
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Towards architectural optimization of equivariant neural networks over
subgroups

Maile, K.; Wilson, D.G.; Forré, P.

Publication date
2022
Document Version
Final published version

Link to publication

Citation for published version (APA):
Maile, K., Wilson, D. G., & Forré, P. (2022). Towards architectural optimization of equivariant
neural networks over subgroups. Paper presented at NeurIPS 2022 Workshop: NeurReps,
New Orleans, Louisiana, United States. https://openreview.net/forum?id=KJFpArxWe-g

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Oct 2023

https://dare.uva.nl/personal/pure/en/publications/towards-architectural-optimization-of-equivariant-neural-networks-over-subgroups(b8ec655b-5ff3-4a47-93bd-15af4509914d).html
https://openreview.net/forum?id=KJFpArxWe-g


Extended Abstract Track
Extended Abstract Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Towards Architectural Optimization of Equivariant Neural
Networks over Subgroups

Kaitlin Maile kaitlin.maile@irit.fr
IRIT, University of Toulouse

Dennis G. Wilson dennis.wilson@isae-supaero.fr
ISAE-SUPAERO, University of Toulouse
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Abstract

Incorporating equivariance to symmetry groups in artificial neural networks (ANNs) can
improve performance on tasks exhibiting those symmetries, but such symmetries are often
only approximate and not explicitly known. This motivates algorithmically optimizing the
architectural constraints imposed by equivariance. We propose the equivariance relaxation
morphism, which preserves functionality while reparameterizing a group equivariant layer
to operate with equivariance constraints on a subgroup, and the [G]-mixed equivariant layer,
which mixes operations constrained to equivariance to different groups to enable within-
layer equivariance optimization. These two architectural tools can be used within neural
architecture search (NAS) algorithms for equivariance-aware architectural optimization.

Keywords: equivariance, neural architecture search, geometric deep learning

1. Introduction

Incorporating constraints of symmetry group equivariance into neural networks can improve
their task performance, efficiency, and generalization capabilities (Bronstein et al., 2021),
as shown by translation-equivariant convolutional neural networks for image-based tasks
(Fukushima and Miyake, 1982; LeCun et al., 1989). Seminal works have developed gen-
eral theories and architectures for equivariance in neural networks, providing a blueprint
for equivariant operations on complex structured data (Cohen and Welling, 2016; Ravan-
bakhsh et al., 2017; Kondor and Trivedi, 2018; Weiler et al., 2021). However, these works
design model constraints based on an explicit equivariance property. Furthermore, the ar-
chitectural assumption of full equivariance may be overly constraining; e.g., in handwritten
digit recognition, full equivariance to 180◦ rotation may lead to misclassifying samples of “6”
and “9”. Weiler and Cesa (2019) found that local equivariance from a final subgroup con-
volutional layer improves performance over full equivariance. If appropriate equivariance
constraints are instead learned, the benefits of equivariance could extend to applications
where the data may have unknown or imperfect symmetries.

Learning approximate equivariance has lately been approached through novel layer op-
erations. Wang et al. (2022) relaxes equivariance via low-rank partial expansion. Finzi et al.
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Extended Abstract Track
Maile Wilson Forré
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Figure 1: Visualizations of (A) the equivariance relaxation morphism and (B) the [G]-mixed
equivariant layer, using the C4 group. In (A), the learnable parameters of a C4-
equivariant convolutional layer are expanded using the group element actions,
such that the expanded filter can be used in a standard convolutional layer.
Applying the equivariance relaxation morphism reparameterizes the layer to only
be architecturally constrained to C2 equivariance, initialized to be functionally
C4 equivariant. In (B), convolutional operations equivariant to subgroups of C4

are summed with learnable architectural weighting parameters.

(2021) uses an equivariant layer in parallel to a non-equivariant layer with weighted reg-
ularization. Zhou et al. (2020) and Yeh et al. (2022) represent symmetry-inducing weight
sharing through learnable matrices. Separately, the field of Neural Architecture Search
(NAS) aims to optimize full neural network architectures. Existing NAS methods have not
yet been developed for optimizing equivariance, although Romero and Lohit (2022) and
van der Ouderaa et al. (2022) learn partial or soft equivariances per layer towards custom
equivariant architectures. An important aspect of NAS is network morphisms: function-
preserving architectural changes (Wei et al., 2016) used during training to change the loss
landscape and gradient descent trajectory while immediately maintaining the current func-
tionality and loss value (Maile et al., 2022). Agrawal and Ostrowski (2022) present theoret-
ical contributions on subgroup-based network morphisms for group-invariant shallow neural
networks. Our work focuses on layer-wise equivariance for deep convolutional architectures.
Developing tools for searching over architectural representations of equivariance permits the
application of NAS algorithms towards architectural optimization of equivariance.

