT E is to the true effect ATE, as measured by the error εAT E = |AT E−
ÂT E| or similarly for the conditional effect εCAT E(τ̂) = Ex[L

(
τ(x), τ̂(x)

)
], where L is an arbitrary

loss function, τ̂ is the estimated conditional effect and τ is the true conditional effect. In our
setting we never observe the true effect, hence we cannot use standard causal inference evaluation
metrics εAT E and εCAT E used on synthetic and semi-synthetic data sets like IHDP.24 There is
no widely established way to evaluate causal inference models on real-world observational
data. We can however leverage two other markers to understand whether models are providing
sensible estimates.

First, we compare ATEs estimated by our models to the ATE estimated by a randomized control
trial that our study emulates. By emulating the RCT’s design and by ensuring that the identifiability
criteria are satisfied in the observational study, the estimated ATEs should be comparable to the
RCT’s estimate. In practice there can be some discrepancies, since e.g. the RCT’s population
can have a different composition from what is present in real-world data, but nonetheless the
RCT’s estimate can serve as a surrogate for the ground truth effect. Second, as the goal of
causal inference methods is not only to provide an estimate close to the RCT’s estimate but
also to accurately predict the outcomes, we additionally evaluate the predictive performance
by calculating the root-mean-squared-error (RMSE) of each method. For each model f , we

calculate RMSE for factual outcomes yi hence RMSE( f ) =
√

1
n ∑

n
i=1( f (xi, ti)− yi)2.

C.2 Models

We choose models that rely on a diverse set of modeling assumptions, with the goal of estimating
the average treatment effect of prone positioning. We introduce traditional methods for causal
inference: linear regression and propensity score based models in Section C.2.1 and Section C.2.2,
the popular Bayesian regression model BART in Section C.2.3 and a recent deep-learning based
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framework in Section C.2.4. The way we choose hyper-parameters for each of the models, as
well as details on implementation, is described in Appendix D.

C.2.1 Linear Regression

Linear regression (LR) is the simplest parametric approach to estimating average treatment
effect from observational data.25 We add it to the shortlist of models since it is widely used in
the literature, and it is a valid way to adjust for confounders under the following assumption.25

Linear regression assumes that the conditional expectation of the outcome Y can be expressed as

E[Y | X = x,T = t] = α0 +α1 · t +α2 · x. (1)

We estimate weights in Equation 1 by fitting a linear regression model and use the coefficient
of the treatment effect indicator α1 as the estimated average treatment effect. This is because by
Equation 1 it holds that

τ(x) = E[Y | X = x,T = 1]−E[Y | X = x,T = 0] = α1.

Therefore, not only is the outcome Y a linear combination of the treatment T and covariates X ,
but also the treatment effect is constant across different values of covariates X .

C.2.2 Models Based on Propensity Score

A propensity score, introduced by Rosenbaum and Rubin,26 is defined as the conditional probability
of receiving the treatment e(x) = P(T = 1 | X = x).

In our setting the true propensity score is unknown and needs to be estimated from data using
a propensity score model. Such model is used to correct the linear regression model in to two
ways: blocking and inverse probability weighting (IPW).27

First, we use blocking (sometimes referred to as ‘stratification’) to partition the observational
data into subsets (blocks) containing observations with an estimated propensity score in a given
range. We estimate the treatment effect within each block by fitting an linear regression to the
data within the block. We obtain the final ATE estimate by taking the average of block-wise
estimates, weighted by the proportion of data points in each block.

Second, following Kang and colleagues,28 we define a doubly robust estimator that combines
inverse probability weighting with linear regression (DR-IPW) as follows. For each observation
with covariate value x and treatment indicator t, we use the estimated propensity score ê(x) to
define a weight

w(x, t) =
[
ê(x)t · (1− ê(x))(1−t)

]−1
.

We then fit an linear regression weighted by w to our data, giving more importance to observations
with an unlikely treatment assignment. The ATE estimate is the treatment indicator’s coefficient
of the weighted model, as for the linear regression.
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The idea behind both models is to fit an linear regression to a modified version of the original
data, using the propensity scores to balance the difference between the treated and control group
and to correct the fact that treatment is not independent of covariates. This can be beneficial in a
variety of theoretical scenarios (for a detailed discussion of the above models and their statistical
properties, see Imbens27 and Kang et al.28).

