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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Motivations

Games are a powerful paradigm for social interaction, but at the same time also a
good model for analyzing crucial notions in logical reasoning and computation. The study
of games has attracted considerable attention from researchers across a range of fields,
including sociology, economics, computer science, psychology, and philosophy, among
others. Logic is a powerful tool used to investigate reasoning and decision analysis in
games, as well as the social impact and normative regulations underlying social activities.
From a logical perspective, modeling games, analyzing game-related reasoning from both
player and modeler perspectives, investigating the impact of varying information access
on agents’ epistemic activities, and addressing computational problems related to games
all hold both practical and academic significance. This dissertation specifically delves
into game graphs, game board change, and the logical analysis of game elements across
various scenarios. For a start, in this thesis, we analyze two sorts of games in terms of
especially designed corresponding logical systems.

Topic 1. Sabotage games: modeling competitive or cooperative scenarios

The first kind of games we consider are graph games: in particular, sabotage games.
In the game, the graph that serves as the game board can change in the course of play,

something which models scenarios where simple computational tasks can get disturbed
in a hostile environment (Gierasimczuk et al., 2009). More positively, these games model
scenarios where agents are pushed toward some desirable goal by removing false paths
(Baltag et al., 2019b).

More specifically, one player moves along edges in order to reach the goal region,
while the other player sabotages by deleting edges of the graph to prevent or help the first
player. There are many different variants of the sabotage game (Rohde, 2005), we give a
simple example here.

Example 1.1: Traveler and Demon play in turns in Figure 1.1. Traveler is located at the
vertex 𝑔 at the beginning of the game, and at each round, Demon first deletes an edge, and
then Traveler moves into the next vertex along an available edge. We suppose that each

1



CHAPTER 1 INTRODUCTION

player can observe the whole cube, actions played by others, and locations at each round
through the game. Traveler wins if he finally arrives at any point in the goal region {𝑎, 𝑓}.

In fact, Demon will win if he removes edges in the vertical direction once a vertex of
that edge appears on the trajectory of Traveler.

a 𝑏

𝑐 𝑑

𝑒 𝑓

𝑔 ℎ
Figure 1.1 Game cube

Sabotage modal logic (SML for short) was proposed to study the reasoning in sabotage
games (van Benthem, 2005). The formula ◇𝜙 is used to express that Traveler can access
the successor with the property 𝜙, while ⧫𝜙 can be read that the current state has the
property 𝜙 after Demon deletes some edge. Suppose the atomic proposition letter 𝑝 only
holds at the goal region, let’s consider the players’ win-loss status by formulas after each
round. Since 𝜑0 ∶= ¬𝑝 holds at the starting vertex, then Traveler does not win at the
beginning of the game. At the first round, Demon chooses to delete the edge (𝑔, 𝑒) to
prevent Traveler from reaching the vertex satisfying 𝑝, Traveler does not win at the end of
this round, which is equivalent to say that the formula 𝜑1 =∶ ⧫ ◻ (¬𝑝) holds at the vertex
𝑔. In fact, at the end of 𝑛𝑡ℎ round,

Traveler does not win iff 𝜑𝑛 =∶ ⧫ ◻ ((¬𝑝) ∧ 𝜑𝑛−1) holds at 𝑔

where 𝑛 ≥ 1. The cube has 12 edges, which means they can play 12 rounds at most.
Traveler does not win this game iff the formula 𝜑12 holds at 𝑔. Since the formula 𝜑12 does
hold at 𝑔, Demon has a strategy for winning this game.

Hence, for finite sabotage games (with finite edges), we can capture the existence
of winning strategies for Demon, and by negating these assertions, of winning strategies
for Traveler. However, we have difficulties in precisely depicting what the strategies are,
because in SML we cannot accurately characterize players’ actions. Still, SML has con-
siderable expressive power, for instance, the property ‘there are at most 𝑛 successors’ can
be expressed in SML (Aucher et al., 2015). More results on SML for its model-theoretic
and complexity aspects can be found in (Löding and Rohde, 2003b; Aucher et al., 2018;
Areces et al., 2016; Li, 2020). However, one basic question left open was, perhaps sur-

2
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prisingly, providing an explicit axiomatization of the validities.
This problem is solved to some extent in Chapter 3 of this thesis. We slightly extend

the language of sabotage modal logic with just enough expressive devices from hybrid
logic, i.e., nominals and satisfiability operator @. In this way, we obtain a richer language
and can give a more detailed characterization of the game. Since we assign a singleton
to each nominal, we can give a concrete description of actions. For example, the formula
𝑎∧◇𝑏 can express that Traveler at the vertex named by nominal 𝑎 can move into the vertex
named by nominal 𝑏, while the formula @𝑎◇𝑏∧⧫(@𝑎¬◇𝑏) can express that Demon can
delete an edge named by nominals 𝑎 and 𝑏. With that, we can accurately capture players’
strategies. In particular, the following operator ⟨𝑎∣𝑏⟩ is useful in Chapter 3.

⟨𝑎∣𝑏⟩𝜑 ∶= (@𝑎◇ 𝑏 ∧ ⧫(@𝑎¬◇ 𝑏 ∧ 𝜑)) ∨ (@𝑎¬◇ 𝑏 ∧ 𝜑)

Intuitively, this formula can be read that ‘ it is the case that 𝜑 after cutting a possibly
existent edge from the world named by nominal 𝑎 to the world named by nominal 𝑏’.

Based on the extended language, we develop a complete Hilbert-style axiomatization
by drawing on some techniques from (van Benthem et al., 2020). We introduce several
additional techniques that can also be used to obtain further results such as extended com-
pleteness theorems for protocol models (Hoshi, 2014) of hybrid sabotage modal logic that
restrict the available sequences of link deletions. We also believe that these techniques
can solve many further axiomatization problems for logics of other kinds of graph games.
In addition, we clarify the connections between HSML-style logics of edge deletions and
modal logics for stepwise point deletion from graphs (van Benthem et al., 2020).

Topic 2. Distributed games: a multi-perspective approach

In Example 1.1, there are two basic features. First, Traveler and Demon have access
to the same information during the game. Apart from their respective decision-making
processes, there is no information that one player knows and the other player is unaware of.
Second, the external observer and the internal player have access to the same information
during the game. External observers do not possess any additional information beyond that
of the players. In other words, there is no distinction between the local internal perspective
of any player and the global external perspective of the observer.

However, there are many game scenarios that do not conform to this observation.
Our next kind of game concerns interactive scenarios that have been much less studied

3



CHAPTER 1 INTRODUCTION

in logical terms, where differences emerge between players’ local internal view of a game
and the global structure of the game as it proceeds. We employ the following example to
explore this idea.

Example 1.2: Two players, Alice and Bob, are playing a card game and it is common
knowledge that there are three available cards, 1, 2 and 3, say. Suppose each of them gets
a card from this pile of three cards, and one card is kept upside down so that nobody can
see the value. Suppose, at each round, each of them can announce the following:

1. I have card number 𝑗
2. I accept
3. I challenge

We specify that both players only announce the card number that is equal to or higher than
the actual card they have. The game starts with a round of simultaneous announcements
of cards.➀ Subsequently,

• If they announce different card numbers, then
– If the player with the announcement of the lower card announces ‘I accept’ in

the next round, then the other player wins.
– If the player with the announcement of the lower card announces ‘I challenge’

in the next round, then the other player has to show the card, and the player
showing the card wins if the card matches her announcement, otherwise, the
‘challenger’ wins.

• If they announce the same card number, we specify that at least one player has to
announce ‘I challenge’ in the next round. Whoever is challenged has to show the
card, and this player wins if the card matches her announcement. If both players
announce ‘I challenge’, then both have to show their cards. Both players may lose
in case their cards do not match their announcements.

This is an example of a game of partial information, where each player has access to
only a part of the game state and strategizes based on the local state and communication
with others. In such games, players make their moves by making assumptions about other
players’ local states, and the actual global state decides which of the players’ moves are
actually enabled. This is the setting studied in Chapter 4, that of distributed games.

We use local models to capture the game from players’ perspectives, while the global

➀ We could also allow them to make sequential announcements, and this would affect the players’ strategies leading
to a variation in the game analysis.
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Figure 1.2 Local arenas for Alice (left) and Bob (right)
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Figure 1.3 A global arena

arena generated from local models captures the whole game from the modeler’s perspec-
tive. We present all the local models in Figure 1.2. In particular, let us consider the local
models where Alice has received card number 2, and Bob card number 1, we have the
corresponding global model in Figure 1.3.

Correspondingly, we propose two-layer language, allowing us to describe local and
global perspectives precisely. For the technical results, we propose logics DGL and
DGLEA, and give complete proof systems respectively. Moreover, we explore the com-
plexity of the model-checking problems. In the end, we propose a similar framework to
explore strategic reasoning. We believe that the style of analysis developed can also be
applied to other game logics when we want to separate internal local views of agents from
global process descriptions of what is going on as the game proceeds.

The remaining topics of the thesis explore two further directions. One direction stems
from our the sabotage game concept and delves into computational problems on a broader
scale, while the other explores a case study of personalized information on social plat-
forms, which is somewhat in the spirit of the distributed game concept.
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Topic 3. Complexity of Bisimulation problems: stemming out of sabotage games

The specific game logics discussed so far have a broader background. As will be
demonstrated in Chapter 5, sabotage model logic, can be seen as instances of a much
broader technical class of modal logics with modalities that describe the effects of var-
ious operations of model change. Such logics have been used for modeling both action
and information flow, and there is a broad literature on both specific systems and general
model-theoretic and proof-theoretic themes running through all of these. (e.g., (Plaza,
1989, 2007; Baltag et al., 1998; van Ditmarsch et al., 2008; Baltag et al., 2019b)) and
others. Among these logics, we consider MCML(⟨𝑠𝑏⟩) and MCML(⟨𝑔𝑠𝑏⟩) (Areces et al.,
2012; Aucher et al., 2018; Fervari, 2014; van Benthem et al., 2022; Rohde, 2005)) to cap-
ture the class of models with edge deletion, MCML(⟨𝑏𝑟⟩) and MCML(⟨𝑔𝑏𝑟⟩) (Fervari,
2014) for the class of models with edge addition, and MCML(⟨𝑠𝑤⟩) and MCML(⟨𝑔𝑠𝑤⟩)
(Areces et al., 2014, 2012; Fervari, 2014) for the class of models arrow swap. In addition,
we consider MCML(⟨𝑑𝑒⟩) (van Benthem, 2005) and MCML(⟨𝑐ℎ⟩) (Thompson, 2020) for
the class of models with point deletion and valuation change, respectively. We also know
quite a bit about the computational complexity of model checking or satisfiability prob-
lems for these logics. For ⟨𝑢𝑝⟩ ∈ {⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑐ℎ⟩}, the satisfiability prob-
lem for MCML(𝑢𝑝) is undecidable, and for ⟨𝑢𝑝⟩ ∈ {⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑔𝑏𝑟⟩},
the model-checking problem for MCML(𝑢𝑝) is PSPACE-complete. However, one ques-
tion that has received little attention so far is one that connects basic model-theoretic and
complexity-theoretic concerns: what is the precise complexity of testing for the appropri-
ate notions of bisimulation between given finite models.

As we know, the study of bisimulation notions can be employed to explore the ex-
pressive power of logical languages.

Example 1.3: Consider the two pointed models (𝑀1, 𝑤1) and (𝑀2, 𝑤2) in Figure 1.4.
Please note that (𝑀1, 𝑤1) and (𝑀2, 𝑤2) are bisimilar, but they are not sabotage bisimilar.
Thus, we cannot distinguish these two models with the language of basic modal logic,
but we can differentiate them with the language of SML (i.e., MCML(⟨𝑔𝑠𝑏⟩)), since the
formula ◇⧫◇2 ⊤ holds at (𝑀1, 𝑤1), but it does not hold at (𝑀2, 𝑤2).

As we have shown above, the language of MCML(⟨𝑔𝑠𝑏⟩) has stronger expressive
power than that of basic modal logic. The notion of bisimulation serves not only as a
touchstone for expressive power but also, as a significant concept in game (graph) logic,
enabling a novel measure of game equivalence.
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Figure 1.4 (𝑀1, 𝑤1) (left) and (𝑀2, 𝑤2) (right)

Example 1.4: Consider two sabotage games played on directed graphs 𝐺1 and 𝐺2 in
Figure 1.5. In the graph 𝐺1, the vertex 𝑠 is the starting point, and the goal region is the set
{𝑑}, while in the graph 𝐺2, the vertex 𝑠1 is the starting point, and the goal region is the
set {𝑑1, 𝑑2}.

Figure 1.5 Directed graphs 𝐺1 (left) and 𝐺2 (right)

It is not hard to check that 𝑠 and 𝑠1 are sabotage bisimilar, and the player Demon wins
in both of the games. In fact, in two sabotage games, if the starting points are bisimilar, and
for any point in the goal region of one game, there is a bisimilar point in the goal region of
another game, then players have winning strategies in one game iff players have winning
strategies in the other game according to the definition of sabotage bisimilarity. Moreover,
it’s not surprising that “game equivalence” does not imply sabotage bisimulation.

Taking the approach to design the bisimulation game for standard bisimulation re-
lation (van Benthem, 2010), and staying in line with our main topic so far, we can also
view bisimulations in terms of games. In particular, we can design ‘sabotage bisimulation
games’ as follows, giving us a finer tool for analyzing winning powers of players in logical
terms.

Player 𝑆 (“Spoiler”) claims that two pointed models (𝑀, 𝑠) and (𝑁, 𝑡) are different,
while player 𝐷 (“Duplicator”) says they are similar. They play over 𝑘 rounds, starting from
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the match ((𝑀, 𝑠), (𝑁, 𝑡)). If objects matched in a round differ in any atomic property,
𝑆 wins. In each round, Spoiler starts with ((𝑀, 𝑤), (𝑁, 𝑣)), and there are two cases.

• She chooses some pointed model (𝑀, 𝑤′) satisfying that 𝑤′ is a successor of 𝑤
in 𝑀 (or some pointed model (𝑁, 𝑣′) satisfying that 𝑣′ is a successor of 𝑣 in 𝑁).
Next, Duplicator must respond with a pointed model (𝑁, 𝑣′) satisfying that 𝑣′ is
a successor of 𝑣 in 𝑁 ((𝑀, 𝑤′) satisfying that 𝑤′ is a successor of 𝑤 in 𝑀 , re-
spectively), and the world match after the round is ((𝑀, 𝑤′), (𝑁, 𝑣′)). If a player
cannot choose a pointed model when it is her turn in a round, she loses.

• she chooses some pointed model (𝑀′, 𝑤) satisfying that 𝑀′ is a model after some
edge in 𝑀 is deleted (or some pointed model (𝑁′, 𝑣) satisfying that 𝑁′ is a model
after some edge in 𝑁 is deleted). Next, Duplicator must respond with a pointed
model (𝑁′, 𝑣) satisfying that 𝑁′ is a model after some edge in 𝑁 is deleted
((𝑀′, 𝑤) satisfying that 𝑀′ is a model after some edge in 𝑁 is deleted, respec-
tively), and the world match after the round is ((𝑀′, 𝑤), (𝑁′, 𝑣)). If a player cannot
choose such a pointed model when it is her turn in a round, she loses.

For a sabotage bisimulation game played with two pointed models (𝑀1, 𝑤1) and
(𝑀2, 𝑤2), Duplicator wins iff (𝑀1, 𝑤1) and (𝑀2, 𝑤2) are sabotage bisimilar.

Given the entanglement between bisimulation notions and the first topic of this thesis,
namely games, we incorporate the exploration of bisimulation problems into our research
as a further extension of our study.

We undertake what we believe is a first in-depth study of this theme and find a num-
ber of lower and upper bounds, though we have not yet been able to settle the precise
complexity of testing for basic sabotage bisimulation.

Topic 4. A case study in social platforms: in the spirit of distributed games

Our final topic in this thesis concerns another extension of the concerns in topic 2 for
game scenarios. We undertake a practical case study where local and global multi-agent
perspectives play in social platforms. In the spirit of distributed games, the operator of a
social platform can be likened to a game designer accessing information from a global per-
spective. On the other hand, all users can only passively receive information distributed
by the operator, which aligns with the localized perspective obtained by individual agents.
The platform’s filtering mechanisms, akin to game rules, influence the information avail-
able to players, directly impacting their decision-making and ultimately determining the
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outcome of the game. We present the following example for more details.

Example 1.5: Consider a scenario on a social platform where agents post their opinions
on certain topics and receive information based on the filtering mechanisms employed by
the platform. Fix a group 𝐴𝑔 of agents and a set 𝑇 of topics, where 𝐴𝑔 consists of Alice
(A) and Bob (B), and 𝑇 only has two elements, cuisine (C) and sport (S). The topic of
cuisines involves Chinese cuisine, Italian cuisine, and Mexican cuisine, while the topic
of sports exclusively focuses on football. Their opinions on the topics mentioned are as
follows.

• On topic C
– Alice likes Chinese cuisine.
– Alice likes Italian cuisine.
– Bob likes Italian cuisine.
– Bob likes Mexican cuisine.

• On topic S
– Alice has no interest in sports at all.
– Bob likes football.

Moreover, Alice believes that Bob likes Italian cuisine, but she has no idea whether
Bob likes Mexican cuisine.

Filtering rules: Once someone posts a post on the platform, only those users who are
interested in the relevant topics mentioned in the post will receive it.

Post P1 from Bob: ‘I like Mexican cuisine on topic C’.
Post P2 from Bob: ‘I like football on topic S’.
Let’s consider the belief dynamics of Alice due to the filtering rules when Bob sends

Post P1 or P2 respectively.
• For the case that Bob sends Post P1, since Alice is interested in topic C. Post P1

will appear in the information flow of Alice, and then Alice will believe Bob holds
the opinion m on topic C.

• For the case that Bob sends Post P2, since Alice isn’t interested in topic S. Post P2
won’t appear in the information flow of Alice, and even Alice won’t realize that Bob
has already sent Post P2, and her beliefs keep the same.

Moreover, if Alice does not have enough available attention to view Post P1, then
which means that even if this post appears in her flow, it will not be viewed and change
her beliefs.
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This rich example suggests many topics for logical analysis. In particular, there are
now limitations on what agents can observe and infer due to two influences: the filter-
ing rules performed by the recommendation system and the limited attention available to
participants in social networks.

In Chapter 6, we focus on the first-mentioned topic, that of filtration performed by a
system, and propose two modal logics for epistemic reasoning in social platforms, with
filtration viewed in both static and dynamic settings. In the static setting, we employ ‘opin-
ion models’ coming from the work of Smets and Velázquez-Quesada (2019a) as our main
semantic tool, and introduce a special modality expressing filtering mechanisms from a
syntactic perspective. Moreover, we present a complete axiomatization of the resulting
valid principles. Next, moving to a dynamic setting, we extend the static language with
a dynamic modality capturing the model transformations resulting from filtering mecha-
nisms. Here too, we provide an axiom system for which we prove soundness and com-
pleteness. Finally, we also discuss how to extend this logic-based approach to deal with
the representation and dynamics of attention span (Wickens, 2021) for the users of social
media platforms.

There are numerous works closely related to this chapter. The propagation of opin-
ions in social networks, the dynamics of the network’s structure, and the entanglement
of knowledge and the social relation structure have all been extensively studied. See e.g.
(Seligman et al., 2011; Smets and Velázquez-Quesada, 2017, 2018, 2019a,b; Baltag et al.,
2019a; Smets and Velázquez-Quesada, 2020; Liu and Liao, 2021; Liu and Li, 2022) and
others. It is worth noting that we do not employ the notion of social relations in our mod-
els, and we will delve into more detailed considerations in the future.

To summarize, we start with two types of games, i.e., sabotage games and distributed
games, and present the corresponding logical analysis. Next, we transition from the per-
spective of sabotage modal logic to a broader viewpoint, and then focus on the exploration
of the complexity of bisimulation problems in some model-changing logics, which may
be seen in our setting as a notion of game equivalence. In the end, we propose a case study
for personalized announcements, giving rise to a natural distinction between the behavior
of individual agents and that of the total system which is in the spirit of the distributed
games studied in Chapter 4.
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1.2 Outline of the thesis

Here is a brief summary of the main topics and results in this dissertation.
In Chapter 3 we start from sabotage games, and design a new hybrid modal logic

HSML. We extend sabotage modal language with additional nominals and satisfaction op-
erators, which enhances the ability to characterize sabotage games, at the same time, we
provided a complete Hilbert-style axiomatization. Take into account the behavioral con-
straints that the player may have in more complicated sabotage games, we also introduce
protocol models with restrictions on available edge deletions, and obtain the correspond-
ing proof system. At last, we clarify the connections between HSML-style logics of edge
deletions and recent modal logics for stepwise point deletion from graphs.

In Chapter 4 we focus on another type of game, i.e. the distributed game. we intro-
duce the basic notions of local and global arenas for capturing the game from different
perspectives, and propose distributed game logic (DGL) to characterize the reasoning
about distributed games accordingly. We then provide a strong completeness result for
the proposed logic. Afterwards, we propose a distributed game logic with enabled ac-
tions (DGLEA) with subtle differences from DGL to characterize more realistic interplay
between local and global reasoning, and present a complete axiom system for it. In addi-
tion, we study the complexity of the model checking problem for these logics. Finally, we
explore to incorporate strategic announcements on a similar framework.

In Chapter 5 we zoom in on graph games, and focus on a common feature of many
graph games: graph change or model change at the model level, we extend the standard
modal language with an additional operator expressing model change. This operator can
be specified according to the model change we want to capture, such as edge-deleting
change, arrow-swapping change and valuation change, etc. With this language, we pre-
sented the notion of bisimulation uniformly. Moreover, we investigate the model compari-
son problem by providing a uniform algorithmic study. Through our algorithmic analyses,
we provided PSPACE upper bound results with respect to those modal logics.

In Chapter 6 we show how the filtration dynamics can be specified and analyzed com-
pletely in dynamic-epistemic logics of communication involving filtering events. More
specifically, we start by proposing the static logic of personalized announcements (SLPA),
followed by the dynamic logic of personalized announcements (DLPA), including axiom-
atizations, soundness and completeness results. The complementary process of attention
dynamics can also be specified and studied in the same manner, but this extension is be-
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yond the scope of this thesis.
In summary, the four chapters of this thesis extend the current logical study of game

scenarios for multi-agent interaction with new results and techniques and also with new
agenda items, some from the area of computation and some from current social media
scenarios on the internet.

1.3 Sources of each chapter

• Chapter 3 is based on:
Johan van Benthem, Lei Li, Chenwei Shi, Haoxuan Yin (2022). Hy-
brid sabotage modal logic. Journal of Logic and Computation, exac006,
https://doi.org/10.1093/logcom/exac006.
Author contributions: Johan van Benthem initiated this project，while all authors
were equally involved in developing the main ideas. Lei Li developed the proof
of completeness of HSML from a draft by Chenwei Shi, and organized the techni-
cal comparison results with modal logics of point removal with contributions from
all the authors. Chenwei Shi and Haoxuan Yin completed the protocol version of
HSML.

• Chapter 4 is based on:
Sujata Ghosh, Lei Li, Fenrong Liu, R. Ramanujam (2023). A modal logic to reason
in distributed games. Manuscript.
Author contributions: Sujata Ghosh, Fenrong Liu and R. Ramanujam initiated the
project and shaped the overall narrative of the paper. Lei Li developed the cen-
tral logical framework, including the key results on axiomatization, soundness, and
completeness.

• Chapter 5 is based on:
Sujata Ghosh, Shreyas Gupta, Lei Li (2022). Bisimulation in model-changing
modal logics: An algorithmic study. Journal of Logic and Computation, Accepted.
Author contributions: Sujata Ghosh and Shreyas Gupta initiated the project, while
all authors were equally involved in its implementation. The central algorithms and
the proofs of their correctness were developed by Lei Li and Shreyas Gupta together.

• Chapter 6 is based on:
Gaia Belardinelli, Lei Li, Sonja Smets, Anthia Solaki (2023). Logics for personal-
ized announcements. Manuscript.
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Author contributions: Sonja Smets and Anthia Solaki initiated the project, while all
authors were equally involved in developing the main ideas. The basic setting for
the logical framework was first provided by Anthia Solaki which was then further
developed by Lei Li, including the formalization of key concepts, axiomatizations,
and proofs of soundness, and completeness.
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CHAPTER 2 PRELIMINARIES

In this chapter, we provide a comprehensive overview of the preliminary aspects of
this thesis. We begin by introducing extensive games, followed by sabotage games, sabo-
tage modal logic, and several variations of this logic, i.e., model-changing modal logics.
Additionally, we present an overview of dynamic epistemic logics. Finally, in response to
the requirements of complexity research, we present foundational concepts in the field of
complexity theory.

2.1 Extensive games

For simplicity, we only focus on the games in which players do not take actions at the
same time, all actions are made by the players and randomness is not allowed.

Definition 2.1 (Extensive game): Let 𝑁 be a finite set of players, 𝐴 be a set of actions,
and 𝐻 be a set of sequences over 𝐴. An extensive game has the form (𝑁, 𝐻, 𝑃 , ≿𝑖)
satisfying the following conditions.

• ∅ ∈ 𝐻 .
• If (𝑎𝑘)𝑛𝑘=1 ∈ 𝐻 , for 𝑚 < 𝑛, we have (𝑎𝑘)𝑚𝑘=1 ∈ 𝐻 .
• An infinite sequence (𝑎𝑘)∞𝑘=1 ∈ 𝐻 iff (𝑎𝑘)𝑚𝑘=1 ∈ 𝐻 for 𝑚 ≥ 1.

(We call the element of 𝐻 is a history; a history consists of actions by some players.)
A history (𝑎𝑘)𝑚𝑘=1 ∈ 𝐻 is terminal if it is infinite or if there is not an additional action
𝑎𝑚+1 such that (𝑎𝑘)𝑚+1

𝑘=1 ∈ 𝐻 . The set of actions available after the nonterminal
history ℎ is denoted 𝐴(ℎ) = {𝑎 ∣ (ℎ, 𝑎) ∈ 𝐻} and we use 𝑍 for the set of terminal
histories.

• 𝑃 is a function that assigns to each nonterminal history (each member of 𝐻 /𝑍) a
member of 𝑁 .

• ≿𝑖 is a binary (preference) relation over 𝑍 for each player 𝑖 ∈ 𝑁 .

For an extensive game form (𝑁, 𝐻, 𝑃 , ≿𝑖), we define a partition I𝑖 of {ℎ ∈ 𝐻 ∶
𝑃 (ℎ) = 𝑖} satisfying 𝐴(ℎ) = 𝐴(ℎ′) if ℎ and ℎ′ are in the same member of the partition.
For 𝐼𝑖 ∈ I𝑖, player 𝑖 cannot distinguish any elements of 𝐼𝑖, so we use 𝐴(𝐼𝑖) for the set 𝐴(ℎ)
and by 𝑃 (𝐼𝑖) denoting the player 𝑃 (ℎ) for any ℎ ∈ 𝐼𝑖. (I𝑖 is the information partition of
player 𝑖; a set 𝐼𝑖 ∈ I𝑖 is an information set of player 𝑖.)
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The extensive game with perfect information refers to a game in which, at any stage
of the game, every player knows exactly what has taken place earlier in the game, which
implies every information set 𝐼𝑖 is a singleton set. In particular, if some information set is
not a singleton set, we call it an extensive game form with imperfect information.

Definition 2.2 (Strategy): In an extensive game with the form (𝑁, 𝐻, 𝑃 , (I𝑖)𝑖∈𝑁 , ≿𝑖),
a strategy of player 𝑖 is a function that assigns an action in 𝐴(𝐼𝑖) to each information set
𝐼𝑖 ∈ I𝑖.

The definition of extensive games above is highly flexible, allowing us to further char-
acterize intricate game scenarios. For instance, we can define an extensive game with per-
fect recall, which refers to players remembering everything they have known throughout
the game process. Thus, we introduce 𝑋𝑖(ℎ) to record player 𝑖’s experience along the
history ℎ. Formally, 𝑋𝑖(ℎ) is the ordered sequence consisting of the information sets that
the player encounters in turn in the history ℎ and the actions that he takes at them.

Definition 2.3 (Extensive game with perfect recall): An extensive game with the
form (𝑁, 𝐻, 𝑃 , (I𝑖)𝑖∈𝑁 , ≿𝑖) has perfect recall if for each player 𝑖 we have 𝑋𝑖(ℎ) = 𝑋𝑖(ℎ′)
whenever the histories ℎ and ℎ′ are in the same information set of player 𝑖.

Let’s give an example to instantiate definitions above.

Example 2.1: Consider an extensive game with the form (𝑁, 𝐻, 𝑃 ,{≿𝑖}𝑖∈𝑁)
in Figure 2.1, where the set of players 𝑁 = {𝑇 , 𝐷}, the set of histories 𝐻
is {∅, (𝑎1), (𝑎2), (𝑎2, 𝑏1), (𝑎2, 𝑏2),(𝑎2, 𝑏1, 𝑐1), (𝑎2, 𝑏1, 𝑐2), (𝑎2, 𝑏2, 𝑐1), (𝑎2, 𝑏2, 𝑐2), and for
function 𝑃 , 𝑃 (∅) = 𝑃 (𝑎2, 𝑏1) = 𝑃 (𝑎2, 𝑏2) = 𝑇 , 𝑃 (𝑎2) = 𝐷. In addition, the preference
relations ≿𝑇 and ≿𝐷 for players are as follows:

• (𝑎1) ≿𝑇 (𝑎2, 𝑏1, 𝑐1) ≿𝑇 (𝑎2, 𝑏1, 𝑐2) ≿𝑇 (𝑎2, 𝑏2, 𝑐1) ≿𝑇 (𝑎2, 𝑏2, 𝑐2)
• (𝑎2, 𝑏2, 𝑐1) ≿𝐷 (𝑎2, 𝑏1, 𝑐1) ≿𝐷 (𝑎2, 𝑏1, 𝑐2) ≿𝐷 (𝑎1) ≿𝐷 (𝑎2, 𝑏2, 𝑐2)

Hence, the information partition I𝑇 for player 𝑇 is {{∅},{(𝑎2, 𝑏1), (𝑎2, 𝑏2)}}, while
I𝐷 for player 𝑇 is {{𝑎2}}. Then there is an extensive game with imperfect informa-
tion. In Figure 2.1, for player 𝑇 , there is a dotted line connecting the ends of the his-
tories (𝑎2, 𝑏1) and (𝑎2, 𝑏2), meaning player 𝑇 cannot distinguish these two histories. Let
𝑆𝑇 ({∅}) = 𝑎2, 𝑆𝑇 ({(𝑎2, 𝑏1), (𝑎2, 𝑏2)}) = 𝑐1, the function 𝑆𝑇 specifies a strategy for
player 𝑇 . In addition, we can also list the function 𝑋𝑇 on 𝐻 , such as 𝑋𝑇 ((𝑎2, 𝑏1)) =
({∅}, 𝑎2,{(𝑎2, 𝑏1), (𝑎2, 𝑏2)}) and ect, finally, we ensure the game in Figure 2.1 has per-
fect recall.
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𝑇

𝑎1 𝑎2

𝑏1 𝑏2

𝑐1 𝑐2 𝑐1 𝑐2

𝐷

𝑇 𝑇

Figure 2.1 An extensive game with imperfect information

The logic analysis involving extensive games can be found in (van Benthem, 2002;
Harrenstein et al., 2003; van Benthem, 2014; Grossi and Turrini, 2012; Liu et al., 2016)
and others. Next, we introduce another type of game, i.e., sabotage games, and sabotage
modal logic matching these games.

2.2 Sabotage game and sabotage modal logic

In the previous chapter, we have already given some examples of sabotage games, we
now present a more formal definition, which is based on the proposal in (Rohde, 2005).

Definition 2.4: A graph 𝐺 is a tuple (𝑊 , 𝑅0, … , 𝑅𝑚), where
• 𝑊 is a nonempty finite set of states,
• 𝑅𝑖 ⊆ 𝑊 × 𝑊 .

If 𝑅𝑖 ∩ 𝑅𝑗 = ∅ for any 𝑖 ≠ 𝑗, we call 𝐺 a simple graph. For any 𝑤, 𝑢 ∈ 𝑊 , if (𝑤, 𝑣) ∈ 𝑅𝑖

implies (𝑣, 𝑤) ∈ 𝑅𝑗 for some 𝑗, then we call 𝐺 an undirected graph.

A sabotage game is a zero-sum game played by Traveler (T) and Demon (D) over
(𝐺, 𝑤0), where 𝐺 = (𝑊 , 𝑅0, … , 𝑅𝑚), 𝑤0 ∈ 𝑊 is an initial state. For convenience, we
require that ⋃𝑚 𝑅𝑚 ≠ ∅. A game position is a tuple (𝜏, 𝑠, 𝑅1, … , 𝑅𝑚), where

• 𝜏 ∈ {𝑇 , 𝐷} is a turn function, which specifies who will move next
• 𝑠 is the current state
• 𝑅𝑖 ⊆ 𝑊 × 𝑊 . A pair (𝑤, 𝑢) ∈ 𝑅𝑖 for some 𝑖 indicates there is an available edge
(𝑤, 𝑢) in the graph.

Game rules are as follows: the initial game position is given by (𝐷, 𝑠0, 𝑅0
0, … , 𝑅0

𝑚),
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which means the player Demon starts the game at 𝑠0. Traveller and Demon play in
turns. In each round, if (𝐷, 𝑠, 𝑅0, … , 𝑅𝑚) is the current position, then the player Demon
deletes an edge in the graph, which means he chooses a pair (𝑤, 𝑢) in some nonempty
set 𝑅𝑖 and (𝑇 , 𝑠, 𝑅0, … , 𝑅𝑖−1, 𝑅𝑖 ⧵ {(𝑤, 𝑢)}, 𝑅𝑖+1, … , 𝑅𝑚) becomes the successor game
position. In the case of undirected graphs, Demon additionally chooses the dual pair
(𝑢, 𝑤) in some nonempty set 𝑅𝑗 , and (𝑇 , 𝑠, 𝑅0, … , 𝑅𝑖−1, 𝑅𝑖⧵{(𝑤, 𝑢)}, 𝑅𝑖+1, … , 𝑅𝑗−1, 𝑅𝑗⧵
{(𝑢, 𝑤)}, 𝑅𝑗+1, … , 𝑅𝑚) becomes the successor game position. If (𝑇 , 𝑠, 𝑅0, … , 𝑅𝑚) is the
current game position, Traveler chooses a state 𝑡 such that (𝑠, 𝑡) ∈ 𝑅𝑖 for some 𝑖, and
(𝐷, 𝑡, 𝑅0, … , 𝑅𝑖−1, 𝑅𝑖 ⧵ {(𝑤, 𝑢)}, 𝑅𝑖+1, … , 𝑅𝑚) becomes the successor game position.

A player loses if he cannot make a move. Since ⋃𝑚 𝑅𝑚 ≠ ∅ for the initial game
position (𝜏, 𝑠, 𝑅1, … , 𝑅𝑚), then only Traveler cannot make a move in some state. Demon
can always delete the edge along which Traveler moves to the successor in the previous
round.

A play is a sequence of game positions 𝜋0, … , 𝜋𝑖−1, 𝜋𝑖, 𝜋𝑖+1, … , where 𝜋0 is the initial
game position. In the 𝑖𝑡ℎ round, Demon is in the game position 𝜋𝑖−1 and then moves to the
game position 𝜋𝑖, while Traveler is in the game position 𝜋𝑖, and then moves to the game
position 𝜋𝑖+1. Several candidates can be used for winning conditions in the following:

• Reachability. Fix a set of states 𝐹 ⊆ 𝑊 as termination states, Traveler wins the play
𝜋0, … , 𝜋𝑖, … , 𝜋𝑘 if and only if 𝜋𝑘 = (𝐷, 𝑠, 𝑅0, … , 𝑅𝑚) with 𝑠 ∈ 𝐹 , which means
Traveler reaches some state in 𝐹 .

• Complete search. Traveller wins the play 𝜋0, … , 𝜋𝑖, … , 𝜋𝑘 if and only if for any
𝑤 ∈ 𝑊 , there is a game position 𝜋𝑖 = (𝜏𝑖, 𝑠𝑖, 𝑅𝑖

0, … , 𝑅𝑖
𝑚) for some 𝑖 such that

𝑤 = 𝑠𝑖, which means Traveler can visit each state at least once.
• Hamilton path. Traveller wins the play 𝜋0, … , 𝜋𝑖, … , 𝜋𝑘 if and only if for any 𝑤𝑖 ∈

𝑊 , there is a game position 𝜋𝑖 = (𝜏𝑖, 𝑠𝑖, 𝑅𝑖
0, … , 𝑅𝑖

𝑚) for some 𝑖 such that 𝑤𝑖 = 𝑠𝑖,
and 𝑠𝑖 ≠ 𝑠𝑗 for 𝑤𝑖 ≠ 𝑤𝑗 , which mean Traveler can move along a Hamilton path,
where he visits each state exactly once.

It is worth pointing out that sabotage games are games with complete information,
which means that all players are fully aware of the current game position, the history of
previous plays, the rules, as well as the winning conditions at all times. For the following
chapters, the term ‘sabotage game’ refers to a sabotage game with a reachability condition,
formally (𝐺, 𝑤0, 𝐹 ), where 𝐺 is a graph (𝑊 , 𝑅0, … , 𝑅𝑚), 𝑤0 is the initial state in 𝑊 , 𝐹
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is a fixed subset of 𝑊 . Sometimes 𝐹 is a singleton, we use (𝐺, 𝑤0, 𝑡) for (𝐺, 𝑤0,{𝑡}). To

reason about sabotage games, van Benthem (2005) proposed the sabotage modal logic.

Definition 2.5 (Language of SML): Let Prop be a nonempty countable set of propo-
sitional variables. The language of sabotage modal logic SML is defined by the following
grammar:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⧫𝜑

where 𝑝 ∈ Prop. Additionally, 𝜙 ∨ 𝜑 ∶= ¬(¬𝜙 ∧ ¬𝜑), 𝜙 → 𝜑 ∶= ¬𝜙 ∨ 𝜑, 𝜙 ↔ 𝜑 ∶= (𝜙 →
𝜑)∧(𝜑 → 𝜙), ◻𝜙 ∶= ¬◇¬𝜙 and ∎𝜙 ∶= ¬⧫¬𝜙. Intuitively, ⧫𝜑 can be read “after an arrow
is deleted in the model, it is the case that 𝜑”. Formally, we can define it as follows.

Definition 2.6 (Model): A model 𝔐 = (𝑊 , 𝑅, 𝑉 ) is a standard modal relational model
with worlds 𝑊 , accessibility relation 𝑅 and valuation function 𝑉 . We call (𝔐, 𝑤) a
pointed model when 𝔐 is a model and 𝑤 is a world on it.

Definition 2.7 (Truth conditions): The semantics of SML is as follows:

𝔐, 𝑤 ⊧ 𝑝 iff 𝑤 ∈ 𝑉 (𝑝)

𝔐, 𝑤 ⊧ ¬𝜑 iff not 𝔐, 𝑤 ⊧ 𝜑

𝔐, 𝑤 ⊧ 𝜑 ∧ 𝜙 iff 𝔐, 𝑤 ⊧ 𝜑 𝑎𝑛𝑑 𝔐, 𝑤 ⊧ 𝜙

𝔐, 𝑤 ⊧◇𝜑 iff 𝔐, 𝑣 ⊧ 𝜑 for some 𝑣 with 𝑅𝑤𝑣

𝔐 = (𝑊 , 𝑅, 𝑉 ), 𝑤 ⊧ ⧫𝜑 iff there is a pair (𝑢, 𝑣) ∈ 𝑅 such that

(𝑊 , 𝑅 ⧵ (𝑢, 𝑣), 𝑉 ), 𝑤 ⊧ 𝜑

For convenience, let us define relation r : ((𝔐1, 𝑤1), (𝔐2, 𝑤2)) ∈ r if the following
holds: (i) 𝑊2 = 𝑊1, (ii) 𝑅2 = 𝑅1/{(𝑢, 𝑣)} for some (𝑢, 𝑣) ∈ 𝑅1, (iii) 𝑉2 = 𝑉1, and (iv)
𝑤2 = 𝑤1. With this new relation, the semantics of ⧫𝜑 can be seen as follows:

𝔐, 𝑤 ⊧ ⧫𝜑 iff there is (𝔐′, 𝑤′) such that (𝔐, 𝑤)r(𝔐′, 𝑤′) and 𝔐′, 𝑤′ ⊧ 𝜑.

The sabotage bisimulation was introduced in Aucher et al. (2018), we give the defi-
nition as follows:
Definition 2.8 (Sabotage bisimulation): Let 𝔐1 = ((𝑊1, 𝑅1, 𝑉1), 𝑤1) and 𝔐2 =
((𝑊2, 𝑅2, 𝑉2), 𝑤2) be two pointed models. We say that (𝔐1, 𝑤1) and (𝔐2, 𝑤2) are sabo-
tage bisimilar, denoted by (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), if the following conditions are satisfied:

• Atom: If (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), then (𝔐1, 𝑤1) ⊧ 𝑝 iff (𝔐2, 𝑤2) ⊧ 𝑝 for all atomic
propositions 𝑝.
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• Zig◊: If (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), and there exists 𝑣1 ∈ 𝑊1 such that 𝑤1𝑅1𝑣1, then
there is a 𝑣2 ∈ 𝑊2 such that 𝑤2𝑅2𝑣2 and (𝔐1, 𝑣1)𝑍(𝔐2, 𝑣2).

• Zag◊: Same as above in the converse direction.
• Zig⧫: If (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), and there is 𝔐′

1 such that (𝔐1, 𝑤1)r(𝔐′
1, 𝑤1),

then there is an 𝔐′
2 such that (𝔐2, 𝑤2)r(𝔐′

2, 𝑤2) and (𝔐′
1, 𝑤1)𝑍(𝔐′

2, 𝑤2).
• Zag⧫: Same as above in the converse direction.

In Example 1.3, we give two pointed models are bisimilar, but not sabotage bisimi-
lar, which means the notion of sabotage bisimilar is indeed stronger than bisimilar. The
expressive power can be measured by the following fact.

Fact 1: If two pointed models (𝔐1, 𝑤1), (𝔐2, 𝑤2) are sabotage bisimilar, then
𝔐1, 𝑤1 ⊧ 𝜙 iff 𝔐2, 𝑤2 ⊧ 𝜙 for any formula 𝜙.

We explore the complexity of the model comparison problem for sabotage modal
logic in Chapter 5, which concerns comparing two pointed models to determine if they
are sabotage bisimilar.

2.3 Model-changing modal logics

The modality ⧫ as a model-transforming operator characterizes model changes with
edge deletions. In this subsection, we present more model-changing modal logics with
some specific operators, which are proposed in Areces et al. (2012, 2014); Fervari (2014).

Definition 2.9 (Language of MCML(𝑢𝑝)): Let Prop be a nonempty countable set of
propositional variables. The language of model-changing modal logics MCML(𝑢𝑝) is
defined by the following grammar:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⟨𝑢𝑝⟩𝜑

where 𝑝 ∈ Prop, ⟨𝑢𝑝⟩ is the model-changing operator, which can be specified as ⟨𝑠𝑏⟩ (sab-
otaging edges), ⟨𝑔𝑠𝑏⟩ (globally sabotage edges), ⟨𝑠𝑤⟩ (swapping edges), ⟨𝑔𝑠𝑤⟩ (globally
swapping edges), ⟨𝑏𝑟⟩ (bridging edges) and ⟨𝑔𝑏𝑟⟩ (globally bridging edges), which we
explain below. Additionally, 𝜙 ∨ 𝜑 ∶= ¬(¬𝜙 ∧ ¬𝜑), 𝜙 → 𝜑 ∶= ¬𝜙 ∨ 𝜑, 𝜙 ↔ 𝜑 ∶= (𝜙 →
𝜑) ∧ (𝜑 → 𝜙), ◻𝜙 ∶= ¬◇ ¬𝜙 and [𝑢𝑝]𝜙 ∶= ¬⟨𝑢𝑝⟩¬𝜙.

Intuitively, ⟨𝑢𝑝⟩𝜑 can be read “it is the case that 𝜑 in some transformed model in-
duced by the operator ⟨𝑢𝑝⟩”. Before we define it formally, we first introduce the following
notations for transformed models. Fix a model 𝔐 = (𝑊 , 𝑅, 𝑉 ), then
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• 𝔐−
𝑆 = (𝑊 , 𝑅−𝑆 , 𝑉 ), where 𝑅−𝑆 = 𝑅 ⧵ 𝑆, 𝑆 ⊆ 𝑅,

• 𝔐∗
𝑆 = (𝑊 , 𝑅∗𝑆 , 𝑉 ), where 𝑅∗𝑆 = 𝑅 ∪ 𝑆 ⧵ (𝑊 × 𝑊 ⧵ 𝑆), 𝑆 ⊆ 𝑊 × 𝑊 ⧵ 𝑅,

• 𝔐+
𝐵 = (𝑊 , 𝑅+𝐵, 𝑉 ), where 𝑅+𝐵 = 𝑅 ∪ 𝐵, 𝐵 ⊆ 𝑊 × 𝑊 ⧵ 𝑅,

Now we give the truth conditions for all new operators, and the intuitive meaning is shown
in Figure 2.2-2.7.

• 𝔐, 𝑤 ⊧ ⟨𝑠𝑏⟩𝜙 , if 𝔐−
{(𝑤,𝑣)}, 𝑣 ⊧ 𝜙 for some 𝑣 ∈ 𝑊 with 𝑅𝑤𝑣.

• 𝔐, 𝑤 ⊧ ⟨𝑔𝑠𝑏⟩𝜙 , if 𝔐−
{(𝑢,𝑣)}, 𝑤 ⊧ 𝜙 for some 𝑢, 𝑣 ∈ 𝑊 with 𝑅𝑢𝑣.

• 𝔐, 𝑤 ⊧ ⟨𝑠𝑤⟩𝜙 , if 𝔐∗
{(𝑣,𝑤)}, 𝑣 ⊧ 𝜙 for some 𝑣 ∈ 𝑊 with 𝑅𝑤𝑣.

• 𝔐, 𝑤 ⊧ ⟨𝑔𝑠𝑤⟩𝜙 , if 𝔐∗
{(𝑣,𝑢)}, 𝑤 ⊧ 𝜙 for some 𝑣 ∈ 𝑊 with 𝑅𝑢𝑣.

• 𝔐, 𝑤 ⊧ ⟨𝑏𝑟⟩𝜙 , if 𝔐+
{(𝑤,𝑣)}, 𝑣 ⊧ 𝜙 for some 𝑣 ∈ 𝑊 with (𝑤, 𝑣) ∉ 𝑅.

• 𝔐, 𝑤 ⊧ ⟨𝑔𝑏𝑟⟩𝜙 , if 𝔐+
{(𝑢,𝑣)}, 𝑤 ⊧ 𝜙 for some 𝑣 ∈ 𝑊 with (𝑢, 𝑣) ∉ 𝑅.

Figure 2.2 ⟨𝑠𝑏⟩𝜑 Figure 2.3 ⟨𝑔𝑠𝑏⟩𝜑

Figure 2.4 ⟨𝑠𝑤⟩𝜑 Figure 2.5 ⟨𝑔𝑠𝑤⟩𝜑

Figure 2.6 ⟨𝑏𝑟⟩𝜑 Figure 2.7 ⟨𝑔𝑏𝑟⟩𝜑

Note that the modality ⟨𝑔𝑠𝑏⟩ is the modality ⧫ mentioned in Section 2.2, thus
MCML(𝑔𝑠𝑏) is exactly sabotage modal logic. Next, we give the definition of ⟨𝑢𝑝⟩-
bisimulation for ⟨𝑢𝑝⟩ ∈ {⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑔𝑏𝑟⟩}.
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Definition 2.10 (⟨𝑢𝑝⟩-bisimulation): Given two models 𝔐 = (𝑊 , 𝑅, 𝑉 ) and 𝔐′ =
(𝑊 ′, 𝑅′, 𝑉 ′), we say that (𝑤, 𝑆) and (𝑤′, 𝑆′) are ⟨𝑢𝑝⟩-bisimilar, if there is a nonempty
relation 𝑍 ⊆ (𝑊 ×P(𝑊 2))× (𝑊 ′ ×P(𝑊 ′2)) satisfying:

• 𝐴𝑡𝑜𝑚: 𝑤 ∈ 𝑉 (𝑝) iff 𝑤′ ∈ 𝑉 ′(𝑝)
• 𝑍𝑖𝑔: if (𝑤, 𝑣) ∈ 𝑆 then for some 𝑣′, (𝑤′, 𝑣′) ∈ 𝑆′ and (𝑣, 𝑆)𝑍(𝑣′, 𝑆′)
• 𝑍𝑎𝑔: if (𝑤′, 𝑣′) ∈ 𝑆′ then for some 𝑣, (𝑤, 𝑣) ∈ 𝑆 and (𝑣, 𝑆)𝑍(𝑣′, 𝑆′)
• 𝑍𝑖𝑔⟨𝑢𝑝⟩ and 𝑍𝑎𝑔⟨𝑢𝑝⟩ are given for specific cases as follows:

• 𝑍𝑖𝑔⟨𝑠𝑏⟩: if (𝑤, 𝑣) ∈ 𝑆, then (𝑣, 𝑆−{(𝑤,𝑣)})𝑍(𝑣′, 𝑆′−
{(𝑤′,𝑣′)}) for some 𝑣′

• 𝑍𝑎𝑔⟨𝑠𝑏⟩: if (𝑤′, 𝑣′) ∈ 𝑆′ then (𝑣, 𝑆−{(𝑤,𝑣)})𝑍(𝑣′, 𝑆′−
{(𝑤′,𝑣′)}) for some 𝑣

• 𝑍𝑖𝑔⟨𝑔𝑠𝑏⟩: if (𝑢, 𝑣) ∈ 𝑆, then (𝑤, 𝑆−{(𝑢,𝑣)})𝑍(𝑤′, 𝑆′−
{(𝑢′,𝑣′)}) for some (𝑢′, 𝑣′)

• 𝑍𝑎𝑔⟨𝑔𝑠𝑏⟩: if (𝑢′, 𝑣′) ∈ 𝑆′, then (𝑤, 𝑆−{(𝑢,𝑣)})𝑍(𝑤′, 𝑆′−
{(𝑢′,𝑣′)}) for some (𝑢, 𝑣)

• 𝑍𝑖𝑔⟨𝑠𝑤⟩: if (𝑤, 𝑣) ∈ 𝑆, then (𝑣, 𝑆∗{(𝑣,𝑤)})𝑍(𝑣′, 𝑆′∗
{(𝑣′,𝑤′)}) for some 𝑣′

• 𝑍𝑎𝑔⟨𝑠𝑤⟩: if (𝑤′, 𝑣′) ∈ 𝑆′, then (𝑣, 𝑆∗{(𝑣,𝑤)})𝑍(𝑣′, 𝑆′∗
{(𝑣′,𝑤′)}) for some 𝑣

• 𝑍𝑖𝑔⟨𝑔𝑠𝑤⟩: if (𝑢, 𝑣) ∈ 𝑆, then (𝑤, 𝑆∗{(𝑣,𝑢)})𝑍(𝑤′, 𝑆′∗
{(𝑣′,𝑢′)}) for some (𝑢′, 𝑣′)

• 𝑍𝑎𝑔⟨𝑔𝑠𝑤⟩: if (𝑢′, 𝑣′) ∈ 𝑆′, then (𝑤, 𝑆∗{(𝑣,𝑢)})𝑍(𝑤′, 𝑆′∗
{(𝑣′,𝑢′)}) for some (𝑢, 𝑣)

• 𝑍𝑖𝑔⟨𝑏𝑟⟩: if (𝑤, 𝑣) ∉ 𝑆, then (𝑣, 𝑆+{(𝑤,𝑣)})𝑍(𝑣′, 𝑆′∗
{(𝑤′,𝑣′)}) for some 𝑣′

• 𝑍𝑎𝑔⟨𝑏𝑟⟩: if (𝑤′, 𝑣′) ∉ 𝑆′, then (𝑣, 𝑆∗{(𝑤,𝑣)})𝑍(𝑣′, 𝑆′∗
{(𝑤′,𝑣′)}) for some 𝑣

• 𝑍𝑖𝑔⟨𝑔𝑏𝑟⟩: if (𝑢, 𝑣) ∉ 𝑆, then (𝑤, 𝑆+{(𝑢,𝑣)})𝑍(𝑤′, 𝑆′+
{(𝑢′,𝑣′)}) for some (𝑢′, 𝑣′)

• 𝑍𝑎𝑔⟨𝑔𝑏𝑟⟩: if (𝑢′, 𝑣′) ∉ 𝑆′, then (𝑤, 𝑆+{(𝑢,𝑣)})𝑍(𝑤′, 𝑆′+
{(𝑢′,𝑣′)}) for some (𝑢, 𝑣)

Fact 2: Given two models 𝔐 = (𝑊 , 𝑅, 𝑉 ) and 𝔐′ = (𝑊 ′, 𝑅′, 𝑉 ′), and let 𝑤 ∈
𝑊 , 𝑤′ ∈ 𝑊 ′, 𝑆 ⊆ 𝑊 2 and 𝑆′ ⊆ 𝑊 ′2. Suppose there is an ⟨𝑢𝑝⟩-bisimulation 𝑍
such that (𝑤, 𝑆)𝑍(𝑤′, 𝑆′), then for any formula 𝜙 in MCML(up), (𝑊 , 𝑆, 𝑉 ), 𝑤 ⊧ 𝜙
iff (𝑊 ′, 𝑆′, 𝑉 ′), 𝑤′ ⊧ 𝜙.

As mentioned, the modality ⟨𝑔𝑠𝑏⟩ is identical to ⧫. Still, even if we fix ⟨𝑢𝑝⟩ as ⟨𝑔𝑠𝑏⟩,
this proposition is not the same as Proposition 1 due to the differences in corresponding
definitions of bisimulation.

All model-changing modal logics above aim to capture model transforms with rela-
tional changes. We also pay attention to other modal-changing logics, which allow for
changing the valuation in models, such as local fact change logic (Thompson, 2020).

Definition 2.11 (Language of LFC): Let 𝑃 𝑟𝑜𝑝 denote a nonempty countable set of
proposition letters. The language of Local Fact Change Logic (LFC) is defined as follows:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⟨𝑐ℎ⟩𝜑
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where 𝑝 ∈ Prop. The standard boolean connectives, ◻, are defined as usual. ⟨𝑐ℎ⟩ is a
model-changing operator for changing valuations. The formula ⟨𝑐ℎ⟩𝜑 can be read “it is
the case that 𝜑 after the valuation of current is assigned by some set of proposition letters”.
The corresponding satisfaction clauses are as follows, and the intuitive meaning is shown
in Figure 2.8.

• (𝑊 , 𝑅, 𝑉 ), 𝑤 ⊧ ⟨𝑐ℎ⟩𝜑 if (𝑊 , 𝑅, 𝑉 𝑤
𝐴 ), 𝑤 ⊧ 𝜑 for some 𝐴 ⊆ 𝑃 𝑟𝑜𝑝, where the func-

tion 𝑉 𝑤
𝐴 is the same to 𝑉 except that 𝑉 𝑤

𝐴 assigns the set 𝐴 to 𝑤.

Figure 2.8 ⟨𝑐ℎ⟩𝜑

Definition 2.12 (⟨𝑐ℎ⟩-bisimulation): Given two frames 𝔉 = (𝑊1, 𝑅1) and 𝔉 =
(𝑊1, 𝑅1). A nonempty relation 𝑍 ⊆ (𝑊1×𝑃 𝑟𝑜𝑝𝑊1)×(𝑊2×𝑃 𝑟𝑜𝑝𝑊2) is ⟨𝑐ℎ⟩-bisimulation
if it satisfies:

• If (𝑠1, 𝑉1)𝑍(𝑠2, 𝑉2) then 𝑉1(𝑠1) = 𝑉2(𝑠2)
• If (𝑠1, 𝑉1)𝑍(𝑠2, 𝑉2) and 𝑅1𝑠1𝑡1, then (𝑡1, 𝑉1)𝑍(𝑡2, 𝑉2) for some 𝑡2 with 𝑅2𝑠2𝑡2

• If (𝑠1, 𝑉1)𝑍(𝑠2, 𝑉2) and 𝑅2𝑠2𝑡2, then (𝑡1, 𝑉1)𝑍(𝑡2, 𝑉2) for some 𝑡1 with 𝑅1𝑠1𝑡1

• If (𝑠1, 𝑉1)𝑍(𝑠2, 𝑉2) then (𝑠1, 𝑉1
𝑠1
𝐴 )𝑍(𝑠2, 𝑉1

𝑠2
𝐴 ) for every 𝐴 ⊆ 𝑃 𝑟𝑜𝑝.

Fact 3: Given two frames 𝔉1 = (𝑊1, 𝑅1) and 𝔉2 = (𝑊2, 𝑅2). For 𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2,
if there exists a ⟨𝑐ℎ⟩-bisimulation 𝑍 such that (𝑤1, 𝑉1)𝑍(𝑤2, 𝑉2), then 𝔉1, 𝑉1, 𝑤1 ⊧ 𝜙 iff
𝔉2, 𝑉2, 𝑤2 ⊧ 𝜙 for any formula 𝜙 in LFC.

There is also a logic capturing point deletions in models, i.e., the modal logic of stepwise
removal (van Benthem et al., 2020).

Definition 2.13 (Language of MLSR): Let Prop be a nonempty countable set of propo-
sitional variables. The language of modal logic of stepwise removal (MLSR) is defined
by the following grammar:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⟨−𝜑⟩𝜑 ∣ 𝐸𝜑

where 𝑝 ∈ Prop, 𝐸 is the existential modality, and ⟨−𝜑⟩ is the stepwise update modality.
The formula ⟨−𝜑⟩𝜙 can be read “it is the case that 𝜙 after some point having the prop-
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erty that 𝜑 (which is different from the current point) is deleted”, and the corresponding
satisfaction clauses are as follows.

• 𝔐, 𝑤 ⊧ 𝐸𝜙 if there is a world 𝑣 such that 𝔐, 𝑣 ⊧ 𝜙
• 𝔐, 𝑤 ⊧ ⟨−𝜑⟩𝜙, if there is a world 𝑣 ≠ 𝑤 in 𝔐 with 𝔐, 𝑣 ⊧ 𝜑 such that 𝔐−

𝑣 , 𝑤 ⊧ 𝜙,
where 𝔐−

𝑣 is the submodel of 𝔐 having just the world 𝑣 removed from its domain.

We have used the techniques employed in (van Benthem et al., 2020) to develop a proof
system in Chapter 3. Moreover, inspired by the stepwise update modality, we simplified
the same as ⟨𝑑𝑒⟩ given below, allowing to delete points without the formula satisfaction
property, and propose the point sabotage logic below. In Chapter 5, we study the com-
plexity of the model comparison problem for this logic.

Definition 2.14: Let Prop be a nonempty countable set of propositional variables. The
language of the point sabotage logic PSL is defined by the following grammar:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⟨𝑑𝑒⟩𝜑

where 𝑝 ∈ Prop, and ⟨𝑑𝑒⟩ is a model-changing operator for changing the domain. The
formula ⟨𝑑𝑒⟩𝜑 can be read “it is the case that 𝜑 after some point (which is different from
the current point) is deleted”. The corresponding satisfaction clauses are as follows, and
the intuitive meaning is shown in Figure 2.9.

Given a model 𝔐 = (𝑊 , 𝑅, 𝑉 ) and a world 𝑤 ∈ 𝑊 , 𝔐−
𝑤 = (𝑊 ′, 𝑅′, 𝑉 ′) is induced

from 𝔐, where 𝑊 ′ = 𝑊 ⧵ {𝑤}, 𝑅′ = 𝑅 ⧵ {(𝑢, 𝑣) ∈ 𝑅 ∣ 𝑢 = 𝑤 or 𝑣 = 𝑤}, 𝑉 ′(𝑝) =
𝑉 (𝑝) ⧵ {𝑤}.

• 𝔐, 𝑤 ⊧ ⟨𝑑𝑒⟩𝜙, if there is a world 𝑣 ≠ 𝑤 in 𝔐 such that 𝔐−
𝑣 , 𝑤 ⊧ 𝜙.

