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Belief as Willingness to Bet

Jan van Eijck
CWI & ILLC, Amsterdam

Bryan Renne∗

ILLC, University of Amsterdam

Abstract

We investigate modal logics of high probability having two unary modal operators: an op-
eratorK expressing probabilistic certainty and an operatorB expressing probability exceeding
a fixed rational thresholdc ≥ 1

2 . Identifying knowledge with the former and belief with the
latter, we may think ofc as the agent’s betting threshold, which leads to the motto “belief is
willingness to bet.” The logicKB.5 for c = 1

2 has anS5 K modality along with a sub-normal
B modality that extends the minimal modal logicEMND45 by way of four schemes relating
K andB, one of which is a complex scheme arising out of a theorem due to Scott. Lenzen was
the first to use Scott’s theorem to show that a version of this logic is sound and complete for the
probability interpretation. We reformulate Lenzen’s results and present them here in a mod-
ern and accessible form. In addition, we introduce a new epistemic neighborhood semantics
that will be more familiar to modern modal logicians. Using Scott’s theorem, we provide the
Lenzen-derivative properties that must be imposed on finiteepistemic neighborhood models
so as to guarantee the existence of a probability measure respecting the neighborhood func-
tion in the appropriate way for thresholdc = 1

2 . This yields a link between probabilistic and
modal neighborhood semantics that we hope will be of use in future work on modal logics of
qualitative probability. We leave open the question of which properties must be imposed on fi-
nite epistemic neighborhood models so as to guarantee existence of an appropriate probability
measure for thresholdsc 6= 1

2 .

1 Introduction

De Finetti [dF51, dF37] proposed the following axiomatization of qualitative probabilistic com-
parison (presented here based on [Sco64]): for setsX, Y , andZ coming from the powerset℘(W )
of a nonempty finite setW , we have

1. W � ∅,

2. ∅ � X,

3. X � Y or Y � X,

∗Funded by an Innovational Research Incentives Scheme Veni grant from the Netherlands Organisation for Scien-
tific Research (NWO).
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4. X � Y � Z impliesX � Z, and

5. X � Y if and only ifX ∪ Z � Y ∪ Z for Z disjoint fromX andY .

De Finetti conjectured that any binary relation� on ℘(W ) that satisfies these conditions isreal-
izable by a probability measureP on ℘(W ), which means that we haveX � Y if and only if
P (X) ≤ P (Y ). While every probability measure realizing a binary relation� on℘(W ) satisfies
de Finetti’s conditions, these conditions do not in generalguarantee the existence of a realizing
probability measure: it was shown by Kraft, Pratt, and Seidenberg [KPS59] (presented here as in
[Seg71]) that forW = {a, b, c, d, e}, the relations

{c} ≺ {a, b}, {b, d} ≺ {a, c},

{a, e} ≺ {b, c}, {a, b, c} ≺ {d, e}

may be extended to a binary relation over℘(W ) that satisfies de Finetti’s conditions and yet has
no realizing probability measure. Kraft, Pratt, and Seidenberg (“KPS”) also determined what was
missing from de Finetti’s axiomatization; Scott [Sco64] later presented the KPS conditions in a
linear algebraic form.

Theorem 1.1([Sco64, Theorem 4.1] reformulated with℘(W ) instead of a general Boolean alge-
bra). LetW be a nonempty finite set. GivenX ∈ ℘(W ), let ι : W → {0, 1} be the characteristic
function ofX (i.e., ι(X)(w) = 1 if w ∈ X, andι(X)(w) = 0 if w /∈ X). Construe functions
x : W → R as vectors:x(w) indicates the real-number value of vectorx at coordinatew. Ad-
dition and negation of these vectors is taken component-wise: (x + y)(w) := x(w) + y(w) and
(−x)(w) := −(x(w)). A binary relation� on℘(W ) is realizable by a probability measure if and
only if it satisfies each of the following: for eachm ∈ Z+ andX, Y,X1, . . . , Xm, Y1, . . . , Ym ∈
℘(W ), we have

1. ∅ ≺ W ;

2. ∅ � X;

3. X � Y or Y � X; and

4. if Xi � Yi for eachi ≤ m and
∑m

i=1 ι(Xi) =
∑m

j=1 ι(Yj), thenYj � Xj for eachj ≤ m.

Scott’s fourth condition is the most difficult. The algebraic component
∑m

i=1 ι(Xi) =
∑m

j=1 ι(Yj) (1)

of this condition says: for each coordinatew ∈ W , the number ofXi’s that containw is equal to
the number ofYj ’s that containw. Intuitively, Scott’s forth condition tells us that if two length-m
sequences of coordinate sets are related component-wise bythe relation “is no more probable than”
and the occurrence multiplicity of any given world is the same in each of the sequences, then the
sets are also related component-wise by the relation “has the same probability.”