C.2.3 BART

Bayesian Additive Regression Trees (BART) is a nonparametric, Bayesian method for estimating
functions using regression trees.29 It is a popular method for causal inference,1 used often as a
baseline comparison for state-of-the-art deep learning methods. The model’s popularity is based
on its outstanding performance in multiple real world scenarios,30,31 as well as simulated ones.1

BART assumes that the conditional expectation of the outcome Y can be expressed as

E[Y | X = x,T = t] = g(x, t)+ ε; ε ∼N (0,σ2),

where g is an arbitrary function, ε is an error term and σ2 is a constant. BART approximates
function g with a sum ∑

M
m=1 Tm(x, t) of M-many regression trees T1, . . . ,TM . We obtain a

CATE estimate by taking the difference τ̂(x) = ∑
M
m=1

(
Tm(x,1)−Tm(x,0)

)
. The ATE estimate is

obtained by averaging over CATE estimates computed on the test set ÂT E = 1
n ∑

n
i=1 τ̂(xi).

C.2.4 Counterfactual Regression

Counterfactual Regression (CfR) is a general method for estimating CATE that is based on
a theoretical framework developed by Shalit, Johansson, and Sontag.13 CfR is a regularized
minimization procedure that simultaneously tries to predict the correct observed outcomes and
to find a representation that balances the treated and control group. Thus CfR fits a representation
Φ : X −→X and a regression function f : X ×{0,1} −→ Y , where X is the covariate space and
Y is the outcome space, in order to minimize the objective

min
f ,Φ: ||Φ||=1

1
n

n

∑
i=1

wi · ( f (Φ(xi), ti)− yi)
2 +λ ·R( f )

+α ·Wass
(
{Φ(xi)}ti=1,{Φ(xi)}ti=0

)
,

(2)

where wi =
1
2 (

ti
u +

1−ti
1−u ) is a weight accounting for the treatment imbalance, u = ∑

n
i=1

ti
n is the

fraction of observations being treated, α and λ ·R( f ) are arbitrary regularization terms and Wass
is the Wasserstein distance defined by Villani.32 Theorem 3 of Johansson et al.33 guarantees that
by minimizing Equation 2 we obtain f ,Φ such that τ̂(x) = f (Φ(x),1)− f (Φ(x),0) is a consistent
CATE estimator. We also employ a special case of CfR, called TARNet, whose objective is
given by Equation 2 with α = 0. We follow CfR’s and TARNet’s implementation proposed
by Shalit, Johansson, and Sontag.13 We use CfR and TARNet to obtain the ATE estimate by
averaging over CATE estimates computed on the test set ÂT E = 1

n ∑
n
i=1 τ̂(x).
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D Algorithmic Details

D.0.1 Propensity Score Models

We evaluate three different strategies to estimate the propensity score. We fit a logistic regression
model to 1) confounders chosen by ICU doctors, 2) all covariates, 3) all covariates with interactions.
The second model is preferable to the first as adjusting with the second model results in lower
imbalance, when measured by the absolute value of the normalized mean difference defined
by Imbens.11 We choose the second model over the third, despite a slightly lower imbalance,
because the propensity scores estimated by the third model tend to extreme values, making it
less useful for calculating IPW weights. We use a scikit-learn implementation for the logistic
regression with no regularization and with weights adjusting for class imbalance.34 After
estimating the propensity scores (Figure 4) we perform propensity score clipping (= 0·1) to
account for the lack of overlap in the region with values below 0·1. For the linear regression
models we use the implementation proposed in statsmodels package.35

Figure 4: Distribution of the estimated propensity scores for the data set corresponding to the
early proning effect (Left) and the late proning effect (Right). The plots show a significant
overlap for the estimated propensity scores above 0·1.