Figure 2.9 ⟨𝑑𝑒⟩𝜑

Definition 2.15 (⟨𝑑𝑒⟩-bisimulation): Given two pointed models (𝔐1, 𝑤1) =
((𝑊1, 𝑅1, 𝑉1), 𝑤1) and (𝔐2, 𝑤2) = ((𝑊2, 𝑅2, 𝑉2), 𝑤2). A non-empty relation 𝑍 is ⟨𝑑𝑒⟩-
bisimulation, if it satisfies the following conditions.

• Atom: If (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), then (𝔐1, 𝑤1) ⊧ 𝑝 iff (𝔐2, 𝑤2) ⊧ 𝑝 for all atomic
propositions 𝑝.
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• Zig◊: If (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), and there exists 𝑢 ∈ 𝑊1 such that 𝑤1𝑅1𝑣1, then
there is a 𝑣2 ∈ 𝑊2 such that 𝑤2𝑅2𝑣2 and (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2).

• Zag◊: Same as above in the converse direction.
• Zig⟨𝑑𝑒⟩: If (𝔐1, 𝑤1)𝑍(𝔐2, 𝑤2), and 𝑢 ∈ 𝑊1 with 𝑢 ≠ 𝑤1, then there is a world

𝑣 ∈ 𝑊2 and 𝑣 ≠ 𝑤2 such that (𝔐1
−
𝑢 , 𝑤1)𝑍(𝔐2

−
𝑣 , 𝑤2).

• Zag⟨𝑑𝑒⟩: Same as above in the converse direction.

Fact 4: Given two pointed models (𝔐1, 𝑤1), (𝔐2, 𝑤2), if there is a ⟨𝑑𝑒⟩-bisimulation,
then for any formula 𝜙 in PSL, 𝔐1, 𝑤1 ⊧ 𝜙 iff 𝔐2, 𝑤2 ⊧ 𝜙.

2.4 Dynamic epistemic logics

In this section, we introduce Public Announcement Logic (Plaza, 1989, 2007) and
then standard generalized communication operations of action models (Baltag and Moss,
2004; van Ditmarsch et al., 2008; van Benthem, 2011). We end this subsection with a
variant of the action model, i.e., the edge-conditioned model (Bolander, 2018). All the
results mentioned in this section come directly from the above mentioned papers.

Definition 2.16 (Language of PAL): Let 𝐺 denote a finite nonempty set of agents,
and 𝑃 𝑟𝑜𝑝 denote a nonempty countable set of proposition letters. The language of Public
Announcement Logic (PAL) is defined as follows:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ [𝑎]𝜑 ∣ [𝜑]𝜑

where 𝑝 ∈ Prop, 𝑎 ∈ 𝐺. Other boolean operators are defined as usual, ⟨𝑎⟩𝜙 ∶= ¬[𝑎]¬𝜙,
and ⟨𝜑⟩𝜙 ∶= ¬[𝜑]¬𝜙. Roughly speaking, [𝑎]𝜙 can be read “agent 𝑎 knows that 𝜙” (epis-
temic reading) or “agent 𝑎 believes that 𝜙” (doxastic reading). We adopt the latter through-
out this dissertation. Additionally, [𝜑]𝜙 can be read “after the public announcement of
𝜑, it is still the case that 𝜙”. We present the formal reading as follows.

Definition 2.17 (Epistemic model): An epistemic model 𝔐 is a tuple
(𝑊 ,{𝑅𝑎}𝑎∈𝐺, 𝑉 ), where

• 𝑊 is a non-empty set of states,
• 𝑅𝑎 ⊆ 𝑊 × 𝑊 for each 𝑎 ∈ 𝐺,
• 𝑉 is a valuation function from Prop to 2𝑊 .

We call (𝔐, 𝑤) a pointed epistemic model when 𝔐 is an epistemic model and 𝑤 is
a state on it. The truth conditions for boolean formulas are as above, and we only show
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those for modal operators.
• 𝔐, 𝑤 ⊧ [𝑎]𝜙, if for all 𝑣 such that 𝑤𝑅𝑎𝑣 ∶𝔐, 𝑣 ⊧ 𝜙
• 𝔐, 𝑤 ⊧ [𝜑]𝜙 , if for all (𝔐′, 𝑤′) such that (𝔐, 𝑤)[[𝜑]](𝔐′, 𝑤′) ∶ 𝔐′, 𝑤′ ⊧ 𝜙,

where (𝔐, 𝑤)[[𝜑]](𝔐′, 𝑤′) iff 𝑤′ = 𝑤 and 𝔐′ = (𝑊 ′,{𝑅′}𝑎∈𝐺, 𝑉 ′) is defined as
follows:

– 𝑊 ′ = {𝑤 ∈ 𝑊 ∣ 𝑀, 𝑤 ⊧ 𝜑}
– 𝑅′

𝑎 = 𝑅𝑎 ∩ 𝑊 ′

– 𝑉 ′(𝑝) = 𝑉 (𝑝) ∩ 𝑊 ′

Definition 2.18 (Axiomatization of PAL):
• all instantiations of propositional tautologies
• [𝑎](𝜙 → 𝜑)→ ([𝑎]𝜙 → [𝑎]𝜑)
• [𝜑]𝑝 ↔ (𝜑 → 𝑝) for 𝑝 ∈ Prop
• [𝜑](𝛼 ∧ 𝛽)↔ ([𝜑]𝛼 ∧ [𝜑]𝛽)
• [𝜑](¬𝜙)↔ (𝜑 → ¬[𝜑]𝜙)
• [𝜑][𝑎]𝜙 ↔ (𝜑 → [𝑎][𝜑]𝜙)
• modus ponens: from 𝜑 and 𝜑 → 𝜙, infer 𝜙
• necessitation Rule for [𝑎]: from 𝜙, infer [𝑎]𝜙
• necessitation Rule for [𝜑]: from 𝜙, infer [𝜑]𝜙

Note that we only show the minimal version of PAL, we shall add more axioms if we
work on different class of models. Fox example, if we would like to capture the class of
serial models for belief, i.e., models satisfying the condition that for any agent 𝑎 ∈ 𝐺 and a
state 𝑤 in the model, there exists a state 𝑣 with 𝑤𝑅𝑎𝑣, then we add the axiom [𝑎]𝜑 → ⟨𝑎⟩𝜑.

This axiom system is efficient, the reduction axioms provide a way of rewriting for-
mulas equivalently to make them ‘simpler’. Formally, we have the following theorem.

Theorem 2.1 (PAL reduction theorem): For any formula of PAL, there is an equivalent
formula without public announcement operators.

The proof strategy is to design a truth-preserving translation from the language of PAL
to the sublanguage without the public announcement operator, the completeness of PAL
follows. This technique is developed in many logics for the completeness, for example,
the epistemic action logic, we will see later.

Theorem 2.2 (Soundness and completeness of PAL): PAL is sound and complete
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with respect to all epistemic models.

PAL captures the scenarios with public announcements, more specifically, [[𝜑]] in the
truth condition for [𝜑]𝜙 describes the model-transforming relation before and after the
public announcement. For more complex scenarios, ‘action models’ or ‘event models’
are introduced.

Definition 2.19 (Action/Event model): Let 𝐺 denote a finite nonempty set of agents,
L be the language of epistemic action logic, which we define later. An action model A is
a tuple (𝐸,{𝑆𝑎}𝑎∈𝐺, 𝑃 𝑟𝑒), where

• 𝐸 is a nonempty finite set of events,
• 𝑆𝑎 ⊆ 𝐸 × 𝐸 for each 𝑎 ∈ 𝐺,
• 𝑃 𝑟𝑒 ∶ 𝐸 → L assigns to each event 𝑒 a precondition 𝑃 𝑟𝑒(𝑒) ∈ L.

We call (A, 𝑒) a pointed action model whenA is an action model and 𝑒 is an event on
it. If the precondition of event 𝑒 is satisfiable at a pointed epistemic model, then we can
produce a resultant situation via the following model-transforming mechanism.

Definition 2.20 (Updated model): Given a point model (𝔐, 𝑤) and a pointed action
model (A, 𝑒). If 𝔐, 𝑤 ⊧ 𝑃 𝑟𝑒(𝑒), then the updated model 𝔐′ is a tuple (𝑊 ′, 𝑅′, 𝑉 ′),
where

• 𝑊 ′ = {(𝑤, 𝑒) ∶𝑀, 𝑤 ⊧ 𝑃 𝑟𝑒(𝑒)},
• (𝑤, 𝑒)𝑅′

𝑎(𝑣, 𝑓) iff 𝑅𝑎𝑤𝑣 and 𝑆𝑎𝑒𝑓 ,
• (𝑤, 𝑒) ∈ 𝑉 ′(𝑝) iff 𝑤 ∈ 𝑉 (𝑝).

Definition 2.21 (Language of EAL): Let 𝐺 denote a finite nonempty set of agents, and
𝑃 𝑟𝑜𝑝 denote a nonempty countable set of proposition letters. The language of epistemic
action logic (𝐸𝐴𝐿) is defined as follows:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ [𝑎]𝜑 ∣ [A, 𝑒]𝜑

where 𝑝 ∈ Prop, 𝑎 ∈ 𝐺,A is an action model defined above, and 𝑒 is an event inA. Other
boolean operators are defined as usual, and ⟨A, 𝑒⟩𝜙 ∶= ¬[A, 𝑒]¬𝜙. [A, 𝑒]𝜙 can be read that
if the event 𝑒 occurs, then after that, it is the case that 𝜙. We present the formal clauses as
follows.

We only show the clause for [A, 𝑒], others are the same as the above.
• 𝔐, 𝑤 ⊧ [A, 𝑒]𝜙 , if for all (𝔐′, 𝑤′) such that (𝔐, 𝑤)[[A, 𝑒]](𝔐′, 𝑤′) ∶𝔐′, 𝑤′ ⊧ 𝜙,

where (𝔐, 𝑤)[[A, 𝑒]](𝔐′, 𝑤′) iff 𝑤′ = (𝑤, 𝑒) and 𝔐′ = (𝑊 ′,{𝑅′}𝑎∈𝐺, 𝑉 ′) is the
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updated model from (𝔐, 𝑤) and (A, 𝑒).

Definition 2.22 (Axiomatization of EAL):
• all instantiations of propositional tautologies
• [𝑎](𝜙 → 𝜑)→ ([𝑎]𝜙 → [𝑎]𝜑)
• [A, 𝑒]𝑝 ↔ (𝑃 𝑟𝑒(𝑒)→ 𝑝) for 𝑝 ∈ 𝑃 𝑟𝑜𝑝
• [A, 𝑒](𝜑 ∧ 𝜙)↔ ([A, 𝑒]𝜑 ∧ [A, 𝑒]𝜙)
• [A, 𝑒](¬𝜙)↔ (𝑃 𝑟𝑒(𝑒)→ ¬[A, 𝑒]𝜙)
• [A, 𝑒][𝑎]𝜙 ↔ (𝑃 𝑟𝑒(𝑒)→ ⋀𝑓 ∶𝑆𝑎𝑒𝑓 [𝑎][A, 𝑓 ]𝜙)
• modus ponens: from 𝛼 and 𝛼 → 𝛽, infer 𝛽
• necessitation Rule of [𝑎]: from 𝜙, infer [𝑎]𝜙
• necessitation Rule of [A, 𝑒]: from 𝜙, infer [A, 𝑒]𝜙

Similarly, when we would like to characterize more properties of knowledge or belief,
we shall add more axioms to extend the axiom system. Moreover, we also have a reduction
theorem for EAL as follows.

Theorem 2.3 (EAL reduction theorem): For any formula of EAL, there is an equiva-
lent formula without action model modalities.

The proof strategy is similar to the case for PAL, with this theorem, the completeness
of EAL follows.

Theorem 2.4 (Soundness and completeness of EAL): EAL is sound and complete
with respect to all epistemic models.

There are many variants of the action model approach to epistemic model transfor-
mation, we only mention a variant involved in this dissertation.

Definition 2.23 (Edge-conditioned event model): An edge-conditioned event model
𝜀 is a tuple (𝐸, 𝑄, 𝑃 𝑟𝑒), where 𝐸, 𝑃 𝑟𝑒 are defined as for standard event models, and
𝑄𝑖 ∶ 𝐸 × 𝐸 → L(𝑃 , 𝐺) for each 𝑖 ∈ 𝐺.

Definition 2.24 (Edge-conditioned updated model): Given a pointed epistemic
model (𝑀, 𝑤) and a pointed edge-conditioned event model (𝜀, 𝑒), and 𝑀, 𝑤 ⊧ 𝑃 𝑟𝑒(𝑒).
The edge-conditioned updated model 𝑀𝜀 is a tuple (𝑊 𝜀, 𝑅′, 𝑉 ′), where 𝑊 𝜀, 𝑉 ′ are de-
fined as for standard updated models, and for each 𝑎 ∈ 𝐺,

• 𝑊 𝜀 = {(𝑤, 𝑒) ∶𝑀, 𝑤 ⊧ 𝑃 𝑟𝑒(𝑒)},
• (𝑤, 𝑒)𝑅′

𝑎(𝑣, 𝑓) iff 𝑅𝑎𝑤𝑣 and 𝑀, 𝑤 ⊧ 𝑄𝑎(𝑒, 𝑓),
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• (𝑤, 𝑒) ∈ 𝑉 ′(𝑝) iff 𝑤 ∈ 𝑉 (𝑝).

We will prove that the class of updates expressible using action models is the same as
those expressible using edge-conditioned updates in Appendix 6.4.

2.5 Complexity classes

Throughout the dissertation, we use the standard definition of complexity classes,
which can be found in (Arora and Barak, 2009). Intuitively, a complexity class is a col-
lection of ‘efficiently computable’ functions, that is, functions on finite bit sequences that
can be computed within some finite amount of resource(s).

Let ℕ denote the set of natural numbers, and 𝑇 , 𝑆 are functions from ℕ to ℕ, and
𝐿 ⊆ {0, 1}∗ denote a language. Let DTIME(𝑇 (𝑛)) (NTIME(𝑇 (𝑛))) denote the set of all
Boolean functions that are computable by 𝑐 ×𝑇 (𝑛)-time deterministic (non-deterministic)
Turing machine for some constant 𝑐 > 0. Some complexity classes that were mentioned
in the course of discussion in this dissertation are as follows.

• The class P =⋃𝑐>0 DTIME(𝑛𝑐).
• The class NP =⋃𝑐>0 NTIME(𝑛𝑐).
• The class EXP =⋃𝑐>0 DTIME(2𝑛𝑐).
• The class PSPACE = ⋃𝑐>0 SPACE(𝑛𝑐), where 𝐿 ∈ SPACE(𝑆(𝑛)) if there is a

constant 𝑐 and a deterministic Turing Machine 𝑀 deciding 𝐿 such that on every
input 𝑥 ∈ {0, 1}∗, the total number of locations that are at some point non-blank
during 𝑀’s execution on 𝑥 is at most 𝑐 × 𝑠(∣𝑥∣).

• The class NPSPACE = ⋃𝑐>0 NSPACE(𝑛𝑐), where 𝐿 ∈ NSPACE(𝑆(𝑛)) if there
is a constant 𝑐 and a non-deterministic Turing Machine 𝑀 deciding 𝐿 such that
on every input 𝑥 ∈ {0, 1}∗, the total number of locations that are at some point
non-blank during 𝑀’s execution on 𝑥 is at most 𝑐 × 𝑠(∣𝑥∣).

The relationships among the above-mentioned complexity categories can be sum-
marised as follows.

Fact 5: P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

Before rounding off, let us mention another important concept related to the investi-
gations on complexity of different classes of decision problems that is often used to deal
with computational hardness.
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Definition 2.25: A language L1 is polynomial-time reducible to another language L2,
denoted by L1 ≤𝑝 L2, if there is a polynomial-time computable function 𝑓 ∶ {0, 1}∗ →
{0, 1}∗ such that for every 𝑥 ∈ {0, 1}∗, 𝑥 ∈ L1 if and only if 𝑓(𝑥) ∈ L2.

Definition 2.26: Given a complexity class C, we say that a language L is C-hard if
L′ ≤𝑝 L for every L′ ∈ C. We say L is C-complete if L is C-hard and L ∈ C.

In general, suppose that L is C-hard, we say the language L is at least as hard as any
other language in C. Moreover, if L is C-complete, we say L is the most difficult language
in the complexity class C. Some well-known results on complexity classes (Sipser, 1996;
Halpern and Moses, 1992) are listed below.

• P:
– the PATH problem
– the model comparison problem for the minimal modal logic

• NP-complete:
– the satisfiability problem (SAT) for propositional logic
– the Hamiltonian path (HAPATH) problem

• PSPACE-complete:
– the satisfiability problem (SAT) for the minimal modal logic
– the true quantified Boolean formula (TQBF) problem
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CHAPTER 3 HYBRID SABOTAGE MODAL LOGIC

Sabotage games were introduced in (van Benthem, 2005) as a model for algorithmic
behavior under disturbance, a topic of increasing interest when analyzing abuses of and
threats to computational systems such as the Internet. The idea is that in a task involving
stepwise traversal of a graph by a player called ‘Traveler’, the disturbing influence becomes
a counter-player called ‘Demon’ who starts each round by cutting some available link in the
graph. The resulting sabotage game is determined, and winning conditions and winning
invariants can be defined in a natural associated modal logic SML which has a standard
modality for accessible nodes from the current point as well as a new ‘deletion modality’
describing what is true at the current point after some link has been deleted from the graph.

There is a strand of literature exploring applications and technical properties of sabo-
tage games and their modal logic. Löding and Rohde (2003b) proved that model checking
for SML is Pspace-complete, while satisfiability is undecidable. Aucher et al. (2018) gave
a bisimulation-style characterization of SML under translation as a fragment of first-order
logic, as well as a complete tableau system for validity, and similar results were obtained
independently in (Areces et al., 2016) in a more general study of modal logics of graph
change. More recent results include (Li, 2020) on sabotage modal logics with definable
link deletions, and a Zero-One Law for SML, (Mierzewski, 2018), showing that in the long
run as finite graph size increases, the sabotage game is massively in favor of Traveler, who
wins at any position with probability 1. In terms of applications of the game, one interest-
ing proposal using sabotage games for learning scenarios is found in (Gierasimczuk et al.,
2009). The background to these publications is a more general investigation of the con-
nections between modal logics and existing or newly designed graph games, advocated
in the programmatic paper (van Benthem and Liu, 2020), with concrete case studies in
(Zaffora Blando et al., 2020; Grossi and Rey, 2019) on ‘poison games’, and (Thompson,
2020) on modal logics of fact change.

A natural and straightforward issue left open in this literature is a Hilbert-style ax-
iomatization of SML, which would be useful for actual standard reasoning about sabotage
games or related dynamic scenarios. Such an axiomatization must exist by the known
effective translation of SML into first-order logic, but finding a concrete workable proof
system has turned out surprisingly difficult. The present paper fills this gap, at least for
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a mild hybrid modal extension of the original SML language called HSML, and explores
some broader implications of this result. The technique used for our completeness theo-
rem stems from a recent axiomatization of a basic modal logic MLSR for stepwise object
deletion (or alternatively, of ‘quantification without replacement’) in (van Benthem et al.,
2020), that we adapt to the sabotage setting, and simplify considerably.

Once we have the connection between the standard semantics of SML and the proof
system in our completeness proof, a natural follow-up question arises. Can one modulate
this relationship between semantics and proof system so as to get completeness for other
natural semantics for modal logics of graph change? We show how this can be done for
a new ‘protocol version’, (Hoshi, 2014), of SML that restricts the available deletions for
Demon. Next, we turn to the general issue of relating modal logics for deleting edges
and for deleting vertices from graphs. We embed the sabotage logic HSML faithfully into
MLSR by encoding edge deletion as vertex deletion, and also provide a partial converse.
We end with identifying a few further topics that seem amenable to our style of analysis,
including interpolation for HSML and axiomatizing its schematic validities.

Relation to DEL For readers familiar with dynamic-epistemic logic(DEL), (van Dit-
marsch et al., 2008; Baltag and Renne, 2016; van Benthem, 2011), an analogy may be
helpful. A system like ‘public announcement logic’ (PAL) has modalities for actions !𝜑
of deleting all points that satisfy ¬𝜑 from a given graph model. PAL is decidable thanks to
‘recursion axioms’ that push dynamic modalities through complex postconditions. How-
ever, if we perform deletions step by step, we get the above logic MLSR which is unde-
cidable, (van Benthem et al., 2020), since arbitrary sequences of deletions require storage
in an unbounded memory, a device allowing for encoding of undecidable computational
problems. The situation is similar with link deletions. There are complete and decidable
dynamic-epistemic logics for uniform definable link cutting (an example of such a sys-
tem occurs in the Appendices to this paper), but in contrast, SML and HSML maintain
sequences of arbitrary stepwise link deletions that require memory, and thus incur higher
complexity. Even so, research questions about SML show many similarities with those for
PAL and MLSR. One might even think that the link deletion case is essentially the same
subject as the point deletion case, but more precise information on the true connections
will be found in Section 5 below.

Relation to hybrid modal logic In this paper, we employ devices from hybrid logic, (Are-
ces and ten Cate, 2007), to boost the expressive power of the original sabotage modal logic
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just enough to allow for a Hilbert-style axiomatization. However, this choice of a surplus
is not unique. We focus on nominals plus the @-operator as a convenient syntax, but a
version of SML extended with nominals and global existential and universal modalities
would also be worth investigating. Moreover, we just determine the most general logic of
the above games. Sabotage logics for specific classes of graphs may well be axiomatiz-
able using further proof-theoretic techniques from hybrid logic, such as those presented in
(Blackburn and Ten Cate, 2006). Finally, one could also turn the tables, and in the spirit
of (Areces et al., 2016), view our results from a hybrid perspective as exploring fragments
of the full first-order language that arise as hybrid languages are enriched with modalities
for various forms of graph change.

3.1 Hybrid sabotage modal logic

3.1.1 Language and semantics

We start by introducing the basic notions of the system HSML. For details of modal
logic that we do not explain, we refer to (Blackburn et al., 2001).
Definition 3.1 (Language): Let Prop = {𝑝, 𝑞, 𝑟, …} be a nonempty countable set
of propositional variables disjoint from a nonempty countable set of nominals Nom =
{𝑎, 𝑏, 𝑐, 𝑑, …}. The hybrid modal sabotage language HSML is defined over the set of
atoms Prop ∪ Nom by the following grammar:

𝜑 ∶∶= 𝑎 ∣ 𝑝 ∣ ⊥ ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⧫𝜑 ∣ @𝑎𝜑

Definition 3.2 (Model): A model 𝔐 = (𝑊 , 𝑅, 𝑉 ) for HSML is a standard modal rela-
tional model with worlds 𝑊 , accessibility relation 𝑅 and valuation function 𝑉 , subject to
the condition that 𝑉 assigns singleton subsets of 𝑊 to nominals.

Definition 3.3 (Truth conditions): The semantics of HSML is as follows:

𝔐, 𝑤 ⊧ 𝑎 iff 𝑤 ∈ 𝑉 (𝑎)

𝔐, 𝑤 ⊧ 𝑝 iff 𝑤 ∈ 𝑉 (𝑝)

𝔐, 𝑤 ⊧ @𝑎𝜑 iff 𝔐, 𝑣 ⊧ 𝜑 where 𝑉 (𝑎) = {𝑣}

𝔐, 𝑤 ⊧ ¬𝜑 iff not 𝔐, 𝑤 ⊧ 𝜑

𝔐, 𝑤 ⊧ 𝜑 ∧ 𝜙 iff 𝔐, 𝑤 ⊧ 𝜑 𝑎𝑛𝑑 𝔐, 𝑤 ⊧ 𝜙

𝔐, 𝑤 ⊧◇𝜑 iff 𝔐, 𝑣 ⊧ 𝜑 for some 𝑣 with 𝑅𝑤𝑣
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𝔐 = (𝑊 , 𝑅, 𝑉 ), 𝑤 ⊧ ⧫𝜑 iff there is a pair (𝑢, 𝑣) ∈ 𝑅 such that

(𝑊 , 𝑅 ⧵ (𝑢, 𝑣), 𝑉 ), 𝑤 ⊧ 𝜑.

The deletion diamond modality of SML and its universal dual ∎ = ¬⧫¬ describes
effects of cutting arbitrary links, one at a time, allowing one to express, e.g., winning
patterns for Traveler in sabotage games by modal combinations ∎◇. For more on the
expressive power of this device, cf. (Aucher et al., 2018).

However, using nominals, we can define still more, in particular, the following useful
operator describing the effect of cutting a specific named link:

⟨𝑎∣𝑏⟩𝜑 ∶= (@𝑎◇ 𝑏 ∧ ⧫(@𝑎¬◇ 𝑏 ∧ 𝜑)) ∨ (@𝑎¬◇ 𝑏 ∧ 𝜑)

Informally, this formula says that after cutting a possibly existent link between the world
named “𝑎” and the world named “𝑏”, 𝜑 will hold. The first disjunct describes the effects
of actually cutting such a link, the second disjunct takes care of the case that no link
connected 𝑎 and 𝑏. Formally, let 𝔐 = (𝑊 , 𝑅, 𝑉 ), 𝔐(𝑎∣𝑏) = (𝑊 , 𝑅(𝑎∣𝑏), 𝑉 ), where 𝑅(𝑎∣𝑏) =
𝑅 ⧵ {(𝑢, 𝑣) ∣𝔐, 𝑢 ⊧ 𝑎 and 𝔐, 𝑣 ⊧ 𝑏}. Unpacking the above truth conditions, it is easy to
see that the following holds:

Fact 6: 𝔐, 𝑤 ⊧ ⟨𝑎∣𝑏⟩𝜑 iff 𝔐(𝑎∣𝑏), 𝑤 ⊧ 𝜑.

In what follows, we will often need finite sequences of link cuts, and accordingly, we
will use the notation 𝔐(𝑎∣𝑏)𝑛 for the model (((𝔐(𝑎1∣𝑏1))(𝑎2∣𝑏2))…)(𝑎𝑛∣𝑏𝑛) and ⟨𝑎∣𝑏⟩𝑛𝜑 for
the formula ⟨𝑎1∣𝑏1⟩… ⟨𝑎𝑛∣𝑏𝑛⟩𝜑 when 𝑛 ≥ 1. Moreover, in the special case of 𝑛 = 0 we let
𝔐(𝑎∣𝑏)𝑛 denote 𝔐 while ⟨𝑎∣𝑏⟩𝑛𝜑 denotes 𝜑.

3.1.2 A proof system for HSML

Using our named link-cutting device, we now present the proof system HSML in
Table 3.1. Its first module consists of standard axioms and derivation rules from the min-
imal modal logic with hybrid additions, (Areces and ten Cate, 2007), the second module
is the usual minimal modal logic for the sabotage modality, the third module contains
dynamic-epistemic style recursion axioms for definable link cutting, because of which the
logic is not closed under uniform substitution, and the fourth module contains the crucial
derivation rule connecting the deletion modality and the named link cutting modality.➀

The first two modules drive standard modal completeness arguments, the third and

➀ We will often make tacit appeals to a proof rule of Replacement of Equivalents in what follows, but this is derivable
in the system HSML as presented here.
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Axioms and rules

for basic hybrid

modal logic

All tautologies of classical propositional logic, plus Modus Ponens

All axioms of the minimal modal logic for ◻, plus the Necessitation Rule

Axioms and rules of hybrid logic for @𝑎:

@𝑎𝜑 ↔ ¬@𝑎¬𝜑, 𝑎 ∧ 𝜑 → @𝑎𝜑, @𝑎𝑎, @𝑎𝑏 ↔ @𝑏𝑎

@𝑎𝑏 ∧ @𝑏𝜑 → @𝑎𝜑, @𝑏@𝑎𝜑 ↔ @𝑎𝜑, ◇@𝑎𝜑 → @𝑎𝜑

(Name) ∶ 𝑐 → 𝜑
𝜑 (𝑐 ∉ 𝜑)

(Paste) ∶ @𝑎◇ 𝑏 ∧ @𝑏𝜑 → 𝛿
@𝑎◇𝜑 → 𝛿 (𝑏 ∉ 𝜑, 𝛿 and 𝑎 are distinct from 𝑏)

Distribution Axiom

for ∎

Necessitation Rule

for ∎

∎(𝜙 → 𝜓)→ (∎𝜙 → ∎𝜓)
𝜑
∎𝜑

Recursion axioms

for ⟨𝑎∣𝑏⟩

⟨𝑎∣𝑏⟩𝑐 ↔ 𝑐

⟨𝑎∣𝑏⟩𝑝 ↔ 𝑝

⟨𝑎∣𝑏⟩¬𝜑 ↔ ¬⟨𝑎∣𝑏⟩𝜑

⟨𝑎∣𝑏⟩(𝜑 ∧ 𝜓)↔ (⟨𝑎∣𝑏⟩𝜑 ∧ ⟨𝑎∣𝑏⟩𝜓)

⟨𝑎∣𝑏⟩@𝑐𝜑 ↔ @𝑐⟨𝑎∣𝑏⟩𝜑

⟨𝑎∣𝑏⟩◇𝜑 ↔ ((𝑎 ∧◇(¬𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑)) ∨ (¬𝑎 ∧◇⟨𝑎∣𝑏⟩𝜑))

Inference rule

for ⧫, ⟨𝑎∣𝑏⟩

(B-𝑀𝑖𝑥) ∶
@𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑)→ 𝜃

@𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑 → 𝜃

where 𝑛 ≥ 0 and ⟨𝑎∣𝑏⟩𝑛 = ⟨𝑎1∣𝑏1⟩… ⟨𝑎𝑛∣𝑏𝑛⟩;
the new nominals 𝑎𝑛+1, 𝑏𝑛+1 are distinct from 𝑐

and other nominals in ⟨𝑎∣𝑏⟩𝑛 and do not occur in 𝜑 or 𝜃.

Table 3.1 The Hilbert-style proof system HSML

fourth capture the arbitrary deletion modality ⧫. In particular, the finite prefixes of dele-
tions in the rule schema (B-Mix) allow for reasoning about models arising from an initial
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one after finite histories of link cutting.➀

For an illustration of how one can work with this calculus, we derive a few inference
rules and theorems in the above proof system. Some of these principles will be useful in
our proof for the strong completeness of HSML in Section 3.

Fact 7: Replacement of Equivalents: 𝜑 ↔ 𝜓
⟨𝑎∣𝑏⟩𝜑 ↔ ⟨𝑎∣𝑏⟩𝜓 can be derived in HSML.

Proof First note that the monotonicity rule for ⧫ ∶ 𝜑 → 𝜓
⧫𝜑 → ⧫𝜓 is a derivable rule since ∎

is a 𝐾 operator. Next, we derive ⟨𝑎∣𝑏⟩𝜑 → ⟨𝑎∣𝑏⟩𝜓 from ⊢ 𝜑 → 𝜓 .
1. ⊢ 𝜑 → 𝜓 (assumption)

2. ⊢ (@𝑎¬◇ 𝑏 ∧ 𝜑)→ (@𝑎¬◇ 𝑏 ∧ 𝜓) (from 1 by the propositional logic CPL)

3. ⊢ ⧫(@𝑎¬◇ 𝑏 ∧ 𝜑)→ ⧫(@𝑎¬◇ 𝑏 ∧ 𝜓) (from 2 and the distribution rule for ⧫)

4. ⊢ (@𝑎◇𝑏 ∧⧫(@𝑎¬◇𝑏 ∧ 𝜑))→ (@𝑎◇𝑏 ∧⧫(@𝑎¬◇𝑏 ∧ 𝜓)) (from 3 and CPL)

5. ⊢ (@𝑎◇𝑏∧⧫(@𝑎¬◇𝑏∧𝜑))∨(@𝑎¬◇𝑏∧𝜑)→ (@𝑎◇𝑏∧⧫(@𝑎¬◇𝑏∧𝜑))∨(@𝑎¬◇𝑏∧𝜓)
(from 4 and CPL)

6. ⊢ ⟨𝑎∣𝑏⟩𝜑 → ⟨𝑎∣𝑏⟩𝜓 (from 5 and the definitions of ⟨𝑎∣𝑏⟩𝜑 and ⟨𝑎∣𝑏⟩𝜓)

The derivation of the other direction of the equivalence, namely ⊢ ⟨𝑎∣𝑏⟩𝜓 → ⟨𝑎∣𝑏⟩𝜑 from
⊢ 𝜓 → 𝜑, proceeds analogously. Putting all this together, it follows that 𝜑 ↔ 𝜓

⟨𝑎∣𝑏⟩𝜑 ↔ ⟨𝑎∣𝑏⟩𝜓
is an admissible inference rule in HSML. ∎

Fact 8: The formula: ⟨𝑎∣𝑏⟩𝑛(𝜑 ∧ 𝜓)↔ (⟨𝑎∣𝑏⟩𝑛𝜑 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓) is provable in HSML.

Proof This formula generalizes the distribution of ⟨𝑎∣𝑏⟩ over conjunction, which is a re-
cursion axiom for ⟨𝑎∣𝑏⟩ reflecting the fact that link cutting between named points is an
operation that is a partial function on models. The proof of the Fact involves an iterated
appeal to the recursion axiom for the conjunction, with successive substitutions licensed
by Replacement of Equivalents. ∎

Another simple useful fact is this.

Fact 9: The formula: @𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩𝜓 → ⧫𝜓 is provable in HSML.

Proof This formula specifies the effect of cutting the link between 𝑎 and 𝑏 in terms of
⧫. It follows easily from the above definition of the link-cutting modality ⟨𝑎∣𝑏⟩𝜑 plus an
appeal to CPL and the minimal modal logic for ⧫. ∎

Next come two facts whose proofs are more complex than the preceding ones.

➀ In the logic PAL, finite sequences of announcements can be compressed to one by the Composition Axiom. How-
ever, it is easy to show that no such compression is possible in HSML, unless we define complex modalities for
simultaneous link cuts.
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Fact 10: ⟨𝑎∣𝑏⟩𝑛 ◇ 𝜓 ↔ ⋁
𝑆⊆[𝑛]

( ⋀
𝑚∈𝑆

𝑎𝑚 ∧ ⋀
𝑚∈[𝑛]−𝑆

¬𝑎𝑚 ∧ ◇( ⋀
𝑚∈𝑆

¬𝑏𝑚 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓)) is

provable in HSML for any natural nunber 𝑛 ∈ ℕ, where [𝑛] with 𝑛 ≥ 1 denotes the set
{1, ... , 𝑛} while [0] denotes the empty set ∅.

Proof For the case that 𝑛 = 0, the formula reduces to ◇𝜓 ↔ ◇𝜓 , which is a tautology.
For the case that 𝑛 = 1, the formula reduces to ⟨𝑎1∣𝑏1⟩◇𝜑 ↔ ((𝑎1 ∧◇(¬𝑏1 ∧ ⟨𝑎1∣𝑏1⟩𝜑))∨
(¬𝑎1 ∧◇⟨𝑎1∣𝑏1⟩𝜑)), which is a recursion axiom for ⟨𝑎1∣𝑏1⟩.

Next, we prove the general case, where each subset 𝑆 of [𝑛] specifies a possible case.
In each possible case, the left side specifies what happens to those worlds to which the
current world has access to after the sequence of link cuttings.

Suppose that for all 0 ≤ 𝑛 ≤ 𝑘 and for all formulas 𝜓 , we have already shown:

⊢ ⟨𝑎∣𝑏⟩𝑛◇𝜓 ↔ ⋁
𝑆⊆ [𝑛]

( ⋀
𝑚∈𝑆

𝑎𝑚 ∧ ⋀
𝑚∈[𝑛]−𝑆

¬𝑎𝑚 ∧◇( ⋀
𝑚∈𝑆

¬𝑏𝑚 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓)) (𝐼.𝐻.)

We are going to to prove the assertion for 𝑛 = 𝑘 + 1.
For the sake of simplifying notation, let ⟨𝑐𝑘⟩ denote ⟨𝑎𝑘∣𝑏𝑘⟩, ⟨𝑐⟩𝑘 denote ⟨𝑎∣𝑏⟩𝑘 for

𝑘 ∈ ℕ and Θ𝑆
𝑛 𝜓 denote ⋁

𝑆⊆ [𝑛]
( ⋀

𝑚∈𝑆
𝑎𝑚 ∧ ⋀

𝑚∈[𝑛]−𝑆
¬𝑎𝑚 ∧◇( ⋀

𝑚∈𝑆
¬𝑏𝑚 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓)).

By the definition of ⟨𝑐⟩𝑘+1, we have
⊢ ⟨𝑐⟩𝑘+1◇𝜓 ↔ ⟨𝑐⟩𝑘⟨𝑐𝑘+1⟩◇𝜓

Applying the Replacement of Equivalents rule 𝑘 times to the recursion axiom ⊢
⟨𝑐𝑘+1⟩◇𝜓 ↔ (𝑎𝑘+1 ∧◇(¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)) ∨ (¬𝑎𝑘+1 ∧◇⟨𝑐𝑘+1⟩𝜓), we obtain

⊢ ⟨𝑐⟩𝑘⟨𝑐𝑘+1⟩◇𝜓 ↔ ⟨𝑐⟩𝑘((𝑎𝑘+1 ∧◇(¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)) ∨ (¬𝑎𝑘+1 ∧◇⟨𝑐𝑘+1⟩𝜓))

It follows that
⊢ ⟨𝑐⟩𝑘+1◇𝜓 ↔ ⟨𝑐⟩𝑘((𝑎𝑘+1 ∧◇(¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)) ∨ (¬𝑎𝑘+1 ∧◇⟨𝑐𝑘+1⟩𝜓))

Next, after applying the recursion axioms several times to the latter part of the above
formula, it follows that
⊢ ⟨𝑐⟩𝑘+1◇𝜓 ↔ ((𝑎𝑘+1 ∧ ⟨𝑐⟩𝑘◇ (¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)) ∨ (¬𝑎𝑘+1 ∧ ⟨𝑐⟩𝑘◇ ⟨𝑐𝑘+1⟩𝜓)) (∗)

Let 𝛼 and 𝛽 denote ⟨𝑐⟩𝑘◇ (¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓) and ⟨𝑐⟩𝑘◇ ⟨𝑐𝑘+1⟩𝜓 respectively. Then,

by applying the inductive hypothesis to 𝛼, 𝛽, we obtain the two facts
⊢ 𝛼 ↔ Θ𝑆

𝑘 (¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)

⊢ 𝛽 ↔ Θ𝑆
𝑘 (⟨𝑐𝑘+1⟩𝜓)

Now replacing 𝛼, 𝛽 by equivalent formulas in the formula (∗), we get
⊢ ⟨𝑐⟩𝑘+1◇𝜓 ↔ ((𝑎𝑘+1 ∧ Θ𝑆

𝑘 (¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)) ∨ (¬𝑎𝑘+1 ∧ Θ𝑆
𝑘 (⟨𝑐𝑘+1⟩𝜓)))

Focusing on the right part of this formula, we get the following equivalence:
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⊢ 𝑎𝑘+1 ∧ Θ𝑆
𝑘 (¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)↔

⋁
𝑆⊆ [𝑘]

( ⋀
𝑚∈𝑆∪{𝑘+1}

𝑎𝑚 ∧ ⋀
𝑚∈[𝑘]−𝑆

¬𝑎𝑚 ∧◇( ⋀
𝑚∈𝑆∪{𝑘+1}

¬𝑏𝑚 ∧ ⟨𝑐⟩𝑘+1𝜓))

⊢ ¬𝑎𝑘+1 ∧ Θ𝑆
𝑘 ◇ ⟨𝑐𝑘+1⟩𝜓 ↔ ⋁

𝑆⊆ [𝑘]
( ⋀

𝑚∈𝑆
𝑎𝑚 ∧ ⋀

𝑚∈[𝑘+1]−𝑆
¬𝑎𝑚 ∧◇( ⋀

𝑚∈𝑆
¬𝑏𝑚 ∧ ⟨𝑐⟩𝑘+1𝜓))

Notice how 𝑎𝑘+1 and ¬𝑎𝑘+1 distribute over the big disjunctions and how the ¬𝑏𝑘+1

gets out of ⟨𝑐⟩𝑘 by the recursion axiom for nominals and merged into the big conjunction.
Furthermore, by some combinatoric inference, we have 2[𝑘+1] = 2[𝑘]∪{𝑆 ∪{𝑘+1} ∣ 𝑆 ∈
2[𝑘]}. It thus follows that
⊢ (𝑎𝑘+1 ∧ Θ𝑆

𝑘 (¬𝑏𝑘+1 ∧ ⟨𝑐𝑘+1⟩𝜓)) ∧ (¬𝑎𝑘+1 ∧ Θ𝑆
𝑘 (⟨𝑐𝑘+1⟩𝜓))↔ Θ𝑆

𝑘+1𝜓
That is,

⊢ ⟨𝑐⟩𝑘+1◇𝜓 ↔ ⋁
𝑆⊆[𝑘+1]

( ⋀
𝑚∈𝑆

𝑎𝑚 ∧ ⋀
𝑚∈[𝑘+1]−𝑆

¬𝑎𝑚 ∧◇( ⋀
𝑚∈𝑆

¬𝑏𝑚 ∧ ⟨𝑐⟩𝑘+1𝜓))

which is what we needed to prove. ∎

Finally, we show how the B-Mix rule can be used to prove a basic principle about the
interaction between ◇ and ⧫.

Fact 11: ⊢HSML ⧫◇𝜑 →◇⧫𝜑.

Proof 1. ⊢ ⟨𝑎∣𝑏⟩𝜑 ↔ (@𝑎◇ 𝑏 ∧⧫(@𝑎¬◇ 𝑏 ∧ 𝜑))∨ (@𝑎¬◇ 𝑏 ∧ 𝜑) (by definition)

2. ⊢ @𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑 → ⧫𝜑 (from 1)

3. ⊢◇(@𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑)→◇⧫𝜑 (from 2 in the minimal modal logic K)

4. ⊢ ◻@𝑎◇ 𝑏 ∧◇⟨𝑎∣𝑏⟩𝜑 →◇(@𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑) (theorem of the logic K)

5. ⊢ ◻@𝑎◇ 𝑏 ∧◇⟨𝑎∣𝑏⟩𝜑 →◇⧫𝜑 (from 3 and 4)

6. ⊢ ⟨𝑎∣𝑏⟩◇𝜑 ↔ ((𝑎 ∧◇(¬𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑)) ∨ (¬𝑎 ∧◇⟨𝑎∣𝑏⟩𝜑)) (axiom for ⟨𝑎∣𝑏⟩)

7. ⊢ ⟨𝑎∣𝑏⟩◇𝜑 →◇⟨𝑎∣𝑏⟩𝜑 (from 6)

8. ⊢ ◻@𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩◇𝜑 →◇⧫𝜑 (from 5 and 7)

9. ⊢ @𝑎◇ 𝑏 → ◻@𝑎◇ 𝑏 (theorem of hybrid logic)

10. ⊢ @𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩◇𝜑 →◇⧫𝜑 (from 8 and 9)

11. ⊢ @𝑐(@𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩◇𝜑 →◇⧫𝜑), for 𝑐 not occurring in 𝜑 (Nec rule for @𝑐)

12. ⊢ @𝑐(@𝑎◇ 𝑏 ∧ ⟨𝑎∣𝑏⟩◇𝜑)→ @𝑐 ◇⧫𝜑 (from 11)

13. ⊢ @𝑐⧫◇𝜑 → @𝑐 ◇⧫𝜑 (from 12 using the B-Mix rule)

14. ⊢ @𝑐(⧫◇𝜑 →◇⧫𝜑) (from 13 in hybrid logic)

15. ⊢ 𝑐 → (⧫◇𝜑 →◇⧫𝜑) (from 14 in hybrid logic)
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16. ⊢ ⧫◇𝜑 →◇⧫𝜑 (from 15 by the Name rule)
∎

It may be of interest to note that the converse implication ◇⧫𝜑 → ⧫◇𝜑 is not valid
in HSML, as can be seen by giving a simple countermodel.

Readers who want to get still more familiar with the proof system HSML may find
the implication ⟨𝑎∣𝑏⟩⟨𝑐∣𝑑⟩𝜑 → ⟨𝑐∣𝑑⟩⟨𝑎∣𝑏⟩𝜑 a useful further exercise.

3.2 Soundness and strong completeness for HSML

We now turn to the meta-properties of the proof system HSML.

Theorem 3.1 (Soundness): All provable formulas HSML are valid.

The soundness of most principles in the above proof system is immediate, we only
concentrate on those that deserve special attention.

Fact 12: The axiom ⟨𝑎∣𝑏⟩◇𝜑 ↔ ((𝑎 ∧◇(¬𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑)) ∨ (¬𝑎 ∧◇⟨𝑎∣𝑏⟩𝜑)) is valid.

Proof Let 𝔐 = (𝑊 , 𝑅, 𝑉 ) and 𝔐′ = (𝑊 , 𝑅′, 𝑉 ), where 𝑅′ = 𝑅 ⧵ {(𝑢, 𝑣) ∣𝔐, 𝑢 ⊧
𝑎 and 𝔐, 𝑣 ⊧ 𝑏}, i.e., the pair named by (𝑎, 𝑏) has been deleted.

From left to right, if 𝔐, 𝑤 ⊧ ⟨𝑎∣𝑏⟩◇𝜑, then 𝔐′, 𝑤 ⊧◇𝜑, so 𝔐′, 𝑣 ⊧ 𝜑 for some 𝑣 with
𝑅′𝑤𝑣, and 𝔐, 𝑣 ⊧ ⟨𝑎∣𝑏⟩𝜑. Case 1: 𝔐, 𝑤 ⊧ 𝑎. Then 𝔐′, 𝑤 ⊧ 𝑎, and so 𝔐′, 𝑣 ⊧ ¬𝑏, whence
𝔐, 𝑣 ⊧ ¬𝑏, and taking together, 𝔐, 𝑣 ⊧ ¬𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑 and 𝔐, 𝑤 ⊧ (𝑎 ∧ ◇(¬𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑):
the first disjunct on the right. Case 2: 𝔐, 𝑤 ⊧ ¬𝑎. Then, since 𝔐, 𝑣 ⊧ ⟨𝑎∣𝑏⟩𝜑, we get the
second disjunct: 𝔐, 𝑤 ⊧ ¬𝑎 ∧ ◇⟨𝑎∣𝑏⟩𝜑.

From right to left, a similar semantic argument will work, essentially reversing the
preceding steps, including the case distinction. ∎

Fact 13: The B-Mix rule is sound.

Proof Assume that @𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1◇𝑏𝑛∧⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑)→ 𝜃 is valid, where the nominals
𝑎𝑛+1 and 𝑏𝑛+1 are different from 𝑐 and any nominals in the sequence (𝑎∣𝑏)𝑛 and do not occur
in 𝜑 and 𝜃. Consider any HSML modelM and point 𝑤 such thatM, 𝑤 ⊧ @𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑.
According to the truth conditions for the link deletion modalities, there must be a still
available link deletion (𝑑∣𝑑′) after the links defined in the sequence ⟨𝑎∣𝑏⟩𝑛 have been cut
such that 𝜑 is true after the deletion. Now take two fresh nominals 𝑎𝑛+1 and 𝑏𝑛+1 not
occurring in the formulas so far, such that 𝑉 (𝑎𝑛+1) = 𝑉 (𝑑) and 𝑉 (𝑏𝑛+1) = 𝑉 (𝑑′). Then
the antecedent of the assumed validity is satisfied, and we getM, 𝑤 ⊧ 𝜃. ∎
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We have seen how the B-Mix rule is used in the proof system to prove significant the-
orems. In the following completeness proof, we will see it is also essential for constructing
a special type of maximally consistent sets.

Theorem 3.2: The proof system HSML is strongly complete.

The proof to follow uses the technique introduced for the modal logic MLSR in (van
Benthem et al., 2020). In the present setting, this involves combining basic modal logic,
hybrid logic, the key HSML modality ⧫ for arbitrary link deletion in a graph, and its
interaction with the above defined modality for deletion of named links. A noteworthy
difference with the cited reference is our simplification in defining the latter modality, cf.
Fact 6 in Section 2.1, so we can do without DEL-style link cutting modalities as additional
primitives.

As is standard in completeness proofs, it suffices to show that any HSML-consistent
set of formulas is satisfiable in a HSML model.

The first step is to prove that any HSML-consistent set can be extended to a maximally
consistent set (‘HSML-MCS’) satisfying the following properties.

Definition 3.4 (Named, pasted, mixed, B-mixed): A set of formulas Γ is (a) named if
it contains a nominal, (b) pasted if @𝑎◊𝜑 ∈ Γ implies that there is some nominal 𝑏 such
that the formula @𝑎◊𝑏∧@𝑏𝜑 ∈ Γ, (c) mixed if ⟨𝑎∣𝑏⟩𝑛⧫𝜑 ∈ Γ implies that ⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1◇
𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑) ∈ Γ for some nominals 𝑎𝑛+1, 𝑏𝑛+1, and finally, (d) Γ is B-mixed
if @𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑 ∈ Γ implies that @𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑) ∈ Γ for some
nominals 𝑎𝑛+1, 𝑏𝑛+1.

The properties named and pasted are needed to deal with the hybrid component of
the logic while mixed and B-mixed are for the link-cutting part. The property mixed will
become relevant later in Lemma 3.2.

Lemma 3.1 (Lindenbaum Lemma): Let Nom′ be a countably infinite set of nominals
disjoint from Nom, and let L′ be the language obtained by adding these new nominals to
L. Every HSML-consistent set of formulas in language L can be extended to a named,
pasted and B-mixed HSML-MCS in the language L′.

Proof Given a consistent set of L-formulas Σ, let Σ𝑑 to be Σ∪{𝑑}, where 𝑑 is an arbitrary
new nominal in Nom′. Σ𝑑 is consistent. For suppose not. Then for some conjunction of
formulas 𝜃 from Σ, ⊢ 𝑑 → ¬𝜃. But the new nominal 𝑑 does not occur in 𝜃, and so, by the
Name rule, ⊢ ¬𝜃. This contradicts the consistency of Σ: so Σ𝑑 must be consistent.
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Next, enumerate all the formulas of L′ (this includes the nominals in Nom′). We
define a sequence of consistent sets as follows. Let Σ0 be the set Σ𝑑 just constructed.
Now, working inductively, suppose we have defined Σ𝑚, where 𝑚 ≥ 0. Let 𝜑𝑚+1 be the
𝑚+ 1-th formula in our enumeration of L′. We define Σ𝑚+1 as follows. If Σ𝑚+1 ∪ {𝜑𝑚+1}
is inconsistent, then Σ𝑚+1 = Σ𝑚. Otherwise:

• Σ𝑚+1 = Σ𝑚 ∪ {𝜑𝑚+1} ∪ {@𝑎◊𝑏 ∧ @𝑏𝜑}, if 𝜑𝑚+1 is of the form @𝑎◊𝜑.
Here 𝑏 is the first nominal in the enumeration not occurring in Σ𝑚 or @𝑎◊𝜑.

• Σ𝑚+1 = Σ𝑚 ∪ {𝜑𝑚+1}∪ {@𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑)}, if 𝜑𝑚+1 is of the
form @𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑 ∈ Γ. Here 𝑎𝑛+1, 𝑏𝑛+1 are the first two nominals in the enumeration
that do not occur in Σ𝑚 or @𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑.

• Σ𝑚+1 = Σ𝑚 ∪ {𝜑𝑚+1} if 𝜑𝑚+1 is not of the form @𝑎◊𝜑 or @𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑.
Let Σ+ =⋃𝑛≥0 Σ𝑛. Clearly this set is named, maximal, pasted and B-mixed. It is also

consistent. For expansions of the first kind, consistency preservation is guaranteed by the
Paste rule. For expansions of the second kind, if the set obtained is not consistent, then
for some conjunction of formulas 𝜃 from the set Σ𝑚 ∪ {𝜑𝑚+1},

⊢ @𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑 → ¬𝜃.

By the B-mix rule, ⊢ 𝜑𝑚+1 → ¬𝜃, contradicting the consistency of Σ𝑚 ∪ {𝜑𝑚+1}. ∎

Next, each HSML-MCS Γ induces a family of maximally consistent sets.

Definition 3.5: The named set Δ𝑎 yielded by Γ is {𝜑 ∣ @𝑎𝜑 ∈ Γ}.

Now we can define the modal model that will satisfy our given consistent set.

Definition 3.6 (Named model): The named model generated by Γ is the tuple 𝔐Γ =
(𝑊 Γ, 𝑅Γ, 𝑉 Γ) where (a) 𝑊 Γ consists of all named sets yielded by Γ, (b) 𝑅Γ𝑢𝑣 iff for all
formulas 𝜑 with 𝜑 ∈ 𝑣, we have ◇𝜑 ∈ 𝑢, and finally (c) 𝑉 Γ(𝑜) = {𝑤 ∈ 𝑊 Γ ∣ 𝑜 ∈ 𝑤, 𝑜 ∈
Prop ∪ Nom}.

This model has the following basic properties that can be shown just as in standard
completeness proofs for hybrid logic, (Areces and ten Cate, 2007).

Lemma 3.2 (Existence Lemma): Let Γ be a named, pasted and B-mixed HSML-MCS
and let 𝔐Γ = (𝑊 Γ, 𝑅Γ, 𝑉 Γ) be the named model yielded by Γ.

(a) All named sets Δ𝑎 yielded by Γ are HSML-MCSs.

(b) If 𝑢 ∈ 𝑊 Γ and ◊𝜑 ∈ 𝑢, then there is some 𝑣 ∈ 𝑊 Γ with 𝑅Γ𝑢𝑣 and 𝜑 ∈ 𝑣.
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(c) All named sets Δ𝑎 yielded by Γ are mixed.

Proof We only prove the least standard third item. Assume that ⟨𝑎∣𝑏⟩𝑛⧫𝜑 ∈ Δ𝑐 , i.e.,
@𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑 ∈ Γ. Since the set Γ is B-mixed, we have @𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧
⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑) ∈ Γ for some nominals 𝑎𝑛+1, 𝑏𝑛+1, and so we have immediately that
⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑) ∈ Δ𝑐 . This means that Δ𝑐 is mixed. ∎

Now comes the part of the proof where we need to consider models arising after link
deletions, in order to deal with the modality ⧫. In addition to the preceding named model,
we introduce the following new models.

Definition 3.7 (Derived Henkin model): Let ⟨𝑎∣𝑏⟩𝑛 = ⟨𝑎1∣𝑏1⟩… ⟨𝑎𝑛∣𝑏𝑛⟩. The derived
Henkin model from a named model 𝔐Γ generated by Γ is the tuple

𝔐Γ ∶ ⟨𝑎∣𝑏⟩𝑛 = (𝑊 ⟨𝑎∣𝑏⟩𝑛 , 𝑅⟨𝑎∣𝑏⟩𝑛 , 𝑉 ⟨𝑎∣𝑏⟩𝑛)

with worlds, accessibilty and valuations defined as follows:
• 𝑊 ⟨𝑎∣𝑏⟩𝑛 = {(𝑤, ⟨𝑎∣𝑏⟩𝑛) ∣ 𝑤 ∈ 𝑊 Γ}

• 𝑅⟨𝑎∣𝑏⟩𝑛((𝑢, ⟨𝑎∣𝑏⟩𝑛), (𝑣, ⟨𝑎∣𝑏⟩𝑛)) if

(a) 𝑅Γ𝑢𝑣 and (b) 𝑎𝑖 ∉ 𝑢 or 𝑏𝑖 ∉ 𝑣 for all 𝑖 ≤ 𝑛

• 𝑉 ⟨𝑎∣𝑏⟩𝑛(𝑜) = {(𝑤, ⟨𝑎∣𝑏⟩𝑛) ∣ 𝑤 ∈ 𝑉 Γ(𝑜), 𝑜 ∈ Prop ∪ Nom}.
We stipulate that 𝔐Γ ∶ ⟨𝑎∣𝑏⟩0 =𝔐Γ.

Each point in the derived Henkin Model induces the following set of formulas:

Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤) = {𝜑 ∣ ⟨𝑎∣𝑏⟩𝑛𝜑 ∈ 𝑤}

We now prove the crucial Truth Lemma: for derived Henkin models, membership in
these induced sets and truth in the corresponding worlds coincide.

Lemma 3.3 (Truth Lemma): For all formulas 𝜑, finite sequences ⟨𝑎∣𝑏⟩𝑛 and points 𝑤
in a named model 𝔐 yielded by Γ, we have that, for any 𝑛 ≥ 0:

𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, (𝑤, ⟨𝑎∣𝑏⟩𝑛) ⊧ 𝜑 iff 𝜑 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤)

Proof The proof is by induction on the formulas 𝜑. For brevity, we will write 𝔐 ∶
⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ 𝜑, leaving out the sequence notation ⟨𝑎∣𝑏⟩𝑛.

(a) Atomic formulas. We only prove the case for 𝑝, the one for nominals is similar.
𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ 𝑝 iff 𝑤 ∈ 𝑉 (𝑝) iff 𝑝 ∈ 𝑤 (by the definition of 𝑉 in derived Henkin models)
iff ⟨𝑎∣𝑏⟩𝑛𝑝 ∈ 𝑤 (by the recursion axiom for 𝑝) iff 𝑝 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤).
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(b) Negations. 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ ¬𝜓 if 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 /⊧ 𝜓 iff (by the inductive hypoth-
esis) 𝜓 ∉ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤) iff ⟨𝑎∣𝑏⟩𝑛𝜓 ∉ 𝑤 iff ¬⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑤 iff (by the recursion axiom
for ¬𝜓) ⟨𝑎∣𝑏⟩𝑛¬𝜓 ∈ 𝑤 iff ¬𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤).

(c) Conjunction. The proof is like the preceding one, using the inductive hypothesis
and the recursion axiom for conjunctions under link cutting modalities.

(d) @ Operators. 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ @𝑐𝜓 iff 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, Δ𝑐 ⊧ 𝜓 iff (by the inductive
hypothesis) 𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, Δ𝑐) iff (by definition) ⟨𝑎∣𝑏⟩𝑛𝜓 ∈ Δ𝑐 iff (noting that 𝛼 ∈ Δ𝑐

iff @𝑐𝛼 ∈ Δ𝑎 for any nominal 𝑎) @𝑐⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑤 iff (by the recursion axiom for @𝑐)
⟨𝑎∣𝑏⟩𝑛@𝑐𝜓 ∈ 𝑤 iff @𝑐𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤).

(e) ◇ modality. In the case of 𝑛 = 0, the assertion reduces to the standard
modal case, whose proof is well-known, (Blackburn et al., 2001). So let us focus on
the case 𝑛 ≠ 0. From left to right, let 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ ◇𝜓 . Then there is a 𝑣 with
𝑅⟨𝑎∣𝑏⟩𝑛((𝑤, ⟨𝑎∣𝑏⟩𝑛), (𝑣, ⟨𝑎∣𝑏⟩𝑛)) and 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑣 ⊧ 𝜓 . By the inductive hypothesis,
𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑣), i.e., ⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑣. Since 𝑅⟨𝑎∣𝑏⟩𝑛(𝑤, ⟨𝑎∣𝑏⟩𝑛)(𝑣, ⟨𝑎∣𝑏⟩𝑛), it follows
that 𝑅𝑤𝑣. Thus by the definition of 𝑅 in a named model, ◇⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑤. Now,
by the definition of the relations 𝑅⟨𝑎∣𝑏⟩𝑛 , 𝑎𝑥 ∉ 𝑤 or 𝑏𝑥 ∉ 𝑣 for any 𝑥 ∈ [1, ..., 𝑛].
In particular, for any 𝑥 ∈ [1, ..., 𝑛], if 𝑎𝑥 ∈ 𝑤, 𝑏𝑥 ∉ 𝑣. Starting from 𝑎1, either
𝑎1 ∧ ◇(¬𝑏1 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓) ∈ 𝑤 or ¬𝑎1 ∧ ◇⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑤. By the recursion axiom for ◇,
we then get that ⟨𝑎1∣𝑏1⟩◇ ⟨𝑎2∣𝑏2⟩… ⟨𝑎𝑛∣𝑏𝑛⟩𝜓 ∈ 𝑤. Repeating this argument, we can push
◇ to the innermost position, which gives us the desired result ⟨𝑎∣𝑏⟩𝑛 ◇ 𝜓 ∈ 𝑤. That is,
◇𝜓 ∈ 𝜑(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤).