We present two contributions aimed to enable the search for appropriate equivariance
in the following section. The first is the equivariance relaxation morphism for group convo-
lutional layers that partially expands the parameters of the layer to enable less constrained
learning with a prior on symmetry. Secondly, we define the [G]-mixed equivariant layer that
parameterizes a layer as a weighted sum of layers equivariant to different groups, allowing
for the learning of architectural weighting parameters. We conclude by proposing extensions
of these theoretical results in equivariance-aware neural architecture search in Appendix A,
showing experimental results in Appendix B.
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2. Towards Architectural Optimization over Subgroups

We propose two mechanisms to enable search over subgroups: the equivariance relaxation
morphism and a [G]-mixed equivariant layer, visualized in Figure 1. The proposed morphism
changes the equivariance constraint from one group to another subgroup while preserving
the learned weights of the initial group convolutional operator; this is useful for architecture
search methods like evolutionary NAS that navigate between discrete architectural choices
(Elsken et al., 2017; Lu et al., 2019). The second contribution, the [G]-mixed equivariant
layer, allows for a single layer to represent equivariance to multiple subgroups through a
weighted sum. Learning the weights of such a hypernetwork is common in differentiable NAS
approaches, such as DARTS (Liu et al., 2018). We first present a preliminary background on
group convolutions and then the theoretical foundations of the two proposed mechanisms.

2.1. Group Convolution Background

We assume familiarity with group theory (Herstein, 2006). Let G be a discrete group.
The lth G-equivariant group convolutional layer (Cohen and Welling, 2016) of a group
convolutional neural network (G-CNN) convolves the feature map f : G → RCl−1 output
from the previous layer with a filter with kernel size k represented as learnable parameters
ψ : G → RCl×Cl−1 . For each output channel d ∈ [Cl] where [C] := {1, . . . , C}, and group
element g ∈ G, the layer’s output is defined via the convolution operator1:

[f ⋆G ψ]d(g) =
∑
h∈G

Cl−1∑
c=1

fc(h)ψd,c(g
−1h). (1)

The first layer is a special case: in the case of image data, the input is x : Z2 → RC0 , so the
layer instead performs a lifting convolution:

[x ⋆G ψ]d(g) =
∑
y∈Z2

C0∑
c=1

xc(y)ψd,c(g
−1y). (2)

We present our contributions in the group convolutional layer case, although similar claims
apply for the lifting convolutional layer case.

2.2. Equivariance Relaxation Morphism

The equivariance relaxation morphism reparameterizes a G-equivariant group (or lifting)
convolutional layer to operate over a subgroup of G, partially removing weight-sharing
constraints from the parameter space while maintaining the functionality of the layer, shown
in Figure 1(A).

Let G′ ≤ G be a subgroup of G. Let R be a system of representatives of the left quotient
(including the neutral element), so thatG′\G = {G′r | r ∈ R} , whereG′r := {g′r | g′ ∈ G′} .
Given a G-equivariant group convolutional layer with feature map f and filter ψ, we define

1. We identify the correlation and convolution operators as they only differ where the inverse group element
is placed and refer to both as ”convolution” throughout this work.
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the relaxed feature map f̃ : G′ → R(Cl−1×|R|) and relaxed filter ψ̃ : G′ → R(Cl×|R|)×(Cl−1×|R|)

as follows. For c ∈ [Cl−1], s, t ∈ R, d ∈ [Cl]:

f̃(c,s)(g
′) := fc(g

′s), (3)

ψ̃(d,t),(c,s)(g
′) := ψd,c(t

−1g′s). (4)

We define the equivariance relaxation morphism from G to G′ as the reparameterization
of ψ as ψ̃ (Eq. 4) and reshaping of f as f̃ (Eq. 3). We will show that the new output,
[f̃ ⋆G′ ψ̃](d,t)(g

′), is equivalent to [f ⋆G ψ]d(g
′t) down to reshaping. Since the mapping

G′ × R → G, (g′, t) 7→ g′t, is bijective, every g can uniquely be written as g = g′t with
g′ ∈ G′ and t ∈ R. For g ∈ G, G′g ∈ G′ \ G has a unique representative t ∈ R with
G′g = G′t, and g′ := gt−1 ∈ G′. By the same argument, h ∈ G may be written as h = h′s
with unique h ∈ G′ and s ∈ R. With these preliminaries, we get:

