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General introduction 

The COVID-19 pandemic brought the significance of diagnostic tests to the frontline of 
our society. Copious amounts of tests and testing strategies to detect the SARS-CoV-2 
virus were introduced and the results of these tests dictated our not only healthcare 
providers in alleviating the burden of the outbreak, but also the mobility and personal 
decisions of millions around the globe. Unanimous efforts were invested into developing 
rapid and accurate diagnostics to detect, monitor, and prevent the spread of COVID-19. 
We relied on technologies like polymerase chain reaction (PCR), antigens, and antibodies 
for developing tests to detect this novel disease. But with the rapidly changing landscape 
of diagnostics came the question: how accurate are these tests?  
 
When we study test accuracy, it is important to consider the various settings that medical 
tests are used in. The US Food and Drug Administration (FDA) outlined several different 
contexts of use for biomarkers, including diagnostic, monitoring, and predictive, among 
others. The context of use will often determine the most suitable approach for evaluating 
test performance, as well as emphasize different features of a test that are most 
important. Ideally, we have a perfect test that maximizes both the true negative and 
positive results, but this is seldom the case and there is a trade-off between the two that 
we need to balance. The performance of a test may also vary depending on patient 
characteristics. Some tests are more accurate for men compared to women, while other 
tests may perform better with younger patients compared to the elderly. Understanding 
the accuracy of a test therefore encompasses a more general evaluation of whether a test 
is fit for purpose and serves its intended use, as well as understanding its more 
operational characteristics, which can improve our understanding of optimal and 
suboptimal settings to use a test. 
 
To investigate the performance of a biomarker that could be used to detect a disease or 
condition (here and now), we conduct diagnostic accuracy studies. This field of research 
has grown tremendously, and it is no surprise why. There is a lot of excitement around 
discovering and validating biomarkers that carry the potential to aid disease detection. 
Their use has proliferated to various decision points along disease management, and 
clinical trials for drug development. In such clinical trial settings, biomarkers can be 
implemented as tools to expedite recruitment, as a screening test to enrich the 
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recruitment pool with those more likely to benefit from receiving treatment, reducing the 
burdens that come with more invasive and costly testing procedures.  
   
A diagnostic accuracy study is designed in such a way that the index test is evaluated by 
comparing its results to the best available method to detect the disease or condition, 
known as the reference standard. Most often, both the test and the reference standard 
generate a dichotomous result, which classifies the patient as either positive or negative, 
and the target condition as present or absent. These data, constructed in the form of a 
2x2 contingency table, allow us to calculate performance metrics such as sensitivity, 
specificity, and predictive values (Table 1).  
 
Table 1. A 2x2 contingency table including sensitivity, specificity, and predictive values 

 
Reference Standard 

 
Condition 

present (+) 
Condition  
absent (-) 

Index Test 

Test 
positive (+) 

True positives  
(TP) 

False positives  
(FP) 

Positive predictive value (PPV) 
TP/(TP+FP) 

Test 
negative (-) 

False negatives  
(FN) 

True negative  
(TN) 

Negative predictive value (PPV) 
TN/(FN+TN) 

 Sensitivity 
TP/(TP+FN) 

Sensitivity 
TN/(FP+TN)  

 
Sensitivity and specificity indicate the proportion of test positives among those with the 
target condition (true positives) and test negatives among those without the target 
condition (true negatives), respectively. Predictive values indicate the proportion of 
disease positives among all those who test positive (positive predictive value) or the 
disease negatives among test negatives (negative predictive value). These metrics, among 
others, express the correspondence between the test and reference standard. 
 
Not all tests generate a dichotomous result. In such cases, a positivity threshold can 
dichotomize a continuous test result, common for many biomarkers and diagnostic 
models on a continuous or ordinal scale, allowing classification of those with and without 
the target condition. When evaluating a biomarker as a medical test, a receiver operating 
characteristic (ROC) curve can be constructed (Figure 1). ROC curves illustrate the 
sensitivity and specificity at any possible positivity threshold. The area under the ROC  
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Figure 1. An example of a ROC curve including the area under the ROC curve (AUC) 
 
curve (AUC) expresses the overall ability of a test to distinguish those with and without 
the target condition. ROC curves provide an intuitive visual of the trade-off between the 
sensitivity, meaning, proportion of true positives, and the specificity, true negatives. 
These characteristics are a direct result of the selected positivity threshold. The context 
in which a test may be most beneficial influences the selection of the positivity threshold, 
to the extent that the same biomarker with a different threshold may be considered a 
different test in itself.  
 
For this thesis, we conducted studies and explored methods for both synthesizing the 
available evidence and generating new data on test performance. The earlier studies 
inspired the later chapters where we expanded the evaluation of bias, an essential 
element of the evidence synthesis process, and applied methods to alleviate a well 
understood challenge in diagnostic accuracy studies: accommodating for variability and 
its influence on the positivity threshold (1). We studied the performance of several non-
invasive tests and further generated new diagnostic models using supervised machine 
learning techniques. These studies were conducted largely in the context of evaluating 
non-invasive biomarkers for the detection of key outcomes in patients with non-alcoholic 
fatty liver disease (NAFLD). 
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Non-alcoholic fatty liver disease (NAFLD) 

NAFLD is a multifactorial condition characterized by the accumulation of fat in the 
hepatocytes. As a progressive disease, the histological spectrum spans from simple 
steatosis, to non-alcoholic steatohepatitis (NASH) with or without fibrosis, and a small but 
significant subset of patients may progress to more severe stages like cirrhosis and 
hepatocellular carcinoma (HCC). In parallel with metabolic conditions, such as obesity and 
diabetes, the fast-growing prevalence of NAFLD has set it to become a significant cause 
of liver cancer and transplantation (2). Despite its prevalence and growing clinical 
significance, there are no licensed therapies for NASH, and accurate diagnosis, and 
thereby timely disease management, remains a challenge.  
 
The current clinical reference standard for detecting outcomes with NAFLD is liver 
histology. A patient undergoes a biopsy to evaluate the degree of hepatic steatosis, 
lobular inflammation, ballooning, and fibrosis. A biopsy, however, poses risk for the 
patients, is resource intensive, and has limitations including inter- and intra-observer 
variability (3). This, and the growing number of drugs under development for NASH, have 
been the driving force for regulatory approval of non-invasive diagnostic alternatives, 
predominantly for those with active NASH or NASH with a degree of fibrosis.  
 

Outline of thesis 

For this thesis, a series of systematic reviews and meta-analyses were performed to 
landscape the performance of selected biomarkers proposed for detecting conditions 
within NAFLD. In Chapter 2 we synthesized the existing literature on circulating 
cytokeratin-18 (CK-18) as a candidate marker for detecting NASH. We discovered and 
managed the heterogeneous use of positivity thresholds by applying a linear mixed effects 
multiple thresholds model to accommodate for the different thresholds.  
 
Chapter 3 focuses on an imaging modality, vibration controlled transient elastography 
(VCTE), for the staging of liver fibrosis. Here we performed an individual patient data (IPD) 
meta-analysis to evaluate the ability of VCTE to detect fibrosis stages. The performance 
of VCTE was compared to liver fibrosis tests commonly used in practice.  
 
Chapter 4 presents a systematic review on the prognostic accuracy of three known and 
accessible non-invasive multi-marker scores for NAFLD-related events. Unlike diagnostic 
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accuracy studies, which evaluate the ability of a test to detect a target condition, either 
present or absent at the time of testing, prognostic accuracy studies evaluate the 
performance of a test to predict the occurrence of a future event. 
 
The challenges brought forth by the systematic review reported in Chapter 4 inspired the 
development of a modified risk-of-bias tool, which we delve into in Chapter 5. In this 
chapter, we introduce QUAPAS (Quality Assessment of Prognostic Accuracy Studies). 
QUAPAS is a risk-of-bias and applicability assessment tool for prognostic accuracy studies. 
No such tool was previously available, presenting a challenge when conducting reviews of 
prognostic accuracy studies. We systematically modified an existing instrument, QUADAS-
2 for diagnostic accuracy studies, in the absence of an appropriate risk-of-bias tool for the 
systematic review in Chapter 4. 
 
Following the evidence synthesis phase, we evaluated seventeen biomarkers, multi-
marker scores and VCTE for detecting NAFLD conditions in a comparative diagnostic 
accuracy study, conducted in a large multicenter study group (Chapter 6). Here we 
additionally proposed new positivity thresholds for recruitment of patients in future drug 
trials, with the aim of reducing those subjected to biopsies. This work inspired Chapter 7, 
where new prediction models were developed, with clinical and biomarker data, to stage 
and grade NASH, at-risk NASH, and fibrosis stages using supervised machine learning 
techniques.  
 
Finally, in Chapter 8, we evaluate methods proposed for incorporating covariate 
information in ROC curve analysis, in the setting of D-dimer as a diagnostic test for venous 
thromboembolism. We further explored the implications of covariates, and their 
subgroups, on the appropriate selection of the positivity threshold.  
 
This thesis closes with a direction for future research for conducting systematic reviews 
and primary analysis of test accuracy studies (Chapter 9). 
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Abstract 

Introduction: Association between elevated cytokeratin 18 (CK-18) levels and hepatocyte 

death has made circulating CK-18 a candidate biomarker to differentiate non-alcoholic 

fatty liver from non-alcoholic steatohepatitis (NASH). Yet studies produced variable 

diagnostic performance. We aimed to provide summary estimates with increased 

precision for the accuracy of CK-18 (M30, M65) in detecting NASH and fibrosis among 

non-alcoholic fatty liver disease (NAFLD) adults.  

 

Methods: We searched five databases to retrieve studies evaluating CK-18 against a liver 

biopsy in NAFLD adults. Reference screening, data extraction and quality assessment 

(QUADAS-2) were independently conducted by two authors. Meta-analyses were 

performed for five groups based on the CK-18 antigens and target conditions, using one 

of two methods: linear mixed-effects multiple thresholds model or bivariate logit-normal 

random-effects model.  

 

Results: We included 41 studies, with data on 5,815 participants. A wide range of disease 

prevalence was observed. No study reported a pre-defined cut-off. Thirty of 41 studies 

provided sufficient data for inclusion in any of the meta-analyses. Summary AUC [95% CI] 

were: 0.75 [0.69 - 0.82] (M30) and 0.82 [0.69-0.91] (M65) for NASH; 0.73 [0.57-0.85] 

(M30) for fibrotic NASH; 0.68 (M30) for significant (F2-4) fibrosis; and 0.75 (M30) for 

advanced (F3-4) fibrosis. Thirteen studies used CK-18 as a component of a multimarker 

model. 

 

Conclusions: For M30 we found lower diagnostic accuracy to detect NASH compared to 

previous meta-analyses, indicating a limited ability to act as a stand-alone test, with better 

performance for M65. Additional external validation studies are needed to obtain credible 

estimates of the diagnostic accuracy of multimarker models. 
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Introduction  

Non-alcoholic fatty liver disease (NAFLD), a condition with a complex and multifactorial 

etiology, has rapidly emerged as the most common cause of chronic liver disease in the 

United States and Europe (1, 2). The global prevalence is approximately 25%, representing 

a wide histological spectrum from simple steatosis (NAFL), non-alcoholic steatohepatitis 

(NASH) (3) to hepatic fibrosis. Fibrosis is the strongest predictor for long-term clinical 

outcomes in NAFLD patients, thereby, a key target event for patient stratification and 

clinical trial recruitment (4).  

 

The clinical reference standard for detecting NASH activity and fibrosis stages is a liver 

biopsy, a practice with well-established limitations (5-7). As such, only patients at highest 

risk should be pre-selected for such an invasive and resource intensive procedure. The 

discovery of less invasive methods with performance comparable to liver biopsy has 

become essential. 

 

Several blood-based biomarkers have been studied for their ability to identify NASH or 

fibrosis. Cytokeratin 18 (CK-18) is the main intermediate filament protein in hepatocytes 

and is released upon the initiation of cell death. The association between elevated CK-18 

levels and cell death in the liver (8, 9) has made circulating CK-18 (both M30 and M65 

antigens) a candidate marker for detecting NASH and fibrosis (10), as a stand-alone test 

and, more recently, as part of multimarker models.  

 

Although the M30 and M65 antigens are of the same protein, there is a mechanistic 

distinction between the two. M30 measures the caspase-cleaved CK-18 revealed during 

apoptosis, while M65 measures the full-length protein, including both caspase-cleaved 

and intact CK-18, which is released from cells undergoing necrosis (11).  

 

In recommendations by the EASL-EASD-EASO Clinical Practice Guidelines (12) the 

performance of CK-18 M30 to differentiate NASH from NAFL was judged modest, as per 

data from a meta-analysis of 11 studies (13). The Asia-Pacific Working Party on NAFLD 

(14) similarly concluded modest performance, referencing a meta-analysis of 10 studies 

(15). A single study mentioned in both guidelines criticized CK-18 for its limited 
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performance for detecting NASH at a threshold of 165 U/L (10). However, it is not clear 

what thresholds would then maximize the test’s sensitivity or specificity.  

 

We found several limitations and methodological concerns in the above-mentioned meta-

analyses. One performed a meta-analysis on only the M30 antigen in detecting NASH, 

with the rationale that M65 performed similarly (13). However, it has been shown that 

M65 outperforms M30 (9). Further, we found several methodological concerns in the 

systematic review by Chen et al. (2014) such as overlapping patient populations included 

in the meta-analysis (15).  

 

An updated and more methodologically robust meta-analysis would be able to generate, 

in principle, summary estimates with increased precision and more general validity. To 

address this need, we aimed to conduct a systematic review and meta-analysis of the 

accuracy of both CK-18 antigens (M30 and M65) in identifying NASH, fibrotic NASH, and 

fibrosis stages among NAFLD adults.  

 

Materials and Methods 

This systematic review was conducted as part of the evidence synthesis efforts of the 

LITMUS (Liver Investigation: Testing Marker Utility in Steatohepatitis) project, funded the 

European Union’s IMI2, aiming to evaluate biomarkers for use in NAFLD. The protocol of 

the complete systematic review is available in PROSPERO (registration number: 

CRD42018106821). This study report was prepared using the PRISMA-DTA statement, see 

PRISMA checklist in S1 Table. 

 

Search strategy 

A comprehensive search strategy, containing words in the title/abstract or text words 

across the record and the medical subject heading (MeSH), was developed with a search 

specialist. MEDLINE (via OVID), EMBASE (via OVID), PubMed, Science Citation Index, and 

CENTRAL (The Cochrane Library) were searched to retrieve potentially eligible studies 

from inception to August 2018 (see S2 Table). We further conducted a manual screening 
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of relevant systematic reviews and reference lists and contacted partners within the 

LITMUS consortium. The search was updated in May 2019, and again in June 2020.  

 

Study selection  

Search results of all databases were merged and deduplicated using Endnote. Titles were 

screened by one reviewer (YV); a second reviewer independently screened 10% (MHZ). 

Abstract and full text screening was conducted by two independent reviewers (JL and YV), 

following pre-established inclusion and exclusion criteria. Any discrepancies were 

resolved by discussion between the two reviewers. Title and abstract screening phases 

were conducted on Rayyan QCRI (https://rayyan.qcri.org). 

 

Inclusion and exclusion criteria 

We searched for studies including adults (≥18 years) with clinical suspicion or biopsy 

proven NAFLD, with paired data on liver histology and CK-18 (M30 or M65). Diagnostic 

accuracy studies reported in full articles in peer-reviewed journals, or as conference 

abstracts, in any language were eligible. Studies with insufficient information for making 

decisions on inclusion, for evaluating methodological quality, or for calculating diagnostic 

accuracy were excluded. Study groups with a mix of conditions (e.g. viral hepatitis) were 

only included if outcomes were separately reported for NAFLD patients.  

 

The target conditions for this systematic review were NASH, fibrotic NASH, and liver 

fibrosis. The NAFLD Activity Score (NAS) (16) is the most commonly used pathologic 

criterion for evaluating NASH. We considered a threshold value of NAS ≥4 with at least 

one point for each criteria of steatohepatitis for the characterization of NASH. See S3 

Table for different histological scoring systems developed to characterize NAFLD 

progression. Fibrotic NASH was defined using the above-mentioned criteria for NASH and 

at least F1 or more.  

 

A five-point scoring system (F0-F4), developed by the NASH clinical research network 

(NASH CRN) (17), is the most commonly used for fibrosis staging. Studies assessing 

significant (≥F2) and advanced (≥F3) fibrosis were included. See S4 Table for different 
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scoring systems for liver fibrosis, and S5 Table for a conversion grid of the different scoring 

systems. 

 

Data extraction and quality assessment 

The following information was extracted: study characteristics, clinical characteristics, 

index test features, liver biopsy features, and data that allowed construction of a 2x2 

contingency table (true positives, true negatives, false positive and false negatives) to 

assess the performance of the index test. For studies that reported accuracy data for 

multiple thresholds, all data were extracted.  

 

When pertinent data were not reported, the corresponding study author was contacted. 

Data were extracted independently and cross-checked by two reviewers (JL and YV). 

 

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool (18) was used to 

assess methodological quality of all available full text studies. Two reviewers (JL and YV) 

independently evaluated the risk of bias and concerns about applicability of the included 

primary studies using the four domains of QUADAS-2, assigning each study with a 

judgement of ‘low’, ‘high’, or ‘unclear’ risk.  

 

Statistical analysis  

Included studies were classified into five groups for meta-analysis, based on the 

availability of data on the CK-18 antigens and target conditions: (1) CK-18 M30 for 

detecting NASH, (2) CK-18 M65 for detecting NASH, (3) CK-18 M30 for detecting fibrotic 

NASH, (4) CK-18 M30 for detecting significant fibrosis, and (5) CK-18 M30 for detecting 

advanced fibrosis.  

 

Sensitivity and specificity estimates from each study, with respective 95% confidence 

intervals (95% CI), were graphically illustrated as forest plots, for each reported threshold, 

using RevMan. 
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Two different meta-analytical methods were applied for the combinations of CK-18 

antigens and target conditions based on the number of reported threshold values. For 

groups 1-3, we applied a linear mixed effects multiple thresholds model (diagmeta 

package in R) as a majority of the primary studies reported multiple threshold values. The 

multiple thresholds model utilizes the number of true and false positives and true and 

false negatives at every threshold to produce summary receiver operating characteristic 

(SROC) curves. With the model, we could calculate estimates of sensitivity, specificity at 

any given threshold. We calculated the threshold value that would maximize Youden's J 

statistic (also called Youden's index): the sum of sensitivity and specificity minus 1.  

 

We computed estimates of positive and negative predictive values in settings with 

different disease prevalence. We further assessed thresholds of the index test required 

to achieve pre-specified high values of sensitivity and specificity. The minimally 

acceptable performance levels of AUC and sensitivity and specificity for the index test was 

0.80, for it to exceed that of other NAFLD-related screening and diagnostic biomarkers.  

 

As a majority of the primary studies in groups 4 and 5 reported only a single threshold 

value, we applied a bivariate logit-normal random-effects model (mada package in R) to 

compute summary estimates of sensitivity and specificity. SROC curves were constructed 

to represent the overall diagnostic accuracy of the index test.  

 

Publication bias was not formally evaluated as no accepted statistical tests can reliably 

discriminate publication bias from other sources of bias in diagnostic meta-analyses (19). 

Heterogeneity between and within studies was incorporated by calculating 95% 

prediction intervals (20). The confidence interval around the summery point reflect the 

statistical imprecision around the mean. The prediction region around the summary point 

indicates the region where we would expect results from a new study in the future to lie. 

It reflects both the uncertainty around the mean and the between study heterogeneity 

and is therefore wider than the confidence region.  

 

We investigated the influence of studies with compromised methodological quality by 

excluding those at high risk of bias or with applicability concerns in a sensitivity analysis. 

We further evaluated the effect of pooling data from various ELISA assays by excluding 
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studies that either did not disclose the assay used or used one from a manufacturer that 

was not PEVIVA. Sensitivity analysis was also conducted among solely biopsy-proven 

NAFLD patients, excluding those with clinically suspected NAFLD.   

 

All analyses were conducted using R for Windows (Version 3.6.0; R Foundation for 

Statistical Computing, Vienna, Austria).  

 

 
 

Figure 1. PRISMA flow diagram of included primary studies 
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Results 

Search results 

Our initial search of all biomarkers identified 6,220 studies post deduplication. Following 

the pre-defined inclusion and exclusion criteria, 778 studies were eligible for abstract 

screening, of which 265 underwent full-text review. A total of 46 study reports were 

included for CK-18. Following the exclusion of 10 and inclusion of five studies from the 

two search updates, a total of 41 studies (5,815 participants) could be included in the 

present systematic review (Figure 1). Thirty studies were included in one or more of the 

meta-analyses.  

 

Study characteristics 

Characteristics of the included studies can be found in Table 1. A majority of the studies 

(32/41) had included NAFLD patients with mean BMI <35. A relatively wide range of 

disease prevalence was observed; 21% to 85% for NASH, 21% to 62% for fibrotic NASH, 

18% to 59% for significant fibrosis and 19% to 36% for advanced fibrosis. The publication 

year spanned from 2006 to 2020; 27 studies were published after 2012.  

 

Thirty-two studies investigated the accuracy of M30 in detecting NASH, and three for 

fibrotic NASH. The accuracy of M30 in detecting significant and advanced fibrosis was 

studied in six and seven studies, respectively. We further identified eight diagnostic 

accuracy studies of M65 for NASH and one study of M65 for significant fibrosis.  

 

Quality assessment  

The methodological quality of the 41 studies, assessed with QUADAS-2, is summarized in 

S1 and S2 Figure. Ten studies were scored as high risk of bias in the patient selection 

domain (9, 10, 29, 31, 36, 37, 40, 47, 50, 58). No study had low risk of bias in the index 

test domain, with 22 judged as high risk, due to the lack of a pre-established threshold 

value for CK-18. 

 

 

25

Accuracy of cytokeratin 18 (M30 and M65): a systematic review and meta-analysis

Ch
ap

te
r 2



 

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s o

f a
ll 

in
cl

ud
ed

 st
ud

ie
s  

 

St
ud

y 
ID

 
Co

un
tr

y 
N

 
(fe

m
al

e)
 

Ta
rg

et
 

co
nd

iti
on

 
Pr

ev
 

(%
) 

Po
pu

la
tio

n 
BM

I, 
m

ea
n 

(S
D)

 

AL
T,

 
m

ed
ia

n 
(IQ

R)
 

AS
T,

 
m

ed
ia

n 
(IQ

R)
 

Co
m

or
bi

di
tie

s 
(%

) 

1.
 

Ai
da

 2
01

4 
(2

1)
 

Ja
pa

n 
11

6 
(7

5)
 

N
AS

H 
44

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

27
.2

 
(1

8.
8-

45
.9

)†  

52
 (3

1-
26

6)
 

42
 (1

3-
25

6)
 

N
R 

2.
 

Ca
o 

20
13

 (2
2)

 
Ch

in
a 

95
 (7

3)
 

N
AS

H 
46

 
Bi

op
sy

 p
ro

ve
n 

or
 c

lin
ic

al
 

su
sp

ic
io

n 
of

 N
AF

LD
 

28
.5

 
(2

.8
) 

57
.0

 
(4

8.
0-

71
.0

) 

48
.0

 
(4

4.
0-

 
54

.0
) 

DM
: 2

4 
HT

N
: 4

8 
DL

: 8
6 

3.
 

Ch
an

 2
01

4 
(2

3)
 

M
al

ay
sia

 
93

 (4
8)

 
N

AS
H 

42
 

U
S 

di
ag

no
se

d 
N

AF
LD

 
29

.4
 

(3
.8

) 
70

 (4
4-

10
9)

 
41

 (2
8-

64
) 

DM
: 5

9 
HT

N
: 8

8 
DL

: 9
7 

4.
 

Ch
ua

h 
20

19
 (2

4)
 

M
al

ay
sia

 
19

6 
(9

9)
 

Fi
br

ot
ic

 
N

AS
H 

21
 

U
S 

di
ag

no
se

d 
N

AF
LD

 
29

.8
 

(4
.5

) 
67

 (4
4-

10
5)

 
39

 (2
9-

61
) 

T2
DM

: 4
6 

HT
N

: 5
8 

DL
: 8

0 
O

be
sit

y:
 8

6 

5.
 

Cu
si 

20
13

 (1
0)

 
U

SA
 

31
8 

(1
13

) 
N

AS
H 

63
 

O
be

se
 p

at
ie

nt
s w

ith
 b

io
ps

y 
pr

ov
en

 N
AF

LD
 

33
.3

 
(0

.9
) 

40
 (1

)‡  
55

 (2
) ‡

 
N

R 

6.
 

Da
rw

ee
sh

 2
01

9 
(2

5)
 

Eg
yp

t 
25

 (5
5.

6)
 

St
ea

to
sis

 
N

R 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

33
.5

2 
(4

.5
6)

 
50

.5
7 

(3
1.

06
) 

48
.2

9 
(4

6.
51

) 
N

R 

7.
 

Dv
or

ak
 2

01
4 

(2
6)

 
Cz

ec
h 

Re
pu

bl
ic

 
56

 (N
R)

 
N

AS
H 

68
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
29

.6
 

(4
.3

) 
12

0 
(9

0)
 ‡

 
66

 (6
0)

 ‡
 

N
R 

8.
 

Er
ge

le
n 

20
15

 
(2

7)
 

Tu
rk

ey
 

87
 (4

4)
 

Si
g.

 fi
br

os
is 

Ad
v.

 fi
br

os
is 

39
  22
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
30

.6
 

(5
.4

)  

77
.8

 
(5

6.
1)

 ‡
 

 

49
.6

 
(3

0.
5)

 ‡
 

N
R 

9.
 

Fe
ld

st
ei

n 
20

09
 

(8
) 

U
SA

 
13

9 
(8

8)
 

N
AS

H 
50

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

34
.2

 
(3

0.
3-

37
.8

) †
 

43
.0

 
(3

1.
0-

62
.0

) 

66
.0

 
(4

6.
0-

10
9.

0)
 

DM
: 1

9 
HT

N
: 4

3 
HL

: 6
0 

10
. 

Gr
ig

or
es

cu
 2

01
2 

(2
8)

 
N

R 
79

 (2
3)

 
N

AS
H 

75
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
30

 (3
.8

) 
76

.8
 

(3
9.

3)
 ‡

 
35

.9
 

 
T2

DM
: 1

6 
HT

N
: 1

9 
11

. 
Ha

se
ga

w
a 

20
15

 
(2

9)
 

Ja
pa

n 
41

 (7
) 

N
AS

H 
49

 
U

S 
an

d 
CT

 d
ia

gn
os

ed
 N

AF
LD

 
N

R  
75

.3
 

(6
8.

4)
 ‡

 
53

.6
 

(4
6.

8)
 ‡

 
N

R  

26

Chapter 2



 

 

12
. 

Hu
an

g 
20

17
 (3

0)
 

Ta
iw

an
 

76
 (2

2)
 

Si
g.

 fi
br

os
is 

Ad
v.

 fi
br

os
is 

18
  9 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
28

.7
 

(4
.4

)  

11
7 

 
(8

7.
9)

 ‡
 

 

63
.1

 
(3

3.
3)

 ‡
 

DM
: 5

4 
HT

N
: 6

5 
 

13
. 

Jo
ka

 2
01

1 
(9

) 
Ge

rm
an

y 
22

 (7
) 

N
AS

H 
55

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

27
 (1

) 
75

.5
 (9

.5
) 

‡  
N

R 
N

R 

14
. 

Ka
m

ad
a 

20
13

 
(3

1)
 

Ja
pa

n 
12

6 
(5

6)
 

N
AS

H 
85

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

27
.5

 
(5

.1
) 

95
.8

 
(7

2.
0)

 
62

.9
 

(3
9.

3)
 

N
R 

15
. 

Ka
w

an
ka

 2
01

5 
(3

2)
 

Ja
pa

n 
14

6 
(7

8)
 

N
AS

H 
71

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

26
.8

 
61

 (1
2-

26
4)

 
38

 (1
4-

20
4)

 
N

R 

16
. 

Ka
za

nk
ov

 2
01

6 
(3

3)
 

Au
st

ra
lia

, 
Ita

ly
 

33
1 

(1
12

) 
N

AS
H 

40
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
29

.2
 

(4
.5

) 
67

.6
 

40
.7

 
DM

: 2
0 

17
. 

Ki
m

 2
01

3 
(3

4)
 

Ko
re

a 
10

8 
(3

5)
 

N
AS

H 
62

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

28
.7

1 
(3

.7
7)

 
10

8.
68

 
(8

2.
07

) ‡
 

63
.5

4 
(4

1.
62

) 

‡†
 

M
et

S:
 4

8 

18
. 

Ko
ba

ya
sh

i 2
01

7 
(3

5)
 

Ja
pa

n 
22

9 
(1

07
) 

N
AS

H 
Fi

br
ot

ic
 

N
AS

H 

61
 

45
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
26

.6
 

79
.2

 
50

.7
 

DM
: 4

5 
HT

N
: 4

2 
DL

: 5
6 

19
. 

Li
u 

20
16

 (3
6)

 
Ch

in
a 

48
 (1

3)
 

N
AS

H 
65

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

26
.9

 
(0

.5
) 

68
.7

 (7
.4

) 

‡  
N

R 
N

R 

20
. 

Li
u 

20
19

 (3
7)

 
Ch

in
a 

82
 (2

3.
5)

 
N

AS
H 

47
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
26

.8
 

(3
.3

) 
80

.5
 

(7
6.

4)
 

47
.9

 
(3

1.
8)

 
DM

: 3
2 

HT
N

: 3
5 

21
. 

M
al

ik
 2

00
9 

(3
8)

 
U

SA
 

95
 (3

7)
 

N
AS

H 
63

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

31
.3

 
(4

.2
) 

74
.5

 (9
.7

) 

‡  
N

R 
T2

DM
: 2

7 
HT

N
: 4

9 
22

. 
M

oh
am

m
ed

 
20

19
 (3

9)
 

Eg
yp

t 
62

 (6
2)

 
N

AS
H 

66
 

U
S 

pr
ov

en
 N

AF
LD

 
30

.8
 

(4
.0

2)
 

75
.5

3 
(2

2.
3)

 
69

 
(2

9.
5)

 
M

et
S:

 5
9 

23
. 

M
us

so
 2

01
0 

(4
0)

 
N

R 
40

 (1
2)

 
N

AS
H 

58
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
25

.1
 

(1
.6

) 
12

0.
7 

(8
) ‡

 
48

 (3
) ‡

 
M

et
S:

 4
3 

24
. 

Pa
pa

th
eo

do
rid

is 
20

10
 (4

1)
 

Gr
ee

ce
 

58
 (2

6)
 

N
AS

H 
52

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

28
.6

 
(4

.5
) 

75
.4

 
39

.5
 

DM
: 1

6 

25
. 

Pi
m

en
te

l 2
01

6 
(4

2)
 

U
SA

 
18

3 
(7

3)
 

N
AS

H 
Ad

v.
 fi

br
os

is 
49

 
19

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

34
 (7

) 
50

.6
 (3

2)
 ‡

 
75

.8
 

(5
0)

 ‡
 

T2
DM

: 3
6 

HT
N

: 5
2 

26
. 

Ro
ss

o 
20

16
 (4

3)
 

Ita
ly

 
10

5 
(2

9)
 

Si
g.

 fi
br

os
is 

Ad
v.

 fi
br

os
is 

59
  36
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
28

.1
 

(3
.9

)  

65
 (5

7-
79

) 
 

36
 (3

3-
41

)  
N

R 

27

Accuracy of cytokeratin 18 (M30 and M65): a systematic review and meta-analysis

Ch
ap

te
r 2



 

27
. 

Sh
en

 2
01

2 
(4

4)
 

Ch
in

a 
14

7 
(6

5)
 

N
AS

H 
47

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

27
.4

 
(3

.9
) 

73
 (4

5)
 ‡

 
N

R 
T2

DM
: 4

8 
HT

N
: 4

3 

28
. 

Ta
da

 2
01

8 
(4

5)
 

Ja
pa

n 
17

0 
(9

1)
 

N
AS

H 
76

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

27
.6

 
(2

4.
9-

30
.7

) †
 

79
 (4

9-
12

6)
 

52
 (3

5-
82

) 

DM
: 5

1 
HT

N
: 2

8 
DL

: 4
4 

29
. 

Ta
m

im
i 2

01
1 

(4
6)

 
U

SA
 

95
 (4

7)
 

N
AS

H 
43

 
Cl

in
ic

al
ly

 su
sp

ec
te

d 
N

AS
H 

31
.4

 
(5

.1
) 

53
.5

 (3
2-

 
87

) 
54

 (3
8-

75
) 

DM
: 2

7 
HT

N
: 4

5 
M

et
S:

 5
0 

HL
: 5

3 

30
. 

Va
lv

a 
20

18
 (4

7)
 

Ar
ge

nt
in

a 
34

 (1
5)

 
Si

g.
 fi

br
os

is 
18

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

N
R 

81
.5

 (3
1-

27
9)

 

52
.5

 
(2

2-
20

8)
 

O
be

sit
y:

 2
5 

31
. 

W
ie

ck
ow

sk
a 

20
06

 (4
8)

 
U

SA
 

39
 (2

1)
 

N
AS

H 
31

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

31
.5

 
(4

.0
) 

73
.0

 
(5

4.
0-

10
4.

0)
 

58
.0

 
(4

6.
0-

76
.0

) 

DM
: 3

1 
HT

N
: 4

6 
HL

: 4
6 

32
. 

Ya
ng

 2
01

5 
(4

9)
 

Ch
in

a 
17

9 
(9

3)
 

N
AS

H 
38

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

N
R 

11
6 

(3
0.

2)
 

‡  
60

 
(2

2.
1)

 ‡
 

N
R 

33
. 

Yi
lm

az
 2

00
7 

(5
0)

 
Tu

rk
ey

 
83

 (3
8)

 
Si

g.
 fi

br
os

is 
20

 
Su

sp
ec

te
d 

N
AF

LD
 

30
.3

 
(4

.8
) 

60
 (1

0-
18

4)
 

42
 (1

6-
10

2)
 

DM
: 1

5 
HT

N
: 3

4 
M

et
S:

 3
5 

34
. 

Yo
un

es
 2

01
8 

(5
1)

 
Ita

ly
 

29
2 

(9
1)

 
N

AS
H 

Ad
v.

 fi
br

os
is 

77
 

25
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
28

.9
 

(4
.1

) 
66

 (6
1-

71
) 

36
 (3

5-
38

) 
M

et
S:

 3
2 

DM
: 2

0 
35

. 
Yo

un
os

si 
20

08
 

(5
2)

 
U

SA
 

69
 (4

6)
 

N
AS

H 
32

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 

N
R 

27
.1

 
(1

8.
4)

 ‡
 

36
.6

 
(2

7.
3)

 ‡
 

N
R 

36
. 