From right to left: let ◇𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤), i.e., ⟨𝑎∣𝑏⟩𝑛 ◇ 𝜓 ∈ 𝑤. By Fact 10, we
have the set 𝑆 = {𝑥 ∈ [1, ..., 𝑛] ∣ 𝑎𝑥 ∈ 𝑤} such that ◇(⋀𝑥∈𝑆 ¬𝑏𝑥 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓) ∈ 𝑤. By
the Existence Lemma for ◇, there is a 𝑣 with ⋀𝑥∈𝑆 ¬𝑏𝑥 ∧ ⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑣, which implies
that 𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑣). By the inductive hypothesis, 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑣 ⊧ 𝜓 . Also, by the
definition of 𝑆 and ⋀𝑥∈𝑆 ¬𝑏𝑥 ∈ 𝑣, we have for any 𝑥 ∈ [1, ..., 𝑛], 𝑎𝑥 ∉ 𝑤 or 𝑏𝑥 ∉ 𝑣.
By the definition of 𝑅⟨𝑎∣𝑏⟩𝑛 and 𝑅𝑤𝑣, then 𝑅⟨𝑎∣𝑏⟩𝑛((𝑤, ⟨𝑎∣𝑏⟩𝑛), (𝑣, ⟨𝑎∣𝑏⟩𝑛)). Therefore,
𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧◇𝜓 .

(f) The deletion modality ⧫. From left to right, let 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ ⧫𝜓 . Then there is
a link in 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, say ((Δ𝑎𝑛+1 , ⟨𝑎∣𝑏⟩𝑛), (Δ𝑏𝑛+1 , ⟨𝑎∣𝑏⟩𝑛)) (the naming of the link is guar-
anteed by our model construction) such that 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛+1, 𝑤 ⊧ 𝜓 . Then by the inductive
hypothesis 𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛+1, 𝑤), i.e., ⟨𝑎∣𝑏⟩𝑛+1𝜓 ∈ 𝑤. Moreover, our model construc-
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tion even yields that 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ @𝑎𝑛+1 ◇ 𝑏𝑛+1. But then, by cases already proved, it
follows that @𝑎𝑛+1◇𝑏𝑛+1 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤), i.e., ⟨𝑎∣𝑏⟩𝑛@𝑎𝑛+1◇𝑏𝑛+1 ∈ 𝑤. Now recall the
definition of named link cutting ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜓 in the language of HSML. We noted earlier
that @𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜓 → ⧫𝜓 is a theorem of HSML, and using the principles
of the minimal logic K for ⟨𝑎∣𝑏⟩, we get ⟨𝑎∣𝑏⟩𝑛⧫𝜓 ∈ 𝑤. Thus ⧫𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤).

Finally, from right to left, let ⧫𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤). By the Existence Lemma, 𝑤
is mixed, and so 𝜓 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛+1, 𝑤) and @𝑎𝑛+1 ◇ 𝑏𝑛+1 ∈ Φ(𝔐, ⟨𝑎∣𝑏⟩𝑛, 𝑤) for new
nominals 𝑎𝑛+1 and 𝑏𝑛+1 that do not occur in 𝜓 . Thus, by the inductive hypothesis, 𝔐 ∶
⟨𝑎∣𝑏⟩𝑛+1, 𝑤 ⊧ 𝜓 . Also, by inductive cases already proved, 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ @𝑎𝑛+1 ◇ 𝑏𝑛+1,
and hence ((Δ𝑎𝑛+1 , ⟨𝑎∣𝑏⟩𝑛), (Δ𝑏𝑛+1 , ⟨𝑎∣𝑏⟩𝑛)) ∈ 𝑅⟨𝑎∣𝑏⟩𝑛 . Now 𝑅⟨𝑎∣𝑏⟩𝑛+1 equals the relation
𝑅⟨𝑎∣𝑏⟩𝑛 ⧵ ((Δ𝑎𝑛+1 , ⟨𝑎∣𝑏⟩𝑛), (Δ𝑏𝑛+1 , ⟨𝑎∣𝑏⟩𝑛)) while the valuation functions in all derived
Henkin models are the same modulo the indexical sequences, we have 𝔐 ∶ ⟨𝑎∣𝑏⟩𝑛, 𝑤 ⊧ ⧫𝜓 .

As usual, this finalizes the proof of the completeness theorem, since all formulas in
the initially given set Γ will be true at the initial world of the named model induced by
some arbitrary maximally consistent extension of Γ. ∎

3.3 Protocol HSML

Having analyzed HSML on standard models, we now consider a natural generaliza-
tion, also known from dynamic-epistemic logic, (Hoshi, 2014). Suppose that not all link
deletions are available, for instance, to Demon in a sabotage game. This gives more gen-
eral ‘protocol models’ for scenarios where agents operate under various constraints. There
are several types of protocols, less or more general, cf. (van Benthem et al., 2009), but we
will only analyze one particular case here.

Definition 3.8 (Protocols): Let Σ = {(𝑎∣𝑏) ∣ 𝑎, 𝑏 ∈ NOM}. Members of the set Σ∗

of all finite sequences of elements in Σ are called histories. A subset 𝑆 of Σ∗ is closed
under initial segments if for any ℎ ∈ 𝑆, its initial segments ℎ′ ⊑ ℎ are also in 𝑆. A
protocol is a set of histories closed under taking initial segments. Any HSML model
𝔐 = (𝑊 , 𝑅, 𝑉 ) has an associated set Prtcl(𝔐) of feasible protocols 𝑓 satisfying the
following condition: if (𝑎1∣𝑏1)… (𝑎𝑖∣𝑏𝑖) ∈ 𝑓 , then (a) (𝑉 (𝑎𝑖), 𝑉 (𝑏𝑖)) ∈ 𝑅, and (b) for
each 𝑗 < 𝑖, 𝑉 (𝑎𝑖) ≠ 𝑉 (𝑎𝑗) or 𝑉 (𝑏𝑖) ≠ 𝑉 (𝑏𝑗).

Here a history represents a sequence of successive link deletions in the given model,
and a protocol defines which such sequences are allowed, for various reasons that may
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depend on the precise application. Condition (a) on protocols states that all links to be
deleted actually exist, condition (b) states that no link is deleted twice, clearly minimal
conditions on executable protocols.

Definition 3.9 (Protocol model): Given a HSML model 𝔐 = (𝑊 , 𝑅0, 𝑉0) and one of
its feasible protocols 𝑓 , the protocol model 𝔉 = Forest(𝔐, 𝑓) = (𝐻, 𝑅, 𝑉 ) is defined
from initial worlds and link cut histories as follows:

(a) 𝐻 = {𝑤𝜎 ∣ 𝑤 ∈ 𝑊 , 𝜎 ∈ 𝑓}.

(b) 𝑅ℎℎ′ iff ℎ = 𝑤𝜎 and ℎ′ = 𝑣𝜎 for some 𝜎 ∈ 𝑓 and 𝑤, 𝑣 ∈ 𝑊 satisfying 𝑅0𝑤𝑣 while
𝑉0(𝑎) ≠ 𝑤 or 𝑉0(𝑏) ≠ 𝑣 for any (𝑎∣𝑏) ∈ 𝜎.

(c) 𝑉 (𝑜) = {𝑤𝜎 ∈ 𝐻 ∣ 𝑉0(𝑎) = 𝑤} where 𝑜 ∈ Prop ∪ Nom.

The semantics of HSML is easily lifted to protocol models:

Definition 3.10 (Truth conditions): Given a protocol model 𝔉 = ⟨𝐻, 𝑅, 𝑈⟩ and a world
ℎ = 𝑤𝜎 ∈ 𝐻 , truth is defined by the following conditions:

𝔉, 𝑤𝜎 ⊧ 𝑜 iff 𝑤𝜎 ∈ 𝑉 (𝑜), where 𝑜 ∈ Prop ∪ Nom

𝔉, ℎ ⊧ ¬𝜑 iff not 𝔉, ℎ ⊧ 𝜑

𝔉, ℎ ⊧ 𝜑1 ∧ 𝜑2 iff 𝔉, ℎ ⊧ 𝜑1 and 𝔉, ℎ ⊧ 𝜑2

𝔉, 𝑤𝜎 ⊧ @𝑎𝜑 iff there is 𝑣𝜎 ∈ 𝑉 (𝑎) such that 𝔉, 𝑣𝜎 ⊧ 𝜑

𝔉, ℎ ⊧◇𝜑 iff there is ℎ′ ∈ 𝐻 such that 𝑅ℎℎ′ and 𝔉, ℎ ⊧ 𝜑

𝔉, 𝑤𝜎 ⊧ ⧫𝜑 iff there is 𝜎′ = 𝜎(𝑎∣𝑏) ∈ 𝑓 s.t. 𝔉, 𝑤𝜎′ ⊧ 𝜑.

The syntactic definition of ⟨𝑎∣𝑏⟩ is the same as that in HSML:

⟨𝑎∣𝑏⟩𝜑 ∶= (@𝑎◇ 𝑏 ∧ ⧫(@𝑎¬◇ 𝑏 ∧ 𝜑)) ∨ (@𝑎¬◇ 𝑏 ∧ 𝜑)

The following proposition describing its effect can easily be verified.

Fact 14: 𝔉, 𝑤𝜎 ⊧ ⟨𝑎∣𝑏⟩𝜑 iff

(a) 𝜎(𝑎∣𝑏) ∈ 𝑓 and 𝔉, 𝑤𝜎(𝑎∣𝑏) ⊧ 𝜑, or (b) 𝔉, 𝑤𝜎 ⊧ @𝑎¬◇ 𝑏 ∧ 𝜑

A Hilbert-style proof system for Protocol HSML is presented in Table 2. The differ-
ence with the axiom system HSML is that deletions are no longer freely available, so we
need to modify some of the recursion axioms for named link cuts. For instance, the earlier
axiom ⟨𝑎∣𝑏⟩𝑝 ↔ 𝑝 now becomes

⟨𝑎∣𝑏⟩𝑝 ↔ ⟨𝑎∣𝑏⟩⊤ ∧ 𝑝
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Axioms and rules

for basic hybrid modal logic
See Table 1

K axiom for ∎

Necessitation Rule
See Table 1

Invariance axiom for ⟨𝑎∣𝑏⟩ @𝑐⟨𝑎∣𝑏⟩⊤ ↔ ⟨𝑎∣𝑏⟩⊤

Recursion axioms

for ⟨𝑎∣𝑏⟩

⟨𝑎∣𝑏⟩𝑐 ↔ ⟨𝑎∣𝑏⟩⊤ ∧ 𝑐
⟨𝑎∣𝑏⟩𝑝 ↔ ⟨𝑎∣𝑏⟩⊤ ∧ 𝑝
⟨𝑎∣𝑏⟩¬𝜑 ↔ ¬⟨𝑎∣𝑏⟩𝜑
⟨𝑎∣𝑏⟩¬𝜙 ↔ ⟨𝑎∣𝑏⟩⊤ ∧ ¬⟨𝑎∣𝑏⟩𝜙
⟨𝑎∣𝑏⟩@𝑐𝜑 ↔ @𝑐⟨𝑎∣𝑏⟩𝜑
⟨𝑎∣𝑏⟩◇𝜑 ↔ ((𝑎 ∧◇(¬𝑏 ∧ ⟨𝑎∣𝑏⟩𝜑)) ∨ (¬𝑎 ∧◇⟨𝑎∣𝑏⟩𝜑))

Inference rule

for ⧫

(B-𝑀𝑖𝑥) ∶
@𝑐⟨𝑎∣𝑏⟩𝑛(@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∧ ⟨𝑎𝑛+1∣𝑏𝑛+1⟩𝜑)→ 𝜃

@𝑐⟨𝑎∣𝑏⟩𝑛⧫𝜑 → 𝜃
where 𝑛 ≥ 0 and ⟨𝑎∣𝑏⟩𝑛 = ⟨𝑎1∣𝑏1⟩… ⟨𝑎𝑛∣𝑏𝑛⟩;

the new nominals 𝑎𝑛+1, 𝑏𝑛+1 are distinct from 𝑐
and other nominals in ⟨𝑎∣𝑏⟩𝑛 and do not occur in 𝜑 or 𝜃.

Table 3.2 The Hilbert-style proof system for protocol HSML

which also contains irreducible protocol information about available deletions.➀ In ad-
dition, the system contains a new principle expressing that the protocol is ‘uniform’: the
available deletions are the same at each world:

@𝑐⟨𝑎∣𝑏⟩⊤ ↔ ⟨𝑎∣𝑏⟩⊤

Theorem 3.3: Protocol HSML is strongly complete.

Proof The completeness proof follows the same pattern as our earlier one for HSML. We
merely sketch some salient steps that require attention.

For a start, the Lindenbaum Lemma can be proved just as before. With a little more
care, we can also still have the earlier named models:

Definition 3.11: We say that Δ𝑎 = {𝜑 ∣ @𝑎𝜑 ∈ Γ} is the protocol named set yielded by
Γ. A named model is a tuple (𝔐Γ, 𝑓 Γ) = ((𝑊 Γ, 𝑅Γ, 𝑉 Γ), 𝑓 Γ) where

➀ The modified recursion axioms allow new situations. E.g., ¬⟨𝑎∣𝑏⟩𝑝 ∧ ¬⟨𝑎∣𝑏⟩¬𝑝 is not satisfiable in HSML, but in
Protocol HSML it is true in a model where (𝑎, 𝑏) ∉ 𝑓 .
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(a) 𝑊 Γ is the set of all named set yielded by Γ
(b) 𝑅Γ𝑢𝑣 iff for all formulas 𝜑, 𝜑 ∈ 𝑣 implies ◇𝜑 ∈ 𝑢
(c) 𝑉 Γ(𝑜) = {𝑤 ∈ 𝑊 Γ ∣ 𝑜 ∈ 𝑤, 𝑜 ∈ Prop ∪ Nom}
(d) 𝑓 Γ = {(𝑎∣𝑏)𝑛 ∶ ⟨𝑎∣𝑏⟩𝑛⊤ ∧ ⋀𝑛−1

𝑖=0 ⟨𝑎∣𝑏⟩𝑖@𝑎𝑖+1 ◇ 𝑏𝑖+1 ∈ Γ}.

Here the condition ⋀𝑛−1
𝑖=0 ⟨𝑎∣𝑏⟩𝑖@𝑎𝑖+1◇𝑏𝑖+1 ∈ Δ𝑐 picks out all those sequences of link

cuts admissible according to Γ which do not include any vacuous cuts.

Lemma 3.4: If ⟨𝑎∣𝑏⟩𝑛⊤ ∈ Γ, then there is 𝜎 = (𝑐∣𝑑)𝑚 ∈ 𝑓 Γ s.t. for all 𝜑, 𝑚 ≤ 𝑛:

(a) ⟨𝑐∣𝑑⟩𝑚𝜑 ∈ Γ iff ⟨𝑎∣𝑏⟩𝑛𝜑 ∈ Γ, (b) 𝔉, 𝑤 ⊧ ⟨𝑐∣𝑑⟩𝑚𝜑 iff 𝔉, 𝑤 ⊧ ⟨𝑎∣𝑏⟩𝑛𝜑
Proof We can get the sequence (𝑐∣𝑑)𝑚 from (𝑎∣𝑏)𝑛 by deleting all those pairs (𝑎𝑖∣𝑏𝑖) for
which ⟨𝑎∣𝑏⟩𝑖@𝑎𝑖+1 ◇ 𝑏𝑖+1 ∉ Γ. ∎

Next comes a slightly different route from the completeness proof for HSML.

Lemma 3.5: For all formulas 𝜑, finite sequences 𝜎 = (𝑎∣𝑏)𝑛 ∈ 𝑓 Γ and points 𝑤 in the
generated protocol named model 𝔉 = Forest(𝔐, 𝑓) yielded by Γ,

𝔉, 𝑤𝜎 ⊧ 𝜑 iff ⟨𝑎∣𝑏⟩𝑛𝜑 ∈ 𝑤

Proof The proof is by induction on the formulas 𝜑.

(a) Atomic propositions and nominals. Given that 𝜎 ∈ 𝑓 , which implies that
⟨𝑎∣𝑏⟩𝑛⊤ ∈ 𝑤, we have 𝔉, 𝑤𝜎 ⊧ 𝑝 iff 𝑤𝜎 ∈ 𝑉 (𝑝) iff 𝑝 ∈ 𝑤 iff ⟨𝑎∣𝑏⟩𝑛𝑝 ∈ 𝑤.

The case of nominals is similar.

(b) Negations. Since ⟨𝑎∣𝑏⟩𝑛⊤ ∈ 𝑤, we can use the modified recursion axiom to get
𝔉, 𝑤𝜎 ⊧ ¬𝜓 iff 𝔉, 𝑤 ⊭ 𝜓 iff ⟨𝑎∣𝑏⟩𝑛𝜓 ∉ 𝑤 iff ¬⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑤 iff ⟨𝑎∣𝑏⟩𝑛¬𝜓 ∈ 𝑤.

As for further inductive steps, the cases for the operators ∧, @𝑐 , ◇ and ⧫ are similar
to those in the proof of the Truth Lemma for HSML in Section 3, using the derived Henkin
Model, since the recursion axioms for these operators have not changed. Here we treat @
and ⧫ as examples.

(c) We have the following equivalences: 𝔉, 𝑤𝜎 ⊧ @𝑐𝜓 iff 𝔉, Δ𝑐𝜎 ⊧ 𝜓 iff ⟨𝑎∣𝑏⟩𝑛𝜓 ∈
Δ𝑐 iff @𝑐⟨𝑎∣𝑏⟩𝑛𝜓 ∈ 𝑤 iff ⟨𝑎∣𝑏⟩𝑛@𝑐𝜓 ∈ 𝑤.

(d) First, assume that 𝔉, 𝑤𝜎 ⊧ ⧫𝜓 . Then there is 𝜎′ = 𝜎(𝑎∣𝑏)𝑛+1 ∈ 𝑓 such that
𝔉, 𝑤𝜎′ ⊧ 𝜓 . Thus by the inductive hypothesis ⟨𝑎∣𝑏⟩𝑛+1𝜓 ∈ 𝑤. Since 𝔉, 𝑤𝜎 ⊧ @𝑎𝑛+1 ◇
𝑏𝑛+1, by the cases we have proved, it follows that ⟨𝑎∣𝑏⟩𝑛@𝑎𝑛+1 ◇ 𝑏𝑛+1 ∈ 𝑤. Therefore,
⟨𝑎∣𝑏⟩𝑛⧫𝜓 ∈ 𝑤.

Next, assume that ⟨𝑎∣𝑏⟩𝑛⧫𝜓 ∈ 𝑤. By the Existence Lemma, 𝑤 is mixed, and so we
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have ⟨𝑎∣𝑏⟩𝑛+1𝜓 ∈ 𝑤 for some 𝑎𝑛+1 and 𝑏𝑛+1. By definition of 𝑓 , 𝜎′ = 𝜎(𝑎∣𝑏)𝑛+1 ∈ 𝑓 . By
the inductive hypothesis, 𝔉, 𝑤𝜎′ ⊧ 𝜓 . Therefore 𝔉, 𝑤𝜎 ⊧ ⧫𝜓 . ∎

The key Truth Lemma follows immediately from Lemma 3.4 and Lemma 3.5.

Lemma 3.6 (Truth Lemma): For all formulas 𝜑, finite sequences 𝜎 = (𝑎∣𝑏)𝑛 and points
𝑤 in the named protocol model 𝔉 = Forest(𝔐, 𝑓) yielded by Γ,

𝔉, 𝑤 ⊧ ⟨𝑎∣𝑏⟩𝑛𝜑 iff ⟨𝑎∣𝑏⟩𝑛𝜑 ∈ 𝑤

This finalizes the proof of the completeness theorem for Protocol HSML. ∎

Remark: Comparing the two completeness proofs. The ‘full protocol’ full(𝔐) for a model
𝔐 consists of all possible histories of link cuts. The derived Henkin model of Defini-
tion 3.7 in the completeness proof for HSML is in essence the full protocol model of the
named model of Definition 3.6. The difference is only notational: a history 𝑤𝜎 in the
full protocol model ofM is attached to the model, becoming one of its pointed derived
Henkin modelsM ∶ 𝜎, 𝑤. Also, the truth conditions of ◇, ⧫ in the full protocol model
Forest(𝔐, full(𝔐)), 𝑤𝜎 are as in the derived Henkin modelM ∶ 𝜎, 𝑤. Thus one could
also start with a completeness proof in the format that we have given here for protocol
models, and then derive one for standard models as a special case.

Discussion: Reducing HSML and Protocol HSML. Given the analogy in completeness
proofs, it is a natural question how HSML and Protocol HSML are related. For instance,
can one find a formula 𝜑′ for every formula 𝜑 such that 𝜑 is satisfiable in HSML iff 𝜑′ is
satisfiable in protocol HSML? One might think of such a formula 𝜑′ as a conjunction of
the form

⋀
𝑎,𝑏∈𝑄

⟨𝑎∣𝑏⟩𝑛⊤ ∧ 𝜑

The first conjunct says that all link cuts explicitly involved in 𝜑 are admissible, where 𝑄
is the set of all nominals that occur in 𝜑, possibly plus some new ones. The problem,
however, is that not all relevant link cuts need be explicitly stated in a given formula 𝜑, as
illustrated in the following example.

𝜑 ∶=◇⊤ ∧ ¬⧫𝑝 ∧ ¬⧫¬𝑝

is not satisfiable in HSML. Since there are no nominals in the formula 𝜑, 𝜑′ would equal
𝜑 by the above method. However, 𝜑′ is satisfiable in protocol HSML.

Are there better reductions? And what about the opposite direction, from Protocol
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HSML to HSML? While we believe that mutual reductions indeed exist for dynamic-
epistemic PAL and Protocol PAL, we are not sure that they extend to sabotage logics, and
hence leave these matters as open problems.

3.4 Comparing link deletion and point deletion

A natural companion to link or edge deletion in graphs is deletion of vertices or points.
The modal logic MLSR for stepwise point deletion of (van Benthem et al., 2020), men-
tioned in the introduction as the inspiration for our completeness proof, adds a modality
⟨−𝜑⟩𝜓 for stepwise world removal to the basic hybrid modal logic:

𝜑 ∶∶= 𝑎 ∣ 𝑝 ∣ ⊥ ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ @𝑎𝜑 ∣ ⟨−𝜑⟩𝜑

Formulas ⟨−𝜑⟩𝜓 have the following truth condition in models 𝔐 = (𝑊 , 𝑅, 𝑉 ):

𝔐, 𝑠 ⊧ ⟨−𝜑⟩𝜓 iff there is a 𝑡 ≠ 𝑠 with 𝔐, 𝑡 ⊧ 𝜑 and 𝔐 − {𝑡}, 𝑠 ⊧ 𝜓

In MLSR, the universal modality is definable as follows: 𝑈𝜑 ∶= 𝜑∧¬⟨−¬𝜑⟩⊤, so it is
freely available in our later proofs. It follows that the hybrid notion @𝑎𝜑 is also definable,
although this notation is used as primitive in MLSR for greater perspicuity of its proof
system.

3.4.1 From link deletion to point deletion

Intuitively, deleting links can be simulated by deleting points in models of the right
kind. We will make this precise by embedding the logic HMSL into MLSR.

Consider the following fragment of the language of MLSR, with atomic propositions
from Prop ∪ {𝑖} including a distinguished proposition letter 𝑖, and Nom➀:

𝜑 ∶∶= 𝑎 ∣ 𝑝 ∣ 𝑖 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇(𝑖 ∧◇𝜑) ∣ @𝑎𝜑 ∣ ⟨−(𝑖 ∧◇¬𝑖)⟩𝜑

We can translate the language of HSML into this fragment of MLSR.
Definition 3.12 (Translation I): Here is the HSML-to-MLSR translation:

(a) Tr(𝑎) = 𝑎, Tr(𝑝) = 𝑝, Tr(¬𝜑) = ¬Tr(𝜑), Tr(𝜑 ∧ 𝜓) = Tr(𝜑) ∧ Tr(𝜓)

(b) Tr(@𝑎𝜑) =@𝑎Tr(𝜑), Tr(◇𝜑) =◇(𝑖 ∧◇Tr(𝜑)), Tr(⧫𝜑) = ⟨−(𝑖 ∧◇¬𝑖)⟩Tr(𝜑).

Next, we define models for MLSR where this translation makes sense.

➀ For the purpose of this section, we can use ⟨−𝑖⟩𝜑 rather than ⟨−(𝑖 ∧ ◇¬𝑖)⟩𝜑 in the language. But the result in
Appendix 3.7 needs the latter form which can specify more information about the models.
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Definition 3.13 (Transformed models I): Given a model 𝔐0 = (𝑊0, 𝑅0, 𝑉0) for
HSML, the model F(𝔐0) = (𝑊 , 𝑅, 𝑉 ) for MLSR is defined as follows:

(a) 𝑊 =𝑊0 ∪ 𝑊𝑖 where 𝑊𝑖 = {(𝑤, 𝑣, 𝑖) ∣ (𝑤, 𝑣) ∈ 𝑅0 and 𝑤, 𝑣 ∈ 𝑊0}

(b) 𝑅 = {(𝑤, (𝑤, 𝑣, 𝑖)), ((𝑤, 𝑣, 𝑖), 𝑣) ∣ (𝑤, 𝑣) ∈ 𝑅0}

(c) 𝑉 ∶ Nom ∪ Prop ∪ {𝑖} → 𝑊 is a valuation function such that 𝑉 (𝑜) = 𝑉0(𝑜) for
𝑜 ∈ Prop ∪ Nom and 𝑉 (𝑖) =𝑊𝑖.

Example 3.1: In Figure 3.1, F(𝔐0) is the transformed model of 𝔐0. The link (1, 3)
is represented by 𝑖1 in the transformed model. The sentence ’I can travel from 1 to 3’ can
be faithfully translated as ’I can first travel from 1 to 𝑖1, and then to 3’, while deleting the
link (1, 3) can be faithfully represented as deleting a point in the model F(𝔐0), namely,
the node 𝑖1.

1 2

3

1 2

3

𝑖3

𝑖1 𝑖2

𝔐0 F(𝔐0)

Figure 3.1 From 𝔐0 in HSML to F(𝔐0) in MLSR

Now we have the following result connecting the two languages.

Fact 15: For any formula 𝜑 in the language of HSML and any model 𝔐0,

𝔐0, 𝑤 ⊧ 𝜑 iff F(𝔐0), 𝑤 ⊧ Tr(𝜑),

where 𝑤 ∈ 𝑊0 and F(𝔐0) is constructed from 𝔐0 as in the preceding definition.

A result on equivalence of validities in the two logics follows immediately.

Corollary 3.1: We have the following equivalence:

⊧C 𝜑 iff ⊧F(C) ¬𝑖 → Tr(𝜑)

where C denotes the class of all models for HMSL, while F(C) denotes the class of all
MLSR models constructed from these.

However, this result does not tell us that we can embed HMSL into the logic MLSR
as it stands over arbitrary models: for that, we need to define the special class F(C) in the
language of MLSR.

This can be done, with the caveat that we need extend the language of MLSR by
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adding the reverse operator ◇−1 as in temporal logic:

𝔐, 𝑠 ⊧◇−1𝜓 iff 𝔐, 𝑡 ⊧ 𝜓 for some 𝑡 with 𝑅𝑡𝑠.

In this extended language for MLSR, that we will denote by MLSR+, we can define
the special class F(C) using the formulas listed in Table 3.3.

a. 𝑖 → (◇¬𝑖 ∧ ⟨−⊤⟩¬◇⊤) 1. an 𝑖 point has exactly one successor, which is a ¬𝑖 point

b. 𝑖 → (◇−1¬𝑖 ∧ ⟨−⊤⟩¬◇−1 ⊤) 2. an 𝑖 point has exactly one predecessor, which is a ¬𝑖 point

c. ¬𝑖 → ◻ 𝑖 3. if a ¬𝑖 point has successors, then they are 𝑖 points

d. ¬𝑖 ∧◇⊤ → [−¬𝑖]⟨−⊤⟩ ◻◇⊤ 4. if a ¬𝑖 point has two or more different 𝑖 successors,

then these cannot have the same successor.

Table 3.3 Defining F(C) in MLSR+

Proposition 3.1:

𝔐 ∈ F(C) iff 𝔐 ⊧MLSR+ 𝐴

where 𝐴 is the conjunction of the four MLSR formulas in Table 3.3.

Proof For a start, note that all the listed properties a,b,c,d in Table 3.3 hold for all models
in F(C). Next, it is easy to see that, for any model 𝔐, 𝔐 ⊧ a iff it satisfies property 1,
and likewise for b and 2, and c and 3. Given this, it suffices to focus on establishing the
following claim:

If 𝔐 satisfies properties 1, 2 and 3, 𝔐 ∈ F(C) iff 𝔐 ⊧ d.

From left to right, assume that 𝔐 ∈ F(C). Given any point 𝑤 in 𝔐 with 𝔐, 𝑤 ⊧
¬𝑖∧◇⊤, we prove that 𝔐, 𝑤 ⊧ [−¬𝑖]⟨−⊤⟩◻◇⊤. When deleting any ¬𝑖 point 𝑣 ≠ 𝑤, there
are two cases. Case 1: The deleted ¬𝑖 point 𝑣 ≠ 𝑤 is the successor of some 𝑖 successor of
𝑤. In this case, by deleting this 𝑖-predecessor of 𝑣, since 𝔐 ∈ F(C), all other 𝑖-successors
of 𝑤 must have a ¬𝑖 successor. Case 2: Otherwise, deleting any 𝑖 point suffices to keep
◻◇⊤ true at 𝑤.

From right to left, given a model 𝔐 which satisfies properties 1, 2 and 3, but lacks 4,
assume that some ¬𝑖 world 𝑤 has two 𝑖 successors 𝑠 and 𝑡 which share the same successor
𝑣. By the assumption then 𝔐, 𝑤 ⊧ ¬𝑖 ∧◇⊤. Moreover, 𝑣 is a ¬𝑖 world and the unique
successor of both 𝑠 and 𝑡 because 𝔐 has properties 1, 2. Next we prove that 𝔐, 𝑤 ⊧
⟨−¬𝑖⟩[−⊤] ◇ ◻⊥. After deleting the world 𝑣, 𝑤 has two successors 𝑠 and 𝑡 without a
successor. Thus no matter which world we choose to delete([−⊤]), ◇ ◻ ⊥ is satisfied at
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𝑤. It follows that 𝔐, 𝑤 /⊧ 𝑑. ∎

Now we have the following result connecting the two languages.

Corollary 3.2: For every formula 𝜑 in the language of HSML,

⊧HSML 𝜑 iff ⊧MLSR+ 𝑈𝐴 → (¬𝑖 → Tr(𝜑))

Note that here we add the universal operator 𝑈 in front of 𝐴, because 𝑈𝐴 rather than
𝐴 can make sure the model of MLSR+ which refutes 𝑈𝐴 → (¬𝑖 → Tr(𝜑)) at a certain
world, according to Proposition 3.1, is a model in F(C).

In Appendix 3.7, we present a slightly more complex method for obtaining an ana-
logue to Corollary 3.2 which needs no extension of the language of MLSR.

Digression: sabotage games. The above model transformation also implies the equiva-
lence of the multi-link version of the sabotage game with single-point destinations, (van
Benthem, 2005), and the single-link version with multiple destinations. This result first
appeared in Lemma 1 of (Löding and Rohde, 2003b). We flesh out the details of its proof
to show how it relates to the above embedding result.

Fact 16: Let Ind be an arbitrary set of individuals, and let the map of a multi-link
version sabotage game be 𝔐0 = (𝑊0, 𝑅𝑖

0, 𝑉0). Then Traveler has a winning strat-
egy starting at 𝑤 ∈ 𝑊0 in 𝔐0 iff Traveler has a winning strategy on 𝑤 in F(𝔐0) =
(𝑊 , 𝑅, 𝑉 ) where 𝑊 = {𝑔} ∪ 𝑊0 ∪ ⋃𝑖∈Ind{(𝑤, 𝑣, 𝑖) ∣ (𝑤, 𝑣) ∈ 𝑅𝑖

0 and 𝑤, 𝑣 ∈ 𝑊0},
𝑅 = {(𝑤, (𝑤, 𝑣, 𝑖)), ((𝑤, 𝑣, 𝑖), 𝑣), ((𝑤, 𝑣, 𝑖), 𝑔) ∣ (𝑤, 𝑣) ∈ 𝑅𝑖

0} and the valuation function
𝑉 is the same as the old 𝑉0 except that it makes the new node 𝑔 one of the goals.

Before giving the proof, we first illustrate the definition ofF(𝔐0) in the fact and how
it works in the proof by the following example.

Example 3.2: In Figure 3.2, Traveler has a winning strategy on a node in 𝔐0 iff Traveler
has a winning strategy on the corresponding node in F(𝔐0). The added goal point 𝑔1

plays a crucial role here. The upper (1, 2) link is represented by the three links (1, 𝑖3),
(𝑖3, 2), (𝑖3, 𝑔) in the transformed model in the sense that Traveler can still move from 1 to
2 as long as the three links all remain untouched, while such a travel is no longer possible
once at least one of the three links has been deleted.
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1 2

𝑔0

1 2

𝑔0

𝑖3

𝑖1 𝑖2
𝑔

𝑖4

𝔐0 F(𝔐0)

Figure 3.2 From the multi-link model 𝔐0 to a single-link model F(𝔐0)

Proof To start our proof, for (𝑎, 𝑏) ∈ 𝑅, we define this mapping 𝑓 into ⋃𝑖 𝑅𝑖
0:

𝑓((𝑎, 𝑏)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢, 𝑣)𝑖 if (𝑎, 𝑏) = (𝑢, (𝑢, 𝑣, 𝑖))

(𝑢, 𝑣)𝑖 if (𝑎, 𝑏) = ((𝑢, 𝑣, 𝑖), 𝑣)

(𝑢, 𝑣)𝑖 if (𝑎, 𝑏) = ((𝑢, 𝑣, 𝑖), 𝑔)
We show that deleting a link (𝑎, 𝑏) inF(𝔐0) is equivalent to deleting 𝑓((𝑎, 𝑏)) in 𝔐,

while deleting (𝑢, 𝑣)𝑖 in 𝔐 is equivalent to deleting any (𝑎, 𝑏) such that 𝑓((𝑎, 𝑏)) = (𝑢, 𝑣)𝑖
inF(𝔐0). More precisely, Traveler can go from 𝑢 to 𝑣 through 𝑅𝑖 in 𝔐 iff Traveler can go
from 𝑢 to 𝑣 via (𝑢, 𝑣, 𝑖) in F(𝔐0). Based on the mapping 𝑓 defined above, both Traveler
and Demon can derive winning strategies in one model from winning strategies in the
other. We have two cases.

Case 1. If Traveler can move from 𝑢 to 𝑣 by 𝑅𝑖 in 𝔐0, then (𝑢, 𝑣)𝑖 was not deleted.
So in F(𝔐0), (𝑢, (𝑢, 𝑣, 𝑖)), ((𝑢, 𝑣, 𝑖), 𝑣), ((𝑢, 𝑣, 𝑖), 𝑔) are all not deleted. On 𝑢, Traveler
first goes to (𝑢, 𝑣, 𝑖) through the link (𝑢, (𝑢, 𝑣, 𝑖)). Then Demon has to delete the link
((𝑢, 𝑣, 𝑖), 𝑔), or Traveler will win immediately. Traveler now moves to 𝑣 through the link
((𝑢, 𝑣, 𝑖), 𝑣).

Case 2. If Traveler cannot go from 𝑢 to 𝑣 by 𝑅𝑖 in 𝔐, then (𝑢, 𝑣)𝑖 was deleted. So in
F(𝔐0), at least one of (𝑢, (𝑢, 𝑣, 𝑖)), ((𝑢, 𝑣, 𝑖), 𝑣), ((𝑢, 𝑣, 𝑖), 𝑔)was deleted. If (𝑢, (𝑢, 𝑣, 𝑖))
or ((𝑢, 𝑣, 𝑖), 𝑣) was deleted, then there is no path from 𝑢 to (𝑢, 𝑣, 𝑖) to 𝑣. If ((𝑢, 𝑣, 𝑖), 𝑔)
was deleted, then Demon can cut ((𝑢, 𝑣, 𝑖), 𝑣) when Traveler reaches (𝑢, 𝑣, 𝑖). Therefore,
Traveler can no longer go to 𝑣 through (𝑢, 𝑣, 𝑖). ∎
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3.4.2 From point deletion to link deletion

At this point, it is natural to seek a converse system embedding, adding a converse
modality ◇−1 to HSML to match the extension we made for MLSR. However, there is a
mismatch here, since point removal in MLSR refers to a formula, while link deletion is
arbitrary in HSML. Still, an embedding may be obtained by generalizing the link deletion
operator ⧫ of HSML to a conditional version.

More precisely, we embed MLSR+ into an extended logic HSML+, whose language
is as follows with 𝑎 ∈ Nom, 𝑝 ∈ Prop and 𝑒 a special nominal:

𝜑 ∶∶= 𝑎 ∣ 𝑒 ∣ 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣◇−1𝜑 ∣ ⧫𝜑
𝜑𝜑

The truth condition for ⧫𝜑
𝜓𝜒 reads: ➀

𝔐 = (𝑊 , 𝑅, 𝑉 ), 𝑤 ⊧ ⧫𝜑
𝜓𝜒 iff there is a pair (𝑠, 𝑡) ∈ 𝑅

such that 𝔐, 𝑠 ⊧ 𝜑, 𝔐, 𝑡 ⊧ 𝜓 and (𝑊 , 𝑅 ⧵ (𝑠, 𝑡), 𝑉 ), 𝑤 ⊧ 𝜒 .

Note that this covers the original sabotage modality as the special case ⧫⊤
⊤𝜒 . However,

even using its named deletions, HSML+ cannot define the universal modality 𝑈𝜑. But we
do have the following restricted version

∀𝜑 ∶= ¬⧫¬𝜑
⊤ ⊤ ∧ ¬⧫⊤

¬𝜑⊤

This says that no links can be cut to or from ¬𝜑-worlds (such worlds will be called iso-
lated), or in other words, all worlds which are in a 𝑅-relation with some world satisfy 𝜑.
This notion will suffice for our later purposes.

Next, the special nominal 𝑒 is key to making point deletions in an MLSR+ model
become link deletions in a matching HSML+ model.

Definition 3.14 (Transformed models II): Given a model 𝔐0 = (𝑊0, 𝑅0, 𝑉0) for
MLSR+, the model G(𝔐0) = (𝑊 , 𝑅, 𝑉 ) for HSML+ is defined as follows:

(a) 𝑊 =𝑊0 ∪ {𝑤𝑒}

(b) 𝑅 = 𝑅0 ∪ {(𝑤, 𝑤𝑒)) ∣ 𝑤 ∈ 𝑊0}

(c) 𝑉 ∶ Nom ∪ Prop ∪ {𝑒} → 𝑊 is a valuation function such that 𝑉 (𝑜) = 𝑉0(𝑜) for
𝑜 ∈ Prop ∪ Nom and 𝑉 (𝑒) = {𝑤𝑒}.

➀ ⧫𝜑
𝜙𝜓 cannot be defined in the language of HSML. Let 𝑀1 = (𝑊1, 𝑅1, 𝑉1) with 𝑊1 = {𝑤1, 𝑤2}, 𝑅1 =
{(𝑤1, 𝑤1), (𝑤2, 𝑤2)}, 𝑉 (𝑝) = {𝑤2}, 𝑉 (𝑎) = {𝑤1} for any 𝑎 ∈ Nom. 𝑀2 = (𝑊2, 𝑅2, 𝑉2) with 𝑊2 = {𝑣1, 𝑣2}, 𝑅2 =
{(𝑣1, 𝑣1), (𝑣2, 𝑣2)}, 𝑉 (𝑝) = ∅, 𝑉 (𝑎) = {𝑣1} for any 𝑎 ∈ Nom. It is easy to see that there is an HSML-style bisim-
ulation (cf. Appendix 3.6) between (𝑀1, 𝑤1) and (𝑀2, 𝑣1), and so each formula 𝛼 is true at 𝑤1 iff 𝛼 is true at 𝑣1.
However, 𝑀1, 𝑤1 ⊨ ⧫𝑎

⊤⧫𝑝
⊤𝑎, 𝑀2, 𝑣1 ⊭ ⧫𝑎

⊤⧫𝑝
⊤𝑎.
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The following translation makes the effect of deleting a point 𝑣 in 𝔐0 equivalent to
the effect of deleting the corresponding link (𝑣, 𝑤𝑒) in F(𝔐0).

Definition 3.15 (Translation II): The MLSR+-to-HSML+ translation is this:
(a) Tr(𝑜) = 𝑜, Tr(¬𝜑) = ¬Tr(𝜑), Tr(𝜑 ∧ 𝜓) = Tr(𝜑) ∧ Tr(𝜓),

(b) Tr(◇𝜑) =◇(◇𝑒 ∧ Tr(𝜑)), Tr(◇−1𝜑) =◇−1(◇𝑒 ∧ Tr(𝜑)),

(c) Tr(@𝑎𝜑) =@𝑎(◇𝑒 ∧ Tr(𝜑)), Tr(⟨−𝜑⟩𝜓) = ⧫Tr(𝜑)∧◇𝑒
𝑒 (◇𝑒 ∧ Tr(𝜓))

This translation relativizes the operators in MLSR+-formulas 𝜑 syntactically to refer
only to those worlds in G(𝔐0) that satisfy either◇𝑒 or 𝑒. An easy induction on formulas
implies the following semantic invariance property:

Proposition 3.2: For all HSML-models 𝔑, and all worlds 𝑤 satisfying◇𝑒, we have that
𝔑, 𝑤 ⊧ Tr(𝜑) iff 𝔑 ∣ (◇𝑒 ∨ 𝑒), 𝑤 ⊧ Tr(𝜑), where 𝔑 ∣ (◇𝑒 ∨ 𝑒) is the submodel of 𝔑
consisting of all worlds that satisfy ◇𝑒 ∨ 𝑒.

In particular, once a link 𝑅 from a world 𝑣 to 𝑤𝑒 has been deleted in a model G(𝔐0), 𝑣
falls outside of the relativized model G(𝔐0) ∣ (◇𝑒∨ 𝑒) and plays no role any more in the
evaluation of translated formulas. Thus, the effect on such formulas is the same as if the
world 𝑣 had been deleted.

These observations are the key to the following result.

Fact 17: For any formula 𝜑 of MLSR+, any model 𝔐0 and world 𝑤 ∈ 𝑊0,

𝔐0, 𝑤 ⊧ 𝜑 iff G(𝔐0), 𝑤 ⊧ Tr(𝜑),

where G(𝔐0) is constructed from 𝔐0 as in Definition 3.14.

Proof The proof is by induction, and we only sketch the crucial case of the point-deletion
modality. Recall that 𝔐0, 𝑠 ⊧ ⟨−𝜑⟩𝜓 iff there exists a world 𝑡 ≠ 𝑠 such that 𝔐0, 𝑡 ⊧ 𝜑
and 𝔐0 − {𝑡}, 𝑠 ⊧ 𝜓 , where 𝔐0 − {𝑡} is the submodel of 𝔐0 in which the world 𝑡 has
been deleted. By the inductve hypothesis, we have that (a) G(𝔐0), 𝑡 ⊧ Tr(𝜑), and (b)
G(𝔐0 − {𝑡}), 𝑠 ⊧ Tr(𝜓). To see that the formula Tr(⟨−𝜑⟩𝜓) as defined above is true at
𝑠 in G(𝔐0), we cut the link from 𝑡 to 𝑒, and need to have Tr(𝜓) true at 𝑠. However, this
follows from (b) above plus Proposition 2, since G(𝔐0 − {𝑡}) equals the relativization of
the model G(𝔐0) after the link cut from 𝑡 to 𝑒 to only those worlds that satisfy◇𝑒∨𝑒. ∎

Our remaining task is to suitably define the class of models G(C) = {G(𝔐0) ∣ 𝔐0 ∈
C}, where C is the class of all models for MLSR+. We start with two simple auxiliary ob-
servations about the defining HSML+-formula (where we recall that our special universal
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modality ∀ ranges only over non-isolated points).

Proposition 3.3: For any HMSL+ model 𝔑,
(a) If 𝔑 ∈ G(C), then 𝔑, 𝑤 ⊧ ∀((¬𝑒 →◇𝑒) ∧ (𝑒 → ◻⊥))

(b) Let 𝔑 − ISO be the model obtained by removing all isolated worlds in 𝔑.
If, for some world 𝑤, 𝔑, 𝑤 ⊧ ∀((¬𝑒 →◇𝑒) ∧ (𝑒 → ◻⊥)), then 𝔑 − ISO ∈ G(C).

We now obtain the following reduction from MLSR+ to HMSL+.

Fact 18: For each formula 𝜑 in the language of MLSR+,

⊧MLSR+ 𝜑 iff ⊧HSML+ ∀((¬𝑒 →◇𝑒) ∧ (𝑒 → ◻⊥))→ (¬𝑒 ∧◇𝑒 → Tr(𝜑))

Proof From right to left, this is straightforward. Suppose that the stated formula is valid
in HSML+, and let 𝔐, 𝑠 be any pointed model for MLSR+. By Proposition 3.(a), we
have that the HSML+-model G(𝔐) ⊧ ∀((¬𝑒 → ◇𝑒) ∧ (𝑒 → ◻⊥)). By the definition
of the mapping G, we have that 𝑠 satisfies ¬𝑒 ∧ ◇𝑒. It follows from the assumption that
G(𝔐) ⊧ Tr(𝜑), and so by Fact 12,M, 𝑠 ⊧ 𝜑.

From left to right, we argue by contraposition. Suppose that some HSML+-model
𝔑 and world 𝑠 make the following formulas true: (a) ∀((¬𝑒 → ◇𝑒) ∧ (𝑒 → ◻⊥)), (b)
¬𝑒, (c) ◇𝑒, and (d) ¬Tr(𝜑). Now remove all isolated points from 𝔑 to obtain the model
𝔑-ISO. It is easy to verify that, in this model, (a), (b) and (c) above still hold at 𝑠. [In
particular, given the assumptions, neither 𝑠 nor 𝑒 are isolated points, so they stay in.] But
(d) remains true as well, by an appeal to Proposition 2. The reason is that, given the truth
of (a), 𝔑-ISO equals the relativized model 𝔑 ∣ (◇𝑒 ∨ 𝑒). But then, finally, Proposition
3.(b) gives us an MLSR+-model 𝔐 with G(𝔐) =𝔑-ISO where 𝜑 is false at 𝑠. ∎

Finally, we close the circle of our two system embeddings so far by showing that the
extended language HSML+ can also be embedded into MLSR+. One just extends the
translation function in Definition 3.12 by adding the two clauses

Tr(◇−1𝜑) =◇−1(𝑖 ∧◇−1Tr(𝜑))

Tr(⧫𝜑
𝜓𝜒) = ⟨−(𝑖 ∧◇−1(¬𝑖 ∧ Tr(𝜑)) ∧◇(¬𝑖 ∧ Tr(𝜓))⟩Tr(𝜒)

It is not hard to verify that we have the following new result:

Proposition 3.4: For any formula 𝜑 in the language of HSML+,

⊧HSML+ 𝜑 iff ⊧MLSR+ 𝑈𝐴 → (¬𝑖 → Tr(𝜑))
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Thus, we can embed slight extensions of HSML into matching extensions of MLSR
and vice versa. This gives substance to the intuition that point deletion and link dele-
tion are closely related in a logical perspective.➀ We leave obtaining sharper and more
parsimonious reductions as an open problem.➁

3.5 Conclusion

We have axiomatized the logic HSML of arbitrary link deletion in a Hilbert-style for-
mat using modest hybrid additions to the original language of sabotage modal logic which
allow for defining an auxiliary companion modality of named link deletion simplifying
the proof system. In addition, we have used our setting to provide mutual reductions be-
tween existing modal logics of point deletion and link deletion that suggest more unity to
logics of graph-changing games than might have been apparent at first sight.

We believe that the technique of axiomatization via a companion modality definable
in the logic, which simplifies the one in (van Benthem et al., 2020) to which our general
treatment remains indebted, can be applied to many further logics of graph change in the
literature, and also to further kinds of semantics beyond the protocol models whose logic
we have axiomatized.

In our view, two major open problems remain for judging the virtues of working with
HSML. A first concern are the schematically valid formulas of HSML that remain valid
under substitution of arbitrary formulas for atomic formulas. Most, but not all of the
principles in our axiomatizations were schematically valid: in particular, the recursion
axiom for proposition letters was not. (Holliday et al., 2011) axiomatizes the schematically
valid formulas of public announcement logic using an abstract poly-modal semantics with
modal and dynamic accessibility relations which can be seen as a generalization of our
protocol models, cf. also (Wang, 2010). We believe that our approach lifts to such a
setting, but this needs to be verified.

Another major question concerning HSML (also open for its parent logic SML) is an
interpolation theorem. It is not hard to see that the proof techniques for hybrid logic in

➀ Point deletion and arrow deletion are also close in Arrow Logic, (van Benthem, 1996), which treats arrows as objects
representing transitions, but we have not been able to establish a precise connection between this research line and
our logics of graph change.

➁ We have encountered quite a few forms of deletion by now. PAL deletes all points satisfying a certain property, and
the counterpart for this is the DEL-style logic of uniform definable link cutting in Appendix 3.6. One can also delete
definable objects or definable links stepwise, as we have analyzed here. As a specialization of this, there is deletion
of arbitrary points or links, or just individual named objects or links. We leave a comparison of the latter variants
to further study.
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(Areces et al., 2001) extend to HSML, but they require adding downarrow binders to our
language which lack motivation in the setting of graph games. Whether we can do without
them is an open problem at the present stage.

Finally, as already suggested earlier, our results for HSML can also be seen as a case
study for broader issues in dynamic-epistemic and hybrid logics. We leave these to further
investigation.

3.6 Appendix A: HSML with general link cutting

The nominal link cutting operator ⟨𝑎∣𝑏⟩ in HSML sufficed for proving completeness.
But dynamic-epistemic logic has complete systems for general link cutting modalities
⟨𝜑∣𝜓⟩ that describe the new model after cutting all the links {(𝑤, 𝑣) ∣𝔐, 𝑤 ⊧ 𝜑 and 𝔐, 𝑣 ⊧
𝜓} simultaneously from a current model, (van Benthem and Liu, 2007).

Fact 19: General definable link cutting is not definable in HSML.

Proof We first extend the SML-bisimulations of (Aucher et al., 2018) as follows.

Definition 3.16 (HS-bisimulation): Let M1 = (𝑊1, 𝑅1, 𝑉1), M2 = (𝑊2, 𝑅2, 𝑉2) be
models for the language L. A relation 𝑍 ⊆ 𝑊1 × 𝑊2 is a HS-bisimulation between 𝑀1

and 𝑀2 if the following conditions are satisfied:
(a) for atoms: if 𝑤1𝑍𝑤2, then 𝑤1 ∈ 𝑉1(𝑎) iff 𝑤2 ∈ 𝑉2(𝑎) for 𝑎 ∈ Prop ∪ Nom.
(b) forth and back conditions for ◇ are as usual.
(c) forth condition for⧫: if 𝑤1𝑍𝑤2,M′

1 is a new model obtained fromM1 by cutting a
link, then there exists a new modelM′

2 obtained fromM2 by cutting a link such that
𝑤1𝑍𝑤2, where 𝑍 is an HS-bisimulation betweenM′

1 andM′
2. The back condition

for ⧫ is the obvious converse.
(d) All points named by the same nominal are related by Z.

The following is easy to prove by induction on formulas.

Fact 20: HSML-formulas are invariant for HS-bisimulations.

Now we can give a concrete example to prove that ⟨𝜑∣𝜓⟩ cannot be defined in
HSML. Let 𝑀1 = (𝑊1, 𝑅1, 𝑉1) with 𝑊1 = {𝑤1, 𝑤2, 𝑤3}, 𝑅1 = {(𝑤2, 𝑤3)}, 𝑉 (𝑝) =
{𝑤2}, 𝑉 (𝑎) = {𝑤1} for any 𝑎 ∈ Nom. 𝑀2 = (𝑊2, 𝑅2, 𝑉2) with 𝑊2 = {𝑣1, 𝑣2, 𝑣3}, 𝑅2 =
{(𝑣2, 𝑣3)}, 𝑉 (𝑝) = ∅, 𝑉 (𝑎) = {𝑣1} for any 𝑎 ∈ Nom. It is easy to see that
(𝑀1, 𝑤1)𝑍(𝑀2, 𝑣1), which means that any formula 𝛼 is true at 𝑤1 iff 𝛼 is true at 𝑣1.
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However, 𝑀1, 𝑤1 ⊭ ⟨𝑝∣⊤⟩⧫⊤, 𝑀2, 𝑣1 ⊨ ⟨𝑝∣⊤⟩⧫⊤, which leads to a contradiction. ∎

Adding a general link cutting operator ⟨𝜑∣𝜓⟩ to HSML yields a logic GHSML whose
syntax is given by

𝜑 ∶∶= 𝑎 ∣ 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣◇𝜑 ∣ ⧫𝜑 ∣ @𝑖𝜑 ∣ ⟨𝜑∣𝜓⟩𝛼

with 𝑝 ∈ Prop, 𝑎 ∈ Nom. Dual modal operators ◻,∎, [𝜑∣𝜓] are defined as usual. The
truth condition for ⟨𝜑∣𝜓⟩ is as follows:

(𝑊 , 𝑅, 𝑉 ), 𝑤 ⊨ ⟨𝜑1∣𝜑2⟩𝜓 iff (𝑊 , 𝑅′, 𝑉 ), 𝑤 ⊨ 𝜓 , where

𝑅′ = 𝑅/{(𝑤1, 𝑤2) ∣ (𝑊 , 𝑅, 𝑉 ), 𝑤𝑖 ⊨ 𝜑𝑖 for 𝑖 = 1, 2}

The logic GHSML can be axiomatized in the same style as HSML, with the one
difference that the link cutting modality is now a primitive of the system, for which we
have recursion axioms in standard dynamic-epistemic style:

(a) ⟨𝜑∣𝜓⟩𝑎 ↔ 𝑎

(b) ⟨𝜑∣𝜓⟩𝑝 ↔ 𝑝

(c) ⟨𝜑∣𝜓⟩¬𝛼 ↔ ¬⟨𝜑∣𝜓⟩𝛼

(d) ⟨𝜑∣𝜓⟩(𝛼 ∧ 𝛽)↔ ⟨𝜑∣𝜓⟩𝛼 ∧ ⟨𝜑∣𝜓⟩𝛽

(e) ⟨𝜑∣𝜓⟩@𝑎𝛼 ↔ @𝑎⟨𝜑∣𝜓⟩𝛼

(f) ⟨𝜑∣𝜓⟩◊𝛼 ↔ ((𝜑 ∧ ◊(¬𝜓 ∧ ⟨𝜑∣𝜓⟩𝛼)) ∨ (¬𝜑 ∧ ◊⟨𝜑∣𝜓⟩𝛼))
A completeness proof can be given for this extended proof system in the same style

as the one we gave for HSML, though its details will now be closer to the completeness
proof for MLSR in (van Benthem et al., 2020).

3.7 Appendix B: Another approach to embedding HSML into
MLSR

We assume the setting of Section 5, but now introduce the following notions in order
to tighten up the translation provided there.

Definition 3.17 (Named Pseudo Transformed models): A named pseudo trans-
formed model 𝔐𝑃 is a named MLSR model in which for any 𝑎, 𝑏 ∈ Nom, the follow-
ing formulas are true globally: 𝑖 → (◇𝑎 → ◻(𝑎 ∧ ¬𝑖)), ¬𝑖 → ◻𝑖, ◇(𝑏 ∧ 𝑖 ∧ ◇𝑎) →
¬◇ (¬𝑏 ∧ 𝑖 ∧◇𝑎) and 𝑏 ∧◇(𝑖 ∧ 𝑎)→ @𝑏¬𝑖 ∧ (¬𝑏 → ¬◇ 𝑎).

A named pseudo transformed model (‘nptm’, for short) is close to a transformed
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model, but there are some differences. In an nptm, 𝑖-worlds may have neither successors
nor predecessors. But in a transformed model, an 𝑖-world must have both a ¬𝑖-successor
and a ¬𝑖-predecessor. However, in an nptm, if an 𝑖-world has a successor or a predecessor,
it must be a ¬𝑖-world and unique.

Let S denote the class of all named pseudo transformed models.

Proposition 3.5: ¬𝑖 ∧ Tr(𝜑) is satisfiable in a transformed model iff ¬𝑖 ∧ Tr(𝜑) is
satisfiable in a named pseudo transformed model.

Proof First, given a transformed model F(𝔐0) and a translated formula Tr(𝜑) true at a
¬𝑖-point 𝑤 in it, by adding nominals to the language and naming all points in F(𝔐0), we
get an nptm with Tr(𝜑) still true at 𝑤.

Next, given an nptm 𝔐𝑃 , we delete all 𝑖-points without successors and then add
for each 𝑖-point without predecessors a ¬𝑖-point linking to it (with no restriction on how
atomic propositions except for 𝑖 are assigned to these new points). Let 𝔐′

𝑃 be the resulting
transformed model. Then we prove by formula induction that, for any formula ¬𝑖 ∧ Tr(𝜑)
and ¬𝑖-point in both 𝔐𝑃 and 𝔐′

𝑃 , the formula is true at 𝑤 in 𝔐𝑃 −𝐵 iff it is true at 𝑤 in
𝔐′

𝑃 −𝐵, where 𝐵 is a finite subset of 𝑖-points which are in both 𝔐𝑃 and 𝔐′
𝑃 .➀ ∎

Corollary 3.3:

⊧C 𝜑 iff ⊧S ¬𝑖 → Tr(𝜑)

Adding the four formulas in Definition 3.17 as axioms to obtain a proof system
MLSR(C), soundness and completeness go through – noting that deleting points from
an nptm still yields a named pseudo transformed model. Putting things together, one then
obtains the desired

Corollary 3.4:

⊢HSML 𝜑 iff ⊢MLSR(C) ¬𝑖 → Tr(𝜑)

➀ Here are the key cases. (a) For◇(𝑖∧◇𝜑), note that neither adding ¬𝑖-points to initial 𝑖-points nor deleting dead end
𝑖-points affects the links that make◇(𝑖 ∧◇𝜑) true at 𝑤 in 𝔐𝑃 . Therefore, by the inductive hypothesis,◇(𝑖 ∧◇𝜑)
is also true at 𝑤 in 𝔐′

𝑃 . From 𝔐′
𝑃 to 𝔐𝑃 , the same argument applies. (b) For ⟨−𝑖 ∧◇¬𝑖⟩𝜑, note that neither the

deleted points nor the added points satisfy 𝑖 ∧◇¬𝑖, so when evaluating the formula ⟨−𝑖 ∧◇¬𝑖⟩𝜑, we can always
delete the same points in 𝔐𝑃 and 𝔐′

𝑃 that satisfy 𝑖 ∧◇¬𝑖. The equivalence follows by the inductive hypothesis.
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3.8 Appendix C: On sabotage games with imperfect information

HSML has strong expressive power for giving an accurate representation of game ac-
tions at the syntax level. However, like SML, HSML has just a language for describing
game boards, making both graph logics that focus on changes in the graph that represents
the game board during the game. In addition to this basic structure, exploring how players
access and process information, form and update knowledge and beliefs, and make deci-
sions based on them is crucial in game theory. In this appendix, we briefly explore how
some of these themes might be introduced in our setting.

In terms of players’ information, there can be two limitations that deviate from the
perfect information in our graph games studied so far. First, players can have bounded
computational resources. For instance, in the game of Go, players cannot realistically
calculate the optimal response strategy during play of the game and they may not have
perfect recall of the history of the game so far. The second limitation arises from restricted
ability to access information by observation. For example, in realistic sabotage games, it
makes sense to assume that players cannot observe the entire game board, but just a part
of it. We only consider the second source of imperfect information in what follows.