[f ⋆G ψ]d(g
′t) = [f ⋆G ψ]d(g) (5)

=
∑
h∈G

Cl−1∑
c=1

fc(h)ψd,c(g
−1h), (6)

=
∑
h′∈G′

∑
s∈R

Cl−1∑
c=1

fc(h
′s)ψd,c(t

−1g′−1h′s), (7)

=
∑
h′∈G′

Cl−1∑
c=1

∑
s∈R

f̃(c,s)(h
′)ψ̃(d,t),(c,s)(g

′−1h′), (8)

=
[
f̃ ⋆G′ ψ̃

]
(d,t)

(g′), (9)

which shows the claim. Thus, the convolution of f̃ with ψ̃ is equivariant toG but parametrized
as a G′-equivariant group convolutional layer, where the representatives are expanded into
independent channels. This morphism can be viewed as initializing a G′-equivariant layer
with a pre-trained prior of equivariance to G, maintaining any previous training.

Standard convolutional layers are a special case of group-equivariant layers, where the
group is translational symmetry over pixel space. Regular group convolutions are often
implemented by relaxation to the translational symmetry group by expanding the filter via
the appropriate group actions, allowing a standard convolution implementation from a deep
learning library to be used. The equivariance relaxation morphism generalizes this concept
to any subgroup.

2.3. [G]-Mixed Equivariant Layer

Towards learning equivariance, we additionally propose partial equivariance through a mix-
ture of layers, each constrained to equivariance to different groups and applied in parallel
to the same input then all combined via a weighted sum, shown in Figure 1(B). The equiv-
ariance relaxation morphism provides a mapping of group elements between pairs of groups
where one is a subgroup of the other. For a set of groups [G] where each group is a subgroup
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or supergroup of all other groups within the set, we define a [G]-mixed equivariant layer as:[
f⋆̂[G][ψ]

]
(d,t)

(g) =
∑
G∈[G]

zG

[
f ⋆G′ ψ̃G

]
(d,t)

(g) (10)

=

f ⋆G′
∑
G∈[G]

zGψ̃G


(d,t)

(g), (11)

where each element zG of [z] := {zG|G ∈ [G]} is an architectural weighting parameter such
that

∑
G∈[G] zG = 1, G′ is a subgroup of all groups in [G], each element ψG of [ψ] is a filter

with a domain of G, and ψ̃G is the transformation of ψG from a domain of G to G′ as defined
in Equation 4. Thus, the layer is parametrized by [ψ] and [z], computing a weighted sum
of operations that are equivariant to different groups of [G]. The layer may be equivalently
computed by convolution of the input with the weighted sum of transformed filters, shown
in Equation 11.

3. Conclusion

Towards architectural optimization of partial equivariance based on subgroup decomposi-
tion, we propose the equivariance relaxation morphism and the [G]-mixed equivariant layer.
The equivariance relaxation morphism can be utilized in a simple evolutionary NAS algo-
rithm, while the [G]-mixed equivariant layer can be optimized with a differentiable NAS
algorithm. Such algorithms are proposed in Appendix A, with experimental results follow-
ing in Appendix B. For the [G]-mixed equivariant layer, architectural discretization and
parameter retraining are not necessary as in other differentiable NAS algorithms, as the
mixture of filters can be combined into a single filter (Eq. 11). As such, the [G]-mixed
equivariant layer could be directly used as a layer in standard network training, beyond
NAS algorithms; the equivariance relaxation morphism could also be extended to appli-
cations beyond architecture search such as fine-tuning and distillation. By demonstrating
that groups can be relaxed or mixed in a single layer, we aim to facilitate the learning of
networks which automatically find optimal partial equivariance.
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Appendix A. Equivariance-Aware Neural Architecture Algorithms

We present two neural architecture search methods that utilize the presented mechanisms for
discovering appropriate equivariance during neural network training: Evolutionary Equivariance-
Aware NAS (EquiNASE) and Differentiable Equivariance-Aware NAS (EquiNASD). Both
methods optimizffe an architecture while learning network weights, returning a final trained
network adapted to the equivariances present in the training data. However, they differ in
NAS paradigm and approximate equivariance representation: EqufiNASE , described in
Section A.1, searches for networks composed of layers each fully equivariant to possibly
different groups, while EquiNASD, described in Section A.2, searches for smooth mixtures
of equivariant layers.