Using Scott’s theorem to prove completeness, Segerberg [Seg71] studied a modal logic of qual-
itative probability. Segerberg’s logic has a binary operator � expressing qualitative probabilistic
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comparison and a unary operator✷ expressing necessity. Gärdenfors [Gär75] considered a simpli-
fied version of Segerberg’s logic that, among other differences, eliminated the necessity operator
in lieu of the abbreviation✷ϕ := (1 � ϕ), which has the semantic meaning thatϕ has proba-
bility 1 (and implies thatϕ is true at all outcomes with nonzero probability). Both Gärdenfors
and Segerberg express the algebraic component (1) of Scott’s fourth condition using Segerberg’s
notation

(ϕ1, . . . , ϕmEψ1, . . . , ψm) ,

which we sometimes shorten to(ϕiEψi)
m
i=1. This expression abbreviates the formula

✷(F0 ∨ · · · ∨ Fm) ,

where eachFi is the disjunction of all conjunctions

d1ϕ1 ∧ · · · ∧ dmϕm ∧ e1ψ1 ∧ · · · ∧ emψm∧

satisfying the property that exactlyi of thedk’s are the empty string, exactlyi of theek’s are the
empty string, and the rest of thedk’s andek’s are the negation sign¬. Intuitively,Fi says thati of
theϕk’s are true andi of theψk ’s are true;F0 ∨ · · · ∨ Fm says that the number of trueϕk’s is the
same as the number of trueψk’s; and(ϕiEψi)

m
i=1 := ✷(F0 ∨ · · · ∨ Fm) says that at every outcome

with nonzero probability, the number of trueϕk’s is the same as the number of trueψk’s. Using
this notation, it is possible to express the fourth condition of Scott’s theorem and thereby obtain
completeness for the probabilistic interpretation.

In the present paper, we follow this tradition of studying probability from a qualitative (i.e.,
non-numerical) point of view using modal logic. However, our focus shall not be on the binary
relation� of qualitative probabilistic comparison but instead on theunary notions of certainty
(i.e., having probability1) and “high” probability (i.e., having a probability greater than some
fixed rational-number thresholdc ≥ 1

2
). That is, our interest is inunary modal logics of high

probability.
For convenience in this study, we shall identify epistemic notions with probabilistic assign-

ment, which suggests a connection with subjective probability [Jef04]. In particular, we identify
knowledge with probabilistic certainty (i.e., probability 1) and belief with probability greater than
some fixed rational-number thresholdc ≥ 1

2
. Therefore, instead of the unary operator✷, we shall

use the unary operatorK and assign this operator an epistemic reading:Kϕ says that the agent
knowsϕ, which means she assignsϕ subjective probability1. We shall use the unary modal opera-
torB to express belief:Bϕ says that the agent believesϕ, which means she assignsϕ a subjective
probability exceeding the thresholdc (which will always be a fixed value within a given context
or theory). Though our readings of these formulas are epistemic and doxastic, we stress that our
technical results are independent of this reading, so someone who disagrees with subjective proba-
bility or our epistemic/doxastic readings is encouraged tothink of our work purely in terms of high
probability:Kϕ saysP (ϕ) = 1, andBϕ saysP (ϕ) > c for some fixedc ∈ [1

2
, 1)∩Q. That is, the

technical results of our work are in no way dependent on our use of epistemic/doxastic notions or
on the philosophy of subjective probability.

Lenzen [Len03, Len80] is to our knowledge the first to consider a modal logic of high probabil-
ity for the thresholdc = 1

2
. Actually, his perspective is slightly different than the one we adopt here.
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First, his reading of formulas is different (though not in any deep way): he identifies “the agent is
convinced ofϕ” with P (ϕ) = 1 and “ψ is believed” byP (ψ) > 1

2
. More substantially, Lenzen’s

conviction (German:Überzeuging) does not imply truth. Technically, this amounts to permitting
the possibility that there are outcomes having probabilityzero. For reasons of personal preference,
we forbid this in our study here, though this difference is non-essential, as it is completely triv-
ial from the technical perspective to change our setting to allow zero-probability outcomes or to
change Lenzen’s setting to forbid them. Therefore, we credit Lenzen’s work [Len80] as the first
to provide a proof of probabilistic completeness forc = 1

2
. As with Segerberg’s and Gärdenfors’

probabilistic completeness results, Lenzen’s proof made crucial use of Scott’s work.
In more recent work, Herzig [Her03] considered a logic of belief and action in which belief in

ϕ is identified withP (ϕ) > P (¬ϕ). This is equivalent to Lenzen’s notion, though Herzig does
not study completeness. Another recent work by Kyberg and Teng [KT12] investigated a notion of
“acceptance” in whichϕ is accepted whenever the probability of¬ϕ is at most some smallǫ. This
gives rise to the minimal modal logicEMN, which is different than Lenzen’s logic.

We herein consider belief à la Lenzen not only for the casec = 1
2

but also for the casec > 1
2
.