Zh
en

g 
20

20
 (5

3)
 

Ch
in

a 
38

 (3
6.

2)
 

N
AS

H 
53

 
Bi

op
sy

 p
ro

ve
n 

N
AF

LD
 (A

LT
 ≤

 
35

 (m
en

), 
≤ 

23
 (w

om
en

)) 
26

.0
5 

(3
.3

3)
 

27
.7

0 
(7

.7
7)

 
25

.7
7 

(6
.7

5)
 

DM
: 3

6 
M

et
S:

 5
5 

HT
N

: 3
5 

37
. 

An
ty

 2
01

0 
(5

4)
 

Fr
an

ce
 

31
0 

(2
67

) 
N

AS
H 

N
R 

M
or

bi
dl

y 
ob

es
e,

 b
ar

ia
tr

ic
 

su
rg

er
y 

pa
tie

nt
s 

44
.7

 
(5

.5
) 

35
.3

 
(3

5.
7)

 ‡
 

N
R 

N
AS

<5
 

DM
: 1

9.
6 

M
et

S:
 4

7.
6 

 
N

AS
≥5

 
DM

: 4
3.

6 
M

et
S:

 8
2.

1 

28

Chapter 2



 

38
. 

Bo
ur

sie
r 2

01
8 

(5
5)

 
Fr

an
ce

, 
Be

lg
iu

m
 

84
6 

(5
25

) 

N
AS

H 
Fi

br
ot

ic
 

N
AS

H 
Si

g.
 fi

br
os

is 
Ad

v.
 fi

br
os

is 

54
 

23
  51
  17
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

, o
be

se
 

pa
tie

nt
s,

 m
or

bi
dl

y 
ob

es
e 

pa
tie

nt
s r

ef
er

re
d 

fo
r b

ar
ia

tr
ic

 
su

rg
er

y 

38
.5

 
(7

.6
) 

49
.7

 
(3

1.
7)

 ‡
 

35
.5

 
(1

9.
6)

 ‡
 

M
et

S:
 6

8 
DM

: 2
7 

39
. 

Di
ab

 2
00

8 
(5

6)
 

U
SA

 
55

 (6
8)

 
N

AS
H 

40
 

Ba
ria

tr
ic

 su
rg

er
y 

pa
tie

nt
s 

48
 (4

3-
54

) †
 

23
.0

 
(1

8.
0-

29
.0

) 

21
.5

 
(1

6.
0-

33
.0

) 

DM
: 4

1 
HT

N
: 6

7 
DL

: 5
7 

40
. 

Pi
rv

ul
es

cu
 2

01
2 

(5
7)

 
Ro

m
an

ia
 

59
 (4

2)
 

N
AS

H 
(in

cl
. 

bo
rd

er
lin

e 
N

AS
H)

 
22

 
O

ve
rw

ei
gh

t, 
ob

es
e 

an
d 

m
or

bi
dl

y 
ob

es
e 

pa
tie

nt
s 

re
fe

rr
ed

 fo
r b

ar
ia

tr
ic

 su
rg

er
y 

47
.3

 
(8

.1
) 

37
.8

 
(1

3.
6)

 ‡
 

29
.3

 
(1

0.
1)

 ‡
 

N
R 

41
. 

Yo
un

os
si 

20
11

 
(5

8)
 

U
SA

 
79

 (6
1)

 
N

AS
H 

51
 

Bi
op

sy
 p

ro
ve

n 
N

AF
LD

 
47

.5
6 

(8
.0

7)
 

36
.4

4 
(2

8.
05

) ‡
 

27
.2

2 
(1

9.
39

) 

‡  
DM

: 2
4 

† 
M

ed
ia

n 
an

d 
in

te
rq

ua
rt

ile
 ra

ng
e 

 
‡ 

M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

N
R:

 n
ot

 re
po

rt
ed

, D
M

: d
ia

be
te

s m
el

lit
us

, T
2D

M
: t

yp
e 

2 
di

ab
et

es
 m

el
lit

us
, H

TN
: h

yp
er

te
ns

io
n,

 D
L:

 d
ys

lip
id

em
ia

, M
et

S:
 m

et
ab

ol
ic 

sy
nd

ro
m

e,
 U

S:
 u

ltr
as

ou
nd

, C
T:

 
co

m
pu

te
riz

ed
 to

m
og

ra
ph

y 
sc

an

29

Accuracy of cytokeratin 18 (M30 and M65): a systematic review and meta-analysis

Ch
ap

te
r 2



 

Seven studies were scored as unclear risk of bias in the reference standard domain, for 

failing to report whether biopsy reviewers were blinded to clinical data (8, 9, 29, 32, 40, 

49, 57). Only three studies were classified as at high risk of bias for flow and timing (10, 

25, 40). We further graded four studies with high concern regarding applicability in the 

patient selection domain (30, 46, 54, 57). 

 

NASH 

Accuracy of CK-18 M30 in detecting NASH 

A total of 22 studies (3,503 participants, 2,010 with NASH) were included in the meta-

analysis of the diagnostic accuracy of M30 in detecting NASH (S3 Figure). Ten studies 

reported multiple threshold values, resulting in 47 thresholds (41 unique values) included 

in our model. The thresholds spanned from 111 to 670 U/L. The multiple thresholds model 

produced a summary area under the receiver operating characteristic curve (AUC) of 0.75 

(95% CI: 0.69 - 0.82) with a mean sensitivity of 0.61 (95% CI: 0.51 - 0.71) and mean 

specificity of 0.81 (95% CI: 0.71 - 0.88). The Youden-threshold value was 304 U/L (Figure 

2A).  

 

Using the multiple thresholds model, we calculated the positive predictive value (PPV) 

and the negative predictive value (NPV) under different clinical settings (5% to 70% NASH 

prevalence) for desired levels of sensitivity and specificity (Table 2). Optimizing sensitivity 

(0.80 to 0.90), we found corresponding specificity values, ranging from 0.51 to 0.23 at 

threshold values 127 to 191 U/L (Table 2). High NPV (0.91 - 0.96) values were observed at 

lower prevalence setting of 10% and 20%. The corresponding PPV ranged from 0.12 to 

0.29.  

 

When fixing specificity values (0.80 to 0.90), the corresponding sensitivity ranged from 

0.48 to 0.61 (Table 2) with threshold values between 304 and 399 U/L. High NPV (0.87 to 

0.95) were again seen for low prevalence settings (10 to 20%). A graphical representation 

of the predictive values in different prevalence settings can be seen in Figure 3A-B. 

 

30

Chapter 2



 

 
Figure 2. Multiple threshold SROC and ROC curves for detecting NASH. Multiple 

threshold SROC and ROC curves for CK-18 M30 (A-B) and M65 (C-D) in detecting NASH. 
Each point represents a reported threshold value, points of the same color represent 

thresholds reported within the same study. The x-axis indicates 1 – specificity, and the 
y-axis, sensitivity. The cross in the SROC curve indicates the Youden-based threshold 
value: A. Youden-threshold: 304 U/L, sensitivity: 0.61 (95% CI: 0.51 - 0.71), specificity: 

0.81 (95% CI: 0.71 - 0.88), AUC: 0.75 (95% CI: 0.69 - 0.82) for CK-18 M30. C. Youden-
threshold: 478 U/L, sensitivity: 0.75 (95% CI: 0.51 - 0.90), specificity: 0.76 (95% CI: 0.49 

-0.91), AUC: 0.82 (95% CI: 0.69 - 0.91) for CK-18 M65. 
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Accuracy of CK-18 M65 in detecting NASH 

In the meta-analysis of M65 in detecting NASH, we analyzed six studies with a total of 414 

participants (220 with NASH) (S4 Figure). Eleven unique threshold values were included 

in the model, ranging from 340 to 1183 U/L. The combined AUC was 0.82 (95% CI: 0.69 - 

0.91) with a mean sensitivity of 0.75 (95% CI: 0.51 - 0.90) and mean specificity of 0.76 

(95% CI: 0.49 -0.91) at Youden-threshold of 478 U/L (Figure 2C).  

 

We again investigated the PPV and NPV in various clinical settings (Table 3, Figure 3C-D). 

Fixing sensitivity from 0.80 to 0.90, the specificity ranged from 0.70 to 0.51 at threshold 

values of 337 to 437 U/L (Table 3). NPV in lower prevalence settings (10-20%) ranged from 

0.93 to 0.98 with corresponding PPV from 0.17 to 0.40. Similar patterns were observed 

for optimizing specificity over sensitivity (Table 3). Within a NASH prevalence of 10% or 

20% we found PPV and NPV ranged from 0.28 to 0.56 and from 0.88 to 0.96, respectively. 

 

Accuracy of CK-18 M30 in detecting fibrotic NASH 

Three studies provided sufficient data for analysis of M30 in detecting fibrotic NASH, with 

a combined total of 1,271 participants (343 with fibrotic NASH) (S5 Figure). Two studies 

investigated M30 as part of a multimarker models; authors of both studies (24, 55) 

provided accuracy data for M30 at seven threshold values we selected based on the data 

from the present meta-analysis (133, 200, 248, 292, 356, 395, and 464 U/L). This allowed 

us to apply the multiple thresholds model (15 thresholds), to calculate an AUC of 0.73 

(95% CI: 0.57 - 0.85), mean sensitivity of 0.63 (95% CI: 0.39 - 0.82) and mean specificity of 

0.73 (95% CI: 0.51 - 0.88) at a Youden-threshold value of 371 U/L.  

 

Fibrosis 

Accuracy of CK-18 M30 in detecting significant and advanced fibrosis 

We identified several studies that investigated CK-18 for fibrosis staging. For significant 

fibrosis, we included a single threshold value (ranging from 122 to 285 U/L) from five  
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Figure 3. Positive and negative predictive values and thresholds for detecting NASH. 
Plots illustrating the negative and positive predictive values of M30 (A-B) and M65 (C-

D) in detecting NASH at corresponding threshold values, projected by the multiple 
thresholds model. Each colored line represents a different prevalence setting, ranging 
from 5% to 70%. The y-axis indicates the predictive value and the x-axis indicated the 

threshold values for CK-18. 
 

studies (27, 43, 47, 55, 59) with a total of 1,155 participants (554 had significant fibrosis) 

(S6 Figure). The resulting AUC was 0.68. See S7A Figure for SROC curve and corresponding 

95% CI and prediction region. One study (50) assessed the ability of M65 to detect 

significant fibrosis; at a threshold of 244 U/L, sensitivity was 0.71 for a specificity of 0.71 

(AUC: 0.74).  

 

For advanced fibrosis, five studies (27, 42, 43, 51, 55) were included in the meta-analysis 

(1,513 participants, 313 with advanced fibrosis) (S8 Figure). We calculated an AUC of 0.75, 

with included threshold values ranging from 216 to 396 U/L (see S7B Figure). One study 

34

Chapter 2



 

had to be excluded from the meta-analysis of both significant and advanced fibrosis due 

to discrepancies in the 2x2 contingency table (30). 

 

Multimarker models including CK-18 

Thirteen studies additionally used CK-18 as an ingredient of a multimarker model (Table 

4). There was greatest interest in detecting NASH (8/13 studies), with AUCs among the 

eight models ranging from 0.79 to 0.96. The highest performance was observed in NASH-

score (BMI, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 

phosphatase (ALP), HOMA-IR, M65 and adiponectin), which produced an AUC of 0.96 (57).  

 

One model was developed with the aim of detecting fibrotic NASH (55). Composed of 

three ingredients (HOMA, AST and CK-18) the AUC from the validation group (n = 846) 

was 0.85. MACK-3 had an AUC of 0.80 when evaluated in a separate study (24).  

 

Two studies (27, 43) investigated the combined use of M30 with transient elastography 

(TE) (FibroScan) to detect fibrosis. One study found combining TE and M30 to detect 

significant (AUC: 0.89) and advanced fibrosis (AUC: 0.93) did not significantly improve the 

diagnostic ability from either TE or CK-18 as a stand-alone test (27). Another study, 

however, found some improvement in AUC by combining M30 to TE compared to TE 

alone; in adding M30 they found an improvement in AUC by 0.03 for significant fibrosis, 

and 0.05 for advanced fibrosis (43). 

 

Sensitivity analysis 

A sensitivity analysis was conducted excluding four studies with two or more domains of 

high risk of bias or applicability concerns (9, 10, 31, 40) for M30 and NASH. The AUC was 

0.75 (95% CI: 0.68 – 0.81), with a mean sensitivity of 0.62 (95% CI: 0.51 - 0.72), and mean 

specificity of 0.78 (95% CI: 0.66 - 0.86).  

 

We identified four studies that used an ELISA assay that was not from PEVIVA (40, 42, 52, 

53). Among the 18 studies that used the M30 Apoptosense ELISA by PEVIVA, the AUC was 

0.74 (95% CI: 0.67; 0.80), with paired sensitivity and specificity of 0.60 (95% CI: 0.49; 0.70) 
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Table 4. Summary of studies that additionally included CK-18 in multimarker model 

 

Author Target condition and 
population 

Scoring 
system Ingredients AUC 

Anty 2010 
NAFLD grading among 

morbidly obese 
The Nice 
Model 

Metabolic 
syndrome, ALT, CK-

18 

Training: 0.88 
Validation: 0.83 

Boursier 2018 Fibrotic NASH among NAFLD MACK-3 HOMA, AST, CK-18 Validation: 0.85 

Cao 2013 NASH among NAFLD  
ALT, platelets, M30, 

and TG 0.92 

Chuah 2019 Fibrotic NASH among NAFLD MACK-3 HOMA, AST, CK-18 0.80 

Ergelen 2015 Fibrosis among NAFLD  TE, M30 F ≥2: 0.89 
F ≥3: 0.93 

Grigorescu 2012 NASH among NAFLD  
M65, IL-6 and 
adiponectin 0.90 

Pirvulescu 2012 

NASH (including borderline 
NASH) among morbidly 

obese patients 

NASH-
score 

BMI, ALT, AST, ALP, 
HOMA-IR, M65, and 

adiponectin 
0.96 

Rosso 2016 Fibrosis among NAFLD  TE, M30 F ≥2: 0.84 
F ≥3: 0.87 

Tada 2018 NASH among NAFLD FIC-22 FIB-4 and CK-18 0.82 

Tamimi 2011 NASH among NAFLD  
Soluble fas and CK-

18 
Training: 0.93 

Validation 0.79 

Yang 2015 NASH among NAFLD  
M30†, FGF-21, IL-

1Ra, PEDF, and OPG 

Training 
NPV: 0.76 and 

PPV: 0.85 

Validation 
NPV: 0.80 and 

PPV: 0.76 

Younossi 2008 NASH among NAFLD  
M30 and M65, 

adiponectin, resistin 
Training: 0.91 

Validation: 0.73 

Younossi 2011 NASH among NAFLD 
NAFLD 

diagnostic 
panel 

Diabetes, gender, 
BMI, triglycerides, 

M30, and M65 
NASH: 0.81 

 

NAFLD: non-alcoholic fatty liver disease, NASH: non-alcoholic steatohepatitis, ALT: alanine aminotransferase, 
CK-18: cytokeratin 18, AST: aspartate aminotransferase, TG: trigylceride, HOMA-IR: homeostatic model 
assessment for insulin resistance, TE: transient elastography, IL-6: interleukin 6, BMI: body max index, FGF-
21: fibroblast growth factor 21, IL-1Ra: interleukin-1 receptor antagonist, NPV: negative predictive value, PPV: 
positive predictive value, PEDF: pigment epithelium-derived factor, OPG: osteoprotegerin, † Unit of measure 
for M30 is ng/L.  
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and 0.80 (95% CI: 0.70; 0.87), respectively. We additionally conducted sensitivity analysis 

solely among studies that included biopsy-proven NAFLD patients (19/22 studies for M30 

and NASH), and found an AUC of 0.74 (95% CI: 0.67; 0.80). No marked differences were 

observed when excluding studies with high risk of bias or applicability concerns, different 

ELISA assays or cohorts with clinical suspicion of NAFLD.  

 

Discussion  

Main findings  

Among NAFLD adults, the diagnostic accuracy of M30 to distinguish NASH from NAFL was 

under the minimally acceptable performance level, fixed a priori at AUC of 0.80. More 

promising results were observed for M65 and NASH, although it is of note that only six 

studies could be included in this meta-analysis, compared to 22 for M30. The superior 

performance of M65 should further be interpreted with caution, as its ability to detect 

fibrotic NASH, the most clinically relevant target condition, is limited.  

 

At lower prevalence, mirroring primary care settings, high NPVs above 0.85 were achieved 

for both M30 and M65 antigens at fixed sensitivity and specificity values above 0.80 (Table 

2 and Table 3).  

 

Our meta-analysis on the accuracy of M30 in detecting fibrotic NASH also showed modest 

performance. MACK-3 showed more promise for detecting fibrotic NASH, but the 

evidence is still limited to two studies, and the model presents with limitations such as 

adequate performance among subgroups with metabolic syndrome and a large gap of 

patients who lie between the high and low threshold values (24, 55).  

 

Results for both significant and advanced fibrosis were below the minimally acceptable 

performance level, demonstrating sub-optimal ability of M30 to function as a stand-alone 

test for fibrosis staging, even more so when considering the available accurate 

elastography methods and multimarker models for detecting liver fibrosis.  
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As expected, we observed a wide range of reported threshold values for both CK-18 

antigens. This can be explained by the variability of methods employed for choosing a 

threshold and general lack of established recommendations. With our meta-analysis we 

suggest high and low thresholds for M30 and M65, which can be selected in accordance 

to the intention of use (ruling-in or ruling-out NASH). It is of note that the threshold 

suggestions for the M30 and M65 antigens are strictly for results produced by the PEVIVA 

assays, as it is understood that different CK-18 assays show poor inter-test reliability and 

majority of our studies used CK-18 assays from PEVIVIA (42).  

 

Strengths and limitations 

By employing novel meta-analytical methods, we were able to incorporate all data 

available in the primary studies, eliminating arbitrary selection of a single threshold for 

our meta-analyses. This allowed greater freedom to investigate which clinical setting 

would optimize the use of CK-18. A more comprehensive evaluation of the clinical 

performance, including projections of accuracy data (sensitivity, specificity, PPV, NPV) in 

various prevalence settings was possible. The multiple thresholds model further allowed 

us to assess the diagnostic accuracy of CK-18 at threshold values not investigated in the 

original studies. We were however limited in the sense that the data projected by our 

models are based on the cumulative distribution of CK-18 in the diseased and non-

diseased populations of the primary studies, which had higher prevalence than one would 

expect in a primary care setting.  

 

The approach for selecting either a single ‘optimal’ threshold value or a set of thresholds 

were very heterogeneous in our included studies. While some used the Youden or 

equivalent methods, others chose to optimize either the sensitivity or specificity, and a 

concerning few did not report how a threshold value was calculated. This was however 

anticipated as there is no recommended threshold for CK-18. We further observed sparse 

reporting of the histological procedure, including quality of biopsies and expertise of 

histological evaluation (S6 Table), which raises concerns regarding the reliability of the 

reference standard test. 
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In context of published literature  

For M30 and NASH (22 studies), we found lower diagnostic accuracy compared to 

previous meta-analyses. He (2017) (14 studies) reported an AUC of 0.82 (60); Kwok (2014) 

(seven studies) reported a  summary sensitivity of 0.66, at a specificity of 0.82 (13); Chen 

(2013) (nine studies) found an AUC of 0.84 (15); and Musso (2010) (nine studies) found 

an AUC of 0.82 (61). Parameters such as mean age, BMI and disease prevalence were not 

sources of major heterogeneity between the present and previously published meta-

analyses (61). Our meta-analysis did however include a greater number of studies, 

incorporating more recent publications with lower performance. Among the six studies 

published after 2017, the AUC ranged between 0.59 and 0.77 for M30 in detecting NASH, 

a noticeable drop compared to pioneering work from 2008-10 (AUC: 0.71 to 0.88). The 

lowest AUC (0.59) was found in the largest study (N = 846) conducted in 2018. 

Interestingly, this study also found M30 to be most accurate in detecting patients with 

fibrotic NASH, achieving an AUC of 0.72 (55). In parallel with the incrementally less 

impressive results, the excitement for CK-18 as a NAFLD biomarker has tempered with 

each subsequent study, serving as an exemplar of the entire biomarker space. 

 

The only other meta-analysis performed on the diagnostic ability of both M30 and M65 

concluded that both antigens had similar ability to distinguish NASH from NAFL (M30 had 

AUC of 0.82, M65 had AUC of 0.80) (60). Among the three studies that investigated both 

M30 and M65 within the same cohort, all found better performance for M65 compared 

to M30 (9, 26, 57). Although M30 has been more popularly studied as a diagnostic 

biomarker for NASH, our meta-analysis demonstrates the need for more evidence to 

establish the performance of M65. Further studies conducting head-to-head comparisons 

of M30 and M65 within the same cohort would be valuable for assessing superior 

performance of either antigen.  

 

Fibrotic NASH has become an emerging target condition of interest in NAFLD research 

(17). Despite the established role of hepatocyte apoptosis in the progression of liver 

damage (11), there have been contradictory opinions regarding the usefulness of CK-18 

for fibrosis staging. Our results showed limited ability of CK-18 to function as a stand-

alone test for detecting fibrotic patients compared to existing biomarkers.  
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Even still, the involvement of CK-18 in the disease pathway of NAFLD indicates potential 

for CK-18 to be used in combination with other biomarkers. Several promising models 

that included CK-18 (M30 and/or M65) were identified in our systematic review, most of 

which exceeded the minimally acceptable performance level of an AUC ≥0.80.  

Unfortunately, most models are limited to a single validation within the original studies 

with the exception of M30 with TE, and MACK-3, which raises the concern of how well the 

models would perform in practice. Additional validation studies for the proposed 

multimarker models should be conducted to ensure reliability of their performance. We 

do acknowledge that other studies including CK-18 in a composite scoring system may 

exist, despite not being eligible for inclusion in the present systematic review (62, 63). For 

example, a recent study developed a model for distinguishing NASH from NAFL, finding 

an AUC of 0.73 (0.66-0.81), with even better accuracy for detecting advanced fibrosis (63). 

 

Implications for current practice and future research  

Both the EASL-EASD-EASO and Asia-Pacific Working Party guidelines suggest that CK-18 

has limited ability to function as a stand-alone test for distinguishing NASH from NAFL 

given its modest performance (12, 14). However, in a setting with 20% prevalence, a 

sensitivity of 0.90 and a NPV of 0.91 were achieved at a threshold value of 127 U/L (M30), 

demonstrating high negative values for ruling-out those without NASH. In such a scenario 

CK-18 could be of value as a first-line test at a primary care level for further evaluation by 

a specialist, even more so when considering the low cost and accessibility. This however 

comes at the cost of lower specificity, resulting in a high number of false positive results, 

as well as the compromise of 62% misclassified patients in the same setting with 20% 

prevalence. Alternatively, should CK-18 be used to rule-in NASH, a higher threshold of 399 

U/L would be more appropriate. The trade-off between sensitivity and specificity as well 

as predictive values should be considered before selecting a threshold to be use in clinical 

practice, as a substantial number of patients without NASH could be referred for further, 

more invasive and risky evaluation.  

 

CK-18 can potentially improve risk stratification in combination with other synergistic 

markers, such as TE or NFS, by testing for elevated M30 levels among patients under the 

low threshold or in patients with intermediate TE/NFS values (between the high and low 

41

Accuracy of cytokeratin 18 (M30 and M65): a systematic review and meta-analysis

Ch
ap

te
r 2



 

threshold) (64). In the study by Liebig et al., risk stratification was considerably improved 

with this approach, showing more than 70% of patients with low TE/NFS but elevated 

M30 revealing presence of NASH (mostly with fibrosis). As with CK-18, other highly 

validated tests also run the risk of misclassified patients, for example, those with low or 

intermediate risk by TE who would not be considered for a biopsy despite presence of 

NASH. In such a step-wise diagnostic regime, a high cut-off for M30 should be selected to 

optimize specificity and rule-in those with NASH.  
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Abstract 

Objective: Liver biopsy is still needed for fibrosis staging in many patients with non-
alcoholic fatty liver disease. The aims of this study were to evaluate the individual 
diagnostic performance of liver stiffness measurement by vibration controlled transient 
elastography (LSM- VCTE), Fibrosis-4 index (FIB-4) and NAFLD Fibrosis Score (NFS) and to 
derive diagnostic strategies that could reduce the need for liver biopsies. 
 
Design: Individual patient data meta-analysis of studies evaluating LSM-VCTE against liver 
histology was conducted. FIB-4 and NFS were computed where possible. Sensitivity, 
specificity and area under the receiver operating curve (AUROC) were calculated. 
Biomarkers were assessed individually and in sequential combinations. 
 
Results: Data were included from 37 primary studies (n=5735; 45% female; median age: 
54 years; median BMI: 30 kg/m2; 33% had type 2 diabetes; 30% had advanced fibrosis). 
AUROCs of individual LSM-VCTE, FIB-4 and NFS for advanced fibrosis were 0.85, 0.76 and 
0.73. Sequential combination of FIB-4 cut-offs (<1.3; ≥2.67) followed by LSM-VCTE cut-
offs (<8.0; ≥10.0kPa) to rule-in or rule-out advanced fibrosis had sensitivity and specificity 
(95% CI) of 66% (63-68) and 86% (84-87) with 33% needing a biopsy to establish a final 
diagnosis. FIB-4 cut-offs (<1.3; ≥3.48) followed by LSM cut-offs (<8.0; ≥20.0kPa) to rule 
out advanced fibrosis or rule in cirrhosis had a sensitivity of 38% (37-39) and specificity of 
90% (89-91) with 19% needing biopsy. 
 
Conclusion: Sequential combinations of markers with a lower cut-off to rule-out advanced 
fibrosis and a higher cut-off to rule-in cirrhosis can reduce the need for liver biopsies. 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic 
syndrome with high prevalence worldwide [1]. Most patients remain asymptomatic for 
long periods of time (years/decades) with slowly progressive disease, but a minority [2] 
progress to cirrhosis, liver failure, and hepatocellular carcinoma (HCC). 
 
NAFLD comprises several histological features ranging from simple steatosis to steatosis 
with lobular inflammation and ballooned hepatocytes (steatohepatitis), both of which can 
be accompanied by varying degrees of fibrosis. The currently accepted reference standard 
for diagnosing NAFLD is liver biopsy as its diagnostic features are based on histology [3]. 
Liver biopsy, however, is invasive and carries a risk of complications [4], is limited by 
sampling variability [5] and high observer dependent variability in pathological reporting 
[6,7]. 
 
NAFLD is often diagnosed after incidental findings of elevated liver transaminases on 
blood tests, or liver steatosis or cirrhosis on imaging. One challenge clinicians face is to 
identify which of these patients are at high risk of progression or clinical outcomes, as 
they would benefit from specialist follow-up. There is now substantial evidence showing 
that those with at least advanced fibrosis (F3-4) are at higher risk of liver-related events 
in later life [8–10]. 
 
A large body of evidence also exists on how non-invasive tests (NITs) could be used to risk-
stratify patients for the presence of advanced fibrosis. These approaches usually involve 
sequential application of two NITs, with the first tier of a simple, inexpensive, serum-
based test performed in the community (e.g. Fibrosis-4 index (FIB-4) or NAFLD fibrosis 
score (NFS)), followed by a second tier of liver stiffness measurement (LSM) (e.g., 
vibration controlled transient elastography; VCTE), or a proprietary serum-based test (e.g. 
enhanced liver fibrosis test; ELF). A lower and an upper threshold are usually used in each 
tier of testing to rule out (those with a NIT result less than the lower threshold) or rule in 
(those with a NIT result more than the upper threshold) patients at high risk of advanced 
fibrosis. Patients with indeterminate results in both tiers of testing would need a liver 
biopsy for risk stratification. The main value of these approaches lies in their high negative 
predictive value to rule out patients with low risk of advanced fibrosis who can be safely 
managed in primary care. 
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Despite the increasing evidence to support these approaches, some aspects of their 
application require further clarifications. First, there is no consensus on which NIT 
thresholds to use for this purpose. For example, FIB-4 upper cut-offs of 3.25 [11] and 2.67 
[12] have been described, while other investigators omit the FIB-4 upper cut-off 
altogether [13]. There is also some uncertainty about the performance of NITs in specific 
patient subgroups, such as those with diabetes or obesity. Furthermore, for patients who 
are ruled in as being at high risk of advanced fibrosis (F3-4), liver biopsy is often needed 
to identify those with cirrhosis who would need surveillance for HCC [14]. Developing 
approaches that can minimise the need for liver biopsy in secondary care is therefore an 
area of unmet need. 
 
To address these problems, we conducted an individual patient data meta-analysis 
(IPDMA) with three main aims: 1) to evaluate the performance of LSM-VCTE and compare 
it to the performance of FIB-4 and NFS as screening tests to rule out advanced fibrosis; 2) 
to evaluate NIT combination strategies to minimise the number of cases that would need 
a liver biopsy in secondary care; 3) to explore factors that influence diagnostic accuracy. 
 

Methods  

This IPDMA was reported in accordance with the recommendations of the PRISMA-IPD 
Statement [15] and was registered as PROSPERO CRD42019157661. 
 

Criteria for considering studies for the IPD meta-analysis 

Patients 

Studies reporting data on adults (≥18 years) with NAFLD and paired liver histology and 
liver stiffness measurements by (LSM-VCTE) were eligible. When studies reported study 
groups of participants with unselected aetiologies, only IPD of those with NAFLD were 
sought. 
 

Index tests 

The index test of main interest was LSM-VCTE performed with FibroScan® (Echosens, 
France). Results for serum-based biomarkers NSF [16], FIB-4 [17], aspartate 
aminotransferase (AST) to alanine aminotransferase (ALT) ratio [18], and AST-to-platelet 
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ratio index (APRI) [19]) were also computed where data was available. Supporting Table 
1 summarises the definition of NITs considered in this IPDMA. 
 
Universally accepted cut-offs for diagnosing different groups of fibrosis stages do not exist 
(several suggested cut-offs are presented in Supporting Table 2). For LSM-VCTE, <7.9 kPa 
and ��9.6 kPa are the most used for respectively ruling out and in, advanced fibrosis [20]. 
 

Reference standard 

Only studies reporting histological classification of liver fibrosis based on the NASH CRN 
staging system were considered [21]. 
 

Target conditions 

Advanced fibrosis (F3-4) and cirrhosis (F4) were the target conditions of interest. To fulfil 
the aims of the study, cut-offs were selected to rule out or rule in advanced fibrosis, and 
to rule out advanced fibrosis or rule in cirrhosis. 
 

Study design 

All study designs were considered if they were reporting on patients with NAFLD 
undergoing both liver biopsy and LSM-VCTE within 6 months. No language restrictions 
were applied. 
 

Establishing collaborations 

Authors of eligible studies were contacted by email and reminders were sent if a response 
was not received within 2 weeks. Only data from studies that received ethical approval 
were used. Additional ethical approval was not sought for the meta-analysis as only 
anonymised data were provided. 
 

Data verification 

Range checks of measurement values provided for individual patients were carried out 
and authors were asked to provide clarifications where necessary. Missing data were 
queried until received or confirmed as unavailable. Missing data were handled in the 
analysis by pairwise deletion. 
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LSM-VCTE with median stiffness ≥7.1 kPa and IQR-to-median LSM ratio >30% were 
considered unreliable [22]. These were included in the main analysis and were later 
compared in a subgroup analysis to reliable measurements, to assess whether they can 
be reliably used to diagnose advanced fibrosis. 
 
Authors were provided with a template table of required data (Supporting Table 3) and 
were asked to de-duplicate data were possible. We also checked for duplicate entries and 
were identified these were removed. 
 

Data analysis 

Quality and bias assessment 

The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy 
Studies tool (QUADAS-2) [23]. 
 

IPD meta-analysis 

The original data sets were merged, a study identification variable was added, and 
descriptive statistical analysis of the data sets was conducted. Dichotomous variables are 
displayed as percentages.  Continuous variables are reported as means with standard 
deviations, or medians with interquartile ranges according to the distribution of the data. 
 
Analyses were done per-protocol, as we did not have information on failed LSM-VCTE. To 
express the diagnostic performance of NITs, non-parametric, empirical receiver operating 
characteristic (ROC) curves were constructed for the target conditions of interest. 
Diagnostic performance was expressed as the area under the ROC curve (AUROC) with 
95% confidence intervals (95% CI), based on De Long’s method. AUROCs were compared 
using De Long’s test statistic. 
 
Thresholds to maximise the Youden index (i.e. sensitivity+specificity-1), for 90% 
sensitivity, and for 90% specificity were reported. The diagnostic performance of 
previously published cut-offs was also evaluated. Sequential combinations of serum 
biomarkers and LSM-VCTE were evaluated, by computing sensitivity, specificity, and 
proportions of misclassified and indeterminate patients. 
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Positive and negative predictive values (PPV and NPV) were estimated for prevalence 
within the range of those reported in the original studies. The number of false positive 
and false negative results for 100 theoretical cases were also reported. 
 
The main analysis was conducted to maximise data for each NIT. For a valid comparison 
of the performance of NITs, a separate analysis was conducted in the subgroup of patients 
where all three of VCTE, FIB-4, and NFS were available in each participant. 
 
To fulfil the aim of developing testing strategies that reduce the number of patients in 
need of a liver biopsy, lower cut-offs for ruling out advanced fibrosis and upper cut-offs 
for ruling in cirrhosis were used. The rationale for this approach is illustrated in Supporting 
Figure 1. The upper cut-offs for identifying cirrhosis were chosen at 95% and 98% 
specificity in a derivation set and tested in validation set. Derivation and validation sets 
were obtained by random sampling from the IPD study group in a 3:2 ratio. These upper 
cut-offs were combined with lower cut-offs from the literature for ruling out advanced 
fibrosis and the algorithm was tested in the whole IPD study group. For ease of reference, 
we also examined the cut-offs of 8 kPa and 10 kPa (corresponding to the most common 
VCTE cut-offs in the literature of 7.9 kPa and 9.6 kPa rounded to the nearest integer) and 
also rounded our cirrhosis cut-offs to the nearest integer to facilitate application in clinical 
practice.  
 
Only test-positive and test-negative patients were included in the calculation of diagnostic 
performance indices, and patients in the indeterminate group were excluded from 
calculations. 
 