A.1. Evolutionary Equivariance-aware NAS

Towards finding the optimal full equivariance per layer, the equivariance relaxation mor-
phism presented in Section 2.2 is applied as the genetic operator in an evolutionary hill-
climbing algorithm. The Evolutionary Equivariance-Aware NAS (EquiNASE) algorithm,
given in Algorithm 1, is similar to other evolutionary NAS methods such as Elsken et al.
(2017) with pareto selection as in Falanti et al. (2022). A population of networks, which
starts with an individual with all layers equivariant to the largest possible group, undergoes
mutation via equivariance relaxation and selection based on accuracy and parameter count
to optimize neural architecture while learning network parameters.

In each generation, candidate networks are evaluated based on maximizing validation
accuracy and minimizing parameter count: the entire Pareto front is kept, then additional
high-accuracy individuals are added if necessary until the desired parent population size
is reached. Offspring are generated from each parent separately through mutation using
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Algorithm 1: EquiNASE : Evolutionary equivariance-aware neural architecture
search.

Input: Initial symmetry group G.
Output: Population of trained networks.
Initialize population with a G-equivariant group convolutional network.
for each generation do

for each network in population do
Add children of network with relaxed equivariance constraints into population.

end
for each network in population do

Partially train network on dataset.
end
Select Pareto-efficient and high accuracy networks as new population.

end

the relaxation morphism. This preserves the weights of the parameterized equivariance
during mutation, allowing for the continuous training of networks over evolution through
inheritance from parent individuals. Specifically, mutation reduces a single layer’s parame-
terized equivariance to a subgroup within the constraint that each layer has parametrized
equivariance to a subgroup of all preceding layers. This constraint yields local equivariance
properties for the network, as shown in Weiler and Cesa (2019) and Elsayed et al. (2020)
to be empirically favorable in image classification tasks. The resulting individuals are each
trained independently for a given training time, and then this process repeats.

The second objective of minimizing parameter count is intended to advance efficient
networks, such as those with large symmetry groups. Accuracy-based selection alone would
necessarily prefer larger networks as mutation via the equivariance relaxation morphism
results in two networks with identical performance but different size, the relaxed network
having more parameters, until training; potentially short-term increases in validation accu-
racy after training would then result in the selection of individuals with more parameters.
Thus, the proposed strategy of selecting both pareto-front and high-accuracy individuals is
intended to maintain a diverse yet efficient population without succumbing to overly greedy
selections too early.

A.2. Differentiable Equivariance-aware NAS

In a contrasting paradigm, the [G]-mixed equivariant layer presented in Section 2.3 allows
for smoothly searching across a spectrum of equivariance for each layer via a differentiable
NAS algorithm. Our Differentiable Equivariance-Aware NAS (EquiNASD) algorithm, de-
fined in Algorithm 2, is inspired by DARTS (Liu et al., 2018) with significant changes
detailed in the following paragraphs. EquiNASD simplifies the bilevel optimization of the
architecture weighting parameters Z and filter weights Ψ into alternating independent up-
dates, computing the gradient update for Z with the current, rather than optimal, Ψ for
the current architecture encoded by Z, to boost search efficiency with minimal performance
loss compared to higher order approximations (Liu et al., 2018).
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Algorithm 2: EquiNASD: Differentiable equivariance-aware neural architecture
search.

Input: Set of groups [G].
Output: Trained network.
Initialize network with [G]-mixed equivariant layers, parameterized by Ψ and Z.
while not converged do

Update Z by ∇ZL(Ψ, Z).
Update Ψ by ∇ΨL(Ψ, Z).

end

In most differentiable NAS search spaces, the desired output architecture is discretized to
select a subset of architectural options within constraints, then the weights are re-initialized
and trained within the static architecture. In our formulation, this is not necessary as any
mixed operation can be equivalently expressed as a single layer equivariant to any group
G′ that is a common subgroup to all groups of the mixed operation (Eq. 11): in our
experimental case, this is a standard translation-equivariant convolutional layer, so the
final model can be equivalently expressed as a standard convolutional model with encoded
partial equivariance. Thus, the final optimized architecture and trained weights are output
from the single search process.

In order to enforce that the scaling of each filter does not confound the architecture
weighting parameters, we use the weight normalizing reparameterization (Salimans and
Kingma, 2016) and do not update the scalar norm parameter of each filter after initialization.