As it turns out, the logics for these cases are different, though our focus will be on the logic for
c = 1

2
because this is the only threshold for which a probability completeness result is known. In

particular, probability completeness forc > 1
2

is still open. Thresholdsc < 1
2

permit simultaneous
belief of ϕ and¬ϕ while avoiding belief of any self-contradictory sentence such as the proposi-
tional constant⊥ for falsehood. This might suggest some connection with paraconsistent logic.
However, we leave these logics of low probability for futurework, though we shall say a few words
more about them later in this paper.

In Section 2, we identify a Kripke-style semantics for probability logic similar to [EoS14,
Hal03] (and no doubt to many others). We require that all worlds are probabilistically possible but
not necessarily epistemically so, and we provide some examples of how this semantics works. In
particular, we demonstrate that our requirement is not problematic: worldv can be made to have
probability zero relative to worldw if we cut the epistemic accessibility relation between these
worlds.

In Section 3, we define our modal notions of certain knowledgeand of belief exceeding thresh-
old c, explain the motto “belief is willingness to bet,” and provea number of properties of certain
knowledge and this “betting” belief. For instance, we show that knowledge isS5 and belief is
not normal. We show a number of other threshold-specific properties of betting belief as well. In
particular, we see that the belief modality extends the minimal modal logicEMND45 + ¬B⊥ by
way of certain schemes relating knowledge and belief.

We then introduce a formal modal language in Section 4, relate this language to the proba-
bilistic notions of belief and knowledge, and introduce an epistemic neighborhood semantics for
the language. We study the relationship between the neighborhood and probabilistic semantics.
In particular, we introduce a notion of “agreement” betweenepistemic probability models and
epistemic neighborhood models, the key component of which is this: an eventX is a neighbor-
hood of a worldw if and only if the probability measurePw at w satisfiesPw(X) > c. We use
one of Scott’s theorems to prove that epistemic neighborhood models satisfying certain properties
give rise to agreeing epistemic probability models for the thresholdc = 1

2
. This result we credit
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to Lenzen; however, we prove this result anew in a modern, streamlined form that we hope will
make it more accessible. The main remaining open problem is to prove the analogous result for
thresholdsc 6= 1

2
(i.e., find the additional sufficient conditions on epistemic neighborhood models

we need to impose so as to guarantee the existence of an agreeing epistemic probability model for
thresholdc 6= 1

2
). Finally, we prove that epistemic probability models always give rise to agreeing

epistemic neighborhood models.
In Section 5, we introduce a basic modal theoryKB that is probabilistically sound. We adapt

an example due to Walley and Fine [WF79] that showsKB is probabilistically incomplete. This
leads us to add additional principles toKB, thereby producing the modal theoryKB.5, our name
for our modern reformulation of Lenzen’s modal theory of knowledge and belief (or, in Lenzen’s
terminology, his theory of “acceptance” and belief). Usingthe results from Section 4, we prove
that this logic is sound and complete for epistemic probability models using thresholdc = 1

2
.

Regarding the semantics based on our epistemic neighborhood models, we prove thatKB is sound
and complete for the full class of these models and thatKB.5 is sound and complete for the smaller
class that satisfies the additional Lenzen-derivative properties needed to guarantee the existence of
an agreeing probability measure for thresholdc = 1

2
.

Stated in an analogy:KB is to de Finetti’s axiomatization asKB.5 is to the KPS/Scott axioma-
tization. However, do not be misled: de Finetti, KPS, and Scott considered qualitative probabilistic
comparison, which is a binary notion based on a binary operator �. See also [HI13] for a revival
of this tradition. We, on the other hand, consider high probability, which is a unary notion based
on unary operators we denote asK andB.

Another version of our main open question can be restated in the following syntactic form:
given a thresholdc 6= 1

2
, find the additional principles that must be added to our probabilistically

sound but incomplete base logicKB in order to obtain a probabilistically sound and complete
logic for thresholdc. In our conclusion, we present some additional sound principles that might
come up in this work, but we have not been able to find the probabilistically sound and complete
axiomatization for thresholdsc 6= 1

2
.

Given the link between epistemic neighborhood models and epistemic probability models, our
results may be viewed as a contribution to the study connecting two schools of rational decision
making: the probabilist (e.g., [Kör08]) and the AI-based (e.g., [KT12]). We also hope that it will
be of some use in future work on qualitative probability.

2 Epistemic Probability Models

Definition 2.1. We fix a setP of propositional letters. Anepistemic probability modelis a structure
M = (W,R, V, P ) satisfying the following.

• (W,R, V ) is a finite single-agentS5 Kripke model:

– W is a finite nonempty set of “worlds” or “outcomes.” Aneventis a setX ⊆ W of
worlds. When convenient, we identify a worldw with the singleton event{w}.
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– R ⊆W ×W is an equivalence relationR onW . We let

[w] := {v ∈ W | wRv}

denote the equivalence class of worldw. This is the set of worlds that agent cannot
distinguish fromw.

– V :W → ℘(P) assigns a setV (w) of propositional letters to each worldw ∈ W .