Subgroup analysis was performed according to biopsy length (<20 mm, ≥20 mm), number 
of portal tracts in biopsy samples (<11, ≥11), biopsy quality (intermediate: 10 mm ≤ length 
<20 mm; high: length ≥20 mm and ≥11 tracts), age (four quartiles), sex, body-mass index 
(BMI; BMI<25 kg/m2, 25 kg/m2 ≤BMI<30 kg/m2, BMI≥30 kg/m2), presence of type 2 
diabetes mellitus (T2DM), continent of provenance (Europe, Asia), probes used (M, XL), 
reliability criteria for LSM-VCTE (reliable (median LSM<7.1 kPa or median LSM≥7.1 kPa 
and IQR/median LSM<0.30) versus unreliable (median LSM≥7.1 kPa and IQR/median 
LSM≥0.30) [22]; reliable (IQR/median LSM<0.30) versus unreliable (IQR/median 
LSM≥0.30)), and aminotransferase levels (ALT or AST<40, 40≤ALT or AST<100, ALT or 
AST≥100; ALT<40 and AST<40, ALT≥40 or AST≥40. 
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All statistical analyses were performed using R (version 1.2.1335, R Foundation for 
Statistical Computing, Vienna, Austria) with the pROC package [24,25]; 95% confidence 
intervals were calculated using 500 stratified bootstrap replicates using the boot package 
[26,27]. 
 

VCTE probe types 

The analysis to account for probe type is described in the Supporting Materials. 
 

Patient and public involvement 

Patients and the public were not involved in the conduct of this study as there was no 
direct patient participation in the study. 
 

Results  

Search process and data collection 

10392 articles were identified in a search performed for a larger systematic review 
evaluating the diagnostic performance of LSM-VCTE and other index tests for the staging 
of fibrosis and diagnosis of non-alcoholic steatohepatitis (NASH) in adult patients with 
NAFLD. After removing  
 
duplicates, and screening titles, abstracts, and full texts, 59 studies examining VCTE were 
identified. The authors of 37 studies shared useable data (Figure 1). Authors of more than 
one study supplied data in a single dataset and, overall, we received 30 data sets including 
data from 6571 patients. After removing duplicates (n=628) and patients with missing 
biopsy (n=14) or LSM-VCTE (n=194) data, the final dataset consisted of 5735 unique 
patients. 
 

Study and population characteristics 

The characteristics of the 30 data sets are summarised in Table 1. Studies were conducted 
in Europe (67%), Asia (40%) and Australia (3%). Data availability is shown in Supporting 
Table 3. FIB-4 and NFS were determined in 5393 (94%) and 3248 (57%) cases, respectively. 
Median age was 54 years, 2570 (45%) patients were female, 33% had diabetes and 43% 
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had BMI≥30 kg/m2. Overall, 30% had advanced fibrosis and 11% had cirrhosis. Details of 
the IPD study group are included in Table 2, and Supporting Tables 4 and 5. 
 

Study quality 

The methodological quality of the studies assessed with the QUADAS-2 tool is summarised 
in Supporting Figures 2 and 3. Only one study had low risk of bias or low applicability 
concerns in all QUADAS-2 domains [28]. The flow and timing domain were judged to have 
high risk or unclear risk of bias in 65% of studies, as these either excluded technical failures 
from their final diagnostic performance analysis or did not report them. 
 
 

 
 

Figure 1. PRISMA flow chart illustrating the identification and selection process for 
studies finally included in this individual patient data meta-analysis. 
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Table 2. Demographic details of the entire cohort, and patients without (F0-2) and with 
(F3-4) advanced fibrosis. 
 

 Entire cohort 
(N = 5735) 

F0-2 
(N = 4013) 

F3-4 
(N = 1722) 

Females (%) 45 43 48 
BMI ≥ 30 kg/m2 (%) 43 45 53 
Waist circumference 
(cm) 103 (15) 102 (15) 106 (14) 

Diabetes (%) 33 30 58 
Age (years)* 54 (19) 50 (19) 59 (14) 
BMI (kg/m2)* 30 (7) 29 (8) 30 (7) 
Biopsy data 
Steatosis 
S0/S1/S2/S3 (%) 3/35/36/26 3/36/36/25 2/32/38/28 
Ballooning 
B0/B1/B2 (%) 24/47/29 30/49/21 10/45/46 
Inflammation 
I0/I1/I2/I3 (%) 13/60/24/3 17/62/20/1 5/55/34/6 
NAS score+ 4 (2) 4 (2) 5 (1) 
NASH (%) 50 43 67 
Liver function tests 
ALT (IU/L)* 55 (48) 53 (48) 60 (48) 
AST (IU/L)* 40 (30) 36 (25) 50 (34) 
Platelets (×109/l) + 230 (72) 241 (67) 205 (75) 
Albumin (g/l) + 43 (9) 43 (7) 43 (13) 
GGT (IU/L)* 69 (87) 62 (78) 87 (102) 
NITs 
LSM (kPa)* 10.7 (6.1) 6.7 (3.5) 13.3 (12.0) 
FIB-4* 1.7 (1.2) 1.1 (0.9) 1.9 (1.7) 
NFS+ -1.5 (1.7) -1.9 (1.6) -0.6 (1.8) 
APRI* 0.6 (0.4) 0.4 (0.3) 0.6 (0.6) 
AST/ALT* 0.8 (0.4) 0.7 (0.4) 0.8 (0.5) 
*Data are reported as median (IQR). 
+Data are reported as mean (SD). 

 

Validating the diagnostic performance of LSM by VCTE and serum-
based tests for detecting advanced fibrosis 

LSM-VCTE, FIB-4, NFS, APRI, and AST/ALT had corresponding AUROCs of 0.85, 0.76, 0.73, 
0.70, 0.64 for identifying advanced fibrosis (Table 3), and 0.90, 0.80, 0.78, 0.72, 0.69; for 
the identification of cirrhosis (Supporting Table 6). LSM-VCTE performed significantly 
better (p<10-15) in detecting both advanced fibrosis and cirrhosis than all serum-based 
tests. This relationship was preserved when performing a head-to-head comparison of 
LSM-VCTE, FIB-4 and NFS in the same group of patients (Supporting Tables 7 and 8). 
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When considering cut-offs from the literature, we evaluated lower and higher cut-offs 
separately. For any given test, as would be expected, low thresholds yielded higher 
sensitivity and high thresholds were associated with higher specificity (Supporting Table 
9). Indicative PPV and NPV are also provided for the range of prevalences (5% - 50%) 
reported in the primary studies (Supporting Tables 10-14). 
 
APRI and AST/ALT ratio had only modest diagnostic performance for advanced fibrosis 
(AUROC≤0.70, Table 3), and were therefore not considered further. 
 
None of the thresholds regarded in isolation resulted in both a high sensitivity (≥80%) and 
high specificity (≥80%) (Figure 2, Table 2, Supporting Tables 9 and 15, and Supporting 
Figure 4). Therefore, we explored the use of a lower and an upper cut-off. LSM-VCTE 
literature cut-offs performed well in only two cases (<7.1 kPa and ≥14.1 kPa: 83% 
sensitivity, 90% specificity; and <7.9 kPa and ≥9.6 kPa: 84% sensitivity, 78% specificity), 
while for other LSM-VCTE, NFS and FIB-4 thresholds a high specificity was observed (FIB-
4: 91% for <1.3 & ≥2.67, 95% for <1.3, ≥3.25) but sensitivity was <60% (Table 4). In 
addition, the proportion of indeterminate cases was >30% for serum-based NITs. 
Threshold pairs derived from the IPD study group did not reduce the proportion of 
misclassified and indeterminate patients seen with literature-based threshold pairs (Table 
4). 
 
We further evaluated the performance of LSM-VCTE, FIB-4 and NFS to diagnose advanced 
fibrosis in sequential combinations of serum-based NITs and LSM-VCTE. When selecting 
threshold combinations for FIB-4 and NFS available in the literature (<1.3 & ≥2.67, <1.3 & 
≥3.25 for FIB-4; <-1.455 & ≥0.676 for NFS) and pairing them with the best threshold pair 
for LSM-VCTE (<7.9 kPa & ≥9.6 kPa, identified as the one with highest sensitivity and 
lowest indeterminate proportion), the proportion of patients in the indeterminate group 
was 5%. While both the FIB-4+LSM-VCTE and NFS+LSM-VCTE sequential combinations 
had specificity >80%, their sensitivity was ≤80% (Table 5). A better sensitivity was reached 
by using thresholds derived from the IPD study group (<0.88 & ≥2.31 for FIB-4; <-2.55 & 
≥0.28 for NFS), but the proportion of indeterminate cases was near 20% in those cases 
and the proportions of patients needing LSM-VCTE was also larger than when using 
literature cut-offs (Table 5). 
 
 

62

Chapter 3



 
 

 
  Ta

bl
e 

3.
 D

ia
gn

os
tic

 p
er

fo
rm

an
ce

 o
f n

on
-in

va
si

ve
 te

st
s f

or
 a

dv
an

ce
d 

fib
ro

si
s (

F3
-F

4)
. 

 
LS

M
 b

y 
VC

TE
 

(n
 =

 5
48

9)
 

FI
B-

4 
(n

 =
 5

39
3)

 
N

FS
 

(n
 =

 3
24

8)
 

AP
RI

 
(n

 =
 5

47
7)

 
AS

T/
AL

T 
(n

 =
 5

43
4)

 
Ad

va
nc

ed
 fi

br
os

is,
 %

 
30

 
30

 
29

 
30

 
30

 

AU
C 

0.
85

 (0
.8

4-
0.

86
) 

0.
76

 (0
.7

4-
0.

77
) 

0.
73

 (0
.7

1-
0.

75
) 

0.
70

 (0
.6

9-
0.

72
) 

0.
64

 (0
.6

2-
0.

65
) 

 
YI

 
90

%
 S

e 
90

%
 S

p 
YI

 
90

%
 S

e 
90

%
 S

p 
YI

 
90

%
 S

e 
90

%
 S

p 
YI

 
90

%
 S

e 
90

%
 S

p 
YI

 
90

%
 S

e 
90

%
 S

p 

Th
re

sh
ol

d 
9.

1 
7.

4 
12

.1
 

1.
44

 
0.

88
 

2.
31

 
-1

.3
9 

-2
.5

5 
0.

28
 

0.
49

 
0.

29
 

0.
91

 
0.

64
 

0.
51

 
1.

34
 

Se
ns

iti
vi

ty
, %

 

77
  

(7
5-

79
) 

90
 

(8
9-

91
) 

55
 

(5
2-

57
) 

69
 

(6
7-

72
) 

90
 

(8
8-

91
) 

38
 

(3
6-

41
) 

75
 

(7
2-

78
) 

90
 

(8
8-

92
) 

29
 

(2
6-

32
) 

67
 

(6
4-

69
) 

90
 

(8
9-

92
) 

32
 

(3
0-

34
) 

77
5 

(7
3-

77
) 

90
 

(8
7-

91
) 

16
 

(1
4-

18
) 

Sp
ec

ifi
ci

ty
, %

 

78
 

(7
6-

79
) 

60
 

(5
9-

61
) 

90
 

(8
9-

91
) 

70
 

(6
9-

72
) 

39
 

(3
7-

40
) 

90
 

(8
9-

91
) 

63
 

(6
1-

65
) 

36
 

(3
3-

37
) 

90
 

(8
9-

91
) 

63
 

(6
2-

65
) 

29
 

(2
8-

30
) 

90
 

(8
9-

91
) 

47
 

(4
5-

48
) 

25
 

(2
3-

26
) 

90
 

(8
9-

91
) 

M
isc

la
ss

ifi
ed

, 
%

 

22
 

(2
2-

23
) 

31
 

(3
1-

32
) 

21
 

(2
0-

21
) 

30
 

(3
0-

31
) 

46
 

(4
6-

47
) 

26
 

(2
5-

26
) 

34
 

(3
4-

36
) 

48
 

(4
9-

50
) 

28
 

(2
8-

29
) 

36
 

(3
6-

37
) 

53
 

(5
3-

54
) 

27
 

(2
7-

28
) 

45
  

(4
5-

46
) 

56
 

(5
6-

57
) 

32
 

(3
2-

33
) 

Fo
r e

ac
h 

no
n-

in
va

siv
e 

te
st

 th
re

sh
ol

ds
 w

er
e 

se
le

ct
ed

 a
cc

or
di

ng
 to

 Y
ou

de
n’

s i
nd

ex
 (Y

I),
 a

nd
 fi

xe
d 

at
 9

0%
 se

ns
iti

vi
ty

 (9
0%

 S
e)

 a
nd

 9
0%

 sp
ec

ifi
ci

ty
 (9

0%
 S

p)
. 9

5%
 

co
nf

id
en

ce
 in

te
rv

al
s w

er
e 

es
tim

at
ed

 w
ith

 5
00

 b
oo

ts
tr

ap
 re

pl
ic

at
es

. 

63

Diagnostic accuracy of NITs for diagnosing advanced fibrosis in patients with NAFLD

Ch
ap

te
r 3



   
 

 

 
 
 

Figure 2. Distribution of sensitivities and specificities over the possible threshold 
ranges for LSM by VCTE (A), FIB-4 (B) and NFS (C) when considering the diagnosis of 

advanced fibrosis. Insets show the distribution of cut-offs identified from the 
literature. Horizontal dashed lines are representing the minimum acceptable criteria 

for considering a test as having high sensitivity (≥80%) and high specificity (≥80%). 
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Algorithms to minimise the need for liver biopsy 

In the derivation set, the cut-offs for 95% and 98% specificity for the diagnosis of cirrhosis 
were respectively 20.4 kPa and 27.6 kPa for LSM-VCTE, 3.48 and 4.63 for FIB-4 and 1.01 
and 1.57 for NFS. These cut-offs performed similarly in the validation set (Supporting 
Tables 16 and 17). 
 
Algorithms combining FIB-4 (lower cut-off of 1.3 as described in the literature and upper 
cut-offs of 3.48 and 4.63 as described above) and LSM by VCTE (lower cut-off rounded to 
8.0 kPa and upper cut-offs rounded to 20.0 kPa and 28.0 kPa, as described above) were 
then compared to the traditional way of applying these tests, also with rounded cut-offs 
for LSM by VCTE (8 kPa and 10 kPa) (Figure 3). This approach increased the number of 
patients requiring a liver stiffness measurement (from 34% to 40% and 44%) but 
decreased the number of patients needing liver biopsy (from 33% to 19% and 24% when 
using the 95% and 98% specificity cut-offs, respectively) (Supporting Table 18 and Figure 
3). 
 

Subgroup and sensitivity analyses 

In subgroup analysis for the diagnosis of advanced fibrosis (Supporting Table 19), NITs 
performed  better in patients with lower BMI (AUROCs LSM-VCTE: 0.91, p<0.005; FIB-4: 
0.81, p<0.001; NFS: 0.76, p<0.025), without T2DM (LSM-VCTE: 0.87, p<10-6; FIB-4: 0.77, 
p<0.01), and with biopsies shorter than 20mm (LSM-VCTE: 0.87, p<0.005; FIB-4: 0.80, 
p<0.001; NFS: 0.79, p<0.05), or with fewer than 11 portal tracts (LSM-VCTE: 0.86, p=0.01; 
FIB-4: 0.79, p=0.04; NFS: 0.78, p<0.005). Diagnostic performance was also lower in 
patients in the youngest age quartile (<43 years, AUROC: 0.58, p<0.001) and in females 
(AUROC: 0.71, p=0.03) for NFS, while continent of provenance did not have a significant 
effect for any NITs. In patients with normal levels of ALT (ALT<40) FIB-4 performed worse 
(AUROC: 0.73) than in patients with ALT≥40 and ALT<100 (AUROC: 0.77, p<0.01). NFS 
performed better in patients with AST<40 (AUROC: 0.76), then in patients with AST≥100 
(AUROC: 0.65, p<0.01). FIB-4 performed better in patients with at least one abnormal 
aminotransferase measurement (AUROC: 0.72, p=0.014). For cirrhosis, the trends were 
similar, except that for the diagnosis of cirrhosis, LSM by VCTE performed better in the 
youngest age group (AUROC: 0.97, p<10-4) and NIT diagnostic performance was 
independent of aminotransferase levels (Supporting Table 20). 
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The diagnostic performance of LSM-VCTE was significantly lower in patients with 
unreliable liver stiffness measurements (p<10-8; both for advanced fibrosis and cirrhosis) 
when applying the Boursier-criteria [22], but not when only considering IQR/median 
LSM<0.30. The proportion of unreliable results was 12% both in the advanced fibrosis and 
cirrhosis groups (Supporting Table 21). 
 
There was no difference in the diagnostic performance of LSM-VCTE between the M and 
XL probes in the subgroup of patients who had undergone LSM by both probes 
(Supporting Table 22). 
 

In a sensitivity analysis of patients with LSM matched to BMI (only M probe 
measurements if BMI<30 kg/m2 and only XL probe measurements if BMI≥30 kg/m2), there 
was no significant difference between the diagnostic performance of LSM-VCTE when 
comparing to the entire IPD study group (Supporting Table 23). 
 

Discussion  

Through an extensive collaboration network with authors of primary studies we were able 
to collect the largest dataset of its kind ever to be reported on. This includes a diverse set 
of study groups from Europe, Asia, and Australia, 30% of whom had advanced fibrosis. We 
believe that our findings are therefore relevant for patients typical of secondary care in 
these territories and may be applied in the development of new strategies or in the 
consolidation of existing practices in evaluating patients for referral to secondary care. 
 
A few studies evaluated the diagnostic performance of LSM-VCTE and other NITs, but 
most report on fewer than 500 patients. One similarly large study reported on patients 
screened for inclusion in clinical trials, where the prevalence of advanced fibrosis was 71% 
[29], making it difficult to make generalisations about its applicability in routine practice 
or compare its results to ours. A smaller study with 1073 NAFLD patients of whom 29% 
had advanced fibrosis (ref) examined the diagnostic performance of LSM by VCTE. The 
authors of that study reported AUC and specificity values similar to our findings, however 
they reported increased sensitivity.  Other smaller studies reported similar prevalence of 
advanced fibrosis and similar AUROCs for LSM-VCTE [30–33]. 
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Figure 3. Sankey diagrams showing the distribution of patients in true positive, true 
negative, false positive, false negative and indeterminate groups for a sequential 
combination of FIB-4 and LSM by VCTE when using different thresholds for each 

testing tier. A lower threshold was used to rule out patients without advanced fibrosis 
and an upper threshold ruled in patients with advanced fibrosis when applying both 

tests (A). In an alternative model a lower threshold was used to rule out patients 
without advanced fibrosis, but the upper threshold ruled in only patients with 

cirrhosis (B, C). Two different pairs of thresholds were chosen for this hybrid strategy: 
the lower cut-off for both FIB-4 and LSM by VCTE were determined from the literature; 
upper cut-offs were both determined as corresponding to 95% specificity in detecting 
cirrhosis (B) or both corresponding to 98% specificity in detecting cirrhosis (C). In the 
application of the algorithm described in (A) 33% of patients would need to have a 

liver biopsy for the diagnosis of cirrhosis (those in the indeterminate group to rule out 
advanced fibrosis and those in the rule in group to identify cirrhosis). With the 

application of an upper cut-off to rule in cirrhosis without the need of biopsy, only 
patients in the indeterminate group need to have a biopsy. The latter strategy results 
in fewer patients undergoing biopsy (18% and 24% depending on the threshold used).  
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Overall, the diagnostic performance of LSM-VCTE for advanced fibrosis was good 
(AUROC=0.85), while that of FIB-4 and NFS in the same group was moderate 
(AUROCs=0.76 for FIB-4, AUROC=0.73 for NFS). None of the studied NITs had both 
sufficiently high sensitivity and specificity (≥ 80%) when used with single cut-offs. 
Diagnostic performance was higher for detecting cirrhosis, as reported in previous studies 
[30,34,35]. LSM-VCTE had the highest sensitivity and specificity, both in the case of a 
single cut-off (9.1 kPa obtained by maximising the Youden index; 77% and 78%) and for 
two cut-offs (<7.4 kPa & ≥12.1 kPa; 84% and 87%). Of the LSM-VCTE cut-off pairs tested, 
<7.1 kPa and ≥14.1 kPa, first published by Eddowes et al. in 2019 [30], performed well for 
advanced fibrosis, with sensitivity of 83% and specificity of 90%, but with a proportion of 
39% of patients ending up with an indeterminate result, similar to 41% indeterminate 
patients reported in the original paper [30]. 
 
LSM-VCTE thresholds identified in our study group (<9.1 kPa; <7.4 kPa & ≥12.1 kPa) were 
similar to thresholds reported in the literature (<9.9 kPa; <7.1 kPa & ≥14.1 kPa, <7.9 kPa 
& ≥9.6 kPa). However, thresholds for FIB-4 (<1.44; <0.88 & ≥2.31) and NFS (<-1.39; <-2.55 
& ≥0.28) defined in our IPD study group spanned a wider range than those reported in the 
literature (<1.3 & ≥2.67 or <1.3 & ≥3.25 for FIB-4; <-1.455 & ≥0.676 for NFS). 
 
Our findings are in line with the existing literature suggesting that sequential 
combinations of NITs increase sensitivity and specificity [29]. Additionally, we have found 
NFS+LSM-VCTE and FIB-4+LSM-VCTE combinations to have similar sensitivity and 
specificity as recently reported by Boursier et al. [36]. Such combined testing strategies 
can reduce the number of indeterminate cases and reduce the costs associated with liver 
biopsies. 
 
Furthermore, we propose an approach that could minimise the need for liver biopsies 
further, by using upper cut-offs with 95% and 98% specificity for the identification of 
cirrhosis. The rationale for this approach is explained in the Supporting Discussion. When 
using the 95% specificity cut-off, the proportion of patients needing liver biopsy decreases 
from 33% to 19% (Figure 3). However, in this approach, 345 of 656 patients “ruled-in” as 
having cirrhosis do not have histologically diagnosed cirrhosis. While this may seem like a 
high proportion of patients with false positive results, this must be interpreted in the light 
of two factors. First, the limitations of liver biopsy could mean that these patients are 
falsely classified as not having cirrhosis histologically. Furthermore, patients without 
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cirrhosis on histology and with high NIT values could have equivalent risks as patients with 
cirrhosis on histology. For example, it is known from the hepatitis C literature [37] that 
patients without cirrhosis on liver biopsy but with a high FIB-4 (>3.25) still had a significant 
risk of developing HCC after hepatitis C treatment, demonstrating that NITs can have 
added benefit beyond the histological diagnosis of cirrhosis alone. The rate of false 
positive results for cirrhosis can be decreased by choosing cut-offs with higher specificity, 
but this will come at the expense of doing more biopsies. Despite this encouraging result, 
this is an area where more information is needed, particularly longitudinal data comparing 
the prognostic value of LSM-VCTE and other NITs against histology, and ultimately, the 
cost effectiveness of the various cut-offs would need to be evaluated. 
 
Surprisingly, subgroup analyses showed that the diagnostic accuracy of NITs was better in 
cases with poor biopsy quality. This finding is difficult to explain but a similar observation 
was reported previously in a large group of patients screened for clinical trials [29]. The 
use of local biopsy reports as reference standard and the well-known observer-dependent 
variability of biopsy interpretation, even among expert pathologists [7], are factors that 
may have contributed to our finding. Spectrum bias was excluded as a source of this 
finding due to a near-identical proportion of patients in both the advanced fibrosis and 
cirrhosis group having short biopsies (Supporting Table 5). 
 
Subgroup analysis showed better diagnostic performance of NITs in patients with lower 
BMI [38,39], and patients without diabetes, in keeping with other studies [40,41]. This 
effect is likely to be primarily driven by BMI as there is thought to be a causal association 
between BMI and T2DM. NIT performance was impacted by age, with all NITs performing 
worse in the younger quartile of our study group for advanced fibrosis, but the trend was 
reversed for cirrhosis where NITs performed better in those younger than 43 years of age. 
The age dependence of FIB-4 and NFS is expected, as age is one of the parameters 
included in the algorithms, and has indeed been previously described [13,42]. It is, 
however, difficult to explain why performance of NITs is better in the younger age group 
for the diagnosis of cirrhosis. 
 
Our study has several strengths, including the large size of the IPD study group and 
composition with prevalence of advanced fibrosis of 30%, which makes it relevant to 
routine practice. Furthermore, the proportion of unreliable VCTE measurements in our 
study was 12%, in keeping with the literature [22]. However, we acknowledge some 
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limitations. We did not have any data from the USA and very few studies from Australia, 
so the results could not be globally applicable, due to differences in BMI across study 
populations. In addition, due to the nature of our study, we had to use the locally provided 
histology results possibly introducing bias. Furthermore, we covered a large chronological 
period, during which LSM-VCTE application underwent significant changes, initially with 
the introduction of the XL probe, followed by the advice to measure SCD and the 
introduction of the Automatic Probe Selection tool. There was therefore some 
heterogeneity in the performance of LSM-VCTE, with early studies using only the M probe 
to assess all patients, while only a subset of studies assessed SCD to guide probe selection. 
Furthermore, one third of the included studies was carried out in France, as the 
technology used for LSM by VCTE originates from there.  
 
Lastly, our data confirm that LSM-VCTE had superior accuracy to serum-based tests, and 
this is independent of probe type, sex, ALT, AST, and participants’ continent of origin. 
There was, however, some dependence on the presence of T2DM, BMI and for the 
detection of cirrhosis, and we did not check for subgroup-specific cut-offs, but these 
should be explored in future studies. 
 
Our study examined some of the most widely available NITs. While it cannot be 
considered exhaustive, it can be regarded as the benchmark against which newer NITs 
can be tested. This is particularly important as new tests are continuously being 
developed (FibroTest-FibroSURE, ActiTest [43], ELF [44]). Furthermore, newer tests are 
also needed for patients with “at risk” NASH (NASH+F2-3) who would be candidates for 
clinical trials or treatments, once approved therapies become available (FAST score [45], 
NIS4 [46], cTAG [47]). 
 
In conclusion, our study provides further validation of the use of sequential combination 
of FIB-4 and LSM-VCTE to rule out patients with NAFLD and advanced fibrosis who can be 
managed in primary care. We have shown how the use of upper cut-offs to rule in cirrhosis 
in combination with lower cut-offs to rule out advanced fibrosis can lead to a reduction 
in the number of patients who would need to undergo liver biopsy.   
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Abstract 

Background & Aims: Fibrosis is the strongest predictor for long-term clinical outcomes 
among patients with non-alcoholic fatty liver disease (NAFLD). There is growing interest 
in employing non-invasive methods for risk stratification based on prognosis. FIB-4, NFS 
and APRI are models commonly used for detecting fibrosis among NAFLD patients. We 
aimed to synthesize existing literature on the ability of these models in prognosticating 
NAFLD-related events.  
 
Methods: A sensitive search was conducted in two medical databases to retrieve studies 
evaluating the prognostic accuracy of FIB-4, NFS and APRI among NAFLD patients. Target 
events were change in fibrosis, liver-related event, and mortality. Two reviewers 
independently performed reference screening, data extraction and quality assessment 
(QUAPAS tool). 
 
Results:  A total of 13 studies (FIB-4: 12, NFS: 11, APRI: 10), published between 2013 and 
2019, were retrieved. All studies were conducted in a secondary or tertiary care setting, 
with follow-up ranging from one to 20 years. All three markers showed consistently good 
prognostication of liver-related events (AUC from 0.69 to 0.92). For mortality, FIB-4 (AUC 
of 0.67 to 0.82) and NFS (AUC of 0.70 to 0.83) outperformed APRI (AUC of 0.52 to 0.73) in 
all studies. All markers had inconsistent performance for predicting change in fibrosis 
stage.  
 
Conclusions: FIB-4, NFS and APRI have demonstrated ability to risk stratify patients for 
liver-related morbidity and mortality, with comparable performance to a liver biopsy, 
although more head-to-head studies are needed to validate this. More refined models to 
prognosticate NAFLD-events may further enhance performance and clinical utility of non-
invasive markers. 
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Introduction 

In the next 20 years, non-alcoholic fatty liver disease (NAFLD) is projected to become the 
leading cause of liver transplantation (1, 2). The global prevalence of NAFLD is 
approximately 25%, among which a proportion may progress to develop non-alcoholic 
steatohepatitis (NASH) (3). The prevalence of NAFLD-related cirrhosis as the underlying 
disease among patients undergoing liver transplantation for hepatocellular carcinoma 
(HCC) has markedly increased in Europe and the United States (4, 5). Patients with NASH 
have a higher risk of progression to liver fibrosis (6, 7), and those with advanced fibrosis 
or cirrhosis trend towards more complications of liver failure and HCC compared to those 
without fibrosis (8).  
 
Liver fibrosis is considered the strongest predictor for long-term clinical outcomes in 
NAFLD patients (9). Accurate assessment of NASH or fibrosis stage is resource intensive 
and error-prone, as a liver biopsy is currently required to confirm the diagnosis (10, 11). 
Moreover, biopsies carry risks for the patient such as severe complications and pain, 
leaving many unwilling to undergo this invasive procedure.  
 
There is growing promise in risk stratification using non-invasive markers of NAFLD for 
identifying patients more likely to develop severe liver events. Using markers that are 
more reliable than a biopsy would circumvent the limitations of a biopsy in stratifying 
patients. Optimally performing prognostic markers can eventually replace a biopsy and 
aid clinical decision-making, as well as facilitate recruitment of patients more likely to 
benefit from participation in clinical trials. 
 
Simple non-invasive panels such as the NAFLD Fibrosis Score (NFS) and Fibrosis-4 (FIB-4) 
are recommended by the EASL-EASD-EASO Clinical Practice Guidelines as part of the 
diagnostic regimen for ruling out advanced fibrosis (12). The guidelines further 
recommend the use of NFS and FIB-4 as prognostic markers to rule out progression to 
severe disease, including liver-related and all-cause mortality. Other multimarker models 
such as the aspartate aminotransferase (AST)/platelet ratio index (APRI) are also used for 
fibrosis staging and prediction of liver-related events (13). Reviewing the literature, we 
found other markers such as Enhanced Liver Fibrosis (ELF) test or FibroScan had limited 
assessment for their prognostic ability. 
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Despite established diagnostic performance, there is limited understanding of the relative 
merits of the prognostic ability of non-invasive NAFLD markers, and their comparability 
to a liver biopsy. While many studies have assessed diagnostic performance of these 
markers in reference to a biopsy, more convincing evidence would link these markers to 
future clinical events. In this context, we aimed to conduct a systematic review of studies 
on the accuracy of FIB-4, NFS and APRI in prognosis of fibrosis progression, and liver-
related events including mortality.  
 

Methods 

This systematic review was conducted as part of the evidence synthesis efforts of the 
LITMUS project (Liver Investigation: Testing Marker Utility in Steatohepatitis), funded by 
the European Union’s IMI2 program. LITMUS aims to evaluate biomarkers for drug 
development in NAFLD. The protocol of the complete systematic review is available in 
PROSPERO (registration number: CRD42019136118). This study report was prepared 
using the PRISMA-DTA statement (Supplementary Table 1). 
 

Search strategy 

A sensitive search strategy, containing words in the title/abstract or text words across the 
record and the medical subject heading (MeSH), was developed in close collaboration 
with an experienced information specialist (RS). The full search strategy is available in 
Supplementary Table 2. MEDLINE (via OVID) and EMBASE (via OVID) were searched to 
retrieve potentially eligible studies from inception to June 2019. A search update was 
conducted in June 2020. Additionally, we manually screened reference lists and contacted 
partners within the LITMUS consortium. 
 

Study selection 

Search results of the two databases were merged and deduplicated using Endnote. Title 
and abstracts were screened by two independent reviewers (JL and YV), using Rayyan 
QCRI (http://rayyan.qcri.org). Full texts of potentially eligible studies were retrieved for 
evaluation against a pre-specified inclusion criterion by the same two reviewers. Any 
discrepancies were resolved by discussion.  
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Inclusion and exclusion criteria 

We searched for studies published in peer-reviewed journals that had assessed the 
prognostic accuracy of at least one of the biomarkers of interest (FIB-4, NFS, APRI) in 
predicting future liver-related events, or changes in fibrosis stage at future biopsies. 
Publications in any language were eligible for inclusion. 
 
Studies that included adults (≥18 years) diagnosed (based on liver histology) or clinically 
suspected with NAFLD, and data on either FIB-4, NFS or APRI were eligible. Studies in a 
mixed cohort of conditions (e.g. NAFLD and viral hepatitis patients) were only included if 
outcomes were separately reported for NAFLD patients. 
 
The target events of interest were the following: 

• worsening (or improvement) of fibrosis stage, evaluated preferably by using the 
NASH CRN score (14) and the EPoS staging system (15) for all stages of fibrosis 
or any dichotomized fibrosis status (e.g. F0 – F2 vs F3 – F4); 

• other liver-related outcomes of interest, including model of end stage liver 
disease (MELD) score ≥15; liver transplant; HCC; large oesophageal/gastric 
varices; ascites; increase in hepatic venous pressure gradient (HVPG) >10 mmHg; 
histological progression to cirrhosis; hospitalization (as defined by a stay of ≥24 
hours) for onset of: variceal bleed, hepatic encephalopathy, spontaneous 
bacterial peritonitis; 

• mortality (liver-related or all-cause). 

Studies that reported the area under the ROC curve (AUC) or Harrell’s C index for 
expressing the prognostic performance in predicting changes in fibrosis stage, liver-
related events of interest, or mortality were included. Studies reporting only measures of 
association, such as a relative risk, hazard ratio, odds ratio, or standard deviation of 
change, without a direct measure of classification, were excluded.  
 

Data extraction and quality assessment 

The following data were extracted from each included study: study characteristics, clinical 
characteristics, index test features, target event features (if applicable), and overall 
performance of the test in terms of AUC or C index. Data were independently extracted 
and cross-checked by a second reviewer (JL and YV). 
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The Quality Assessment of Prognostic Accuracy Studies (QUAPAS) tool was used to assess 
the methodological quality and risk of bias in the included studies (16). In short, QUAPAS 
is a modification of the existing Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) tool (17), revised to account for items unique to prognostic accuracy study 
designs. QUAPAS follows the same domain-based framework as QUADAS-2. Two 
independent reviewers (JL and YV) evaluated risk of bias and concerns for applicability 
using the five domains (participant recruitment, index test, target event, study flow, 
analysis), assigning each study with a judgement of ‘low’, ‘high’, or ‘unclear’ risk. See 
Supplementary Table 3 for the QUAPAS tool.  
 

Statistical Analysis 

Given the anticipated heterogeneity between studies, a meta-analysis was not 
considered.  
 

Results 

Search results 

Following deduplication, 4,510 studies were eligible for title and abstract screening, of 
which 126 full texts were screened. We excluded 114 studies in this phase, following the 
inclusion and exclusion criteria. Two studies that were identified during the search 
update, despite having prognostic accuracy data, did not present enough data for 
inclusion (18, 19). Finally, a total of 13 studies, published between 2013 and 2019, were 
included in the present systematic review (Figure 1). 
 