We do not use disjoint datasets for updating Ψ and Z, but rather draw one batch for Ψ
and another for Z independently and randomly from the same training split. This allows
for a standard dataset split and to use the validation set for hyperparameter tuning.

These two NAS approaches present adaptations of two standard types of NAS, evolu-
tionary and differentiable, to the search for optimal partial equivariance. The equivariance
relaxation morphism and the [G]-mixed equivariant layer that enable the evolutionary and
differentiable search methods respectively are the main focus; the other characteristics of the
NAS methods are adapted from existing methods, but further study could advance special-
ization of equivariance-aware NAS. We next study empirically the two EquiNAS methods
on three datasets, one with known rotational symmetry and two with unknown but visually
significant rotational and reflectional symmetry.

Appendix B. Results

We focus on the regular representation of groups and show experiments with reflectional
and up to 4-fold rotational symmetry groups applied to image classification tasks. Examples
of symmetry groups acting on pixel space, which corresponds to Z2, include T (2), which
consists of discrete translations in both dimensions; the cyclical groups Cn, which consist
of n-fold rotations; and the dihedral groups Dn, which consist of reflections with n-fold
rotations, where n ∈ {1, 2, 4} for exact symmetry without interpolation. The p4 group
consists of discrete translations and multiples of 90◦ rotations and may be represented as
T (2)⋊C4. The p4m group consists of discrete translations, reflections, and multiples of 90◦
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rotations and may be represented as T (2)⋊D4. As standard convolutional layers are already
equivariant to T (2), we refer to layers also equivariant to n-fold rotations with or without
reflections as Dn or Cn-equivariant, respectively. So, a C1 equivariant convolutional layer
is a standard translation-equivariant convolutional layer. We use {C1, D1, C2, D2, C4, D4}
as the set of potential groups for mutation in EquiNASE and as [G] in EquiNASD.

We present experiments on image classification for a variety of datasets. The Rotated
MNIST dataset (Larochelle et al., 2007, rotMNIST) is a version of the MNIST handwritten
digit dataset but with the images rotated by any angle. This task serves as a simple
investigational study with known symmetry, while the following two tasks are more realistic
and complex. The Galaxy10 DECals dataset (Leung and Bovy, 2019, Galaxy10) contains
galaxy images in 10 broad categories. The ISIC 2019 dataset (Codella et al., 2018; Tschandl
et al., 2018; Combalia et al., 2019, ISIC) contains dermascopic images of 8 types of skin
cancer plus a null class. For Galaxy10 and ISIC, we down-sample the images to 64×64 due
to computational constraints, which adds notable difficulty to the tasks. These tasks exhibit
varying levels of rotational and reflectional symmetry, motivating architectural optimization
to determine the most effective application of equivariance constraints.

Across all experiments, the architectures are designed to have consistent channel di-
mensions once expanded to a standard translation-equivariant convolutional layer for each
layer across models. Thus, constrained equivariance to a larger symmetry group results
in fewer learnable parameters. A layer constrained to C4 equivariance has |C4 \ D4| = 2
times as many independent channels and as many parameters as a layer constrained to D4

equivariance. This is a notably different paradigm than other works that equate parameter
counts across architectures with different equivariance properties.

As baseline comparisons, we train and test G-CNNs with static architectures. In addi-
tion to the static baselines, we re-implement the residual pathway priors (RPP) approach
by Finzi et al. (2021) as a C1 equivariant layer with regularization in parallel with a D4

equivariant convolutional layer.

Further experiment details such as architecture details and other hyperparameters can
be found in Appendix D. For each paradigm of experiments, we present their results in the
following subsections, with general discussion following in Section B.3.

B.1. Evolutionary Equivariance-aware NAS

The classification test errors are listed in Table 1. The advantages of equivariance search
methods are most apparent in the Galaxy10 benchmark. While EquiNASE outperforms
most baselines on rotMNIST and all baselines on ISIC, it has similar performance on both
tasks to the D4 baseline, and some of the final architectures are very similar to the D4

baseline architecture. However, the D4 baseline fails at the Galaxy10 task, demonstrating
that the same equivariant architecture can not be naively applied to different tasks. Both
search methods, EquiNASE and RPP, outperform all baseline models on Galaxy10, and by
a large margin for EquiNASE .