• P : ℘(W ) → [0, 1] is a probability measure over the finite algebra℘(W ) satisfying the
property offull support: P (w) 6= 0 for eachw ∈ W .

A pointed epistemic probability modelis a pair(M, w) consisting of an epistemic probability
modelM = (W,R, V, P ) and worldw ∈ W called thepoint.

The agent’s uncertainty as to which world is the actual worldis given by the equivalence rela-
tionR. If w is the actual world, then the probability the agent assigns to an eventX atw is given
by

Pw(X) :=
P (X ∩ [w])

P ([w])
. (2)

In words: the probability the agent assigns to eventX at worldw is the probability she assigns to
X conditional on her knowledge atw. Slogan: subjective probability is always conditioned, and
the most general condition is given by the knowledge of the agent. This makes sense because the
right side of (2) is justP (X|[w]), the probability ofX conditional on[w]. Note thatPw(X) is
always well-defined: we havew ∈ [w] by the reflexivity ofR and hence0 < P (w) ≤ P ([w]) by
full support, so the denominator on the right side of (2) is nonzero.

Example 2.2(Horse racing). Three horses compete in a race. For eachi ∈ {1, 2, 3}, horsehi
wins the race in worldwi. The agent can distinguish between these three possibilities, and she
assigns the horses winning chances of3:2:1. We represent this situation in the form of an epistemic
probability modelM2.2 pictured as follows:

h1

w1

h2

w2

h3

w3

P = {w1 :
3
6
, w2 :

2
6
, w3 :

1
6
}

M2.2

When we picture epistemic probability models, the arrows ofthe agent are to be closed un-
der reflexivity and transitivity. With this convention in place, it is not difficult to verify that
Pw1

({w1, w3}) =
2
3
; that is, atw1, the assigns probability2

3
to the event that the winner is horse1

or horse3.
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The property of full support says that each world is probabilistically possible. Therefore, in
order to represent a situation in which the agent is certain that horse3 can never win, we simply
make theh3-worlds inaccessible viaR.

Example 2.3(Certainty of impossibility). We modify Example 2.2 by eliminating the arrow be-
tween worldsw2 andw3.

h1

w1

h2

w2

h3

w3

P = {w1 :
3
6
, w2 :

2
6
, w3 :

1
6
}

M2.3

At world w1 in this picture, there is no accessible world at which horse3 wins. Therefore, at world
w1, the agent assigns probability0 to the event that horse3 wins: Pw1

(w3) = 0.

We define a languageL for reasoning about epistemic probability models.

Definition 2.4. The languageL of (single-agent) probability logicis defined by the following
grammar.

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | t ≥ 0

t ::= q | q · P (ϕ) | t+ t

p ∈ P, q ∈ Q

We adopt the usual abbreviations for Boolean connectives. We define the relational symbols≤,>,
<, and= in terms of≥ as usual. For example,t = s abbreviates(t ≥ s) ∧ (s ≥ t). We also use
the obvious abbreviations for writing linear inequalities. For example,P (p) ≤ 1 − q abbreviates
1 + (−q) + (−1) · P (p) ≥ 0.

Definition 2.5. LetM = (W,R, V, P ) be an epistemic probability model. We define a binary truth
relation|=p between a pointed epistemic probability model(M, w) andL-formulas as follows.

M, w |=p ⊤

M, w |=p p iff p ∈ V (w)

M, w |=p ¬ϕ iff M, w 6|=p ϕ

M, w |=p ϕ ∧ ψ iff M, w |=p ϕ andM, w |=p ψ

M, w |=p t ≥ 0 iff JtKw ≥ 0

JϕKp := {u ∈ W | M, u |=p ϕ}

Pw(X) :=
P (X ∩ [w])

P ([w])

JqKw := q

Jq · P (ϕ)Kw := q · Pw(JϕKp)

Jt + t′Kw := JtKw + Jt′Kw

7



Validity of ϕ ∈ L in epistemic probability modelM, writtenM |=p ϕ, means thatM, w |=p ϕ
for each worldw ∈ W . Validity of ϕ ∈ L, written |=p ϕ, means thatM |=p ϕ for each epistemic
probability modelM.

3 Certainty and Belief

[Eij13] formulates and proves a “certainty theorem” relating certainty in epistemic probability
models to knowledge in a version of these models in which the probabilistic information is re-
moved. This motivates the following definition.

Definition 3.1 (Knowledge as Certainty). We adopt the following abbreviations.

• Kϕ abbreviatesP (ϕ) = 1.

We readKϕ as “the agent knowsϕ.”

• Ǩϕ abbreviates¬K¬ϕ.

We readǨϕ as “ϕ is consistent with the agent’s knowledge.”

Theorem 3.2([Eij13]). K is anS5 modal operator:

1. |=p ϕ for eachL-instanceϕ of a scheme of classical propositional logic.

Axioms of classical propositional logic are valid.