The literature has some approaches that tend in this direction. One recent approach
is that of (Li et al., 2023) on so-called Cops and Robbers games which draws on the work
of Grossi and Turrini (2012) on ‘short sight games’ to produce a sophisticated epistemic-
action logic which describes the changes in player’s knowledge as they make new obser-
vations in the course of the game. We believe that this epistemized approach will also
work for sabotage games, but in what follows, we describe a simpler (for our present mod-
est purposes, that is) and more classical perspective using classical extensive games with
imperfect information (Osborne and Rubinstein, 1994).

For a start, we can describe a sabotage game as an extensive game where each node
in the game tree is labelled with a graph and a specified position for Traveler (Demon can
be assumed to be globally ‘omnipresent’).

Example 3.3: In the sabotage game of Figure 3.3, we suppose that Traveler can only
see the successor nodes from her current node, while Demon can see the whole graph all
the time. Play starts from the node 𝑠, and the goal region is {𝑣}.

The matching extensive form game is depicted in Figure 3.4, where each node in
the game tree is labelled with a graph in Figure 3.5. On such game trees, we can have
imperfect information in the standard game-theoretic sense of nodes linked by epistemic
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Figure 3.3 A sabotage game

indistinguishability for the relevant player, or nodes forming ‘information sets’ for that
player. In our figure, we use dashed lines to indicate epistemic indistinguishability rela-
tions for the Traveler. For instance, at nodes 𝑏3 and 𝑏4, Traveler cannot observe Demon’s
previous action (i.e., the precise link that was cut), since this was out of Traveler’s sight,
while the available actions for Traveler in both situations are the same. Hence Traveler
cannot distinguish these two game board states even if she has perfect recall.

𝑎1

𝑏1 𝑏2 𝑏3 𝑏4

𝑐1 𝑐2 𝑐4 𝑐3 𝑐5 𝑐6
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′ 𝑑4 𝑑5 𝑑6𝑑3

′ 𝑑5
′

𝑒1 𝑒2 𝑒2
′ 𝑒3

(𝑠, 𝑢)

(𝑠, 𝑣)

(𝑠, 𝑣) (𝑣, 𝑢) (𝑢, 𝑣)

(𝑠, 𝑢) (𝑠, 𝑢)(𝑠, 𝑣)
(𝑠, 𝑣) (𝑠, 𝑢)

(𝑠, 𝑢)
(𝑣, 𝑢) (𝑢, 𝑣)

(𝑠, 𝑣)

(𝑠, 𝑢)

(𝑢, 𝑣)
(𝑠, 𝑣) (𝑣, 𝑢)

(𝑠, 𝑢)

(𝑢, 𝑣) (𝑢, 𝑣) (𝑢, 𝑣) (𝑢, 𝑣)

: Player D wins

Figure 3.4 An extensive sabotage game

For a logical analysis of these game trees, we can use the game logics introduced in
(van Benthem, 2014). First, we have action modalities stepping from one game node to
another that represent Traveler’s moves, much like in the graph logics SML and HSML.
Next, the imperfect information structure where Traveler cannot distinguish between some
different nodes (states of the game so far) immediately suggests introducing knowledge
modalities for what she knows. Finally, the update mechanism that takes us from a layer
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Figure 3.5 Game states

of the game tree (representing players’ views of the game as played so far) to the next can
be described using suitable event models for partial observation (of Demon’s actions) and
applying DEL-style product update, as explained in detail in (van Benthem, 2014, Chapter
9). Taken together, all this represents a dynamic-epistemic extension of our graph logics
for sabotage games that seems worth studying.

Finally, in addition to what was introduced so far, these extensive game models also
allow us to say more about the strategies of players, i.e., the choice rules for behavior
throughout the game that ensure certain goals, such as Traveler reaching the distinguished
goal region in the graph. This would require a richer game logic where we could now also
talk about strategic Nash equilibria and other basic game-theoretic notions in the setting
of graph games with limited observation.
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CHAPTER 4 MODAL LOGICS FOR REASONING IN
DISTRIBUTED GAMES

Over the years, distributed systems have been widely studied in distinct areas of ap-
plications in computer science and AI, e.g., concurrent processes, database management
systems, mobile and ubiquitous computing, ad hoc networks, biological systems, intelli-
gent interactive systems, to name a few. According to van Steen and Tanenbaum (2017),
a distributed system is a collection of autonomous computing elements that appears to
its users as a single coherent system. These computing elements are independent of each
other but can communicate or share messages depending on various patterns. In this con-
text, we should first note that the term ‘distributed system’ has been widely used in the
literature, and its meaning has evolved accordingly. For instance, Barwise and Seligman
(1997) referred to it as a structure describing the flow of information. This structure is
divided into several parts, with information channels connecting different parts. For the
purpose of this chapter, we consider distributed systems as concurrent systems of pro-
cesses, with some amount of communication between them. Operational models of such
systems are provided by labelled transition systems.

Mohalik and Walukiewicz (2003) brought a game-theoretical perspective to dis-
tributed systems. From such a game point of view, we treat a component process as a
local arena for an individual player, whereas the distributed system consisting of all these
processes forms a global arena. A similar formulation on local and global arenas was pro-
vided by Ramanujam and Simon (2010). In these games, a player makes choices locally,
based on her game state in the local arena and information received from other players
in form of public announcements that allow the player to make assumptions about other
players’ local game states. The global or the product arena resolves conflicts and ambi-
guities arising from such partial knowledge of individual process or player. Overall, the
main premise of such game analyses is that local moves of players affect their outcomes
in the global arena.

Evidently, the literature on distributed systems and distributed games is quite exten-
sive. For instance, Coulouris et al. (2012) systematically explored the design, algorithms,
and challenges involved in distributed systems. From the game perspective, Berwanger
et al. (2018); Beutner et al. (2019); Muscholl and Schewe (2013) focus on the synthesis of
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distributed strategies in games of partial information. In terms of general studies on log-
ical characterization of game-theoretic notions one can consider the work on describing
Nash equilibrium and subgame-perfect equilibrium in normal form and extensive form
games (Harrenstein et al., 2003; Liu et al., 2016), backward induction (Bonanno, 2001),
players’ powers in extensive form games (van Benthem, 2002), players’ actions in graph
games (van Benthem, 2005, 2001), among others. Ghosh et al. (2017) studied game arenas
with simultaneous moves, such as repeated normal-form games, with a focus on reason-
ing about strategies. Das and Ramanujam (2021) proposed a modal logic in two layers for
reasoning about strategies in social network games.

Coming back to the studies on distributed games, much of the literature either concen-
trates on algorithmic questions relating to the existence of winning strategies or equilibria,
or on reasoning in the global arena on players’ choices. Our point of departure in this work
is to provide a formal study on how the structure of local arenas determines the structure
of the global arena. In some sense, the reasoning here is structural rather than outcome
based. In this sense, the work is closer in spirit to that of local temporal logics (Ramanu-
jam, 1996; Thiagarajan and Walukiewicz, 2002), but again the difference with them lies
in game-theoretic reasoning.

On the whole, this chapter dwells on reasoning underlying games of partial informa-
tion from the local perspective and how this reasoning evolves when viewed under the
global lens. To give a few examples of formal studies on local and global reasoning, Bar-
wise and Seligman (1997) employed local logics to characterize the components of a sys-
tem and use the concept of logic infomorphisms to capture the interactions between these
components, whereas Aucher (2005) discussed the difference between local and global as-
pects of assignments in probabilistic and plausibility approaches towards belief revision.
In contrast, the discussion here stems from providing a parsimonious syntax to describe
the interplay between local and global reasoning from a structural viewpoint, yielding
an essential base for bringing about more sophisticated reasoning aspects with their ex-
tensions. In technical terms, this chapter proposes a couple of two-layered propositional
modal logics for reasoning in distributed games and presents complete axiomatizations of
their valid formulas. It finishes off with a flavour of local and global strategic reasoning
phenomena that extensions and modifications of these logic frameworks can express.

Before going any further, we note that even though the main idea of local and global
reasoning phenomena in distributed games comes from the notion of distributed systems
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(Baier and Katoen, 2008), that is, concurrent systems of processes with some levels of
communication, many real games, e.g., board games or card games can also be modeled
as distributed games. Here, the occurrences of local and global reasoning correspond to
the reasoning of the individual players with the information available to them vis-à-vis
the reasoning from the top or high level reasoning about the games, the way we reason
about games in game theory (Osborne and Rubinstein, 1994). Our running example for
this chapter, a very simple card game described below, demonstrates this viewpoint.

Example 4.1: Two players, Alice and Bob, are playing a card game and it is common
knowledge that there are three available cards, 1, 2 and 3, say. Suppose each of them gets
a card from this pile of three cards, and one card is kept upside down so that nobody can
see the value. Suppose, at each round, each of them can announce the following:

1. I have card number 𝑗
2. I accept
3. I challenge

We specify that both players only announce the card number that is equal to or higher than
the actual card they have. The game starts with a round of simultaneous announcements
of cards.➀ Subsequently,

• if they announce different card numbers, then:
– If the player with the announcement of the lower card announces ‘I accept’ in

the next round, then the other player wins.
– If the player with the announcement of the lower card announces ‘I challenge’

in the next round, then the other player has to show the card, and the player
showing the card wins if the card matches her announcement, otherwise, the
‘challenger’ wins.

• if they announce the same card number, we specify that at least one player has to
announce ‘I challenge’ in the next round. Whoever is challenged has to show the
card, and this player wins if the card matches her announcement. If both players
announce ‘I challenge’, then both have to show their cards. Both players may lose
in case their cards do not match their announcements.

This is an example of a game of partial information, where each player has access to
only a part of the game state and strategizes based on the local state and communication

➀ We could also allow them to make sequential announcements, and this would affect the players’ strategies leading
to a variation in the game analysis.
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with others. In such games, players make their moves by making assumptions about other
players’ local states, and the actual global state decides which of the players’ moves are
actually enabled. This is the setting studied in this chapter, that of distributed games.

This simple game already illustrates a lot of salient features that have been studied
in formal frameworks dealing with the reasoning processes of the participating players in
different game settings. For example, from the information perspective, games of partial
and/or imperfect information have been studied in the framework of dynamic epistemic
logic (Ågotnes and Ditmarsch, 2011), that of epistemic situation calculus (Belle and Lake-
meyer, 2010), among many others. With regard to communication, the setting builds on
public announcements (Baltag et al., 1998), where the announcements may not be truthful
(van Ditmarsch et al., 2012). In fact, Ågotnes and Ditmarsch (2011) introduce a notion
of public announcement games. So, a natural question emerges regarding the fundamen-
tal distinguishing factor of the current study in terms of the previous studies mentioned
above. As discussed earlier, we reiterate the fact that the main focus of the study presented
in this chapter is to analyze and express the interplay of local and global reasoning in these
games from a structural point of view. We study the simplest possible interface involv-
ing the actions (announcements) of the players, and keep the information or the epistemic
aspect as well as the communication or the explicit announcement aspect for future work.

The remainder of this chapter is organized as follows: In the following section, we
introduce the basic notions of local and global arenas and illustrate the distinct reason-
ing phenomena that we explore further. The next one provides the syntax and semantics
of distributed game logic (DGL), using the language to show the interplay between the
local and global views. We then provide a strong completeness result for the proposed
logic. Afterwards, we propose a distributed game logic with enabled actions (DGLEA)
with subtle differences from DGL to characterize more realistic interplay between local
and global reasoning, and present a complete axiom system for it. In addition, we study
the complexity of the model checking problem for these logics. Before concluding the
chapter, we propose a similar framework that naturally incorporates strategic announce-
ments, thereby attesting to the usefulness of the proposed frameworks for studying various
reasoning phenomena in distributed games.
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4.1 Preliminaries

Let 𝑁 = {1, 2, … , 𝑛} denote the set of players. We assume that each player is making
her moves locally based on (i) her own information about the game, which takes some form
of (public) announcements, and, (ii) some possible/actual information exchange with the
other players. For each player 𝑖 ∈ 𝑁 , we associate a finite set Γ𝑖, the set of symbols that
player 𝑖 employs for announcements/actions. Let Γ̃ =∏𝑖∈𝑁 Γ𝑖. Throughout the text, we
will denote the elements of Γ̃ by 𝛾 , and use 𝛾[𝑖] for 𝑖-th projection of 𝛾 , where 𝑖 ∈ 𝑁 . We
now provide a simple setting of local and global arenas facilitating the description of the
distributed games.

Definition 4.1 (Local arena): A local arena for player 𝑖 is a tuple G𝑖 = (𝑊 𝑖, →𝑖, 𝑤𝑖
0)

such that 𝑊 𝑖 is the set of local game states, 𝑤𝑖
0 is the initial game state, and →𝑖 is a partial

move function given by, →𝑖∶𝑊 𝑖 × Γ̃ → 𝑊 𝑖.

Thus, in her local arena, each player is making a move based on her own information
set and the information she is receiving from the other players. The idea is that a player
may not know where another player is in his local arena, but, based on the information
received from the other player, she may infer some details about the other player and move
accordingly in her own local arena. Let us consider the game described in Example 4.1,
where the local arenas of Alice and Bob can be modeled as follows. We note that the
announcements of Alice and Bob based on the cards they have can be modeled in the
same way, and are given in Figure 4.1.

Example 4.2 (Local arenas: Modeling games from an individual perspective): If
a player has card 𝑗, then her local arena is given by the tree starting with the number 𝑗.
A move is labelled by a pair of announcements, the first coordinate represents Alice’s
announcement and the second one represents Bob’s. There are some auxiliary symbols in
the diagram explained as follows:

• Number 𝑛 represents ‘I have card number 𝑛’
• Action 𝐴 represents ‘I accept’
• Action 𝐶 represents ‘I challenge’
• The symbol 𝑊𝑖 denotes that ‘player 𝑖 wins the game’
• The symbol 𝑈 denotes that ‘the corresponding player is undecided regarding the

outcome of the game’
We note here that a local arena for a player is providing us with a possible deal for the
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Figure 4.1 Local arenas for Alice (left) and Bob (right)

player in the game presented in Example 4.1. Let us consider the local arenas where Alice
has received card number 2, and Bob card number 1.

If both the players announce ‘I have card number 3’, then according to the local arena
of Alice, Bob will win if he challenges in the next round. However, if Alice challenges
in the next round, she would be undecided regarding the outcome of the game until Bob
shows his card number. The same indecisiveness would follow from Alice’s perspective
if they both challenge simultaneously. That is depicted in the local arena of Alice when
she is having card number 2.

To reason about all these players together, and the corresponding global outcomes,
that is, winning or losing of the concerned players after each possible play of the game,
we introduce the notion of global arenas as follows.

Definition 4.2 (Global arena): Given a set of local arenas {G𝑖}𝑖∈𝑁 , one for each player,
the global arena G = (𝑊 , →, 𝑤0) is defined as follows: 𝑊 = 𝑊 1 × … × 𝑊 𝑛, 𝑤0 =
(𝑤1

0, … , 𝑤𝑛
0), and →∶𝑊 ×Γ̃ → 𝑊 is a partial function satisfying the following condition:

for all 𝑤, 𝑣 ∈ 𝑊 , we have 𝑤 𝛾
Ð→ 𝑣 iff

- for all 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖,

- for all 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑣𝑖 = 𝑤𝑖,
with, 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) = {𝑖 ∈ 𝑁 ∣ ∃𝑣𝑖 ∈ 𝑊 𝑖 with 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖} ≠ ∅.

We note that such a simple notion of ‘enabled moves’ in this product based global
arena may not always serve our purpose (cf. Section 4.3), but for now we keep our concepts
simple and focus on what can be expressed and modeled by them. With respect to Example
4.1, a deal for both the players, and the possibilities therein can be modeled using this
global arena. We note that the global arena gives us a view from top, that is, all the
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Figure 4.2 A global arena

indecisiveness among the players, where possible actions are taken by both the players,
get resolved, and the outcomes are evaluated accordingly.

Example 4.3 (Global arena: Modeling games from a global joint perspective):
The global arena where Alice has been given card 2 and Bob card 1 is depicted in Figure
4.2. We only show the relevant nodes in the game and leave out the isolated, irrelevant
nodes. We note that the proposition 𝑈 has been replaced by relevant global propositions
in the context of the global arenas, where the top view tells us the cards that each player
has, and the announcements are considered accordingly. When both of them say ‘I have
card number 3’, suppose that Alice challenges in the next round. Even though in her local
arena Alice would be unsure of her win, in the global arena, the global outcome is the
‘win for Alice’. And, in case both Alice and Bob challenge, the global outcome is ‘loss’
for both the players, as they were both bluffing.

In what follows, we introduce a simple modal language to model reasoning in these
games from both local and global perspectives, as illustrated by the examples given above.
A main aim is to express Alice’s inability to conclude about her win in her local arena when
she has the card 2 and Bob has card 1, and they both bluff saying that they have card 3,
whereas, under global reasoning, such a conclusion gets elucidated quite naturally.

4.2 Distributed game logic

In this section, we propose a modal logic, viz. Distributed Game Logic (DGL), to
reason about such a combination of local and global reasoning in these arenas. We now
present the syntax and semantics of this logic.
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4.2.1 Syntax and semantics

The formulas of the logic are presented in two layers: local formulas describing the
reasoning of the game from an individual perspective and global outcome formulas de-
scribing the outcomes of the game depending on the initial states. The local languages are
indexed by players, one for each player in 𝑁 . We have a modality referring to local moves,
which are indexed by tuples of announcements. Let us fix P𝑖, a set of atomic propositions
for each player 𝑖. The syntax of 𝑖-local formulas is given by:

Definition 4.3: The local language for player 𝑖, L𝑖, is given as follows:

𝛼 ∈ L𝑖 ∶∶= 𝑝 ∣ ¬𝛼 ∣ 𝛼 ∨ 𝛼′ ∣ ⟨𝛾⟩ 𝛼,

where, 𝑝 ∈ P𝑖 and 𝛾 ∈ Γ̃.

Thus, the local formulas constitute the basic modal logic formulas for each player 𝑖.
The model and truth definition of the local formulas are given as follows:

Definition 4.4: Given a player 𝑖, a model 𝑀 𝑖 = (G𝑖, 𝑉 𝑖), where, G𝑖 is a local arena for
the player 𝑖 and 𝑉 𝑖 ∶ 𝑊 𝑖 → 2𝑃𝑖 is the valuation function in the local arena. The truth
definition of the formulas at a world in a model are defined inductively as follows:

• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝑝 iff 𝑝 ∈ 𝑉 𝑖(𝑤𝑖).
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ¬𝛼 iff 𝑀 𝑖, 𝑤𝑖 /⊧𝑖 𝛼
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 ∨ 𝛽 iff 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 or 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛽
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩ 𝛼 if there exists 𝑣𝑖 ∈ 𝑊 𝑖 such that 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖 and 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼.

We say that an 𝑖-local formula 𝛼 in L𝑖 is 𝑖-satisfiable if there is a model 𝑀 𝑖 and a state
𝑤𝑖 such that 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼. In what follows, all the formulas are evaluated at the root of the
corresponding modes.

Example 4.4: In the game between Alice and Bob, as considered in Example 4.2, sup-
pose that Alice gets card 2 and Bob gets card 1. Consider the local arena of Alice where
she has card 2. Now, when they both say that they have card 3, they are both bluffing. But
Alice cannot see Bob’s card and so in Alice’s local arena, using Alice’s local language
L𝐴, we have that [(3, 3)]⟨(3, 𝐶)⟩𝑊𝐵, and also, [(3, 3)]⟨(𝐶, 3)⟩(𝑊𝐴 ∨𝑊𝐵). Similarly,
consider the local arena of Bob where he has card 1. Bob cannot see Alice’s card and so
in Bob’s local arena, using Bob’s local language L𝐵, we have that [(3, 3)]⟨(𝐶, 3)⟩𝑊𝐴,
and also, [(3, 3)]⟨(3, 𝐶)⟩(𝑊𝐴 ∨𝑊𝐵).

On the other hand, suppose Alice announces truthfully that she has card 2, and Bob
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bluffs that he has card 3. Then, in Alice’s local arena, she can either accept, thereby
losing the game, or she can challenge in which case she will be undecided regarding the
outcome of the game. We can express this reasoning of Alice in her local language as
follows: [(2, 3)](⟨(𝐴, 3)⟩𝑊𝐵 ∧ ⟨(𝐶, 3)⟩(𝑊𝐴 ∨𝑊𝐵)).

With local reasoning taken care of by the local languages, which are basically rep-
resenting static modal environments with action tuples abstracting out the moves or an-
nouncements of the players, we are now all set to describe global reasoning. To this end,
we define the global formulas below based on the local ones.

Definition 4.5: The global language L is given as follows:

𝜑 ∈ L ∶∶= 𝛼@𝑖 ∣ ¬𝜑 ∣ 𝜑 ∨𝜑′ ∣ ⟨𝛾⟩ 𝜑

where 𝛼 ∈ L𝑖, 𝛾 ∈ Γ̃.

As in the case of local formulas, the global formulas are also quite simple as basic
modal logic, the only difference being that we use annotated local formulas as atomic
global formulas. Intuitively, information from the local level can be directly perceived
from a global perspective. To a certain extent, the structure of the game is analogous
from both local and global perspectives, which makes the languages we use for local and
global reasoning quite alike as well. As we notice in Example 4.5 below, to describe global
reasoning at the outcome level, it is convenient to consider global outcome propositions at
the terminal/leaf nodes. To keep things simple from a technical viewpoint (with respect to
finding normal forms for global formulas), we do not include them in the current syntax.
They can be evaluated at the leaf nodes without any constraint, as described in Section
4.5 which deals with frameworks we subsequently propose for modeling local and global
strategic reasoning. The valuation function for these global propositions can be restricted
to the leaf nodes which can be easily described both syntactically and semantically. For
now, the semantics for our current global formulas is presented as follows:

Definition 4.6: A global model 𝑀 is given by a global arena G, together with the local
valuation functions. The truth definition of the global formulas at a world in a global
model is given inductively as follows:

• 𝑀, 𝑤 ⊧ 𝛼@𝑖 if 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼
• 𝑀, 𝑤 ⊧ ¬𝜑 iff 𝑀, 𝑤 /⊧ 𝜑
• 𝑀, 𝑤 ⊧ 𝜑 ∨𝜓 iff 𝑀, 𝑤 ⊧ 𝜑 or 𝑀, 𝑤 ⊧ 𝜓
• 𝑀, 𝑤 ⊧ ⟨𝛾⟩ 𝜑 if there exists 𝑣 ∈ 𝑊 such that 𝑤 𝛾

Ð→ 𝑣 and 𝑀, 𝑣 ⊧ 𝜑.
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We say that a formula 𝜑 is satisfiable if there is a global model 𝑀 and a state
(𝑤1, ..., 𝑤𝑛) such that 𝑀, (𝑤1, ..., 𝑤𝑛) ⊧ 𝜑. A formula 𝜑 is said to be valid if
𝑀, (𝑤1, ..., 𝑤𝑛) ⊧ 𝜑 for any global model 𝑀 and any state (𝑤1, ..., 𝑤𝑛) in that model.

Example 4.5: Consider the global arena with Alice having card 2 and Bob having card
1. When they both bluff by saying that ‘I have card 3’, and a subsequent challenge by
Alice, we would have [(3, 3)](⟨(𝐶, 3)⟩(𝑊𝐴∨𝑊𝐵)@𝐴∧⟨(𝐶, 3)⟩W@A)which represents
Alice’s local information and also, globally available information, with W@A denoting a
‘win for Alice’ being a global proposition. Similarly, W@B denoting a ‘win for Bob’, is
a global proposition. Also, when both Alice and Bob challenge after the bluff, we would
have [(3, 3)]⟨(𝐶, 𝐶)⟩¬(W@A∨W@B), that is both would lose from the global point of
view. Alternatively, when Alice announces truthfully that she has card 2 and Bob bluffs
that he has card 3, globally we express Alice’s and Bob’s local information in a similar
manner: [(2, 3)](⟨(𝐴, 3)⟩(𝑊𝐵@𝐴∧𝑊𝐵@𝐵)∧ ⟨(𝐶, 3)⟩((𝑊𝐴 ∨𝑊𝐵)@𝐴∧𝑊𝐴@𝐵)). If
Alice accepts, then both Alice’s and Bob’s local information include a win for Bob, and
if Alice challenges, while Bob would have the information about a win for Alice, whereas
Alice herself would not be sure of her win.

Above, we have talked about local and global information available to the players,
solely depending on the basic modal logic environment where the labelled modal operators
only correspond to the moves in a game. In particular, we did not even introduce any
epistemic modal operator to deal with players’ information levels. In process, we have
proposed a rather descriptive logic talking about moves and outcomes of the games. So,
what is essentially new about the logic we are proposing here? The answer to this question
lies in what we are about to present below with the global axiom system highlighting a
minimal interplay of local and global reasoning that happens in terms of modal reasoning
in distributed games. We believe that this study would provide a base for richer studies
on reasoning in such games, especially involving strategizing of players and information
available to them. We provide an example in Section 4.5.

4.2.2 On axiomatization

We have proposed a modal logic to reason about distributed games in the section
above. Given a new logical system, we generally formulate various model-theoretic
and proof-theoretic queries regarding the logic, and focus on providing answers to those
queries. In this section, we provide a strong completeness result.
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4.2.2.1 Validities in DGL

We are now all set to provide a complete axiomatization for the validities of the logic.
Let us first mention some validities of the logic, explicating the interplay between local
and global reasoning in terms of, say, conjunction and modality.

- (𝛼 ∧ 𝛽)@𝑖 ≡ (𝛼@𝑖 ∧ 𝛽@𝑖)
- [𝛾](𝛼@𝑖) ⊃ ((⟨𝛾⟩⊤)@𝑖 ⊃ ([𝛾]𝛼)@𝑖)
- [𝛾](𝛼@𝑖) ⊃ (([𝛾]⊥)@𝑖 ⊃ 𝛼@𝑖)

The proofs of these validities follow directly from the truth definition. We now provide a
complete axiom system for the logic and follow it up by providing proofs for soundness
and completeness of the axiom system. Before proceeding further, we should mention
here that the first validity above with respect to conjunction and the related axioms (𝐵2)
and (𝐵3), that we will see below with respect to Boolean connectives, show that the
interplay is well-behaved in terms of propositional connectives. The final two validities,
and the corresponding axioms (𝐵4) and (𝐵5) given below show the interplay in terms
of modal operators characterizing the enabled property of the move relation in the global
arena. Whenever there is a local move enabled ((⟨𝛾⟩⊤)@𝑖), the local and global modalities
basically tell the same story (([𝛾]𝛼)@𝑖 ≡ [𝛾](𝛼@𝑖)), and for the players whose local
moves are not enabled (([𝛾]⊥)@𝑖), the local states remain the same ([𝛾](𝛼@𝑖) ≡ (𝛼@𝑖)).

4.2.2.2 Axiom system

We have an axiom system 𝐴𝑥𝑖 for each player 𝑖 in the system, and in addition a global
axiom system 𝐴𝑋. We use the notation ⊢𝑖 𝛼 to mean that the formula 𝛼 ∈ L𝑖 is a theorem
of the system 𝐴𝑥𝑖. Similarly, ⊢ 𝜙 means that 𝜙 is a theorem of the global system. We say
a set of global formulas Δ is consistent if ⊬ ⋀𝑖∈𝑆 ⊃ ⊥ for any finite 𝑆 ⊆ Δ, similarly, we
mean a set of 𝑖-local formulas Δ𝑖 is 𝑖-consistent if ⊬𝑖 ⋀𝑖∈𝑆𝑖

⊃ ⊥ for any finite set 𝑆𝑖 ⊆ Δ𝑖,
where 𝑖 ∈ 𝑁 .

𝐴𝑥𝑖, the axiom schemes for agent 𝑖

(𝐴0𝑖) Substitutional instances of propositional tautologies

(𝐴1𝑖) [𝛾](𝛼 ⊃ 𝛽) ⊃ ([𝛾]𝛼 ⊃ [𝛾]𝛽)
Local inference rules

(MP𝑖)
𝛼, 𝛼 ⊃ 𝛽

𝛽 (𝐿𝐺𝑖)
𝛼
[𝛾]𝛼

𝐴𝑥, the global axiom schemes
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(𝐵0) Substitutional instances of propositional tautologies

(𝐵1) [𝛾](𝜙1 ⊃ 𝜙2) ⊃ ([𝛾]𝜙1 ⊃ [𝛾]𝜙2)

(𝐵2) (¬𝛼)@𝑖 ≡ ¬(𝛼@𝑖)

(𝐵3) (𝛼 ∨ 𝛽)@𝑖 ≡ (𝛼@𝑖 ∨ 𝛽@𝑖)

(𝐵4) (⟨𝛾⟩⊤)@𝑖 ⊃ (([𝛾]𝛼)@𝑖 ≡ [𝛾](𝛼@𝑖))

(𝐵5) 𝛼@𝑖 ⊃ (([𝛾]⊥)@𝑖 ⊃ [𝛾](𝛼@𝑖))

(𝐵6) ⟨𝛾⟩(⋀
𝑖∈𝑁

𝛼𝑖@𝑖) ≡ ⋁
∅≠𝑆⊆𝑁

(⋀
𝑖∈𝑆
((⟨𝛾⟩⊤)@𝑖 ∧ (⟨𝛾⟩𝛼𝑖)@𝑖)

∧ ⋀
𝑖∈𝑁 /𝑆

(([𝛾]⊥)@𝑖 ∧ 𝛼𝑖@𝑖))

(𝐵7) (⋁
𝑖∈𝑁
(⟨𝛾⟩⊤)@𝑖 ∧ [𝛾]𝜙) ⊃ ⟨𝛾⟩𝜙

Global inference rules

(MP)
𝜙, 𝜙 ⊃ 𝜓

𝜓 (𝐺𝑖)
⊢𝑖 𝛼
𝛼@𝑖 (𝐺𝐺)

𝜙
[𝛾]𝜙

Let us first discuss the axioms in the list. The local axioms and the global axioms
(B0) - (B3) are self-explanatory. The global axioms (𝐵4) - (𝐵7) spell out the interaction
between local and global modalities. Axioms (𝐵4) and (𝐵5) have already been explained
above. Axiom (𝐵7) deals with enabled local moves in the global arena, and finally, axiom
(𝐵6) binds the local and global moves together, which in turn, helps us to get a normal
form for the global formulas. The inference rules are also self-explanatory.

That the axioms and the rules are sound can be proved in the standard way, and we
give a few of those proofs below, for axioms (𝐵2) − (𝐵6) and the rule (𝐺𝑖). Let 𝑀 be a
global model with respect to the local models {𝑀 𝑖 ∣ 𝑖 ∈ 𝑁}.

Proposition 4.1: Axiom (𝐵2) is valid.

Proof For any global model 𝑀 , and any 𝑤 = (𝑤0, ... , 𝑤𝑛) in it. According to the local
and global semantics, we have 𝑀, 𝑤 ⊧ (¬𝛼)@𝑖 iff 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ¬𝛼 iff 𝑀 𝑖, 𝑤𝑖 ⊭𝑖 𝛼 iff
𝑀, 𝑤 ⊭ 𝛼@𝑖 iff 𝑀, 𝑤 ⊧ ¬(𝛼@𝑖). hence, 𝑀, 𝑤 ⊧ (¬𝛼)@𝑖 ≡ ¬(𝛼@𝑖). ∎

Proposition 4.2: Axiom (𝐵3) is valid.

Proof For any global model 𝑀 , and any 𝑤 = (𝑤0, ... , 𝑤𝑛) in it. According to the local
and global semantics, we have 𝑀, 𝑤 ⊧ (𝛼 ∨ 𝛽)@𝑖 iff 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 ∨ 𝛽 iff 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 or
𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛽 iff 𝑀, 𝑤 ⊧ 𝛼@𝑖 or 𝑀, 𝑤 ⊧ 𝛽@𝑖 iff 𝑀, 𝑤 ⊧ 𝛼@𝑖 ∨ 𝛽@𝑖 ∎

74



CHAPTER 4 MODAL LOGICS FOR REASONING IN DISTRIBUTED GAMES

Proposition 4.3: Axiom (𝐵4) is valid.

Proof We prove the dual form of the proposition which reads (⟨𝛾⟩⊤)@𝑖 ⊃ (⟨𝛾⟩(𝛼@𝑖) ≡
(⟨𝛾⟩𝛼)@𝑖). Suppose 𝑀, 𝑤 ⊧ (⟨𝛾⟩⊤)@𝑖 ∧ ⟨𝛾⟩ (𝛼@𝑖). Since 𝑀, 𝑤 ⊧ ⟨𝛾⟩ (𝛼@𝑖), then
there exists 𝑣 with 𝑤 𝛾

Ð→ 𝑣 such that 𝑀, 𝑣 ⊧ 𝛼@𝑖, it follows that 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼. Since
𝑀, 𝑤 ⊧ (⟨𝛾⟩⊤)@𝑖, then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩⊤, which means 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾). According to
𝑤 𝛾
Ð→ 𝑣, we have 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖, then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩𝛼. Thus, 𝑀, 𝑤 ⊧ (⟨𝛾⟩𝛼)@𝑖.
Suppose 𝑀, 𝑤 ⊧ (⟨𝛾⟩⊤)@𝑖 ∧ (⟨𝛾⟩𝛼)@𝑖, then we have 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩𝛼, thus there

exists 𝑣𝑖 with 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖 such that 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼. For 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) / {𝑖}, there exits 𝑣𝑗

with 𝑤𝑗 𝛾
Ð→𝑗 𝑣𝑗 . We construct 𝑣 = (𝑣1, … , 𝑣𝑛) as follows:

𝑣𝑗 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝑗 for 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),

𝑤𝑗 for 𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).

It follows that 𝑤 𝛾
Ð→ 𝑣 by definition. Since 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) and 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼, then

𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼, thus 𝑀, 𝑣 ⊧ 𝛼@𝑖, it follows 𝑀, 𝑤 ⊧ ⟨𝛾⟩(𝛼@𝑖). ∎

Proposition 4.4: Axiom (𝐵5) is valid.

Proof We also prove the dual form, i.e., ([𝛾]⊥)@𝑖 ⊃ (⟨𝛾⟩ (𝛼@𝑖) ⊃ 𝛼@𝑖). Suppose
𝑀, 𝑤 ⊧ ([𝛾]⊥)@𝑖 ∧ ⟨𝛾⟩ (𝛼@𝑖). Since 𝑀, 𝑤 ⊧ ⟨𝛾⟩ (𝛼@𝑖), then there exists 𝑣 with
𝑤 𝛾
Ð→ 𝑣 such that 𝑀, 𝑣 ⊧ 𝛼@𝑖, it follows that 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼. Since 𝑀, 𝑤 ⊧ ([𝛾]⊥)@𝑖,

then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 [𝛾]⊥, which means 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾). According to 𝑤 𝛾
Ð→ 𝑣, we have

𝑣𝑖 = 𝑤𝑖, then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼. Thus, 𝑀, 𝑤 ⊧ 𝛼@𝑖. ∎

Proposition 4.5: Axiom (𝐵6) is valid.

Proof From left to right, suppose 𝑀, 𝑤 ⊧ ⟨𝛾⟩(⋀
𝑖∈𝑁

𝛼𝑖@𝑖), then there exists 𝑣 with 𝑤 𝛾
Ð→ 𝑣

such that 𝑀, 𝑣 ⊧ ⋀
𝑖∈𝑁

𝛼𝑖@𝑖, thus 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖 for 𝑖 ∈ 𝑁 . According to 𝑤 𝛾
Ð→ 𝑣, there exists

𝑆 = {𝑖 ∈ 𝑁 ∣ ∃𝑣𝑖 ∈ 𝑊 𝑖 with 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖} ≠ ∅ such that

• for all 𝑖 ∈ 𝑆, 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖. Then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩𝛼𝑖, thus 𝑀, 𝑤 ⊧ (⟨𝛾⟩𝛼𝑖)@𝑖.

• for all 𝑖 ∈ 𝑁 /𝑆, 𝑣𝑖 = 𝑤𝑖. Then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼𝑖, thus 𝑀, 𝑤 ⊧ 𝛼𝑖@𝑖.

Moreover, since 𝑆 ≠ ∅, then
• for all 𝑖 ∈ 𝑆, 𝑀, 𝑤 ⊧ (⟨𝛾⟩⊤)@𝑖.
• for all 𝑖 ∈ 𝑁 /𝑆, 𝑀, 𝑤 ⊧ ([𝛾]⊥)@𝑖.

It follows that 𝑀, 𝑤 ⊧ ⋁
∅≠𝑆⊆𝑁

⋀
𝑖∈𝑆
((⟨𝛾⟩⊤)@𝑖 ∧ (⟨𝛾⟩𝛼𝑖)@𝑖) ∧ ⋀

𝑖∈𝑁 /𝑆
(([𝛾]⊥)@𝑖 ∧ 𝛼𝑖@𝑖).
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From right to left, suppose that we have 𝑀, 𝑤 ⊧ ⋁
∅≠𝑆⊆𝑁

⋀
𝑖∈𝑆
((⟨𝛾⟩⊤)@𝑖 ∧ (⟨𝛾⟩𝛼𝑖)@𝑖) ∧

⋀
𝑖∈𝑁 /𝑆

(([𝛾]⊥)@𝑖 ∧ 𝛼𝑖@𝑖), then exists 𝑆 ≠ ∅ such that

• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩⊤ ∧ ⟨𝛾⟩𝛼𝑖 for 𝑖 ∈ 𝑆,
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 [𝛾]⊥ ∧ 𝛼𝑖 for 𝑖 ∈ 𝑁 /𝑆.

Since 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩⊤ for 𝑖 ∈ 𝑆 and 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 [𝛾]⊥ for 𝑖 ∈ 𝑁 /𝑆, we have that 𝑆 =
𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) ≠ ∅. For 𝑖 ∈ 𝑆, since 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩𝛼𝑖, then there exits 𝑣𝑖 with 𝑤𝑖 𝛾

Ð→ 𝑣𝑖

such that 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖 for 𝑖 ∈ 𝑆. We construct 𝑣 = (𝑣1, … , 𝑣𝑛) as follows:

𝑣𝑖 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝑖 for 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),

𝑤𝑖 for 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).

It follows that 𝑤 𝛾
Ð→ 𝑣 by definition. Since 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖 for 𝑖 ∈ 𝑆, then 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖

for 𝑖 ∈ 𝑆. Moreover, since 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 [𝛾]⊥ ∧ 𝛼𝑖 for 𝑖 ∈ 𝑁 /𝑆, then 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖 for
𝑖 ∈ 𝑁 /𝑆. Thus, 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖 for 𝑖 ∈ 𝑁 , then 𝑀, 𝑣 ⊧ 𝛼𝑖@𝑖 for 𝑖 ∈ 𝑁 , it follows 𝑀, 𝑤 ⊧
⟨𝛾⟩(⋀

𝑖∈𝑁
𝛼𝑖@𝑖). ∎

Proposition 4.6: Axiom (𝐵7) is valid.

Proof Suppose that 𝑀, 𝑤 ⊧ ⋁
𝑖∈𝑁
(⟨𝛾⟩⊤)@𝑖 ∧ [𝛾]𝜙, then we have that 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩⊤

for some 𝑖 ∈ 𝑁 , it follows that 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖 for some 𝑣𝑖 in 𝑀 𝑖. Additionally, for all 𝑗 ∈

𝑒𝑛𝑎𝑏𝑙𝑒𝑑{𝑤}, without loss of generality, we assume that 𝑤𝑖 𝛾
Ð→𝑗 𝑣𝑗 for 𝑣𝑗 in 𝑀 𝑗 . Then we

construct 𝑣 = (𝑣1, ... , 𝑣𝑛) as follows.

𝑣𝑖 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝑖 for 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),

𝑤𝑖 for 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).

It follows that 𝑤 𝛾
Ð→ 𝑣 by definition. Since 𝑀, 𝑤 ⊧ [𝛾]𝜙, then 𝑀, 𝑢 ⊧ 𝜙 for any 𝑢 with

𝑤 𝛾
Ð→ 𝑢, which means 𝑀, 𝑣 ⊧ 𝜙. Hence, we have that 𝑀, 𝑤 ⊧ ⟨𝛾⟩𝜙. ∎

Proposition 4.7: Rule (𝐺𝑖) is valid.

Proof Suppose that 𝑀, 𝑤 ⊭ 𝛼@𝑖 for some global model 𝑀 and 𝑤 in this model, then
𝑀, 𝑤 ⊨ ¬(𝛼@𝑖), since we have proved that Axiom (𝐵2) is valid in Proposition 4.1, then
𝑀, 𝑤 ⊨ (¬𝛼)@𝑖, it follows that 𝑀 𝑖, 𝑤𝑖 ⊨𝑖 ¬𝛼, contradiction. ∎

We finish this discussion by proving a theorem in DGL.

Proposition 4.8: ⋀
𝑖
(((⟨𝛾⟩⊤)@𝑖 ⊃ ([𝛾]𝛼)@𝑖) ∧ (([𝛾]⊥)@𝑖 ⊃ 𝛼@𝑖)) ⊃ [𝛾]⋀

𝑖
𝛼@𝑖 is
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a theorem of DGL.

Proof We prove this by applying the global axioms and propositional reasoning.
1. ⊢ ((⟨𝛾⟩⊤)@𝑖 ∧ ([𝛾]𝛼)@𝑖) ⊃ [𝛾](𝛼@𝑖) by axiom (𝐵4)
2. ⊢ (([𝛾]⊥)@𝑖 ∧ (𝛼@𝑖)) ⊃ [𝛾](𝛼@𝑖) by axiom (𝐵5)
3. ⊢ (((⟨𝛾⟩⊤)@𝑖 ∧ ([𝛾]𝛼)@𝑖) ∨ (([𝛾]⊥)@𝑖 ∧ 𝛼@𝑖)) ⊃ [𝛾](𝛼@𝑖) by steps 1 and 2
4. ⊢ (((⟨𝛾⟩⊤)@𝑖 ⊃ ([𝛾]𝛼)@𝑖) ∧ (([𝛾]⊥)@𝑖 ⊃ 𝛼@𝑖)) ⊃ [𝛾](𝛼@𝑖), by step 3
5. ⊢ ⋀

𝑖
(((⟨𝛾⟩⊤)@𝑖 ⊃ ([𝛾]𝛼)@𝑖) ∧ (([𝛾]⊥)@𝑖 ⊃ 𝛼@𝑖)) ⊃ ⋀

𝑖
[𝛾](𝛼@𝑖) by step 4

6. ⊢ [𝛾]⋀
𝑖

𝛼@𝑖 ≡ ⋀
𝑖
[𝛾](𝛼@𝑖), from basic modal logic

7. ⊢ ⋀
𝑖
(((⟨𝛾⟩⊤)@𝑖 ⊃ ([𝛾]𝛼)@𝑖) ∧ (([𝛾]⊥)@𝑖 ⊃ 𝛼@𝑖)) ⊃ [𝛾]⋀

𝑖
𝛼@𝑖 by steps 5, 6

This completes the proof. ∎

4.2.2.3 Completeness proof

The local axiom system 𝐴𝑥𝑖 for each 𝑖 is the basic modal logic system corresponding
to local arenas which can be represented as Kripke models. As a result, we can safely as-
sume that 𝐴𝑥𝑖 is sound and complete with respect to the 𝑖-local arenas for each 𝑖. To prove
the completeness of the given global axiom system 𝐴𝑋, we follow the usual procedure,
that is, we show that any global consistent formula is satisfiable. However, while doing
so, we provide a to and fro movement between global maximal consistent sets and tuples
of 𝑖-local maximal consistent sets (cf. proposition 4.12), that is worth mentioning. We
will always need these kinds of journeys back and forth while doing axiomatic studies of
such local and global reasoning and proving the coherence of such journeys is the main
novel aspect of this work. Our proof below yields a strong completeness result.

To begin the proof, let us consider 𝜑 to be a global consistent formula. Let 𝐴, 𝐵 denote
global maximal consistent sets, and 𝐿, 𝐿′ denote local maximal consistent sets (for some
𝑖, determined by the context).

Definition 4.7 (𝑖-local set): Let 𝐴 be a set of global formulas. Define (𝐴)𝑖 = {𝛼 ∣
𝛼@𝑖 ∈ 𝐴}, the set of 𝑖-local formulas appearing in 𝐴.

We have the following result describing the interplay between local and global maximal
consistent sets.

Proposition 4.9: If 𝐴 is a global maximal consistent set then for each 𝑖, (𝐴)𝑖 is a local
(𝑖-local) maximal consistent set.
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Proof Let 𝐴 be a global maximal consistent set. Take any 𝑖 ∈ 𝑁 . To show that (𝐴)𝑖 is
a local maximal consistent set. We suppose not, then (𝐴)𝑖 is either inconsistent or not
maximally consistent.

CASE 1: Suppose (𝐴)𝑖 is inconsistent. Then there exist 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ (𝐴)𝑖 such that:
1. ⊢𝑖 𝛼1 ∧ 𝛼2 ∧… ∧ 𝛼𝑚 ⊃ ⊥
2. ⊢𝑖 ¬𝛼1 ∨ ¬𝛼2 ∨… ∨ ¬𝛼𝑚

3. ⊢ (¬𝛼1 ∨ ¬𝛼2 ∨… ∨ ¬𝛼𝑚)@𝑖 by rule (𝐺𝑖)
4. ⊢ (¬𝛼1)@𝑖 ∨ (¬𝛼2@𝑖) ∨… ∨ (¬𝛼𝑚)@𝑖 by axiom (𝐵3)
5. ⊢ ¬(𝛼1@𝑖) ∨ ¬(𝛼2@𝑖) ∨… ∨ ¬(𝛼𝑚@𝑖) by axiom (𝐵2)
6. ⊢ 𝛼1@𝑖 ∧ 𝛼2@𝑖 ∧… ∧ 𝛼𝑚@𝑖 ⊃ ⊥

Thus 𝐴 becomes inconsistent, a contradiction. So, (𝐴)𝑖 is a local maximal consistent set.

CASE 2: Suppose (𝐴)𝑖 is not a local maximal consistent. Then there is some 𝛼 such that
𝛼 /∈ (𝐴)𝑖 and ¬𝛼 /∈ (𝐴)𝑖. Then, 𝛼@𝑖, ¬(𝛼@𝑖) /∈ 𝐴, a contradiction.

This completes the proof. ∎

Let us now consider the move relations on the local and global maximal consistent sets.
Let 𝐿, 𝐿′ be 𝑖-local MCS’s. 𝐿 𝛾

Ð→𝑖 𝐿′ iff {𝛼 ∣ [𝛾]𝛼 ∈ 𝐿} ⊆ 𝐿′. Consider the global
MCS’s 𝐴, 𝐵, with 𝐴 𝛾

Ð→ 𝐵 iff {𝜙 ∣ [𝛾]𝜙 ∈ 𝐴} ⊆ 𝐵. We have the following result.

Proposition 4.10: Let 𝐴, 𝐵 be global MCS’s. If 𝐴 𝛾
Ð→ 𝐵 then the following holds:

• for all 𝑖 such that (⟨𝛾⟩⊤)@𝑖 ∈ 𝐴, (𝐴)𝑖
𝛾
Ð→𝑖 (𝐵)𝑖, and

• for all 𝑗 such that ([𝛾]⊥)@𝑗 ∈ 𝐴, (𝐴)𝑗 = (𝐵)𝑗 .

Proof Let 𝐴, 𝐵 be global MCS’s. Suppose first that 𝐴 𝛾
Ð→ 𝐵. Consider (𝐴)𝑖 for some 𝑖.

Since, (𝐴)𝑖 is an 𝑖-local MCS, either ⟨𝛾⟩⊤ ∈ (𝐴)𝑖 or [𝛾]⊥ ∈ (𝐴)𝑖. So, either (⟨𝛾⟩⊤)@𝑖 ∈
𝐴 or ([𝛾]⊥)@𝑖 ∈ 𝐴. Let us now consider these two cases separately.

- Let (⟨𝛾⟩⊤)@𝑖 ∈ 𝐴. To show that (𝐴)𝑖
𝛾
Ð→𝑖 (𝐵)𝑖. Let [𝛾]𝛼 ∈ (𝐴)𝑖. To show

𝛼 ∈ (𝐵)𝑖. Now, (⟨𝛾⟩⊤)@𝑖 ∈ 𝐴. Also, since [𝛾]𝛼 ∈ (𝐴)𝑖, ([𝛾]𝛼)@𝑖 ∈ 𝐴. Then by
(𝐵4), [𝛾](𝛼@𝑖) ∈ 𝐴. Hence, 𝛼@𝑖 ∈ 𝐵, and so, 𝛼 ∈ (𝐵)𝑖.

- Let ([𝛾]⊥)@𝑖 ∈ 𝐴. To show that (𝐴)𝑖 = (𝐵)𝑖. Take any 𝛼 ∈ (𝐴)𝑖. Now, since
([𝛾]⊥)@𝑖 ∈ 𝐴, we have by (𝐵5), [𝛾](𝛼@𝑖) ∈ 𝐴. Hence, 𝛼@𝑖 ∈ 𝐵, and so,
𝛼 ∈ (𝐵)𝑖. Thus, (𝐴)𝑖 ⊆ (𝐵)𝑖, and since (𝐴)𝑖 and (𝐵)𝑖 are 𝑖-local MCS’s, thus we
have that (𝐴)𝑖 = (𝐵)𝑖.

This completes the proof. ∎
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To prove a converse result, that is, to have this interplay between local and global
communication/actions in a better way, we would need to find a normal form of a global
formula in terms of the constituent local formulas. To this end, we have the following
result.

Proposition 4.11: Every global formula 𝜙 has an equivalent formula 𝜙′ of the form

⋁
𝑖∈𝐾

⋀
𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗), where 𝐾 is a finite set of natural numbers, and 𝑁 is the set of all players.➀

Proof We prove this by induction on the size of the global formulas.
• 𝜙 is of the form 𝛼𝑘@𝑘: Then, 𝜙 ≡ 𝛼𝑘@𝑘 ∧⋀

𝑖≠𝑘
⊤@𝑖.

• 𝜙 is of the Boolean form (¬𝜓 or 𝜓 ∨𝜒): The result follows from the axioms (𝐵2),
(𝐵3) and classical propositional logic reasoning.

• 𝜙 is of the form ⟨𝛾⟩𝜓 : By I.H. we can assume that 𝜓 has an equivalent formula 𝜓′

of the form ⋁
𝑖∈𝐾′ ⋀

𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗). Now, 𝜓1 ≡ 𝜓2 implies ⟨𝛾⟩𝜓1 ≡ ⟨𝛾⟩𝜓2 (from axiom

(𝐵1) and rule (𝐺𝐺)), it follows that

⟨𝛾⟩𝜓 ≡ ⟨𝛾⟩ ⋁
𝑖∈𝐾′ ⋀

𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗)

Since ⟨𝛾⟩(𝜓 ∨ 𝜒) ≡ ⟨𝛾⟩𝜓 ∨ ⟨𝛾⟩𝜒 , then we have

⟨𝛾⟩ ⋁
𝑖∈𝐾′ ⋀

𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗) ≡ ⋁
𝑖∈𝐾′
⟨𝛾⟩⋀

𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗)

Thus we have

𝜙 ≡ ⋁
𝑖∈𝐾′
⟨𝛾⟩⋀

𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗)

Hence, considering ⟨𝛾⟩⋀
𝑗∈𝑁
(𝛼𝑖

𝑗@𝑗), by axiom (𝐵6), we have,

𝜙 ≡ ⋁
𝑖∈𝐾′′ ⋀

𝑗∈𝑁
(𝛽𝑖

𝑗@𝑗)

This completes the proof. ∎

Before delving into more details of the completeness proof, let us first outline the
overall proof strategy. We aim to show the consistent formula 𝜙 is satisfiable. We start by
constructing 𝑖-local model with all 𝑖-local MCSs for all 𝑖 ∈ 𝑁 . In particular, we extend
𝜙 to a global MCS 𝐴 and specify the induced 𝑖-local MCS (𝐴)𝑖 as the initial state in 𝑖-

➀ Following the work of Fine (1975) and the technique developed here, we can get a similar result for the global
language including global propositions.
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local model for 𝑖 ∈ 𝑁 . Then we construct the global model with all local models we have
using Definition 4.6. To demonstrate that such a model meets our requirements, we need
to show the feasibility from a syntactic perspective, which involves proving Proposition
4.12. This proposition essentially encompasses the existence lemma we currently require.
Finally, by utilizing the truth lemma at the local level, we can establish the truth lemma at
the global level, i.e., Proposition 4.13. Thus we complete all the proofs. Let us now move
on to define the local and global models in the following.

Definition 4.8: An 𝑖-local model 𝑀 𝑖 is a tuple (𝑊 𝑖, →𝑖, 𝑤𝑖
0, 𝑉 𝑖), where,

- 𝑊 𝑖 = {𝐿 ∣ 𝐿 is an 𝑖-local MCS },
- for any 𝐿, 𝐿′ ∈ 𝑊 𝑖, 𝐿 𝛾

Ð→𝑖 𝐿′ if {𝛼 ∣ [𝛾]𝛼 ∈ 𝐿} ⊆ 𝐿′,
- 𝑤𝑖

0 = (𝐴)𝑖, such that 𝜙 ∈ 𝐴, where 𝐴 is a fixed MCS,
- 𝑉 𝑖(𝑝) = {𝐿 ∣ 𝑝 ∈ 𝐿} for 𝑝 ∈ P𝑖.

Definition 4.9: Given a set of local models, {𝑀 𝑖}𝑖∈𝑁 , one for each player, the global
model 𝑀 is a tuple (𝑊 , →, 𝑤0), where,

- 𝑊 =𝑊 1 × … × 𝑊 𝑛,
- →∶𝑊 × Γ̃ → 𝑊 is defined by: for all 𝑤, 𝑣 ∈ 𝑊 , we have 𝑤 𝛾

Ð→ 𝑣 iff
- for all 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖,
- for all 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑣𝑖 = 𝑤𝑖,

where, 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) = {𝑖 ∈ 𝑁 ∣ ∃𝑣𝑖 ∈ 𝑊 𝑖 with 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖},

- 𝑤0 = (𝑤1
0, … , 𝑤𝑛

0), where 𝑤𝑖
0 is an initial state in 𝑊 𝑖,

With these canonical local and global models, we now prove the following result.

Proposition 4.12: The following statements hold:
1. For any global MCS 𝐴, ((𝐴)1, (𝐴)2, … , (𝐴)𝑛) ∈ 𝑊 .
2. For any global MCS’s 𝐴, 𝐵, if 𝐴 𝛾

Ð→ 𝐵, then ((𝐴)1, … (𝐴)𝑛)
𝛾
Ð→ ((𝐵)1, … (𝐵)𝑛) in

the global arena.
3. For any global MCS 𝐴, if ((𝐴)1, … (𝐴)𝑛)

𝛾
Ð→ (𝑋1, … 𝑋𝑛) in the global arena, then

there exists a global MCS 𝐵 such that 𝐴 𝛾
Ð→ 𝐵 and for all 𝑖, 𝑋𝑖 = (𝐵)𝑖.

Proof The proofs are given in the following.
1. Follows from the definitions of local and global models and Proposition 4.9.

2. Let 𝐴, 𝐵 be global MCS’s such that 𝐴 𝛾
Ð→ 𝐵. Then Proposition 4.10 gives us that:

- for all 𝑖 such that (⟨𝛾⟩⊤)@𝑖 ∈ 𝐴, (𝐴)𝑖
𝛾
Ð→𝑖 (𝐵)𝑖, and

- for all 𝑗 such that ([𝛾]⊥)@𝑗 ∈ 𝐴, (𝐴)𝑗 = (𝐵)𝑗 .
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These exactly correspond to the following conditions of the move relation in the
global model:

- for all 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(((𝐴)1, … (𝐴)𝑛), 𝛾), (𝐴)𝑖
𝛾
Ð→𝑖 (𝐵)𝑖,

- for all 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(((𝐴)1, … (𝐴)𝑛), 𝛾), (𝐴)𝑖 = (𝐵)𝑖,
where, 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(((𝐴)1, … (𝐴)𝑛), 𝛾) = {𝑖 ∈ 𝑁 ∣ ∃(𝐵)𝑖 ∈ 𝑊𝑖 with (𝐴)𝑖

𝛾
Ð→𝑖 (𝐵)𝑖}.

Correspondingly, 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(((𝐴)1, … (𝐴)𝑛), 𝛾) = {𝑖 ∈ 𝑁 ∣ (⟨𝛾⟩⊤)@𝑖 ∈ 𝐴}. So we
have, ((𝐴)1, … (𝐴)𝑛)

𝛾
Ð→ ((𝐵)1, … (𝐵)𝑛) in the global arena. This completes the

proof.

3. Take a global MCS 𝐴. Suppose that ((𝐴)1, … (𝐴)𝑛)
𝛾
Ð→ (𝑋1, … 𝑋𝑛) in the global

arena. To show that there exists a global MCS 𝐵 such that 𝐴 𝛾
Ð→ 𝐵 and for all 𝑖,

𝑋𝑖 = (𝐵)𝑖. Let us first define the following: Δ𝑖 ∶= {𝛼@𝑖 ∣ [𝛾](𝛼@𝑖) ∈ 𝐴} for all 𝑖.
We now show that:

Δ =⋃
𝑖
{Δ𝑖} is a globally consistent set.

Take any finite subset Δ′ of Δ. Let 𝛿′ =⋀
𝑖

𝛿@𝑖, where 𝛿@𝑖 ∈ Δ′. Now, for these

𝑖’s, either ⟨𝛾⟩⊤ ∈ (𝐴)𝑖 or, [𝛾]⊥ ∈ (𝐴)𝑖. Let us consider the cases separately.
• Suppose ⟨𝛾⟩⊤ ∈ (𝐴)𝑖. So, (⟨𝛾⟩⊤)@𝑖 ∈ 𝐴 and also, [𝛾](𝛿@𝑖) ∈ 𝐴. Then, by

axiom (𝐵4), ([𝛾]𝛿)@𝑖 ∈ 𝐴.
• Suppose [𝛾]⊥ ∈ (𝐴)𝑖. So, ([𝛾]⊥)@𝑖 ∈ 𝐴 and also, [𝛾](𝛿@𝑖) ∈ 𝐴.

Now, we have ⋁
𝑖
(⟨𝛾⟩⊤)@𝑖 ∈ 𝐴, since ((𝐴)1, … (𝐴)𝑛)

𝛾
Ð→ (𝑋1, … 𝑋𝑛),

𝑒𝑛𝑎𝑏𝑙𝑒𝑑(((𝐴)1, … (𝐴)𝑛), 𝛾) is non-empty. Then, by axioms (𝐵5), and (𝐵7),
𝛿@𝑖 ∈ 𝐴.

Then, by Proposition 4.8, [𝛾]𝛿′ ∈ 𝐴. Once again, by (𝐵7), ⟨𝛾⟩𝛿′ ∈ 𝐴. So, ⟨𝛾⟩𝛿′ is
consistent. Then, by 𝐺𝐺, 𝛿′ is consistent. Since every finite subset of Δ is consis-
tent, so is the set. Then, Δ can be extended to a global maximal consistent set, 𝐵,
say. We now have to prove that 𝐴 𝛾

Ð→ 𝐵.

Case I. [𝛾]⊥ ∈ (𝐴)𝑖. Suppose 𝛼 ∈ (𝐴)𝑖. Then 𝛼@𝑖 ∈ 𝐴. Also, ([𝛾]⊥)@𝑖 ∈ 𝐴.
Then, by (𝐵5), [𝛾](𝛼@𝑖) ∈ 𝐴. So, 𝛼@𝑖 ∈ 𝐵 and hence, 𝛼 ∈ (𝐵)𝑖. So, (𝐴)𝑖 ⊆
(𝐵)𝑖, and hence, (𝐴)𝑖 = (𝐵)𝑖.
Case II. ⟨𝛾⟩⊤ ∈ (𝐴)𝑖. Suppose [𝛾]𝛼 ∈ (𝐴)𝑖. Then ([𝛾]𝛼)@𝑖 ∈ 𝐴. Also,
(⟨𝛾⟩⊤)@𝑖 ∈ 𝐴. Then, by (𝐵4), [𝛾](𝛼@𝑖) ∈ 𝐴. So, 𝛼@𝑖 ∈ 𝐵 and hence, 𝛼 ∈ (𝐵)𝑖.
So, (𝐴)𝑖

𝛾
Ð→ (𝐵)𝑖.