The evolutionary progress on rotMNIST is shown in Figure 2: the selected population
maintains a fully equivariant network in every generation. The final selected population
originates from two main lineages, one staying fully equivariant until the last generations
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Method rotMNIST Galaxy10 ISIC

EquiNASE 1.78 ± 0.04 20.3 ± 0.9 31.0 ± 0.4
RPP (Finzi et al., 2021) 2.18 ± 0.04 24.3 ± 2.8 32.2 ± 1.7
D4 baseline 1.78 ± 0.11 50.8 ± 17.0 32.1 ± 2.4
C4 baseline 1.64 ± 0.22 29.6 ± 5.5 32.9 ± 1.0
C1 baseline 5.02 ± 1.15 31.6 ± 4.8 33.2 ± 1.5
C4 (prior: D4) 1.93 ± 0.05 27.8 ± 5.3 31.9 ± 1.5
C1 (prior: D4) 3.40 ± 0.07 25.9 ± 2.3 31.4 ± 2.6
C1 (prior: C4) 2.96 ± 0.05 30.7 ± 7.1 32.5 ± 1.1

Table 1: Test error percentages (lower is better) across tasks and approaches. Statistics are
aggregated over the final selected population of 5 individuals for EquiNASE and
across 5 random seeds for all other methods. The best and second best average
errors for each task are highlighted. See Figure 4 in Appendix E for individual
trial results.
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Figure 2: Historical parameter counts of each selected individual for EquiNASE on rotM-
NIST. The architectures of the final selected population are labeled. Each pa-
rameter count history is colored according to the final test accuracy, which is
measured of each individual upon removal. For other tasks, see Figures E-E in
Appendix E.

and the other diverging from the fully equivariant network midway through, showing that
training with dynamically constrained parameterizations can produce performant models.

In addition to the normally initialized static baselines, we also train and test baselines
that are initialized with priors to larger symmetry groups. These are implemented by initial-
izing all layers to be constrained to the prior symmetry group, then using the equivariance
relaxation morphism on each layer. EquiNASE searches for relaxation schedules that yield
trained priors on equivariance, while these additional baselines yield untrained priors. The
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Method rotMNIST Galaxy10 ISIC

EquiNASD 2.29 ± 0.27 21.8 ± 1.2 32.8 ± 0.6
RPP (Finzi et al., 2021) 2.89 ± 0.27 22.0 ± 1.8 31.5 ± 0.9
D4 Baseline 2.97 ± 1.50 22.5 ± 2.0 32.0 ± 1.0
C4 Baseline 2.43 ± 0.54 22.2 ± 2.4 32.8 ± 1.0
C1 Baseline 3.97 ± 0.75 26.5 ± 1.5 32.9 ± 3.1

Table 2: Test error percentages (lower is better) in percent of incorrect classifications across
tasks and approaches. The best and second best average errors for each task
are highlighted. See Figure 7 in Appendix E for individual trial results.
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Figure 3: Architecture weighting parameters by layer for one selected trial from rotMNIST,
Galaxy10, and ISIC. For other trials, see Figures 8-10 in Appendix E.

results in Table 1 show that, the C1-equivariant networks generally improve with either
equivariance prior, while the C4 equivariant networks perform better with D4 equivariance
initialization only when the D4 constrained baselines also work well. The untrained prior
methods do not perform as well as EquiNASE on rotMNIST, showing the benefit of invest-
ing some training time to the constrained equivariance. For the other tasks, the baselines
with priors have better performances than their constrained baseline counterparts.

B.2. Differentiable Equivariance-aware NAS

The classification test errors are listed in Table 2. EquiNASD achieves better test accuracy
than the other comparable methods on rotMNIST and Galaxy10. Due to differences in
training protocol, only comparisons of relative rankings with Table 1 are possible: baseline
methods accuracies followed similar patterns to ranking between experimental paradigms,
suggesting the benefit of general C4 equivariance for rotMNIST and Galaxy10 and general
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D4 equivariance, including RPP, for ISIC. In this training protocol notably with adaptive
optimizers, the results are more consistent across methods and trials.

The architecture weighting parameter dynamics for one exemplary trial per task are
shown in Figure 3. The general trend of less constrained layers toward the end of the
network supports the conjecture of local equivariance being beneficial. However, this effect
is less consistent for ISIC with possibly less inherent symmetry: trials on ISIC, the only task
where EquiNASD did not exceed baselines, had the most varied architectures. As seen in
Appendix E, the final mixing of architectures for ISIC included a high level of C1, indicating
that feature analysis outside of these symmetry groups is important for this benchmark.