Characteristics of included studies 

The majority of studies (12/13) were comparative accuracy studies, in which two or more 
biomarkers were evaluated within the same cohort for a given target event. Twelve 
studies were identified for FIB-4, eleven for NFS and ten for APRI. The study group 
consisted of NASH patients in three studies (20-22), NAFLD-cirrhotic patients in one study 
(23), and all others were NAFLD patients. All studies were conducted in a secondary or 
tertiary care setting. At baseline, the prevalence of diabetic patients ranged from 9% to 
78% and hypertension from 11% to 55%. Mean body mass index (BMI) spanned from 28 
to 35 kg/m2. Characteristics of the included studies are summarized in Table 1. 
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Figure 1. Flow diagram of included studies 

 
participants, and the relationship between loss to follow-up and the index tests was not 
explored. Lastly, four studies were graded at high risk of bias for failing to apply methods 
to account for censoring and competing events (13, 20, 22, 27). Only one study had low 
risk of bias in the analysis domain (23). 
 

Prognosis of change in fibrosis stage 

Table 2 shows the AUC or C-index for the studies included in this systematic review. 
Change in fibrosis stage (fibrosis progression or regression) was evaluated as the event of 
interest in three studies (13, 20, 22). All three studies assessed the ability of FIB-4, NFS, 
and APRI for prognosis of fibrosis progression, defined as an increase of at least one point 
in fibrosis score. Two studies looked at progression into advanced fibrosis (F ≥3) (13, 28), 
and another at fibrosis regression (decrease of at least one point in fibrosis score) (22). 
The cumulative incidence (number of study participants with the target event relative to 
all study participants at the start of the observation period) of fibrosis spanned from 16% 
to 43%, with a mean follow-up period of 1 to 6.6 years.  
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For FIB-4, the prognostic accuracy for fibrosis progression including progression to 
advanced fibrosis ranged from an AUC of 0.65 (0.54-0.76) to 0.81 (0.73-0.89). The AUC for 
NFS ranged from 0.65 (0.56-0.73) to 0.83 (0.74-0.92), and for APRI from 0.65 (0.53-0.73) 
to 0.72 (0.65-0.80). 
 
Few studies reported details regarding threshold values and corresponding sensitivity and 
specificity. One study used a threshold of 0.2 for all three markers (20). For NFS, suggested 
high and low thresholds of 0.676 (Se: 0.28, Sp: 0.9) and -1.455 (Se: 0.91, Sp: 0.46), 
respectively, were used in one study (29). One study also reported sensitivity and 
specificity data, but with no reporting of threshold (13).  
 

Prognosis of liver-related events 

Six studies evaluated liver-related events among NAFLD patients (21, 23, 25, 30-32). Liver-
related events were defined as a combination of clinical outcomes, consisting of but not 
limited to ascites, esophageal varices, encephalopathy, variceal bleeding, decompensated 
liver disease, HCC, and liver transplantation. Each study assessed a different cluster of 
events (see Table 2 for details). Two studies included more severe clinical outcomes such 
as liver failure or death (21, 30). One study evaluated solely HCC (23). The mean follow-
up was 1.9 to 19.9 years, with cumulative incidence ranging from 6% to 56%.   
 

 

 

Figure 2. Graphical summary of the risk of bias and applicability concerns of the 
included studies using the QUAPAS tool 
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The AUC for prognosis of liver-related events ranged from 0.71 to 0.89 for FIB-4, 0.72 to 
0.92 for NFS, and 0.69 to 0.89 (0.82-0.96) for APRI (Table 2). In the two studies that 
conducted statistical testing, both showed significant differences (p < 0.005) between the 
three markers and the null hypothesis (AUC of 0.5) (25, 31). In one study that compared 
non-invasive methods  
 
to a liver biopsy, FIB-4 and APRI had higher AUC than histologic fibrosis (21). Length of 
follow-up period did not seem to influence the performance of any biomarker in a 
consistent pattern.  
 
In prognosticating liver-related events, most studies reported using either one or both the 
suggested high and low thresholds for NFS (low: -1.45, high: 0.676) and APRI (low: 0.5, 
high: 1.5). For FIB-4, two studies used a single threshold of 3.25 (one study finding a 
sensitivity and specificity of 0.59 and 0.92, respectively) (21, 23), while the rest adhered 
to the suggested low threshold of 1.3 and/or high threshold of 2.67. In the sole study that 
reported paired point accuracy data, the high threshold showed a sensitivity and 
specificity of 0.50 and 0.90 for NFS, and 0.50 and 0.92, for APRI, respectively (21).  
 

Prognosis of mortality (liver-related and all-cause)  

All-cause mortality was the most frequently investigated event, evaluated in seven studies 
(24-27, 30-32). One study additionally looked at liver-related mortality (26). The 
cumulative incidence was between 5% and 59%; mean follow-up ranged from 1.9 to 19.9 
years. 
 
The prognostic accuracy of FIB-4, expressed as the AUC, ranged from 0.67 (0.58-0.76) to 
0.82 (0.75-0.90) (Table 2). The AUC reported for NFS ranged from 0.70 (0.62-0.78) to 0.83 
(0.73-0.93). The accuracy of APRI was lower compared to FIB-4 and NFS in all seven 
studies, with AUC ranging from 0.52 to 0.73 (0.60-0.86). Four out of four studies showed 
significant results (p < 0.05) (24-26, 31). Here also, length of follow-up did not seem to 
influence the performance of any biomarker. 
 
Of the studies that reported the threshold values used for prognosticating mortality, all 
used either or both the suggested high and low thresholds for FIB-4 and APRI. For NFS,
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thresholds of -0.9 and -1.836 were also studied in addition to the suggested thresholds. 

We again found sparse reporting of sensitivity and specificity. One study found that at the 

high threshold, FIB-4, NFS and APRI showed sensitivity and specificity of 0.70 and 0.72, 

0.69 and 0.76, and 0.55 and 0.89, respectively (32). 

 
Discussion 
Non-invasive markers with comparable ability to prognosticate severe liver-related 

outcomes may be valuable tools for stratifying patients with higher risk of complication, 

in place of a liver biopsy. In this systematic review, we aimed to summarize the evidence 

on the prognostic performance of three multimarker models in identifying those at risk of 

developing worsening of NAFLD-related outcomes. We found that FIB-4, NFS and APRI 

have limited performance in predicting changes in fibrosis, as evaluated by future 

biopsies, but consistently demonstrated the ability to predict liver-related morbidity and 

mortality, with a level of performance that met or exceeded that of a liver biopsy.   

 

Strengths and limitations 
While many studies have synthesized data on the diagnostic accuracy of non-invasive 

NAFLD markers, to our knowledge, this is the first systematic review conducted on the 

prognostic context of use. In collaboration with a search specialist, we developed a highly 

sensitive search strategy, including abstracts, to minimize bias that may arise from 

selective inclusion. For robust evaluation of bias in individual studies, we used a new risk 

of bias tool developed specifically for systematic reviews of prognostic accuracy (16). All 

screening phases, data extraction and quality assessment were independently conducted 

by two experienced methodologists.  

 

Our work comes with limitations, some inherent to the nature of prognostic research. 

Several studies had a relatively short follow-up period. This can be problematic for 

assessing outcomes of a chronic condition such as NAFLD, where patients have a median 

survival period of >10 years (33, 34). The results should be interpreted with caution, given 
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the limited and heterogeneous follow-up periods, which ranged from one to 20 years. The 

variability in study designs prohibited meta-analysis to produce summary estimates of 

performance.  

 

In the scheme of disease management, risk stratification may be most beneficial in a 

primary care setting, in which the purpose is to identify patients who require expedited 

referral to tertiary care centers. All identified studies evaluated the markers prognostic 

performance in a secondary or tertiary care setting. Thus, data from these studies cannot 

necessarily be extrapolated to a primary care setting.  

 

Furthermore, we observed that very few studies reported data on both threshold values 

and corresponding sensitivity and specificity, which are more informative and clinically 

relevant than the AUC alone. Sparse reporting may be attributed to the relatively new and 

therefore less established nature of prognostic accuracy studies in general, in comparison 

to diagnostic accuracy studies. Given the increased volume of prognostic accuracy 

research, reporting guidelines and quality assessment tools specific for this area of 

research should be further developed. 

 

In the context of current evidence 
A 2015 editorial illustrated the prognostic value of histological features of NAFLD, in the 

form of a hierarchical model (34). This model ranked fibrosis as the most important 

histologic lesion associated with long term outcomes in NAFLD, and many studies support 

biopsy-confirmed fibrosis to be a major prognostic marker for mortality (35, 36). 

However, growing literature highlights the limitations of a liver biopsy (11), particularly 

for detection of fibrosis (37). Aside from the risk of complications and invasive nature, 

sampling variability is a big concern. In a study by Ratziu et al., where two biopsy samples 

were compared, fibrosis stage was different in 41% of patients (38). This may not be 

surprising, as only 1/50,000 of a whole liver tissue is sampled during a biopsy (39). Even 

for NASH, histological lesions are unevenly distributed throughout the liver tissue. Further 
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problems with pathological diagnosis arise with inter- and intra-observer variability. 

Therefore, evaluating test accuracy with an imperfect reference standard such as a liver 

biopsy poses the risk of underestimating NASH and fibrosis severity.  

 

While histologic fibrosis predicts disease progression, prognostication of NAFLD-related 

events using non-invasive markers is an appealing alternative, especially if performance 

of these markers approximates or equals that of histology-confirmed fibrosis. In 

comparing the performance of non-invasive methods to histologic fibrosis (F3-F4) in 

prognosticating liver-related events, APRI and FIB-4 had higher AUC compared to a biopsy, 

and the overall percent of accurate prognosis was higher for all three multimarker models 

(models had 84% to 86% accuracy compared to 76% with a liver biopsy) (21). The AUC 

found in this study were consistent with others identified in this systematic review.  

 

This direct comparison illustrated the ability of non-invasive markers to risk stratify 

patients with comparable, or even better performance than a liver biopsy. Another study 

supported this finding for the ELF test (40). However, studies evaluating head-to-head 

comparisons of non-invasive markers and a liver biopsy are limited, and future studies 

should aim to validate these findings and build a stronger evidence-base for non-invasive 

tests, particularly for the simple multimarker models that contain components readily 

evaluated in routine laboratories.   

 

In addition to FIB-4, NFS and APRI, other NAFLD markers have been studied for their 

prognostic ability. The ELF test is recognized by guidelines as a diagnostic marker for liver 

fibrosis. For predicting progression to cirrhosis and liver related events, the AUC for ELF 

was 0.79 and 0.68, respectively, out-performing histological assessment for both 

outcomes (40). Vibration-controlled transient elastography (VCTE), a imaging technique 

validated for liver fibrosis, had an AUC of 0.73 (0.66-0.78) for all-cause mortality, 

significantly outperforming APRI (p = 0.001) but not FIB-4 (26). Liver stiffness 

measurement, by transient elastography (FibroScan) had an AUC of 0.86 (0.82-0.95) in 
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prognosticating liver-related mortality in one study (26), and an AUC of 0.911 (0.82-0.99) 

in prognosticating liver-related events (41). Fibroscan significantly outperformed APRI for 

predicting all-cause mortality. FibroTest, another marker for determining stages of 

NAFLD-related fibrosis, had an AUC of 0.94 (0.91-0.98) in prognostication of liver-related 

death (42). The same study conducted a post hoc analysis comparing FibroTest and FIB-4 

and found no significant difference in performance (p = 0.32). In this study, FIB-4 had an 

AUC of 0.87 (0.74-0.99). Longitudinal assessment of magnetic resonance elastography 

(MRE) showed prognostic accuracy of 0.62 (0.46-0.78) for predicting fibrosis 

improvement and magnetic resonance imaging (MRI-PDFF) had an AUC of 0.70 (0.57-

0.83) for predicting steatosis reduction (43). While some of these markers show promising 

results, more studies are needed to validate the findings. 

 

Implications for current practice  
In clinical practice, FIB-4 and NFS can be used in regular intervals to detect disease 

progression, offering a less invasive, and perhaps a more accurate alternative to a biopsy. 

The annual change of NFS in patients who died was two-fold that of survivors and, for 

fibrosis progression, four-fold higher in progressors than in those who were stable (27). 

Another study found that FIB-4 and NFS were significantly higher among fibrosis 

progressors compared to non-progressors, despite no significant difference in histological 

grading (28). Patients who underwent serial measurements of FIB-4 within five years and 

had high-risk in both occurrences had significantly increased risk of severe liver disease 

with an adjusted hazard ratio of 17.04 (11.67-24.88), and an accuracy of 98% (44).  

 

The costs and time invested into drug development has become increasingly exhaustive 

(45). Given the volume of ongoing clinical trials for the treatment of NASH and fibrosis, 

and the understood complexities and required resources, prognostic markers can be an 

integral measure for expediting clinical trials. A marker linked to a clinical trial endpoint 

can improve efficiency for late stage clinical trials by identifying patients more likely to 

develop the outcome, ultimately reducing the number of participants recruited to a study 
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(46). For clinical trials targeting patients with cirrhosis, long term events that characterize 

clinical decompensation (ascites, encephalopathy, HCC, variceal hemorrhage) are of 

interest (47). We observed that all three markers showed consistently good prognostic 

performance for events indicating clinical decompensation. 

 

In conclusion, this systematic review shows that FIB-4, NFS and APRI can risk stratify 

patients for liver-related morbidity and mortality, with comparable performance to a liver 

biopsy. If confirmed in future comparative studies with sufficient length of follow-up, the 

strong prognostic performance of these multimarker models could position them at the 

cornerstone for risk stratification and risk management among NAFLD patients. 
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Abstract 

Whereas diagnostic tests help detect the cause of signs and symptoms, prognostic tests 
assist in evaluating the probable course of the disease and future outcome. Studies to 
evaluate prognostic tests are longitudinal, which introduces sources of bias different from 
those for diagnostic accuracy studies. At present, systematic reviews of prognostic tests 
often use the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to 
assess risk of bias and applicability of included studies because no equivalent instrument 
exists for prognostic accuracy studies. 
 
QUAPAS (Quality Assessment of Prognostic Accuracy Studies) is an adaptation of 
QUADAS-2 for prognostic accuracy studies. Questions likely to identify bias were 
evaluated in parallel and collated from QUIPS (Quality in Prognosis Studies) and PROBAST 
(Prediction Model Risk of Bias Assessment Tool) to paired to the coresponding question 
(or domain) in QUADAS-2. A steering group conducted and reviewed 3 rounds of 
modifications before arriving at the final set of domains and signaling questions. 
 
QUAPAS follows the same steps as QUADAS-2: Specify the review question, tailor the tool, 
draw a flow diagram, judge risk of bias, and identify applicability concerns. Risk of bias is 
judged across the following 5 domains: participants, index test, outcome, flow and timing, 
and analysis. Signaling questions assist the final judgment for each domain. Applicability 
concerns are assessed for the first 4 domains. 
 
The authors used QUAPAS in parallel with QUADAS-2 and QUIPS in a systematic review of 
prognostic accuracy studies. QUAPAS improved the assessment of the flow and timing 
domain and flagged a study at risk of bias in the new analysis domain. Judgment of risk of 
bias in the analysis domain was challenging because of sparse reporting of statistical 
methods. 
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Introduction  

Informed decision making in clinical care relies on accuracy in both diagnosis and 
prognosis. Medical tests can support such decisions: Diagnostic tests help clinicians detect 
the cause of a patient’s signs and symptoms, and prognostic tests assist in evaluating the 
probable course of the disease and future outcome. 
 
The 2 different contexts of use make the interpretation and evaluation of the 
performance of a test for a diagnostic purpose distinctly different from that for a 
prognostic purpose (1). An evaluation of the diagnostic accuracy of a test aims to answer 
a cross-sectional question: How good is this test at detecting the target condition in 
patients presenting with signs and symptoms, here and now? Diagnostic accuracy studies 
evaluate 1 or more index tests by comparing the results with the reference standard 
outcome in the same patient (2). The findings are usually expressed as estimates of the 
test’s sensitivity or specificity. An example is the evaluation of D-dimer in patients with 
suspected pulmonary embolism, using computed tomography scans as the reference 
standard (3). 
 
In contrast, evaluations of the prognostic accuracy of a test address longitudinal 
questions: How good is this test at predicting a future patient outcome, such as an event 
or a specific functional status (4)? This can be evaluated by comparing results of the same 
test in patients who developed versus did not develop the future outcome. A prognostic 
accuracy study might, for example, assess whether a scoring system for sepsis among 
emergency department patients can prognosticate in-hospital death (5), or evaluate C-
reactive protein for early risk assessment of patients with acute pancreatitis (6). 
 
A prognostic test can be based on the measurement of a single biomarker, a multimarker 
score, an imaging modality, or other methods. The test result can be dichotomous or 
expressed on an ordinal or quantitative scale, such as calculated risk. The performance of 
the test—here generically called prognostic accuracy, but also known as predictive 
accuracy or discrimination—can be expressed in terms of sensitivity and specificity for 
dichotomized results, as the area under the receiver-operating characteristic curve, as the 
c-index, or in other ways. 
 
Most diagnostic accuracy studies are cross-sectional in design, although some, known as 
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delayed cross-sectional, rely on follow-up as the reference standard (7). Studies to 
evaluate prognostic tests, on the other hand, are always longitudinal in nature: cohort 
studies in tested patients, for example, with the outcome captured during a follow-up 
period, or nested case–control studies, with test results obtained in previously collected 
samples (8). 
 
Systematic reviews have become the preferred method for synthesizing the available 
evidence on the performance of a test. A key component of a systematic review is an 
assessment of methodological quality of the included studies, and several tools have been 
developed to assist in this evaluation. In systematic reviews of diagnostic accuracy 
studies, QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) is commonly 
used to assess risk of bias and express concerns about the applicability of the study 
findings to the review question (9). 
 
No specific tool exists to assist quality assessment of prognostic accuracy studies. 
Reviewers sometimes use QUADAS-2, which usually requires tailoring because it does not 
address some of the issues in longitudinal studies. Reviewers also rely on quality 
assessment tools for prognostic questions, such as QUIPS (Quality in Prognosis Studies) 
(10) and PROBAST (Prediction Model Risk of Bias Assessment Tool) (11, 12), neither of 
which is ideally suited for evaluating prognostic accuracy studies. Because QUIPS was 
developed for prognostic factor studies, it also emphasizes confounding, an element less 
relevant when evaluating the accuracy of prognostic tests. PROBAST was specifically 
developed for prediction models, but not all prognostic tests are model-based, and 
questions about model development do not apply. To alleviate some of these problems, 
some review authors use 2 or 3 tools in parallel when evaluating studies of prognostic 
tests (13, 14). 
 
We believed that it would be helpful to have a tool for assessing the methodological 
quality of prognostic accuracy studies that retains the widely accepted structure and easy-
to-communicate flow of QUADAS-2 while addressing some of the specific features of 
longitudinal studies, as QUIPS and PROBAST do. 
 
We propose QUAPAS (Quality Assessment of Prognostic Accuracy Studies), an adaptation 
of QUADAS-2 to assess risk of bias and applicability in systematic reviews of prognostic 
accuracy studies. QUAPAS combines the structure and process of QUADAS-2 with 
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elements from QUIPS and PROBAST. 
 

Development of QUAPAS 

Six experienced reviewers and methodologists (J.L., P.W., M.L., R.W., P.M.B., and Jill 
Hayden, PhD), experts in the area of test evaluation or development of risk-of-bias tools, 
participated in the development of QUAPAS. The tool was developed with the intention 
of assessing risk of bias and applicability concerns for the evaluation of the performance 
of a single index test against 1 future outcome. 
 
We reviewed risk-of-bias tools suggested for systematic reviews by the Cochrane 
Prognosis Methods Group and Diagnostic Test Accuracy Working Group (15). We relied 
on these existing tools because they have demonstrated ability to assess bias and 
applicability in the related research areas of test accuracy and prognosis. Published 
systematic reviews were screened at random to identify any other relevant tools. 
Although we did not identify other unique tools, we observed that reviewers sometimes 
used a combination of QUADAS-2 and either QUIPS or PROBAST. 
 
Considering the similarities between diagnostic and prognostic accuracy studies, we used 
the 4 domains of QUADAS-2 (patient selection, index tests, reference standard, and flow 
and timing) as the starting point. From there, we evaluated in parallel the 6 domains of 
QUIPS (study participation, study attrition, prognostic factor measurement, outcome 
measurement, study confounding, and statistical analysis and reporting) and the 4 
domains of PROBAST (participants, predictors, outcome, and analysis) to identify and pair 
to corresponding QUADAS-2 domains. 
 
This tool relies on signaling questions—factual questions to assist the final judgment for 
each domain—as do QUADAS-2 and other tools. These questions were collated from the 
3 tools. We kept intact the original QUADAS-2 signaling questions as much as possible. 
Duplicate questions from QUIPS and PROBAST were eliminated on the basis of style and 
clarity of wording and sometimes revised to be consistent with QUADAS-2. Additional 
signaling questions and sources of bias, relevant for prognostic accuracy studies, were 
included on the basis of discussions from the steering committee meetings. 
 
The steering committee conducted and reviewed 3 rounds of modifications before 
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arriving at the final set of domains and signaling questions. Table 1 lists the key changes 
made to QUADAS-2 in its transformation to QUAPAS. 
 

Explanation of Major Changes From QUADAS-2 to QUAPAS 

The proposed QUAPAS tool covers the following 5 domains: participants, index test, 
outcome, flow and timing, and analysis (Table 2). The complete user template is available 
in Part 1 of the Supplement (available at Annals.org), with footnotes to guide reviewers 
in answering the signaling questions. 
 
QUAPAS follows the same structure as QUADAS-2 and is applied in 4 phases. Details about 
the phases can be found in the Appendix (available at Annals.org) and in the QUADAS-2 
publication (9). 
 
Part 2 of the Supplement includes examples for answering the signaling questions in 
published prognostic accuracy studies. The following section describes the major changes 
from QUADAS-2 to QUAPAS. 
 

Domain 1: Participants 

Risk of bias: Could the selection of participants have introduced bias? 

This domain covers methods for participant enrollment and avoidance of inappropriate 
exclusions at the point of entry to the study; exclusions after enrollment are covered in 
the flow and timing domain. 
 

Applicability: Are there concerns that the participants do not match the review 
question? 

Concerns about applicability arise if the study group does not reflect the population in the 
review question in terms of characteristics, disease severity, and clinical setting. This 
matters because the performance of a test typically varies across demographic and clinical 
groups. 
 

Changes 

No major changes were made in this domain; Table 1 shows minor changes. 
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Table 1. Key Changes Made From QUADAS-2 to QUAPAS 

 

Signaling Question 

Changes From 
QUADAS-2 and 
Source (If 
Applicable) 

Explanation 

Domain 1: Participants  
Domain name 
change  
 
Source: QUIPS, 

PROBAST 

 
The name of this domain was modified from patient 

selection (QUADAS-2) to participants. 

S1.1: Was a consecutive 
or random sample of 
participants enrolled? 

Modified 
QUADAS-2 
signaling 
question 

Patients was modified to participants, here and 
throughout the tool.  

S1.3: Did the study avoid 
inappropriate 
selection criteria? 

Modified 
QUADAS-2 
signaling 
question 

This signaling question from QUADAS-2 (“Did the 
study avoid inappropriate exclusions?”) was 
modified because the selection criteria consider 
both appropriate inclusion and exclusion of 
participants. 

Domain 2: Index test 
   

S2.1: Was the method 
used to perform the 
index test valid and 
reliable? 

Added signaling 
question 

 
Source: QUIPS 

This prompting item from QUIPS (“Method of PF 
measurement is … valid and reliable”) was 
included as a signaling question to flag any 
sources of measurement error in index test 
measurements. 

S2.2: Was the method for 
performing the index 
test the same for all 
participants? 

Added signaling 
question  

 
Source: QUIPS, 

PROBAST 

This signaling question was a combination of a 
prompting item from QUIPS (“The method and 
setting of measurement of PF is the same for all 
study participants”) and a signaling question from 
PROBAST (“Were predictors defined and assessed 
in a similar way for all participants?”). 

S2.3: Were the index test 
results interpreted 
without knowledge of 
the outcome? 

Modified 
QUADAS-2 
signaling 
question 

Reference standard was modified to outcome, here 
and throughout the tool. 

 
Domain 3: Outcome  

Domain name 
change 

 
The domain name was modified from reference 

standard to outcome because most prognostic 
tests focus on an event or state in the future.  

S3.1: Was the method 
used to measure the 
outcome valid and 
reliable? 

Modified 
QUADAS-2 
signaling 
question 

We rephrased a question from QUADAS-2 (“Is the 
reference standard likely to correctly classify the 
target condition?”) to better emphasize sources of 
outcome misclassification in longitudinal studies 
and to be consistent with wording in S2.1. 

S3.2: Was the method 
used to measure the 
outcome the same for 
all participants? 

Redirected and 
modified 
QUADAS-2 

This signaling question is a modification of one in the 
flow and timing domain of QUADAS-2 (“Did all 
patients receive the same reference standard?”). 
We redirected this question to the current domain 
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signaling 
question 

because the tool is structured in such a way that 
all signaling questions addressing bias related to 
outcome are in the outcome domain. 

S3.3: Was the outcome 
measured without 
knowledge of the 
index test results? 

Modified 
QUADAS-2 
signaling 
question 

Reference standard was modified to outcome. 

 
Domain 4: Flow and timing   

S4.1: Did all participants 
receive the index test? 

Added signaling 
question 

 
Source: PROBAST 

This signaling question was adopted from a 
PROBAST question (“Are all predictors available at 
the time the model is intended to be used?”). We 
included it to account for any participants who did 
not undergo the index test. 

S4.2: Was treatment 
avoided after the index 
test was performed? 

New signaling 
question 

This signaling question was introduced to highlight 
potential for treatment selection bias. Differences 
in baseline clinical features can result in a subset 
of participants receiving treatment, which may 
affect the likelihood of the outcome thereafter. 

S4.3: Was the time 
horizon sufficient for 
capturing the 
outcome? 

Modified 
QUADAS-2 
signaling 
question 

We modified an existing QUADAS-2 question (“Was 
there an appropriate interval between index tests 
and reference standard?”) to keep replacement of 
the term reference standard with outcome 
consistent throughout the tool. 

S4.4: Was information on 
the outcome available 
for all participants? 

Modified 
QUADAS-2 
signaling 
question 

This question was modified from a QUADAS-2 
question (“Did all patients receive a reference 
standard?”) to better account for any participants 
lost during follow-up and missing outcome data.  

 
Domain 5: Analysis  

New domain 
 
Source: QUIPS, 

PROBAST 

 
This domain is a new addition from QUADAS-2. 

Given the complexities of analyzing longitudinal 
studies, we included this in QUAPAS, adopting 
signaling questions from QUIPS/PROBAST. 

S5.1: Were all enrolled 
participants included 
in the analysis? 

Modified 
QUADAS-2 
signaling 
question 

This signaling question was redirected from the flow 
and timing domain of QUADAS-2 to the current 
domain because the question addresses an 
analytic issue. 

S5.2: If data were 
missing, were 
appropriate methods 
used? 

Added signaling 
question 

 
Source: PROBAST 

We added a signaling question to address 
appropriate handling of missing data, adopted 
from a signaling question in PROBAST (“Were 
participants with missing data handled 
appropriately?”). 

S5.3: Were appropriate 
methods used to 
account for censoring? 

Added signaling 
question 

 
Source: PROBAST 

This signaling question was based on a question 
from PROBAST (“Were complexities in the data 
[e.g., censoring, competing risks, sampling of 
control participants] accounted for 
appropriately?”). Censoring can occur in 
longitudinal data for various reasons, and 
appropriate methods should be applied.  

S5.4: In case of 
competing events, 
were appropriate 

Added signaling 
question 

 
Source: PROBAST 

The same signaling question from PROBAST used for 
S5.3 was split into a second question to address 
competing events. Competing events occur when 
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methods used to 
account for them? 

participants can experience other events, 
preventing occurrence of the outcome of interest.  

PF = prognostic factor; PROBAST = Prediction Model Risk of Bias Assessment Tool; QUADAS-2 = Quality 
Assessment of Diagnostic Accuracy Studies 2; QUAPAS = Quality Assessment of Prognostic Accuracy Studies; 
QUIPS = Quality in Prognosis Studies. 
 

Domain 2: Index Test 

Risk of bias: Could the conduct or interpretation of the index test have 
introduced bias? 

This domain covers potential sources of bias related to the definition, measurement, or 
interpretation of the index test. 
 

Applicability: Are there concerns that the index test or its conduct, 
interpretation, or threshold differs from the review question? 

Applicability concerns can arise if there are variations in the test version, method of 
measurement, or interpretation. Factors related to the index test should be consistent 
with the review question because variability may influence performance estimates. 
 

Changes 

Signaling question 2.1: Was the method used to perform the index test valid and reliable? 
This signaling question, based on a prompting item from QUIPS (“Method of [prognostic 
factor] measurement is … valid and reliable” [10]), was added to flag bias that may arise 
from index test measurement error. A study should use an adequately validated assay or 
other measurement method that is reliable, reproducible, and fit for the intended use. 
Consistent and valid measurement methods can minimize unwanted heterogeneity in 
index test measurements (16). 
 
Signaling question 2.2: Was the method for performing the index test the same for all 
participants? 
We added this signaling question based on a prompting item from QUIPS (“The method 
and setting of measurement of [prognostic factors] is the same for all study participants” 
[10]) and signaling question from PROBAST (“Were predictors defined and assessed in a 
similar way for all participants?” [11]). The index test should be executed consistently for 
each participant. Accuracy may fluctuate on the basis of the index test procedures—for 
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example, related to variability between imaging technologies or with insufficiently 
standardized assays for blood-based biomarkers (17). 
 

Domain 3: Outcome 

Risk of bias: Could measurement of the outcome have introduced bias? 

This domain refers to bias that may arise from the definition, method of measurement, 
or interpretation of the outcome. 
 

Applicability: Are there concerns that the outcome does not match the review 
question? 

Concerns about applicability arise when the outcome definition or measurement methods 
differ between the study and the review question. 
 

Changes 

The signaling questions in this domain had only minor modifications, all of which were 
based on questions from QUADAS-2 (Table 1). 
 

Domain 4: Flow and Timing 

Risk of bias: Could the study flow have introduced bias? 

This domain focuses on the inclusion of participants in the analysis, any participants who 
received treatment between the index test and occurrence of the outcome, and the time 
horizon. 
 

Applicability: Are there concerns that the time horizon does not match the 
review question? 

Concerns about applicability surface if the time horizon (period between index test 
measurement and occurrence of the event) differs between the primary study and the 
review question. 
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Changes 

Signaling question 4.1: Did all participants receive the index test? 
We included this question, adopted from PROBAST (“Are all predictors available at the 
time the model is intended to be used?” [11]), to account for any participants who did not 
receive the index test. Systematic differences between those who did and did not receive 
the index test indicate potential bias in longitudinal studies (12, 18). 
 
Signaling question 4.2: Was treatment avoided after the index test was performed? 
This signaling question was newly added to highlight potential for treatment selection 
bias. Using routinely collected data is sometimes the pragmatic approach for prognostic 
accuracy studies. Baseline clinical differences can result in a subset of participants 
receiving treatment, affecting the likelihood of the outcome thereafter (19). Clinical 
management should ideally be identical for all study participants during the follow-up 
period. 
 

Domain 5: Analysis 

Risk of bias: Could the analysis have introduced bias? 

We incorporated a fifth domain, as in QUIPS and PROBAST, to capture complexities 
introduced from time-dependent analysis in longitudinal studies. This domain does not 
exist in the QUADAS-2 tool. Here, the aim is to guide the reviewer in judging whether 
results are likely to be biased by analytic decisions. There is no applicability assessment 
for this domain. 
 
Signaling question 5.1: Were all enrolled participants included in the analysis? 
This signaling question was redirected from the flow and timing domain of QUADAS-2. 
Participants may be excluded from the analysis for various reasons, such as inconvenient 
index test or outcome results (for example, uninterpretable or intermediate results). 
Omitting eligible participants who are systematically different from those included in the 
analysis can introduce biased performance estimation (12). 
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Signaling question 5.2: If data were missing, were appropriate methods used? 
We added this signaling question, adopted from a signaling question in PROBAST (“Were 
participants with missing data handled appropriately?” [11]), to flag bias that arises from 
neglecting missing data when appropriate methods should be applied. The risk of bias due 
to missing data increases with the magnitude of missingness (12, 20). Therefore, small 
percentages of missing data, or no systematic difference between those with missing 
versus complete data, would indicate low risk of bias (21). 
 
Multiple imputation of missing data is widely advocated as an improvement over 
complete-case analysis because it has been shown to minimize bias and produce correct 
SEs (22). Test results can be missing for structural reasons—for example, because of a 
failure to complete the testing procedure, or incomplete analysis of samples. Such cases 
should not be ignored, but how they should be handled will depend on context. 
Depending on the clinical consequences, they may be analyzed as negative results, 
positive results, or a distinct test result category, without imputation (23). 
 
Signaling question 5.3: Were appropriate methods used to account for censoring? 
This signaling question was based on a question from PROBAST (“Were complexities in 
the data [e.g., censoring, competing risks, sampling of control participants] accounted for 
appropriately?” [11]). Censoring can occur in longitudinal data for various reasons: The 
follow-up period may end without a participant having the outcome, or a participant may 
be lost to follow-up or experience another event (24). Analysis of such data requires 
appropriate methods (25), such as time-specific versions of sensitivity and specificity with 
cumulative cases and dynamic controls, time-dependent receiver-operating characteristic 
curve analysis, or time-varying hazard ratios (26, 27). 
 
Signaling question 5.4: In case of competing events, were appropriate methods used to 
account for them? 
We included an additional question to address handling of competing events, based on a 
PROBAST question (“Were complexities in the data [e.g., censoring, competing risks, 
sampling of control participants] accounted for appropriately?” [11]). Competing events 
may preclude the occurrence of the main event or outcome of interest (28). For example, 
investigators evaluating a test for predicting cancer should consider other incidents that 
may occur before a participant can receive a cancer diagnosis, such as death from other 
causes. Ignoring this in the analysis can produce overestimations of prognostic 
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performance (29). 
 
Such methods as a Cox proportional hazards (cause-specific) model, cumulative incidence 
function, or other related competing risk model may be applied (30-32). Simple Kaplan–
Meier and Cox regression methods may overestimate the probabilities of outcomes and 
should be avoided (29, 31, 33). 
 

Application of QUAPAS 

Two reviewers (J.L. and F.M.) independently assessed studies included in a published 
systematic review of prognostic accuracy studies using the final version of QUAPAS (Table 
2), after which no further changes were deemed necessary. This evaluation was done in 
parallel with QUADAS-2 and QUIPS. 
 