2. |=p K(ϕ→ ψ) → (Kϕ→ Kψ)

Knowledge is closed under logical consequence.

3. |=p Kϕ→ ϕ

Knowledge is veridical.

4. |=p Kϕ→ KKϕ

Knowledge is positive introspective: it is known what is known.

5. |=p ¬Kϕ→ K¬Kϕ

Knowledge is negative introspective: it is known what is notknown.

6. |=p ϕ implies|=p Kϕ

All validities are known.

7. |=p ϕ→ ψ and|=p ϕ together imply|=p ψ.

Validities are closed under the rule of Modus Ponens.

We define belief in a propositionϕ as willingness to take bets onϕ with the odds being better
than some rational numberc ∈ (0, 1) ∩ Q. This leads to a number of degrees of belief, one for
each thresholdc.
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Definition 3.3 (Belief as Willingness to Bet). Fix a thresholdc ∈ (0, 1) ∩Q.

• Bcϕ abbreviatesP (ϕ) > c.

We readBcϕ as “the agent believesϕ with thresholdc.”

• B̌cϕ abbreviates¬Bc¬ϕ.

We readB̌ϕ as “ϕ is consistent with the agent’s threshold-c beliefs.”

If the thresholdc is omitted (either in the notationsBcϕ andB̌cϕ or in the informal readings of
these notations), it is assumed thatc = 1

2
.

This notion of belief comes from subjective probability [Jef04]. In particular, fix a threshold
c = p/q ∈ (0, 1) ∩ Q. Suppose that the agent believesϕ with thresholdc = p/q; that is,P (ϕ) >
p/q. If the agent wagersp dollars for a chance to winq dollars on a bet thatϕ is true, then she
expects her net winnings to be

[(q − p) · P (ϕ)]− [p · (1− P (ϕ))] = q · P (ϕ)− p

dollars on this bet. This is a positive number of dollars if and only if q · P (ϕ) > p. But notice that
the latter is guaranteed by the assumptionP (ϕ) > p/q. Therefore, it is rational for the agent to
take this bet. Said in the parlance of the subjective probability literature: “If the agent stakesp to
win q in a bet onϕ, then her winning expectation is positive in case she believesϕ with threshold
c = p/q.” Or in a short motto: “Belief is willingness to bet.”

Remark 3.4. Belief based on thresholdc = 0 or c = 1 is trivial to express in terms of negation,K,
and falsehood⊥. So we do not consider these thresholds here. Beliefs based on low-thresholdsc ∈
(0, 1

2
) ∩ Q have unintuitive and unusual features. First, low-threshold beliefs unintuitively permit

inconsistency of the kind that an agent can believe bothϕ and¬ϕ while avoiding inconsistency
of the kind that the agent can believe a self-contradictory formula such as⊥. (This suggests some
connection with paraconsistent logic.) Second, the dual ofa low-threshold belief implies the belief
at that threshold (i.e.,̌Bcϕ→ Bcϕ), which is unusual if we assign the usual “consistency” reading
to dual operators (i.e., “ϕ is consistent with the agent’s beliefs impliesϕ is believed” is unusual).
Since low-thresholdc ∈ (0, 1

2
) ∩ Q beliefs have these unintuitive and unusual features, we leave

their study for future work, focusing instead on thresholdsc ∈ [1
2
, 1) ∩Q.

The following lemma provides a useful characterization of the dualB̌cϕ.

Lemma 3.5. Let M = (W,R, V, P ) be an epistemic probability model.

1. M, w |=p B̌
cϕ iff M, w |=p P (ϕ) ≥ 1− c.

2. M, w |=p B̌
1

2ϕ iff M, w |=p P (ϕ) ≥
1
2
.
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Proof. For Item 1, we have the following:

M, w |=p B̌
cϕ

iff M, w |=p ¬Bc¬ϕ by definition ofB̌cϕ

iff Pw(J¬ϕKp) 6> c by definition ofBcϕ and|=p

iff Pw(J¬ϕKp) ≤ c sinceQ is totally ordered

iff Pw(JϕKp) ≥ 1− c sinceJ¬ϕKp =W − JϕKp

For Item 2, apply Item 1 withc = 1
2
.

We now consider a simple example.

Example 3.6(Non-normality). In this variation, all horses have equal chances of winning and the
agent knows this.

h1

w1

h2

w2

h3

w3

P = {w1 :
1
3
, w2 :

1
3
, w3 :

1
3
}

M3.6

Recalling that an omitted thresholdc is implicitly assumed to be1
2
, the following are readily veri-

fied.

1. M3.6 |=p B(h1 ∨ h2 ∨ h3).

The agent believes the winning horse is among the three.

(The agent is willing to bet that the winning horse is among the three.)

2. M3.6 |=p B(h1 ∨ h2) ∧ B(h1 ∨ h3) ∧B(h2 ∨ h3).

The agent believes the winning horse is among any two.

(The agent is willing to bet that the winning horse is among any two.)