Thus, for each 𝑖, we have either (𝐴)𝑖 = (𝐵)𝑖, or, (𝐴)𝑖
𝛾
Ð→ (𝐵)𝑖. Hence, for all 𝑖,
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𝑋𝑖 = (𝐵)𝑖. Finally, to show 𝐴 𝛾
Ð→ 𝐵, we have to show that {⟨𝛾⟩𝜙 ∣ 𝜙 ∈ 𝐵} ⊆

𝐴. By Proposition 4.11, it is enough to show that ⟨𝛾⟩(⋀
𝑖

𝛼𝑖@𝑖) ∈ 𝐴, whenever

⋀
𝑖
(𝛼𝑖@𝑖) ∈ 𝐵. Suppose, ⋀

𝑖
(𝛼𝑖@𝑖) ∈ 𝐵. Then, for all such 𝑖, 𝛼𝑖@𝑖 ∈ 𝐵, and so

𝛼𝑖 ∈ (𝐵)𝑖. Once again, we have two cases. For those 𝑖’s, such that [𝛾]⊥ ∈ (𝐴)𝑖,
([𝛾]⊥)@𝑖 ∈ 𝐴. Since 𝛼𝑖 ∈ (𝐵)𝑖, and in this case, (𝐴)𝑖 = (𝐵)𝑖, 𝛼 ∈ (𝐴)𝑖. Then
𝛼@𝑖 ∈ 𝐴. So, ([𝛾]⊥)@𝑖 ∧ 𝛼𝑖@𝑖 ∈ 𝐴. Then, for those 𝑖’s, such that ⟨𝛾⟩⊤ ∈ (𝐴)𝑖,
(⟨𝛾⟩⊤)@𝑖 ∈ 𝐴. Since 𝛼𝑖 ∈ 𝐵𝑖, and 𝐴𝑖

𝛾
Ð→𝑖 𝐵𝑖, then ⟨𝛾⟩𝛼𝑖 ∈ 𝐴𝑖, thus (⟨𝛾⟩𝛼𝑖)@𝑖 ∈ 𝐴.

According to (𝐵4), we have ⟨𝛾⟩(𝛼𝑖@𝑖) ∈ 𝐴. Then, for all these 𝑖’s, using axiom
(𝐵6), ⟨𝛾⟩(⋀

𝑖
𝛼𝑖@𝑖) ∈ 𝐴. This completes the proof.

All the cases of the proof are now complete. ∎

Now, we are ready to prove the truth lemma, which gives us the completeness result:

Proposition 4.13: For all MCS’s 𝐴, for all global formulas 𝜙,

𝜙 ∈ 𝐴 iff 𝑀, ((𝐴)1, … , (𝐴)𝑛) ⊧ 𝜙

Proof This is by induction on 𝜙, involving a subsidiary induction to show, for all 𝑖-local
MCS’s 𝐿 and 𝑖-local 𝛼,

𝛼 ∈ 𝐿 iff 𝑀 𝑖, 𝐿 ⊧𝑖 𝛼 (4.1)

where 𝑀 𝑖 is the standard canonical model for multi-agent modal logic. The proof of (4.1)
follows from basic modal logic (Blackburn et al., 2001). The crucial aspect is to establish
a lemma that for any MCS’s 𝐿 and a formula in the form of ⟨𝛾⟩𝜙 in 𝐿, there always exists
a successor 𝐿′ in 𝑀 𝑖 such that 𝜙 ∈ 𝐿′.

Let us return to the main line of the proof. The induction steps are as follows.
1. 𝜙 = 𝛼@𝑖: We have, 𝜙 ∈ 𝐴 iff 𝛼@𝑖 ∈ 𝐴 iff 𝛼 ∈ (𝐴)𝑖 iff 𝑀 𝑖, (𝐴)𝑖 ⊧𝑖 𝛼 iff

𝑀, ((𝐴)1, … , (𝐴)𝑛) ⊧ 𝛼@𝑖 iff 𝑀, ((𝐴)1, … , (𝐴)𝑛) ⊧ 𝜙.
2. The boolean cases are as usual.
3. 𝜙 = ⟨𝛾⟩𝜓 : We have, 𝜙 ∈ 𝐴 iff ⟨𝛾⟩𝜓 ∈ 𝐴 iff there is an MCS 𝐵 such that 𝐴 𝛾

Ð→ 𝐵
and 𝜓 ∈ 𝐵 iff ((𝐴)1, … (𝐴)𝑛)

𝛾
Ð→ ((𝐵)1, … (𝐵)𝑛) and 𝑀, ((𝐵)1, … (𝐵)𝑛) ⊧ 𝜓

(by Proposition 4.12 and induction hypothesis) iff 𝑀, ((𝐴)1, … , (𝐴)𝑛) ⊧ ⟨𝛾⟩𝜓 iff
𝑀, ((𝐴)1, … , (𝐴)𝑛) ⊧ 𝜙.

This completes the proof. ∎

Above, we have proposed a two-layered modal logic, viz. DGL, for reasoning in dis-
tributed games from both local and global perspectives, and provided a complete Hilbert-
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style axiomatic proof system. With this base analysis settled, we now present an analo-
gous, somewhat enhanced exploration of the global system towards a more realistic global
model for distributed games, with the underlying logic framework remaining the same. As
before, we provide a complete axiom system.

4.3 Distributed game logic with enabled actions

In the previous section, we presented a descriptive logic DGL, modeling local and
global interaction. We expressed what a player can achieve and what actions lead to those
outcomes. The actions considered are intuitively described as making announcements.
Continuing our modeling at this level, we now propose a revised global arena that reflects
a more sophisticated interaction from the local to the global levels, and conduct our logical
analysis that brings out this interaction. The whole point is to show how the same two-
layered language can be used to reason about richer global structures, where the changes
in the interplay of local and global reasoning get reflected in the global axiom system,
as earlier. To motivate our current study, we start with a more involved scenario of our
running card game example as follows.

Example 4.6: As earlier, Alice and Bob play a card game with five cards this time, say,
1,2,3,4 and 5. They are dealt two cards each, and we suppose that Alice gets cards 1 and
4, and Bob gets cards 2 and 3, and they can only see their own cards. The rules of the
game are as follows:

• Alice and Bob play in turns.
• They can choose to throw one card or jump (Q).
• If one player throws a card, then the other player has to throw a bigger card or jump.
• If one player chooses to jump, then the other player can only choose to throw a card.

The winning condition is given as follows:
• The player holding no card first wins the game.

Note that ‘throwing a card’ can be identified with ‘making an announcement about a card’
in terms of abstract moves. The game starts with one of the players, Alice say, throwing a
card. We present the corresponding local arenas in figure 4.3. We note that these figures
do not show all the moves explicitly in the players’ local arenas, they are basically used to
illustrate certain instances of the game we are talking about.

We reiterate that the local arenas are game processes from the perspective of players
playing the game, while the global arena is the game process from the perspective of
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Figure 4.3 A local arena for Alice (left) and a local arena for Bob (right)

those watching the game from top, that is, those who can reason about the game. They
can clearly identify the enabled moves at each game state and the outcomes of the game.
In the following, we explain the symbols and notations used in figure 4.3:

• Each node in a local arena for player 𝑖 is a state depicting the cards that player 𝑖
holds at a certain stage of the game.

• The symbol ∅ is used to denote that player 𝑖 holds no card.
• The action symbol 𝑄 is used to denote that player 𝑖 jumps.
• Each move in the local arena represents a pair of actual moves in the game as follows:

(Alice’s move, Bob’s subsequent move).
At the beginning of the game described above, Alice holds cards 1 and 4, while Bob

holds cards 2 and 3. Suppose Alice plays card 4, Bob then chooses to jump, after that
Alice only holds card 1 and Bob still holds cards 2 and 3. From the perspective of Alice,
there is a game state transition from (1, 4) to (1) through the move (4, 𝑄), while for Bob,
there is a state transition from (2, 3) to (2, 3) through the (4, 𝑄).

If we consider the game as a whole without looking into the individual moves of the
players, we can consider a state transition from ((1, 4), (2, 3)) to ((1), (2, 3)) through
the pair of moves, (4, 𝑄), and that is what we envisage our global arena to deal with.
However, if we focus on the game state ((1), (2, 3)) in the global arena, according to
Definition 4.2, then we have a transition from the game state ((1), (2, 3)) to ((1), (2, 3))
through the action pair (4, 𝑄), which does not make sense. For Alice, at her local state
(1), she cannot play the card 4 again.

In what follows, we propose a method for eliminating such redundant state transitions.
Consider the set of enabled actions for Alice at her local state (1), 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝐴((1)) = {1},
and that for Bob at his local state (2,3), 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝐵((2, 3)) = {2, 3, 𝑄}, and we ask that at
the global game state ((1), (2, 3)), for any enabled pair of moves of players, say 𝛾 , the
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first component of 𝛾 , say 𝛾[𝐴𝑙𝑖𝑐𝑒] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝐴((1)) and the second component of 𝛾 , say,
𝛾[𝐵𝑜𝑏] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝐵((2, 3)). The global arena is now defined accordingly by taking the
sets of enabled moves under consideration. In the global arena depicted by figure 4.4, we
only collect the game states starting from ((1, 4), (2, 3)) for the sake of brevity.

Figure 4.4 A global arena

As exemplified in the aforementioned instance, the local arenas exhibit precision in
depicting the game from an individual perspective, whereas the existing concept of global
arena manifests inadequacy in articulating the game above. To reflect the interplay be-
tween local and global arenas, as shown in Example 4.6, we hereby introduce a new de-
scription of global arenas. For the sake of completeness, we define both local arena (as
earlier) and global arena, in this case, with a more involved notion of enabled actions.

Definition 4.10 (Local arena): A local arena for player 𝑖 is a tuple G𝑖 = (𝑊 𝑖, →𝑖, 𝑤𝑖
0)

such that 𝑊 𝑖 is the set of local game states, 𝑤𝑖
0 is the initial game state, and →𝑖 is a partial

move function given by, →𝑖∶𝑊 𝑖 × Γ̃ → 𝑊 𝑖.

Definition 4.11 (Global arena with enabled actions): Given a set of local arenas
{G𝑖}𝑖∈𝑁 , one for each player, the global arena with enabled actions G with respect to
{G𝑖}𝑖∈𝑁 is a tuple (𝑊 , →, 𝑤0), where

• 𝑊 is the smallest subset of
𝑛

∏
𝑖=0

𝑊 𝑖 under the relation →.

• 𝑤0 = (𝑤1
0, … , 𝑤𝑛

0), and 𝑤0 belongs to 𝑊 , which is called the initial game state.
• → ⊆ 𝑊 × Γ̃ × 𝑊 , and 𝑤 𝛾

Ð→ 𝑣 (denoting (𝑤, 𝛾, 𝑣) ∈→ ) iff
(𝑏1) 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) ≠ ∅.
(𝑏2) for all 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖.
(𝑏3) for all 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑣𝑖 = 𝑤𝑖 and 𝛾[𝑖] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑖(𝑤𝑖).
where, 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) = {𝑖 ∈ 𝑁 ∣ ∃𝑢 ∈ 𝑊 𝑖 with 𝑤𝑖 𝛾

Ð→𝑖 𝑢},
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𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑖(𝑤𝑖) = {𝛾[𝑖] ∣ ∃𝑢 ∈ 𝑊 𝑖 and 𝛾 ∈ Γ̃ with 𝑤𝑖 𝛾
Ð→𝑖 𝑢}.

We emphasize that the description of the local arena remains unaltered from that
presented in Section 4.1. However, we have updated the definition of the global arena from
that in Section 4.1 to incorporate a more elaborate notion of enabled actions. Specifically,
our approach involves focusing solely on those game states that are expected to materialize
during the game, while excluding those that are deemed irrelevant. Additionally, we have
introduced the condition ‘𝛾[𝑖] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑖(𝑤𝑖)’ to ensure that game state transitions are
executed more realistically in the given class of games.

Drawing on the aforementioned local arenas and global arenas with enabled actions,
we propose a framework, namely, distributed game logic with enabled actions (DGLEA)
to describe local and global reasoning in the current setting of distributed games. As previ-
ously discussed, we have updated the global arena with available actions to capture certain
intricacies of the notion of distributed games. With respect to the logical framework, the
syntax and semantics remain unaltered at the local level. This is because of the fact that at
the local level, we only need the basic modal language to characterize the structure of the
game. The main modification lies in the way to use the local descriptions of the game to
show that a more reasonable model of the game is reflected at the global level. Note how-
ever, that our game graph from a global perspective is still a labelled transition system,
and the original syntactic definitions at the global level remain effective for our current
purposes. Hence at the global level, despite the shift in the class of models we intend
to depict, the language remains the same. As we have been mentioning all through this
chapter, our main target is not to introduce a sophisticated or rich language framework,
but to focus on a simple basic modal logic syntax, and show the extent of interaction be-
tween local and global reasoning we can express at this level. Once again, for the sake of
completion, we provide below the syntax and semantics of DGLEA at both the local and
the global levels.

4.3.1 Syntax and semantics

The syntax and semantics of DGLEA in the local layer is the same as those of DGL.
Let P𝑖 be a set of atomic propositions for each player 𝑖:

Definition 4.12: The local language for player 𝑖, L𝑖, is given as follows:

𝛼 ∈ L𝑖 ∶∶= 𝑝 ∣ ¬𝛼 ∣ 𝛼 ∨ 𝛼′ ∣ ⟨𝛾⟩ 𝛼,
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where, 𝑝 ∈ P𝑖 and 𝛾 ∈ Γ̃.

Definition 4.13: Given a player 𝑖, a model 𝑀 𝑖 = (G𝑖, 𝑉 𝑖), where, G𝑖 is a local arena
for the player 𝑖 and 𝑉 𝑖 ∶ 𝑊 𝑖 → 2𝑃𝑖 is the valuation function in the local arena. The truth
definition of the formulas at a world in a model are defined inductively as follows:

• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝑝 iff 𝑝 ∈ 𝑉 𝑖(𝑤𝑖).
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ¬𝛼 iff 𝑀 𝑖, 𝑤𝑖 /⊧𝑖 𝛼
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 ∨ 𝛽 iff 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 or 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛽
• 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩ 𝛼 if there exists 𝑣𝑖 ∈ 𝑊 𝑖 such that 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖 and 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼.

Similarly, we say that an 𝑖-local formula 𝛼 is 𝑖-satisfiable if there is an 𝑖-local model
𝑀 𝑖 and a state 𝑤𝑖 such that 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼. For the global layer, we still use the same syntax
as that of DGL.

Definition 4.14: The global language L is given as follows:

𝜑 ∈ L ∶∶= 𝛼@𝑖 ∣ ¬𝜑 ∣ 𝜑 ∨𝜑′ ∣ ⟨𝛾⟩ 𝜑

where 𝛼 ∈ L𝑖, 𝛾 ∈ Γ̃.

The semantics of global formulas is presented as follows:

Definition 4.15: A global model with enabled actions 𝑀 is given by a global arena
with enabled actions G and a collection of local valuation functions. The truth definition
of the global formulas at a world in a global model is given inductively as follows:

• 𝑀, 𝑤 ⊧ 𝛼@𝑖 if 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼
• 𝑀, 𝑤 ⊧ ¬𝜑 iff 𝑀, 𝑤 /⊧ 𝜑
• 𝑀, 𝑤 ⊧ 𝜑 ∨𝜓 iff 𝑀, 𝑤 ⊧ 𝜑 or 𝑀, 𝑤 ⊧ 𝜓
• 𝑀, 𝑤 ⊧ ⟨𝛾⟩ 𝜑 if there exists 𝑣 ∈ 𝑊 such that 𝑤 𝛾

Ð→ 𝑣 and 𝑀, 𝑣 ⊧ 𝜑.

Similarly, we say that a formula 𝜑 is said to be 𝐷-satisfiable if there is a global model
with enabled actions 𝑀 and a state 𝑤 such that 𝑀, 𝑤 ⊧ 𝜑. A formula 𝜑 is said to be valid
if 𝑀, 𝑤 ⊧ 𝜑 for any 𝑀 and any state 𝑤 in this model.

4.3.2 On axiomatization

DGLEA is a two-level logic akin to DGL, sharing similar characteristics at the local
level while differing at the global level, and we present an axiom system below which will
explicate these differences in terms of the available features on the reasoning involved. We
have an axiom system 𝐴𝑥𝑖 for each player 𝑖 in the system, and in addition a global axiom
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system 𝐴𝑥∗. We use the notation ⊢𝑖 𝛼 to mean that the formula 𝛼 ∈ L𝑖 is a theorem of
the system 𝐴𝑥𝑖. Similarly, ⊢𝐷 𝜙 means that 𝜙 is a theorem of the global system 𝐴𝑥∗. We
say that a set of global formulas Δ is consistent if ⊬𝐷 ⋀𝑖∈𝑆 ⊃ ⊥ for any finite 𝑆 ⊆ Δ, and
similarly, we mean that a set of 𝑖-local formulas Δ𝑖 is 𝑖-consistent if ⊬𝑖 ⋀𝑖∈𝑆𝑖

⊃ ⊥ for any
finite set 𝑆𝑖 ⊆ Δ𝑖, where 𝑖 ∈ 𝑁 .

As a first point of distinction regarding what we intend to do with the framework of
DGLEA, we introduce the notation 𝑗 ↝𝑖 𝛿 to denote ⋁

𝛾 ∶𝛾[𝑗]=𝛿
⟨𝛾⟩⊤, where ⟨𝛾⟩ is a modality

in the local language L𝑖. It can be read as ‘player 𝑖 observes that there is an available
announcement 𝛿 for player 𝑗 in his local arena’. Intuitively, ⋀

𝑗∈𝑁
(𝑗 ↝𝑖 𝛿𝑗) means ‘player 𝑖

observes that there is an available announcement 𝛿𝑗 for each player 𝑗’, where 𝑖 ∈ 𝑁 . This
formula plays an important role in the axiomatization below bringing out the modification
we made in defining global arenas for DGLEA.

𝐴𝑥𝑖, the axiom schemes for agent 𝑖

(𝐴0𝑖) Substitutional instances of propositional tautologies

(𝐴1𝑖) [𝛾](𝛼 ⊃ 𝛽) ⊃ ([𝛾]𝛼 ⊃ [𝛾]𝛽)

Local inference rules

(MP𝑖)
𝛼, 𝛼 ⊃ 𝛽

𝛽 (LG𝑖)
𝛼
[𝛾]𝛼

𝐴𝑥*, the global axiom schemes

(𝐵0) Substitutional instances of propositional tautologies

(𝐵1) [𝛾](𝜙1 ⊃ 𝜙2) ⊃ ([𝛾]𝜙1 ⊃ [𝛾]𝜙2)

(𝐵2) (¬𝛼)@𝑖 ≡ ¬𝛼@𝑖

(𝐵3) (𝛼 ∨ 𝛽)@𝑖 ≡ (𝛼@𝑖 ∨ 𝛽@𝑖)

(𝐵5) ([𝛾]⊥)@𝑖 ∧ ⟨𝛾⟩ (𝛼@𝑖) ⊃ 𝛼@𝑖

(𝐶0) (⟨𝛾⟩𝛼)@𝑖 ∧ ⋀𝑗≠𝑖(𝑗 ↝𝑗 𝛾[𝑗])@𝑗 ⊃ ⟨𝛾⟩ (𝛼@𝑖)

(𝐶1) ⟨𝛾⟩⊤ ≡ ⋁𝑖∈𝑁((⟨𝛾⟩⊤)@𝑖) ∧ ⋀𝑗∈𝑁(𝑗 ↝𝑗 𝛾[𝑗])@𝑗

(𝐶2) (⟨𝛾⟩⊤)@𝑖 ∧ ⟨𝛾⟩ (𝛼@𝑖) ⊃ (⟨𝛾⟩𝛼)@𝑖

(𝐶3) ⟨𝛾⟩⋀𝑖∈𝑆(𝛼𝑖@𝑖) ≡ ⋀𝑖∈𝑆 ⟨𝛾⟩ (𝛼𝑖@𝑖), where 𝑆 ⊆ 𝑁, 𝑎𝑛𝑑 𝑆 ≠ ∅

Global inference rules
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(MP)
𝜙, 𝜙 ⊃ 𝜓

𝜓 (GG)
𝜙
[𝛾]𝜙 (𝐺𝑖)

⊢𝑖 𝛼
𝛼@𝑖

In the above axiom system, the global axioms (𝐵5) and (𝐶0) − (𝐶3) spell out the
interaction between local and global modalities. The axioms (𝐵5) and (𝐶2) can be ex-
plained as in the case for DGL. Axiom (𝐶0), the main distinctive feature of this axiom
system, captures the condition (𝑏3) in Definition 4.11, while axiom (𝐶3) reflects a par-
ticular principle of our models, the order of the operators ∧ and ⟨𝛾⟩ can be exchanged,
from a technical point of view, which does not hold in multi-agent modal logic. Axiom
(𝐶1) also corresponds to the (new) conditions provided in the global arena, and is used
towards getting the normal form for global formulas in DGLEA, along with the others.

As an illustration of how one can work with this axiom system, we derive a theorem
in the above proof system. This theorem also helps us in getting the normal form, and
consequently, is used in our proof for the completeness result later.

Proposition 4.14: ⟨𝛾⟩ (𝛼@𝑖) ≡ ((⟨𝛾⟩⊤)@𝑖 ⊃ ((⟨𝛾⟩𝛼)@𝑖 ∧ ⋀𝑗≠𝑖(𝑗 ↝𝑗 𝛾[𝑗])@𝑗))
∧ (([𝛾]⊥)@𝑖 ⊃ 𝛼@𝑖) ∧ ⟨𝛾⟩⊤ is a theorem of DGLEA, denoted by (𝐷0).

Proof From left to right,
1. ⊢𝐷 ⟨𝛾⟩ (𝛼@𝑖) ⊃ ((⟨𝛾⟩⊤)@𝑖 ⊃ (⟨𝛾⟩𝛼)@𝑖) (from axiom (𝐶2))
2. ⊢𝐷 ⟨𝛾⟩ (𝛼@𝑖) ⊃ ⟨𝛾⟩⊤ (from axiom (𝐵1) and rule (MP))
3. ⊢𝐷 ⟨𝛾⟩⊤ ⊃ ⋀𝑗∈𝑁(𝑗 ↝𝑗 𝛾[𝑗])@𝑗 (from axiom (𝐶1))
4. ⊢𝐷 ⟨𝛾⟩ (𝛼@𝑖) ⊃ ⋀𝑗∈𝑁(𝑗 ↝𝑗 𝛾[𝑗])@𝑗 (from 2, 3 and rule (MP))
5. ⊢𝐷 ⟨𝛾⟩ (𝛼@𝑖) ⊃ ((⟨𝛾⟩⊤)@𝑖 ⊃ ((⟨𝛾⟩𝛼)@𝑖 ∧ ⋀𝑗∈𝑁(𝑗 ↝𝑗 𝛾[𝑗])@𝑗))(from 1, 4)
6. ⊢𝐷 ⟨𝛾⟩ (𝛼@𝑖) ⊃ (([𝛾]⊥)𝑖 ⊃ 𝛼@𝑖) (from axiom (𝐵5))
7. ⊢𝐷 ⟨𝛾⟩ (𝛼@𝑖) ⊃ ((⟨𝛾⟩⊤)@𝑖 ⊃ ((⟨𝛾⟩𝛼)@𝑖 ∧ ⋀𝑗≠𝑖(𝑗 ↝𝑗 𝛾[𝑗])@𝑗)) (from 2, 5, 6)
From right to left, we let 𝜙 be (⟨𝛾⟩⊤)@𝑖, 𝜂 be (⟨𝛾⟩𝛼)@𝑖 ∧ ⋀𝑗≠𝑖(𝑗 ↝𝑗 𝛾[𝑗])@𝑗), 𝜑

be 𝛼@𝑖, 𝜉 be ⟨𝛾⟩⊤, 𝛽 be ⟨𝛾⟩ (𝛼@𝑖), and 𝜃 be [𝛾](𝛼@𝑖) for convenience.
1. ⊢𝐷 ((𝜙 ⊃ 𝜂) ∧ (¬𝜙 ⊃ 𝜑) ∧ 𝜉) ⊃ ((𝜂 ∧ 𝜉) ∨ (¬𝜙 ∧ 𝜑 ∧ 𝜉)) (Propositional logic)
2. ⊢𝐷 𝜂 ⊃ 𝛽 (from axiom (𝐶0))
3. ⊢𝐷 ¬𝜙 ∧ 𝜑 ⊃ 𝜃 (from axiom (𝐵5))
4. ⊢𝐷 𝜃 ∧ 𝜉 ⊃ 𝛽 (using theorems in modal logic)
5. ⊢𝐷 ¬𝜙 ∧ 𝜑 ∧ 𝜉 ⊃ 𝛽 (from 3 and 4)
6. ⊢𝐷 ((𝜂 ∧ 𝜉) ∨ (¬𝜙 ∧ 𝜑 ∧ 𝜉)) ⊃ 𝛽 (from 2 and 5)
7. ⊢𝐷 ((𝜙 ⊃ 𝜂) ∧ (¬𝜙 ⊃ 𝜑) ∧ 𝜉) ⊃ 𝛽 (from 1, 6 and rule (MP))
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This completes the proof. ∎

That the axioms and the rules are sound can be proved in the standard way, and we
only concentrate on the proofs for the axioms (𝐶0)−(𝐶3). Let 𝑀 be a global model with
enabled actions with respect to local models {𝑀 𝑖}𝑖∈𝑁 .

Proposition 4.15: Axiom (𝐶0) is valid.

Proof Suppose 𝑀, 𝑤 ⊧ (⟨𝛾⟩𝛼)@𝑖, which means 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩𝛼. It follows that there
exists 𝑣𝑖 with 𝑤𝑖 𝛾

Ð→ 𝑣𝑖 such that 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼. Since 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖, then 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) ≠ ∅.

We construct 𝑣 = (𝑣1, ... 𝑣𝑛) as follows:

𝑣𝑗 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝑗 for 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),

𝑤𝑗 for 𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).
Since 𝑀, 𝑤 ⊧ ⋀𝑗≠𝑖(𝑗 ↝𝑗 𝛾[𝑗])@𝑗, then we have 𝑀 𝑗 , 𝑤𝑗 ⊧𝑗 𝑗 ↝𝑗 𝛾[𝑗] for 𝑗 ≠ 𝑖,

which means 𝛾[𝑗] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑗(𝑤𝑗) for 𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾). It follows that 𝑤 𝛾
Ð→ 𝑣,

and 𝑀, 𝑣 ⊧ 𝛼@𝑖. Thus, 𝑀, 𝑤 ⊧ ⟨𝛾⟩ (𝛼@𝑖). ∎

Proposition 4.16: Axiom (𝐶1) is valid.

Proof This axiom corresponds to the relation part in Definition 4.11. The left side signi-
fies the existence of state transition relations in the model, while the right side corresponds
to conditions (𝑏1) − (𝑏3). In formal, for any 𝑤 in 𝑀 ,

From left to right, Suppose 𝑀, 𝑤 ⊧ ⟨𝛾⟩⊤, then there is 𝑣 such that 𝑤 𝛾
Ð→ 𝑣. By Defi-

nition 4.11, we have (𝑏1) ∶ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) ≠ ∅, which means 𝑀, 𝑤 ⊧ ⋁𝑖∈𝑁((⟨𝛾⟩⊤)@𝑖).
To show 𝑀, 𝑤 ⊧ (𝑗 ↝𝑗 𝛾[𝑗])@𝑗 for 𝑗 ∈ 𝑁 , we consider two cases.

Case 1: 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), which means 𝑀 𝑗 , 𝑤𝑗 ⊧𝑗 ⟨𝛾⟩⊤ by (b2), it follows 𝑀, 𝑤 ⊧
(𝑗 ↝𝑗 𝛾[𝑗])@𝑗 for 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).

Case 2: 𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), by (b3), there exists 𝛾′ ∈ Γ̃ and 𝑢 in 𝑀 𝑗 such

that 𝛾′[𝑗] = 𝛾[𝑗] and 𝑤𝑗 𝛾′
Ð→𝑗 𝑢, then it follows that 𝑀, 𝑤 ⊧ (𝑗 ↝𝑗 𝛾[𝑗])@𝑗 for

𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).
Hence, we have that 𝑀, 𝑤 ⊧ (𝑗 ↝𝑗 𝛾[𝑗])@𝑗 for 𝑗 ∈ 𝑁 .
From right to left, suppose that 𝑀, 𝑤 ⊧ ⋁𝑖∈𝑁((⟨𝛾⟩⊤)@𝑖) ∧ ⋀𝑗∈𝑁(𝑗 ↝𝑗 𝛾[𝑗])@𝑗,

we have to construct 𝑣 such that 𝑤 𝛾
Ð→ 𝑣.

Since 𝑀, 𝑤 ⊧ ⋁𝑖∈𝑁((⟨𝛾⟩⊤)@𝑖), then we have (𝑏1) ∶ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) ≠ ∅. We con-
sider two cases.

Case 1: 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), there is 𝑣𝑗 in 𝑀 𝑗 such that 𝑤𝑗 𝛾
Ð→𝑗 𝑣𝑗 .
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Case 2: 𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), since 𝑀, 𝑤 ⊧ (𝑗 ↝𝑗 𝛾[𝑗])@𝑗 for 𝑗 ∈ 𝑁 , then

exists 𝛾′ ∈ Γ̃ and 𝑣𝑗 in 𝑀 𝑗 such that 𝛾′[𝑗] = 𝛾[𝑗] and 𝑤𝑗 𝛾′
Ð→𝑗 𝑣𝑗 . It follows that 𝛾[𝑗] ∈

𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑗(𝑤𝑗).
We construct 𝑣 = (𝑣1, ... 𝑣𝑛) as follows:

𝑣𝑗 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝑗 for 𝑗 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),

𝑤𝑗 for 𝑗 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾).

According to Definition 4.11, we have 𝑤 𝛾
Ð→ 𝑣. ∎

Proposition 4.17: Axiom (𝐶2) is valid.

Proof Suppose 𝑀, 𝑤 ⊧ (⟨𝛾⟩⊤)@𝑖 ∧ ⟨𝛾⟩ (𝛼@𝑖). Since 𝑀, 𝑤 ⊧ ⟨𝛾⟩ (𝛼@𝑖), then there
exists 𝑣 with 𝑤 𝛾

Ð→ 𝑣 such that 𝑀, 𝑣 ⊧ 𝛼@𝑖, it follows that 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼. Since
𝑀, 𝑤 ⊧ (⟨𝛾⟩⊤)@𝑖, then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩⊤, which means 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾). According
to Definition 4.11, we have 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖, then 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ⟨𝛾⟩𝛼. Thus, 𝑀, 𝑤 ⊧ (⟨𝛾⟩𝛼)@𝑖. ∎

Proposition 4.18: Axiom (𝐶3) is valid.

Proof From left to right, we can prove it in basic modal logic, then we focus on the other
direction. Suppose 𝑀, 𝑤 ⊧ ⋀𝑖∈𝑆 ⟨𝛾⟩ (𝛼𝑖@𝑖), then 𝑀, 𝑤 ⊧ ⟨𝛾⟩ (𝛼𝑖@𝑖) for 𝑖 ∈ 𝑆 ⊆ 𝑁 .
It follows that there is (𝑣𝑖) with 𝑤 𝛾

Ð→ (𝑣𝑖) such that 𝑀, (𝑣𝑖) ⊧ 𝛼𝑖@𝑖 for 𝑖 ∈ 𝑆, then
𝑀 𝑖, (𝑣𝑖)𝑖 ⊧𝑖 𝛼𝑖 for 𝑖 ∈ 𝑆. We construct 𝑣 as follows:

𝑣𝑖 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑣𝑖)𝑖 for 𝑖 ∈ 𝑆 ⊆ 𝑁,

(𝑣𝑘)𝑖 for 𝑖 ∈ 𝑁 −𝑆, where 𝑘 is a fixed number in 𝑆.

Then we have 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼𝑖 for 𝑖 ∈ 𝑆, thus 𝑀, 𝑣 ⊧ ⋀𝑖∈𝑆(𝛼𝑖@𝑖). We claim 𝑤 𝛾
Ð→ 𝑣 as

follows:
• 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) ≠ ∅ by 𝑤 𝛾

Ð→ (𝑣𝑖) for 𝑖 ∈ 𝑆,
• for all 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),

– for 𝑖 ∈ 𝑆, since 𝑣𝑖 = (𝑣𝑖)𝑖 and 𝑤𝑖 𝛾
Ð→𝑖 (𝑣𝑖)𝑖 by 𝑤 𝛾

Ð→ (𝑣𝑖), then 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖,

– for 𝑖 ∉ 𝑆, since 𝑣𝑖 = (𝑣𝑘)𝑖 and 𝑤𝑖 𝛾
Ð→𝑖 (𝑣𝑘)𝑖 by 𝑤 𝛾

Ð→ (𝑣𝑘), then 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖,

• for all 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾),
– for 𝑖 ∈ 𝑆, since 𝑣𝑖 = (𝑣𝑖)𝑖 and (𝑣𝑖)𝑖 = 𝑤𝑖 by 𝑤 𝛾

Ð→ (𝑣𝑖), then 𝑣𝑖 = 𝑤𝑖, and
𝛾[𝑖] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑖(𝑤𝑖) by 𝑤 𝛾

Ð→ (𝑣𝑖),
– for 𝑖 ∉ 𝑆, since 𝑣𝑖 = (𝑣𝑘)𝑖 and (𝑣𝑘)𝑖 = 𝑤𝑖 by 𝑤 𝛾

Ð→ (𝑣𝑘), then 𝑣𝑖 = 𝑤𝑖, and
𝛾[𝑖] ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑖(𝑤𝑖) by 𝑤 𝛾

Ð→ (𝑣𝑘).
It follows that 𝑀, 𝑤 ⊧ ⟨𝛾⟩⋀𝑖∈𝑆(𝛼𝑖@𝑖). ∎
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Similar to DGL, we have the following lemma.

Lemma 4.1: Every global formula 𝛼 has an equivalent formula 𝛼′ of the form
⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼

𝑖
𝑗@𝑗), where 𝐾 is a finite set of natural numbers and 𝑆𝑖 ⊆ 𝑁 .

Proof We prove by induction on the structure of 𝛼.
• 𝛼 is of the form 𝛽𝑖@𝑖, it is trivial.
• 𝛼 is of the form ¬𝛽, or 𝜙 ∨ 𝜓 , then easily we can find an equivalent formula 𝛼′ of

the form ⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼
𝑖
𝑗@𝑗) for 𝛼, as we obtain an equivalent one in DNF for any

boolean formula in Propositional logic.
• 𝛼 is of the form ⟨𝛾⟩𝛽, suppose 𝛽 has an equivalent formula 𝛽′ of the form

⋁𝑖∈𝐾′ ⋀𝑗∈𝑆′
𝑖
(𝛼𝑖

𝑗@𝑗) by I.H. without loss of generality. Since 𝜓1 ≡ 𝜓2 implies
⟨𝛾⟩𝜓1 ≡ ⟨𝛾⟩𝜓2 (from axiom (𝐵1) and rule (MP)), it follows that

⟨𝛾⟩𝛽 ≡ ⟨𝛾⟩ ⋁
𝑖∈𝐾′ ⋀

𝑗∈𝑆′
𝑖

(𝛼𝑖
𝑗@𝑗)

Since ⟨𝛾⟩ (𝛼 ∨ 𝛽) ≡ ⟨𝛾⟩𝛼 ∨ ⟨𝛾⟩𝛽, then we have

⟨𝛾⟩ ⋁
𝑖∈𝐾′ ⋀

𝑗∈𝑆′
𝑖

(𝛼𝑖
𝑗@𝑗) ≡ ⋁

𝑖∈𝐾′
⟨𝛾⟩ ⋀

𝑗∈𝑆′
𝑖

(𝛼𝑖
𝑗@𝑗)

Thus we have

𝛼 ≡ ⋁
𝑖∈𝐾′
⟨𝛾⟩ ⋀

𝑗∈𝑆′
𝑖

(𝛼𝑖
𝑗@𝑗)

According to axiom (𝐶3), we have

𝛼 ≡ ⋁
𝑖∈𝐾′ ⋀

𝑗∈𝑆′
𝑖

⟨𝛾⟩ (𝛼𝑖
𝑗@𝑗)

According to axiom (𝐶1) and theorem (𝐷0), we have

⊢ ⟨𝛾⟩ (𝛼𝑖
𝑗@𝑖) ≡ ((⟨𝛾⟩𝑗 ⊤𝑗)@𝑗 ⊃ ((⟨𝛾⟩𝑗 𝛼𝑖

𝑗)@𝑗 ∧ ⋀𝑚≠𝑗(𝑚↝𝑚 𝛾[𝑚])@𝑚))
∧ (([𝛾]𝑗⊥𝑗)@𝑗 ⊃ 𝛼𝑖

𝑗@𝑗) ∧ (⋁𝑗∈𝑁((⟨𝛾⟩𝑗⊤𝑗)@𝑗) ∧ ⋀𝑗∈𝑁(𝑚↝𝑚 𝛾[𝑚])@𝑚)

Note that the right side of the theorem above is boolean combinations of global
proposition letters. It follows that we can obtain an equivalent formula to
⋁𝑖∈𝐾′ ⋀𝑗∈𝑆′

𝑖
⟨𝛾⟩ (𝛼𝑖

𝑗@𝑗), and it has no global modality. After the reorganiza-
tion as we deal with boolean formula in Propositional logic to obtain an equvialent
formula in DNF , we can give an equvialent formula to 𝛼′, which is of the form
⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼

𝑖
𝑗@𝑗).

This completes the proof. ∎
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The above theorem plays a crucial role in our completeness proof. To prove the strong
completeness result for DGLEA, we can follow the same method used for proving the
strong completeness of DGL. In the following, we take an alternative approach to present
a weak completeness result.

Theorem 4.1: 𝐴𝑥* is complete, i.e., every consistent global formula is 𝐷-satisfiable.

Proof Given any consistent global formula 𝛼, according to Lemma 4.1, there is a global
formula ⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼

𝑖
𝑗@𝑗) equivalent to 𝛼, where 𝐾 is a finite set of natural numbers

and 𝑆𝑖 ⊆ 𝑁 . Now it is sufficient to show ⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼
𝑖
𝑗@𝑗) is 𝐷-satisfiable.

Since 𝛼 is consistent, then there exists 𝑖 ∈ 𝐾 such that 𝛼𝑖
𝑗 is 𝑗−consistent for all 𝑗 ∈ 𝑆𝑖.

Suppose not, for all 𝑖 ∈ 𝐾 , there is 𝑗 ∈ 𝑆𝑖 such that 𝛼𝑖
𝑗 is not 𝑗−consistent, which means

• ⊢𝑗 ¬𝛼𝑖
𝑗 .

• ⊢𝐷 (¬𝛼𝑖
𝑗)@𝑗 by the rule (𝐺𝑗).

• ⊢𝐷 ¬(𝛼𝑖
𝑗@𝑗) by the axiom (𝐵2).

• ⊢𝐷 ¬ ⋀𝑗∈𝑆𝑖(𝛼
𝑖
𝑗@𝑗).

• ⊢𝐷 ¬ ⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼
𝑖
𝑗@𝑗).

which means ⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼
𝑖
𝑗@𝑗) is not consistent, it follows that 𝛼 is not consistent,

contradiction.
Without loss of generality, suppose ⋀𝑗∈𝑆0 𝛼𝑖0

𝑗 is 𝑗-consistent for 𝑖0 ∈ 𝐾 . Since
for each 𝑗 ∈ 𝑁 , any 𝑗-consistent 𝑗-local formula is 𝑗-satisfiable. Suppose 𝛼𝑖0

𝑗 is 𝑗-
satisfiable at 𝑜𝑗 in local model 𝑀 𝑗 = (𝑊 𝑗 , →𝑗 , 𝑜𝑗 , 𝑉 𝑗) for 𝑗 ∈ 𝑆𝑖0 , and if 𝑆𝑖0 ≠ 𝑁 ,
we fix any rooted model 𝑀 𝑗 = (𝑊 𝑗 , →𝑗 , 𝑜𝑗 , 𝑉 𝑗) for 𝑗 ∈ 𝑁 /𝑆𝑖0 . Let 𝑀 be the
global model with enabled actions generated from {𝑀 𝑗}𝑗∈𝑁 . Since 𝑀 𝑗 , 𝑜𝑗 ⊨𝑗 𝛼𝑖0

𝑗
for 𝑗 ∈ 𝑆𝑖0 , then 𝑀, (𝑜1, ... , 𝑜𝑛) ⊢𝐷 ⋀𝑗∈𝑆𝑖0

(𝛼𝑖0
𝑗 @𝑗) for 𝑖0 ∈ 𝐾 , it follows that

𝑀, (𝑜1, ... , 𝑜𝑛) ⊢𝐷 ⋁𝑖∈𝐾 ⋀𝑗∈𝑆𝑖(𝛼
𝑖
𝑗@𝑗), thus we have 𝑀, (𝑜1, ... , 𝑜𝑛) ⊢𝐷 𝛼, which means

𝛼 is 𝐷-satisfiable. ∎
Basically, we ‘reduce’ all the concepts at the global level to those at the local levels

by means of our axioms, and finally prove the global completeness by local completeness.
Note that we cannot obtain the strong completeness result directly through this way, and
thus the whole point of the to and fro movements between the global maximal consis-
tent sets and local maximal consistent sets through product construction were taken up in
Section 4.2.2.3, explicating the interplay.
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4.4 On model checking problems

After considering the completeness results for the logics above, natural follow-up
questions that come up include the satisfiability problem and the model checking problem
of the concerned systems. We keep studying the satisfiability problem for future work,
and focus on the model checking problem here. Such a study has particular relevance in
the context of games, for example, we can investigate whether the games underlying the
local and global models satisfy some relevant properties. Especially, checking whether a
game position is a winning position and finding paths of such winning possibilities starting
from certain game positions are some of the main queries one needs to deal with while
modeling such frameworks for distributed games. Moreover, the study of complexity of
such decision problems is a necessary step towards potential applications. In what follows,
we explore the complexity of the model checking problems for DGL and DGLEA. Before
doing so, we first define the length of a local formula and a global formula.

Definition 4.16: The length of a local formula in L𝑖 is defined as follows.

∣⊤∣ = 1

∣𝑝𝑖∣ = 1

∣¬𝛼𝑖∣ = ∣𝛼𝑖∣ + 1

∣𝛼𝑖 ∨ 𝛽𝑖∣ = ∣𝛼𝑖∣ + ∣𝛽𝑖∣ + 1

∣⟨𝛾⟩𝛼𝑖∣ = ∣𝛼𝑖∣ + 1

Definition 4.17: The length of a global formula in L is defined as follows.

∣⊤∣ = 1

∣𝛼𝑖@𝑖∣ = ∣𝛼𝑖∣

∣¬𝛼∣ = ∣𝛼∣ + 1

∣𝛼 ∨ 𝛽 ∣ = ∣𝛼∣ + ∣𝛽∣ + 1

∣⟨𝛾⟩𝛼∣ = ∣𝛼∣ + 1

Fact 21: Given a formula 𝜙 in L (L𝑖), let SF(𝜙) (SF𝑖(𝜙)) be the set of all subformulas
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of 𝜙, then ∣SF(𝜙)∣ (∣SF𝑖(𝜙)∣) ≤ ∣𝜙∣, where ∣𝑆 ∣ is the size of the set 𝑆 of formulas in L𝑖

(L).

Proof This proposition can be proved by induction on the structure of 𝜙. ∎

Lemma 4.2: Given a local formula 𝛼𝑖 and a local model 𝑀 𝑖 for agent 𝑖, deciding whether
𝛼𝑖 is 𝑖-satisfiable on 𝑀 𝑖 takes time O(∣𝛼𝑖∣ × ∣𝑀 𝑖∣2), where ∣𝑀 𝑖∣ is the size of 𝑀 𝑖.

Proof This lemma has been proved in (van Benthem, 2010). The approach is as follows:
We calculate the truth values of the subformulas that appear in order, considering the time
needed in the worst-case scenario. By applying this approach, we are able to derive the
desired result. ∎

Based on the results of the aforementioned lemma and the proof technique used, we
can conclude the following.

Theorem 4.2: The model checking problem for DGL, i.e., for any global formula 𝜙 in
L and finite global model 𝑀 , deciding whether 𝜙 is satisfiable on 𝑀 is in P.

Proof Given any global formula 𝜙 and finite global model 𝑀 generated from local models
{𝑀 𝑖}𝑖∈𝑁 , we can check whether 𝜙 is 𝐷-satisfiable on 𝑀 following the procedure below:

Firstly, enumerate all subformulas of 𝜙 as 𝜙1, ... , 𝜙𝑚, in increasing length, such that
𝜙𝑚 is 𝜙 and if 𝜙𝑖 is a subformula of 𝜙𝑗 then 𝑖 < 𝑗. Next, compute the truth value of 𝜙𝑘 at
each state 𝑤 of 𝑀 for 1 ≤ 𝑘 ≤ 𝑚 in orders. At each state, we have following cases:

• Case 1: If 𝜙𝑘 is a global proposition letter, which is of the form 𝛼𝑖@𝑖, then it is
sufficient to compute the truth value of 𝛼𝑖 at 𝑤𝑖 in 𝑀 𝑖. According to Lemma 4.2,
this step can be carried out in timeO(∣𝛼𝑖∣× ∣𝑀 𝑖∣2). Since ∣𝛼𝑖∣ < ∣𝜙∣ and ∣𝑀 𝑖∣ < ∣𝑀 ∣
for 𝑖 ∈ 𝑁 . Thus this case can be checked in time O(∣𝜙∣ × ∣𝑀 ∣2).

• Case 2: If 𝜙𝑘 is of the form 𝛼 ∨ 𝛽, it takes constant time.
• Case 3: If 𝜙𝑘 is of the form ⟨𝛾⟩𝛼, it can be done in time O(∣𝑀 ∣),

Finally, in the worst case, 𝜙𝑚 can be completed in time O(𝑚 × ∣𝑀 ∣ × (∣𝜙∣ × ∣𝑀 ∣2)). Ac-
cording to Fact 21, we have 𝑚 ≤ ∣𝜙∣. Hence, 𝜙𝑚 can be completed in timeO(∣𝜙∣2 × ∣𝑀 ∣3),
which means the model checking problem for DGL is in P. ∎

For the model checking problem of DGLEA, we can apply a similar method, and
obtain the following result.

Theorem 4.3: The model checking problem for DGLEA, i.e., for any global formula 𝜙
in L and finite global model with enabled actions 𝑀 , deciding whether 𝜙 is 𝐷-satisfiable
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on 𝑀 is in P.
Before concluding the chapter we provide a glimpse of how a more involved logical

system with two layers of reasoning, as discussed earlier using the basic modal logic syn-
tax, can be used to describe strategic reasoning, viz. strategic announcements, in the form
of best responses. This in turn would lead to corresponding strategic equilibria studies,
among others. The basic interaction of local and global reasoning has already been stud-
ied in the frameworks DGL and DGLEA, which provide the necessary base for any such
study incorporating richer reasoning structures.

4.5 On strategic reasoning

Till now we have focused on the interplay of local and global reasoning, where there
were no role of the actual announcements per se. The announcements have been modeled
as usual actions/moves in a game, and the investigations on reasoning took shape accord-
ingly. In the process, we presented a couple of descriptive logics, modeling local and
global interaction. We expressed what a player can achieve and what actions lead to those
outcomes. The actions considered are intuitively described as making announcements. In
what follows, we incorporate richer structures in both models and languages to deal with
strategic reasoning in distributed games, where we bring announcements to the fore. To
motivate, we once again consider a card game combining the ideas from the previous two
card games mentioned in this chapter.

Example 4.7: Suppose now, for Alice and Bob, there are 5 available cards, 1, 2, 3, 4 and
5, say, and each of them gets two cards from this pile of five cards, and one card is kept
upside down, so that nobody can see the value. Once again, we specify that both players
only announce the card number that is equal to or higher than the actual card they have.
The game starts with two rounds of simultaneous announcements about the card numbers
that the players have. The first round of simultaneous announcements are dealt with as
earlier. Below, we focus on the second round of announcements about the card numbers.

• If they announce different card numbers in the second round, then:
– If the player with the announcement of the lower card announces ‘I accept’ in

the next round, then the other player wins.
– If the player with the announcement of the lower card announces ‘I challenge’

in the next round, then the other player has to show all the cards, and that
player wins if the cards match his/her announcement of each round.
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• If they announce the same card number, we specify that at least one player has to
announce ‘I challenge’ in the next round. Whoever is challenged has to show all the
cards, and that player wins if the cards match his/her announcements of each round.
They will restart this round if both of them do not want to announce ‘I challenge’.

While introducing DGLEA, we kept the definition of the local arena unchanged and
only modified that of the global arena as we were focusing on the actions and/or announce-
ments that are allowed in the global arena. Our current focus is to model strategic an-
nouncements and accordingly, we introduce announcement maps in both local and global
arenas. Correspondingly, at the syntactic level, we introduce operators that reflect the role
of announcements more precisely in the games.

Definition 4.18 (Local arena with announcements): A local arena for player 𝑖 is a
tuple G𝑖 = (𝑊 𝑖, →𝑖, 𝑤𝑖

0, 𝜒 𝑖) such that 𝑊 𝑖 is the set of local game states, 𝑤𝑖
0 is the initial

game state, 𝜒 𝑖 ∶𝑊 𝑖 → 2Γ𝑖 /∅ gives the set of possible announcements that an agent can
make when she is at a certain game state, and →𝑖 is a partial move function given by,
→𝑖∶𝑊 𝑖 × Γ̃ → 𝑊 𝑖 satisfies that for all 𝑤𝑖, 𝑣𝑖 ∈ 𝑊 𝑖, if 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖, then 𝛾[𝑖] ∈ 𝜒 𝑖(𝑤𝑖).

Example 4.8: In the game between Alice and Bob, described in Example 4.7. let us
assume that each player can announce all the cards, as well as ‘accept’ or ‘challenge’.
Suppose Alice has 1, 4 and Bob has 2, 3. Suppose in the first round, both the players
truthfully announce their least cards, say, 1 and 2. Then, of course, in the next round, both
Alice and Bob would try to strategize for their next announcements depending on what
they heard from the opponent. For example, as Alice announced card 1 in the first round,
and Bob has the cards 2 and 3, Bob is unsure whether Alice has the card 4 or the card
5. Accordingly, he can consider the following strategy: If Alice announces that she has
card 4, then I might get away by announcing that I have card 5. Evidently, Alice is unsure
whether Bob has the card 3 or the card 5, and she can strategize similarly. It might also
be the case that Bob cannot announce ‘challenge’. Then, whatever Bob might consider
regarding Alice’s announcement, he has to announce a bigger card to win. Then Alice
can always announce 5 to ensure her win.

Now, we are all set to define the global arenas with announcements. We note here
that the introduction of the announcement maps in the local arena, and inclusion of the
corresponding component in the global arena below, have allowed us to deal with the
notion of enabled actions, e.g., in DGLEA, quite naturally: The interaction between the
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move function
𝛾
Ð→ and the announcement function 𝜒 have taken care of it.

Definition 4.19 (Global arena with announcements): Given a set of local arenas
{G𝑖}𝑖∈𝑁 , one for each player, the global arena G = (𝑊 , →, 𝑤0, 𝜒) is defined as follows:
𝑊 =𝑊 1 × … × 𝑊 𝑛, 𝑤0 = (𝑤1

0, … , 𝑤𝑛
0), 𝜒 ∶𝑊 → 2Γ̃ satisfying 𝜒(𝑤) = 𝜒1(𝑤1) × … ×

𝜒𝑛(𝑤𝑛), where 𝑤 = (𝑤1, … , 𝑤𝑛), and →∶𝑊 × Γ̃ → 𝑊 is defined by: for all 𝑤, 𝑣 ∈ 𝑊 ,
we have 𝑤 𝛾

Ð→ 𝑣 iff
- for all 𝑖 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑤𝑖 𝛾

Ð→𝑖 𝑣𝑖, with 𝛾 ∈ 𝜒(𝑤),
- for all 𝑖 ∈ 𝑁 / 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾), 𝑣𝑖 = 𝑤𝑖,

where, 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑤, 𝛾) = {𝑖 ∈ 𝑁 ∣ ∃𝑣𝑖 ∈ 𝑊 𝑖 with 𝑤𝑖 𝛾
Ð→𝑖 𝑣𝑖, 𝑤ℎ𝑒𝑟𝑒 𝛾 ∈ 𝜒(𝑤)} ≠ ∅. For

each 𝑖 ∈ 𝑁 , define 𝜒 𝑖(𝑤) = 𝜒 𝑖(𝑤𝑖), where 𝑤 = (𝑤1, … , 𝑤𝑛).

Example 4.9: Suppose the cards are as discussed in Example 4.8. For the global arena,
one can say that a (1,2) announcement, and subsequently a (4,5) announcement followed
by an (A,5) announcement would lead to a win for Bob. On the other hand, if Bob cannot
announce a card that he already has, it would reduce the possibility of his winning. As
discussed earlier, if Alice announces 1 followed by 5, then Bob, in case he challenges,
would not be able to conclude in his local arena whether he will win, but in the global arena
one can conclude a win for Bob. Also, one could describe different kinds of strategies,
for example, if Alice announces 3, then there is no point in Bob announcing 2 in the next
round, or, Alice or Bob deciding to announce a certain number irrespective of what the
other’s announcement might be.

Given these local and global arenas with announcements, the local announcement
syntax is given as follows:

Definition 4.20: The local announcement language for player 𝑖, 𝐴L𝑖, is given as follows:

𝛼 ∈ 𝐴L𝑖 ∶∶= 𝜏 ∈ Γ𝑖 ∣ 𝜎@𝑗, 𝜎 ∈ Γ𝑗 ∣ ¬𝛼 ∣ 𝛼 ∨ 𝛽 ∣ ◻𝛼

Thus, the local formulas consist of two kinds of atomic formulas, one’s own announce-
ments and possible/actual announcements of others, their boolean combinations and the
usual basic modal operator. For providing the truth definition of local formulas, since
announcements made by the other players are also taken under consideration, we con-
sider both local and global models. The whole point of the local semantics is to evaluate
announcement formulas. The truth definition of the local formulas are given as follows:

Definition 4.21: Given local arenas with announcements, 𝑀 𝑖 for each player 𝑖, and the
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corresponding global model 𝑀 (defined below), the truth definition of the local announce-
ment formulas at a world in a model are defined inductively as follows:

• 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝜏 iff 𝜏 ∈ 𝜒 𝑖(𝑤𝑖).
• 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝜎@𝑗 iff there exists 𝑤 in the global model 𝑀 whose 𝑖-th component

is 𝑤𝑖 and the 𝑗-th component 𝑤𝑗 satisfies the following condition: 𝑀, 𝑀 𝑗 , 𝑤𝑗 ⊧𝑗 𝜎
• 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ¬𝛼 iff 𝑀, 𝑀 𝑖, 𝑤𝑖 /⊧𝑖 𝛼
• 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 ∨ 𝛽 iff 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼 or 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛽
• 𝑀, 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 ◻𝛼 iff for all successor states 𝑣𝑖 of 𝑤𝑖 in 𝑀 𝑖, such that 𝑀, 𝑀 𝑖, 𝑣𝑖 ⊧𝑖 𝛼

We note that 𝜎@𝑗 asserted by player 𝑖 may be epistemic in nature according to the
following interpretation: it is consistent for 𝑖 to believe that 𝑗’s local state supports 𝜎.
This requires further discussion which we leave for the future. In what follows, all the
local announcement formulas are evaluated at the root node of the respective local arenas.

Example 4.10: For the game in Example 4.7, Bob’s strategic announcement, as de-
scribed in Example 4.8, can be expressed as follows: (1@Alice ∧ 2) ∧ ((◻(4@Alice) →
5) ∨ (◻(5@Alice)→ (3 ∧ ◻𝐶))).

We move on to global announcement formulas, which are given in the following. We
fix a set of global propositions P𝑖 for every 𝑖 ∈ 𝑁 .

Definition 4.22: The global announcement language, 𝐴L, is given as follows:

𝜙, 𝜓 ∈ 𝐴L ∶∶= 𝑝@𝑖 ∣ 𝛼𝑖@𝑖 ∣ ¬𝜙 ∣ 𝜙 ∨𝜓 ∣ ⟨𝛾⟩𝜙 ∣ ◻𝜙

where 𝑝 ∈ P𝑖, 𝛼𝑖 ∈ 𝐴L𝑖, 𝛾 ∈ Γ̃.

The main addition in the global syntax is the announcement modality ⟨𝛾⟩ as we had
it in Section 4.2. The global semantics is given as follows.

Definition 4.23: A global model is given by 𝑀 = (G, 𝑂), where G is a global arena,
and 𝑂 ∶ 𝑊𝑙 → 2P1 × … × 2P𝑛 is a valuation. The truth definitions of the global formulas
are given as follows:

• 𝑀, 𝑤 ⊧ 𝛼@𝑖 if 𝑀 𝑖, 𝑤𝑖 ⊧𝑖 𝛼
• 𝑀, 𝑤 ⊧ 𝑝@𝑖 if 𝑤 is a leaf node and p is in the 𝑖-th coordinate of 𝑂(𝑤)
• 𝑀, 𝑤 ⊧ ¬𝜙 if 𝑀, 𝑤 /⊧ 𝜙
• 𝑀, 𝑤 ⊧ 𝜙 ∨𝜓 if 𝑀, 𝑤 ⊧ 𝜙 or 𝑀, 𝑤 ⊧ 𝜓
• 𝑀, 𝑤 ⊧ ⟨𝛾⟩ 𝜙 if there exists 𝑣 ∈ 𝑊 such that 𝑤 𝛾

Ð→ 𝑣 and 𝑀, 𝑣 ⊧ 𝜙.
• 𝑀, 𝑤 ⊧ ◻𝜙 if for all 𝑣 and all 𝛾 such that 𝑤 𝛾

Ð→ 𝑣, 𝑀, 𝑣 ⊧ 𝜙
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We end this section with a glimpse of what the new global language can express in
terms of the example we described above.

Example 4.11: Finally, we can provide global outcome formulas corresponding to the
deal that Alice (1,4) and Bob (2,3) have in Example 4.8 as follows.

• Alice and Bob announce (3, 2) and then (5, 5), followed by the challenge
announcements from both of them and then both of them lose. Formally:
[(3, 2)][(5, 5)]⟨(𝐶, 𝐶)⟩¬(𝑊 @Alice ∨𝑊 @Bob). As we can see, both their ac-
tions in the second round lead them to lose the game.

• Alice and Bob announce (3, 2) in the first round and then in the second round,
no matter what Alice announces, Bob chooses to announce the card number
3. Formally, [(3, 2)]([(1, 3)]⟨(𝐶, 3)⟩(𝑊 @Bob)∧ ([(2, 3)]⟨(𝐶, 3)⟩(𝑊 @Bob))∧
([(3, 3)](⟨(𝐶, 𝐶)⟩(𝑊 @Bob)∧(⟨(𝐶, 3)⟩(𝑊 @Bob))∧(⟨(3, 𝐶)⟩¬(𝑊 @Alice)))∧
([(4, 3)]⟨(4, 𝐶)⟩¬(𝑊 @Alice)) ∧ ([(5, 3)]⟨(5, 𝐶)⟩¬(𝑊 @Alice))). As long as
Bob sticks to this strategy that he announces the card number 3 in the second round,
then he definitely would not lose.

• Also, if Bob follows his strategic announcement as given in Example 4.10, he will
end up winning: ((1@Alice ∧ 2) ∧ ((◻(4@Alice) → 5) ∨ (◻(5@Alice) → (3 ∧
◻𝐶))))@Bob → ⟨(1, 2)⟩⟨(5, 3)⟩⟨(5, 𝐶)⟩(𝑊 @Bob).

In the above examples, we formally express both local and global strategic reasoning,
showing strategies that can be good or bad for the players, and also those that can be an
optimal one for one of the players in a specific context. This logic is intended to show how
strategic reasoning can be developed further based on the foundations laid here. We will
take up the technical development of such logics in further work. For now, we conjecture
the following: The satisfaction problem of this logic is decidable.