The systematic review aimed to evaluate the ability of a blood-based score, called the 
Fibrosis-4 score, to prognosticate changes in liver fibrosis stage or mortality. The review 
included 4 studies for predicting changes in fibrosis (34-37) and 6 for predicting mortality 
(38-43). We note that the version of QUAPAS used in the published systematic review of 
prognostic accuracy was a pilot version, before finalization of the tool (44). 
 
The reviewers created figures to summarize the judgments by modifying the QUADAS-2 
template, available at www.quadas.org, which includes the tabular presentation of 
judgments for each study and graphical summary of all studies. The Figure shows the 
fibrosis example assessment with QUAPAS, QUADAS-2, and QUIPS. Part 3 of the 
Supplement illustrates assessment of mortality as the outcome. 
 
In contrast to QUADAS-2, the addition of signaling question 4.2 (“Was treatment avoided 
after the index test was performed?”) in QUAPAS flagged a study at risk of treatment 
selection bias, influencing the overall judgment of bias in the flow and timing domain for 
this study. In the new analysis domain, 1 study had high risk of bias because missing data 
issues were not addressed, in addition to absence of methods for censoring or accounting 
for competing events. Three remaining studies had unclear risk (34-36) due to sparse 
reporting of analytic methods. Using the new analysis domain, QUAPAS was able to flag 1 
study at high risk of bias in that domain, which would otherwise have gone unnoticed by 
QUADAS-2. 
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A. QUAPAS 

 
B. QUADAS-2 

 
C. QUIPS 

 
Figure 1. Graphical display of risk of bias and applicability judgments for index test 

(Fibrosis-4) in prognosticating changes in liver fibrosis stages in 4 studies using 
QUAPAS (top), QUADAS-2 (middle), and QUIPS (bottom). QUADAS-2 = Quality 
Assessment of Diagnostic Accuracy Studies 2; QUAPAS = Quality Assessment of 

Prognostic Accuracy Studies; QUIPS = Quality in Prognosis Studies. 
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We further shared QUAPAS with and invited written feedback from 10 researchers and 
potential end users with varying levels of experience to assess if the items of the tool were 
appropriate and clear to the targeted objective of highlighting sources of potential bias 
and applicability concerns. 
 
Users found the steps for using the tool and signaling questions clear. They further found 
footnotes in the user template helpful for answering signaling questions. On the basis of 
the response, we implemented minor changes to improve the clarity of the footnotes. 
 

Discussion 

Systematic reviews of prognostic accuracy research synthesize empirical evidence and 
enable clinicians to make informed decisions on risk stratification and disease 
management. Assessment of risk of bias and concerns about the applicability of primary 
studies is an essential step because it may influence the interpretation of a review’s 
findings. The QUAPAS tool was developed specifically for evaluating prognostic accuracy 
studies, using the widely used QUADAS-2 as a starting point and mapping relevant items 
from QUIPS and PROBAST. We introduce a systematically tailored tool, which can 
minimize any challenges or variability that can arise when leaving tailoring up to the 
discretion of each user. 
 
Prognostic accuracy research is still a young and rapidly evolving field. Critical assessment 
of prognostic accuracy studies remains a challenge, even for researchers with expertise, 
when studies do not clearly report all necessary information. We encourage primary study 
investigators to adhere to existing reporting checklists, such as REMARK (Reporting 
Recommendations for Tumor Marker Prognostic Studies) (45), TRIPOD (Transparent 
Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) (46), 
or STARD (Standards for the Reporting of Diagnostic Accuracy Studies) (47). Adherence to 
these guidelines will enable reproducibility and facilitate assessment of risk of bias and 
applicability concerns until a specific reporting guideline is developed. Such a guideline 
for prognostic accuracy studies could be developed, because primary study investigators 
will likely encounter challenges that are analogous to reviewers using QUIPS, PROBAST, 
or QUADAS-2 for evaluating prognostic accuracy studies. 
 
The process of developing QUAPAS presented some limitations. We did not use a Delphi 
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approach for developing this tool and instead followed a more pragmatic approach 
because our aim was to tailor QUADAS-2 for use in prognostic accuracy studies. The items 
of QUAPAS were selected from 3 existing risk-of-bias tools on the basis of a consensus 
procedure. We relied on the knowledge and experience of experts in the field to arrive at 
the final set of signaling questions, in the absence of methodological systematic reviews. 
 
QUAPAS is intended to be used for a single pair of index test and outcome, as is the case 
for QUADAS-2. Prognostic accuracy studies, much like their diagnostic counterpart, are 
often done in the form of comparative accuracy studies, where the performance of 
several tests is evaluated simultaneously. Such designs can introduce their own set of 
biases when conducted improperly. QUADAS-C (Quality Assessment of Diagnostic 
Accuracy Studies–Comparative) was recently introduced as an extension for assessing 
comparative diagnostic accuracy studies (48). A similar addition could be developed for 
QUAPAS for comparative prognostic accuracy studies. 
 
We believe that QUAPAS can help future systematic reviewers and readers in assessing 
risk of bias and applicability in prognostic accuracy studies. In providing the reviewing 
community with a systematically tailored tool, we hope to improve the quality 
assessment process and help produce a more robust evidence base for prognostic tests. 
 
Acknowledgment: The authors thank Jill Hayden, PhD (Dalhousie University, Faculty of 
Medicine), for her valuable advice in the earlier stages of planning the development of 
QUAPAS. They further thank the volunteers for reviewing the tool. 
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Abstract 

Background: We evaluated the accuracy of seventeen biomarkers and multi-marker 
scores to detect non-alcoholic steatohepatitis (NASH) or stage liver fibrosis in the LITMUS 
Metacohort, an international cohort of biopsy-confirmed NAFLD patients. 
 
Methods: Accuracy was expressed as the area under the ROC curve (AUC), using liver 
histology as the reference standard, and compared against the Fibrosis-4 Index for Liver 
Fibrosis (FIB-4) in the same subgroup. Target conditions were at-risk NASH (NAS≥4 and 
F≥2) and advanced fibrosis (F≥3). We identified thresholds for each biomarker for 
reducing the number of liver biopsy-based screen failures when recruiting patients with 
at-risk NASH for future trials.  
 
Findings: Data from 966 adult patients were included; 335 (35%) had at-risk NASH and 
271 (28%) advanced fibrosis. For at-risk NASH, no single biomarker or multi-marker score 
significantly reached the predefined AUC 0.80 acceptability threshold, with accuracy 
mostly comparable to that of FIB-4. Performance in detecting advanced fibrosis was 
better; SomaSignal, ADAPT and liver stiffness measurement significantly reached 
acceptable accuracy. With several markers, histological screen failure rates could be 
reduced to one-third in future trials if only marker-positive patients underwent biopsy for 
evaluating eligibility. Best screening performance was observed for SomaSignal, followed 
by ADAPT, MACK-3, and PRO-C3.  
 
Interpretation: None of the single markers or multi-marker scores achieved an acceptable 
AUC for replacing biopsy in detecting patients with at-risk NASH. Several biomarkers could 
be applied in a pre-screening strategy for identifying at-risk NASH patients in clinical trial 
recruitment. The performance of promising markers will be further evaluated in the 
ongoing prospective LITMUS study cohort.   
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Introduction 

Non-alcoholic fatty liver disease (NAFLD), a leading cause of chronic liver disease, spans a 
histological spectrum from steatosis to non-alcoholic steatohepatitis (NASH) with 
progressive hepatic fibrosis leading to cirrhosis and/or hepatocellular carcinoma in a 
subset of patients. 1 This progressive disorder is predicted to become more prevalent in 
the next decade, consuming substantial healthcare resources and posing a growing public 
health challenge. 1  
 
Despite its high prevalence, accurate diagnosis and delivery of effective management of 
NAFLD remain challenging, with generally poor public health readiness internationally. 
This failure is, at least in part, due to a lack of clarity on biomarker performance in 
detecting at-risk NASH, deterring their adoption by clinicians.2 
 
NAFLD patients with advanced fibrosis (F≥3) are at higher risk of adverse liver-related 
outcomes, liver transplantation, and death. 3 International guidelines recommend 
assessment of NAFLD patients for early identification of high stages of liver fibrosis (F≥3). 
4  In the absence of approved pharmacological therapies, identification of patients with 
NASH and clinically significant fibrosis (F≥2) is essential to support recruitment into 
therapeutic clinical trials.  
 
The current reference standard for detecting NASH and staging fibrosis is liver histology. 
Liver biopsy sampling is invasive, resource-intensive, prone to sampling error, and carries 
a small but appreciable risk of complications. 5 Despite debates regarding its limitations, 
participants recruited to NAFLD trials require biopsy to qualify for enrolment. 5,6 There is, 
therefore, an urgent need for non-invasive biomarkers to support clinical care and 
facilitate the evaluation of new therapies. 
 
Several non-invasive biomarkers have been proposed, with variable performance in 
detecting fibrosis and NASH. Few studies have compared these biomarkers in a single 
cohort to evaluate their relative performances.  The LITMUS (Liver Investigation: Testing 
Marker Utility in Steatohepatitis) consortium 7 is evaluating the performance of seventeen 
non-invasive single biomarkers, multi-marker scores and vibration-controlled transient 
elastography (VCTE) in identifying patients with at-risk NASH and advanced fibrosis, with 
liver biopsy as the reference standard. We also aimed to increase the efficiency of future 
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drug trial enrolment by selecting thresholds for each marker that lead to an acceptable 
screen failure rate in identifying eligible participants.  
 

Methods 

Study design and participants  

This was a comparative diagnostic accuracy study in biopsy-confirmed NAFLD patients 
from thirteen countries across Europe. Data were collected in the LITMUS Metacohort of 
the European NAFLD Registry, an international cohort of NAFLD patients prospectively 
recruited following standardized procedures and monitoring; see Hardy and Wonders et 
al. for details. 8 The recruitment period was from 2010 to 2019. Patients were required to 
provide informed consent prior to inclusion. Studies contributing to the Metacohort were 
approved by the relevant Ethical Committees in the participating countries and conform 
to the guidelines of the Declaration of Helsinki. 
 
Adults aged ≥18 years with suspected NAFLD and paired liver biopsy and serum samples 
were eligible for inclusion in this analysis. All patients met pre-defined inclusion/exclusion 
criteria 8 and had undergone a liver biopsy as part of the routine diagnostic workup for 
presumed NAFLD, for example, having originally been identified due to abnormal 
biochemical tests (ALT and/or gamma-glutamyltransferase) and/or an 
ultrasonographically detected bright liver, associated with features of the metabolic 
syndrome. Patients with excessive alcohol consumption (>20-30 g/day) or evidence of 
other chronic liver diseases, such as viral hepatitis B or C, were excluded.  
 

Clinical assessment 

Detailed clinical data were collected from all participants by a trained investigator and 
entered directly into a central registry. Body mass index (BMI) was calculated by dividing 
weight (kg) by height (meters) squared.  
 
Clinical laboratory blood assays were performed in laboratories of the respective 
recruitment centres. Lipid (LDL, HDL, cholesterol, triglyceride (TG)) and liver profiles 
(platelet count, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and 
gamma glutamyl transferase (GGT)) were collected. Comorbidities such as dyslipidaemia 
(fasting TG level ≥150 mg/dL [1.7 mmol/L]; or fasting HDL <40 mg/dL [1.03 mmol/L] in 
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males and <50 mg/dL [1.29 mmol/L] in females; or on treatment), hypertension (systolic 
blood pressure ≥130 or diastolic pressure ≥85 mmHg), and diabetes (fasting glucose >7.0 
mmol/L) were also captured.  
 

Liver biopsy 

Liver biopsy samples were considered adequate and were histologically examined locally 
in each centre by expert liver pathologists, prospectively following clinical work-up. 9 
NAFLD activity was assessed according to the NASH Clinical Research Network, steatosis 
and lobular inflammation were scored on four-point scales (0 to 3); ballooning was scored 
on a three-point scale (0 to 2). 10 Liver fibrosis was graded on a 5 point scale (0 to 4) 
according to Kleiner et al.10.  
 

Biomarker measurements 

All serum samples were collected in standardized collection kits and processed locally 
before storage at -80°C, according to prespecified biobanking standard operating 
procedures. Samples were shipped in batches on dry ice from recruitment sites to the 
LITMUS Central Biobank, where serum samples were catalogued and subsequently sent 
for central analysis at Nordic Biosciences, a College of American Pathologists accredited 
laboratory. Only serum samples collected within six months of liver biopsy were eligible 
for this analysis.  
 
The following biomarkers were measured in the central LITMUS laboratory: CK-18 M30 
(M30 Apoptosense ELISA no. 10011, VLVbio), CK-18 M65 (M65 EpiDeath ELISA no. 10040, 
VLVbio), PRO-C3 (ELISA based) 11, PRO-C4 (ELISA based) 12, and PRO-C6 (ELISA based) 13. 
All measurements were performed blinded to all clinical data associated with the samples. 
Due to differences in available sample volumes, not all biomarkers could be measured in 
every participant.  
 
In addition, liver stiffness measurement (LSM) and controlled attenuation parameter 
(CAP) by VCTE (FibroScan, Echosens, Paris, France™) collected within six months of liver 
biopsy were evaluated. Probe sizes were selected as advised by device guidelines. 
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Multi-marker scores 

Using the available clinical laboratory data, NFS, FIB-4, and APRI were calculated using 
their originally published formulas 14-16. The following nine previously reported multi-
marker scores were also calculated: MACK-3 (HOMA, AST, CK-18 M30), 17 Cao 2013 (ALT, 
platelet count, CK-18 M30 and TG), 18 ADAPT (age, platelet count, diabetes, PRO-C3), 19 
FIBC3 (age, BMI, diabetes, platelet count, PRO-C3), 20 ABC3D (age, BMI, diabetes, platelet 
count, PRO-C3), 20 NFS (age, BMI, IFG/diabetes, AST/ALT ratio, platelet count, albumin), 14 
and APRI (AST, platelet count), 16  
 
ELF test scores, based on hyaluronic acid, tissue inhibitor of matrix metalloproteinase-1, 
and aminoterminal propeptide of procollagen type III, were measured in the Central 
Laboratory (Siemens Advia Centaur). The SomaSignal serum tests for fibrosis, steatosis, 
inflammation, and ballooning, were assayed at the UK SomaLogic facility.  
 
The SomaSignal NASH tests are modified aptamer-based elastic net logistic regression 
models trained and validated against biopsy for each component (steatosis, lobular 
inflammation, hepatocellular ballooning, and fibrosis) and contain 12, 14, 5, and 8 protein 
analytes, respectively. The tests were developed as dichotomized protein-phenotype 
models for clinically relevant severity of steatosis (NAS score 0 vs 1-3), hepatocellular 
ballooning (0 vs 1-2), lobular inflammation (0-1 vs 2-3) and fibrosis (stages 0-1 vs 2-4). 21,22 
We multiplied the model probabilities for steatosis, inflammation, and ballooning as a 
SomaSignal marker for NASH.  
 

Target Conditions 

Significant fibrosis was defined as F≥2 and advanced fibrosis as F≥3. The NAFLD activity 
score (NAS), the sum of the steatosis, lobular inflammation, and ballooning, scored 
according to the NASH CRN system, ranged from 0 to 8. NASH was defined as the presence 
of steatosis, lobular inflammation, and hepatocellular ballooning. This was 
operationalized in accordance with standard clinical trial practice as a NAS score of ≥4 
with at least one point in each component. 23-26 
 
The main target condition was the combination of significant fibrosis and NASH, referred 
to as at-risk NASH. This combination has been defined by Health Authorities (FDA, EMA, 
CDE) as the critical inclusion criterion in phase 3 drug development for treatment of 
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noncirrhotic NASH with liver fibrosis. In addition, we evaluated the performance in 
detecting advanced fibrosis. 
 

Statistical analysis 

Non-parametric, empirical receiver operating characteristic (ROC) curves were 
constructed for each biomarker and multi-marker score. Diagnostic accuracy was 
expressed in terms of the area under this receiver operating characteristic curve (AUC) 
with its 95% confidence interval (95% CI), calculated using the DeLong method. 27 To be 
considered as a diagnostic marker of acceptable accuracy, an AUC of at least 0.80 in 
detecting at-risk NASH was expected. 28.  
 
Recruiting 966 participants, of whom an anticipated 35% have the target condition, would 
give us at least 80% power to reject the null hypothesis that the AUC does not exceed the 
minimally acceptable value of 0.80 if the actual AUC is 0.85 or more, and at least 99% 
power if the actual AUC is 0.87 or more, at a 5% type I error rate. 29 
 
The performance of the FIB-4 score was calculated for comparison. Due to the absence of 
any existing validated non-invasive test for NASH and the high collinearity between NASH 
and fibrosis stage, performance of FIB-4, a widely used simple fibrosis test, was adopted 
as a comparator in all target conditions. To account for differences in the subgroups for 
which marker results were available, we recalculated the AUC for FIB-4 in each of the 
corresponding marker subgroups.  
 
In an additional head-to-head direct comparison, we evaluated the performance of the 
most clinically available biomarkers and scores (PRO-C3, CK-18 M30 and M65, ELF, NFS, 
APRI, ADAPT, FIBC3, ABC3D, and FIB-4) in a subgroup in which results for all ten were 
available. We additionally evaluated the subgroup specific performance of all markers 
according to diabetes status (R-package ROCnReg). 
 
We aimed to identify an optimal cut-off level for each biomarker as a screening test to 
identify patients with at-risk NASH. The optimal cut-off would allow a hypothetical trial 
enrolment screen failure rate, based on liver biopsy, not exceeding 33% (one in three). 
This value was selected based on a survey conducted among clinicians and drug 
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developers within the LITMUS consortium. The biopsy screen failure rate corresponds to 
one minus the positive predictive value (PPV).  
 
Given the differences between the subgroups in which biomarker results were available, 
we calculated the minimally required likelihood ratio for a positive biomarker result to 
yield the corresponding screen failure rate and PPV, based on a single measure of the 
prevalence, using the following formula: 
 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 	 !"	$%&'
$%&'

	× 	 (()
!"(()

 

 
in which prev denotes the prevalence of at-risk NASH in the population undergoing 
testing.  
 
Based on the proportion with at-risk NASH in the Metacohort study group, we estimated 
the prevalence of at-risk NASH to be 35%. To achieve a screen failure rate not exceeding 
33%, the likelihood ratio of a positive biomarker result would then have to be at least 
3.77. Of all positivity thresholds with a likelihood ratio exceeding 3.77, we selected the 
one with the highest sensitivity, thereby maximizing efficiency at the preselected 
acceptable screen failure rate.  
 
We report sensitivity, specificity, proportion of positive biomarker results (at the 35% 
prevalence), true positive fraction (proportion of potential study participants with a 
biomarker positive result found to have at-risk NASH at biopsy) and number needed to 
test to find one eligible trial participant after liver biopsy in test positives (the inverse of 
the true positive fraction). Confidence intervals were based on 10,000 bootstrap samples. 
All statistical analyses were performed using R statistical computing software version 
4.2.1 (Vienna, Austria). 
 
The manuscript is reported according to STARD guidelines (Supplementary Table S1). 
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Results 

Study group characteristics 

Data from 966 Metacohort participants were included in the analysis (see Figure 1). Their 
mean age was 51 years, 58% were men, and the majority were of white ethnicity (90%). 
In the group of participants with at-risk NASH, we observed higher liver enzymes, higher 
proportion of patients with hypertension (69%) and diabetes (64%) at baseline compared 
to those without at-risk NASH (Table 1).  
 

 

Figure 1. Flow diagram of participants included in the analysis 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participants with samples 
in Metacohort 

 (n = 1,430) Excluded due to incomplete or 
failing data quality check (n = 85) 

or  
incomplete or missing biopsy  

(n = 66) 

Participants with complete biopsy data 
(n = 1,279) 

Participants with biomarker and biopsy 
collected within 6 months 

(n = 1,018) 

Eligible participants,  
potentially available for analysis  

(n = 976) 

Sample collected before 2010  
(n = 60)  

or sample-biopsy interval not 
within 6 months  

(n = 201) 

Age <18, excessive alcohol 
consumption, and/or viral 

hepatitis B or C (n = 42) 

Participants  
included in analysis  

(n = 966) 

Excluded due to missing FIB-4 
components (n = 10) 
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In this study group, 35% had at-risk NASH (335/966) and 28% (271/966) had advanced 
fibrosis. The distribution of the NAS score was: 0 (2%), 1 (7%), 2 (12%), 3 (19%), 4 (23%), 
5 (19%), 6 (12%), 7 (4%), 8 (<1%). For fibrosis the distribution was: F0 (32%), F1 (19%), F2 
(20%), F3 (20%), F4 (9%). 
 

Diagnostic performance in detecting at-risk NASH 

The mean time interval between biopsy and blood sampling was less than one week. We 
evaluated the performance of each biomarker in its respective subgroup for which results 
were available (Table 2; Supplementary Table S2).  
 
Table 1. Characteristics of the Metacohort study group 
 

 
Overall 

(n=966) 

At-risk NASH 

(n=335) 

No at-risk NASH 

(n=631) 

Age, years 51.2 (13.0) 55.0 (12.1) 49.2 (13.0) 

Female 403 (43%) 152 (45%) 251 (40%) 

BMI, kg/m² 34.12 (8.26) 33.86 (6.56) 34.25 (9.04) 

Diabetes 406 (42%) 215 (64%) 191 (30%) 

ALT, U/L 62.67 (42.54) 70.57 (44.97) 58.47 (40.62) 

AST, U/L 42.88 (26.01) 51.89 (30.11) 38.10 (22.13) 

GGT, U/L 108.08 (154.61) 121.77 (142.86) 101.07 (159.95) 

Albumin, g/L 43.8 (4.2) 43.5 (3.9) 44.0 (4.3) 

Platelet count, 10^9/L 238.96 (73.45) 228.41 (69.41) 244.57 (74.95) 

Glucose, mmol/L 6.42 (2.47) 7.15 (2.99) 6.06 (2.08) 

Triglycerides, mg/L 2.08 (1.18) 2.31 (1.37) 1.95 (1.04) 

Fibrosis stage    

0 309 (32%) - 309 (49%) 

1 185 (19%) - 185 (29%) 

2 199 (21%) 131 (39%) 68 (11%) 

3 188 (19%) 144 (43%) 44 (7%) 

4 85 (9%) 60 (18%) 25 (4%) 

All continuous variables are expressed as mean (SD) 
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Single biomarkers  

No single marker reached the prespecified 0.80 AUC threshold. Performance comparable 
to that of FIB-4 was observed for most biomarkers.  
 

Multi-marker scores 

The best performing multi-marker score was the SomaSignal test, with an AUC of 0.81, 
but the confidence interval still included 0.80. FIB-4 had an AUC of 0.66 in the 
corresponding subgroup. MACK-3 and ADAPT had an AUC around 0.77 versus 0.69 and 
0.73 for FIB-4.  
 

Diagnostic screening for recruiting at-risk NASH trial participants 

Table 3 presents the optimal threshold for each marker, corresponding to a failure rate 
not exceeding 33% while maximizing sensitivity. For most evaluated biomarkers and 
scores, it was possible to define such a threshold, but the corresponding proportion 
testing positive varied widely, as a result of the differences in the underlying distributions 
of marker results in those with and those without at-risk NASH. No acceptable threshold 
could be identified for the ABC3D, APRI, ELF, NFS, FIB-4, or CAP-VCTE. 
 

Single biomarkers  

The single biomarker with the highest proportion testing positive and, consequently, the 
highest proportion of patients with a true positive result was PRO-C3. At a threshold of 
24.05 ng/ml, 17 per 100 would test positive and qualify for a screening biopsy, of which 
11 would then be true positives. This means that for every nine patients undergoing PRO-
C3 testing, one eligible patient with biopsy-proven at-risk NASH would be recruited. 
 
In contrast, the optimal diagnostic screening threshold for PRO-C4 was 433.35 ng/ml. At 
that threshold, 6 per 100 undergoing testing would have a positive test result and could 
be selected for biopsy to evaluate trial eligibility. Of these six, four would have at-risk 
NASH while two would not. This also corresponds to a 33% failure rate, but at a lower 
efficiency: 23 patients would have to undergo PRO-C4 testing to find one eligible trial 
participant with biopsy-confirmed at-risk NASH.  
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Table 2. Diagnostic Accuracy of single biomarkers and multi-marker scores compared 
to FIB-4 in the same subgroup. 
 

Marker 
 

n 
 

At-risk NASH Advanced Fibrosis 

Perc AUC  
Marker 

AUC 
FIB-4 Perc AUC 

Marker 
AUC 
FIB-4 

CK-18 M30 795 35% 0.69  
(0.65-0.73) 

0.70  
(0.66-0.73) 28% 0.70  

(0.66-0.74) 
0.79  

(0.75-0.82) 

CK-18 M65 817 34% 0.70  
(0.66-0.74) 

0.69  
(0.65-0.73) 28% 0.70  

(0.66-0.74) 
0.79  

(0.75-0.82) 

PRO-C3 444 36% 0.68  
(0.63-0.74) 

0.73  
(0.68-0.78) 28% 0.75  

(0.70-0.80) 
0.76  

(0.71-0.81) 

PRO-C6 229 41% 0.68  
(0.61-0.75) 

0.70  
(0.63-0.77) 36% 0.71 

 (0.63-0.78) 
0.73  

(0.66-0.80) 

PRO-C4 391 40% 0.63  
(0.57-0.68) 

0.72  
(0.67-0.77) 31% 0.66  

(0.60-0.71) 
0.75  

(0.70-0.81) 

NFS 933 35% 0.66  
(0.62-0.69) 

0.69  
(0.66-0.73) 28% 0.75  

(0.72-0.79) 
0.77  

(0.74-0.81) 

APRI 966 35% 0.68  
(0.64-0.71) 

0.69  
(0.66-0.73) 28% 0.72  

(0.68-0.75) 
0.77  

(0.74-0.81) 

ELF 919 33% 0.67  
(0.63-0.71) 

0.68 
 (0.65-0.72) 27% 0.80 

 (0.76-0.83) 
0.77  

(0.74-0.81) 

SomaSignal 264 46% 0.81  
(0.75-0.86) 

0.66  
(0.60-0.73) 36% 0.90  

(0.86-0.94) 
0.72 

 (0.66-0.79) 

MACK-3 538 34% 0.76  
(0.71-0.80) 

0.69  
(0.64-0.73) 24% 0.74  

(0.69-0.79) 
0.76  

(0.71-0.80) 

Cao 2013 635 37% 0.67 
 (0.63-0.72) 

0.69  
(0.65-0.73) 30% 0.68  

(0.64-0.73) 
0.79 

 (0.75-0.83) 

ADAPT 444 36% 0.77 
 (0.73-0.81) 

0.73 
 (0.68-0.78) 28% 0.85  

(0.81-0.89) 
0.76  

(0.71-0.81) 

FIBC3 440 36% 0.74  
(0.69-0.79) 

0.73  
(0.68-0.78) 28% 0.82  

(0.78-0.87) 
0.76  

(0.71-0.81) 

ABC3D 440 36% 0.74  
(0.69-0.79) 

0.73  
(0.68-0.78) 28% 0.81  

(0.76-0.85) 
0.76 

 (0.71-0.81) 

LSM-VCTE 632 40% 0.74  
(0.70-0.78) 

0.66  
(0.62-0.71) 30% 0.83  

(0.80-0.86) 
0.73 

 (0.70-0.78) 

CAP-VCTE 263 48% 0.61  
(0.54-0.67) 

0.66 
 (0.60-0.73) 35% 0.61  

(0.54-0.69) 
0.71 

 (0.65-0.78) 
At-risk NASH defined as (NASH and F≥2); advanced fibrosis as F≥3; cells indicate estimated area under the 
Receiver Operating Characteristic curve (AUC) and corresponding 95% confidence interval; Perc: percentage 
with target condition in corresponding subgroup.  
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Thresholds correspond to a liver biopsy screen failure rate of 33% at a 35% prevalence. 
Markers are ranked based on the number of patients with biopsy-confirmed at-risk NASH 
found per 100 patients tested with the marker, if liver biopsy is restricted to marker 
positives only. Confidence intervals based on bootstrapping. No acceptable threshold was 
found for ABC3D, APRI, ELF, NFS, FIB-4, or CAP-VCTE.  
 

Multi-marker scores  

The best performing screening tests were the SomaSignal test, ADAPT and MACK-3. With 
these tests, 35, 24, and 21 per 100 patients, respectively, would test positive at the 
selected thresholds and would undergo biopsy, and 24, 16, and 14 eligible patients would 
be true positives for at-risk NASH. The highest sensitivity was observed for the SomaSignal 
test (0.67). 
 
At a different prevalence of at-risk NASH, the optimal thresholds and proportions will be 
different. Figure 2 shows the number of test positives and the number of true positives 
for four of the markers and scores included in the head-to-head comparison at various 
levels of prevalence. 
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Figure 2. Proportion of true positives and test positives at varying levels of prevalence, 
at a threshold corresponding to a 33% screen failure rate (A) CK18M30 (B) PROC-3, (C) 

ADAPT, and (D) FIBC-3. Blue line: patients testing positive; Red line: Proportion of 
patients with at-risk NASH confirmed by biopsy.  

 

Diagnostic performance in detecting advanced fibrosis 

Single biomarkers  

For detecting advanced fibrosis, only LSM-VCTE significantly reached the predefined 0.80 
threshold, with an AUC of 0.83, compared to 0.73 for FIB-4. (Figure 3B) 
 

Multi-marker scores  

Five different multi-marker scores exceeded the 0.80 AUC threshold in detecting 
advanced fibrosis, but only two did so significantly. The SomaSignal test had an AUC of 
0.90, versus 0.72 for FIB-4. The 0.85 AUC for the ADAPT score was also significantly higher 
than the threshold. LSM, FIBC3, ABC3D, and ELF had AUC of 0.83, 0.82, 0.81, and 0.80, 
respectively. (Figure 3B) 
Results from ten circulating biomarker and multi-marker scores (PRO-C3, CK-18 M30 and 
M65, ELF, NFS, APRI, ADAPT, FIBC3, ABC3D, and FIB-4) were used for a direct head-to-
head comparison in 335 participants. In this subgroup, 38% had at-risk NASH and 29% 
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advanced fibrosis (see Supplementary Table S3). We observed AUCs for detecting at-risk 
NASH and advanced fibrosis to be similar in this subgroup to the ones in the main analysis. 
(Supplementary Figure S1, S2, and Table S4).  
 
A. 

 
B. 

 
 

Figure 3. Diagnostic accuracy of single biomarkers and multi-marker scores in 
detecting (A) at-risk NASH and (B) advanced fibrosis. 
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Subgroup analysis 

The performance of each marker was evaluated separately in those with and without 
diabetes. In our study group 42% had diabetes. In detecting at-risk NASH, performance 
was marginally lower in for those with diabetes, although only significantly so for the 
multi-marker score ADC3D, with AUCs of 0.74 (no diabetes) versus 0.56 (diabetes) 
(Supplementary Table S5). In detecting advanced fibrosis, there were no significant 
differences between the two subgroups, with comparable AUC. 
 

 Discussion  

In this comparative diagnostic accuracy study, we used data and samples collected in the 
LITMUS Metacohort to evaluate the performance of several markers in identifying NAFLD 
patients with at-risk NASH (NASH & F≥2) or those with advanced fibrosis (F≥3), using liver 
histology as the reference standard. Based on the ROC analyses, none of the evaluated 
single biomarkers met our prespecified 0.80 threshold in detecting at-risk NASH. Of the 
multi-marker scores, best performance was observed for the SomaSignal test, comprised 
of 35 different proteins. AUC values were higher for detecting advanced fibrosis. Here the 
SomaSignal test, the ADAPT score, and LSM-VCTE significantly exceeded our prespecified 
0.80 AUC threshold.  
 
Recruitment for clinical trials is at present based on liver biopsy, and screening for patients 
with at-risk NASH is limited due to high screen failure rates for histological assessment. A 
successful screening biomarker would be expected to identify most of the at-risk NASH 
patients while significantly reducing the number of patients requiring biopsy. We 
proposed a strategy for pre-selecting those who would undergo liver biopsy by targeting 
a screen failure rate not exceeding 33%. Using this strategy, we observed that some tests 
would substantially reduce the number needed to undergo liver biopsy with acceptable 
sensitivity, as only marker positives would require further evaluation.  
 
Without a screening biomarker, all 966 patients would require biopsy to identify the 335 
at-risk NASH patients. So, patient selection efficiency would be 335 out of 966 (35%). The 
best performing biomarker assessed in this study, SomaSignal, would reduce the number 
of patients requiring biopsy by 65%, from 966 tested to 338 biopsied, resulting in 232 
identified at-risk NASH patients. Many of the other biomarkers measured in this study 
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would similarly increase patient selection efficiency but with lower sensitivity, resulting in 
a lower identification rate compared to the SomaSignal test. We note that the 33% screen 
failure rate was defined based on expert opinion, and others may arrive at a different 
acceptable proportion based on factors such as feasibility and costs. The thresholds 
identified here should be externally validated, as several factors such as disease spectrum 
may affect the performance of the tests in diagnostic screening for trial recruitment.  
   
A major strength of the study was the centralized measurement of all novel biomarkers 
instead of the use of local, historical measurements, although measured in batches. The 
analysis was performed by an independent group of expert epidemiologists with no 
vested interest in demonstrating superior performance of any test. We provide 
comparative accuracy data for a wide selection of both staple fibrosis tests and newer 
developments proposed for NAFLD, which can supplement guideline development for 
their suggested use in the future. Limitations also need to be acknowledged. Stability of 
these markers is not well understood, which is why we did not include samples collected 
before 2010. Histological scoring  was not centralized and variability in recognition of 
elementary lesions or composite diagnoses might have occurred 30. Histology-based semi-
quantitative scoring is an imperfect reference standard, limiting the accuracy of grading 
necroinflammatory activity and staging fibrosis 31. Another limitation was the 
retrospective collection of biological samples with inherent exhaustion of sample 
material, restricting the measurement of most biomarkers in different subsets of patients.  
 