D.0.2 BART

We use BART as implemented by Kapelner and Bleich.36 We train BART with m = 50 trees and
use 5-fold CV (with respect to the lowest RMSE) on the train data to choose hyperparameters:
k = 2, ν = 3, q = 0·9 controlling the model regularization. These hyperparameters are reported
as default by Chipman and colleages.29 Additionally, we use default parameters α = 0·95,β = 2
specifying the prior over trees’ structure.
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D.0.3 CFR and TARNet

We follow CfR’s and TARNet’s implementation proposed by Shalit, Johansson, and Sontag.13

They implement CfR and TARNet as a feed-forward neural network with three fully-connected
layers and with ELU activation functions for both the representation Φ and for the regression
functions f1 = f (x,1) and f0 = f (x,0). We use default hyperparameters with layer size of
200 for the representation and 100 for outcome networks. The model is trained using Adam
optimizer and `2 weight decay for outcome networks.37 We choose default regularization
hyper-parameters: λ = 0·0001 and α = 1 (α = 0 for TARNet). We perform early stopping
w.r.t. surrogate mean-squared-error defined by Shalit, Johansson, and Sontag and calculated
on a held-out validation set.13 We perform a grid search evaluated on the validation set in
order to access whether to use different than default hyperparameters for TARNet and CfR. We
decided to use the default hyperparameters for all models as improvement w.r.t. their predictive
performance was negligible.

E Medical Abbreviations

COVID-19: Coronavirus disease 2019
ICU: Intensive care unit
EHR: Electronic health record
RCT: Randomized controlled trial
PaO2: Partial pressure of O2 in an arterial blood sample
FiO2: Fraction of inspired oxygen
P/F ratio: Ratio between PaO2 and FiO2 (PaO2/FiO2)
ARDS: Acute respiratory distress syndrome
PEEP: Positive end-expiratory pressure
COPD: Chronic obstructive pulmonary disease
SOFA score: Sequential organ failure assessment score
BMI: Body mass index
PBW: Predicted body weight
BW: Body weight

F Dutch ICU Data Sharing Against COVID-19 Collaborators

From collaborating hospitals having shared data:

D. Jannet Mehagnoul-Schipper, MD, PhD, Intensive Care, VieCuri Medisch Centrum, Venlo,
The Netherlands,

Julia Koeter, MD, Intensive Care, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands,

Roger van Rietschote, Business Intelligence, Haaglanden MC, Den Haag,The Netherlands,
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Thijs C.D. Rettig, MD, PhD, Department of Intensive Care, Amphia Ziekenhuis, Breda, The
Netherlands,

M.C. Reuland, MD, Department of Intensive Care Medicine, Amsterdam UMC, Universiteit van
Amsterdam, Amsterdam, The Netherlands,

Laura van Manen, MD, Department of Intensive Care, BovenIJ Ziekenhuis, Amsterdam, The
Netherlands,

Leon Montenij, MD, PhD, Department of Anesthesiology, Pain Management and Intensive Care,
Catharina Ziekenhuis Eindhoven, Eindhoven, The Netherlands,

Jasper van Bommel, MD, PhD, Department of Intensive Care, Erasmus Medical Center, Rotterdam,
The Netherlands,

Roy van den Berg, Department of Intensive Care, ETZ Tilburg, Tilburg, The Netherlands,

Ellen van Geest, Department of ICMT, Haga Ziekenhuis, Den Haag, The Netherlands,

Anisa Hana, MD, PhD, Intensive Care, Laurentius Ziekenhuis, Roermond, The Netherlands,

B. van den Bogaard, MD, PhD, ICU, OLVG, Amsterdam, The Netherlands,

Prof. Peter Pickkers, Department of Intensive Care Medicine, Radboud University Medical
Centre, Nijmegen, The Netherlands,

Pim van der Heiden, MD, PhD, Intensive Care, Reinier de Graaf Gasthuis, Delft, The Netherlands,

Claudia (C.W.) van Gemeren, MD, Intensive Care, Spaarne Gasthuis, Haarlem en Hoofddorp,
The Netherlands,

Arend Jan Meinders, MD, Department of Internal Medicine and Intensive Care, St Antonius
Hospital, Nieuwegein, The Netherlands,

Martha de Bruin, MD, Department of Intensive Care, Franciscus Gasthuis and Vlietland, Rotterdam,
The Netherlands,

Emma Rademaker, MD, MSc, Department of Intensive Care, UMC Utrecht, Utrecht, The
Netherlands,

Martijn de Kruif, MD, PhD, Department of Pulmonology, Zuyderland MC, Heerlen, The
Netherlands,

Nicolas Schroten, MD, Intensive Care, Albert Schweitzerziekenhuis, Dordrecht, The Netherlands,