Previous differentiable NAS works often used regularization of network size or even ar-
chitecture weighting parameters themselves to encourage efficient architectures with a single
highly weighted choice for each layer. However, our algorithm shows strong preference for a
single, more equivariant and thus more expressive layer, notably to D4 or C4 equivariance,
without such regularization. This may be due to the bilevel optimization dynamics: more
constrained layers may be able to make more effective updates to more closely approximate
the correct gradient computation that assumes optimal weights and thus become favorable
compared to the lagging larger layers. This conjecture is shown particularly for trials on
Galaxy10: increases in the architectural weighting parameter towards C1 equivariance often
comes after having strong weights for operations equivariant to larger groups.

B.3. Discussion

To our knowledge, this is the first work which proposes search methods for networks with
dynamically constrained equivariance. Many NAS approaches separately search for an ar-
chitecture and then reinitialize and retrain the weights, while our two proposed approaches
find an optimal architecture with trained weights in a single process, notably with dynam-
ically constrained weights. Gradient-based tuning (Maclaurin et al., 2015) has shown the
benefit not only of optimizing hyperparameters but also of dynamically adjusting them dur-
ing training (Lichtarge et al., 2022). There is an inherent trade-off between accuracy and
generalization capabilities with more constrained equivariance: dynamically constrained
weights can reap both over the course of training.

Our two equivariance-aware NAS approaches have distinct approaches: EquiNASE
searches for architectures composed of discretely equivariant layers, while EquiNASD searches
for continuous mixtures of equivariance within each layer. The EquiNASD algorithm avoids
many known problems in differentiable NAS such as the discretization gap that occurs when
searching over a continuous relaxation of a discrete architectural search space (Xie et al.,
2021), such as that of EquiNASE . Towards searching for discretely equivariant layers using
the [G]-mixed equivariant layer, proximal NAS algorithms use techniques such as projection
(Yao et al., 2020) and straight-through estimation (Li et al., 2022) to avoid the discretization
gap and thus may be effective for this application.

The EquiNASE algorithm is innately greedy. At each selection step, the population is
evaluated on the known current performance rather than the unknown final performance,
so this metric is biased to architectures that train quickly. Networks constrained to higher
symmetry group equivariance tend to learn faster, but this could be confounded by the
equivariance relaxation causing large gradients for the newly unconstrained parameters and
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thus potentially fast increases in performance. Further work could utilize other metrics for
final performance, such as proxies (White et al., 2022).

All of the theoretical and algorithmic contributions of this work are applicable beyond
the image classification experiments presented to architectures with parametrized equiv-
ariance to any discrete group. We leave the extension to other group representations and
domains as future work.

Our proposed equivariance-aware NAS problems can be practically applied to find ef-
fective networks for datasets with hypothesizable symmetry. EquiNASE may particularly
work well on tasks that benefit from local equivariance, which can be determined by analyz-
ing the architecture weighting parameters from first applying the more efficient EquiNASD.
For tasks where EquiNASD models have less consistent equivariance patterns, EquiNASE
could be adapted to propose candidates that relax any layer in the network, removing our
constraint of non-increasing equivariance. We thus recommend EquiNASD for practical
applications if the final model is not restricted to discrete equivariance, in which case it can
be used to inform design decisions for applying EquiNASE .

Beyond NAS, the equivariance relaxation morphism could be used in other applications
such as fine-tuning and distillation. Layers of a pre-trained equivariant network could be
expanded via equivariance relaxation before fine-tuning on the same or a new task. Similarly,
a network could be distilled to a wider architecture for additional performance benefits.

The proposed equivariance-aware NAS algorithms are intentionally simple to focus on
studying the architectural mechanisms presented in Section 2, although we have already
discussed potential improvements to these algorithms. We include all valid results, even
those that do not favor our own techniques, for transparency. This work aims to build
a foundation for the intersection of equivariant architectures and NAS, rather than over-
engineer the algorithms and experiments for incremental performance gains on selected
benchmarks.