Some of these biomarkers were not originally proposed for identifying at-risk NASH. Since 
many are available to clinicians, we decided, pragmatically, to explore their diagnostic 
performance for this key histological aspect as well. Various markers 32 and multi-marker 
scores 24,33 have been specifically developed for the diagnosis of at-risk NASH and will 
need to be compared with the best performing biomarkers from the current study. The 
analysis presented here focuses on serum-based biomarkers and multi-marker scores. 
Although, we included additional analysis on VCTE, a non-invasive technology proposed 
to evaluate liver aetiologies, other non-invasive imaging technologies to evaluate liver 
aetiologist have been proposed and should be further studied. We further note the 
influence of recruiting patients from mostly tertiary care centres in multiple countries. 
Factors such as differences in prevalence, epidemiology, referral patterns, and clinical 
work-up leading up to biopsy may affect the generalizability of our findings to other 
settings. 
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The performance of many markers in this study was comparable to findings recently 
published. Collagen-based markers and scores analysed from participants enrolled in the 
CENTAUR phase IIb trial showed that the single marker PRO-C3 performed marginally 
worse than FIB-4 in detecting advanced fibrosis, while the ADAPT score had a higher AUC. 
34 Incorporating a direct marker of fibrosis in the algorithm resulted in an improvement 
from simple scores, such as APRI. The ELF test had performance levels consistent with 
those presented in a meta-analysis, which reported a summary AUC of 0.83 for identifying 
advanced fibrosis. 35 For at-risk NASH, Chuah et al. concluded MACK-3 (AUC of 0.80) had 
comparable performance to FIB-4 (0.82) and outperformed single markers like CK-18 
(0.72). 36 In comparison to another large meta-analysis, the CK-18 M30 antigens 
demonstrated consistent AUCs for at-risk NASH (0.73). 37  
 
When interpreting contrasting results between studies or subgroups, spectrum effect 
should be considered. 38 Test performance often varies across population subgroups, as 
can be seen in the varying AUC estimates for FIB-4 in the partially overlapping subgroups 
in our analysis. The performance of NAFLD markers to correctly identify patients with 
advanced fibrosis will vary with the relative proportions of patients with F0 fibrosis and 
F4 fibrosis in the study group. Having a higher number of patients with F0 fibrosis and/or 
F4 fibrosis will increase the performance of markers in discriminating between those with 
and without advanced fibrosis. There is a clear difference between the distribution in our 
study group, which probably represents the one typically seen in secondary and tertiary 
centres, and that in the recently reported NIMBLE stage 1-NASH CRN study, which had 
equal numbers in the five fibrosis stage subgroups. 39  
 
The limited performance of biomarkers in detecting at-risk NASH provides a mandate for 
further study of novel biomarker algorithms, adopting both hypothesis-driven approaches 
founded in pathophysiology and machine learning approaches. Such approaches should 
be tailored to a specific target condition and context of use.  
 
The ultimate utility of these or any other biomarkers would be their ability to predict 
clinical outcomes. The longitudinal outcome data currently being generated by LITMUS 
within the Europe NAFLD Registry will be an important asset for evaluating their 
prognostic value. 5,40  
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We conducted one of the largest comparative diagnostic accuracy studies, with seventeen 
different non-invasive markers for NAFLD. The results from the present study showed that 
none of the single biomarkers achieved the desired level of performance to replace liver 
histology in detecting patients with at-risk NASH. However, some multi-marker scores, 
such as the SomaSignal test and ADAPT, are promising tools for identifying advanced 
fibrosis. Of note, no biomarkers have been approved by FDA or EMA, which further 
highlights the urgency of the LITMUS consortium’s aim to validate and advance toward 
regulatory qualification markers for NAFLD and NASH. The LITMUS project will continue 
to collect data in the prospective LITMUS Study cohort and will perform analysis of blood-
based and imaging biomarkers to further facilitate the evaluation of new and existing 
interventions in trials and to improve the clinical care and outcomes of NAFLD patients. 
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Abstract 

Background & Aims: Detecting non-alcoholic steatohepatitis (NASH) remains challenging, 
while at-risk NASH (steatohepatitis and F>2) tends to progress and is of interest for drug 
development and clinical application. We developed prediction models by supervised 
machine learning (ML) techniques, with clinical data and biomarkers to stage and grade 
non-alcoholic fatty liver disease (NAFLD) patients. 
 
Approach & Results: Learning data were collected in the LITMUS Metacohort (966 biopsy-
proven NAFLD adults), staged and graded according to NASH-CRN. Conditions of interest 
were clinical trial definition of NASH (NAS≥4;53%), at-risk NASH (NASH with F≥2;35%), 
significant (F>2;47%) and advanced fibrosis (F>3;28%). Thirty-five predictors were 
included. Missing data were handled by multiple imputation. Data were randomly split 
into training/validation (75/25) sets. Gradient boosting machine (GBM) was applied to 
develop two models for each condition: clinical versus extended (clinical and biomarkers). 
Two variants of the NASH and at-risk NASH models were constructed: direct and 
composite models.  
 
Clinical GBM models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. 
There were no improvements when biomarkers were included. The direct NASH model 
produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed 
significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC 
of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis 
models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model 
(0.86) performed significantly better than the clinical version (0.82).  
 
Conclusions: Detection of NASH and at-risk NASH can be improved by constructing 
independent ML models for each component, using only clinical predictors. Adding 
biomarkers only improved accuracy for fibrosis.  
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Background 

Non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in 
hepatocytes. There is a need for more robust and accessible non-invasive tests (NITs), as 
NAFLD affects nearly 25% of the global population (1, 2). As a progressive condition, 
NAFLD ranges from isolated steatosis (liver fat content ≥5%) to non-alcoholic 
steatohepatitis (NASH) with or without fibrosis and cirrhosis (3, 4). NASH is associated 
with progression to liver fibrosis and hepatocellular carcinoma (5). “At-risk” NASH (NASH 
with at least significant fibrosis) is an important target for drug development and the focus 
of health authorities, as it carries an increased risk of liver-related mortality and 
contributes significantly to the total burden of hepatocellular carcinoma (6). In a 
prospective cohort study, the population with fibrosis stage 3 and higher had the greatest 
risk to develop liver endpoints, while fibrosis stage 2 and higher was linked to increased 
hepatic and extrahepatic morbidity (7).  
 
Liver biopsy remains the reference standard for a definitive NASH diagnosis, however, the 
procedure carries risks to the patient and has several inherent limitations including 
sampling error and reader variability (8, 9). Even so, no NITs for NASH that match similar 
standards are available. This unmet clinical need has been the driving force for a marathon 
of research to develop and validate novel NITs that can distinguish patients with a greater 
likelihood of disease progression than those with comparable liver biopsy performance. 
Identifying those at higher risk is critical for risk-stratification, monitoring, and expediting 
recruitment for NASH clinical trials.  
 
The list of NITs for NAFLD fibrosis has rapidly grown, with the Liver Stiffness Measurement 
by Vibration-Controlled Transient Elastography (LSM by VCTE), Enhanced Liver Fibrosis 
(ELF) test and Fibrosis-4 (FIB-4) score recommended to rule out advanced fibrosis (10, 11). 
However, the EASL Clinical Practice Guidelines currently do not recommend NITs for 
diagnosis of NASH (10). Extensively studied biomarkers such as caspase-cleaved 
cytokeratin-18 (CK-18) fragments and full length soluble CK-18 show suboptimal 
performance, although combining CK-18 with synergistic markers showed some 
improvement (12). Multivariable models developed using regression-based techniques, 
such as FIC-22 (13), the NAFLD diagnostic panel (14), or the NASH test (15), have either 
proved to be less effective in more extensive multicenter studies or have not undergone 
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sufficient external validation. More recently, the MACK-3, FAST, and NIS-4 scores were 
developed specifically for detecting at-risk NASH (16-18). 
 
While the list of NITs for NAFLD grows, few were developed based on machine-learning 
algorithms, which are probably more suitable for handling complicated diseases with 
multifaceted etiology. Simple regression-based methods rely heavily on statistical 
assumptions, which do not always hold true for real-world data, whereas model-free 
machine learning algorithms adapt to data characteristics with fewer assumptions.   
 
Machine learning uses algorithms to learn associations, identify patterns, and create 
predictions from complex data structures, which can provide opportunities for improving 
the diagnosis or prognosis of diseases. More recently, machine learning has been applied 
to develop diagnostic scores across multiple disciplines, offering a potential solution for 
developing tools for conditions that prove more difficult to detect (19-21). Our aim was 
to employ machine learning to develop diagnostic models for detecting clinical trial 
definition of NASH, at-risk NASH, and significant and advanced fibrosis, first by utilizing 
only routinely collected clinical data and second by adding biomarkers.  
 

Material and Methods 

This manuscript was prepared using the TRIPOD guidelines (Supplementary Table 2) (22). 
 

Study participants (LITMUS Metacohort) 

We analyzed data from 966 participants in the LITMUS Metacohort. These participants 
were recruited from 12 centers in 9 countries across Europe, between 2010 and 2019 and 
include adults with biopsy-confirmed NAFLD with available clinical, laboratory and 
biomarker data within 6 months of biopsy. Serum samples drawn within 6 months of 
biopsy and stored at -800C were also available. Details of the study can be found 
elsewhere (23). All participants provided informed consent prior to inclusion; the cohort 
studies were approved by the relevant ethics committees in the participating countries. 
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Liver biopsy 

Biopsy samples were examined prospectively in each center by expert liver pathologists. 
NAFLD activity was graded according to the NASH Clinical Research Network (NASH CRN) 
(24). Liver fibrosis was graded on a 5-point scale (0 to 4), denoted as F in the following.     
 
NASH is comprised of three components: steatosis, lobular inflammation, scored on four-
point scales (0-3), and ballooning, on a three-point scale (0-2) according to the NASH CRN 
classification (24). The NAFLD activity score (NAS), the unweighted sum of steatosis, 
lobular inflammation and ballooning scores thus ranges from 0 to 8.  
 

Target conditions 

This study addressed four target conditions:  
i. Significant fibrosis: Defined as F≥2;  
ii. Advanced fibrosis: Defined as F≥3;  
iii. Clinical Trial NASH: Steatohepatitis is a histopathological diagnosis based on the 

presence of steatosis, lobular inflammation and hepatocyte ballooning (25).  For 
inclusion in therapeutic trials, the FDA and EMA mandate steatohepatitis is 
defined as a NAS≥4 with at least a score of 1 point for each histological 
component (26), thus selecting patients with greater disease activity that are 
considered more likely to exhibit disease progression (27); and 

iv. “At-risk” NASH: Like the above, “at-risk” NASH is defined as the presence of 
steatohepatitis (NAS≥4 with at least one point in each component) plus 
significant fibrosis (F≥2) (2, 17, 18). This defines the population commonly 
recruited into phase 3 trials of novel therapeutics for noncirrhotic NASH.  
 

Predictors 

Clinical assessment  

Clinical data, including anthropometric, lifestyle/activity, dietary, comorbidity, 
pharmacotherapy, clinical biochemistry, and incident disease/events, were collected in 
the respective recruitment centers, with blood assays performed in local laboratories. The 
list of 25 clinical predictors used is shown in Supplementary Table 3.  
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Biomarker measurements 

Additional serum samples were collected in standardized collection kits within 6 months 
of liver biopsy and stored at -800C. Samples were centrally analyzed at Nordic Biosciences 
(Herlev, Denmark), a CLIA certified laboratory, blinded to clinical data. The following 
markers were measured and included as predictors: caspase-cleaved CK-18 fragments 
and full length soluble CK18 (M30 and M65 antigens), serum peptides that represent the 
aminoterminal propeptide of procollagentype III (PRO-C3), and the carboxyterminal 
propeptides of procollagen type IV (PRO-C4) and VI (PRO-C6). We further include the 
components of the Siemen’s ELF test: tissue inhibitor of metalloproteinases 1 (TIMP-1), 
amino-terminal propeptide of type III procollagen (P3NP) and hyaluronic acid (HA).  
 
LSM and controlled attenuation parameter (CAP) by VCTE (FibroScan, Echosens, Paris, 
France™) were collected within 6 months of liver biopsy and also included as predictors. 
Probe sizes were selected as advised by device guidelines. 
 

Machine learning algorithm 

A variation of gradient boosting machine (GBM) was used to develop the models. GBM is 
an ensemble machine learning technique for regression and classification to produce 
prediction models of multiple base-learners (or decision trees). This algorithm involves 
three elements: optimization of a loss function, predictions made by a base-learner, and 
an additive model to add base-learners to minimize the loss function successively.  
 
As GBM methods are known for overfitting, we applied stochastic GBM to reduce the 
correlation between trees in the sequence of GBM. Each iteration uses a sub-sample of 
the full training dataset, drawn at random, used in place of the full dataset to fit the base-
learner and compute the model update for the current iteration (28). The randomized 
approach improves model robustness and reduces overfitting. Other GBM variations, 
such as XGBoost, were tested but were not an improvement from the stochastic method.  
 
We explored alternative algorithms (logistic regression, k-nearest neighbors, support 
vector machine, decision tree algorithms). Only the results for GBM were further 
evaluated as it produced the best performing models in the preliminary analyses.  
 

156

Chapter 7



 
 

 

 
Figure 1. Model development workflow 

 

Dataset preprocessing 

The original Metacohort dataset underwent a lengthy preprocessing phase to convert raw 
data to the optimal structure for training and testing GBM models. As the original dataset 
included over 200 clinical variables, we isolated those relevant for NAFLD based on clinical 
accessibility and established association guided by experienced hepatologists.   
 
A pairwise Pearson correlation matrix was used to visualize the predictors' relationships 
and test for high intercorrelation. No variables were removed in this process, resulting in 
a final working dataset of 35 predictors. 
 
Missing data were handled by first assessing the degree of missingness and if data were 
missing at random. Variables with missing values for more than 80% of participants were 
excluded entirely. For the remaining variables, missing data were replaced by multiple 
imputations (m=5) using the multivariate imputation by chain equations (MICE) approach  
(29). As data were split prior to this step, the training and validation data were imputed 
separately, resulting in 5 imputed training and validation sets. By purpose, outcome 
variables were excluded from the predictor matrix in the validation set as we aimed to 
mimic a scenario were the model is used in a ‘new’ patient, where outcome data is 
obviously not available. In support of our strategy, simulation studies have shown that 
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including outcomes when imputing the validation set leads to over-optimistic predictions 
(30, 31). We further excluded variables with over 60% missing from the predictor matrix.  
 
Continuous variables were centered and scaled to a mean of 0 and standard deviation of 
1 to improve model stability and fit. 
 

Model development 

Figure 1 provides an overview of the model training and validation workflow. The learning 
data were randomly split into training (75%) and validation (25%) sets. The training set 
(n=742) was used to develop models using the GBM algorithm for each target condition. 
A grid search strategy was applied to tune hyperparameters (boosting iterations, max tree 
depth, shrinkage, minimum terminal node size) using 5 repeats of 10-fold cross-validation. 
Agreement between the model prediction and the observed outcome was inspected 
visually using calibration plots for each of the constructed models. Two sets of models 
were developed for each target condition, one using only routinely available clinical 
predictors (clinical model), and a second employing these same routinely available clinical 
predictors plus additional biomarkers (extended model). 
. 
As discussed above, NASH is established by the presence of three histological features 
(steatosis, lobular inflammation and ballooning). To address how these may best be 
combined, we developed two variants of the NASH models: one directly including these 
three histological features, the other by building a composite model that aggregated the 
calculated probabilities from models for steatosis, lobular inflammation and ballooning 
(Figure 2): 
 

i. The “direct” NASH model was trained to a NAS≥4 with at least one point in each 
of the three components (S≥1 + B≥1 + LI≥1, with the sum being ≥4) (32, 33).  

ii. The “composite” NASH model was similarly trained to a NAS ≥4 but with an 
additional, more stringent, liver inflammation threshold of 2 points (S≥1 + B≥1 + 
LI≥2, with the sum being ≥4). In the composite model, separate models were built 
for each histological feature, steatosis (0 vs. 1-3), lobular inflammation (0-1 vs. 2-
3), and ballooning (0 vs 1-2), and the respective probabilities for each component 
were multiplied to yield a NASH prediction index. 
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In the same way, two different “at-risk” NASH model variants were developed: a “direct” 
at-risk NASH model and a “composite” at-risk NASH model, the later built by aggregating 
the calculated probabilities from the steatosis, lobular inflammation, ballooning and 
significant fibrosis models as discussed above. 
 

 
Figure 2. Construction of the direct and composite NASH models 

 

Statistical analysis  

The performance of each model was evaluated in the validation data (n=242), which were 
untouched and isolated from the model training process. The area under the receiver 
operating characteristic curve (AUC) in detecting the respective target conditions was 
calculated to express the accuracy of classifications against liver biopsy as the reference 
standard. As depicted in Figure 1, the model development and validation steps were 
repeated for each of the five imputed datasets, for each condition, and AUCs were pooled 
following Rubin’s Rule (34, 35).  
 
Irrespective of how the model had been trained, to ensure that the full spectrum of NAS-
defined steatohepatitis was captured, the target definition of NASH (or “at risk” NASH) 
used in the validation analyses were NAS of ≥4 with at least one point in each of the three 
components (S≥1 + B≥1 + LI≥1, in any permutation where the sum is ≥4).  
The extended GBM models were compared to other tests: CK-18 and CAP by VCTE for 
NASH, FAST score (17) and ADAPT (36) for at-risk NASH, and PRO-C3, LSM by VCTE, the 
FIB-4 score (37) and the ELF test (38) for fibrosis, according to their original formula. 
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Table 1. Characteristics of the study group in the training and validation sets   

 

 Overall Study group Training set Validation set 

n 966 724 242 

Age, years 51.19 (12.97) 51.80 (12.70) 49.37 (13.61) 

Male, n (%) 563 (58.3) 416 (57.5) 147 (60.7) 

BMI 34.08 (8.25) 34.10 (8.36) 34.03 (7.93) 

ALT, U/L 62.67 (42.54) 62.25 (42.20) 63.92 (43.63) 

AST, U/L 42.88 (26.01) 43.09 (26.80) 42.25 (23.55) 

GGT, U/L 110.05 (160.19) 113.97 (172.46) 98.34 (115.50) 

Albumin, g/L 4.39 (0.42) 4.38 (0.42) 4.41 (0.42) 

Platelet, 10^9/L 238.96 (73.45) 237.36 (73.66) 243.76 (72.74) 

Glucose, mmol/L 6.50 (2.57) 6.57 (2.65) 6.30 (2.31) 

Triglyceride, mg/L 2.07 (1.21) 2.10 (1.26) 1.99 (1.05) 

Diabetes, n (%) 406 (42.0) 318 (43.9) 88 (36.4) 

FIB-4 1.38 (1.02) 1.41 (1.04) 1.29 (0.96) 

VCTE-CAP 312.85 (73.19) 314.13 (71.71) 309.04 (77.46) 

VCTE-LSM 11.47 (9.29) 11.15 (8.72) 12.44 (10.78) 

Steatosis grade, % (0/1/2/3) 7/33/35/24/1 8/32/35/25/1 5/35/35/23/0 

Steatosis, n (%) 898 (93.0) 670 (92.5) 228 (94.2) 
Inflammation grade, % 
(0/1/2/3) 20/57/21/2 19/57/22/2 21/58/18/3 

Inflammation, n (%) 223 (23.1) 172 (23.8) 51 (21.1) 

Ballooning grade, % (0/1/2) 26/50/24 26/50/25 27/51/22 

Ballooning, n (%) 715 (74.0) 539 (74.4) 176 (72.7) 

NASH, n (%) 512 (53.0) 385 (53.2) 127 (52.5) 

At-risk NASH, n (%) 335 (34.7) 260 (35.9) 75 (31.0) 

Fibrosis stage, % (0/1/2/3/4) 32/19/21/20/9 32/18/22/20/8 34/24/15/17/10 

Significant fibrosis, n (%) 471 (48.8) 368 (50.8) 103 (42.6) 

Advanced fibrosis, n (%) 273 (28.3) 207 (28.6) 66 (27.3) 

Continuous values are shown as mean (SD). 
Steatosis is defined as 0 vs 1-3, inflammation as 0-1 vs 2-3, ballooning as 0 vs 1-2, NASH as NAS ≥4 (with at 
least one point in each component), significant fibrosis as F≥2, advanced fibrosis as F≥3, and at-risk NASH is 
the combination of NASH and significant fibrosis.  
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Variable importance scores were calculated for the GBM models to rank selected 
predictors based on their relative importance (scaled between 0 and 100) for making 
more accurate predictions. This was determined based on selection of variables in the 
tree building process and improvement for each boosting iteration (39). 
 
All statistical analysis was performed using R software version 4.0.3. Multiple imputation 
was applied using the MICE package (29); GBM models were trained using the caret 
package (39).  
 

Results 

The study group had a mean age of 51 and mean body mass index of 34; 58% were men 
and 42% had diabetes. Based on liver biopsy, 53% had NASH, 35% had at-risk NASH, 49% 
had significant fibrosis, and 28% had advanced fibrosis (including 7% patients with 
histological cirrhosis). Details are summarized in Table 1. The flow of participants included 
in the LITMUS (Liver Investigation: Testing Marker Utility in Steatohepatitis) Metacohort 
can be seen in Supplementary Figure 1. 
 
In comparison, CAP by VCTE and CK-18 M30 had AUCs of 0.64 (0.59, 0.70) and 0.61 (0.57, 
0.65), respectively, for the detection of NASH (Figure 4). The composite NASH model was 
a significant improvement over CK-18.  
 

At-risk NASH model 

Two different at-risk NASH models were evaluated. The direct at-risk NASH model had an 
AUC of 0.79 (0.76, 0.82) using clinical variables, and 0.78 (0.75, 0.82) for the extended 
model (Table 2).   
 
For the composite at-risk NASH model, the AUCs were 0.83 (0.80, 0.86) for both the 
clinical and extended versions. See Figure 3 for the predictors selected for each model 
and aggregated to calculate the composite models.  

 
The composite GBM models performed well compared to other multi-marker scores 
: FAST had an AUC of 0.77 (0.73, 0.81), and ADAPT had 0.77 (0.73, 0.80) (Figure 4). 
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Significant and advanced fibrosis model 

The significant fibrosis models had AUCs of 0.76 (0.73, 0.80) and 0.78 (0.75, 0.82) for the 
clinical and extended version, respectively. Both fibrosis model probabilities were very 
consistent with the observed event rates (see calibration plots in Figure S3). Tuning 
parameters for each imputed dataset are shown in Supplementary Table 4. 
 
In comparison, PRO-C3 had an AUC of 0.67 (0.63, 0.71), LSM by VCTE had 0.77 (0.73, 0.81), 
FIB-4 had 0.70 (0.66, 0.73), and ELF had 0.70 (0.66, 0.73) (Figure 4). 
 
For advanced fibrosis, the AUC for the clinical model was 0.82 (0.79, 0.84). Adding 
biomarkers significantly improved the detection of advanced fibrosis, with an AUC of 0.86 
(0.85, 0.87).  
 

For advanced fibrosis, PRO-C3 had an AUC of 0.77 (0.73, 0.81), LSM by VCTE had 0.83 
(0.80, 0.87), FIB-4 had 0.76 (0.73, 0.80), and ELF had 0.80 (0.76, 0.83) (Figure 4).  
 

Table 2. Performance of the clinical and extended GBM models for detecting stages of 
NAFLD in the validation set 
 

Outcome, model variant Definition Prevalence (%) Clinical GBM model Extended GBM model 

Steatosis 0 vs. 1-3 93 0.94 (0.93, 0.96) 0.94 (0.92, 0.96) 

Inflammation 0-1 vs. 2-3 23 0.79 (0.76, 0.81) 0.79 (0.76, 0.82) 

Ballooning 0 vs 1-2 74 0.72 (0.69, 0.76) 0.74 (0.70, 0.77) 

NASH, composite S * I * B 
53  

0.71 (0.67, 0.74) 0.71 (0.68, 0.77) 

NASH, direct NAS≥4 0.61 (0.57, 0.66) 0.65 (0.60, 0.69) 

At-risk NASH, composite S * I * B * F 
35 

0.83 (0.80, 0.86) 0.83 (0.80, 0.86) 

At-risk NASH, direct NAS≥4 and F≥2 0.79 (0.76, 0.82) 0.78 (0.75, 0.82) 

Significant fibrosis F≥2 47 0.76 (0.73, 0.80) 0.78 (0.75, 0.82) 

Advanced fibrosis F≥3 28 0.82 (0.79, 0.84) 0.86 (0.85, 0.87) 
Clinical GBM models include only clinical predictors, extended GBM models include clinical predictors and 
biomarkers. 
Composite NASH model was constructed by aggregating the three NASH components: steatosis, lobular 
inflammation and ballooning, which were dichotomized according to the definition as described. At-risk NASH 
was constructed similarly, including significant fibrosis (F≥2). 
Direct NASH model was constructed using the standard dichotomization of NAS score (≥4), with at least one 
point in each component of steatosis, lobular inflammation and ballooning. 
Direct at-risk NASH is the combination of NAS score (≥4) and significant fibrosis (F≥2). 
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Figure 3. Variables of importance for steatosis, inflammation, ballooning and 
significant fibrosis for the clinical and extended GBM models. systolic blood pressure 

(bp_sys), diastolic blood pressure (bp_dia), type 2 diabetes (t2dm), high density 
lipoprotein (hdl), low density lipoprotein (ldl), alanine aminotransferase (alt), 
aspartate aminotransferase (ast), gamma-glutamyl transferase (ggt), alkaline 

phosphatase (alp), hemoglobin (hb), transferrin saturation (tsat), albumin (albu), 
clotting (pt), bilirubin (bili), glycosylated hemoglobin A1c(hba1c), cytokeratin 18 (ck18, 

m30 and m65 antigens), plasma propeptides of   procollagen type III (proc3, proc4, 
proc6), tissue inhibitor of metalloproteinases 1 (timp1), amino-terminal propeptide of 

type III procollagen (p3np) and hyaluronic acid (ha). 
 

Discussion 

Several diagnostic scores have been studied to identify patients with advanced stages of 
fibrosis. However, those for detecting active NASH (with or without fibrosis) have been 
less successful. The present study utilized a large histologically-characterized NAFLD 
cohort in Europe with a rich selection of novel biomarkers to develop diagnostic models 
using the GBM algorithm. Two sets of models were developed for each condition, one 
using only clinical features, and a second by adding biomarkers, such as CK-18, PRO-
C3/4/6, and LSM and CAP by VCTE.  
 
We explored the added value of fitting the GBM algorithm for steatosis, inflammation, 
and ballooning separately and creating an aggregate model combining the three 
components. The purpose was to enhance classifications, as NASH models are generally 
developed solely based on the NAS score and, so far, none are suggested for use by clinical 
guidelines (10). Our results showed that aggregating the probabilities for each component 
to arrive at the composite NASH score significantly improved the accuracy for detecting 
NASH. The same strategy also improved detection of at-risk NASH. 
 
The performance of the models for NASH and at-risk NASH were comparable between the 
clinical and extended models. The fibrosis models benefited the most from the additional 
biomarkers, with significant improvement in detecting advanced fibrosis.  
 
The study presents some limitations, mostly related to the retrospective nature of the 
LITMUS Metacohort. Liver biopsy serves as the reference standard in our analysis as it 
remains the recommended technique for evaluating NASH, despite caveats such inter and 
intra- reader variability (8, 40). We further note that our definition of NASH  
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Figure 4. AUC of extended GBM models in the validation set compared to existing 
non-invasive scores for detecting NASH, at-risk NASH, significant and advanced 

fibrosis. 
 
corresponds to the efficacy endpoint defined by health authorities and clinical trials for 
NAFLD drug development, which may differ from clinical diagnosis of NASH that considers 
other inputs in addition to histopathologic diagnosis (33). We relied on locally read 
biopsies and local lab results for standard markers, which may introduce differences 
across study sites. While blood-based biomarkers were centrally analyzed, they were 
measured in retrospectively collected samples and reserved in a biobank. They were also 
analyzed in batches.  
 
Due to limited sample volume, not all biomarkers were measured in all patients. We 
avoided complete case analysis by imputing missing values by multiple imputation. Five 
imputed datasets were produced and analyzed as simulation studies have shown a 
required number of repeated imputations to be as low as three for datasets with 20% 
missingness (41). The retrospective nature of this study also meant that some samples 
were older than others. As the stability of these samples is largely unknown, we excluded 
a handful of samples collected before 2010 from the analysis. 
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Other machine learning models have been developed using only clinical predictors to 
detect NASH. Using a variant of GBM, one study found out-of-sample AUCs of 0.82 and 
0.76, using data from the National Institute of Diabetes, Digestive and Kidney Diseases 
and Optum Analytics (21). Another study applied machine learning algorithms to predict 
NASH using data from Optum Analytics and found the highest AUC (0.88) using XGBoost 
(42). This study, however, included healthy participants without any liver-related diseases 
in the model development phase. Both studies relied on data from Optum, which, in the 
absence of histological diagnosis of NASH, relied on several different ICD codes for NASH 
or NAFLD.  
 
Other scores have been developed using regression-based methods, such as NIS4 and 
MACK-3. NIS4, which includes four components (miR-34a-5p, alpha-2 macroglobulin, YKL-
40, and glycated hemoglobin), had an AUC of 0.80 from three validation cohorts for 
detecting at-risk NASH (18). An external validation study found that MACK-3 (fasting 
glucose and insulin, AST and CK-18) also had an AUC of 0.80 for detecting at-risk NASH. 
More recently, the SomaSignal test developed based on elastic net produced an AUC of 
0.76 (43). All of these multi-marker scores include more novel biomarkers, which come 
with the cost of additional testing. Our at-risk NASH model performed well, relying only 
on clinical data, highlighting a potential advantage of utilizing machine learning. This 
warrants further evaluation in an external cohort. 
 
Constructing separate models for each component of NASH further allowed us to observe 
that different predictors were selected as most informative for each component. The 
most influential predictors had strong biological plausibility or an established position in 
the disease pathway (44) (45) (12, 46). However, the ranking of markers was variable 
across imputed datasets and should be interpreted with caution.  
 
In the future, we plan to finalize the models using complete data from the on-going 
prospective LITMUS Study Cohort, focusing on the aggregated approach for constructing 
the models for NASH and at-risk NASH. A single model for each outcome will be converted 
to a user-friendly interface, in the form of a Shiny-app. Such tools would allow clinicians, 
including those in a primary care setting, to enter values of clinical parameters to detect 
NASH or at-risk NASH with greater ease.  
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Machine learning approaches are sometimes perceived as too complicated compared to 
classic regression-based tools. Some studies have demonstrated superior performance of 
machine learning algorithms over logistic regression, such as Feng et al., who found 
machine learning models outperformed regression-based models for detecting significant 
fibrosis across different subgroups (47). However, a large meta-analysis found no benefit 
of machine learning over logistic regression (48). Given the vast selection of available 
algorithms, heterogeneous study designs, sparse reporting, and conflicting conclusions in 
the literature, more work is needed to understand which tools and study design elements 
are optimal for developing diagnostic models for NAFLD. This should be paired with a clear 
emphasis on the tools desired clinical context of use, whether to triage patients in clinical 
practice or select participants most likely to benefit from therapeutic interventions in 
clinical trials.  
 
Our study found promising results to explore machine learning algorithms further to 
improve the diagnosis of NASH and at-risk NASH, using readily available clinical data. The 
inherent ability to adapt to new data positions machine learning as a valuable tool for 
rapidly evolving healthcare settings and conditions with a complex etiology such as 
NAFLD. While the move towards machine learning to detect NAFLD is still in its infancy, 
concerted effort to robust methodology, biomarker discovery, and quality data can 
improve the clinical management of NAFLD. Importantly, this is most needed outside 
expert centers, where the vast majority of patients do not have access to specialists 
focusing on liver disease. 
  

167

Machine learning algorithm improves detection of NASH, a development and validation study 

Ch
ap

te
r 7



 
 

 

References 
1. Younossi Z, Henry L. The Burden of NAFLD Worldwide.  Non-Alcoholic Fatty Liver Disease: Springer; 

2020. p. 15-24. 

2. Noureddin M, Truong E, Gornbein JA, Saouaf R, Guindi M, Todo T, et al. MRI-based (MAST) score 
accurately identifies patients with NASH and significant fibrosis. Journal of Hepatology. 
2022;76(4):781-7. 

3. Satapathy SK, Sanyal AJ, editors. Epidemiology and natural history of nonalcoholic fatty liver 
disease. Seminars in liver disease; 2015: Thieme Medical Publishers. 

4. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and 
NASH: trends, predictions, risk factors and prevention. Nature reviews Gastroenterology & 
hepatology. 2018;15(1):11-20. 

5. Younossi Z, Stepanova M, Ong JP, Jacobson IM, Bugianesi E, Duseja A, et al. Nonalcoholic 
steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant 
candidates. Clinical Gastroenterology and Hepatology. 2019;17(4):748-55. e3. 

6. Ascha MS, Hanouneh IA, Lopez R, Tamimi TAR, Feldstein AF, Zein NN. The incidence and risk factors 
of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 
2010;51(6):1972-8. 

7. Sanyal AJ, Van Natta ML, Clark J, Neuschwander-Tetri BA, Diehl A, Dasarathy S, et al. Prospective 
study of outcomes in adults with nonalcoholic fatty liver disease. New England Journal of Medicine. 
2021;385(17):1559-69. 

8. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of liver 
biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898-906. 

9. Brunt EM, Clouston AD, Goodman Z, Guy C, Kleiner DE, Lackner C, et al. Complexity of ballooned 
hepatocyte feature recognition: Defining a training atlas for artificial intelligence-based imaging in 
NAFLD. Journal of Hepatology. 2022;76(5):1030-41. 

10. Berzigotti A, Tsochatzis E, Boursier J, Castera L, Cazzagon N, Friedrich-Rust M, et al. EASL Clinical 
Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis–2021 
update. Journal of Hepatology. 2021;75(3):659-89. 

11. Mózes FE, Lee JA, Selvaraj EA, Jayaswal ANA, Trauner M, Boursier J, et al. Diagnostic accuracy of 
non-invasive tests for advanced fibrosis in patients with NAFLD: an individual patient data meta-
analysis. Gut. 2022;71(5):1006-19. 

12. Lee J, Vali Y, Boursier J, Duffin K, Verheij J, Brosnan MJ, et al. Accuracy of cytokeratin 18 (M30 and 
M65) in detecting non-alcoholic steatohepatitis and fibrosis: A systematic review and meta-analysis. 
Plos one. 2020;15(9):e0238717. 

13. Tada T, Kumada T, Toyoda H, Saibara T, Ono M, Kage M. New scoring system combining the FIB-4 
index and cytokeratin-18 fragments for predicting steatohepatitis and liver fibrosis in patients with 
nonalcoholic fatty liver disease. Biomarkers. 2018;23(4):328-34. 

14. Younossi ZM, Page S, Rafiq N, Birerdinc A, Stepanova M, Hossain N, et al. A biomarker panel for non-
alcoholic steatohepatitis (NASH) and NASH-related fibrosis. Obes Surg. 2011;21(4):431-9. 

15. Anty R, Iannelli A, Patouraux S, Bonnafous S, Lavallard V, Senni-Buratti M, et al. A new composite 
model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the 

168

Chapter 7



 
 

 

diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Alimentary pharmacology & 
therapeutics. 2010;32(11-12):1315-22. 

16. Boursier J, Anty R, Vonghia L, Moal V, Vanwolleghem T, Canivet C, et al. Screening for therapeutic 
trials and treatment indication in clinical practice: MACK-3, a new blood test for the diagnosis of 
fibrotic NASH. Alimentary pharmacology & therapeutics. 2018;47(10):1387-96. 