4.6 Summary and further work

In conclusion, we have proposed a two-layered propositional modal logic DGL at the
outset, for reasoning in distributed games, in which every player has access only to her
local game arena and makes choices based on local game state and public announcements
from other players. The local and the global modality have the same syntax - the former
on one hand describes synchronous choices and on the other hand considers possible as-
sumptions made by a subset of players, whereas the latter describes global moves, that is,
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a simple combination of such local moves. The axiom system brings out the complexity
of such reasoning, and the completeness proof, the intricacy of the product construction.
Furthermore, using a similar logical framework，viz. DGLEA, we have dealt with global
models for distributed games with a more realistic construction of global moves based on
subtle combinations of local moves. In addition, we explored the complexity of the model
checking problems for both these logics, showing them to be tractable as in the case of
basic modal logic. While both these logics are descriptive in nature, based on the foun-
dation laid there, we have proposed a third framework elucidating strategic choices and
player responses. The technical development of this logic is along similar lines and will
be taken up in the future.

We note that the kind of global reasoning we consider here which is not arising as
product of local reasoning, involve outcomes evaluated at the terminal or leaf nodes of
the games which are basically booleans formulas. An important question arises as to how
much global reasoning we can accommodate within such product based reasoning. The
logics proposed in this chapter are minimal, with no modalities for transitive closure, and
others. While some of these extensions proceed along standard lines, products bring their
own complications, which are worth pursuing.

Another important line of work that we are much interested in is epistemic reasoning
in distributed games. Note that due to announcements being always public, two players i
and j are equally (un)certain about a third player k. We hope to characterize such strategic
reasoning influenced by the information available to the players in our next steps.

On the whole, this work can be termed as an initial logic-based study on the struc-
tural aspects of local and global arenas concerning distributed games. It would also be
worthwhile to build on these frameworks for providing logical characterizations of game-
theoretic concepts concerning such games, e.g., notions of equilibrium coming from the
structural interplay, dominant and dominated strategies, and others. Such investigations
may pave the way for further compositional studies of structural interplay in strategic rea-
soning in these games modeling local and global phenomena.

101



CHAPTER 5 BISIMULATION IN MODEL-CHANGING MODAL LOGICS: AN ALGORITHMIC
STUDY

CHAPTER 5 BISIMULATION IN MODEL-CHANGING
MODAL LOGICS: AN ALGORITHMIC STUDY

In Chapter 3, we have studied different aspects of sabotage modal logic which can
be considered as one of many model-changing modal logics that have been introduced
over the years to capture the model dynamics in many relevant areas, from mathemat-
ical systems to machine intelligence, from economic theories to philosophical queries
as well as other important phenomena. Among the notable topics in model dynamics,
these logical systems deal with dynamical systems, graph and game dynamics, informa-
tion change, strategy-plan-protocol-programming updates, belief revision, social network
updates, memory upgrades and many others. The current chapter broadens the focus of
our semantic study on one hand, considering a varied collection of model-changing frame-
works. On the other hand the study narrows down to that of a particular property of the
logics discussed, viz. model invariance or bisimulation. Before moving on to the main
study, let us first give a brief survey of the existing literature on model-changing logics.

5.1 Model-changing modal logics: A discussion

The study on these logics initiated with the introduction of public announcement logic
(PAL) that deals with information updates brought about by public communication. In
PAL, as studied in (Plaza, 1989, 2007), the evaluation of the announcement formulas
⟨𝜑⟩𝜓 (read as ‘there is an announcement of 𝜑 after which 𝜓 holds’) involves deleting
all the ¬𝜑−worlds in the Kripke models and consequently, the relations involving those
worlds. In contrast, in PAL as studied in (Gerbrandy and Groeneveld, 1997), the evalu-
ation of the formula [𝜑]𝑎𝜓 (read as ‘after all possible 𝑎-announcement of 𝜑, 𝜓 holds’,
where 𝑎 is an agent) involves deleting arrows in the Kripke models that are pointing to
¬𝜑−worlds, with the domain remaining the same. Dynamic epistemic logic (DEL) (Bal-
tag et al., 1998; Baltag and Moss, 2004; van Ditmarsch et al., 2008; van Benthem, 2011),
a generalization of PAL, characterizes such announcements in more subtle communica-
tions. Towards modeling belief upgrades among agents, model-transforming operators
like lexicographic upgrade [⇑], elite change [↑] and suggestion [#] capture plausibility
relation updates under soft information (van Benthem and Liu, 2007; van Benthem, 2007)
involving relational changes without changes in the domain. A similar model-changing
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modal framework, arrow update logic (AUL) in (Kooi and Renne, 2011) describes epis-
temic access elimination that can be used to reason about multi-agent belief change. In
addition to such structural changes discussed above, factual changes in these models are
captured by updating valuations (Renardel de Lavalette, 2004; van Ditmarsch et al., 2005;
van Benthem et al., 2006; Kooi, 2007).

Model-changing logics have also played a significant role in describing strategic rea-
soning in games on graphs, which in turn have received a lot of attention in diverse do-
mains, e.g., computer science, logic, linguistics, economics, mathematics, philosophy, bi-
ology and others. As the name indicates, such a game is played on directed or undirected
graphs, and the players’ actions are assigned based on the game designer’s research objec-
tives. One can also consider different variants of such graph games where such variations
can arise from different winning conditions (e.g., reachability, parity in (Grädel, 2011)),
independent moves of players (e.g., cops and robber game in (Nowakowski and Winkler,
1983)), one player obstructing moves of the others (e.g., sabotage game in (van Benthem,
2005), poison game in (Duchet and Meyniel, 1993)) and others. In the interplay between
game theory, logic and computer science, these graph games provide exploratory models
for reactive systems that need to interact with the uncertain environment.

From the perspective of relation changes in models, in particular, link/edge deletion
in graphs, sabotage games (van Benthem, 2005) are natural examples where one player
is concerned with a reachability objective and the other player is involved in obstructing
her opponent’s moves by deleting edges from the graph. Model-changing logics related to
sabotage-style graph games with edge deletions are presented in (van Benthem and Liu,
2020; Rohde, 2005; Li, 2020; Baltag et al., 2019b; van Benthem et al., 2022). For example,
consider the language of definable modal sabotage logic (S𝑑ML) in (Li, 2020), which is a
direct extension of basic modal language with an additional operator [−𝜓], where, [−𝜓]𝜑
expresses the condition that after local deletion/sabotage of all arrows from the current
point, whose end points satisfy 𝜓 , 𝜑 still holds. The modal logic of supervised learning
(SLL) in (Baltag et al., 2019b) is equipped with even more advanced sabotage operators
that are introduced to characterize relation changes in multi-relation models. Moreover,
there is a generalized sabotage operator in (van Benthem et al., 2022), denoted by ⧫𝛼

𝛽 that
is used to capture an arrow deletion whose end-points satisfy 𝛼 and 𝛽, respectively.

With regard to domain changes in models, a game that is close to the spirit of describ-
ing point/vertex deletion on graphs is the poison game in (Duchet and Meyniel, 1993): one
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player is concerned with moving indefinitely in the game graph, and her opponent is in-
volved in obstructing her moves by poisoning certain vertices whose effect is analogous
to that of ‘point deletion’ from the perspective of the former player. To reason about poi-
son games, model-changing logics PSL and PML in (Zaffora Blando et al., 2020; Grossi
and Rey, 2019) use operators for changing valuations in and/or domains of models, which
are inspired by memory logics (Zaffora Blando et al., 2020; Mera, 2009; Areces et al.,
2008). In addition, operators involving such changing of valuations are also mentioned in
(Thompson, 2020; van Benthem and Liu, 2020) and, point-deletion style operators have
been proposed in (van Benthem, 2005; Fervari, 2014; van Benthem et al., 2020; Areces
et al., 2012). To give an example of what we are talking about, consider the operator ⟨−𝜓⟩
in the language of modal logic of stepwise removal (MLSR) proposed in (van Benthem
et al., 2020) - it involves deletion of 𝜓−worlds in the models.

Let us digress a bit and talk about the game logic connection here. In general, these
logics are referred to as game (graph) logics, more intuitively, as logics of game boards.
The underlying idea is that they characterize changes in the graph that serves as the game
board, such as sabotage game logic (Kvasov, 2016). They are somewhat different from
the logics for extensive-form games (Osborne and Rubinstein, 1994) in the sense that
the latter ones are mostly proposed to deal with and reason about various game-theoretic
phenomena. For example, Harrenstein et al. (2003) characterize (subgame perfect) Nash
equilibrium concept for extensive-form games. To summarize, logics for graph games
focus on the structural changes of the game board, while those extensive-form game logics
focus on logical analyses of game-theoretic concepts. In fact, graph games can also be
described using extensive-form games, where one can think of possible unfoldings at any
node of the game graph, and the nodes of the game tree correspond to sequences of play
through the possible graph structures during the course of the game.

Coming back to the perspective of models, the logics that we are talking about aim
to capture three mechanisms of model transformation, namely, those describing domain-
changes, relation-changes and valuations-changes in models and their combinations. In
this work, we concentrate on various extensions of basic modal logic with the new oper-
ator ⟨𝑢𝑝⟩, which we call MCML(𝑢𝑝), where ⟨𝑢𝑝⟩ reflects various mechanisms of model
transformation. In particular, we deal with the bisimulation / model comparison problems
of such model-changing logics. In model-theoretic studies of modal logics, the notion of
bisimulation plays a central role as formally, whenever a mathematical structure or a model
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is introduced, a notion of invariance of such models comes up by default. And, bisimula-
tion is the notion of model-invariance with respect to modal languages. Thus it comes up
quite naturally in a study featuring the landscape of model changing modal logics. In ad-
dition, from the viewpoint of the logics of game boards, this notion of bisimulation paves
the way for measuring equivalence of ‘game boards’ that is, the graphs, for the purposes of
playing the game. For example, a question to ponder upon while considering such notions
of game equivalence: What simplest graph in an equivalence class still shows the essential
structure of the game? Moreover, from the context of the underlying graph structure and
the dynamic nature of our study, one could also think studying novel invariance notions
of graoh dynamics, based on the different bisimulation notions described below. Last but
not the least, across all these viewpoints, the notion of bisimulation or model comparison
aids in the study of the expressive power of the corresponding modal languages.

In this work, we provide a uniform algorithmic study of the model comparison prob-
lem to shed some light on the complexity of these problems. For our purposes, we consider
the operators ⟨𝑠𝑏⟩ and ⟨𝑔𝑠𝑏⟩ (Areces et al., 2012; Aucher et al., 2018; Fervari, 2014; van
Benthem et al., 2022; Rohde, 2005) to model edge deletion in models, ⟨𝑏𝑟⟩ and ⟨𝑔𝑏𝑟⟩ (Fer-
vari, 2014) to model edge addition in models, and ⟨𝑠𝑤⟩ and ⟨𝑔𝑠𝑤⟩ (Areces et al., 2014,
2012; Fervari, 2014) to model arrow swap in models. In addition, we consider ⟨𝑑𝑒⟩ (van
Benthem, 2005) and ⟨𝑐ℎ⟩ (Thompson, 2020) for point deletion and valuation change in
models, respectively. Such a study provides insight into the complexity of the bisimula-
tion problems of these modal logics which have not been studied before.

We note here that there is a strand of literature exploring technical properties of these
logics. MCML(𝑔𝑠𝑏) was first introduced in (van Benthem, 2005), and complete proof
systems for MCML(𝑔𝑠𝑏) have been discussed in (Aucher et al., 2018; Fervari, 2014).
For the decidability and complexity questions, we have the following results (Löding and
Rohde, 2003b; Fervari, 2014; Löding and Rohde, 2003a; Thompson, 2020): (i) for ⟨𝑢𝑝⟩ ∈
{⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑐ℎ⟩}, the satisfiability problem for MCML(𝑢𝑝) is undecidable,
and (ii) for ⟨𝑢𝑝⟩ ∈ {⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑔𝑏𝑟⟩}, the model-checking problem for
MCML(𝑢𝑝) is PSPACE-complete. A result that is missing in this picture is the complexity
of bisimulation or the model comparison problem, which is worth exploring. From a
game-theoretic perspective, the notion of bisimulation not only helps us to understand the
expressive power of logics on game boards, but also measures the equivalence of games
(graphs) for the purposes of playing the game.
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We should mention here that the model comparison problem has been in the radar
of researchers for a long time. In addition to the development of verification algorithms
(Cleaveland et al., 1993; Garavel et al., 2013; Bunte et al., 2019), model comparison prob-
lem also holds fundamental importance in the field of concurrency theory and related areas
of computer science (Aceto et al., 2011; Hopcroft et al., 2001). It is well-known that decid-
ing bisimilarity over finite labelled transition systems is in deterministic polynomial time
(Paige and Tarjan, 1987; Balcázar et al., 1992; Kanellakis and Smolka, 1983). To the best
of our knowledge, complexity study of the bisimulation problems concerning these model-
changing logics is still open. Solving this problem will, on one hand, provide us with a
finer understanding of the practical applicabilities of these logics, and on the other hand,
provide us with better insights about their expressive powers. In this work, we provide
PSPACE upper bounds for the bisimulation problems for all the model-changing modal
logics described above. Our quest for the lower bounds for these problems did not deliver
any result at the current point, and we leave ‘finding lower bounds for these bisimulation
problems’ as open questions.

The rest of the chapter can be summarized as follows: In the following section, we
introduce the relevant logic frameworks together with their respective notions of bisimu-
lations. The next one gives us a detailed algorithmic study together with upper bounds of
the complexity of the relevant problems. The final section provides some further related
results and concludes the paper with a discussion on the lower bound.

5.2 A general framework

In this section, we first describe the various model-changing logics that we are going
to base our study on. We also recapitulate the corresponding notions of bisimulation. The
main focus will be on the logics describing relation updates where the domains remain
fixed. In addition, we will also look into domain updates as well as valuation updates. To
have a uniform description of these logics, we start with a general framework followed by
the specific ones.

5.2.1 A uniform language

Given a countable, infinite set of propositional variables Prop, The syntax of the
general model-changing modal logic MCML(𝑢𝑝) is given as follows:

𝜑 ∶ 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∧𝜑 ∣ ◊𝜑 ∣ ⟨𝑢𝑝⟩𝜓 ,
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where 𝑝 ∈ Prop, ⟨𝑢𝑝⟩ is a model-update modality. The dual [𝑢𝑝]𝜓 formula is defined as
usual: ¬⟨𝑢𝑝⟩¬𝜓 .

The models for MCML(𝑢𝑝) are given by usual relational modelsM = (𝑊 , 𝑅, 𝑉 ) for
modal logics, where, 𝑊 is a non-empty set, 𝑅 ⊆ 𝑊 × 𝑊 , and 𝑉 ∶ 𝑊 → 2Prop. A pair
(M, 𝑤), where 𝑤 ∈ 𝑊 is called a pointed model. Let 𝔐 denote the class of all pointed
models, and 𝑟𝑢𝑝 be a subset of 𝔐×𝔐 corresponding to the operator ⟨𝑢𝑝⟩. Given a pointed
model (M, 𝑤), the set {(M′, 𝑤′) ∣ ((M, 𝑤), (M′, 𝑤′)) ∈ 𝑟𝑢𝑝} collects all the updated
pointed models from (M, 𝑤) that we get with respect to the operator ⟨𝑢𝑝⟩. The truth
definition of the formulas of MCML(𝑢𝑝) in pointed models are as usual for the boolean
and the modal formulas, and for the operator ⟨𝑢𝑝⟩, it is given as follows:

- (M, 𝑤) ⊧ ⟨𝑢𝑝⟩𝜓 iff there is a pointed model (M′, 𝑤′) with ((M, 𝑤), (M′, 𝑤′)) ∈
𝑟𝑢𝑝 and (M′, 𝑤′) ⊧ 𝜓 .

With the syntax and semantics out of the way, we now focus on the following question
which forms the backbone of this work: when do two pointed models satisfy the same
formulas under the language MCML(𝑢𝑝)? The definition of the relevant bisimulation
concept, that is, ⟨𝑢𝑝⟩-bisimulation is given as follows.

LetM1 = (𝑊1, 𝑅1, 𝑉1) andM2 = (𝑊2, 𝑅2, 𝑉2) be two relational models. A non-
empty relation 𝑍 over a set of pointed models is an ⟨𝑢𝑝⟩-bisimulation between (M1, 𝑤1)
and (M2, 𝑤2), denoted by (M1, 𝑤1)𝑍(M2, 𝑤2), if the following conditions are satisfied:

(1). Atom: If (M1, 𝑤1)𝑍(M2, 𝑤2), then (M1, 𝑤1) ⊧ 𝑝 iff (M2, 𝑤2) ⊧ 𝑝 for all atomic
propositions 𝑝 ∈ Prop.

(2). Zig◊: If (M1, 𝑤1)𝑍(M2, 𝑤2), and there exists 𝑣1 ∈ 𝑊1 such that 𝑤1𝑅1𝑣1, then
there is a 𝑣2 ∈ 𝑊2 such that 𝑤2𝑅2𝑣2 and (M1, 𝑣1)𝑍(M2, 𝑣2).

(3). Zag◊: Same as above in the converse direction.
(4). Zig𝑢𝑝: If (M1, 𝑤1)𝑍(M2, 𝑤2), and there exists a pointed model (M′

1, 𝑢1) such
that ((M1, 𝑤1), (M′

1, 𝑢1)) ∈ 𝑟𝑢𝑝, then there exists a pointed model (M′
2, 𝑢2) such

that ((M2, 𝑤2), (M′
2, 𝑢2)) ∈ 𝑟𝑢𝑝 and (M′

1, 𝑢1)𝑍(M′
2, 𝑢2).

(5). Zag𝑢𝑝: Same as above in the converse direction.
Note that the definition above is given in a generalized way, we shall make changes

below according to the specific operators. Generally speaking, there are three cases.
• We do not need to make any adjustments, the definition may fit well for the operator
⟨𝑢𝑝⟩ under consideration.

• The dynamics of the models, that the operator ⟨𝑢𝑝⟩ reflects, may be quite compli-
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cated. Then, an abundant amount of information may be wrapped up in the respec-
tive definitions of 𝑟𝑢𝑝 that we shall process further with respect to the items (4)
and (5). For example, in the item (4), ‘((M1, 𝑤1), (M′

1, 𝑤′
1)) ∈ 𝑟𝑢𝑝’ may involve

complex formulas being satisfied at certain points, which shall be translated into
additional conditions for bisimulation. In such cases, we shall restate the items (4)
and (5) in the terms of the specific forms of the operator ⟨𝑢𝑝⟩.

• Alternatively, the operator ⟨𝑢𝑝⟩may not increase the expressivity of the logic, which
means that for any formula with ⟨𝑢𝑝⟩, there is an equivalent formula without it. In
such cases, items (4) and (5) become redundant, and we shall not consider them.

Thus, we treat the definition of bisimulation above in a broader perspective and many
specific instances will be taken up later where we will delve into the minute details. Based
on this definition, we can prove that bisimulation implies modal equivalence which we
claim formally in the following. For simplicity, if there is an ⟨𝑢𝑝⟩-bisimulation between
two pointed models (M1, 𝑤1) and (M2, 𝑤2), we call them ⟨𝑢𝑝⟩-bisimilar.
Proposition 5.1: If two pointed models (M1, 𝑤1) and (M2, 𝑤2) are ⟨𝑢𝑝⟩-bisimilar,
then they satisfy the same formulas of the logic MCML(𝑢𝑝).
Proof We can prove this by applying induction on the structure of formulas, and we only
focus on the formula of the form ⟨𝑢𝑝⟩𝜓 . Suppose that (M1, 𝑤1) ⊧ ⟨𝑢𝑝⟩𝜓 . Then there
is (M′

1, 𝑢1) such that ((M1, 𝑤1), (M′
1, 𝑢1)) ∈ 𝑟𝑢𝑝, and (M′

1, 𝑢1) ⊧ 𝜓 . According to the
definition of ⟨𝑢𝑝⟩-bisimulation, there exists (M′

2, 𝑢2) such that ((M2, 𝑤2), (M′
2, 𝑢2)) ∈

𝑟𝑢𝑝 and (M′
1, 𝑢1)𝑍(M′

2, 𝑢2). we have (M′
2, 𝑢2) ⊧ 𝜓 by I.H., it follows that (M2, 𝑤2) ⊧

⟨𝑢𝑝⟩𝜓 . ∎

5.2.2 On specific ones

We have proposed the language 𝑀𝐶𝑀𝐿(𝑢𝑝) for describing certain model-changing
logics in a uniform way and the corresponding notion of bisimulation. Next we will
demonstrate the specific notions of bisimulations with respect to the specific logics.

A number of model-changing operators have been proposed over the years which
are basically modelling different dynamic mechanisms. We now investigate some of
these modal operators characterizing basic mechanisms of model-changing. The oper-
ators ⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩ and ⟨𝑔𝑏𝑟⟩ are proposed to capture relation-changing
in models, while ⟨𝑑𝑒⟩ is proposed to characterize domain-changing in models (followed
by relation-changes), and ⟨𝑐ℎ⟩ for valuation-changing. We have chosen these opera-
tors as representatives for expressing the three different kinds of model-changing opera-
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tions: (i) domain-changing, (ii) relation-changing (with domain remaining fixed) and (iii)
valuation-changing (with domain and relation remaining fixed). The intuitive meaning of
these operators are as follows.

• ⟨𝑠𝑏⟩𝜓 can be read as ‘it is the case that 𝜓 , after we sabotage some arrow starting at
the present point’.

• ⟨𝑔𝑠𝑏⟩𝜓 can be read as ‘it is the case that 𝜓 , after we sabotage some arrow in the
model’.

• ⟨𝑠𝑤⟩𝜓 can be read as ‘it is the case that 𝜓 , after we swap some arrow starting at the
present point’.

• ⟨𝑔𝑠𝑤⟩𝜓 can be read as ‘it is the case that 𝜓 , after we swap some arrow in the model’.
• ⟨𝑏𝑟⟩𝜓 can be read as ‘it is the case that 𝜓 , after we add a new arrow at the present

point’.
• ⟨𝑔𝑏𝑟⟩𝜓 can be read as ‘it is the case that 𝜓 , after we add a new arrow in the model’.
• ⟨𝑑𝑒⟩𝜓 can be read as ‘it is the case that 𝜓 , after some point is deleted from the

model’.
• ⟨𝑐ℎ⟩𝜓 can be read as ‘it is the case that 𝜓 , after the valuation at the present point is

updated’.
All these operators have been studied extensively in the literature. The operators

⟨𝑠𝑏⟩, ⟨𝑏𝑟⟩ appear in (Areces et al., 2012; Fervari, 2014), ⟨𝑔𝑠𝑏⟩ appears in (Areces et al.,
2012; Aucher et al., 2018; Fervari, 2014; van Benthem et al., 2022; Rohde, 2005), ⟨𝑠𝑤⟩ ap-
pears in Areces et al. (2014, 2012); Fervari (2014), ⟨𝑔𝑠𝑤⟩, ⟨𝑔𝑏𝑟⟩ are proposed in (Fervari,
2014), ⟨𝑑𝑒⟩ occurs in (van Benthem, 2005) and ⟨𝑐ℎ⟩ is proposed in (Thompson, 2020)
(with◯ expressing the same). We now define the corresponding 𝑟𝑢𝑝s’.

LetM1 = (𝑊1, 𝑅1, 𝑉1) andM2 = (𝑊2, 𝑅2, 𝑉2) be two models with 𝑤 ∈ 𝑊1, 𝑣 ∈ 𝑊2.
We give the specific definitions of 𝑟𝑢𝑝, where ⟨𝑢𝑝⟩ can be the operators we mentioned
above. We have that ((M1, 𝑤), (M2, 𝑣)) ∈ 𝑟𝑢𝑝 if the following holds:

• ⟨𝑠𝑏⟩: 𝑊2 =𝑊1, (𝑤, 𝑣) ∈ 𝑅1, 𝑅2 = 𝑅1/{(𝑤, 𝑣)} and 𝑉2 = 𝑉1.
• ⟨𝑔𝑠𝑏⟩: 𝑊2 =𝑊1, 𝑅2 = 𝑅1/{(𝑤1, 𝑤2)} for some (𝑤1, 𝑤2) ∈ 𝑅1, 𝑉2 = 𝑉1 and 𝑤 = 𝑣.
• ⟨𝑠𝑤⟩: 𝑊2 =𝑊1, (𝑤, 𝑣) ∈ 𝑅1,𝑅2 = 𝑅1/{(𝑤, 𝑣)} ∪ {(𝑣, 𝑤)} and 𝑉2 = 𝑉1.
• ⟨𝑔𝑠𝑤⟩: 𝑊2 = 𝑊1, 𝑅2 = 𝑅1/{(𝑤1, 𝑤2)} ∪ {(𝑤2, 𝑤1)} for some (𝑤1, 𝑤2) ∈ 𝑅1,

𝑉2 = 𝑉1 and 𝑤 = 𝑣.
• ⟨𝑏𝑟⟩: 𝑊2 =𝑊1, (𝑤, 𝑣) ∉ 𝑅1, 𝑅2 = 𝑅1 ∪ {(𝑤, 𝑣)} and 𝑉2 = 𝑉1.
• ⟨𝑔𝑏𝑟⟩: 𝑊2 = 𝑊1, 𝑅2 = 𝑅1 ∪ {(𝑤1, 𝑤2)} for some (𝑤1, 𝑤2) ∉ 𝑅1, 𝑉2 = 𝑉1 and
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𝑤 = 𝑣.
• ⟨𝑑𝑒⟩: 𝑊2 =𝑊1/{𝑤1} for some 𝑤1 ≠ 𝑤 in 𝑊1, 𝑅2 = {(𝑢, 𝑣) ∈ 𝑅1 ∣ 𝑢 ≠ 𝑤1 𝑎𝑛𝑑 𝑣 ≠

𝑤1}, 𝑉2(𝑢) = 𝑉1(𝑢) for all 𝑢 ∈ 𝑊2 and 𝑤 = 𝑣.
• ⟨𝑐ℎ⟩: 𝑊2 =𝑊1, 𝑅2 = 𝑅1, 𝑉2(𝑤) = 𝐴 and 𝑉2(𝑢) = 𝑉1(𝑢) for 𝑢 ≠ 𝑤, where 𝐴 is a set

of proposition letters, and 𝑤 = 𝑣.
Intuitively, the truth conditions of the above operators can be displayed in Figure5.1–

5.8. For example, in Figure5.1, ⟨𝑠𝑏⟩𝜑 is true at (M1, 𝑤), if and only if there exists pointed
model (M2, 𝑣) with ((M1, 𝑤), (M2, 𝑣)) ∈ 𝑟𝑠𝑏 such that 𝜑 is true at (M2, 𝑣). It is worth
mentioning that when ⟨𝑢𝑝⟩ is ⟨𝑐ℎ⟩, we have a single item to replace the items 4 and 5 as
follows.
(⋆) (𝑊1, 𝑅1, 𝑉1, 𝑤1)𝑍(𝑊2, 𝑅2, 𝑉2, 𝑤2) implies (𝑊1, 𝑅1, 𝑉1

𝑤1
𝐴 , 𝑤1)𝑍(𝑊2, 𝑅2, 𝑉2

𝑤2
𝐴 , 𝑤2)

for every 𝐴 ⊆ Prop, where for 𝑖 = 1, 2, 𝑉𝑖
𝑤𝑖
𝐴 is almost 𝑉𝑖, except 𝑉𝑖

𝑤𝑖
𝐴 = 𝐴.

Figure 5.1 ⟨𝑠𝑏⟩𝜑 Figure 5.2 ⟨𝑔𝑠𝑏⟩𝜑

Figure 5.3 ⟨𝑠𝑤⟩𝜑 Figure 5.4 ⟨𝑔𝑠𝑤⟩𝜑

Figure 5.5 ⟨𝑏𝑟⟩𝜑 Figure 5.6 ⟨𝑔𝑏𝑟⟩𝜑
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Figure 5.7 ⟨𝑑𝑒⟩𝜑 Figure 5.8 ⟨𝑐ℎ⟩𝜑

Meanwhile, Proposition 5.1 still works when we unfold the definitions of ⟨𝑢𝑝⟩-
bisimulation for different operators.

For basic modal logic, we can use the notion of bisimulation to reduce equivalently a
given model to a smaller one. Moreover, given a finite model 𝑀 , we can find a minimal
model and it is bisimilar to the original model 𝑀 , i.e., the bisimulation contraction (van
Benthem, 2010). With these distinct notions of ⟨𝑢𝑝⟩-bisimulation above, do we have the
corresponding notions of ⟨𝑢𝑝⟩-bisimulation contraction? For finite models, the simple
answer is Yes.

Fix a finite pointed model (𝑀1, 𝑤1), we aim to find a minimal model 𝑀2, and a
world 𝑤2, such that (𝑀1, 𝑤1) is ⟨𝑢𝑝⟩-bisimilar to (𝑀2, 𝑤2), there is a straightforward
method to obtain such a result. The approach is to systematically test all models that are
smaller than 𝑀1 and check if they are ⟨𝑢𝑝⟩-bisimilar. The key to this method is to have
an algorithm that can determine whether two pointed models are ⟨𝑢𝑝⟩-bisimilar, and it is
desirable that the algorithm is efficient. Hence, we will investigate the complexity of the
following decision problem: given two relational models, are they ⟨𝑢𝑝⟩-bisimilar?

5.3 An algorithmic study

Let us now provide algorithms to check whether two pointed models are ⟨𝑢𝑝⟩-
bisimilar - we have eight distinct notions of bisimilarity based on different logics. Natural
questions would be as follows: Do we need to have eight distinct algorithms or can we
have a generalized one? How are these algorithms connected to each other? Can one be
reduced to the other? We will first provide a general algorithm to check for bisimulation
among models in all these logics and then move on to provide the same for the specific
ones for a better understanding of the inherent connections/differences between various
model-changing phenomena.
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5.3.1 The algorithm(s)

In what follows, we provide a general algorithm (Algorithm 5.1). We define a function
gen-Bisimilar that takes as input two pointed relational models, (M1, 𝑤1), (M2, 𝑤2)
and two lists 𝐿, 𝐿′ ⊆ 𝑊1 × 𝑊2, where M1 = (𝑊1, 𝑅1, 𝑉1) and M2 = (𝑊2, 𝑅2, 𝑉2),
and a state variable to specify the notion of bisimilarity that is to be checked. It outputs
‘Yes’ if the two models are bisimlar, in the notion specified, and the function is called
with 𝐿 = 𝐿′ = ∅. All the notions of bisimilarity that we considered have five conditions
to check. In the algorithm, we write a function to check these five conditions. Across
different notions, conditions (1) – (3) remain the same. Therefore the only difference in
the run of the algorithm for different notions comes in the implementation of conditions
(4) and (5). Now, one of the main problems that may come in implementation is when
the given models have cycles. We have to check the successors for the (gen) bisimilarity
too. This process may not terminate if the given model is pointed at a node that is part
of a cycle. We take care of this problem by maintaining a list of edges we have travelled.
We initialize the algorithm with this list being empty, and keep adding edges that we
have travelled before changing the models. We again make the list empty after the model
changing step.

Another way to think about writing this algorithm might be to use the existing algo-
rithm for modal bisimulation (which is a poly-time algorithm) and add on to it to take care
of the extra conditions. This type of approach does not directly work as it is not enough
to check the satisfaction of the extra conditions for the two bisimliar models. Take the
following example (cf. Figure 5.9). The models (M1, 𝑤1) and (M2, 𝑤2) are bisimilar in
the basic modal logic sense. Moreover, the pointed models (M1, 𝑤1) and (M2, 𝑤2) also
satisfy the (4) and (5) condition of the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity. But these models
are not ⟨𝑔𝑠𝑏⟩-bisimilar. To see this, assume on the contrary that (M1, 𝑤1) and (M2, 𝑤2)
are indeed ⟨𝑔𝑠𝑏⟩-bisimilar. Then, (M1, 𝑢1) and (M2, 𝑢2)must be ⟨𝑔𝑠𝑏⟩-bisimilar as well.
But if we delete 𝑒1 fromM1, there is no edge inM2 such that (M1, 𝑢1) and (M2, 𝑢2)
are even bisimilar.
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Figure 5.9 Counterexample for ⟨𝑔𝑠𝑏⟩-bisimilar

The Algorithm 5.1 takes input and passes the information, according to the value of
𝑠𝑡𝑎𝑡𝑒, to different algorithms for different checks. The first three conditions in the defini-
tion of ⟨𝑢𝑝⟩-bisimilarity remain the same, and hence Algorithms 5.4 and 5.14 are always
called. The fourth and fifth conditions change, and accordingly, different algorithms are
called.

Algorithm 5.1 Algorithm to check whether two models are bisimilar in some model
changing modal logic
Require: ((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝐿′, 𝑠𝑡𝑎𝑡𝑒

1: function GEN-BISIMILAR(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝐿′, 𝑠𝑡𝑎𝑡𝑒)
2: if (state = ⟨𝑔𝑠𝑏⟩-bisimilar OR ⟨𝑔𝑠𝑤⟩-bisimilar) then
3: if (checkEdges(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
4: return No
5: end if
6: end if
7: if (state = ⟨𝑑𝑒⟩-bisimilar OR ⟨𝑔𝑏𝑟⟩-bisimilar) then
8: if (checkNodes(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
9: return No

10: end if
11: end if
12: if (checkAtomicPropositionInCurrentWorlds((((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2),
13: 𝑤2)) = No) then
14: return No
15: end if
16: if (state = ⟨𝑠𝑏⟩-bisimilar) then
17: if (checkEdgeDeletion(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
18: return No
19: end if
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20: end if
21: if (state = ⟨𝑔𝑠𝑏⟩-bisimilar) then
22: if (checkGeneralizedEdgeDeletion(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2))

= No) then
23: return No
24: end if
25: end if
26: if (state = ⟨𝑠𝑤⟩-bisimilar) then
27: if (checkSwap(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿′) = No) then
28: return No
29: end if
30: end if
31: if (state = ⟨𝑔𝑠𝑤⟩-bisimilar) then
32: if (checkGeneralizedSwap(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿′) =

No) then
33: return No
34: end if
35: end if
36: if (state = ⟨𝑏𝑟⟩-bisimilar) then
37: if (checkBridge(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
38: return No
39: end if
40: end if
41: if (state = ⟨𝑔𝑏𝑟⟩-bisimilar) then
42: if (checkGeneralizedBridge(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No)

then
43: return No
44: end if
45: end if
46: if (state = ⟨𝑑𝑒⟩-bisimilar) then
47: if (checkNodeDeletion(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2)) = No) then
48: return No
49: end if
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50: end if
51: if (state = ⟨𝑐ℎ⟩-bisimilar) then
52: if (checkValuationChange(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿′) = No)

then
53: return No
54: end if
55: end if
56: if (checkSuccessors(((𝑊1, 𝑅1, 𝑉1), 𝑤1), ((𝑊2, 𝑅2, 𝑉2), 𝑤2), 𝐿, 𝑠𝑡𝑎𝑡𝑒) = No)

then
57: return No
58: end if
59: return Yes
60: end function

Now we will give a brief explanation of the different functions followed by
the functions themselves. The function checkEdges returns No if the input models do
not have equal number of edges. This check makes the proof in Section 5.3.2 a little easier.

Algorithm 5.2 checkEdges
1: if ∣𝑅1∣ ≠ ∣𝑅2∣ then
2: return No
3: end if
4: return Yes

The function checkNodes returns No if the input models do not have equal number
of nodes.

Algorithm 5.3 checkNodes
1: if ∣𝑊1∣ ≠ ∣𝑊2∣ then
2: return No
3: end if
4: return Yes

The function checkAtomicPropositionInCurrentWorlds returns No if the nodes at
which the input models are pointed, do not satisfy same set of atomic propositions. To
do this, the algorithm checks that 𝑤1 ∈ 𝑉1(𝑝) if and only if 𝑤2 ∈ 𝑉2(𝑝), for all atomic
propositions 𝑝.
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Algorithm 5.4 checkAtomicPropositionInCurrentWorlds
1: for atomic propositions 𝑝 do
2: if (((𝑤1 ∈ 𝑉1(𝑝))& (𝑤2 /∈ 𝑉2(𝑝))) OR ((𝑤1 /∈ 𝑉1(𝑝))& (𝑤2 ∈ 𝑉2(𝑝)))) then
3: return No
4: end if
5: end for
6: return Yes

The function checkEdgeDeletion returns No, if there is no pair of models related to
input models by relation 𝑟𝑠𝑏 that are ⟨𝑠𝑏⟩-bisimilar. To do this, the algorithm recursively
calls Algorithm 5.1 on new models after deleting one edge from each (pointing from
𝑤1). If all such instances of Algorithm 5.1 return No, then by recursion, there is no pair
of edges that can be deleted from given models that satisfies the conditions (4) and (5) in
⟨𝑠𝑏⟩-bisimilar definition.

Algorithm 5.5 checkEdgeDeletion
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: if (𝑤1, 𝑢1) ∈ 𝑅1 then
4: for 𝑢2 ∈ 𝑊2 do
5: if (𝑤2, 𝑢2) ∈ 𝑅2 then
6: if gen-Bisimilar(((𝑊1, 𝑅1/{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2/{(𝑤2, 𝑢2)},
7: 𝑉2), 𝑢2),∅,∅, ⟨𝑠𝑏⟩-bisimilar) = Yes then
8: Found++
9: break

10: end if
11: end if
12: end for
13: if Found = 0 then
14: return No
15: end if
16: end if
17: end for
18: for 𝑢2 ∈ 𝑊2 do
19: Found = 0;
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20: if (𝑤2, 𝑢2) ∈ 𝑅2 then
21: for 𝑢1 ∈ 𝑊1 do
22: if (𝑤2, 𝑢2) ∈ 𝑅2 then
23: if gen-Bisimilar(((𝑊1, 𝑅1/{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1), ((𝑊2, 𝑅2/{(𝑤2, 𝑢2)},
24: 𝑉2), 𝑢2),∅,∅, ⟨𝑠𝑏⟩-bisimilar) = Yes then
25: Found++
26: break
27: end if
28: end if
29: end for
30: if Found = 0 then
31: return No
32: end if
33: end if
34: end for
35: return Yes

The function checkGeneralizedEdgeDeletion returns No, if there is no pair of models
related to the input models by relation 𝑟𝑔𝑠𝑏 that are ⟨𝑔𝑠𝑏⟩-bisimilar. This algorithm works
very similar to the previous one with the only difference being as follows - instead of
deleting edges pointed from 𝑤1, it runs over all edges. This is in accordance with the
difference in definitions of ⟨𝑠𝑏⟩-bisimilarity and ⟨𝑔𝑠𝑏⟩-bisimilarity.

Algorithm 5.6 checkGeneralizedEdgeDeletion
1: for 𝑒1 ∈ 𝑅1 do
2: Found = 0
3: for 𝑒2 ∈ 𝑅2 do
4: if gen-Bisimilar(((𝑊1, 𝑅1/{𝑒1}, 𝑉1), 𝑤1),((𝑊2, 𝑅2/{𝑒2}, 𝑉2), 𝑤2),∅,∅,
⟨𝑔𝑠𝑏⟩-bisimilar) = Yes then

5: Found++
6: break
7: end if
8: end for
9: if Found = 0 then

10: return No
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11: end if
12: end for
13: for 𝑒2 ∈ 𝑅2 do
14: Found = 0
15: for 𝑒1 ∈ 𝑅1 do
16: if gen-Bisimilar(((𝑊1, 𝑅1/{𝑒1}, 𝑉1), 𝑤1), ((𝑊2, 𝑅2/{𝑒2}, 𝑉2), 𝑤2),∅,∅,
⟨𝑔𝑠𝑏⟩-bisimilar) = Yes then

17: Found++
18: break
19: end if
20: end for
21: if Found = 0 then
22: return No
23: end if
24: end for
25: return Yes

The function checkSwap returns No, if there is no pair of models related to the input
models by relation 𝑟𝑠𝑤 that are ⟨𝑠𝑤⟩-bisimilar. To do this, it runs over all the edges from
𝑤1 and 𝑤2, swaps their directions, and calls Algorithm 5.1 recursively.

Algorithm 5.7 checkSwap
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: if (𝑤1, 𝑢1)∈ 𝑅1/𝐿′ then
4: for 𝑢2 ∈ 𝑊2 do
5: if (𝑤2, 𝑢2)∈ 𝑅2/𝐿′ then
6: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢1, 𝑤1)}/{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2,
7: 𝑅2 ∪{(𝑢2, 𝑤2)}/{(𝑤2, 𝑢2)}, 𝑉2), 𝑢2), ∅, 𝐿′ ∪{(𝑤1, 𝑢1), (𝑤2, 𝑢2)}, ⟨𝑠𝑤⟩-bisimilar) =

Yes then
8: Found++
9: break

10: end if
11: end if
12: end for
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13: if Found = 0 then
14: return No
15: end if
16: end if
17: end for
18: for 𝑢2 ∈ 𝑊2 do
19: Found = 0
20: if (𝑤2, 𝑢2)∈ 𝑅2/𝐿′ then
21: for 𝑢1 ∈ 𝑊1 do
22: if (𝑤1, 𝑢1)∈ 𝑅1/𝐿′ then
23: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢1, 𝑤1)}/{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2,
24: 𝑅2 ∪{(𝑢2, 𝑤2)}/{(𝑤2, 𝑢2)}, 𝑉2), 𝑢2),∅, 𝐿′ ∪{(𝑤1, 𝑢1), (𝑤2, 𝑢2)}, ⟨𝑠𝑤⟩-bisimilar) =

Yes then
25: Found++
26: break
27: end if
28: end if
29: end for
30: if Found = 0 then
31: return No
32: end if
33: end if
34: end for
35: return Yes

The function checkGeneralizedSwap returns No, if there is no pair of models related
to the input models by relation 𝑟𝑔𝑠𝑤 that are ⟨𝑔𝑠𝑤⟩-bisimilar. Again, this is very sim-
ilar to the previous algorithm with the only difference being that it now runs over all edges.

Algorithm 5.8 checkGeneralizedSwap
1: for (𝑢1, 𝑢2) ∈ 𝑅1/𝐿′ do
2: Found = 0;
3: for (𝑣1, 𝑣2) ∈ 𝑅2/𝐿′ do
4: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢2, 𝑢1)}/{(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2 ∪
{(𝑣2, 𝑣1)}/{(𝑣1, 𝑣2)}, 𝑉2), 𝑤2),∅, 𝐿′ ∪ {(𝑢1, 𝑢2), (𝑣1, 𝑣2)}, ⟨𝑔𝑠𝑤⟩-bisimilar) = Yes
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then
5: Found++
6: break
7: end if
8: end for
9: if Found = 0 then

10: return No
11: end if
12: end for
13: for (𝑣1, 𝑣2) ∈ 𝑅2/𝐿′ do
14: Found = 0;
15: for (𝑢1, 𝑢2) ∈ 𝑅1/𝐿′ do
16: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢2, 𝑢1)}/{(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2 ∪
{(𝑣2, 𝑣1)}/{(𝑣1, 𝑣2)}, 𝑉2), 𝑤2),∅, 𝐿′ ∪ {(𝑢1, 𝑢2), (𝑣1, 𝑣2)}, ⟨𝑔𝑠𝑤⟩-bisimilar) = Yes
then

17: Found++
18: break
19: end if
20: end for
21: if Found = 0 then
22: return No
23: end if
24: end for
25: return Yes

The function checkBridge returns No, if there is no pair of models related to the input
models by relation 𝑟𝑏𝑟 that are ⟨𝑏𝑟⟩-bisimilar. To do this, the algorithm adds new edges
from 𝑤1 and 𝑤2 and calls Algorithm 5.1 recursively.

Algorithm 5.9 checkBridge
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: for 𝑢2 ∈ 𝑊2 do
4: if (((𝑤1, 𝑢1) /∈ 𝑅1) & ((𝑤2, 𝑢2) /∈ 𝑅2) then
5: if gen-Bisimilar(((𝑊1, 𝑅1 ∪{(𝑤1, 𝑢1)}, 𝑉1), 𝑢1), ((𝑊2, 𝑅2 ∪{(𝑤2, 𝑢2)},
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6: 𝑉2), 𝑢2),∅,∅, ⟨𝑏𝑟⟩-bisimilar) = Yes then
7: Found++
8: break
9: end if

10: end if
11: end for
12: if Found = 0 then
13: return No
14: end if
15: end for
16: for 𝑢2 ∈ 𝑊2 do
17: Found = 0
18: for 𝑢1 ∈ 𝑊1 do
19: if (((𝑤1, 𝑢1) /∈ 𝑅1) & ((𝑤2, 𝑢2) /∈ 𝑅2) then
20: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑤1, 𝑢1)}, 𝑉1), 𝑢1),((𝑊2, 𝑅2 ∪ {(𝑤2, 𝑢2)},
21: 𝑉2), 𝑢2),∅,∅, ⟨𝑏𝑟⟩-bisimilar) = Yes then
22: Found++
23: break
24: end if
25: end if
26: end for
27: if Found = 0 then
28: return No
29: end if
30: end for
31: return Yes

The function checkGeneralizedBridge returns No, if there is no pair of models related
to the input models by relation 𝑟𝑔𝑏𝑟 that are ⟨𝑔𝑏𝑟⟩-bisimilar. This algorithm adds one new
edge to both the models and calls Algorithm 5.1 recursively.

Algorithm 5.10 checkGeneralizedBridge
1: for (𝑢1, 𝑢2) ∈ 𝑊1 × 𝑊1 do
2: Found = 0
3: for (𝑣1, 𝑣2) ∈ 𝑊2 × 𝑊2 do
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4: if (((𝑢1, 𝑢2) /∈ 𝑅1) & ((𝑣1, 𝑣2) /∈ 𝑅2) then
5: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2 ∪ {(𝑣1, 𝑣2)},
6: 𝑉2), 𝑤2),∅,∅, ⟨𝑔𝑏𝑟⟩-bisimilar) = Yes then
7: Found++
8: break
9: end if

10: end if
11: end for
12: if Found = 0 then
13: return No
14: end if
15: end for
16: for (𝑣1, 𝑣2) ∈ 𝑊2 × 𝑊2 do
17: Found = 0
18: for (𝑢1, 𝑢2) ∈ 𝑊1 × 𝑊1 do
19: if (((𝑢1, 𝑢2) /∈ 𝑅1) & ((𝑣1, 𝑣2) /∈ 𝑅2) then
20: if gen-Bisimilar(((𝑊1, 𝑅1 ∪ {(𝑢1, 𝑢2)}, 𝑉1), 𝑤1),((𝑊2, 𝑅2 ∪ {(𝑣1, 𝑣2)},
21: 𝑉2), 𝑤2),∅,∅, ⟨𝑔𝑏𝑟⟩-bisimilar) = Yes then
22: Found++
23: break
24: end if
25: end if
26: end for
27: if Found = 0 then
28: return No
29: end if
30: end for
31: return Yes

The previous algorithms were the implementations of the model-changing step for
the six relation-changing logics that we have described. We now move on to implement
the model-changing step for domain-changing logic and valuation-changing logic. The
next algorithm is a precursor to the case of domain-changing logic. Specifically, it
computes the new model after a node has been deleted from it.
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Algorithm 5.11 algorithm to compute new relational model after point deletion
Require: ((𝑊 , 𝑅, 𝑉 ), 𝑤), 𝑢

1: function SUCCESSOR(((𝑊 , 𝑅, 𝑉 ), 𝑤), 𝑢)
2: 𝑊 ′ =𝑊 /{𝑢}
3: 𝑅′ = 𝑅/({(𝑢, 𝑣) ∈ 𝑊 ∣ 𝑣 ∈ 𝑅} ∪ {(𝑣, 𝑢) ∈ 𝑅 ∣ 𝑣 ∈ 𝑊 })
4: for 𝑝 ∈ Prop do
5: 𝑉 ′(𝑝) = 𝑉 (𝑝) ∩ 𝑊 ′

6: end for
7: return ((𝑊 ′, 𝑅′, 𝑉 ′), 𝑤)
8: end function

The function checkNodeDeletion returns No, if there is no pair of models related to
the input models by relation 𝑟𝑑𝑒 that are ⟨𝑑𝑒⟩-bisimilar. To do this, the algorithm makes a
recursive call to 𝑔𝑒𝑛-𝐵𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟 with new pair of models that have one node deleted in each.

Algorithm 5.12 checkNodeDeletion
1: for 𝑢1 ∈ 𝑊1 do
2: Found = 0
3: for 𝑢2 ∈ 𝑊2 do
4: if (𝑢1 ≠ 𝑤1) & (𝑢2 ≠ 𝑤2) then
5: if gen-Bisimilar((𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟((𝑊1, 𝑅1, 𝑉1), 𝑢1), 𝑤1),(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟((𝑊2,
6: 𝑅2, 𝑉2), 𝑢2), 𝑤2),∅,∅, ⟨𝑑𝑒⟩-bisimilar) = Yes then
7: Found++
8: break
9: end if

10: end if
11: end for
12: if Found = 0 & (𝑢1 ≠ 𝑤1) then
13: return No
14: end if
15: end for
16: for 𝑢2 ∈ 𝑊2 do
17: Found = 0
18: for 𝑢1 ∈ 𝑊1 do
19: if (𝑢1 ≠ 𝑤1) & (𝑢2 ≠ 𝑤2) then
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20: if gen-Bisimilar((𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟((𝑊1, 𝑅1, 𝑉1), 𝑢1), 𝑤1),(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟((𝑊2,
21: 𝑅2, 𝑉2), 𝑢2), 𝑤2),∅,∅, ⟨𝑑𝑒⟩-bisimilar) = Yes then
22: Found++
23: break
24: end if
25: end if
26: end for
27: if Found = 0 & (𝑢2 ≠ 𝑤2) then
28: return No
29: end if
30: end for
31: return Yes

The function checkValuationChange returns No, if there is no pair of models related
to the input models by relation 𝑟𝑐ℎ that are ⟨𝑐ℎ⟩-bisimilar. To do this, the function
changes valuation of the current node and then calls Algorithm 5.14 recursively.

Algorithm 5.13 checkValuationChange
1: if (𝑤1, 𝑤2) /∈ 𝐿′ then
2: for 𝐴 ⊂ P do
3: ̃𝑉1(𝑤1) = 𝐴
4: ̃𝑉2(𝑤2) = 𝐴
5: for 𝑤 ∈ 𝑊1/{𝑤1} do
6: ̃𝑉1(𝑤) = 𝑉1(𝑤)
7: end for
8: for 𝑤 ∈ 𝑊2/{𝑤2} do
9: ̃𝑉2(𝑤) = 𝑉2(𝑤)

10: end for
11: if gen-Bisimilar(((𝑊1, 𝑅1, ̃𝑉1), 𝑤1),((𝑊2, 𝑅2, ̃𝑉2), 𝑤2),∅, 𝐿′ ∪{(𝑤1, 𝑤2)},
12: ⟨𝑐ℎ⟩-bisimilar) = No then
13: return No
14: end if
15: end for
16: end if
17: return Yes
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The following algorithm checks for the existence of successors to the node, at which
the input models are pointed, for the specific bisimulation according to the state. Specifi-
cally, it checks if conditions (2) and (3) in the definition of ⟨𝑢𝑝⟩-bisimilarity are true. To
do this, it changes the node where the models are pointed to one of the successors of initial
nodes at which the models were pointed, and then makes a recursive call to 𝑔𝑒𝑛-𝐵𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.

Algorithm 5.14 checkSuccessors
1: if (𝑤1, 𝑤2) /∈ 𝐿 then
2: for 𝑢1 ∈ 𝑊1 do
3: Found = 0
4: for 𝑢2 ∈ 𝑊2 do
5: if ((𝑤1𝑅1𝑢1) & (𝑤2𝑅2𝑢2)) then
6: if ((𝑢1, 𝑢2) /∈ 𝐿) then
7: if gen-Bisimilar(((𝑊1, 𝑅1, 𝑉1), 𝑢1), ((𝑊2, 𝑅2, 𝑉2), 𝑢2), 𝐿 ∪
8: {(𝑤1, 𝑤2)},∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
9: Found++

10: end if
11: else
12: Found++
13: end if
14: end if
15: end for
16: if (Found = 0) & (𝑤1𝑅1𝑢1) then
17: return No
18: end if
19: end for
20: for 𝑢2 ∈ 𝑊2 do
21: Found = 0
22: for 𝑢1 ∈ 𝑊1 do
23: if ((𝑤1𝑅1𝑢1) & (𝑤2𝑅2𝑢2)) then
24: if ((𝑢1, 𝑢2) /∈ 𝐿) then
25: if gen-Bisimilar(((𝑊1, 𝑅1, 𝑉1), 𝑢1), ((𝑊2, 𝑅2, 𝑉2), 𝑢2), 𝐿 ∪
26: {(𝑤1, 𝑤2)},∅, 𝑠𝑡𝑎𝑡𝑒) = Yes then
27: Found++
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28: end if
29: else
30: Found++
31: end if
32: end if
33: end for
34: if (Found = 0) & (𝑤2𝑅2𝑢2) then
35: return No
36: end if
37: end for
38: end if
39: return Yes

With these algorithms out of the way, we are now ready to show the correctness of
these algorithms. We will show a couple of cases in all details. The rest follow similarly.

5.3.2 On ⟨𝑔𝑠𝑏⟩-bisimulation

We will now give a detailed proof that the algorithm works when 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. Before going into the main proof, we have the following lemma.

Lemma 5.1: If ((𝑊1, 𝑅1, 𝑉1), 𝑤1)↔𝑠((𝑊2, 𝑅2, 𝑉2), 𝑤2) and ∣𝑅1∣ and ∣𝑅2∣ are finite,
then ∣𝑅1∣ = ∣𝑅2∣.
Proof Suppose on the contrary, ∣𝑅1∣ ≠ ∣𝑅2∣. Without loss of generality, we assume ∣𝑅1∣ <
∣𝑅2∣, and prove by induction on 𝑛 = ∣𝑅1∣.
Base case: 𝑛 = 0. By assumption ∣𝑅1∣ = 0 and ∣𝑅2∣ > 0. So ∃𝑒 ∈ 𝑅2. Now,
since ((𝑊1, 𝑅1, 𝑉1), 𝑤1)↔𝑠((𝑊2, 𝑅2, 𝑉2), 𝑤2), they satisfy condition (5) of the defi-
nition of ⟨𝑔𝑠𝑏⟩−bisimilarity. Therefore, there must exist an edge 𝑓 ∈ 𝑅1 such that
((𝑊1, 𝑅1/{𝑓}, 𝑉1), 𝑤1)↔𝑠((𝑊2, 𝑅2/{𝑒}, 𝑉2), 𝑤2). But, since ∣𝑅1∣ = 0, no such 𝑓 can
exist. Contradiction.
Induction hypothesis: Suppose the claim holds good for 𝑛 ≤ 𝑘, 𝑖.𝑒., ∣𝑅1∣ = ∣𝑅2∣, when-
ever ∣𝑅1∣ ≤ 𝑘.
Induction step: 𝑛 = 𝑘 + 1 Suppose min(∣𝑅1∣, ∣𝑅2∣) = ∣𝑅1∣ = 𝑘 + 1. Let 𝑒1 ∈ 𝑅1

be any edge. Since, ((𝑊1, 𝑅1, 𝑉1), 𝑤1)↔𝑠((𝑊2, 𝑅2, 𝑉2), 𝑤2), they satisfy condition (4)
in the definition of ⟨𝑔𝑠𝑏⟩−bisimilarity, so ∃𝑒2 ∈ 𝑅2 such that ((𝑊1, 𝑅1/{𝑒1}, 𝑉1), 𝑤1)
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↔𝑠((𝑊2, 𝑅2/{𝑒2}, 𝑉2), 𝑤2). But then by induction hypothesis, we have ∣𝑅1/{𝑒1}∣ =
𝑅2/{𝑒2}∣ ⟹ ∣𝑅1∣ − 1 = ∣𝑅2∣ − 1 ⟹ ∣𝑅1∣ = ∣𝑅2∣ .
This completes the proof. ∎

We will now prove the main theorem below which basically shows the correctness of
the algorithm corresponding to the ⟨𝑔𝑠𝑏⟩-bisimulation.

Theorem 5.1: Given two models (M1, 𝑤1) and (M2, 𝑤2), whereM1 = (𝑊1, 𝑅1, 𝑉1),
M2 = (𝑊2, 𝑅2, 𝑉2), 𝑤1 ∈ 𝑊1 and 𝑤2 ∈ 𝑊2; (M1, 𝑤1)↔𝑠(M2, 𝑤2) iff the func-
tion gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2),∅,∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns yes. Here, by
(M1, 𝑤1)↔𝑠(M2, 𝑤2)we will denote that (M1, 𝑤1) and (M2, 𝑤2) are ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.
Proof SupposeM1 andM2 have different number of edges, then the function returns No
at line 2 in algorithm 2, and (M1, 𝑤1)↔𝑠(M2, 𝑤2). So, let us consider that both models
have equal number of edges (say n). We prove by induction on n:

> Base case: 𝑛 = 0.
To prove (M1, 𝑤1)↔𝑠(M2, 𝑤2) iff the function returns yes when 𝑅1 = ∅ = 𝑅2.
We will first prove, by contrapositivity, that if the function returns yes, then
(M1, 𝑤1)↔𝑠(M2, 𝑤2).

> > Suppose (M1, 𝑤1)↔𝑠(M2, 𝑤2). Then they violate one of the five conditions in
the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity (in Section 5.2.2).

> > > Suppose they violate condition (1). Then there is some atomic proposition 𝑝 such
that either (M1, 𝑤1) ⊧ 𝑝 and (M2, 𝑤2) /⊧ 𝑝; or (M1, 𝑤1) /⊧ 𝑝 and (M2, 𝑤2) ⊧ 𝑝.
From truth definitions, we have 𝑤1 ∈ 𝑉1(𝑝) but 𝑤2 /∈ 𝑉2(𝑝); or 𝑤1 /∈ 𝑉1(𝑝) but
𝑤2 ∈ 𝑉2(𝑝). In this case, the function returns No at line 3 in Algorithm 5.4.

> > > Suppose they violate condition (2). Then, there is a successor 𝑣1 of 𝑤1, i.e.
∃𝑣1 ∈ 𝑊1 such that 𝑤1𝑅1𝑣1, but ∀𝑣2 such that 𝑤2𝑅2𝑣2, we do not have
(M1, 𝑣1)↔𝑠(M2, 𝑣2). But since 𝑛 = 0, 𝑤1𝑅1𝑣1 does not hold for any 𝑣1 as 𝑅1 = ∅.
Therefore, condition (2) in the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity cannot be violated in
this case.

> > > Suppose that they violate condition (3). Again by similar argument as last point, we
can not have 𝑣2𝑅2𝑤2 and hence condition (3) can not be violated when 𝑛 = 0.

> > > Suppose they violate condition (4). Then there is an edge 𝑒1 ∈ 𝑅1 such that for any
edge 𝑒2 ∈ 𝑅2, it is not the case that (M1/{𝑒1}, 𝑤1)↔𝑠(M2/{𝑒2}, 𝑤2). But again
since 𝑛 = 0, 𝑅1 = ∅, hence no such 𝑒1 exists. So this case cannot arise.

> > > By similar argument as in previous point, the models cannot violate condition (5).
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> > Now we will prove the other side. Therefore, suppose that the function returns No,
Then one of the following cases occur:

> > > The function returns No at line number 3 in Algorithm 5.4. This can only happen
when the If condition at line 2 in Algorithm 5.4 is true. Therefore, there exists an
atomic proposition 𝑝 such that, 𝑤1 ∈ 𝑉1(𝑝) but 𝑤2 /∈ 𝑉2(𝑝); or 𝑤1 /∈ 𝑉1(𝑝) but
𝑤2 ∈ 𝑉2(𝑝). From truth definitions, we have either (M1, 𝑤1) ⊧ 𝑝 and (M2, 𝑤2) /⊧
𝑝; or (M1, 𝑤1) /⊧ 𝑝 and (M2, 𝑤2) ⊧ 𝑝. But then (M1, 𝑤1)↔𝑠(M2, 𝑤2) as they
violate condition (1) of the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity.

> > > The function returns No at line number 10 or 22 in Algorithm 5.6. But since 𝑅1 = ∅
and 𝑅2 = ∅, This can not happen as the function checkGeneralizedEdgeDeletion
will not execute any for loop.