Appendix C. Implementation Details

Group convolutional layers The implementation of regular group convolutional layers
can be viewed as a special case of our proposed equivariance relaxation morphism. With
the preliminaries given in Section 2.2 and the case of G′ = T (2), f̃ and ψ̃ are computed
such that f̃(c,s)(g

′) := fc(g
′s) and ψ̃(d,t),(c,s)(g

′) := ψd,c(t
−1g′s) for each g′ ∈ T (2), c ∈ [Cl−1],

s, t ∈ R, and d ∈ [Cl].
Let SG := |R|. The learnable parameters of the Gl-equivariant l

th layer with Cl output
channels, corresponding to ψ, are stored as a tensor of size Cl×Cl−1×SGl

×Kl×Kl. The filter
transformation expands this filter tensor by performing the action of each r ∈ R on another
copy of the tensor to expand its shape along a new dimension, resulting in a tensor of size
Cl×SGl

×Cl−1×SGl
×Kl×Kl, which is reshaped to ClSGl

×Cl−1SGl
×Kl×Kl. The input

tensor to the lth layer, corresponding to f, is in the shape of B×Cl−1×SGl
×Hl−1×Wl−1,

which is reshaped to B × Cl−1SGl
×Hl−1 ×Wl−1 and convolved with the expanded filter.

The output of shape B × ClSGl
×Hl ×Wl is reshaped to B × Cl × SGl

×Hl ×Wl.

Equivariance relaxation morphism To implement the equivariance relaxation mor-
phism, the new filter tensor is initialized by applying Equation 4 such that result of apply-
ing the preceding filter transformation is equivalent. Our implementation of group actions
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relies on group channel indexing to represent the order of group elements: to ensure this
is consistent before and after the morphism, the appropriate reordering of the output and
input channels of the expanded filter are applied upon expansion. The new filter tensor has
a shape of Cl|R|×Cl−1|R|×SGl

/|R|×Kl×Kl. The [G]-mixed equivariant layer is built on
top of this implementation, also using proper input and output channel reordering between
layers to ensure correct mixing of group channels.

Appendix D. Experimental Details

Architecture backbone For both EquiNASE and EquiNASD experiments, we use the
same backbone architecture, such that the static baselines have the same architecture across
experiments. The architectures have a lifting layer followed by 7 group convolutional layers,
for a total of 8 convolutional layers. After 4 layers, the channel count doubles, from 16
to 32 for a D4 equivariant layer and scaling up for smaller symmetry group equivariance
constraints. An average pooling layer is placed after every other layer for all architectures
and additionally after the fifth and seventh convolutional layers for Galaxy10 and ISIC.
After the final group convolutional layer is a group-dimension average pooling followed by
two linear layers to the output dimension. Every convolutional and linear layer except the
output layer is immediately followed by a batchnorm then a ReLU.

Hyperparameters The hyperparameters for each algorithm are selected such that base-
lines only differ by training time and optimizers. The learning rates were selected by grid
search over baselines on rotMNIST. For all experiments in Section B.1, we use a simple SGD
optimizer with learning rate 0.1 to avoid confounding effects such as momentum during the
morphism. For EquiNASE , the parent selection size is 5, the training time per generation
is 0.5 epochs, and the number of generations is 50 for all tasks. Baselines were trained for
the equivalent number of epochs. For all experiments in Section B.2, we use separate Adam
optimizers for Ψ and Z, each with a learning rate of 0.01 and otherwise default settings.
The total training time is 100 epochs for rotMNIST and 50 epochs for Galaxy10 and ISIC.
For RPP, we use a C1-equivariant layer with an L2 regularization parameter of 1× 10−6 in
parallel with a D4-equivariant layer without regularization.

For rotMNIST, we use the standard training and test split with a batch size of 64,
reserving 10% of the training data as the validation set. For Galaxy10, we set aside 10% of
the dataset as the test set, reserving 10% of the remaining training data as the validation set.
For ISIC, we set aside 10% of the available training dataset as the test set, reserving 10%
of the remaining training data as the validation. For the latter two datasets, we resize the
images to 64×64 due to computational constraints and use a batchsize of 32. The validation
sets were previously used for hyperparameter tuning: for experimental results, they are only
used for the experiments in Section B.1 as necessary for the EquiNASE algorithm. No data
augmentation is performed, although the datasets are normalized.

Appendix E. Additional Figures
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Figure 4: Test errors for experiments of Section B.1.
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Figure 5: Historical parameter counts of each selected individual for EquiNASE on
Galaxy10.
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Figure 6: Historical parameter counts of each selected individual for EquiNASE on ISIC.
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Figure 7: Test errors for experiments of Section B.2.
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Figure 8: Architecture weighting parameters by layer for all trials on rotMNIST.
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Figure 9: Architecture weighting parameters by layer for all trials on Galaxy10.
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Figure 10: Architecture weighting parameters by layer for all trials on ISIC.
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