17. Newsome PN, Sasso M, Deeks JJ, Paredes A, Boursier J, Chan W-K, et al. FibroScan-AST (FAST) score 
for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant 
activity and fibrosis: a prospective derivation and global validation study. The Lancet 
Gastroenterology & Hepatology. 2020;5(4):362-73. 

18. Harrison SA, Ratziu V, Boursier J, Francque S, Bedossa P, Majd Z, et al. A blood-based biomarker 
panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a 
prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 2020;5(11):970-
85. 

19. Adamichou C, Genitsaridi I, Nikolopoulos D, Nikoloudaki M, Repa A, Bortoluzzi A, et al. Lupus or not? 
SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to 
assist the diagnosis of systemic lupus erythematosus. Annals of the rheumatic diseases. 
2021;80(6):758-66. 

20. Karaglani M, Gourlia K, Tsamardinos I, Chatzaki E. Accurate blood-based diagnostic biosignatures 
for Alzheimer’s disease via automated machine learning. Journal of clinical medicine. 
2020;9(9):3016. 

21. Docherty M, Regnier SA, Capkun G, Balp M-M, Ye Q, Janssens N, et al. Development of a novel 
machine learning model to predict presence of nonalcoholic steatohepatitis. Journal of the 
American Medical Informatics Association. 2021;28(6):1235-41. 

22. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent 
Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): 
explanation and elaboration. Annals of internal medicine. 2015;162(1):W1-W73. 

23. Hardy T, Wonders K, Younes R, Aithal GP, Aller R, Allison M, et al. The European NAFLD Registry: A 
real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp Clin Trials. 
2020;98:106175. 

24. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and 
validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 
2005;41(6):1313-21. 

25. Bedossa P. Diagnosis of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Why liver 
biopsy is essential. Liver International. 2018;38(S1):64-6. 

26. Anania FA, Dimick-Santos L, Mehta R, Toerner J, Beitz J. Nonalcoholic Steatohepatitis: Current 
Thinking From the Division of Hepatology and Nutrition at the Food and Drug Administration. 
Hepatology. 2021;73(5):2023-7. 

27. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an Agonist of the 
Peroxisome Proliferator−Activated Receptor−α and −δ, Induces Resolution of Nonalcoholic 
Steatohepatitis Without Fibrosis Worsening. Gastroenterology. 2016;150(5):1147-59.e5. 

28. Friedman JH. Stochastic gradient boosting. Computational statistics & data analysis. 
2002;38(4):367-78. 

169

Machine learning algorithm improves detection of NASH, a development and validation study 

Ch
ap

te
r 7



 
 

 

29. Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. 
Journal of statistical software. 2011;45(1):1-67. 

30. Hoogland J, van Barreveld M, Debray TPA, Reitsma JB, Verstraelen TE, Dijkgraaf MGW, et al. 
Handling missing predictor values when validating and applying a prediction model to new patients. 
Statistics in Medicine. 2020;39(25):3591-607. 

31. Musoro JZ, Zwinderman AH, Puhan MA, ter Riet G, Geskus RB. Validation of prediction models based 
on lasso regression with multiply imputed data. BMC Med Res Methodol. 2014;14(1):1-13. 

32. Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, et al. Endpoints and clinical trial 
design for nonalcoholic steatohepatitis. Wiley Online Library; 2011. 

33. Noncirrhotic nonalcoholic steatohepatitis with liver fibrosis: developing drugs for treatment. In: 
Services DoHaH, (CDER) CfDEaR, editors. 

34. Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic 
modelling studies after multiple imputation: current practice and guidelines. BMC Med Res 
Methodol. 2009;9:57-. 

35. Heymans M, Eekhout I. Applied missing data analysis with SPSS and (R) Studio. Heymans and 
Eekhout: Amsterdam, The Netherlands: 20Available online: https://bookdown 
org/mwheymans/bookmi/[accessed 23 May 2020]. 2019. 

36. Daniels SJ, Leeming DJ, Eslam M, Hashem AM, Nielsen MJ, Krag A, et al. ADAPT: An Algorithm 
Incorporating PRO-C3 Accurately Identifies Patients With NAFLD and Advanced Fibrosis. 
Hepatology. 2019;69(3):1075-86. 

37. Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, et al. FIB-4: an 
inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and 
fibrotest. Hepatology. 2007;46(1):32-6. 

38. Day JW, Rosenberg WM. The enhanced liver fibrosis (ELF) test in diagnosis and management of liver 
fibrosis. Br J Hosp Med (Lond). 2018;79(12):694-9. 

39. Kuhn M. Building predictive models in R using the caret package. Journal of statistical software. 
2008;28(1):1-26. 

40. Davison BA, Harrison SA, Cotter G, Alkhouri N, Sanyal A, Edwards C, et al. Suboptimal reliability of 
liver biopsy evaluation has implications for randomized clinical trials. Journal of Hepatology. 
2020;73(6):1322-32. 

41. Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in 
survival analysis. Statistics in medicine. 1999;18(6):681-94. 

42. Fialoke S, Malarstig A, Miller MR, Dumitriu A. Application of Machine Learning Methods to Predict 
Non-Alcoholic Steatohepatitis (NASH) in Non-Alcoholic Fatty Liver (NAFL) Patients. AMIA Annu Symp 
Proc. 2018;2018:430-9. 

43. Vali Y, Lee J, Schattenberg J, Gomez MR, Tiniakos D, Bedossa P, et al. Comparative diagnostic 
accuracy of blood-based biomarkers for diagnosing NASH: phase 1 results of the LITMUS project.  
International Liver Congress2021. 

44. Tanwar S, Trembling PM, Guha IN, Parkes J, Kaye P, Burt AD, et al. Validation of terminal peptide of 
procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with 
nonalcoholic fatty liver disease. Hepatology. 2013;57(1):103-11. 

170

Chapter 7



 
 

 

45. Darweesh SK, AbdElAziz RA, Abd-ElFatah DS, AbdElazim NA, Fathi SA, Attia D, et al. Serum 
cytokeratin-18 and its relation to liver fibrosis and steatosis diagnosed by FibroScan and controlled 
attenuation parameter in nonalcoholic fatty liver disease and hepatitis C virus patients. European 
Journal of Gastroenterology & Hepatology. 2019;31(5):633-41. 

46. Feldstein AE, Alkhouri N, De Vito R, Alisi A, Lopez R, Nobili V. Serum cytokeratin-18 fragment levels 
are useful biomarkers for nonalcoholic steatohepatitis in children. Am J Gastroenterol. 
2013;108(9):1526-31. 

47. Feng G, Zheng KI, Li Y-Y, Rios RS, Zhu P-W, Pan X-Y, et al. Machine learning algorithm outperforms 
fibrosis markers in predicting significant fibrosis in biopsy-confirmed NAFLD. Journal of Hepato-
Biliary-Pancreatic Sciences. 2021;28(7):593-603. 

48. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review 
shows no performance benefit of machine learning over logistic regression for clinical prediction 
models. Journal of Clinical Epidemiology. 2019;110:12-22. 

 
  

171

Machine learning algorithm improves detection of NASH, a development and validation study 

Ch
ap

te
r 7



 
 

 

Supplementary Material 
 

https://journals.lww.com/hep/Fulltext/2023/07000/Machine_learning_algorithm_impr

oves_the_detection.21.aspx  

 

  

172

Chapter 7



 
 

 

  

173

Machine learning algorithm improves detection of NASH, a development and validation study 

Ch
ap

te
r 7



08



CCoovvaarriiaattee--ssppeecciiffiicc  RROOCC  ccuurrvvee  aannaallyyssiiss  

ccaann  aaccccoommmmooddaattee  ddiiffffeerreenncceess  bbeettwweeeenn  

ccoovvaarriiaattee  ssuubbggrroouuppss  iinn  tthhee  eevvaalluuaattiioonn  

ooff  ddiiaaggnnoossttiicc  aaccccuurraaccyy

Jenny Lee
Nick van Es

Toshihiko Takada
Frederikus A. Klok

Geert-Jan Geersing
Jeffrey Blume

Patrick M. Bossuyt

Journal of Clinical Epidemiology, 2023.



 
 

 

Abstract 

Objective: We present an illustrative application of methods that account for covariates 
in receiver operating characteristic (ROC) curve analysis, using individual patient data on 
D-dimer testing for excluding pulmonary embolism.  
 
Study design and setting: Bayesian nonparametric covariate-specific ROC curves were 
constructed to examine the performance/positivity thresholds in covariate subgroups. 
Standard ROC curves were constructed. Three scenarios were outlined based on 
comparison between subgroups and standard ROC curve conclusion: (1) identical 
distribution/identical performance, (2) different distribution/identical performance, and 
(3) different distribution/different performance. Scenarios were illustrated using clinical 
covariates. Covariate-adjusted ROC curves were also constructed.  
 
Results: Age groups had prominent differences in D-dimer concentration, paired with 
differences in performance (Scenario 3). Different positivity thresholds were required to 
achieve the same level of sensitivity. D-dimer had identical performance, but different 
distributions for YEARS algorithm items (Scenario 2), and similar distributions for sex 
(Scenario 1). For the later covariates, comparable positivity thresholds achieved the same 
sensitivity. All covariate-adjusted models had AUCs comparable to the standard approach. 
 
Conclusion: Subgroup differences in performance and distribution of results can indicate 
that the conventional ROC curve is not a fair representation of test performance. 
Estimating conditional ROC curves can improve the ability to select thresholds with 
greater applicability.  
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Introduction 

Biomarkers are regularly investigated for their ability to classify subjects as diseased or 
non-diseased. Receiver operating characteristic (ROC) curves are, unarguably, the most 
widely used tool for evaluating the discriminatory capacity, initially popular with the 
evaluation of imaging modalities. Their use has now spread to all tests that deliver results 
on an ordinal, interval or ratio scale (1). The overall diagnostic accuracy of a medical test 
is then expressed as the corresponding area under the ROC curve (AUC). The shape of a 
ROC curve illustrates the trade-off between the sensitivity and specificity of a test at 
various positivity thresholds, which converts a continuous classifier into a dichotomous 
one. Oftentimes, a desired level of classification is specified, to maximize the true positive 
or true negative results, and identify the corresponding threshold (2).  
 
The result of a test can be associated with other factors than the presence or absence of 
the target condition. For instance, older patients tend to have higher D-dimer values than 
younger ones, while males have higher hemoglobin levels than females. In the presence 
of such associations, there may also be covariate-specific (such as age or sex) differences 
in test performance. Moreover, selecting thresholds from a standard ROC curve can be 
misleading, as compared to subgroup specific ROC curves, when strong associations 
between the marker and covariate are present, and result in differences in sensitivity and 
specificity between covariate subgroups. Thus, when covariate information is available, it 
should be considered, as neglecting such information may inflate our estimates of the 
relative proportion of false negative or false positive test results for certain subgroups (3).  
 
In light of this, several methods that account for covariates in ROC curve analysis have 
been proposed (4, 5). They allow assessment of covariate-specific and covariate-adjusted 
ROC curves; the former models ROC curves for each stratum of a given covariate (e.g. men 
and women), while the other models a single ROC curve that can be interpreted as the 
weighted average of covariate-specific curves (6). Despite the widespread consideration 
of covariate effects in randomized trials of interventions, it is not yet standard practice in 
diagnostic accuracy studies (7, 8).  
 
Associations between covariates and the positivity threshold are even less considered, 
when, in fact, it has direct implications for how the test will be implemented for practical 
use. Understanding the magnitude of potential covariate effects and applying appropriate 
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techniques are therefore fundamental to produce robust and reliable results that can be 
translated into clinical practice.  
 
We here present an illustrative application of the use of covariate-specific and covariate-
adjusted ROC analyses, to encourage a more widespread application of such methods in 
evaluations of diagnostic accuracy. The following sections are structured as follows: the 
motivating example, an outline of conventional ROC curve analysis and possible scenarios 
when considering covariates, the application, and concluding remarks.  
 

Motivating example 

Pulmonary embolism (PE) is a common venous thromboembolic disease that can cause 
significant morbidity and mortality (9, 10). Patients with suspected venous 
thromboembolism (VTE), comprised of PE and deep vein thrombosis, usually undergo 
imaging testing, such as compression ultrasonography or computed tomography 
pulmonary angiography (CTPA), for a confirmation or exclusion of diagnosis. However, 
signs and symptoms indicating PE are non-specific, and therefore PE is not confirmed in 
many patients with the suspected disease. Considering the additional risks and costs of 
performing CTPA, scoring systems and tests have been proposed to indicate those at 
greater risk. 
 
Diagnostic clinical scores comprised of clinical characteristics, such as the Wells score, 
have been developed to classify patients with suspected PE into pre-test probability, and 
ultimately minimize the number of patients subjected to CTPA testing (11, 12). More 
recently, the YEARS algorithm was proposed, consisting of only three components, 
offering a more simplified decision rule (11). 
 
D-dimer is a sensitive plasma marker of endogenous fibrinolysis that appears following 
blood clot degradation (13). Measuring levels of this degradation product is commonly 
used as a diagnostic test in patients with signs and symptoms suggestive of venous 
thromboembolism.  A threshold of 500 ng/mL was initially proposed for D-dimer to rule 
out VTE in patients with non-high pre-test probability. A more recent study factored the 
patient’s pretest probability and proposed an additional upper threshold of 1000 ng/mL 
for those without any YEARS items to increase the proportion of patients in whom imaging 
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can be withheld (14). Yet the optimal approach for adjusting d-dimer thresholds has still 
to be determined (15). 
 
Other factors have shown to influence D-dimer concentration. Age, for example, is 
associated with D-dimer positivity (16). The D-dimer concentration naturally increases 
with age, leading to many older patients without PE presenting with D-dimer levels above 
the conventional threshold of 500 ng/mL (17). When D-dimer testing is performed among 
elderly, the proportion of false-positive results is higher leading to unnecessary imaging 
(18, 19). Age-dependent threshold values for D-dimer were proposed and its diagnostic 
performance has been compared to the conventional threshold (20, 21). The age-adjusted 
D-dimer threshold was defined as age(years)*10 ng/mL for patients aged over 50 years, 
based on evaluating optimal values for 10-year interval age groups. Studies have also 
shown the influence of other factors, such as setting (inpatient/outpatient) and cancer 
status (22, 23).  
 

Individual patient data cohort 

We consider data from a large individual patient data (IPD) meta-analysis of studies 
assessing the accuracy of clinical decision rules and D-dimer testing for detection of VTE 
among patients with suspected PE (24). In the IPD cohort, data from 21,621 patients, from 
16 studies recruited between 1990 and 2020, were included in the analysis. In this cohort, 
15% was diagnosed with PE. PE diagnosis was objectively confirmed with either CTPA or 
clinical follow-up of at least one month in those without initial anticoagulation treatment 
upon initial testing. The characteristics of the IPD cohort are described in Supplementary 
Table 2. 
 

Receiver operating characteristic (ROC) curve analysis 

Conventional ROC curve analysis 

In a diagnostic accuracy study, ROC curves can be constructed where the results of one or 
more index tests are compared against the results of the clinical reference standard, the 
best available test to evaluate the presence or absence of the target condition (25).  
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Positivity threshold 

If a positivity threshold is defined, the diagnostic accuracy of an index test can be 
expressed by estimates of its sensitivity and specificity. If higher index test results make 
the target condition more likely, sensitivity corresponds to the proportion of those with a 
target condition whose test result exceeds the positivity threshold. Analogously, the 
specificity refers to the proportion of those without the target condition whose test result 
does not exceed the positivity threshold. 
 
If no positivity threshold can be defined, or none was defined a priori, one can consider 
the full ROC curve. The y-axis of the ROC curve displays all possible values of the sensitivity 
(or true positive fraction, TPF). The x-axis displays all possible values of the specificity, 
from right to left, or of the false positive fraction (FPF, one minus specificity), from left to 
right.  
 
The ROC curve links the TPF and FPF; it is based on the survival function (one minus the 
cumulative distribution function) of the test results in the subgroup with the target 
condition, as indicated by the reference standard, and links this to the survival function 
of the test results in the subgroup without the target condition. The area under the ROC 
curve (AUC, also known as AUROC) takes values between zero and one, where one 
indicates perfect performance and 0.5 refers to performance no better than flipping a 
coin. 
 

ROC curve analysis incorporating covariates 

In most diagnostic accuracy studies, all available index test and reference standard results 
are used to construct ROC curves. No other patient or study characteristics are considered 
as covariates. By now it is well known that diagnostic accuracy is not a fixed property of a 
test and that it can vary between population subgroups, test types, settings, and 
depending on the position of the test in the clinical pathway (26, 27).  
 

Covariate-specific ROC curve scenarios and implications 

If the covariate can be indicated by one, dichotomous variable, the investigators can 
create two subgroups and correspondingly create two different ROC curves. In line with 
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terminology in the statistical literature, we will refer to these as covariate-specific ROC 
curves.  
 
Three scenarios can be drawn based on a comparison of these two ROC curves, as well as 
conclusions regarding the standard ROC curve. We illustrate the scenarios using sex as the 
covariate of interest. 
 

Scenario 1. Identical distribution, identical performance 

It is possible that the covariate-specific ROC curves are completely identical. That would 
be the case, for example, if the underlying distributions of test results in those with and 
those without the target condition are identical in men and women. Each positivity 
threshold would then yield the same sensitivity and specificity in women as in men. The 
AUC would be the same in men and in women.  
 

Implication 

If no difference exists and the covariate-specific ROC curves are identical, the standard 
AUC expresses performance well, since the covariate-specific AUC are one and the same. 
 

Scenario 2. Different distribution, identical performance 

In a different scenario, the distribution of test results differs between men and women. 
Again, as an example, men may have higher values, on average, than women, both in 
those with and in those without the target condition. In that case, a single positivity 
threshold would yield a different sensitivity in men compared to women, and a different 
specificity. Sensitivity will be higher in men but specificity lower.  
 
It is still possible that the two covariate-specific ROC curves are identical. For example, if 
the distributions of those with and without the target condition have the same difference 
in means between men and women, without any differences in variance, then the two 
covariate-specific curves will be the same, as well as the AUC. Overall performance, as 
expressed by the AUC, will be the same in men and women, but different positivity 
thresholds must be selected to yield the same sensitivity and specificity. 
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Implication 

As demonstrated by Janes and Pepe (2008), if a difference in distributions exists but the 
covariate-specific ROC curves are identical, the standard AUC can present a biased 
upward estimate of test performance (3). This will be the case if one subgroup, say men, 
is more likely to have the target condition. The standard ROC curve will also capture that 
additional difference between men and women and will lie above the covariate-specific 
ROC curve. The standard AUC, though correctly estimated, will then also show upward 
bias, since it does not only express the performance of the test but is also based on the 
pre-existing difference in prevalence between men and women. 
 
If, in an alternative scenario, the prevalence between men and women is the same, the 
standard ROC curve will be attenuated: it will lie below the covariate-specific ROC curves. 
The standard AUC will not express performance well. The identical covariate-specific AUC, 
based on thresholds that differ between men and women, will be higher: it reflects the 
gain in performance that is possible from using such stratified positivity thresholds.  
 

Scenario 3. Different distribution, different performance 

In a third scenario, the distributions of the test results in those with and without the target 
condition differ in such a way that the covariate-specific ROC curves are no longer 
identical. That can happen in diverse ways. It is possible that men without the target 
condition have the same distribution as women without the target condition but, with the 
target condition, men have much higher values than women. If so, overall performance 
will also be different. Depending on the distributions, a single positivity threshold may 
also lead to different values for sensitivity and specificity in the subgroups.  
 

Implication 

If the covariate-specific ROC curves and AUC differ, the standard AUC is not a fair 
representation of performance, as it ignores the potentially meaningful differences 
between the subgroups. Presenting the significantly different covariate-specific ROC 
curves and the corresponding AUC may be more informative for clinical decision-making.  
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Bayesian non-parametric model 

All of the performed analyses were based on the Bayesian nonparametric approach 
proposed by In ́acio de Carvalho et al (28). This approach incorporates covariate 
information by using a single-weights dependent Dirichlet process mixture of normal 
distributions. Specifically, the model includes a mixture of normal distributions with 
means that follow a regression model, which may be linear or nonlinear, dependent on 
the covariate(s) (29). This allows for the construction of covariate-specific ROC curves, 
specified for the conditional CDF which changes as a function of the covariate, as opposed 
to just considering the mean or variance of the distribution, as in other semiparametric 
approaches (30). 
 

Statistical analysis  

Cumulative distribution function (CDF) plots and histograms were created for covariate 
subgroups to explore the distribution and density of index test results among the diseased 
and non-diseased.  
 
The standard empirical ROC curve was constructed without incorporating covariate 
information (7). We utilized the Bayesian nonparametric approach to construct covariate-
specific ROC curves (28), including ordinal and continuous covariates which were 
dichotomized, where necessary, into clinically relevant categories. For each Bayesian 
nonparametric model, we estimated the densities and distribution by disease status. In 
addition, we also constructed covariate-adjusted ROC curves, initially developed by Janes 
and Pepe (31), but adapted to the Bayesian non-parametric approach. Here we included 
covariates without categorization. Diagnostic accuracy was expressed as the AUC with its 
95% confidence interval (95% CI). For each individual ROC curve, positivity thresholds 
corresponding to a sensitivity of 0.98, 0.95, 0.90 were identified.  
 
All statistical analyses were performed using R software version 4.0.3, using the ROCnReg 
package (32). For detailed introduction and illustration of various frameworks for 
covariate consideration in ROC curve analysis, we refer to the ROCnReg guidance 
document (32). 
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Application 

Subgroup differences 

We conducted a series of exploratory analyses to landscape the distribution of index test 
values across covariate subgroups and in the diseased and non-diseased subgroups. There 
were differences in D-dimer concentration between age groups, more prominent in the 
non-diseased group, with much wider dispersion among the diseased. Differences were 
less pronounced for other covariates (Supplementary Figure 1). 
 
Overall, there was unanimous right-skewed distribution of test results. We further visually 
confirmed largely overlapping distributions of test results between sex subgroups, with 
differences in frequency of lower test results among the non-diseased for some covariates 
(Supplementary Figure 1). The PE prevalence varied between some of the covariate 
subgroups, for example those based on age and on the presence of YEARS items (Table 
1).   
 

Performance estimates with conventional ROC approach 

We first constructed the standard ROC curve to evaluate performance without 
incorporating any covariate information. Using an empirical estimator, we found D-dimer 
had an AUC of 0.87 (95% CI: 0.86, 0.88) in detecting VTE. This was considered as the 
benchmark performance indicator. 
 

Performance estimates with covariate-specific ROC curve analysis 

When constructing covariate-specific ROC curves, our interest was in evaluating whether 
the discriminatory capacity of the index test varies between covariate subgroups. In our 
case, we were interested in the possible effect of age, sex, and pretest probability by use 
of the YEARS algorithm on the performance of the index test, D-dimer.  
 
Performance of the index test varied significantly between age groups (Table 1). In older 
patients the AUC was lower (0.84 [0.84, 0.85]) than in the younger group (AUC of 0.88 
[0.87,0.89]). We saw a noticeable gap in the CDF between the age groups (Figure 1). 
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Figure 1. Cumulative distribution function (CDF) plots by covariate and venous 
thromboembolism (VTE) status 
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Younger patients tend to have lower index test results (Supplementary Figure 1). There 
are also differences in the proportion with and without VTE in the two subgroups. This is 
an example of Scenario 3 (different distribution, different performance). Providing only 
the standard ROC curve analysis is not a fair representation of performance, as it ignores 
meaningful differences between age subgroups, in this case compromised performance 
in older patients.  
 
In contrast, the covariate-specific ROC curves and AUCs were nearly identical between 
men and women, consistent with the similar distribution of test results in subgroups by 
sex (Supplementary Figure 1), and nearly overlapping CDF (Figure 1). We can assume that 
there are no meaningful differences based on sex, an example of Scenario 1 (identical 
distribution, identical performance). In this case, we can conclude the standard AUC fairly 
expresses the performance.  
 
Patients with and without items of the YEARS had similar performance (Table 1), with 
some differences in the distribution of index test results (Figure 1). However, differences 
in the distribution are less noticeable in the lower ranges of the index test values 
(Supplementary Figure 1, F). This resembles Scenario 2 (different distribution, identical 
performance). The prevalence of the target condition differs drastically between the 
subgroups (8% vs 21%). The standard ROC curve analysis in this case may therefore be 
biased, as it does not consider underlying differences. 
 
The former analyses considered the effect of a single covariate. It is also possible that 
there is an interaction between a pair of covariates, such as age and sex. By specifying the 
parameters of the regression model to include both covariates, we can model their effect 
on performance. In Supplementary Figure 2 we can see that discriminatory capacity of  
 
the index test is slightly lower in younger men and younger women, with no pronounced 
differences by sex. In cases where the effect is unclear, further significance testing should 
be performed (33). 
 

Selection of covariate-specific positivity thresholds  

We also compared standard vs. covariate-specific threshold values for desired 
performance levels (Table 1). We found different thresholds were necessary to achieve  

187

Covariate-adjusted ROC curve analysis can accommodate differences between subgroups

Ch
ap

te
r 8



 
 

 

 
 

Figure 2. Threshold values for D-dimer, along age (A, B, C) and the YEARS score (D, E, 
F), modeling using the Bayesian nonparametric approach. Posterior mean (solid black 

line) and 95% pointwise credible band for D-dimer thresholds, corresponding to 
sensitivity of 0.98, 0.95 and 0.90. 

 
the same level of performance. Taking age as an example, there is a difference of nearly 
250 ng/mL in thresholds for younger versus older patients to achieve a sensitivity of 0.95. 
 

Thus, higher positivity thresholds for D-dimer have to be selected for elderly patients, 
visually illustrated in Figure 2. This is consistent with the understanding that D-dimer 
levels increase with age. In such settings, recall Scenario 3, the covariate-specific ROC 
curves are different, and covariate-specific positivity thresholds should, ideally, be used. 
Differences were less prominent for other covariates. Looking at each point of the YEARS 
algorithm (scale of 0 to 3), the positivity thresholds are nearly identical, meaning the 
standard threshold would achieve the same sensitivity in both groups (Table 1). As 
mentioned previously, this may be explained by the similarities in distribution in the lower 
ranges, which corresponds to high sensitivity. In Figure 2 we can see that the same 
threshold would apply to any point on the YEARS algorithm to meet the desired sensitivity 
level. As no meaningful differences are observed, we can conclude that the ROC curves 
are identical.  
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Performance estimates with covariate-adjusted ROC curve analysis 

In some cases, it may be informative to also present a covariate-adjusted ROC curve, one 
that takes covariate information into account: a weighted average of the covariate-
specific ROC curves, with weights corresponding to the proportion of those with the 
target condition in the two subgroups. We constructed ROC curves that were adjusted for 
age, sex, the YEARS algorithm, and the combination of two covariates. The covariate-
adjusted AUCs were almost identical to each other and reflected the standard pooled AUC 
of 0.87 (see Figure 3).  
 

 
Figure 3. Standard (pooled) vs covariate-adjusted ROC curves. 

 

Discussion 

Most diagnostic accuracy studies that present ROC curves to summarize test performance 
ignore covariates. Yet constructing covariate-specific ROC curves can be informative for 
understanding the relationship between covariates and a test’s performance and 
positivity threshold. There may be stratum-specific differences in performance that can 
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influence further clinical decision making or, in the absence of any meaningful differences, 
we may conclude that the standard ROC curve produces fair estimates of performance. 
 
Adjusting for covariate effects would be most necessary when comparing the 
performance of different tests, to alleviate any bias that may arise from unfair 
representation of patient characteristics where the performance may vary, as illustrated 
by Pepe et al. (3). We can also assume multicenter studies, with intrinsically different test 
settings, may benefit from adjusting for covariates. Yet comparisons between other 
techniques such as multi-level analysis or other proposed mixed methods for handling 
issues related to multicenter data are less established. 
 
Importantly, this is an area that deserves more attention, particularly in the presence of 
clustered data. Covariate adjustment may be preferred with smaller sample sizes, which 
may be problematic for covariate-specific analysis. Covariate-adjusted ROC analyses can 
also consider continuous variables, in addition to categorical and binary ones. 
 
Our study presents some limitations. In our IPD cohort, verification of the outcome was 
not the same for all patients in most studies and we relied on multiple reference 
standards. Imaging was performed for those with high clinical suspicion and/or high D-
dimer, and clinical follow-up for those with low D-dimer levels.  
 
In meta-analyses of diagnostic accuracy studies, heterogeneity in test performance is 
common across the primary studies. This may be due to patient or test characteristics and 
thus present a genuine difference in performance based on biology, but it may also be 
artefactual and due to study design flaws. Such artefactual factors can be identified with 
the QUADAS-2 tool (34). In the motivating example, we selected covariates based on a 
biologic basis, however, we can also utilize study design characteristics as covariates. 
Various approaches for including such covariates in meta-analysis of ROC curves have 
been proposed (35). Inclusion of artefactual covariates in conditional ROC curve analysis 
can also be incorporated to reflect, for example, center differences in multicenter 
diagnostic accuracy studies. This application warrants further exploration, as adjustment 
for center differences is another element of diagnostic accuracy research that remains 
less established.  
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We here presented results using a Bayesian nonparametric approach. Other methods, 
such as a semiparametric approach and a nonparametric kernel-based regression model, 
have been proposed (33). The Bayesian nonparametric approach is flexible to various 
distribution features, as it can adapt to skewness, nonlinearities, or data with higher 
variability. This makes it a practical choice for use with many different diseases and 
populations. The computational demand is however greater with this approach compared 
to some other models. We further note the limitations of methods such as the kernel-
based regression models, which have long computation times and more limitations 
regarding number and type of covariates that can be included in the model. For an in-
depth review, including an overview of various proposed statistical concepts and their 
application can be found in the work by In ́acio and Rodríguez-Alvarez et al. and related 
publications (4, 5). 
 
Incorporating covariate information into ROC curve analysis is not yet common practice, 
despite methods that have been proposed decades ago. We hope that the analysis 
presented here will lead to a more widespread application of such conditional ROC curves, 
which can provide more robust information on test performance and may improve our 
ability to select thresholds catered for specific subgroups. 
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Supplementary Table 2. Characteristics of the study group 
 

 Individual patient data 

Total 21621 

Females  13334 (61.7%) 

Mean age, years (SD) 54.58 (18.29) 

Median D-dimer, ng/mL (IQR) 630 (285, 1402) 

VTE  3150 (14.6%) 

Clinical signs of DVT  1454 (6.7%) 

Hemoptysis  875 (4.0%) 

Inpatient setting  1344 (6.2%) 

Active cancer  1939 (9.0%) 

YEARS score   

   0 11114 (51.4%) 

   1 9430 (43.6%) 

   2 1049 (4.9%) 

   3 28 (0.1%) 
All values expressed numbers, unless otherwise noted 
Standard deviation (SD), interquartile range (IQR), venous thromboembolism (VTE), deep vein thrombosis 
(DVT) 
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Supplementary Figure 1. Histograms for D-dimer frequency by covariate in those 
without VTE (left) and with VTE (right) 
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Supplementary Figure 2. Graphical results for covariate-specific ROC, including 
interaction between age and sex. Top row: Posterior mean of the covariate-specific 
ROC curve along age, separately for men (A) and women (B). Bottom row: Posterior 

mean and 95% pointwise credible band for the covariate-specific AUC along age, 
separately for men (C) and women (D). True positive fraction (TPF), false positive 

fraction (FPF), area under the receiver operating characteristic curve (AUC). 
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General Discussion 

This thesis focuses on handling challenges related to bias and variability in test accuracy 
research. We emphasized the importance of careful methodological consideration when 
designing and executing test accuracy studies, based on observations that important 
elements associated to test performance are frequently overlooked.  
 
The journey from biomarker discovery to implementation is a long and arduous process, 
with many markers failing to meet the standards for regulatory approval and clinical use 
(1). Oftentimes the initial enthusiasm of promising biomarker performance is met with 
attenuated accuracy with external validation. Our systematic reviews and meta-analyses 
on the performance of non-alcoholic fatty liver disease (NAFLD) biomarkers confirmed 
the observation that, over repeated validation studies, many were found to have more 
modest performance (Chapter 2) (2, 3) . This was further confirmed in our large external 
validation of seventeen different biomarkers; most did not meet our performance 
prerequisite - we selected a priori at an area under the receiver operating characteristic 
curve (AUC) of 0.80 - despite their selection based on pathophysiologic understanding 
(Chapter 6).  
 
We also consistently observed that many test accuracy studies are conducted with a 
simplistic, one-size-fits-all mindset. If we consider a continuous biomarker, we can 
imagine that even the decision of selecting a positivity threshold will generally require 
different considerations. On whom will the test be used? In what setting? For what 
purpose? Such factors are valuable for balancing the trade-off between the sensitivity and 
specificity of a test. Yet, in many published test accuracy studies, meaningful and 
sometimes cross-level interactions between patient characteristics, center differences, 
index test properties, and disease prevalence remain ignored despite documented 
implications of such issues in the literature (4, 5).  
 
These issues are not unique to test accuracy research, as interventional studies come with 
their own set of biases and variation, but methodology to address these concerns is less 
developed or applied in test evaluation. Take for example adjusting for covariate or center 
differences: these factors are regularly controlled for in interventional studies, but 
sparsely regarded when evaluating test performance. That is not to say there haven’t 
been advancements in methodology. Novel approaches have been proposed but are slow 
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to adaptation. This leaves the question: why? What are the barriers to their 
implementation? 
 
Outside of clinical practice, biomarkers are increasingly studied to serve a variety of 
purposes in drug development, for example to enrich the clinical trial population with 
those more likely to benefit from treatment. In therapeutic trials for non-alcoholic 
steatohepatitis (NASH), liver biopsies are required to enroll eligible patients, but this 
comes at the cost of high screen failure rates, partially due to inherent limitations of liver 
biopsy itself (6) but also because of flaws in the process of selecting patients who will 
undergo this procedure. In the LITMUS (Liver Investigation: Testing Marker Utility in 
Steatohepatitis) consortium (7), we examined the ability of non-invasive tests to preselect 
those who would undergo biopsy, thereby improving patient selection efficiency, by 
devising a novel strategy for selecting a positivity threshold which corresponds to a 
desired screen failure rate. Providing the evidentiary standards to demonstrate utility 
requires careful consideration of appropriate study design methodology, and, where 
there is need, development of innovative strategies to realize the unmet needs.  
 
While it is an impossible task to eliminate all sources of bias or variability in test accuracy 
studies, more contentious consideration of appropriate methods can improve the 
reliability of their results. In the following section we outline points that may be 
considered in future research to improve the evaluation of medical tests.  
 