3. M3.6 |=p Ba¬h1 ∧ Ba¬h2 ∧Ba¬h3.

The agent believes the winning horse is not any particular one.

(The agent is willing to bet that the winning horse is not any particular one.)

4. M3.6 |=p ¬B(¬h1 ∧ ¬h2).

The agent does not believe that both horses1 and2 do not win.

(The agent is not willing to bet that both horses1 and2 do not win.)
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It follows from Items 3 and 4 of Example 3.6 that the present notion of belief is not closed
under conjunction. This is discussed as part of the literature on the “Lottery Paradox” [Kyb61].1

However, there is no reason in general that it is paradoxicalto assign a conjunctionϕ ∧ ψ a lower
probability than either of its conjunctions. Indeed, ifϕ andψ are independent, then the probability
of their conjunction equals the product of their probabilities, so unless one ofϕ or ψ is certain
or impossible, the probability ofϕ ∧ ψ will be less than the probability ofϕ and less than the
probability ofψ.

We set aside philosophical arguments for or against closureof belief under conjunction and
instead turn our attention to the study of the properties of the present notion of belief. One of
these is a complicated but useful property due to Scott [Sco64] that makes use of notation due to
Segerberg [Seg71].

Definition 3.7(Segerberg notation; [Seg71]). Fix a positive integerm ∈ Z+ and formulasϕ1, . . . , ϕm

andψ1, . . . , ψm. The expression

(ϕ1, . . . , ϕmIψ1, . . . , ψm) (3)

abbreviates the formula
K(F0 ∨ F1 ∨ F2 ∨ · · · ∨ Fm) ,

whereFi is the disjunction of all conjunctions

d1ϕ1 ∧ · · · ∧ dmϕm ∧ e1ψ1 ∧ · · · ∧ emψm

satisfying the property thatexactlyi of thedk’s are the empty string,at leasti of theek’s are the
empty string, and the rest of thedk’s andek’s are the negation sign¬. We may write(ϕiIψi)

m
i=1 as

an abbreviation for (3). Finally, let

(ϕiEψi)
m
i=1 abbreviate (ϕiIψi)

m
i=1 ∧ (ψiIϕi)

m
i=1 .

We also allow the use ofE in a notation similar to (3).

The formula(ϕiIψi)
m
i=1 says that the agent knows that the number of trueϕi’s is less than or

equal to the number of trueψi’s. Put another way,(ϕiIψi)
m
i=1 is true if and only if every one of

the agent’s epistemically accessible worlds satisfies at least as manyψi’s asϕi’s. The formula
(ϕiEψi)

m
i=1 says that every one of the agent’s epistemically accessibleworlds satisfies exactly as

manyψi’s asϕi’s.

Definition 3.8 (Scott scheme; [Sco64]). We define the following scheme:

[(ϕiIψi)
m
i=1 ∧ B

cϕ1 ∧
∧m

i=2 B̌
cϕi] →

∨m

i=1B
cψi (Scott)

If m = 1, then
∧m

i=2 B̌
cϕi is ⊤. Note that (Scott) is meant to encompass the indicated scheme for

each positive integerm ∈ Z+.

1The usual formulation of the Lottery Paradox: it is paradoxical for an agent to believe that one ofn lottery tickets
will be a winner (i.e., “some ticket is a winner”) without believing of any particular ticket that it is the winner (i.e.,
“for eachi ∈ {1, . . . , n}, ticketi is not a winner”).
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(Scott) says that if the agent knows the number of trueϕi’s is less than or equal to the number
of true ψi’s, she believesϕ1 with thresholdc, and the remainingϕi’s are each consistent with
her threshold-c beliefs, then she believes one of theψi’s with thresholdc. Adapting a proof of
Segerberg [Seg71], we show that belief with thresholdc = 1

2
satisfies (Scott).

We report this result along with a number of other propertiesin the following proposition.

Theorem 3.9(Properties of Belief). For c ∈ (0, 1) ∩Q, we have:

1. 6|=p B
c(ϕ→ ψ) → (Bcϕ→ Bcψ).

Belief is not closed under logical consequence.

(SoBc is not a normal modal operator.)

2. 6|=p B
cϕ→ ϕ.

Belief is not veridical.

3. |=p Kϕ→ Bcϕ.

What is known is believed.

4. |=p ¬Bc⊥.

The propositional constant⊥ for falsehood is not believed.

5. |=p B
c⊤.

The propositional constant⊤ for truth is believed.

6. |=p B
cϕ→ KBcϕ.

What is believed is known to be believed.

7. |=p ¬B
cϕ→ K¬Bcϕ.

What is not believed is known to be not believed.

8. |=p K(ϕ→ ψ) → (Bcϕ→ Bcψ).

Belief is closed under known logical consequence.

9. If c ∈ [1
2
, 1), then|=p B

cϕ→ B̌cϕ.

High-threshold belief is consistent: belief inϕ implies disbelief in¬ϕ.