> > > Suppose the function returns No from line 16 or 33 in Algorithm 5.14. Again, this
can not happen because 𝑤1 and 𝑤2 do not have any successors.
This completes both sides of the base case.

> Induction Hypothesis 1: Suppose the theorem holds for 𝑛 ≤ 𝑘. That
is, (M1, 𝑤1)↔𝑠(M2, 𝑤2) iff gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2),∅,∅, ⟨𝑔𝑠𝑏⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns yes when ∣𝑅1∣ = ∣𝑅2∣ ≤ 𝑘.

> Induction Step: Let 𝑛 = 𝑘 + 1
We will first prove that if (M1, 𝑤1)↔𝑠(M2, 𝑤2) then the function returns yes.
Again we will prove this by contrapositivity.

> > Suppose the function returns No in Algorithm 5.1. Then it executes one of the 4
return No statements, that are reachable when 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩ − 𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. But it can
not return No at line 2 in Algorithm 5.12, as we have assumed ∣𝑅1∣ = ∣𝑅2∣. So the
following cases can occur:

> > > The function returns No at line number 13 in Algorithm 5.1. This can only happen
when the If condition at line 12 in algorithm 5.1 is true. But then, by argument
similar to that in base case, (M1, 𝑤1)↔𝑠(M2, 𝑤2) as they violate condition (1) of
the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity.

> > > The function returns No at line number 22 in Algorithm 5.1. Then condi-
tion in line 21 is true. This happens if the function returns No at line 10
or 22. If the function returns No at line 10 in function checkGeneralized-
EdgeDeletion, there is an 𝑒1 ∈ 𝑅1 such that for all 𝑒2 ∈ 𝑅2, we have gen-
bisimilar((M1/{𝑒1}, 𝑤1), (M2/{𝑒2}, 𝑤2),∅,∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No. But
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the modelM′
1 = M1/{𝑒1} andM′

2 = M2/{𝑒2} have k edges. Therefore, by in-
duction hypothesis 1, (M1/{𝑒1}, 𝑤1)↔𝑠(M2/{𝑒2}, 𝑤2) for all 𝑒2 ∈ 𝑅2. This
is a violation to condition (4) in the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity. Therefore,
(M1, 𝑤1)↔𝑠(M2, 𝑤2). The case is similar if No is returned at line 22 in function
checkGeneralizedEdgeDeletion.

> > > The function returns No at line 56 in Algorithm 5.1. Then the condition(s) at line 15
or 32 in Algorithm 5.14 in the function checkSuccessors is true for some 𝑢1 ∈ 𝑊1

or 𝑢2 ∈ 𝑊2 respectively. Suppose the function returns No at line 16. Therefore, the
following cases arise (the following line numbers are in function checkSuccessors):

> > > > For a successor 𝑢1 of 𝑤1, condition at line 5 is false for all 𝑢2 ∈ 𝑊2, 𝑖.𝑒., 𝑤2𝑅2𝑢2

is not true for any 𝑢2 ∈ 𝑊2. This is a violation of condition (2) in the definition of
⟨𝑔𝑠𝑏⟩-bisimilarity and hence (M1, 𝑤1)↔𝑠(M2, 𝑤2)

> > > > Conditions at line 5 and 6 are true, but condition at line 7 is false, 𝑖.𝑒., ∃𝑢1 ∈ 𝑊1

such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2 and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and
(𝑤1, 𝑤2) /∈ 𝐿 because line 7 can be executed only if condition in line 1 is true); we
get gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿∪{(𝑤1, 𝑤2)},∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns
No.
To prove:(M1, 𝑤1)↔𝑠(M2, 𝑤2).
Proof by induction on 𝑚 = ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣

> > > > > Base case: ∣𝑊1 × 𝑊2∣ = ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣
We need to prove that if ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2

and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and (𝑤1, 𝑤2) /∈ 𝐿 because line 5 can be exe-
cuted only if the condition in line 1 is true) and ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣ =
0; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) re-
turns No, then (M1, 𝑤1)↔𝑠(M2, 𝑤2).
But since ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣ = 0, we have (𝑢1, 𝑢2) ∈ 𝐿 ∪ {(𝑤1, 𝑤2)}.
This is in contradiction with the condition in line 6 being true. So the antecedent is
false, and hence the base case is true vacuously.

> > > > > Induction Hypothesis 2: Suppose the claim holds for 𝑚 ≤ 𝑙, 𝑖.𝑒.,
Suppose whenever ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2

and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and (𝑤1, 𝑤2) /∈ 𝐿 because line 7 can be exe-
cuted only if the condition in line 1 is true) and ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣ ≤
𝑙; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) re-
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turns No, then (M1, 𝑤1)↔𝑠(M2, 𝑤2)
> > > > > Induction step: Suppose 𝑚 = 𝑙 + 1.

In this case, suppose the condition in line 6 is true, and the condition in line 7
is false. Therefore, we have ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that
𝑤2𝑅2𝑢2 and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and (𝑤1, 𝑤2) /∈ 𝐿 because line 6 can be
executed only if condition in line 1 is true) and ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣ =
𝑙 + 1; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟)
returns No. Now, gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑔𝑠𝑏⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) can return No either at one of 6 , reachable return No statements in
gen-bisimilar. If it returns No at first 4, then by above cases, we have already
proved that (M1, 𝑢1)↔𝑠(M2, 𝑢2) because they violate conditions (1) or (4) or
(5) in the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity. Suppose it returns No at line 56 in
gen-bisimilar, then the function checkSuccessors returns No at line 16 or 33. As-
sume it returns No at line 16. Then if condition at line 5 is always false, then
(M1, 𝑢1)↔𝑠(M2, 𝑢2) because they violate condition (2) of definition of ⟨𝑔𝑠𝑏⟩-
bisimilarity. So suppose condition at line 6 is true but at line 7 is false. There-
fore, ∃𝑣1 ∈ 𝑊1 such that 𝑢1𝑅1𝑣1 and ∀𝑣2 ∈ 𝑊2 such that 𝑢2𝑅2𝑣2, 𝐿 is such
that (𝑣1, 𝑣2) /∈ 𝐿 ∪ {(𝑤1, 𝑤2)}, we have gen-Bisimilar((M1, 𝑣1), (M2, 𝑣2), 𝐿 ∪
{(𝑤1, 𝑤2), (𝑢1, 𝑢2)},∅, ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No. Now by induction hypoth-
esis 2, (M1, 𝑣1)↔𝑠(M2, 𝑣2) which implies (M1, 𝑢1)↔𝑠(M2, 𝑢2) and hence
(M1, 𝑤1)↔𝑠(M2, 𝑤2).

> > > The function returns No at line 33 in Algorithm 5.14, then by argument similar to
last case, (M1, 𝑤1)↔𝑠(M2, 𝑤2). We will now prove the remaining side by con-
trapositivity.

> Suppose (M1, 𝑤1)↔𝑠(M2, 𝑤2). Then these models must violate one of the five
conditions in the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity.

> > Suppose they violate condition (1). There is some atomic proposition 𝑝 such that
either (M1, 𝑤1) ⊧ 𝑝 and (M2, 𝑤2) /⊧ 𝑝; or (M1, 𝑤1) /⊧ 𝑝 and (M2, 𝑤2) ⊧ 𝑝.
From truth definitions, we have 𝑤1 ∈ 𝑉1(𝑝) but 𝑤2 /∈ 𝑉2(𝑝); or 𝑤1 /∈ 𝑉1(𝑝) but
𝑤2 ∈ 𝑉2(𝑝). In this case the function returns No in line 13.

> > Suppose they violate condition (4). Then there is an edge 𝑒1 ∈ 𝑅1 such that for
any edge 𝑒2 ∈ 𝑅2, (M1/{𝑒1}, 𝑤1)↔𝑠(M2/{𝑒2}, 𝑤2). In this case for 𝑒1, condition
in line 4 in algorithm 6 is never true. By induction hypothesis 1, (M1/{𝑒1} and
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M2/{𝑒2} have k edges, hence we can use induction hypothesis). Therefore, return
No is executed in line 10 in function checkGeneralizedEdgeDeletion.

> > Suppose they violate condition (5), by a similar argument as the previous case, by
induction hypothesis, the function returns No.

> > Suppose they violate condition (2) and/ or (3). We prove if (M1, 𝑤1)↔𝑠(M2, 𝑤2)
because they violate condition (2) and/or (3), but not (1), (4) or (5) in the defi-
nition of ⟨𝑔𝑠𝑏⟩-bisimilarity, then gen-Bisimilar(((M1, 𝑤1), (M2, 𝑤2),∅,∅, ⟨𝑔𝑠𝑏⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No.
Since (M1, 𝑤1)↔𝑠(M2, 𝑤2) because they violate condition (2) and/or (3), there-
fore ∃𝑢11 ∈ 𝑊1, 𝑤1𝑅1𝑢11, such that ∀𝑢21 ∈ 𝑊2, 𝑤2𝑅2𝑢21, (M1, 𝑢11)↔𝑠(M2, 𝑢21)
(if condition (2) is violated); or ∃𝑢12 ∈ 𝑊2, 𝑤2𝑅2𝑢12, such that ∀𝑢11 ∈ 𝑊1,
𝑤1𝑅1𝑢11, (M1, 𝑢11)↔𝑠(M2, 𝑢21). Now if (M1, 𝑢11)↔𝑠(M2, 𝑢21) because they
violate conditions (1), (4) or (5), then by previous cases, the function returns
No, and we will be done. Let us pick a general such pair (𝑣11, 𝑣21). So, as-
sume (M1, 𝑣11)↔𝑠(M2, 𝑣21) because they violate condition(s) (2) and/or (3).
Therefore, again, ∃𝑢12 ∈ 𝑊1, 𝑣11𝑅1𝑢12, such that ∀𝑢22 ∈ 𝑊2, 𝑣12𝑅2𝑢22,
(M1, 𝑢12)↔𝑠(M2, 𝑢22) (if they violate (2)); or ∃𝑢22 ∈ 𝑊2, 𝑣12𝑅2𝑢22, such that
∀𝑢12 ∈ 𝑊1, 𝑣11𝑅1𝑢12, (M1, 𝑢12)↔𝑠(M2, 𝑢22) (if they violate condition (3). Again,
choose a general such pair (𝑣12, 𝑣22) from above such that 𝑣11𝑅1𝑣12 and 𝑣21𝑅2𝑣22

and (M1, 𝑣12)↔𝑠(M2, 𝑣22). Again, we are done if (M1, 𝑣12)↔𝑠(M2, 𝑣22) be-
cause they violate condition (1), (4) or (5). So, again, we can assume that they vio-
late condition (2) and /or (3). This can go on until we reach a leaf node, 𝑖.𝑒., there
is some 𝑘 such that exactly one of the following is true: 𝑣1𝑘𝑅1𝑣1(𝑘+1) for some
𝑣1(𝑘+1) ∈ 𝑊1 or 𝑣2𝑘𝑅2𝑣2(𝑘+1) for some 𝑣2(𝑘+1) ∈ 𝑊2. Again the function returns
No, from function checkGeneralizedEdgeDeletion in both cases. The only case that
remains is when there is no leaf nodes and there is some 𝑘 such that 𝑣1𝑘 = 𝑣1𝑙 or 𝑤1

and 𝑣2𝑘 = 𝑣2𝑙 or 𝑤2 for some 𝑙 < 𝑘. In this case, since 𝑣1𝑖 and 𝑣2𝑖 were some general
node in the reachable part from 𝑤1 and 𝑤2, such that they do not violate condition
(1), (4) or (5) in the definition of ⟨𝑔𝑠𝑏⟩-bisimilarity, we have the following:

> > > (M1, 𝑤1) and (M2, 𝑤2) satisfy conditions (1), (4) and (5) in the definition of ⟨𝑔𝑠𝑏⟩-
bisimilarity.

> > > For every n, ∃𝑣1 ∈ 𝑊1 such that 𝑤1𝑅𝑛
1𝑣1 iff ∃𝑣2 ∈ 𝑊2 such that 𝑤2𝑅𝑛

2𝑣2; and
(M1, 𝑣1) and (M2, 𝑣2) satisfy condition (1), (4) and (5) from the definition of
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⟨𝑔𝑠𝑏⟩-bisimilarity. But these conditions are same as the conditions in definition of
⟨𝑔𝑠𝑏⟩-bisimilarity. Hence, (M1, 𝑤1)↔𝑠(M2, 𝑤2) and the function does not return
No in this case.

This completes the proof. ∎

5.3.2.1 An example

In what follows, we present an example run of the algorithm for gen-Bisimilar for
𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. Proposition 𝑝 is true in all the worlds of both models. Figure
5.10 shows all the important nodes and calls to function checkGeneralizedEdgeDeletion.
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Figure 5.10 Recursive graph

In the above run of the algorithm, not all children of the root return ‘Yes’, and hence
the input models are not ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.

5.3.2.2 On complexity

We now show that the complexity of the ⟨𝑔𝑠𝑏⟩-bisimulation problem is in PSPACE.
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Theorem 5.2: Function gen-Bisimilar terminates and is in PSPACE for 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.
Proof We will form a recursion tree in Figure 5.11 to see whether the function gen-
Bisimilar terminates for 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟 and analyze the space complexity of the
function.
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Figure 5.11 A recursive tree

- When the input models have different number of edges, the algorithm terminates
without any recursion. The algorithm takes the space required in one instance of
the function. The function defines constant number of variables that need to be
accounted for in terms of space in addition to the input. So, an instance of the
function takes O(1) space.

- When the two models have same number of edges, algorithm checkGeneralized-
EdgeDeletion is called. The number of edges in the models for each successive call
to checkGeneralizedEdgeDeletion is strictly less than 𝑛 (namely, 𝑛 − 1). Another
algorithm that is called is checkSuccessors. In this algorithm, ∣𝐿∣ strictly increases.
Next it should be noted that the function call is not made if ∣𝐿∣ = ∣𝑊1 × 𝑊2∣. With
these observations, we can bound the depth of recursion tree by ∣𝑅1∣ × ∣𝑊1 × 𝑊2∣.
This shows that the algorithm terminates.

With the above observations, we see that the depth of the recursion tree is bounded by
∣𝑅1∣ × ∣𝑊1 × 𝑊2∣. Therefore, the space used by the algorithm is 𝑠 × ∣𝑅1∣ × ∣𝑊1 × 𝑊2∣,
where 𝑠 is the space used by one instance of the algorithm gen-Bisimilar. The algorithm
defines constant number of variables, which take space other than the input. So, once

133



CHAPTER 5 BISIMULATION IN MODEL-CHANGING MODAL LOGICS: AN ALGORITHMIC
STUDY

again, one instance of the function takesO(1) space. Therefore, space used by whole run
of Algorithm 5.1 is ∣𝑅1∣ × ∣𝑊1 × 𝑊2∣ which is a polynomial function in the size of the
input. ∎

5.3.3 On ⟨𝑑𝑒⟩-bisimulation

In what follows, we prove that the algorithm works when 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. The
other cases can be proved in a similar manner.
Theorem 5.3: Given two models (M1, 𝑤1) and (M2, 𝑤2), (M1, 𝑤1)↔𝑑(M2, 𝑤2)
iff the function gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2),∅,∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns yes.
Here, by (M1, 𝑤1)↔𝑑(M2, 𝑤2) we denote that (M1, 𝑤1) and (M2, 𝑤2) are ⟨𝑑𝑒⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.
Proof The proof is very similar to the correctness of Algorithm 5.1.
SupposeM1 andM2 have a different number of points, then the function returns No at
line 2 in Algorithm 5.3, and (M1, 𝑤1)↔𝑑(M2, 𝑤2). So, let us consider that both models
have an equal number of points (say 𝑛). We prove by induction on 𝑛:

> Base case: 𝑛 = 1.
To prove (M1, 𝑤1)↔𝑑(M2, 𝑤2) iff the function returns yes when ∣𝑊1∣ = ∣𝑊2∣ =
1. We will first prove, by contrapositivity, that if the function returns yes, then
(M1, 𝑤1)↔𝑑(M2, 𝑤2).

> > Suppose (M1, 𝑤1)↔𝑑(M2, 𝑤2). Then they violate one of the five conditions in
the definition of ⟨𝑑𝑒⟩-bisimilarity (in Section 5.2.1).

> > > Suppose they violate condition (1). Then there is some atomic proposition 𝑝 such
that either (M1, 𝑤1) ⊧ 𝑝 and (M2, 𝑤2) /⊧ 𝑝; or (M1, 𝑤1) /⊧ 𝑝 and (M2, 𝑤2) ⊧ 𝑝.
From truth definitions, we have 𝑤1 ∈ 𝑉1(𝑝) but 𝑤2 /∈ 𝑉2(𝑝); or 𝑤1 /∈ 𝑉1(𝑝) but
𝑤2 ∈ 𝑉2(𝑝). In this case, the function returns No in line 3 in Algorithm 5.4.

> > > Suppose they violate condition (2). Then, there is a successor 𝑣1 ∈ 𝑊1 such that
𝑤1𝑅1𝑣1, but ∀𝑣2 such that 𝑤2𝑅2𝑣2, we do not have (M1, 𝑣1)↔𝑑(M2, 𝑣2). But
since 𝑛 = 1, 𝑤1𝑅1𝑣1 ⟹ 𝑣1 = 𝑤1 as ∣𝑊1∣ = 1 and 𝑤2 has no success as ∣𝑊2∣ = 1.
In this case, the function returns No at line 16 in Algorithm 5.14.

> > > Suppose they violate condition (3), according to a similar argument as the last case,
the function returns No at line 33 in Algorithm 5.14.

> > > Suppose they violate condition (4). Then there is a point 𝑢1 ∈ 𝑊1 and 𝑢1 ≠
𝑤1 such that for any point 𝑢2 ∈ 𝑊2 and 𝑢2 ≠ 𝑤2, it is not the case that
(M1/{𝑢1}, 𝑤1)↔𝑑(M2/{𝑢2}, 𝑤2). But again s,ince 𝑛 = 1, 𝑢1 ≠ 𝑤1 and 𝑢2 ≠ 𝑤2
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can not hold, this case cannot happen.
> > > By a similar argument as in the previous case, the condition (5) cannot be violated.

> > Now we will prove the other side, again by contrapositivity. Suppose that the func-
tion returns No, Then one of the following cases occur:

> > > The function returns No at line number 3 in Algorithm 5.4. This can only happen
when the If condition at line 2 in Algorithm 5.4 is true. Therefore, there exists an
atomic proposition 𝑝 such that, 𝑤1 ∈ 𝑉1(𝑝) but 𝑤2 /∈ 𝑉2(𝑝); or 𝑤1 /∈ 𝑉1(𝑝) but
𝑤2 ∈ 𝑉2(𝑝). From truth definitions, we have either (M1, 𝑤1) ⊧ 𝑝 and (M2, 𝑤2) /⊧
𝑝; or (M1, 𝑤1) /⊧ 𝑝 and (M2, 𝑤2) ⊧ 𝑝. But then (M1, 𝑤1)↔𝑑(M2, 𝑤2) as they
violate condition (1) of the definition of ⟨𝑑𝑒⟩-bisimilarity.

> > > The function returns No at line number 12 in Algorithm 5.12. This can only happen
if the condition at line 11 in Algorithm 5.12 is true. But since ∣𝑊1∣ = 1, 𝑢1 ≠ 𝑤1

cannot hold. Hence this case cannot happen.
> > > The function returns No at line number 26 in Algorithm 5.12. By a similar argument

as the previous case, since ∣𝑊2∣ = 1, 𝑢2 ≠ 𝑤2 can not hold at line 25 in Algorithm
5.12. Hence this case cannot happen.

> > > Suppose the function returns No at line 16 in Algorithm 5.14. Then the condition
at line 15 is true, i.e., Found = 0 and 𝑤1𝑅1𝑢1. Since ∣𝑊1∣ = 1, there are several
possibilities.

– (𝑤1, 𝑤1) ∈ 𝑅1 and (𝑤2, 𝑤2) ∉ 𝑅2, which violates condition (3) of the defi-
nition of ⟨𝑑𝑒⟩-bisimilarity, hence (M1, 𝑤1)↔𝑑(M2, 𝑤2).

– (𝑤1, 𝑤1) ∈ 𝑅1, (𝑤2, 𝑤2) ∈ 𝑅2, (𝑤1, 𝑤2) ∉ 𝐿 and gen-Bisimilar((M1, 𝑤1),
(M2, 𝑤2), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑑𝑒⟩-bisimilar) =No. Then it may happen in
the following cases.

∗ Algorithm 5.1 returns No at line 13, this case violates condition (1) of the
definition of ⟨𝑑𝑒⟩-bisimilarity, hence (M1, 𝑤1)↔𝑑(M2, 𝑤2).

∗ Algorithm 5.1 returns No at line 47, which means Algorithm 5.12 returns
No. But in Algorithm 5.12, the condition 𝑤1 ≠ 𝑤1 cannot hold at line 11,
and the condition 𝑤2 ≠ 𝑤2 cannot hold at line 25. Thus this case cannot
happen.

∗ Algorithm 5.1 returns No at line 56, which means Algorithm 5.14 returns
No. But in Algorithm 5.14, the condition (𝑤1, 𝑤2) ∈ 𝐿 ∪ {(𝑤1, 𝑤2)}
cannot hold at line 1, which means this case cannot happen.
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> > > Suppose the function returns No at line 33 in Algorithm 5.14. By a similar argument
as the previous case, (M1, 𝑤1)↔𝑑(M2, 𝑤2). This completes both sides of the base
case.

> Induction Hypothesis: Suppose the theorem holds for 𝑛 ≤ 𝑘, which
means (M1, 𝑤1)↔𝑑(M2, 𝑤2) iff gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2),∅,∅,⟨𝑑𝑒⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns yes when ∣𝑊1∣ = ∣𝑊2∣ ≤ 𝑘.

> Induction Step: Let 𝑛 = 𝑘 + 1
We will first prove that if (M1, 𝑤1)↔𝑑(M2, 𝑤2) then the function returns yes.
Again we will prove this by contrapositivity.

> > Suppose the function returns No. Then it executes one of the 6 return No statements.
But it can not return No at line 9, as we have assumed ∣𝑊1∣ = ∣𝑊2∣. So the following
cases can occur:

> > > The function returns No at line number 13. This can only happen when the If con-
dition at line 2 in Algorithm 5.4 is true. But then, by an argument similar to that in
the base case, (M1, 𝑤1)↔𝑑(M2, 𝑤2) as they violate condition (1) of the definition
of ⟨𝑑𝑒⟩-bisimilarity.

> > > The function returns No at line 12 in Algorithm 5.12. Then the condition at line
11 in Algorithm 5.12 is true. Therefore, there is some 𝑢1 ∈ 𝑊1 and 𝑢1 ≠ 𝑤1 such
that for all 𝑢2 ∈ 𝑊2 and 𝑢2 ≠ 𝑤2, and the condition in line 5 is false, 𝑖.𝑒. there
is an 𝑢1 ∈ 𝑊1 and 𝑢1 ≠ 𝑤1 such that for all 𝑢2 ∈ 𝑊2 and 𝑢2 ≠ 𝑤2, and we have
gen-Bisimilar((M1/{𝑢1}, 𝑤1), (M2/{𝑢2}, 𝑤2),∅,∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No.
But the model M′

1 = M1/{𝑢1} and M′
2 = M2/{𝑢2} have k points. Therefore,

by induction hypothesis, (M1/{𝑢1}, 𝑤1)↔𝑑(M2/{𝑢2}, 𝑤2) for all 𝑢2 ∈ 𝑊2 and
𝑢2 ≠ 𝑤2. This is a violation to condition (4) in the definition of ⟨𝑑𝑒⟩-bisimilarity.
Therefore, (M1, 𝑤1)↔𝑑(M2, 𝑤2).

> > > The function returns No at line 26 in Algorithm 5.12. By a similar argument as
in the previous case, this leads to a violation of condition (5) in the definition of
L𝑑𝑒⟩-bisimilarity. Hence, (M1, 𝑤1)↔𝑑(M2, 𝑤2).

> > > The function returns No at line 16 in Algorithm 5.14. Then the condition at line 15
in Algorithm 5.14 is true for some 𝑢1 ∈ 𝑊1 with 𝑤1𝑅1𝑢1. Therefore, the following
cases arise:

> > > > The condition at line 5 in Algorithm 5.14 is false, i.e., for all 𝑢2 ∈ 𝑊2, 𝑤2𝑅2𝑢2

is false for any 𝑢2 ∈ 𝑊2. This is a violation of condition (2) in the definition of
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⟨𝑑𝑒⟩-bisimilarity and hence (M1, 𝑤1)↔𝑑(M2, 𝑤2).
> > > > The condition at line 5 in Algorithm 5.14 is true, but the condition at line 7 in Al-

gorithm 5.14 is false, i.e., ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2

and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and (𝑤1, 𝑤2) /∈ 𝐿 because line 6 can be executed
only if condition in line 1 is true); we get gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2)), 𝐿 ∪
{(𝑤1, 𝑤2)},∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No.
To prove:(M1, 𝑤1)↔𝑑(M2, 𝑤2).
Proof by induction on 𝑚 = ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣

> > > > > Base case: ∣𝑊1 × 𝑊2∣ = ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣
We need to prove that if ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑊2 such that 𝑤2𝑅2𝑢2

and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and (𝑤1, 𝑤2) /∈ 𝐿 because line 6 can be ex-
ecuted only if the condition in line 26 is true), ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣ =
0 and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2)), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) re-
turns No, then (M1, 𝑤1)↔𝑑(M2, 𝑤2). But since ∣𝑊1 ×𝑊2∣− ∣𝐿∪{(𝑤1, 𝑤2)}∣ = 0,
we have (𝑢1, 𝑢2) ∈ 𝐿 ∪ {(𝑤1, 𝑤2)}. we notice that (𝑢1, 𝑢2) /∈ 𝐿 for all 𝑢2 ∈ 𝑊2

with 𝑤2𝑅2𝑢2, then we have (𝑢1, 𝑢2) = (𝑤1, 𝑤2) for all 𝑢2 ∈ 𝑊2 with 𝑤2𝑅2𝑢2.
Thus, 𝑢1 = 𝑤1, 𝑢2 = 𝑤2 and 𝑤2 has only one successor, i.e., 𝑤2. It follows that
gen-Bisimilar((M1, 𝑤1), (M2, 𝑤2)), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns
No, there are several possibilities.

– Algorithm 5.1 returns No at line 13, this case violates condition (1) of the
definition of ⟨𝑑𝑒⟩-bisimilarity, hence (M1, 𝑤1)↔𝑑(M2, 𝑤2).

– Algorithm 5.1 returns No at line 47, which means Algorithm 5.12 returns
No. Then in Algorithm 5.12, the condition at line 11 or 25 is false, which by
inductive hypothesis implies (M1, 𝑤1)↔𝑑(M2, 𝑤2) due to the violation of
condition (4) or (5) in the definition of ⟨𝑑𝑒⟩-bisimilarity.

– Algorithm 5.1 returns No at line 56, which means Algorithm 5.14 returns No.
But in Algorithm 5.14, the condition (𝑤1, 𝑤2) ∈ 𝐿 ∪{(𝑤1, 𝑤2)} cannot hold
at line 1, which means this case cannot happen.

> > > > > Induction Hypothesis: Suppose the claim holds for 𝑚 ≤ 𝑙, 𝑖.𝑒.,
Suppose whenever ∃𝑢1 ∈ 𝑊1 such that 𝑤1𝑅1𝑢1, ∀𝑢2 ∈ 𝑅2 such that 𝑤2𝑅2𝑢2

and 𝐿 is such that (𝑢1, 𝑢2) /∈ 𝐿 (and (𝑤1, 𝑤2) /∈ 𝐿 because line 6 can be exe-
cuted only if the condition in line 1 is true) and ∣𝑊1 × 𝑊2∣ − ∣𝐿 ∪ {(𝑤1, 𝑤2)}∣ ≤
𝑙; and gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2)), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) re-
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turns No, then (M1, 𝑤1)↔𝑑(M2, 𝑤2).
> > > > > Induction step: Suppose 𝑚 = 𝑙 + 1.

Since we have that gen-Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿 ∪ {(𝑤1, 𝑤2)},∅, ⟨𝑑𝑒⟩-
𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No. After checking Algorithm 5.1, it returns No either at one
of 4 return No statements in Algorithm 5.1. If it returns No at lines 9, 13, and 47
then by the above cases, we have already proved that (M1, 𝑢1)↔𝑑(M2, 𝑢2) because
they violate the previous lemma, condition (1), condition (4) or (5) in the definition
of ⟨𝑑𝑒⟩-bisimilarity respectively.
Suppose it returns No at line 56 in Algorithm 5.1, then Algorithm 5.14 returns No
at line 16 or 33. We show the proof for the first case since the latter case can be dealt
with in a similar way. Since Algorithm 5.14 returns No at line 16, then the condition
at line 15 is true, i.e., Found = 0 and 𝑢1𝑅1𝑣1 for some 𝑣1 ∈ 𝑊1. Since Found = 0,
we have two cases in Algorithm 5.14. The first case is that the condition at line 5 is
always false, which implies 𝑢2 has no success, then (M1, 𝑢1)↔𝑑(M2, 𝑢2) because
they violate condition (2) of the definition of ⟨𝑑𝑒⟩-bisimilarity. The second case is
that the condition at line 5 is true but at line 7 is false. Therefore, ∃𝑣1 ∈ 𝑊1 such that
𝑢1𝑅1𝑣1 and ∀𝑣2 ∈ 𝑊2 such that 𝑢2𝑅2𝑣2, 𝐿 is such that (𝑣1, 𝑣2) /∈ 𝐿 ∪ {(𝑤1, 𝑤2)}
(also (𝑢1, 𝑢2) /∈ 𝐿 ∪{(𝑤1, 𝑤2)} because condition at line 1 has to be true), we have
gen-Bisimilar((M1, 𝑣1), (M2, 𝑣2)), 𝐿 ∪ {(𝑤1, 𝑤2), (𝑢1, 𝑢2)},∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟)
returns No. Now by induction hypothesis, (M1, 𝑣1)↔𝑑(M2, 𝑣2) which implies
(M1, 𝑢1)↔𝑑(M2, 𝑢2) and hence (M1, 𝑤1)↔𝑑(M2, 𝑤2).

> > > The function returns No at line 33 in Algorithm 5.14, then by an argument similar
to the last case, (M1, 𝑤1)↔𝑑(M2, 𝑤2).

> We will now prove the remaining side, i.e., when 𝑛 = 𝑘+1, the function returns Yes,
then (M1, 𝑤1)↔𝑑(M2, 𝑤2).

> Suppose (M1, 𝑤1)↔𝑑(M2, 𝑤2). Then these models must violate one of the five
conditions in the definition of ⟨𝑑𝑒⟩-bisimilarity.

> > Suppose they violate condition (1). There is some atomic proposition 𝑝 such that
either (M1, 𝑤1) ⊧ 𝑝 and (M2, 𝑤2) /⊧ 𝑝; or (M1, 𝑤1) /⊧ 𝑝 and (M2, 𝑤2) ⊧ 𝑝. From
the truth definitions, we have 𝑤1 ∈ 𝑉1(𝑝) but 𝑤2 /∈ 𝑉2(𝑝); or 𝑤1 /∈ 𝑉1(𝑝) but
𝑤2 ∈ 𝑉2(𝑝). In this case, the function returns No at line 13 in Algorithm 5.1.

> > Suppose they violate condition (4). Then there is a point 𝑢1 ∈ 𝑊1 and 𝑢1 ≠ 𝑤1 such
that for any point 𝑢2 ∈ 𝑊2 and 𝑢2 ≠ 𝑤2, (M1/{𝑢1}, 𝑤1)↔𝑑(M2/{𝑢2}, 𝑤2). In this
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case for 𝑢1, the condition at line 5 is never true by induction hypothesis (M1/{𝑢1}
and M2/{𝑢2} have k edges, hence we can use induction hypothesis). Therefore,
return No is executed in line 47 in Algorithm 5.1.

> > Suppose they violate condition (5), by a similar argument as the previous case, by
the induction hypothesis, the function returns No in line 47 in Algorithm 5.1.

> > Suppose they violate condition(s) (2) and/or (3). We need to prove if
(M1, 𝑤1)↔𝑑(M2, 𝑤2) because they violate condition (2) and/or (3), but not
(1) or (4)(5) in the definition of ⟨𝑑𝑒⟩-bisimilarity, then we have that gen-
Bisimilar((M1, 𝑢1), (M2, 𝑢2), 𝐿,∅, ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟) returns No, for 𝐿 = ∅.
Since (M1, 𝑤1)↔𝑑(M2, 𝑤2) because they violate condition (2) and/or (3), there-
fore ∃𝑢11 ∈ 𝑊1, 𝑤1𝑅1𝑢11, such that ∀𝑢21 ∈ 𝑊2, 𝑤2𝑅2𝑢21, (M1, 𝑢11)↔𝑑(M2, 𝑢21)
(if condition (2) is violated); or ∃𝑢12 ∈ 𝑊2, 𝑤2𝑅2𝑢12, such that ∀𝑢11 ∈ 𝑊1,
𝑤1𝑅1𝑢11, (M1, 𝑢11)↔𝑑(M2, 𝑢21). Now if (M1, 𝑢11)↔𝑑(M2, 𝑢21) because they
violate conditions (1) or (4) (5), then by previous cases, the function returns No at
line 13 or 47 respectively, and we will be done. Let us pick a general such pair
(𝑣11, 𝑣21). So, assume (M1, 𝑣11)↔𝑑(M2, 𝑣21) because they violate condition(s)
(2) and/or (3). Therefore, again, ∃𝑢12 ∈ 𝑊1 with 𝑣11𝑅1𝑢12, such that ∀𝑢22 ∈ 𝑊2

with 𝑣12𝑅2𝑢22 ∶ (M1, 𝑢12)↔𝑑(M2, 𝑢22) (if they violate (2)); or ∃𝑢22 ∈ 𝑊2 with
𝑣12𝑅2𝑢22, such that ∀𝑢12 ∈ 𝑊1 with 𝑣11𝑅1𝑢12 ∶ (M1, 𝑢12)↔𝑑(M2, 𝑢22) (if they vi-
olate condition (3)). Again, choose a general such pair (𝑣12, 𝑣22) from above such
that 𝑣11𝑅1𝑣12 and 𝑣21𝑅2𝑣22 and (M1, 𝑣12)↔𝑑(M2, 𝑣22). Again, we are done if
(M1, 𝑣12)↔𝑑(M2, 𝑣22) because they violate condition (1), (4) or (5). So, again,
we can assume that they violate condition(s) (2) and /or (3). This can go on until
we reach a leaf node, i.e., there is some 𝑘 such that exactly one of the following is
true: 𝑣1𝑘𝑅1𝑣1𝑘+1 for some 𝑣1𝑘+1 ∈ 𝑊1 or 𝑣2𝑘𝑅2𝑣2𝑘+1 for some 𝑣2𝑘+1 ∈ 𝑊2. Again
the function returns No in both cases. The only case that remains is when there is
no leaf nodes and there is some 𝑘 such that 𝑣1𝑘 = 𝑣1𝑙 or 𝑤1 and 𝑣2𝑘 = 𝑣2𝑙 or 𝑤2 for
some 𝑙 < 𝑘. In this case, since 𝑣1𝑖 and 𝑣2𝑖 were some general node in the reachable
part from 𝑤1 and 𝑤2, such that they do not violate condition (1), (4) or (5) in the
definition of ⟨𝑑𝑒⟩-bisimilarity, we have the following:

> > > (M1, 𝑤1) and (M2, 𝑤2) satisfy conditions (1), (4) and (5) in the definition of ⟨𝑑𝑒⟩-
bisimilarity.

> > > For every n, ∃𝑣1 ∈ 𝑊1 such that 𝑤1𝑅𝑛
1𝑣1 iff ∃𝑣2 ∈ 𝑊2 such that 𝑤2𝑅𝑛

2𝑣2; and

139



CHAPTER 5 BISIMULATION IN MODEL-CHANGING MODAL LOGICS: AN ALGORITHMIC
STUDY

(M1, 𝑣1) and (M2, 𝑣2) satisfy condition (1), (4) and (5) from the definition of ⟨𝑑𝑒⟩-
bisimilarity. But these conditions are the same as the conditions in the definition of
⟨𝑑𝑒⟩-bisimilarity. Hence, (M1, 𝑤1)↔𝑑(M2, 𝑤2) and the function does not return
No in this case.

This completes the proof. ∎
As we showed in the case of ⟨𝑔𝑠𝑏⟩-bisimulation, we can show that the function gen-

Bisimilar terminates and is in PSPACE for 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑑𝑒⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟.

5.3.4 Bisimulation for other states

The main difference in the run of Algorithm 5.1, based on the different values of 𝑠𝑡𝑎𝑡𝑒,
is that it calls different functions, namely, checkEdgeDeletion in case of ⟨𝑠𝑏⟩-bisimilar,
checkNodeDeletion in case of ⟨𝑑𝑒⟩-bisimilar, and so on. These functions check the anal-
ogous conditions (4) and (5) for different notions of bisimilarity (for ⟨𝑐ℎ⟩-bisimilar, the
function checks condition (⋆) rather than conditions (4) and (5)). The rest of the algorithm
remains the same. Therefore the correctness proofs for other notions of bisimilarity are
very similar to that of the case of 𝑠𝑡𝑎𝑡𝑒 = ⟨𝑔𝑠𝑏⟩-𝑏𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟. Thus, the complexity for all
bisimilarity problems remains to be in PSPACE. So, we have the following main theorem
of this work.

Theorem 5.4: Given two pointed relational models, (M1, 𝑤1) and (M2, 𝑤2), the
problem of deciding whether they are ⟨𝑢𝑝⟩-bisimilar is in PSPACE when ⟨𝑢𝑝⟩ ∈
{⟨𝑠𝑏⟩, ⟨𝑔𝑠𝑏⟩, ⟨𝑠𝑤⟩, ⟨𝑔𝑠𝑤⟩, ⟨𝑏𝑟⟩, ⟨𝑔𝑏𝑟⟩, ⟨𝑑𝑒⟩, ⟨𝑐ℎ⟩}.

5.4 Further remarks

In this work, we have presented several existing modal logics concerned with the
model changing phenomena and studied the notion of model comparison or bisimulation
for these logics from the algorithmic point of view. In the process, we have also shed
some light on the complexity of these problems. However, we have only been able to show
upper bound results, and not any lower bound result. We now provide some discussions
on the lower bounds of these complexity problems, which are the natural next questions
to answer. Of course, results on tight bounds will complete this whole study.

Before going there, let us first note that the complexity for checking whether given
two pointed models are bisimilar, in basic modal logic, is known to be in polynomial
time (Paige and Tarjan, 1987). What exactly makes the problem of ⟨𝑢𝑝⟩-bisimilarity more
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complex (strictly more complex if PTIME is different than PSPACE)? The additional
conditions (4) and (5) in the definition of ⟨𝑢𝑝⟩-bisimilarity, compared to that of basic
modal logic bisimilarity, requires a function that assigns a sequence of model-changing
actions corresponding to one model to a sequence of model-changing actions in the other
model. Formally, it requires a bijection 𝑓 ∶𝑁(𝐶1)→𝑁(𝐶2) with 𝑁(𝐶) denoting the set
of sequences of actions corresponding to the model-changing operator 𝐶 . The function
𝑓 should additionally satisfy the condition that any sequence of length 𝑛 is mapped to a
sequence of length 𝑛, for every 𝑛 in ℕ. If ∣𝐶1∣ = ∣𝐶2∣ = 𝑚, then there are 2𝑚2𝑚

such functions.
Given such a function, we need to check whether it satisfies the corresponding conditions
for ⟨𝑢𝑝⟩-bisimilarity on top of the models being bisimilar in the sense of basic modal logic.
These conditions are what make this problem of ⟨𝑢𝑝⟩-bisimilarity more complex. If we can
show that every such function that satisfies the conditions for ⟨𝑢𝑝⟩-bisimilarity is generated
by a function 𝑔 ∶ 𝐶1 → 𝐶2, then we believe that the complexity of ⟨𝑢𝑝⟩-bisimilarity drops
to the class NP. To draw an analogy, deciding whether given two graphs are isomorphic is
in NP, but finding the isomorphism mapping may be more complex. This is equivalent to
saying that given a small (with a number of elements bounded by a polynomial in the size
of the input models) candidate generator of the relation ⟨𝑢𝑝⟩-bisimilar, it may be efficient
to check whether such a candidate can be extended to a full ⟨𝑢𝑝⟩-bisimilar relation.

With regard to lower bound results, a general way one shows that a problem is C-hard,
for a complexity class C, is by providing a polynomial-time reduction from an already
known C-complete problem to the problem in question. The problem for determining
whether a fully quantified Boolean formula is true or false, that is, the TQBF problem
(Sipser, 1996), is known to be PSPACE-complete, and has been used to prove PSPACE-
hardness of many logic-related decision problems. However, finding such reduction func-
tions from the TQBF and similar other PSPACE-complete problems to these model com-
parison problems have turned out to be quite involved. Complications arose even for
showing NP-hardness results for these model comparison problems using NP-complete
SAT and other problems. The main issue, as described above, is finding possibly simpler,
more procedural conditions equivalent to the conditions (4) and (5) in the definition of
⟨𝑢𝑝⟩-bisimulation that would facilitate such reduction results.

To end this chapter, let us get back to the general discussion of games on graphs.
What does it mean to have a bisimulation between two game graphs with respect to two
points on those two graphs? Evidently, whatever moves a player can make in one game,
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the same kind of moves can be made in the other game as well. Moreover, an alternation of
the basic modality with the edge-deletion or node-deletion modality would describe a play
in the game graphs with link deletion or point deletion, respectively. From the strategic
viewpoint, the age-old copy strategy might be a relevant strategy to play on bisimilar game
graphs. In fact, checking bisimilarity between different game graphs can be considered as
a first step towards considering game-strategy equivalences between these games consti-
tuting structural changes in the underlying graphs. The related notion of ⟨𝑢𝑝⟩-bisimulation
contraction (van Benthem, 2010) concerns with the simplest graphs that are structurally
equivalent to the original graphs. From the game perspectives, as mentioned earlier, we
have the following question: What would the simplest graph in an equivalence class that
would still show the essential structure of the game?
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CHAPTER 6 LOGICS FOR PERSONALIZED
ANNOUNCEMENTS

One of the most popular shows of 2020 has been the Netflix docudrama The So-
cial Dilemma, which alarmed the public over the dangers of the prevalent engagement-
based business model of popular social media (Wikipedia contributors, 2023). It explored,
among others, the responsibility of platforms, facilitated by personalized advertizing and
by the exploitation of the intrinsic properties of human cognition, such as our limited and
selective attention. Although the dramatized story of family members drifting apart in
their own bubbles has been criticized as overly simplistic and exaggerated (Girish, 2023),
few can deny that our behavior and beliefs are affected by the design of social media. In
particular, by exposing us to information that is tailored to our personal choices and pref-
erences, these platforms can induce a bias in our news intake and thereby tend to influence
and sometimes reinforce our beliefs (Flaxman et al., 2016).

Aside from typical users, influencers are also impacted by the design of online plat-
forms. Influencers of Instagram, for instance, had a reason to worry when the platform
tested hiding the number of ‘likes’ that a post receives. Indeed, their online success and
popularity does not only depend on users’ pre-existing attitude towards the content of a
post (Paul, 2019), but also on parameters such as likes, views, shares, etc. It is thus increas-
ingly clear that the way we access information is crucial in nowadays society and deserves
in-depth investigation. To this end, formal-logic approaches represent a solid tool to anal-
yse the intrinsic structural properties of social phenomena on a high level of abstraction
and are thus promising for the analysis of the flow of information in applications in such
social platform systems.

Logical approaches have been used extensively to study social networks, for exam-
ple to analyse the propagation of opinions in a social network, the dynamics of the net-
work’s structure, and the entanglement of knowledge and social relation structure. See e.g.
(Seligman et al., 2011; Smets and Velázquez-Quesada, 2017, 2018, 2019a,b; Baltag et al.,
2019a; Smets and Velázquez-Quesada, 2020; Pedersen et al., 2020; Liu and Liao, 2021;
Liu and Li, 2022). Our work continues this line of investigation by taking into account
the dynamics of opinions as well as the constraints that can be imposed on the access to
information that agents have. Different parameters pertain to the access of agents to infor-
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mation, and concern both the opinions or features of other agents (does your friend Alice
like punk music?). The access of the agents to such pieces of information is crucial to the
formation of their beliefs, which in turn underlie the evolution of social phenomena like
the diffusion of fashions, the formation of echo chambers, pluralistic ignorance, polariza-
tion, etc. It is worth noting that we do not investigate the structural relationships between
agents, but rather how the accessibility and spread of information through social media
influences the evolution of beliefs.

The aforementioned studies in logic work with a certain level of abstraction and hence
include idealizing assumptions that can be revisited now. For instance, it is assumed in
some of the work that agents know who their friends are, including all of their features
(Smets and Velázquez-Quesada, 2019a, 2020, 2018, 2019b). In reality, we do not nec-
essarily keep track and have access to all this information, especially as it may come
in large amounts and it evolves dynamically. Some modeling approaches explicitly ac-
count for the epistemic layer that underlies social network phenomena, and reflect that the
agents’ behaviour is dictated by their epistemic situation (Baltag et al., 2019a; Smets and
Velázquez-Quesada, 2017). Yet, such frameworks started from the standard S5 epistemic
logic, which has advantages on the modeling side but also comes with well-known short-
comings when modeling the knowledge of real human agents see e.g. (Solaki, 2021). In
addition to the epistemic aspects, when it comes to reasoning in online social networks,
one would need to take into account the algorithmic design of the platform in use.

In our setting, we will focus on weaker doxastic logics and on the structural filter-
ing of information. This type of filter pertains to the informational bounds placed by the
designers of the social platform to sort the information and to ensure that browsing runs
smooth and remains interesting and engaging for the users. More specifically, although
the members of a given online network generate posts with the intention of reaching all
of their connections, this rarely succeeds in practice. Given the multitude of online con-
nections and the posts available to appear in one’s feed, some form of filtering becomes
necessary to maintain engagement. This necessity has revolutionized the use of recom-
mender systems in sorting which posts appear to the users. Recommender systems rely
heavily on personalization (Jannach et al., 2010). The subset of posts that will end up
appearing on an agent’s feed are the ones deemed sufficiently compatible with the prefer-
ence profile built for this agent. For example, user-based collaborative filtering methods
recommend posts to users on the basis of their similarity with agents with a similar pro-
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file; the item-based collaborative filtering method recommends posts to users on the basis
of the similarity between these items (here: posts) and others in terms of how the users
interacted with both; content-based filtering recommends posts with features the user has
interacted favourably with in the past. Even in very compact networks, personalization
results in similar agents becoming exposed to radically different feeds, a practice that has
been blamed for the increasing polarization in social media (Vīķe-Freiberga et al., 2013).

It is worth emphasizing that not only does the relevant information selectively reach
only some members of the intended audience, but additionally no member of the network
is aware of the filtering outcome of the recommender system – largely due to the lack of
transparency of how the chosen recommender system works. For example, neither the
sender of a post nor their fellow friends are ever certain on who actually passed the filter
and gained access to the posted piece of information.

In our formal analysis below, we will model such scenarios in terms of update meth-
ods coming from dynamic epistemic logic (Baltag et al., 1998; van Ditmarsch et al., 2008;
van Benthem, 2011), which deals with knowledge and belief dynamics (partly) triggered
by private information. To do so, we will use the convenient format of the so called
edge-conditioned action models in (Bolander, 2018), where the filtering conditions can
be treated as edge conditions on events that are partially observed by agents. In Appendix
6.4, we show how the edge-condition driven update could also in principle be represented
in terms of the standard product update of a more classical kind used in dynamic epistemic
logic.

More specifically, we will propose a logical framework to characterize the personal-
ized distribution of information based on filtering conditions in social platforms, which
consequently leads to the dynamics of agents’ beliefs. It is crucial to acknowledge that the
filtering mechanisms employed by social platforms are based on intricate statistical meth-
ods. The filtering conditions under consideration in this chapter are abstractions of the
underlying concepts behind various filtering methods, expressed in terms of the compo-
nents of the models we proposed below. This approach in this chapter can potentially yield
further insights into the emergence of various phenomena, such as polarization, thereby
providing valuable guidance for the design and refinement of filtering systems.

The rest of the paper can be summarized as follows: In Section 2, we introduce a
framework based on dynamic epistemic logic, where announcements are personalised by
semantically specified filtering conditions, from the static to dynamic setting and we give
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the axiomatizations. In Section 3, we further explore the extension of our existing frame-
work to incorporate factors related to the agents themselves, namely the agent’s cognitive
capacity and attentive resources.

6.1 Logics for personalization in social platforms

In what follows, we build a social-doxastic logical framework suitable for the dynam-
ics of personalization in a social platform. As a result, it does justice to some type of
limitations pertaining to the informational flow in the platform, namely the structural fil-
tering limitations. We first present the static basis for our account, which we call the static
logic of personalized announcements (SLPA), and we subsequently proceed to the devel-
opment of a completely dynamic logic framework that captures the dynamics of belief
due to the filtering condition in social platforms.

6.1.1 Static logic of personalized announcements

Our approach is based on the work of Smets and Velázquez-Quesada (2019a). We first
introduce the syntax of the static logic of personalized announcements (SLPA), and then
the semantics of this logic. For convenience, we introduce some notations. Let 𝐴𝑔 ≠ ∅ be
a finite set of agents. Let 𝑇 ≠ ∅ be a finite set of topics about which the agents can form
an opinion. We denote opinions on topics by {𝑅𝑡}𝑡∈𝑇 as a pairwise disjoint collection
providing a finite non-empty set 𝑅𝑡 of opinions for each 𝑡 ∈ 𝑇 . In addition, let 𝑅 denote
∪𝑡∈𝑇 𝑅𝑡.
Definition 6.1 (Opinion Model): Given 𝐴𝑔, 𝑇 , and {𝑅𝑡}𝑡∈𝑇 , an opinion model (OM)
is a tuple M = ⟨W,{→𝑗}𝑗∈𝐴𝑔, V⟩ where:

• W is a non-empty set of possible worlds.
• →𝑗 is the doxastic accessibility relation for agent 𝑗 ∈ 𝐴𝑔. Additionally, we ask that

an agent considers at least a world possible, which means →𝑗 is serial, i.e., for any
𝑤 ∈ W, there exists 𝑢 ∈ W such that 𝑤 →𝑗 𝑢.

• V ∶𝑊 × 𝐴𝑔 × 𝑇 → P(𝑅) is the valuation function, where V(𝑤, 𝑖, 𝑡) ⊆ 𝑅𝑡 indicates
the opinions of agent 𝑖 on topic 𝑡 ∈ 𝑇 in world 𝑤.

Additionally, we require that an agent’s valuation function values do not change across
their doxastically indistinguishable worlds in opinion models:

1. If 𝑤→𝑖𝑢, then V(𝑤, 𝑖, 𝑡) = V(𝑢, 𝑖, 𝑡), for any 𝑡 ∈ 𝑇 .
Example 6.1: Consider the following possible opinions on 3 topics that Alice (A), Bob
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(B) and Carol (C) can express on a social media platform :
• ChatGPT (𝐶)
(𝑑) The emergence of ChatGPT will cause a stagnation in the creative writing

development of children.
(𝑏) ChatGPT produces information that is not fact-checked and as such it enhances

the spread of misinformation.
(𝑐) The development of ChatGPT may lead to the emergence of machine worship

and machine superstition.
(𝑓) The implementation of ChatGPT in specific sectors holds the potential to con-

siderably enhance productivity, which in turn may inadvertently lead to an
escalation in unemployment rates.

(ℎ) ChatGPT can engage in virtual chatting and role-playing, providing entertain-
ment and interactive experiences that help with people’s emotional and social
development.

• Big Data (𝑂)
(𝑎) Big data can reinforce existing biases and perpetuate discrimination.
(𝑔) Big data can lead to privacy and security issues.
(𝑝) Big data can be used to identify patterns and trends that were previously un-

known or difficult to detect.
(𝑠) Big data can help in the development of personalized products and services.

• Virtual Reality (𝐷)
(𝑟) VR can enhance training and simulation by allowing individuals to practice

real-world scenarios in a safe and controlled environment.
(𝑙) VR can lead to users’ detachment from the real world and loss of communi-

cation and social skills.
(𝑖) VR can cause psychological issues such as hallucinations, anxiety, and de-

pendence.
(𝑜) VR may lead to disappointment with the real world, as it cannot be as exciting

as the virtual world.
It is assumed that Alice, Bob and Carol form a group of users, and they don’t know

others’ opinions on these topics, but they can make some judgments based on what others
have posted in the past. The doxastic relations among them are depicted in Figure 6.1.
In this figure, there are three worlds, 𝑤, 𝑢 and 𝑣; the symbols A, B and C denote Alice,
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Bob and Carol, respectively. 𝑤 AÐ→ 𝑢 denotes that Alice at world 𝑤 believes the atomic
sentence that are true at world 𝑢, and it is similar for other labelled arrows.

𝑤

A 𝑢

𝑣

A
B
C

C
A
B
C

B

Figure 6.1 Doxastic relations among agents

Suppose 𝑤 is the actual world, all opinions from Alice, Bob and Carol over these
topics are as follows, as we show in world 𝑤 in Figure 6.2, where the string 𝑉𝐶 ∶ {𝑑, 𝑏, 𝑐, 𝑓}
below A denotes that the opinions of Alice over the topic 𝐶 are 𝑑, 𝑏, 𝑐 and 𝑓 mentioned,
and other notations in Figure 6.2,6.3, and 6.4 are similar.

• Alice : 𝐶 ∶ {𝑑, 𝑏, 𝑐, 𝑓}; 𝑂 ∶ {𝑎, 𝑔, 𝑝}; 𝐷 ∶ {𝑟, 𝑙, 𝑖}.
• Bob: 𝐶 ∶ {𝑑, 𝑓}; 𝑂 ∶ {𝑎, 𝑔}; 𝐷 ∶ {𝑟, 𝑙}.
• Carol: 𝐶 ∶ {𝑓, ℎ}; 𝑂 ∶ {𝑝, 𝑠}; 𝐷 ∶ {𝑙}.

𝑉𝐶: {𝑑, 𝑏, 𝑐, 𝑓}
𝑉𝑂: {𝑎, 𝑔, 𝑝}
𝑉𝐷: {𝑟, 𝑙, 𝑖}

𝑉𝐶: {𝑑, 𝑓}
𝑉𝑂: {𝑎, 𝑔}
𝑉𝐷: {𝑟, 𝑙}

𝑉𝐶: {𝑓, ℎ}
𝑉𝑂: {𝑝, 𝑠}
𝑉𝐷: {𝑙}

A

CB

Figure 6.2 𝑤

Alice believes that Bob and Carol have the following opinions. The world Alice be-
lieves is shown in world 𝑢 in Figure 6.3.

• Bob: 𝐶 ∶ {𝑑, 𝑐, 𝑓}; 𝑂 ∶ {𝑎, 𝑝}; 𝐷 ∶ {𝑟, 𝑙, 𝑜}.
• Carol: 𝐶 ∶ {𝑓}; 𝑂 ∶ ∅; 𝐷 ∶ {𝑙, 𝑜}.
While Bob believes that Alice and Carol have the following opinions. The world Bob

believes is shown in world 𝑣 in Figure 6.4.
• Alice: 𝐶 ∶ {𝑑}; 𝑂 ∶ {𝑎, 𝑝}; 𝐷 ∶ {𝑟, 𝑜}.
• Carol: 𝐶 ∶ {𝑓, ℎ}; 𝑂 ∶ {𝑝, 𝑠}; 𝐷 ∶ ∅.
Carol’s beliefs about the other agents’ opinions happen to be their actual opinions,

which is exactly what happens in Figure 6.2.
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𝑉𝐶: {𝑑, 𝑏, 𝑐, 𝑓}
𝑉𝑂: {𝑎, 𝑔, 𝑝}
𝑉𝐷: {𝑟, 𝑙, 𝑖}

𝑉𝐶: {𝑑, 𝑐, 𝑓}
𝑉𝑂: {𝑎, 𝑝}
𝑉𝐷: {𝑟, 𝑙, 𝑜}

𝑉𝐶: {𝑓}
𝑉𝑂: ∅

𝑉𝐷: {𝑙, 𝑜}

A

CB

Figure 6.3 𝑢

𝑉𝐶: {𝑑}
𝑉𝑂: {𝑎, 𝑝}
𝑉𝐷: {𝑟, 𝑜}

𝑉𝐶: {𝑑, 𝑓}
𝑉𝑂: {𝑎, 𝑔}
𝑉𝐷: {𝑟, 𝑙}

𝑉𝐶: {𝑓, ℎ}
𝑉𝑂: {𝑝, 𝑠}
𝑉𝐷: ∅

A

CB

Figure 6.4 𝑣

M = ⟨W,{→𝑗}𝑗∈𝐴𝑔, V⟩ is an opinion model of the type that we have defined, where
𝐴𝑔 = {A, B, C}, W = {𝑤, 𝑢, 𝑣}, {→𝑗}𝑗∈𝐴𝑔 is shown in Figure 6.1, and the valuation func-
tion V is shown in Figure 6.2 - 6.4.
Definition 6.2: The language L of the static logic of personalized announcements
(SLPA) is given by:

𝜙 ∶∶= 𝑖𝑟
𝑡 ∣ ¬𝜙 ∣ 𝜙 ∧𝜙 ∣ F(𝑗, 𝑖𝑟

𝑡) ∣ 𝐵𝑖𝜙

where 𝑖𝑟
𝑡 is an atomic proposition letter, 𝑖 ∈ 𝐴𝑔 and 𝑟 ∈ 𝑅𝑡, for 𝑡 ∈ 𝑇 .

The boolean operators →, ∨ are defined as usual. For 𝑗 ∈ 𝐴𝑔, the dual operator ̂𝐵𝑗

of 𝐵𝑗 , is defined as follows: ̂𝐵𝑗𝜙 ∶= ¬𝐵𝑗¬𝜙. Intuitively, 𝑖𝑟
𝑡 can be read as follows: “agent

𝑖 makes a post about her opinion 𝑟 on topic 𝑡”. We introduce the access operator F(𝑗, 𝑖𝑟
𝑡)

to express the accessibility of agent 𝑗 to the post 𝑖𝑟
𝑡 . The guiding principle is that the truth

value of F(𝑗, 𝑖𝑟
𝑡) rests upon whether the agent 𝑗 is deemed sufficiently “compatible” with

the post 𝑖𝑟
𝑡 by the recommender system of the platform in question, i.e., whether 𝑗 passes

the filtering method and would thus has the post 𝑖𝑟
𝑡 appearing in her feed.

Definition 6.3 (Semantic clauses): Given an OM M and world 𝑤 ∈ W:
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• M, 𝑤 ⊧ 𝑖𝑟
𝑡 iff 𝑟 ∈ V(𝑤, 𝑖, 𝑡)

• M, 𝑤 ⊧ ¬𝜙 iff M, 𝑤 /⊧ 𝜙
• M, 𝑤 ⊧ 𝜙 ∧𝜓 iff M, 𝑤 ⊧ 𝜙 and M, 𝑤 ⊧ 𝜓
• M, 𝑤 ⊧ 𝐵𝑖𝜙 iff M, 𝑢 ⊧ 𝜙 for all 𝑢 ∈ W such that 𝑤 →𝑖 𝑢
• M, 𝑤 ⊧ F(𝑗, 𝑖𝑟

𝑡) iff there is a 𝑣 with 𝑤 →𝑗 𝑣 such that M, 𝑣 ⊧ 𝑖𝑟
𝑡 , and the filtering

condition (as specified below) holds at 𝑤.
The evaluation of F(𝑗, 𝑖𝑟

𝑡) depends on the particular filtering condition in the recom-
mender system that the online social platform is employing. The three parallel filtering
conditions that we consider are: the Radical Push Condition, the Conservative Push Con-
dition and the Feature Push Condition. We will elaborate on these filtering conditions and
provide corresponding examples later on.

In order to later make sure that the seriality of the doxastic accessibility relation is
preserved under product updates for personalized announcements, we have to ask that
the formulas the agent has access to (pass the filtering condition) are consistent with the
agent’s beliefs. See the Consistency axiom in Table 6.1 as well.