Future prospects 

Expanding the scope of QUAPAS 

In Chapter 4, we reported a systematic review on the prognostic accuracy of commonly 
used liver fibrosis scores in prognosticating liver related outcomes. Risk of bias and 
applicability assessment is an essential step in the evidence synthesis process as 
weaknesses in study design, conduct, and statistical analysis can produce misleading 
results and, moreover, waste valuable resources. Various risk of bias tools have been 
developed but no tool to critically evaluate prognostic accuracy existed. Most publications 
relied on existing tools, such as QUADAS-2 (Quality Assessment of Diagnostic Accuracy 
Studies-2), developed for diagnostic test accuracy studies (8). While this may be an 
intuitive choice, it is problematic as there are different sources of bias that arise when 

204

Chapter 9



 
 

 

evaluating the prognostic ability of a test compared to the cross-sectional examination of 
diagnostic performance.  
 
To improve bias assessment in prognostic accuracy studies, we modified the QUADAS-2 
tool to develop QUAPAS (Quality Assessment of Prognostic Accuracy Studies) (Chapter 5) 
(9). The tool as it stands is intended to examine bias and applicability in prognostic 
accuracy studies, where the performance of a single index test is evaluated in reference 
to the occurrence of a future event. Analogous to tests used for a diagnostic purpose, 
oftentimes we are interested in comparing the prognostic performance between several 
tests. When there are many competing tests, knowledge of their relative performance 
provides the evidence based required to make informed decisions and recommendations.  
 
For diagnostic accuracy studies, the understanding that different sources of bias can arise 
when designing studies addressing comparative accuracy questions was the precursor for 
developing QUADAS-C (Quality Assessment of Diagnostic Accuracy Studies–Comparative) 
(10). Much like the diagnostic counterpart, QUAPAS would benefit from an extension that 
allows more systematic assessment of biases that arise in a comparative setting. Empirical 
studies that examine study design elements that can introduce bias, and the magnitude 
of their effect on performance, can supplement the development of such an extension.  
 
The field could further benefit from systematically evaluating sources of bias that occur 
in prognostic accuracy studies in general, as one of the limitations in developing QUAPAS 
was the reliance on theoretical knowledge from experts in the field in the absence of 
existing empirical data from meta-epidemiologic studies. Resources like the work by 
Whiting et al. could support further refinement of QUAPAS (11).  
 
Piloting QUAPAS, we found that risk of bias assessment, particularly in the analysis 
domain, was hampered by incomplete reporting (12). Reporting guidelines and risk of bias 
assessment tools go hand-in-hand. Reviewers are unable to detect study design flaws or 
applicability concerns if they are not clearly reported, this was the precursor for 
developing the STARD (Standards for Reporting of Diagnostic Accuracy Studies) guideline 
for diagnostic accuracy studies (13). In this regard, we highlight the importance of primary 
study investigators’ adherence to appropriate reporting guidelines, to promote overall 
transparency and reproducibility, as well as to assist reviewers in conducting quality 
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assessment. Further modification of STARD for use in prognostic accuracy studies may 
alleviate some of the challenges we faced when piloting QUAPAS. 
 

Barriers to implementing appropriate methodology 

Scenario 1. The knowledge gap 

There may be different barriers that interfere with implementation of appropriate 
methods in test accuracy research. The problem may simply be ignorance. Clinical and 
laboratory researchers may lack specialized training in test accuracy methodology, 
contributing to inadequate emphasis on the importance of accounting for factors that 
modify test performance. Studies that rely on the conventional framework for evaluating 
test accuracy, as one would find in an introductory clinical epidemiology textbook, do not 
allow us to fully appreciate the differences in performance across unique patient 
characteristics or settings.  
 
A practical solution to closing the knowledge gap is to involve experienced statisticians 
and methodologists as part of the wider study team. This, paired with the expertise of 
clinicians and stakeholders in related industries, can allow a more rigorous consideration 
and implementation of appropriate methods.  
 
Medical programs may consider implementing a more structured research training 
program, for example in the form of a structured research rotation (14). Clinical 
researchers may individually elect more specialized training, one which emphasizes the 
evaluation of medical tests. This can better enforce core principles of evidence-based 
practices and support the development of necessary skills for both critically conducting 
and interpreting test accuracy studies.  
 

Scenario 2. Fragmented knowledge 

In some cases, novel solutions to address analytical concerns have been developed but 
these do not reach the clinical audience. This is often a result of the gap in disciplines. For 
example, methods that account for the time dependency in evaluating prognostic 
accuracy are available (15), but a quick search of the literature will demonstrate that these 
proposals are not applied in practice. In some cases, there may be many different 
methods proposed, for example to conduct covariate-adjusted ROC curve analysis, but no 
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clear guidance on appropriate scenarios in which they should be applied. This, paired with 
far fewer publications that compare related methods to demonstrate the relative merits 
of each approach, as well as key distinguishing factors, can make decision making arduous 
for a beginning and perhaps even experienced researchers.  
 
To bridge the gap between statistical and clinical disciplines, methodologists can develop 
resources to support the design of test accuracy studies. This was the intention behind 
Chapter 8. We aimed to explain the added value of conducting conditional ROC curve 
analysis, supplemented by a practical application of novel statistical methods in a 
digestible manner. The didactic nature of this paper is catered to a clinical audience so 
that they may better consider and apply appropriate methods that have been proposed 
and make valid interpretations. We also point to more detailed resources, such as the 
work by Kamarudin et al., that landscape current methods for time-dependent ROC curve 
analysis and provide guidance on their application (16).  
 
The development of methodological guidelines for clinical research should be emphasized 
as much as clinical guidelines. Oftentimes we reward and incentivize new and novel ideas, 
however, quality resources such as the rigorous comparison of methods are also 
warranted.  
 

Scenario 3. Lack of resources 

Another barrier behind inadequate study methodology may be that appropriate solutions 
have not yet been developed to address outstanding issues in test accuracy research. The 
element of center effects, for example, is frequently ignored by clinical researchers, and 
literature describing challenges behind multicenter test accuracy studies that, when 
ignored, can lead to misleading conclusions is largely absent. Now there is even greater 
interest in the combination of markers to detect diseases, yet the implications for 
developing and validating such models using data from multiple centers does not appear 
to be widely appreciated. Future studies can direct attention towards evaluating the role 
of center effects in evaluating test accuracy and develop ways in which existing methods, 
for example those used in therapeutic trials, can be applied in test accuracy studies.  
 
Methodology for evaluating test accuracy beyond the diagnostic context is far less 
developed. Most attention in test accuracy research is on the diagnostic context of use, 
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leaving scarcity of methods in other areas, such as monitoring. There is a level of 
complexity introduced when expressing accuracy in the monitoring context of use. This 
will reflect not only the repeated measurements over time, but differences in the 
characteristics of the condition or outcome being monitored. A test may be used to 
monitor a patient for an imminent event, for early detection of a condition, or for 
rejection of a graft, to list a few examples. With the different scenarios in which 
monitoring is necessary, methods for expressing performance in such scenarios deserves 
more specialized attention.  
 
Where there is room for improvement, statisticians and methodologists can develop and 
propose new approaches that have undergone rigorous testing. The implementation of 
novel approaches can then be facilitated by following the suggestions discussed above, 
emphasizing the role of methodologists in bridging the gap to between statisticians and 
clinicians.  
 

Leveraging machine learning  

In the NAFLD space, there is a big pool of biomarkers and multimarker scores that have 
been proposed but, for the majority of the evaluated tests, we found suboptimal 
performance (Chapter 6). Even multimarker scores, which generally perform better than 
single markers, had disappointing accuracy in detecting ‘at-risk NASH’, indicating that 
there is still room for improvement in terms of how we develop diagnostic models. That 
was the focus of Chapter 7. We employed supervised machine learning algorithms to 
develop a series of models in detecting stages of NAFLD. In a direct comparison of the 
multimarker scores developed using simple regression approaches and those derived 
using machine learning algorithms, the latter models had superior performance.  
 
We focus here on the application of machine learning techniques to address two 
fundamental shortcomings in test accuracy research: development of diagnostic models 
and imperfect reference standards. While this thesis evaluated the application of machine 
learning in the context of developing and evaluating tests used to detect NAFLD 
conditions, we may presume these challenges may be synonymous to test development 
and evaluation in related fields. 
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Development of diagnostic models 

Many of the challenges we face when developing diagnostic models are related to data. 
Prior to designing a study, investigators may ponder whether the available data is of 
sufficient quality and scope. While there are ways to address incomplete data, like 
multiple imputation, the quality of the data may still be compromised, resulting in a lot of 
noise. One of the fundamental capabilities of machine learning, and its distinguishing 
factor from statistics alone, is the emphasis on making predictions by finding patterns 
within the data. This makes the application of machine learning for diagnostics 
particularly interesting, as the intricate algorithms may better detect signals amidst noise 
in an imperfect dataset. They may also be better suited to detect diseases with complex 
etiologies, such as NAFLD. 
 
Ideally, diagnostic models are built using a prospectively recruited study group from a 
well-defined patient population, where predictor data are preselected based on 
underlying biologic plausibility. But constructing such cohorts can be extremely resource 
intensive and, in some cases, impractical. A sensible alternative is to utilize existing data 
sources, such as registry or electronic health record (EHR) data. Machine learning 
algorithms may still be able to detect and combine signals from different patterns within 
the scope of the available data. We saw a glimpse of this in our own analysis. We 
developed models with two different sets of predictors, one which only utilized routinely 
collected clinical data, and a second set that included novel blood-based biomarkers with 
hypothesized involvement in disease progression. Much to our surprise, the models 
developed with only the clinical parameters performed just as well, and even marginally 
better, compared to the models that included the more specialized, and more resource 
intensive, biomarkers. 
 
This area of research still requires more refinement. With the availability of many 
different machine learning algorithms, more work is needed to understand which 
algorithms and accompanying study design elements will produce the most optimal and 
parsimonious models. This should be paired with a clear emphasis on the context in which 
the test will be applied in practice.  
 
We have established the importance of evaluating medical tests in appropriate settings 
and patient profiles, and this applies to the cohort used for the development and 
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validation of such diagnostic models. In the example above, we discuss developing models 
using EHR or similar data. It is important to highlight here that models developed using 
such data sources are then only generalizable to the setting it represents, in this case a 
more general primary care setting. This can however be regarded as an advantage of 
applying machine learning to such data sources, as primary care settings are likely those 
with less diagnostic resources, compared to specialized tertiary care setting’s access to 
specialists as well as more advanced diagnostic technologies. 
 
Training clinically useful machine learning models will depend on datasets of sufficient 
size and representativeness. In the LITMUS consortium, data from 39 centers in 13 
different countries were pooled together to form a single, harmonized dataset. This was 
essential for allocating sufficient patient data, but came at the high cost of legal and 
logistical obstacles that were extremely resource intensive, and dependent on the 
willingness of respective stakeholders to collaborate and share data. In the future, we can 
look towards innovative ways of training and validating models such as the use of 
centralized repositories and blockchain-based technology. In a recent publication, 
investigators locally trained machine learning models that were centrally combined by 
use of swarm learning, applied to histopathology images for the detection of solid tumors 
(17). They found that the swarm learning trained models outperformed the local models 
and were comparable to the models trained in the learning dataset. Utilizing such 
technologies can alleviate the many road-blocks related to data privacy and sharing, as 
well as maintenance of centralized patient cohorts, without compromising accuracy. 
 

The imperfect reference standard 

The application of machine learning can extend beyond developing diagnostic models. 
Their use be can leveraged to address limitations we face when attempting to evaluate 
the performance of a medical test against an imperfect reference standard. This is a 
prevalent issue in test accuracy studies. In the NAFLD space, there are several studies that 
have demonstrated high inter/intra observer variability when it comes to interpreting 
liver histology data (6). The strength of the test accuracy results is thus relative to the 
accuracy of the histological diagnosis, and limited by variability in the interpretation of 
histological features. In the absence of a perfect reference standard, this element will 
always remain a barrier in obtaining valid results. 
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Machine learning techniques have already gained popularity to address this caveat, with 
several solutions approved by the FDA for use in medical imaging (18). Their use has 
proliferated to support radiologists and histopathologists in not only automating manual 
tasks in imaging analysis, but also in detecting patterns and information that may be 
missed by the human eye (19). Studies have also been conducted to measure specific 
features of NAFLD conditions using convolutional neural network algorithms on 
digitalized histopathology images (20). Such machine learning based predictions can offer 
a potential solution for improving the reliability and reproducibility of the reference 
standard results, which remains a limitation in majority of studies evaluating accuracy of 
NAFLD biomarkers. 
 

Concluding remarks 

Understanding the full capacity of test performance is not possible without, at least in 
part, systematically considering factors that can modify performance or produce biased 
results. These efforts are beneficial for expanding ones understanding of the operational 
characteristics of medical tests and how tests can be optimized for implementation for 
specific purposes, settings or patient profiles. Methodologists play a key role in the 
development of both new methodology and resources for guiding the implementation of 
such innovations in future test accuracy studies. This can promote generation of more 
reliable data on biomarker performance, which are required both for use in clinical 
practice and for successful vetting by regulatory agencies. We hope the work in this thesis 
raises greater awareness of the intricacies in test accuracy evaluation, and promotes more 
conscientious consideration of novel methods and technologies in future works. 
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Summary 

Researchers face a variety of challenges in biomarker and test evaluation research. Robust 
study design and analytical decisions can provide potential solutions or alleviate some of 
the problems associated to bias and variability in test performance. In this thesis we 
focused on addressing some of the challenges in the evidence synthesis and generation 
of test accuracy data. 
 
In Chapter 2 we conducted a systematic review and meta-analysis on the accuracy of a 
non-invasive biomarker, circulating cytokeratin-18 (CK-18). We aimed to provide 
summary estimates with increased precision for the accuracy of CK-18’s two antigens 
(M30 and M65) in detecting non-alcoholic steatohepatitis (NASH) and fibrosis. To produce 
summary measures with sufficient granularity, meta-analyses were performed for five 
groups based on the CK-18 antigen and target condition, using one of two methods: linear 
mixed-effects multiple thresholds model or bivariate logit-normal random-effects model. 
The mixed effects multiple thresholds model was selected to account for heterogeneous 
reporting of positivity threshold values, a common occurrence for biomarkers on a 
continuous scale. This approach further allowed modeling of predictive values across a 
range of disease prevalence. Among the 41 included primary studies, we found modest 
performance for both CK-18 antigens as a stand-alone test. However, they have the 
potential to reach high negative predictive values in low prevalence settings that likely 
mirror a primary care center, indicating potential for excluding those without the disease. 
Primary studies further demonstrated that the value of CK-18 can be maximized when 
used in combination with other synergistic markers, as multi-marker scores that included 
CK-18 had higher accuracy among non-alcoholic fatty liver disease (NAFLD) patients. 
 
Various imaging modalities can also be used to stage liver fibrosis. In Chapter 3 we 
conducted an individual patient data (IPD) analysis on the ability of liver stiffness 
measurement by vibration controlled transient elastography (LSM-VCTE), and common 
multimarker scores, Fibrosis-4 index (FIB-4) and NAFLD Fibrosis Score (NFS), to propose 
diagnostic strategies that could reduce the need for liver biopsies, which remain the 
reference standard for staging fibrosis. Considering the suboptimal performance of stand-
alone non-invasive tests, here the biomarkers were assessed both individually and as part 
of a sequential testing strategy. We further aimed to better understand factors that 
interact with diagnostic performance. Our analysis showed that while accuracy was good 
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for LSM-VCTE alone, the sequential combination of markers increased sensitivity and 
specificity, with the lower threshold ruling out cases of advanced fibrosis and a higher 
threshold ruling in cirrhosis. The sequential strategy also reduced the number of 
intermediary cases that will require further testing, likely a liver biopsy. Subgroup analysis 
further demonstrated that performance was variable across different subgroups based as 
body mass index (BMI) and age. This study can serve as a benchmark for future testing 
strategies that consider newer multi-marker scores for the staging of fibrosis, although 
greater emphasis on upper and lower thresholds is warranted and our findings could 
benefit from further validation. 
 
A test’s ability to prognosticate future events can support disease management and risk 
stratification. FIB-4, NFS and APRI are multimarker-scores commonly used for detecting 
fibrosis among NAFLD patients. Chapter 4 focuses on synthesizing the available data on 
the accuracy of these models in prognosticating NAFLD-related events. This systematic 
review demonstrated that all three markers performed well in predicting liver-related 
events. However, the markers had highly inconsistent performance in prognosticating 
changes in fibrosis stage, which may, in part, be explained by the differences in the time 
horizon, definition of the target event, and baseline disease prevalence, as well as patient 
and center differences. Building on the understanding that fibrosis is strongest predictor 
for long-term clinical outcomes in NAFLD patients, future studies can focus on evaluation 
the comparative accuracy between liver biopsy and non-invasive tests. Comparable 
performance between histology-confirmed fibrosis and non-invasive tests may support 
the implementation of such biomarkers for risk stratification. The vast level of 
heterogeneity did not allow calculation of summary measures, however, rather 
highlighted several shortcomings in that can be better addressed in future studies.  
 
One of the challenges in Chapter 4 was the absence of an appropriate risk of bias and 
applicability tool to critically assess the included prognostic accuracy studies. This inspired 
the work in Chapter 5, where we utilized an existing tool called QUADAS-2 (Quality 
Assessment of Diagnostic Accuracy Studies 2) to develop QUAPAS (Quality Assessment of 
Prognostic Accuracy Studies), an adaptation of QUADAS-2 for prognostic accuracy studies. 
Studies that evaluate prognostic accuracy have key distinguishing study design elements 
compared to diagnostic accuracy studies, as different sources of biases accompany such 
longitudinal study designs, while aspects of evaluating test accuracy, in some domains, 
may overlap with evaluation of its diagnostic performance. The tool was developed using 
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the framework of QUADAS-2, combining questions likely to identify bias evaluated and 
collated from QUIPS (Quality in Prognosis Studies) and PROBAST (Prediction Model Risk 
of Bias Assessment Tool). QUAPAS follows the same steps as QUADAS-2. Risk of bias is 
judged in 5 domains: participants, index test, outcome, flow and timing, and analysis. 
Signaling questions assist the final judgment for each domain. Applicability concerns are 
assessed for the first 4 domains. Compared to QUADAS-2, QUAPAS was able to identify 
studies at risk of bias that were not captured before. The reliability of risk of bias tools is 
dependent on proper reporting, we found that this hampered the bias judgement for the 
analysis domain and is an area for improvement. Future meta-epidemiologic studies that 
systematically study biases in prognostic accuracy studies can supplement future 
refinement of the tool.  
 
Following the evidence synthesis phase, in Chapter 6, we evaluated the diagnostic 
accuracy of seventeen biomarkers, multimarker scores, and vibration-controlled transient 
elastography (VCTE) for the detection of at-risk NASH and advanced fibrosis, using data 
from the LITMUS (Liver Investigation: Testing Marker Utility in Steatohepatitis) 
Metacohort, an international cohort of biopsy-confirmed NAFLD patients. We secondarily 
aimed to increase the efficiency of future therapeutic trial enrolment by identifying 
thresholds for each marker that meet the acceptable screen failure rate. Performance was 
expressed as the area under the ROC curve (AUC), using biopsy as the reference standard, 
and compared against the Fibrosis-4 Index for Liver Fibrosis (FIB-4) in the same subgroup. 
Among 966 patients included in the analysis, no single biomarker or multi-marker 
significantly exceeded the predefined AUC 0.80 acceptability threshold, with performance 
comparable to that of FIB-4 for detection of at-risk NASH. SomaSignal, ADAPT score and 
liver stiffness measurement were able to detect advanced fibrosis with better accuracy. 
We further found that biopsy screen failure rates could be minimized to one third for trial 
recruitment, if only marker-positives undergo biopsy. The performance of biomarker 
performance and pre-screening strategy for identifying at-risk NASH patients for clinical 
trials will be further evaluated.  
 
In Chapter 7, to address the challenges behind accurate detection of NASH and at-risk 
NASH, we employed a supervised machine learning algorithm called gradient boosting 
machine (GBM) to develop a diagnostic model. Utilizing the Metacohort as the learning 
data (training set 75%, validation set 25%), 35 predictors representing both clinical and 
biomarker data were included to train models for detecting NASH, at-risk NASH, and 
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fibrosis stages. Missing data were handled by multiple imputation. Two models were 
trained for each condition: clinical versus extended (clinical data and biomarkers). Two 
variants of the NASH and at-risk NASH models were constructed: direct and composite 
models. We found the clinical and extended models were comparable, indicating no 
improvement with the addition of biomarkers in the model training for NASH, although 
small improvements were seen for fibrosis. The composite approach, which aggregates 
independent GBM models trained for each component of NASH/at-risk NASH, 
significantly improved detection compared to the direct approach. The composite GBM 
models outperformed existing single and multi-marker scores, both established and 
newly proposed marker combinations for each respective target condition. The models 
will be validated in the prospective LITMUS cohort.  
 
Lastly, in Chapter 8 we provide an illustrative application of a Bayesian nonparametric 
approach in evaluating biomarker performance incorporating covariate information as 
diagnostic accuracy is not a fixed property but may be associated to several factors related 
study or patient characteristics. Three scenarios were outlined based on a comparison 
between covariate subgroups and conclusions regarding the standard ROC curve. They 
are Scenario (1) identical distribution, identical performance, Scenario (2) different 
distribution, identical performance, and Scenario (3) different distribution, different 
performance. Differences in performance and distribution of results between covariate 
subgroups can indicate that the conventional ROC curve is not a fair representation of test 
performance. We then analyzed individual patient data (IPD) on D-dimer testing for 
excluding pulmonary embolism. Covariate-specific and covariate-adjusted ROC curve 
analyses were performed to examine performance and positivity thresholds of D-dimer 
in each covariate subgroup. We observed different scenarios when considering age, sex 
and pre-test probability, dependent on index test concentration and performance 
between covariate subgroups. Similarly, between some covariate subgroups, different 
positivity thresholds were necessary to achieve identical sensitivity. Application of 
conditional ROC curves can improve our ability understand variability in test performance, 
and improve threshold selection with improved applicability. 
 
Chapter 9 presents a general discussion of the work reported in this thesis and discusses 
prospects for future studies and development. 
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Samenvatting 

Onderzoekers staan voor meerdere uitdagingen als ze biomarkers en tests willen 
evalueren. Met een robuuste onderzoeksopzet en gepaste statistische analyses kunnen 
ze de kans op vertekening verkleinen en rekening houden met variabiliteit in 
testprestaties. Het onderzoek dat in dit proefschrift staat beschreven kwam uitdagingen 
tegen bij de synthese van eerder gerapporteerd onderzoek en bij primair, nieuw 
onderzoek naar de prestaties van biomarkers als medische tests. Dat deze we vooral 
binnen onderzoek naar bestaande en nieuwe tests voor patiënten met niet-alcoholische 
leververvetting (NAFLD).  
 
In Hoofdstuk 2 rapporteren we een systematisch literatuuronderzoek met meta-analyse 
naar de nauwkeurigheid van een niet-invasieve biomarker: circulerend cytokeratine-18 
(CK-18). We wilden samenvattende en precieze schattingen berekenen van de 
accuratesse van de twee antigenen van CK-18 (M30 en M65) bij het detecteren van niet-
alcoholische steatohepatitis (NASH) en fibrose. We voerden meta-analyses uit met twee 
verschillende statistische methoden: een lineair mixed-effects multiple thresholds model 
of een bivariaat logit-normal random-effects model. Het mixed effects multiple 
thresholds model werd gekozen om rekening te houden met de heterogene rapportage 
van drempelwaarden, wat vaak voorkomt bij studies van continu te meten biomarkers. 
Binnen de 41 geselecteerde primaire studies zagen we een matige accuratesse. Er kan 
waarschijnlijk wel een hoge negatief voorspellende waarde worden bereikt bij een lage 
prevalentie, zoals in eerstelijnszorgcenta. Uit het gerapporteerde onderzoek 
concludeerden we verder dat de prestaties van CK-18 kunnen worden verbeterd in 
combinatie met andere markers; multimarkerscores met inbegrip van CK-18 presteerden 
doorgaans beter. 
 
Ook verschillende vormen van beeldvorming kunnen worden gebruikt om het stadium 
van leverfibrose vast te stellen. Hoofdstuk 3 beschrijft een analyse op basis van 
individuele patiëntgegevens (IPD) van het meten van de stijfheid van de lever met 
“vibration controlled transient elastography” (LSM-VCTE), in vergelijking met twee 
multimarkerscores: de Fibrosis-4 index (FIB-4) en de NAFLD Fibrosis Score (NFS). Deze 
tests kunnen alle worden ingezet om de inzet van het leverbiopt, nog steeds de 
referentiestandaard voor stadiëring van fibrose, te verminderen. De niet-invasieve tests 
presteerden suboptimaal, daarom werden de ze ook als onderdeel van een sequentiële 
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teststrategie beoordeeld. Enkel voor LSM-VCTE was de accuratesse redelijk, terwijl 
sequentiële gebruik van markers leidde tot een hogere sensitiviteit en specificiteit; met 
een lage drempel kon gevorderde fibrose worden uitgesloten en met hoge drempel 
cirrose aangetoond. De sequentiële strategie verminderde ook het aantal patiënten met 
een resultaat tussen een hoge en een lage drempel. Een subgroepanalyse toonde verder 
aan dat de prestaties varieerden tussen subgroepen die waren ingedeeld op basis van 
body mass index (BMI) of leeftijd. Deze IPD meta-analyse kan dienen als referentiepunt 
bij het ontwikkelen van alternatieve teststrategieën met multimarkerscores voor de 
stadiëring van fibrose. Verdere validatie van de teststrategieën blijft nodig. 
 
Het vermogen van een test om het beloop te voorspellen kan de patiëntenzorg voor 
patiënten ondersteunen, bij voorbeeld door het toepassen van risicostratificatie. FIB-4, 
NFS en APRI zijn multimarkerscores die vaak worden gebruikt voor het evalueren van de 
mate van fibrose bij patiënten met NAFLD. Hoofdstuk 4 richt zich op een synthese van de 
beschikbare gegevens over de accuratesse van deze multimarkers bij het voorspellen van 
NAFLD-gerelateerde gebeurtenissen. Ons systematisch literatuuronderzoek toonde aan 
dat deze multimarkers goed presteerden bij het voorspellen van levergerelateerde 
gebeurtenissen. De markers presteerden echter zeer inconsistent bij het voorspellen van 
veranderingen in de mate van fibrose, wat gedeeltelijk kan worden verklaard door 
verschillen in tijdshorizon, definities en omvang en ernst van de ziekte bij aanvang van de 
studie, naast verschillen tussen studiegroepen en centra. De mate van leverfibrose staat 
bekend als de sterkste voorspeller van het beloop bij patiënten met NAFLD. Daarom 
kunnen toekomstige studies zich richten op de evaluatie van de prestaties van niet-
invasieve tests ten opzichte van het leverbiopt. Vanwege de enorme heterogeniteit 
tussen de studies konden we geen samenvattende schattingen berekenen. De 
tekortkomingen in de studies die we zagen kunnen toekomstig onderzoek worden 
vermeden. 
 
Een van de uitdagingen in het onderzoek in Hoofdstuk 4 was het ontbreken van een 
geschikt instrument om het risico op vertekening en beperkingen in de toepasbaarheid 
van de studies te beoordelen. Dit vormde de inspiratie voor het werk in Hoofdstuk 5, waar 
we een bestaand instrument, QUADAS-2 (Quality Assessment of Diagnostic Accuracy 
Studies 2), gebruikten om QUAPAS (Quality Assessment of Prognostic Accuracy Studies) 
te ontwikkelen, een aanpassing van QUADAS-2 voor studies naar prognostische 
accuratesse. Dergelijke longitudinale acuratessestudies verschillen qua opzet van cross-
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sectionele studies naar de diagnostische accuratesse, met andere bronnen van mogelijke 
vertekening. QUAPAS werd ontwikkeld met behulp van het raamwerk van QUADAS-2, 
aangevuld met vragen die op vertekening kunnen wijzen uit andere tools: QUIPS (Quality 
in Prognosis Studies) en PROBAST (Prediction Model Risk of Bias Assessment Tool).  
 
Het gebruik van QUAPAS verloopt identiek aan dat van QUADAS-2. Het risico op 
vertekening wordt beoordeeld voor vijf domeinen: de deelnemers, de indextest, de 
uitkomst, flow en timing, en de analyse. Signaleringsvragen moeten helpen tot een 
oordeel over vertekening te komen, voor elk van deze vijf domeinen. Zorgen over de 
toepasbaarheid worden beoordeeld binnen de eerste vier domeinen. QUAPAS stelde ons, 
beter dan QUADAS-2, in staat om studies te identificeren met een gevaar voor vertekende 
resultaten. De geloofwaardigheid van dit soort instrumenten staat of valt met een 
correcte rapportage van de studie. We moesten vaststellen dat de gebrekkige 
verslaglegging van de primaire studies ons oordeel over vertekening sterk belemmerde, 
zeker voor het analysedomein. Rapportage is dus voor verbetering vatbaar. Toekomstige 
meta-epidemiologische studies kunnen onze kennis over vertekening in dit type studies 
verder versterken, wat tot een verdere verbetering en verfijning van QUAPAS zou kunnen 
leiden.  
 
Waar de eerste hoofdstukken zich vooral richtten op een synthese van bestaande kennis, 
biedt Hoofdstuk 6 een andere aanpak. Daarin brengen we verslag uit van een 
vergelijkende studie naar de diagnostische accuratesse van zeventien biomarkers, 
multimarkerscores en “vibration controlled transient elastography” (VCTE) voor de 
detectie van risicovolle NASH en gevorderde fibrose. We maakten daarbij gebruik van 
gegevens verzameld binnen het LITMUS (Liver Investigation: Testing Marker Utility in 
Steatohepatitis) Metacohort, een combinatie van internationale cohortstudies in 
patiënten met door een biopt bevestigde NAFLD. We gingen ook na hoe goed deze 
markers en multimarkers waren in het mogelijk preselecteren van patiënten die in 
aanmerking komen voor geneesmiddelenonderzoek, waarbij voor deelname een 
combinatie van actieve NASH en relevante fibrose (”at-risk NASH”) vereist is. De prestatie 
van een marker werd uitgedrukt als het oppervlak onder de ROC-curve (AUC), waarbij 
biopsie als referentiestandaard werd gebruikt, en vergeleken met die van de Fibrosis-4-
index voor leverfibrose (FIB-4) in dezelfde subgroep. Van 966 patiënten konden resultaten 
worden gebruikt. Geen enkele biomarker of multi-marker overschreed op statistisch 
significante wijze de vooraf gedefinieerde AUC drempel (0,80). Meestal waren de 
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prestaties vergelijkbaar zijn met die van FIB-4. SomaSignal, de ADAPT-score en de meting 
van de leverstijfheid waren wel in staat gevorderde fibrose te detecteren met een 
aanvaardbare accuratesse. We zagen verder dat de screening op “at-risk NASH” van 
potentiële deelnemers aan geneesmiddelenonderzoek kon worden verbeterd als alleen 
zij die een resultaat boven een bepaalde drempel halen een biopsie ondergaan. In de 
prospectieve LITMUS cohortstudie zullen de prestaties van deze markers en multimarkers 
verder worden onderzocht.  
 
Om de detectie van NASH en “at-risk NASH” verder te verbeteren deden we ook een 
beroep op een vorm van “machine learning”: gradient boosting machine (GBM) genaamd 
(Hoofdstuk 7). Met data uit het LITMUS Metacohort (75% in een trainingsset, 25% in een 
validatieset) over 35 voorspellers, zowel klinische gegevens als biomarkers, bouwden we 
modellen voor het detecteren van NASH, “at-risk NASH” en fibrosestadia. Ontbrekende 
gegevens werden ingevuld door meervoudige imputatie. Voor elke doelconditie werden 
twee modellen getraind: een klinisch model en een uitgebreid model, met zowel klinische 
gegevens als biomarkers. Voor NASH en “at-risk NASH” bouwden we telkens twee 
modellen: een direct model en een samengesteld model. We ontdekten dat de prestaties 
van de klinische en van de uitgebreide modellen redelijk vergelijkbaar waren. De 
toevoeging van biomarkers leidde dus niet to een betere detectie van NASH, hoewel er 
voor fibrose kleine verbeteringen werden waargenomen. De samengestelde aanpak, met 
afzonderlijke GBM-modellen voor elke component van NASH/at-risk NASH, verbeterde de 
detectie aanzienlijk in vergelijking met de directe aanpak. De samengestelde GBM-
modellen presteerden wel beduidend beter dan de enkelvoudige markers en de 
bestaande multimarkerscores. Deze nieuwe modellen zullen worden gevalideerd in het 
lopende LITMUS-cohort. 
 
In Hoofdstuk 8 bieden we een illustratieve toepassing van een Bayesiaanse, 
nonparametrische methode voor het evalueren van de prestaties van biomarkers waarbij 
rekening wordt gehouden met informatie over covariaten. De diagnostische accuratesse 
van een test is immers meestal geen vaststaande eigenschap; prestaties kunnen variëren 
op basis van studie- of patiëntkenmerken. Er werden drie scenario’s geschetst, op basis 
van een vergelijking van de verdelingen van testresultaten tussen subgroepen. Elk 
scenario leidt tot andere conclusies over de validiteit van een niet-gecorrigeerde, 
standaard ROC-curve. Dit zijn, achtereenvolgens, scenario (1) identieke distributie, 
identieke prestaties, scenario (2) verschillende distributie, identieke prestaties, en 
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scenario (3) verschillende distributie, verschillende prestaties. Door dit soort verschillen 
is het goed mogelijk dat de conventionele ROC-curve niet goed genoeg de feitelijke 
prestaties van de test weergeeft. We gebruikten vervolgens individuele patiëntgegevens 
(IPD) uit een reeks evaluaties van D-dimeer-tests voor het uitsluiten van een longembolie. 
Covariaat-specifieke en covariaat-gecorrigeerde ROC-curves werden berekend, dit om de 
prestaties van D-dimeer te onderzoeken rekening houdend met covariaten zoals leeftijd 
of geslacht. We konden de genoemde scenario’s ook voor D-dimeer waarnemen. 
Daarnaast waren binnen de respectievelijke subgroepen ook andere positiviteitsdrempels 
nodig om een vooraf gedefinieerde sensitiviteit te bereiken. Door in plaats van de 
conventionele ROC curve ook conditionele ROC curves te berekenen kunnen we de 
accuratesse van een test beter begrijpen, en ook meer geldige afkapwaarden selecteren.   
 
Tot slot bespreken we in hoofdstuk 9 in meer algemene zin de relevantie van de 
bevindingen uit ons onderzoek en wijzen we op aanknopingspunten voor toekomstig 
onderzoek. 
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