10. |=p B̌
1

2ϕ ∧ Ǩ(¬ϕ ∧ ψ) → B
1

2 (ϕ ∨ ψ).

For mid-threshold belief, ifϕ is consistent with the agent’s beliefs and¬ϕ ∧ ψ is consistent
with her knowledge, then she believesϕ ∨ ψ.

11. |=p [(ϕiIψi)
m
i=1 ∧ B

1

2ϕ1 ∧
∧m

i=2 B̌
1

2ϕi] →
∨m

i=1B
1

2ψi.

Mid-threshold belief satisfies (Scott).
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Proof. We consider each item in turn.

1. Givenc ∈ (0, 1)∩Q and integersp andq such thatp/q = c, we defineM as the modification
of the modelM3.6 of Example 3.6 obtained by changingP as follows:

P :=

{

w1 :
q − p

2q
, w2 :

p

q
, w3 :

q − p

2q

}

.

Since0 < p < q, it follows that

Pw1
(J¬h1 → h2Kp) = Pw1

({w1, w2}) =
q + p

2q
>

2p

2q
=
p

q
,

Pw1
(J¬h1Kp) = Pw1

({w2, w3}) =
q + p

2q
>

2p

2q
=
p

q
, and

Pw1
(Jh2Kp) = Pw1

(w2) =
p

q
.

Therefore, we have

M, w1 |=p B
c(¬h1 → h2) ∧B

c¬h1 ∧ ¬Bch2 .

2. ForM defined in the proof of Item 1, we have

M, w1 |=p h1 ∧B
c¬h1 .

3. M, w |=p Kϕ impliesPw(JϕKp) = 1 > c. HenceM, w |=p B
cϕ.

4. Pw(J⊥Kp) = 0 < c. HenceM, w |= ¬Bc⊥.

5. Pw(J⊤Kp) = 1 > c. HenceM, w |=p B
c⊤.

6. M, w |=p B
cϕ impliesPw(JϕKp) > c. To show thatM, w |=p KB

cϕ, we must prove that

Pw(JB
cϕKp) =

P (JBcϕKp ∩ [w])

P ([w])
= 1 .

To show this, we prove thatJBcϕKp ∩ [w] = [w]. So chooseu ∈ [w]. SinceR is an
equivalence relation, we have

Pu(JϕKp) =
P (JϕKp ∩ [u])

P ([u])
=
P (JϕKp ∩ [w])

P ([w])
= Pw(JϕKp) > c ,

which impliesu ∈ JBcϕKp. The result follows.

7. The argument is similar to that for Item 6, though we note that M, w |=p ¬Bcϕ implies
Pw(JϕKp) ≤ c.

13



8. We assume thatM, w |=p K(ϕ→ ψ) andM, w |=p B
cϕ. This means thatPw(Jϕ→ ψKp) =

1 andPw(JϕKp) > c. But then it follows thatPw(JψKp) > c as well, which is what it means
to haveM, w |=p B

cψ.

9. Assumec ∈ [1
2
, 1)∩Q andM, w |=p B

cϕ. ThenPw(JϕKp) > c ≥ 1−c. SoPw(JϕKp) ≥ 1−c.
The result therefore follows by Lemma 3.5.

10. We prove something more general. Assumec ∈ (0, 1
2
] ∩ Q andM, w |=p B̌cϕ. By

Lemma 3.5, it follows thatPw(JϕKp) ≥ c. Let us assume further thatM, w |=p Ǩ(¬ϕ ∧ ψ).
This means

1 6= Pw(J¬(¬ϕ ∧ ψ)Kp) =
P (J¬(¬ϕ ∧ ψ)Kp ∩ [w])

P ([w])
,

which implies there existsv ∈ J¬ϕ ∧ ψKp ∩ [w]. SinceP (v) > 0 by full support, it follows
that

Pw(Jϕ ∨ ψKp) =
P (Jϕ ∨ ψKp ∩ [w])

P ([w])

=
P (JϕKp ∩ [w])

P ([w])
+
P (J¬ϕ ∧ ψKp ∩ [w])

P ([w])

≥
P (JϕKp ∩ [w])

P ([w])
+

P (v)

P ([w])

= Pw(JϕKp) +
P (v)

P ([w])

≥ c+
P (v)

P ([w])
> c .

That is,M, w |=p B
c(ϕ ∨ ψ).