In this way, we embed the reality of personalized information distribution, which is
often largely determined by machine learning methods, in a logical (symbolic) framework
paired with social platform analysis tools, in order to give a meta-analytical study of how
such methods shape the informational dynamics, and thus the diffusion phenomena.

The filtering conditions Next, we elucidate the filtering condition for agent 𝑗 when agent
𝑖 is sending the post 𝑖𝑟

𝑡 , where 𝑗 ≠ 𝑖. Note that whenever 𝑗 = 𝑖, we assume that the post sent
by agent 𝑖 will definitely appear in her own feeds. In other words, in this case, in addition to
requiring the compatibility of the post content with agent 𝑖, there is no additional filtering
condition required.

• Radical Push Condition This filtering condition is inspired by the so-called item-
based collaborative filtering method of designing recommender systems. It relies
on a similarity metrics between items (here: posts), calculated in terms of how they
were interacted with by all agents. The method then predicts that the posts that
should be recommended to the target agent are the ones that are similar to those
the agent has interacted positively with. One everyday example application of this,
encountered in many social media, can be summarized to “many users who liked
that, like you, have also liked this”. Given a threshold 𝜃 ∈ ℕ, it can be interpreted
as the lowest bound of consensus within a group. Specifically, if the number of
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individuals within the group who hold a certain belief exceeds the threshold, then
that belief is considered to be held by the entire group.
At current state 𝑤, for some opinion 𝑟′ held by agent 𝑗, if there are at least 𝜃 people
in the group who hold or do not hold opinions 𝑟 and 𝑟′ simultaneously, agent 𝑗
should treat opinions 𝑟 and 𝑟′ as equivalent, Therefore, since agent 𝑗 holds opinion
𝑟′, they should also tend to hold opinion 𝑟, and we should push opinion 𝑟 to agent 𝑗
accordingly.
In formal terms, there exists a witness 𝑟′ ∈ V(𝑤, 𝑗, 𝑡) such that

∣{𝑘 ∈ 𝐴𝑔 ∣ 𝑟′ ∈ V(𝑤, 𝑘, 𝑡)↔ 𝑟 ∈ V(𝑤, 𝑘, 𝑡)}∣ ≥ 𝜃

We refer to the filtering condition described above as the Radical Push Condition.
• Conservative Push Condition This filtering condition follows the same principle

as the previous one, which is “many users who liked that, like you, have also liked
this”, but the conservative push condition is more stringent. This condition not only
requires a sufficient number of people to view opinion 𝑟 and some opinion of agent
𝑗 as equivalent, but also requires a sufficient number of people to view opinion 𝑟
and all opinions of agent 𝑗 as equivalent. Under this requirement, we have more
reasons to believe that opinion 𝑟 should also be a viewpoint that agent 𝑗 is inclined
to hold and would like to be pushed to them. Stated formally, every opinion 𝑟′ held
by agent 𝑗 should be a witness, i.e., for all 𝑟′ ∈ V(𝑤, 𝑗, 𝑡) such that

∣{𝑘 ∈ 𝐴𝑔 ∣ 𝑟′ ∈ V(𝑤, 𝑘, 𝑡)↔ 𝑟 ∈ V(𝑤, 𝑘, 𝑡)}∣ ≥ 𝜃

We call this filtering condition the Conservative Push Condition
Example 6.2: In Example 6.1, we focus on the topic 𝐶 and consider whether the
post from Bob that he holds opinion 𝑑 over 𝐶 will be recommended to Carol at
world 𝑤. Fix a threshold 𝜃 = 2,

– Using the Radical Push Condition: given that in world 𝑤, Carol holds opinion
𝑓 , and Alice and Bob hold opinions 𝑑 and 𝑓 , the Radical Push Condition
here is satisfied at 𝑤. Moreover, Carol believes that Bob holds the opinion 𝑑
on topic 𝐶 . Thus we have F(C, B𝑑

𝐶) holds in world 𝑤, which means the post
from Bob that he holds opinion 𝑑 over 𝐶 will be recommended to Carol at
world 𝑤.

– Using the Conservative Push Condition Push: given that Carol holds opinion
ℎ and that no one holds opinions ℎ and 𝑑 together and actually one of them
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holds opinion ℎ iff the other agent does not hold opinion 𝑑. Thus the Conser-
vative Push condition is satisfied at 𝑤, then we have that F(C, B𝑑

𝐶) does not
hold in world 𝑤, which means the post from Bob that he holds opinion 𝑑 on
𝐶 will not be recommended to Carol at world 𝑤.

Recommendation rules are indeed critical, as they shape the user’s access to infor-
mation. Actually, Carol does not hold the opinion 𝑑 over topic 𝐶 at 𝑤. However,
if the social media platform uses the radical push condition, then Carol will receive
this post, and realize that someone in her community holds the opinion 𝑑, and in
the long run, this may have an impact on her. This outcome is not surprising, as
the underlying notion of the radical push to “propagate opinions agreed upon by the
majority to others” inevitably leads to such a result. Compared to the radical push
condition, the conservative push condition may cause users to miss out on opinions
that are truly interesting.

• Feature Push Condition This filtering condition is inspired by the so-called
content-based filtering methods of designing recommender systems. It relies on
the features of the items (here: posts) the target user has interacted favourably with.
It then recommends posts that share these features.
At the current state 𝑤, agent 𝑗 does have opinions over topic 𝑡, then relative opinion
𝑟 over 𝑡 from agent 𝑖 will push to agent 𝑗. In formal terms, that is to say,

V(𝑤, 𝑗, 𝑡) ≠ ∅

We call this filtering condition the Feature Push Condition.
Example 6.3: In Example 6.1, at world 𝑢, Carol has no interest in topic 𝑂, which
means V(𝑢, C, 𝑂) = ∅. Thus the Feature Push Condition is not satisfied at 𝑢. Then
any opinions on topic 𝑂 from any other agents will not be recommended to Carol.
Formally, F(C, 𝑖𝑟

𝑂) doesn’t hold at world 𝑢 for any 𝑖 ∈ 𝐴𝑔, 𝑟 ∈ 𝑅𝑂.
Please note that there are many filtering mechanisms across different platforms, such

as user-based filtering, and so on. However, for the purpose of this study, we will only
address the aforementioned three types of filters, and defer a more comprehensive analysis
to future investigations.

6.1.2 Dynamic logic of personalized announcements

In what follows, we extend the basic static setting with the dynamics of information
flow in online social platforms, and propose a dynamic logic of personalized announce-
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ments (DLPA). We present this logic by starting from the models.
First, we proposed so-called access models for describing the possible events in social

platforms. More specifically, we utilize a filtering model for the personalized announce-
ment of 𝑖𝑟

𝑡 to depict the potential events to agent 𝑗 when agent 𝑖 sends a post 𝑖𝑟
𝑡 , subject

to the filtering conditions on the platform. Moreover, the belief states of agents are up-
dated through the filtering model, which is reflected in our product models defined later.
For convenience, we use the access model in the following, which is based on the edge-
conditioned model in (Bolander, 2018). It is worth mentioning that the scenarios we would
like to characterize can alternatively also be captured by action models in (van Benthem,
2011). Moreover, they share the same methodology and are equivalent, and we provide a
proof of this fact in Appendix 6.4.
Definition 6.4 (Access model): An Access model is a tuple C ∶= ⟨E,{fj}𝑗∈𝐴𝑔, pre⟩,
where:

• E is a non-empty set of events.
• fj ∶ E × E → L is the filtering function, assigning a condition to each event for each

agent 𝑗.
• pre ∶ E → L is the precondition function.
Next, we propose specialized access models, i.e, the filtering models, for the scenarios

that some agent sends a post 𝑖𝑟
𝑡 , and all agents in the social platform will receive this post

only if the filtering condition is satisfied. Otherwise, they would have remained unaware
of the event.
Definition 6.5 (Filtering model for the personalized announcement of 𝑖𝑟

𝑡 ): A filter-
ing model for personalized announcements is a tuple C ∶= ⟨E,{fj}𝑗∈𝐴𝑔, pre⟩, where:

• E = {𝑒0, 𝑒1} is a set of events, where event 𝑒0 indicates that agent 𝑖 does not send
any post, while event 𝑒1 indicates agent 𝑖 sends the post 𝑖𝑟

𝑡 .
• The filtering function fj(𝑒, 𝑒′) can be defined as follows. In particular, we ensure

that agent 𝑗 always receives the post 𝑖𝑟
𝑡 he sent, and others would receive the an-

nouncement if the platform system does not filter out the post for them.

− for 𝑗 = 𝑖, fj(𝑒, 𝑒′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊤, if 𝑒 = 𝑒′ = 𝑒1

⊤, if 𝑒 = 𝑒′ = 𝑒0

⊥, otherwise
− for 𝑗 /= 𝑖,
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fj(𝑒, 𝑒′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(𝑗, 𝑖𝑟
𝑡), if 𝑒 = 𝑒′ = 𝑒1

¬F(𝑗, 𝑖𝑟
𝑡), if 𝑒 = 𝑒1 and 𝑒′ = 𝑒0

⊥ if 𝑒 = 𝑒0 and 𝑒′ = 𝑒1

⊤, if 𝑒 = 𝑒′ = 𝑒0

• pre is the precondition function. pre(𝑒) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑖𝑟
𝑡 , if 𝑒 = 𝑒1

⊤, if 𝑒 = 𝑒0

Example 6.4: A filtering model for the post from Bob ‘I hold opinion 𝑝 on topic 𝑂’
We follow the example 6.1 and suppose that Bob is posting his opinion of 𝑝 when it comes
to topic 𝐶 . The announcement of 𝐵𝑝

𝑂 will be effectively personalized by the algorithms
of the social platform. This event can be captured via a filtering model, we focus on agent
Carol and give a part of the filtering model in Figure 6.5.

fC(𝑒, 𝑒′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F(C, B𝑝
𝑂), if 𝑒 = 𝑒′ = 𝑒1

¬F(C, B𝑝
𝑂), if 𝑒 = 𝑒1 and 𝑒′ = 𝑒0

⊥ if 𝑒 = 𝑒0 and 𝑒′ = 𝑒1

⊤, if 𝑒 = 𝑒′ = 𝑒0

pre(𝑒) =
⎧⎪⎪⎨⎪⎪⎩

B𝑝
𝑂, if 𝑒 = 𝑒1

⊤, if 𝑒 = 𝑒0

𝑒1
F(C, B𝑝

𝑂) 𝑒0
⊤

¬F(C, B𝑝
𝑂)

Figure 6.5 The personalized announcement of B𝑝
𝑂.

On the semantic level, we have proposed filtering models for the personalized an-
nouncement above. On the syntactic level, in order to incorporate personalized announce-
ments, we add formulas of the form [C, 𝑒]𝜙 for a given filtering model C, where 𝑒 is an
event in this model. The full dynamic language is as follows:
Definition 6.6: The dynamic language L+ of the dyanmic logic of personalized an-
nouncements (DLPA) is given by:

𝜙 ∶∶= 𝑖𝑟
𝑡 ∣ ¬𝜙 ∣ 𝜙 ∧𝜙 ∣ F(𝑗, 𝑖𝑟

𝑡) ∣ 𝐵𝑖𝜙 ∣ [C, 𝑒]𝜙

where 𝑖𝑟
𝑡 is an atomic proposition letter, 𝑖 ∈ 𝐴𝑔 and 𝑟 ∈ 𝑅𝑡, for 𝑡 ∈ 𝑇 . C is a filtering

model for for personalized announcement 𝑖𝑟
𝑡 and 𝑒 is an event of the filtering model C.

The satisfaction of dynamic modalities in formulas depends on the updating of the
original opinion model, which is formally defined as follows:
Definition 6.7 (Updated model): Given an opinion model M and a filtering model
C for personalized announcement 𝑖𝑟

𝑡 , the updated model is given by M ⊗ C ∶=
⟨W′,{→′

j}𝑗∈𝐴𝑔, V′⟩ where:
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• W′ = {(𝑤, 𝑒) ∣ M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒)}
• (𝑤, 𝑒)→′

𝑗(𝑤′, 𝑒′) iff 𝑤→𝑗𝑤′, M, 𝑤 ⊧ fj(𝑒, 𝑒′), where fj(𝑒, 𝑒′) denotes the filtering
condition.

• V′((𝑤, 𝑒), 𝑖, 𝑡) = V(𝑤, 𝑖, 𝑡), for 𝑤 ∈ W, 𝑖 ∈ 𝐴𝑔, 𝑡 ∈ 𝑇 .
As mentioned earlier, the intuition is that when an agent posts an announcement on

the social platform, the other agents in the community may update their beliefs through
the filtering model. It is worth noting that condition 1 imposed on OMs, is preserved by
product updates, next we show that the relation in the product model is serial, i.e., for any
𝑖 ∈ 𝐴𝑔 and 𝑤 ∈ 𝑊 ′, there is a world 𝑣 ∈ 𝑊 ′, such that 𝑤 →𝑖 𝑣.
Lemma 6.1: The relation in the product model is serial.
Proof We aim to show that for any (𝑤, 𝑒) in M ⊗ C, there exists (𝑢, 𝑒′) in M ⊗ C such
that (𝑤, 𝑒)→𝑗 (𝑢, 𝑒′).

For any (𝑤, 𝑒) in M ⊗ C, since M is serial, then for any agent 𝑘, there exists 𝑢 ∈ W
such that 𝑤 →𝑘 𝑢.

• for agent 𝑖,
– we have (𝑤, 𝑒)→′

𝑖 (𝑢, 𝑒), since fi(𝑒, 𝑒) = ⊤ for any 𝑒 ∈ C.
• for agent 𝑗 ∈ 𝐴𝑔 − {𝑖},

– 𝑒 is 𝑒0, then (𝑤, 𝑒0)→′
𝑗 (𝑢, 𝑒0), since fj(𝑒0, 𝑒0) = ⊤.

– 𝑒 is 𝑒1, there are two cases. Suppose M, 𝑤 ⊧ F(𝑗, 𝑖𝑟
𝑡), then M, 𝑤 ⊧ ̂𝐵𝑗𝑖𝑟

𝑡 , it
follows that M, 𝑣 ⊧ 𝑖𝑟

𝑡 for some 𝑣 ∈ W with 𝑤 →𝑗 𝑣, thus (𝑣, 𝑒1) ∈ W × E.
Since f𝑗(𝑒1, 𝑒1) = F(𝑗, 𝑖𝑟

𝑡), then we have that (𝑤, 𝑒1) →′
𝑗 (𝑣, 𝑒1). Suppose

M, 𝑤 ⊧ ¬F(𝑗, 𝑖𝑟
𝑡), since f𝑗(𝑒1, 𝑒0) = ¬F(𝑗, 𝑖𝑟

𝑡), then (𝑤, 𝑒1)→′
𝑗 (𝑢, 𝑒0).

∎
The semantics of dynamic formulas is given as follows.

Definition 6.8 (Dynamic semantics): Given an opinion model M and a filtering model
C for personalized announcements 𝑖𝑟

𝑡 . We define the truth of 𝜙 at 𝑤 in M inductively as
in Definition 6.3 with the additional clause:

M, 𝑤 ⊧ [C, 𝑒]𝜙 iff M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒) implies M ⊗ C, (𝑤, 𝑒) ⊧ 𝜙

We present an example of updated models as follows:
Example 6.5: Consider the opinion model in Example 6.1 and the filtering model in
Example 6.4, and suppose that the filtering mechanism employed by the social platform is
the Feature Push as mentioned above, then the product model M′ = ⟨W′,{→′

j}𝑗∈𝐴𝑔, V′⟩
is depicted in Figure 6.6.
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(𝑢, 𝑒1) (𝑢, 𝑒0)

(𝑤, 𝑒0) (𝑣, 𝑒0)

C

B

A

A

B
C

A

B

C

A

B

C

Figure 6.6 The product model

• For the domain, W′ = {(𝑤, 𝑒0), (𝑢, 𝑒0), (𝑣, 𝑒0), (𝑤, 𝑒0)}.
• For the relation, since 𝑢 →C 𝑢, and M, 𝑢 ⊧ fC(𝑒1, 𝑒0), where fC(𝑒1, 𝑒0) =

¬F(C, B𝑝
𝑂) = ¬( ̂𝐵CB𝑝

𝑜 ∧ FP(C, B𝑝
𝑂)), then we have (𝑢, 𝑒1) →′

C (𝑢, 𝑒0). Other rela-
tions can be checked in a similar fashion.

• For the valuation, V′((𝑤, 𝑒0), 𝑖, 𝑡) = V(𝑤, 𝑖, 𝑡) for 𝑖 ∈ {A, B, C}, which is depicted
in Figure 6.2; V′((𝑢, 𝑒0), 𝑖, 𝑡) = V′((𝑢, 𝑒1), 𝑖, 𝑡) = V(𝑢, 𝑖, 𝑡) for 𝑖 ∈ {A, B, C}, which
is depicted in Figure 6.3; V′((𝑣, 𝑒0), 𝑖, 𝑡) = V(𝑣, 𝑖, 𝑡) for 𝑖 ∈ {A, B, C}, which is
depicted in Figure 6.4.

6.2 Axiomatization

In this section, we propose sound and complete Hilbert-style proof systems for the
logics of Section 6.1. The axiom system of the static logic SLPA is based on the minimal
modal logic K with the axiom D for serial accessibility relations (known as KD), equipped
with optional axioms for the corresponding access condition. The axiomatization of the
dynamic logic DLPA expands that of the static logic with reduction axioms.

6.2.1 Complete axiomatization of SLPA

Please note that, as mentioned earlier, the filtering conditions are designed for various
cases, and as such we have several axiom systems respectively. In this section, we employ
the Radical Push for instance, and we will mention the axiom systems with Conserva-
tive Push or Feature Push later. In the interest of convenience, we provide the following
abbreviations.

RP(𝑗, 𝑖𝑟
𝑡) ∶= ⋁

𝑟′∈𝑅𝑡

(𝑗𝑟′
𝑡 ∧ ⋁

{𝑖1,…,𝑖𝜃}⊆𝐴𝑔
⋀

1≤𝑛≤𝜃
(𝑖𝑛𝑟′

𝑡 ↔ 𝑖𝑛𝑟
𝑡))

156



CHAPTER 6 LOGICS FOR PERSONALIZED ANNOUNCEMENTS

CP(𝑗, 𝑖𝑟
𝑡) ∶= ⋀

𝑟′∈𝑅𝑡

(𝑗𝑟′
𝑡 → ⋁

{𝑖1,…,𝑖𝜃}⊆𝐴𝑔
⋀

1≤𝑛≤𝜃
(𝑖𝑛𝑟′

𝑡 ↔ 𝑖𝑛𝑟
𝑡))

FP(𝑗, 𝑖𝑟
𝑡) ∶= ⋁

𝑟′∈𝑅𝑡

𝑗𝑟′
𝑡

PC

All instances of classical propositional tautologies

K

𝐵𝑖(𝜙 → 𝜓)→ (𝐵𝑖𝜙 → 𝐵𝑖𝜓)
Consistency

𝐵𝑖𝜙 → ¬𝐵𝑖¬𝜙
Positive Opinion-Belief

𝑖𝑟
𝑡 → 𝐵𝑖𝑖𝑟

𝑡

Negative Opinion-Belief

¬𝑖𝑟
𝑡 → 𝐵𝑖¬𝑖𝑟

𝑡

Radical Push axiom

F(𝑗, 𝑖𝑟
𝑡)↔ ̂𝐵𝑗𝑖𝑟

𝑡 ∧ RP(𝑗, 𝑖𝑟
𝑡)

Modus Ponens

From 𝜙 and 𝜙 → 𝜓 , infer 𝜓
Necessitation of 𝐵𝑖

From 𝜙 infer 𝐵𝑖𝜙

Table 6.1 The Hilbert-style proof system of SLPA with Radical Push axiom

Let us first discuss the axioms and rules in Table 6.1. The positive and negative
Opinion-Belief axioms capture the OM condition 1 and the radical push axiom corre-
sponds to the radical push condition. Please notice that the radical push axiom is optional,
which depends on the specialized filtering condition employed by the social platform. We
can substitute this axiom with any of the ones listed in Table 6.2, as needed. Other axioms
and rules are for the axiom system KD.
Theorem 6.1: The axioms and rules in Table 6.1 form a sound and complete axiom
system characterizing all valid formulas of SLPA over opinion models with radical push.
Proof For soundness, we can follow the standard way to show that all axioms and rules
in Table 6.1 are valid. Please notice that the set of 𝐴𝑔 and 𝑅𝑡 are all finite, when we prove
the soundness of Radical Push axiom.

For completeness, we can follow the canonical method in (Blackburn et al., 2001) to
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Radical Push axiom

F(𝑗, 𝑖𝑟
𝑡)↔ ̂𝐵𝑗𝑖𝑟

𝑡 ∧ RP(𝑗, 𝑖𝑟
𝑡)

Conservative Push axiom

F(𝑗, 𝑖𝑟
𝑡)↔ ̂𝐵𝑗𝑖𝑟

𝑡 ∧ CP(𝑗, 𝑖𝑟
𝑡)

Feature Push axiom

F(𝑗, 𝑖𝑟
𝑡)↔ ̂𝐵𝑗𝑖𝑟

𝑡 ∧ FP(𝑗, 𝑖𝑟
𝑡)

Table 6.2 The axioms for filtering conditions

prove it. In the following, we give the definition of canonical models.
Definition 6.9: The canonical model Mc is a tuple ⟨𝑆𝑐 ,{→𝑐

𝑖 }𝑖∈𝐴𝑔, 𝑉 𝑐⟩ as follows.
• 𝑆𝑐 = {Γ ∣ Γ is maximal consistent}
• Γ →𝑐

𝑖 Δ iff for all formula 𝛼, 𝛼 ∈ Δ implies ̂𝐵𝑖𝛼 ∈ Γ
• 𝑉 𝑐(𝑝) = {Γ ∈ 𝑆𝑐 ∣ 𝑝 ∈ Γ}.
It is sufficient to show the canonical model is an opinion model, since the Consistency

axiom ensures the seriality of the doxastic accessibility relation, then we only need to show
that the canonical model satisfies the condition 1.

Suppose that 𝑤→𝑖𝑢 and V(𝑤, 𝑖, 𝑡) /= V(𝑢, 𝑖, 𝑡), then there are two cases.
• there exists 𝑟 ∈ V(𝑤, 𝑖, 𝑡) and 𝑟 ∉ V(𝑢, 𝑖, 𝑡). It follows that Mc, 𝑤 ⊧ 𝑖𝑟

𝑡 and Mc, 𝑢 ⊭
¬𝑖𝑟

𝑡 by the definition of 𝑉 𝑐 , thus M, 𝑤 ⊭ 𝑖𝑟
𝑡 → 𝐵𝑖𝑖𝑟

𝑡 , which contradicts the Positive
Opinion-Belief axiom.

• there exists 𝑟 ∉ V(𝑤, 𝑖, 𝑡) and 𝑟 ∈ V(𝑢, 𝑖, 𝑡). It follows that Mc, 𝑤 ⊭ 𝑖𝑟
𝑡 and Mc, 𝑢 ⊧ 𝑖𝑟

𝑡
by the definition of 𝑉 𝑐 , thus Mc, 𝑤 ⊭ ¬𝑖𝑟

𝑡 → 𝐵𝑖¬𝑖𝑟
𝑡 , which contradicts with the

negative Opinion-Belief axiom.
∎

Next, we can obtain the Existence lemma and Truth lemma following the standard
method, and we obtain the completeness result at last.

6.2.2 Complete axiomatization of DLPA

We will now proceed to provide a complete axiomatization for the full dynamic logic.
The axiomatization is shown in Figure 6.3.

The reduction axioms play a crucial role in the completeness proof, as they allow us
to reduce the dynamic properties of the models to their static counterparts. Note that all
reduction axioms are valid, we only show that last two axioms are valid as follows.
Lemma 6.2: [C, 𝑒]F(𝑗, 𝑖𝑟

𝑡)↔ (𝑝𝑟𝑒(𝑒)→ F(𝑗, 𝑖𝑟
𝑡)) is valid.

158



CHAPTER 6 LOGICS FOR PERSONALIZED ANNOUNCEMENTS

All axioms in Figure 6.1

Reduction axioms

[C, 𝑒]𝑖𝑟
𝑡 ↔ 𝑝𝑟𝑒(𝑒)→ 𝑖𝑟

𝑡

[C, 𝑒](𝜙1 ∧ 𝜙2) ↔ [C, 𝑒]𝜙1 ∧ [C, 𝑒]𝜙2

[C, 𝑒]¬𝜙 ↔ 𝑝𝑟𝑒(𝑒)→ ¬[C, 𝑒]𝜙
[C, 𝑒]F(𝑗, 𝑖𝑟

𝑡) ↔ 𝑝𝑟𝑒(𝑒)→ F(𝑗, 𝑖𝑟
𝑡)

[C, 𝑒]𝐵𝑖𝜙 ↔ 𝑝𝑟𝑒(𝑒)→ ⋀
𝑒′∈𝐸
(f𝑖(𝑒, 𝑒′)→ 𝐵𝑖[C, 𝑒′]𝜙)

All rules in Figure 6.1

Necessitation rule of (C, 𝑒)
From 𝜙 infer [C, 𝑒]𝜙

Table 6.3 The Hilbert-style proof system of DLPA with Radical Push

Proof Note that the satisfiablility of RP(𝑗, 𝑖𝑟
𝑡), CP(𝑗, 𝑖𝑟

𝑡) and FP(𝑗, 𝑖𝑟
𝑡) at 𝑤 are determined

by 𝑉 (𝑤, 𝑖, 𝑡) for 𝑖 ∈ 𝐴𝑔, 𝑟 ∈ 𝑅𝑡, where 𝑡 ∈ 𝑇 , thus RP(𝑗, 𝑖𝑟
𝑡), CP(𝑗, 𝑖𝑟

𝑡) and FP(𝑗, 𝑖𝑟
𝑡) are

satisfiable at 𝑤 iff RP(𝑗, 𝑖𝑟
𝑡), CP(𝑗, 𝑖𝑟

𝑡) and FP(𝑗, 𝑖𝑟
𝑡) are satisfiable at (𝑤, 𝑒) respectively,

where 𝑝𝑟𝑒(𝑒) holds at 𝑤. We prove this from two directions.
From left to right, given M, 𝑤 ⊧ [C, 𝑒]F(𝑗, 𝑖𝑟

𝑡), suppose M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒), then M ⊗
C, (𝑤, 𝑒) ⊧ F(𝑗, 𝑖𝑟

𝑡). According to the truth condition of F(𝑗, 𝑖𝑟
𝑡), it follows that M ⊗

C, (𝑤, 𝑒) ⊧ ̂𝐵𝑗𝑖𝑟
𝑡 and the parameterized access condition is satisfiable at (𝑤, 𝑒). Since

M ⊗ C, (𝑤, 𝑒) ⊧ ̂𝐵𝑗𝑖𝑟
𝑡 , then there exists (𝑣, 𝑒′) in M ⊗ C such that (𝑤, 𝑒)→′

𝑗 (𝑣, 𝑒′) and
M ⊗ C, (𝑣, 𝑒′) ⊧ 𝑖𝑟

𝑡 . Thus we have that 𝑤 →𝑗 𝑣 and M, 𝑣 ⊧ 𝑖𝑟
𝑡 , which implies M, 𝑤 ⊧ ̂𝐵𝑗𝑖𝑟

𝑡 .
Thus, M, 𝑤 ⊧ F(𝑗, 𝑖𝑟

𝑡).
From right to left, given that M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒)→ F(𝑗, 𝑖𝑟

𝑡), suppose M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒), then
M, 𝑤 ⊧ F(𝑗, 𝑖𝑟

𝑡). It follows that M, 𝑤 ⊧ ̂𝐵𝑗𝑖𝑟
𝑡 , then M, 𝑢 ⊧ 𝑖𝑟

𝑡 for some 𝑢 ∈ W with 𝑤 →𝑗 𝑢.
Thus, there exists (𝑢, 𝑒) in M⊗C, such that (𝑤, 𝑒)→′

𝑗 (𝑢, 𝑒) and M⊗C, (𝑢, 𝑒) ⊧ 𝑖𝑟
𝑡 , which

implies M ⊗ C, (𝑤, 𝑒) ⊧ ̂𝐵𝑗𝑖𝑟
𝑡 . Thus, M ⊗ C, (𝑤, 𝑒) ⊧ F(𝑗, 𝑖𝑟

𝑡). ∎

Lemma 6.3: [C, 𝑒]𝐵𝑖𝜙 ↔ (𝑝𝑟𝑒(𝑒)→ ⋀
𝑒′∈𝐸
(f𝑖(𝑒, 𝑒′)→ 𝐵𝑖[C, 𝑒′]𝜙)) is valid.

Proof Form left to right, given M, 𝑤 ⊧ [C, 𝑒]𝐵𝑖𝜙 [1], suppose M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒) [2]. We
want to show that M, 𝑤 ⊧ ⋀

𝑒′∈𝐸
(f𝑖(𝑒, 𝑒′) → 𝐵𝑖[C, 𝑒′]𝜙)). Take any 𝑒′ ∈ 𝐸 such that

M, 𝑤 ⊧ f𝑖(𝑒, 𝑒′). It suffices to show that M, 𝑤 ⊧ 𝐵𝑖[C, 𝑒′]𝜙), i.e. M, 𝑤′ ⊧ [C, 𝑒′]𝜙), for
all 𝑤′ ∈ W such that 𝑤 →𝑖 𝑤′. That is, M, 𝑤′ ⊧ 𝑝𝑟𝑒(𝑒′) implies M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙, for
all 𝑤′ ∈ W such that 𝑤 →𝑖 𝑤′.

From [1] we obtain: M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒) implies M ⊗ C, (𝑤, 𝑒) ⊧ 𝐵𝑖𝜙, i.e. M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒)
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implies M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙, for all (𝑤′, 𝑒′) ∈ W′ such that (𝑤, 𝑒) →′
𝑖 (𝑤′, 𝑒′). That

is, M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒) implies M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙, for all (𝑤′, 𝑒′) ∈ W′ such that 𝑤 →𝑖 𝑤′

and M, 𝑤 ⊧ f𝑖(𝑒, 𝑒′). From [1],[2]: M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙, for all (𝑤′, 𝑒′) ∈ W′ such that
𝑤 →𝑖 𝑤′ and M, 𝑤 ⊧ f𝑖(𝑒, 𝑒′) [3].

Now take arbitrary 𝑒′ ∈ 𝐸 such that M, 𝑤 ⊧ f𝑖(𝑒, 𝑒′) and arbitrary 𝑤′ ∈ W such
that 𝑤 →𝑖 𝑤′. Suppose that M, 𝑤′ ⊧ 𝑝𝑟𝑒(𝑒′), i.e. (𝑤′, 𝑒′) ∈ W′. From [3], we obtain
M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙, which is precisely what we wanted to show.

From right to left, given M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒)→ ⋀
𝑒′∈𝐸
(f𝑖(𝑒, 𝑒′)→ 𝐵𝑖[C, 𝑒′]𝜙) [1], we want

to show that M, 𝑤 ⊧ [C, 𝑒]𝐵𝑖𝜙, i.e. M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒) implies M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙, for all
(𝑤′, 𝑒′) ∈ W′ such that 𝑤 →𝑖 𝑤′ and M, 𝑤 ⊧ f𝑖(𝑒, 𝑒′).
Suppose M, 𝑤 ⊧ 𝑝𝑟𝑒(𝑒). Take arbitrary 𝑤′ ∈ W and 𝑒′ ∈ E such that M, 𝑤′ ⊧ 𝑝𝑟𝑒(𝑒′),
𝑤 →𝑖 𝑤′ and M, 𝑤 ⊧ f𝑖(𝑒, 𝑒′). From [1] we obtain that M, 𝑤 ⊧ 𝐵𝑖[C, 𝑒′]𝜙. As a re-
sult, M, 𝑤′ ⊧ [C, 𝑒′]𝜙, i.e. M, 𝑤′ ⊧ 𝑝𝑟𝑒(𝑒′) implies M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙. Due to our
assumption we obtain M ⊗ C, (𝑤′, 𝑒′) ⊧ 𝜙 as desired. ∎
Theorem 6.2: The axioms and rules in Table 6.3 form a sound and complete axiom sys-
tem characterizing the validities of DLPA over opinion models and (our class of) filtering
models.
Proof Since all reduction axioms in Table 6.3 are valid, and the inference rule in Table
6.3 preserves the validity, thus soundness follows.

For completeness, since the reduction axioms define a validity-preserving translation
from L+ to L, which means for any formula in SLPA, there is an equivalent formula in
DLPA. According to Theorem 6.1, the completeness follows. ∎

6.3 Conclusions and future work

In this chapter, our focus has been on agents in social platforms receiving only in-
formation that has passed the platform’s filtering conditions. We have proposed a logical
framework with both static and dynamic components to model the relevant events and
how the personalization of announcements in social platforms affects agents’ beliefs. Our
treatment of the static logic of beliefs in this analysis was rather rudimentary, based on
the weak axiom system KD. Hence, in future work we plan to extend this setting to incor-
porate full-fledged KD45 belief, or by taking on board also conditional beliefs, extending
our semantics to plausibility models for belief (van Benthem, 2007; Baltag and Smets,
2008).
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In future and on-going work, we will address the other crucial phenomenon that we
have noted in our initial discussion of the functioning of social platforms: the filtering
effects of agent’s attention span (Wickens, 2021). For this purpose, we can follow roughly
the same methodology as that followed in this chapter. We plan to incorporate the attention
of agents as a new parameter in our models, extending the more rudimentary approach
of the awareness models of (Fagin and Halpern, 1987). As a first static perspective we
will introduce a logic that reflects how on social platforms, given the limited attention
available, agents only learn a subset of the information that they have access to. For the
dynamic setting, we intend to introduce two elements: the focus of agents’ attention and
the cognitive cost of formulas. The attention focus will be used to discriminate which
formulas an agent learns, for example, in a situation in which she has access to multiple
announced formulas but has only enough cognitive resources to cover the cost of each
of them separately, but not all of them together. In such a situation, the agent will only
learn what is under the focus of her attention. More formally, we will extend models with
attention functions, define updates of models that include attention and cost, enrich the
languages used in this chapter accordingly, and prove that the resulting extended logics
are sound and complete.

Finally, social scenarios where the dynamics of beliefs is affected by external infor-
mation filtering and internal attention management are usually geared toward decisions
that agents make or are encouraged to make. Thus, our analysis feeds into a study of
personalized decision making in decision theory and game theory. Here we believe that
the logic-based style of analysis in this chapter may profitably be integrated with existing
logical analyses of games, whether existing or newly designed e.g., (van Benthem, 2014;
van Benthem and Klein, 2022; van Benthem and Liu, 2020; Li et al., 2021; Gierasimczuk
et al., 2009; Liu et al., 2016).

6.4 Appendix D: Connection between action models and edge-
conditioned models

In this part, we prove a result announced but not proved in (Bolander, 2018) whose
proof seems useful to have available officially. The class of model-changing updates using
edge-conditioned models is actually the same as that produced by standard product update
in DEL (Baltag et al., 1998; van Ditmarsch et al., 2008; van Benthem, 2011).

Firstly, we introduce the standard definitions of epistemic models, event models and
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product updates. Let 𝐺 denote the set of agents, 𝑃 denote the set of proposition letters.

Definition 6.10 (Epistemic model): An epistemic model 𝑀 is a tuple (𝑊 , 𝑅, 𝑉 ),
where

• 𝑊 is a nonempty set of states,
• 𝑅𝑖 ⊆ 𝑊 × 𝑊 for each 𝑖 ∈ 𝐺,
• 𝑉 is a valuation function from 𝑃 to 2𝑊 .

Definition 6.11 (Event model): An event model 𝜀 is a tuple (𝐸, 𝑆, 𝑃 𝑟𝑒, 𝑃 𝑜𝑠𝑡), where
• 𝐸 is a finite set of events,
• 𝑆𝑖 ⊆ 𝐸 × 𝐸 for each 𝑖 ∈ 𝐺,
• 𝑃 𝑟𝑒 ∶ 𝐸 → L(𝑃 , 𝐺) assigns to each event a precondition.
• 𝑃 𝑜𝑠𝑡 ∶ 𝐸 → L(𝑃 , 𝐺) assigns to each event a postcondition. Postconditions are

conjunctions of propositional literals, i.e., conjunctions of atomic propositions and
their negations.

Definition 6.12 (Updated model): Let (𝑀, 𝑤0) be a pointed epistemic model, and
(𝜀, 𝑒0) be a pointed event model, and 𝑀, 𝑤 ⊧ 𝑃 𝑟𝑒(𝑒0). The updated model 𝑀𝜀 is a tuple
(𝑊𝜀, 𝑅′, 𝑉 ′), where

• 𝑊𝜀 = {(𝑤, 𝑒) ∶𝑀, 𝑤 ⊧ 𝑃 𝑟𝑒(𝑒)},
• (𝑤, 𝑒)𝑅′

𝑗(𝑣, 𝑓) iff 𝑅𝑗𝑤𝑣 and 𝑆𝑗𝑒𝑓 ,
• (𝑤, 𝑒) ∈ 𝑉 ′(𝑝) iff 𝑝𝑜𝑠𝑡(𝑒) ⊧ 𝑝 or (𝑤 ∈ 𝑉 (𝑝) and 𝑝𝑜𝑠𝑡(𝑒) /⊧ ¬𝑝) .

Next, we introduce the definitions of edge-conditioned event models and product up-
dates.

Definition 6.13 (Edge-conditioned event model): An edge-conditioned event model
𝜀 is a tuple (𝐸, 𝑄, 𝑃 𝑟𝑒, 𝑃 𝑜𝑠𝑡), where 𝐸, 𝑃 𝑟𝑒, 𝑃 𝑜𝑠𝑡 are defined as for standard event mod-
els, and 𝑄𝑖 ∶ 𝐸 × 𝐸 → L(𝑃 , 𝐺) for each 𝑖 ∈ 𝐺.

Definition 6.14 (Edge-conditioned updated model): Given a pointed epistemic
model (𝑀, 𝑤0) and a pointed edge-conditioned event model (𝜀, 𝑒0), and 𝑀, 𝑤0 ⊧
𝑃 𝑟𝑒(𝑒0). The edge-conditioned updated model 𝑀𝜀 is a tuple (𝑊 𝜀, 𝑅′, 𝑉 ′), where
𝑊 𝜀, 𝑉 ′ are defined as for standard updated models, and for each 𝑗 ∈ 𝐺,

• (𝑤, 𝑒)𝑅′
𝑗(𝑣, 𝑓) iff 𝑅𝑗𝑤𝑣 and 𝑀, 𝑤 ⊧ 𝑄𝑗(𝑒, 𝑓).

Given an epistemic model 𝑀 = (𝑊 , 𝑅, 𝑉 ) and an event model 𝜀 = (𝐸, 𝑆, 𝑃 𝑟𝑒, 𝑃 𝑜𝑠𝑡),
then the standard DEL product update can be viewed as an edge-conditioned update.
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We only need to define an edge-conditioned event 𝜀′ = (𝐸′, 𝑄, 𝑃 𝑟𝑒′, 𝑃 𝑜𝑠𝑡′), where
𝐸 = 𝐸′, 𝑃 𝑟𝑒 = 𝑃 𝑟𝑒′, 𝑃 𝑜𝑠𝑡 = 𝑃 𝑜𝑠𝑡′, and define the function 𝑄𝑗 as follows.

𝑄𝑗(𝑒, 𝑒′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊤ if (𝑒, 𝑒′) ∈ 𝑆𝑗 ,

⊥ otherwise

It is direct that 𝑀, 𝑤 ⊧ 𝑄𝑗(𝑒, 𝑓) iff (𝑒, 𝑓) ∈ 𝑆𝑗 , then any standard DEL can be treated as
an edge-conditioned updated model. Then we prove the other direction.

Proposition 6.1: Let 𝑀 = (𝑊 , 𝑅, 𝑉 ) be an epistemic model and 𝜀 = (𝐸, 𝑄, 𝑃 𝑟𝑒, 𝑃 𝑜𝑠𝑡)
an edge-conditioned event model, then there is an event model 𝜀′ such that for any (𝑤, 𝑒)
in the edge-conditioned updated model 𝑀𝜀, there is a bisimilar world in the updated model
𝑀𝜀′ .

Proof We construct 𝜀′ = (𝐸′, 𝑆, 𝑃 𝑟𝑒′, 𝑃 𝑜𝑠𝑡′) as follows.
• 𝐸′ = {(𝜙1, ... , 𝜙𝑛, 𝑒)∣ for 𝑒 ∈ 𝐸, ∃𝑓𝑖 ∈ 𝐸 s.t. 𝑄𝑖(𝑒, 𝑓𝑖) = 𝜙𝑖 for 𝑖 ∈ [1, 𝑛]},
• 𝑆𝑖(𝜙1, ... , 𝜙𝑛, 𝑒)(𝜓1, ... , 𝜓𝑛, 𝑓) iff 𝑄𝑖(𝑒, 𝑓) = 𝜙𝑖, where 𝜓𝑖 ∈ Γ𝑓

𝑖 ,
Γ𝑓

𝑖 = {𝜙𝑖,𝑗 ∣∃𝑓𝑗 s.t. 𝑄𝑖(𝑓, 𝑓𝑗) = 𝜙𝑖,𝑗 in 𝜀},
• 𝑃 𝑟𝑒′(𝜙1, ... , 𝜙𝑛, 𝑒) = 𝑃 𝑟𝑒(𝑒) ∧ ⋀𝑖∈[1,𝑛]𝜙𝑖,
• 𝑃 𝑜𝑠𝑡′(𝜙1, ... , 𝜙𝑛, 𝑒) = 𝑃 𝑜𝑠𝑡(𝑒).
Now, we have an update model 𝑀𝜀′ = (𝑊 ′′, 𝑅′′, 𝑉 ′′) from 𝑀 and event model 𝜀′.

Next, we show (𝑤, 𝑒) in 𝑀𝜀 and (𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒) in 𝑀𝜀′ are bisimilar, where 𝑀, 𝑤 ⊧
⋀𝑖∈[1,𝑛]𝜙𝑖.

• (𝑤, 𝑒) ∈ 𝑉 ′(𝑝) iff iff 𝑃 𝑜𝑠𝑡(𝑒) ⊧ 𝑝 or (𝑤 ∈ 𝑉 (𝑝) and 𝑃 𝑜𝑠𝑡(𝑒) /⊧ ¬𝑝) iff
𝑃 𝑜𝑠𝑡′(𝜙1, ... , 𝜙𝑛, 𝑒) ⊧ 𝑝 or (𝑤 ∈ 𝑉 (𝑝) and 𝑃 𝑜𝑠𝑡′(𝜙1, ... , 𝜙𝑛, 𝑒) /⊧ ¬𝑝) iff
(𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒) ∈ 𝑉 ′′(𝑝).

Suppose (𝑤, 𝑒)𝑅′
𝑖(𝑣, 𝑓), then we have 𝑤𝑅𝑖𝑣 and 𝑀, 𝑤 ⊧ 𝑄𝑖(𝑒, 𝑓). Since

(𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒) ∈ 𝑊 ′′, then 𝑀, 𝑤 ⊧ ⋀𝑖∈[1,𝑛]𝜙𝑖, thus we have 𝑀, 𝑤 ⊧ 𝜙𝑖.
Note that there is a unique formula in Γ𝑒

𝑖 is satisfiable at (𝑀, 𝑤) for any 𝑤 in 𝑀 .
(Γ𝑒

𝑖 consists of all possibilities under consideration by agent 𝑖 for 𝑒, it’s a partition of
conditions. It follows that given an event 𝑒, there is a unique tuple (𝜙1, ... , 𝜙𝑛) ∈ Γ𝑒

1 ×
... × Γ𝑒

𝑛 is satisfiable at 𝑀, 𝑤). It follows that 𝑄𝑖(𝑒, 𝑓) = 𝜙𝑖. According to the definition
of 𝑆 in 𝜀′, we have 𝑆𝑖(𝜙1, ... , 𝜙𝑛, 𝑒)(𝜓1, ... , 𝜓𝑛, 𝑓) for any 𝜓𝑗 ∈ Γ𝑓

𝑗 . It follows that we
have (𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒)𝑅′′

𝑖 (𝑣, 𝜓1, ... , 𝜓𝑛, 𝑓), where 𝑀, 𝑣 ⊧ ⋀𝑖∈[1,𝑛]𝜓𝑖.
For the back condition, suppose (𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒)𝑅′′

𝑖 (𝑣, 𝜓1, ... , 𝜓𝑛, 𝑓), then 𝑤𝑅𝑖𝑣
and (𝜙1, ... , 𝜙𝑛, 𝑒)𝑅′′

𝑖 (𝜓1, ... , 𝜓𝑛, 𝑓), it follows that 𝑄𝑖(𝑒, 𝑓) = 𝜙𝑖. Since
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(𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒) ∈ 𝑊 ′′, then 𝑀, 𝑤 ⊧ 𝜙𝑖, thus (𝑤, 𝑒)𝑅′
𝑖(𝑣, 𝑓). By I.H. that (𝑣, 𝑓) and

(𝑣, 𝜓1, ... , 𝜓𝑛, 𝑓) are bisimilar, then (𝑤, 𝑒) and (𝑤, 𝜙1, ... , 𝜙𝑛, 𝑒) are bisimilar. ∎

In the above, we demonstrated that the standard event models and the edge-
conditioned event models are equivalent in terms of the class of model-changing opera-
tions they can describe. However, the edge-conditioned format is typically more succinct.
Specifically, in the worst case, the event model can be exponentially less succinct than the
edge-conditioned event model.

Moreover, there is an alternative approach in terms of generic language describing
event models in (Belardinelli and Bolander, 2023).
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CHAPTER 7 CONCLUSION AND FURTHER DIRECTIONS

7.1 Conclusion

In this thesis, we studied several game scenarios describing multi-agent interaction
and related computational problems as well as model-theoretic aspects from the logical
perspectives. More specifically, we addressed four major topics that we summarize be-
low. We started off with a chapter on basic frameworks that we developed further in the
subsequent chapters.

The first topic that we discussed involved sabotage games and in Chapter 3, we de-
signed a new hybrid modal logic HSML to match this kind of games. We enriched the
language of SML with additional nominals and the satisfaction operator, which enhanced
the ability to characterize sabotage games. On the basis of the new language, we provided
a complete Hilbert-style axiomatization. Taking into account the behavioral constraints
that the player may have in more complicated sabotage games, we also introduced proto-
col models with restrictions on available edge deletions, and obtained the corresponding
proof system. At the end, we clarified the connections between HSML-style logics of
edge deletions and recent modal logics developed for describing stepwise point deletion
in graphs (van Benthem et al., 2020).

In Chapter 4, we focused on our second topic, viz. distributed games. We used local
and global models to describe these games from diverse perspectives, an essential fea-
ture involving distributed scenarios. We further proposed distributed game logics DGL
and DGLEA to characterize reasoning in and about distributed games. We introduced
two proof systems accordingly - for DGL we gave a strong completeness result, whereas
for DGLEA we presented a weak completeness result that simplified the proof to a great
extent. We also showed that both DGL and DGLEA have tractable model checking prob-
lems. We finished the chapter by proposing a similar framework to explore reasoning
about strategies in distributed games.

Our third topic was explored in Chapter 5, where we zoomed out from sabotage games
to a broader class of graph games, and focused on a common feature of many graph games:
graph changes, that is, distinct structural and other changes in the underlying models. We
extended the standard modal language with an additional operator expressing such model
changes. The operator can be specified according to the model change we want to capture,
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for example, deletion of edges, swapping of directed edges, deletion of nodes, changes in
the valuation function, among others. With respect to these languages, we concentrated
on the notion of bisimulation or model comparison. We investigated this problem from
an algorithmic viewpoint, providing a uniform algorithm for checking bisimulation for
many such model-changing modal logics. Through our algorithmic study, we provided
PSPACE upper bound results with respect to those modal logics.

In Chapter 6, we explored our final topic by proposing a concrete scenario in social
platforms. We started off by proposing a notion of opinion models based on the work
of Smets and Velázquez-Quesada (2019a). We followed up with a discussion on several
mechanisms of information distribution in social platforms, and formulated them in the
syntactic level. Accordingly, we proposed a static logic of personalized announcements
(SLPA) and furthermore, a dynamic logic of personalized announcements (DLPA). We
finished the chapter by presenting complete axiom systems for both these logics.

7.2 Further directions

The chapters also introduce new agenda items, some coming from the area of compu-
tation and some from the current social media scenarios on the internet. Many topics that
remain to be investigated have been listed in our separate chapters. Of these, we would
like to highlight three general themes below.

First, the study of graph games so far has concentrated largely on scenarios with per-
fect information where players can survey the whole graph and observe what is going
on at every point. While this is realistic in many board games or simple recreational
games, the assumption of complete observability quickly becomes unrealistic in practice.
In that case, we must extend our study to versions of our games with imperfect informa-
tion, where players’ knowledge and ignorance about the state of the game becomes crucial
(Perea, 2012; de Bruin, 2010; van Benthem, 2014). We have touched on this theme lightly
in Chapter 3, in terms of extensive sabotage games, but a more thorough examination of
this richer epistemic perspective needs to be undertaken, including what will be its effects
on the main technical results obtained in this thesis.

While the preceding goal might be achieved with standard semantic tools from epis-
temic logic and dynamic-epistemic logic (Baltag et al., 1998; Baltag and Moss, 2004; van
Ditmarsch et al., 2008; van Benthem, 2011), we also found a need for a more fine-grained
view of the information available to players in the course of a game. This shows clearly
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in the need for an attention dynamics noted in Chapter 6, where players can access only
limited portions of the semantic information at their disposal as provided by communi-
cation or other sources. We believe that the logical study of games as played in practice
eventually needs such more fine-grained modeling, but the effects of doing so are largely
unexplored, also in the broader logical literature on (in our view) closely related topics
such as the dynamics of inference as an attention-driven informational process.

Finally, in a more standard game-theoretic view of the games studied in this thesis, a
crucial role would be played by what players know or believe about the strategies played
by the other players they are up against. Now this topic may not seem to arise in many
of our games since they are determined as they stand, leading to impoverished equilibria
where one player plays a winning strategy while it does not matter what the other player
does. However, this can change when we impose more realistic constraints on what players
are able to do, e.g., in terms of observation (Grossi and Turrini, 2012; Liu et al., 2016) or
attention restrictions (Avoyan and Schotter, 2020). Moreover, it would be natural and easy
to provide our graph games with more refined preferences in case we give them several
goal regions arranged in some hierarchy. In all these cases more refined Nash equilibria
(Osborne and Rubinstein, 1994) will arise that can be studied. Generally speaking, we
expect that we will then have to make from the simpler logics of game boards that have
been our main focus to richer genuine game logics that record the structure of the extensive
games played over these boards.
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摘 要

摘 要

博弈对于社会互动来说是一种强大的范式，同时它对于分析逻辑推理和计算中
的核心概念而言，也是好的模型。博弈提供了一个多功能平台，用以模拟各种场
景。探索博弈建模，从玩家和建模者的视角分析与博弈相关的推理，研究不同信息
获取方式对主体认知活动的影响，以及解决与博弈相关的计算问题，都具有实用
价值和学术价值。本文特别探讨博弈图、博弈“棋盘”变化和在不同场景下对博弈
元素的逻辑分析。
首先，我们特别设计了相对应的逻辑系统，来分析两类博弈。我们考虑的第一

类博弈是图博弈，特别是破坏式博弈。这些博弈通过在博弈过程中改变作为博弈
“棋盘”的图，模拟了主体通过消除错误路径向某个既定目标前进的场景。破坏式
模态逻辑对这类博弈进行了行之有效的分析，但是公理化问题依然悬而未决。我
们从混合逻辑中借助恰如其分的表达力工具对破坏式模态逻辑语言进行小幅扩张，
从而为有效性提供了一个完全的公理化形式。
我们接下来研究的博弈类型，也就是分布式博弈，关注了互动情境中相当特别

的方面：在博弈进行时，玩家对博弈的局部性的内部视角与建模者对博弈的全局
性的外部视角之间的差异。在本文的第四章中，我们使用特殊的逻辑语言研究这
些“分布式博弈”，这些语言使得我们准确地描述局部和全局视角，并详细地展示
它们如何相互作用。
本文的剩余主题进一步探索了两个方向。
首先，在第五章中，我们注意到，那些目前被我们发展的特殊博弈逻辑，也就

是第一部分中的破坏式模态逻辑，可以看作是一类更广泛的逻辑的实例，这类逻
辑带有的模态算子可以描述各种模型变化操作的效果。这类逻辑已经被用于建模
行动以及信息流，就这点而言，不仅在具体的系统上，而且在一般的模型论和证明
论主题意义上，相关文献都广泛存在。我们探讨给定的有穷模型之间的相应的互
模拟问题的复杂性究竟如何？
本论文的最后一个主题涉及到我们第一部分关于博弈场景的逻辑的另一个延

伸。我们进行了一个实际案例研究，局部和全局的多主体视角都在此案例中进行
了实际展示：即在全局的推荐系统的运作中，局部的个体玩家参与交互。在第六章
中，我们展示了如何使用沟通交流涉及过滤动作下的动态认知逻辑来完全规范和
分析过滤动态。
最后，我们强调了一些尚未解决的问题，以便在现有研究的基础上进一步探索。
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这些问题涉及不完美信息的博弈，信息充足情形下的注意力动态变化，博弈中的
策略推理，等等。

关键词：图博弈；分布式博弈；模型变化的逻辑；互模拟；过滤机制
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ABSTRACT

ABSTRACT

Games are a powerful paradigm for social interaction, but at the same time also good
models for analyzing crucial notions in logical reasoning and computation. They provide
a versatile platform for simulating diverse scenarios. Exploring game modeling, analyz-
ing game-related reasoning from both player and modeler perspectives, investigating the
impact of varying information access on agents’ epistemic activities, and addressing com-
putational problems related to games all hold both practical and academic significance.
This dissertation specifically delves into game graphs, game board change, and the logical
analysis of game elements across various scenarios.

First, we analyze two sorts of games in terms of especially designed corresponding
logical systems. The first kind of games we consider are graph games: in particular,
sabotage games. These games where the graph that serves as the game board can change
in the course of play model scenarios where agents are pushed toward some desirable goal
by removing false paths. Sabotage modal logics have provided effective analysis for such
games, but the problem of axiomatization remains unresolved, we provide a complete
axiomatization for the validities in the language of sabotage modal logic slightly extended
with just enough expressive devices from hybrid logic.

Our next kind of game, i.e., the distributed game, concerns quite different aspects of
interactive scenarios: the difference between players’ local internal view and the modeler‘s
global external view of the game as it proceeds. In Chapter 4 of this thesis we study these
‘distributed games’ with special logical languages allowing us to describe local and global
perspectives precisely, and show in detail how they interact.

The remaining topics of the thesis explore two further directions.
First, in Chapter 5 we note that the special game logics developed so far, i.e., sabotage

model logics in our first part, can be seen as instances of a much broader class of logics
with modalities that describe the effects of various operations of model change. Such
logics have been used for modeling both action and information flow, and there is a broad
literature on both specific systems and general model-theoretic and proof-theoretic themes
running through all of these. We explore what is the precise complexity of testing for the
appropriate notions of bisimulation between given finite models.

Our final topic in this thesis concerns another extension of the concerns in our first

177



ABSTRACT

part on logics for game scenarios. We undertake a practical case study where local and
global multi-agent perspectives play in practice: namely, in the functioning of global rec-
ommender systems interacting with local individual users. In Chapter 6 we show how the
filtration dynamics can be specified and analyzed completely in dynamic-epistemic logics
of communication involving filtering actions.

Finally, we highlight some unresolved issues for further exploration based on existing
research. These involve games with imperfect information, attention dynamics in situa-
tions with abundant information, strategic reasoning in games, and so forth.

Keywords: graph game; distributed game; model-changing logic; bisimulation; filtering
mechanism
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Spelen zijn een krachtig paradigma voor sociale interactie, maar tegelijkertijd ook
goede modellen voor het analyseren van cruciale begrippen in logisch redeneren en reke-
nen met computers. Ze bieden een veelzijdig platform voor het simuleren van een breed
scala van interactieve scenario’s. Het verkennen van spelmodellen, het analyseren van
spelgerelateerd redeneren vanuit zowel het perspectief van de spelers als de externe mod-
elleur, het onderzoeken van de effecten van verschillen in toegang tot informatie op de
epistemische activiteiten van agenten, en het exploreren van computationele problemen
met betrekking tot spelen hebben zowel praktisch als academisch belang. Dit proefschrift
onderzoekt specifiek spelen gebaseerd op grafen, de dynamiek van veranderingen in het
spelbord gedurende het spel, en de logische analyse van strategische aspecten van spelen
in verschillende scenario’s.

Om te beginnen analyseren we twee soorten spelen in termen van speciaal ontworpen
bijbehorende logische systemen. Het eerste soort spellen dat we bestuderen zijn graaf-
spelen, in het bijzonder sabotagespelen. Deze spelen, waarbij een graaf dient als het
speelbord dat kan veranderen tijdens het spel, modelleren scenario’s waarin agenten naar
een wenselijk doel worden gedreven door vruchteloze paden te verwijderen. ‘Sabotage
modale logica’s’ in de literatuur hebben reeds effectieve analyses geleverd voor dergelijke
spelen, maar het probleem van axiomatisering der geldige redeneerprincipes bleef nog
onopgelost. In Hoofdstuk 3 van dit proefschrift presenteren wij een volledige axioma-
tisering voor de geldigheden van de sabotage modale logica, met gebruik van een taal
die lichtelijk is uitgebreid met enkele syntactische operatoren uit de zogenaamde ‘hybride
logica’.

Ons tweede genre, namelijk het gedistribueerde spel, heeft betrekking op geheel an-
dere aspecten van interactieve scenario’s: het verschil tussen de lokale interne kijk van
spelers en de globale externe kijk van de modelbouwer op het spel terwijl het plaats
vindt. In Hoofdstuk 4 van dit proefschrift bestuderen we deze ’gedistribueerde spelen’
met speciale logische talen waarmee we lokale en globale perspectieven nauwkeurig kun-
nen beschrijven, en laten we gedetailleerd zien hoe ze met elkaar in wisselwerking staan.

De verdere onderwerpen van het proefschrift verkennen de volgende twee richtingen.
Ten eerste merken we in Hoofdstuk 5 op dat de speciale spellogica’s die tot nu toe zijn
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ontwikkeld in dit proefschrift, zoals de modale sabotage logica’s in ons eerste deel, gezien
kunnen worden als instanties van een veel bredere klasse van logica’s met modaliteiten
die de effecten van verschillende operaties van modelverandering beschrijven. Dergelijke
logica’s zijn gebruikt voor het modelleren van zowel acties als informatiestromen, en er
is een brede literatuur over zowel specifieke systemen als algemene modeltheoretische en
bewijstheoretische thema’s die door al deze systemen heen lopen. We onderzoeken wat de
precieze complexiteit is van het testen van de juiste noties van bisimulatie tussen gegeven
eindige modellen, iets wat kan worden gezien als een logisch geïnspireerde analyse van
spelequivalentie.

Ons laatste onderwerp in dit proefschrift betreft een andere uitbreiding van de onder-
werpen in ons eerste deel over logica’s voor spelscenario’s. We richten de aandacht op
een praktische case-studie waarin lokale en globale perspectieven van verchillende actoren
concreet spelen: namelijk, in het functioneren van internet aanbevelingssystemen die in
wisselwerking staan met lokale individuele gebruikers. In Hoofdstuk 6 laten we zien hoe
de dynamiek van filteren door een sociaal platform volledig kan worden gespecificeerd en
geanalyseerd in passend uitgebreide dynamisch-epistemische logica’s van communicatie.

Tot slot belichten we enkele onopgeloste brede kwesties voor verder onderzoek op
basis van de resultaten gepresenteerd in dit proefschrift. Deze kwesties omvatten spelen
met onvolledige informatie, dynamiek van aandacht in situaties met een overdaad aan
informatie, strategisch redeneren in spelen, en diverse andere richtingen.

Trefwoorden: graafspel; gedistribueerd spel; logica van modelverandering; bisimulatie;
filtermechanisme
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Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum pro-
grams

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications



ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
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