Klaas Sierk Arnold, MD, Anesthesiology, Antonius Ziekenhuis Sneek, Sneek, The Netherlands,

J.W. Fijen, MD, PhD, Department of Intensive Care, Diakonessenhuis Hospital, Utrecht, The
Netherland,
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Jacomar J.M. van Koesveld, MD, ICU, IJsselland Ziekenhuis, Capelle aan den IJssel, The
Netherlands,

Koen S. Simons, MD, PhD, Department of Intensive Care, Jeroen Bosch Ziekenhuis, Den
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Table 1: Characteristics of observations that Fulfilled the Inclusion Criteria. We report
mean values with standard deviation for numerical variables and frequency for binary variables,
ignoring missing values. Column Abs. Norm. Diff. indicates the absolute value of the
normalized difference between prone and supine group, as defined by Imbens11 – higher values
indicate higher imbalance.

PRONE SESSIONS SUPINE SESSIONS ABS. NORM.
CHARACTERISTIC (N=1260) (N=5111) DIFF.

AGE – YR. 63·6±10·6 63·5±10·3 0·01
MALE SEX – % 73% 77% 0·09
BMI 28·3±5·2 28·8±5·6 0·09
SOFA SCORE 7·5±3·2 8·0±3·4 0·15

DIABETES – % 25% 25% 0·00
RENAL FAILURE – % 19% 20% 0·03
HEPATIC DISEASE – % 5% 6% 0·06
CORONARY ARTERY DISEASE – % 5% 7% 0·09
CANCER – % 8% 9% 0·05
COPD – % 19% 16% 0·09
IMMUNODEFICIENCY – % 14% 15% 0·02
MORBID OBESITY – % 9% 13% 0·12

VASOPRESSORS – % 64% 56% 0·17
NEUROMUSCULAR BLOCKERS – % 46% 25% 0·43
RENAL–REPLACEMENT THERAPY – % 7% 11% 0·14
GLUCOCORTICOIDS – % 5% 10% 0·19

TIDAL VOLUME – ML 454·7±124·0 473·3±134·4 0·14
TIDAL VOLUME – ML PER KG OF PBW 6·7±1·8 6·9±1·9 0·11
RESPIRATORY RATE 23·2±8·7 24·3±9·2 0·12
PEEP (CM H2O) 13·1±3·6 12·4±3·7 0·19
FIO2 – % 79·0±14·8 71·0±12·5 0·58
PLATEAU PRESSURE – CM H2O 25·8±6·6 26·7±6·7 0·14
DRIVING PRESSURE – CM H2O 13·8±5·6 14·0±5·5 0·04
PAO2 – MM HG 69·4±12·8 71·5±11·7 0·17
P/F RATIO – MM HG 91·0±22·9 103·3±22·0 0·55
PACO2 – MM HG 56·7±15·2 56·6±16·4 0·01
ARTERIAL PH 7·3±0·1 7·4±0·1 1·00
LUNG COMPLIANCE STATIC 42·7±31·0 43·4±32·0 0·02
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Table 2: ATE estimates for early and late proning effect. All models estimate an ATE that
approximates or is slightly higher than the ATE of 15 reported by the PROSEVA trial. ATE and
RMSE are reported with mean and 95% CIs, for both outcomes.

Early Proning Effect Late Proning Effect

Model ATE RMSE ATE RMSE

LR 15·31(11·69,19·80) 58·48(57·91,59·11) 14·47(10·34,19·34) 53·88(53·41,54·58)
Weighting 14·54 (10·29, 19·00) 59·09 (58·15, 60·10) 13·53 (8·88, 19·45) 54·14 (53·58, 54·96)
Blocking 15·59 (11·44, 20·29) 60·02 (58·27, 61·71) 14·87 (9·39, 19·34) 53·22 (51·88, 55·14)
BART 20·11 (14·17, 27·50) 48·62 (45·12, 56·81) 13·99 (6·70, 20·34) 50·44 (47·35, 55·40)
TARNet 17·70 (8·80, 25·60) 51·79 (50·74, 53·53) 15·13 (5·66 25·97) 50·61 (48·80, 52·01)
CfR 18·14 (9·28, 27·35) 51·82 (50·83, 53·52) 15·26 (5·54, 24·94) 50·59 (48·58, 51·54)
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