11. Again, we prove something more general. We assumec ∈ (0, 1
2
] ∩Q plus the following:

M, w |=p (ϕiIψi)
m
i=1 (4)

M, w |=p B
cϕ1 (5)

M, w |=p

∧m

i=2 B̌
cϕi (6)

We recall the meaning of (4): for eachv ∈ [w], the number ofϕi’s true atv is less than or
equal to the number ofψk’s true atv. It therefore follows from (4) that

Pw(Jϕ1Kp) + · · ·+ Pw(JϕmKp) ≤ Pw(Jψ1Kp) + · · ·+ Pw(JψmKp) . (7)

Outlining an argument due to Segerberg [Seg71, pp. 344–346], the reason for this is as
follows: we think of each worldv ∈ [w] as being assigned a “weight”Pw(v). A member
Pw(JϕiKp) of the sum on the left of (7) is just a total of the weight of every v ∈ [w] that
satisfiesϕi; that is,

Pw(JϕiKp) =
∑

{Pw(v) | v ∈ JϕiKp ∩ [w]} .
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Assumption (4) tells us that for eachv ∈ [w], the number of totalsPw(JϕiKp) on the left of
(7) to whichv contributes its weight is less than or equal to the number of totalsPw(JψkKp)
on the right of (7) to whichv contributes its weight. But then the sum of totals on the left
must be less than or equal to the sum of totals on the right. Hence (7) follows.

Having established (7), we now proceed further with the overall proof. By (5), we have
Pw(Jϕ1Kp) > c. Applying (6) and Lemma 3.5, we havePw(ϕi) ≥ c for eachi ∈ {2, . . . , m}.
Hence

Pw(Jψ1Kp) + · · ·+ Pw(JψmKp) ≥ Pw(Jϕ1Kp) + · · ·+ Pw(JϕmKp) > mc .

That is, the sum of thePw(JψkKp)’s must exceedmc. Since each member of thism-member
sum is non-negative, it follows that at least one member mustexceedc. That is, there exists
j ∈ {1, . . . , m} such thatPw(JψjKp) > c. HenceM, w |=p

∨m

j=1B
cψj .

4 Epistemic Neighborhood Models

The modal formulasKϕ andBcϕ were taken as abbreviations in the languageL of probability
logic. We wish to consider a propositional modal language that has knowledge and belief operators
as primitives.

Definition 4.1. The languageLKB of (single-agent) knowledge and beliefis defined by the follow-
ing grammar.

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ

p ∈ P

We adopt the usual abbreviations for other Boolean connectives and define the dual operators
Ǩ := ¬K¬ andB̌ := ¬B¬. Finally, theLKB-formula

(ϕ1, . . . , ϕmIψ1, . . . , ψm)

and its abbreviation(ϕiIψi)
m
i=1 are given as in Definition 3.7 except that all formulas are taken

from the languageLKB.

Our goal will be to develop a possible worlds semantics forLKB that links with the probabilistic
setting by making the following translation truth-preserving.

Definition 4.2 (Translation). For c ∈ (0, 1) ∩Q, we definec : LKB → L as follows.

⊤c := ⊤

pc := p

(¬ϕ)c := ¬ϕc

(ϕ ∧ ψ)c := ϕc ∧ ψc

(Kϕ)c := P (ϕc) = 1 (= Kϕc in L)

(Bϕ)c := P (ϕc) > c (= Bcϕc in L)
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Since we have seen that the probabilistic belief operatorBc is not a normal modal operator
(Theorem 3.9(1)), we opt for a neighborhood semantics forLKB [Che80, Ch. 7] with an epistemic
twist.

Definition 4.3. An epistemic neighborhood modelis a structure

M = (W,R, V,N)

satisfying the following.

• (W,R, V ) is a finite single-agentS5 Kripke model (as in Definition 2.1). As before, we let

[w] := {v ∈ W | wRv}

denote the equivalence class of worldw. This is the set of worlds the agent cannot distinguish
fromw.

• N : W → ℘(℘(W )) is a neighborhood functionthat assigns to each worldw ∈ W a
collectionN(w) of sets of worlds—each such set called aneighborhoodof w—subject to
the following conditions.

(kbc) ∀X ∈ N(w) : X ⊆ [w].

(kbf) ∅ /∈ N(w).

(n) [w] ∈ N(w).

(a) ∀v ∈ [w] : N(v) = N(w).

(kbm) ∀X ⊆ Y ⊆ [w] : if X ∈ N(w), thenY ∈ N(w).

A pointed epistemic neighborhood modelis a pair(M, w) consisting of an epistemic neighborhood
modelM and a worldw in M .

An epistemic neighborhood model is a variation of a neighborhood model that includes an
epistemic componentR. Intuitively, [w] is the set of worlds the agent knows to be possible atw
and eachX ∈ N(w) represents a proposition that the agent believes atw. The condition thatR be
an equivalence relation ensures that knowledge is closed under logical consequence, veridical (i.e.,
only true things can be known), positive introspective (i.e., the agent knows what she knows), and
negative introspective (i.e., the agent knows what she doesnot know).

Property (kbc) ensures that the agent does not believe a propositionX ⊆W that she knows to
be false: ifX contains a world inw′ ∈ (W − [w]) that the agent knows is not possible with respect
to the actual worldw, then she knows thatX cannot be the case and hence she does not believeX.
Property (kbf) ensures that no logical falsehood is believed, while Property (n) ensures that every
logical truth is believed. Property (a) ensures thatX is believed if and only if it is known thatX is
believed. Property (kbm) says that belief is monotonic: if an agent believesX, then she believes
all propositionsY ⊇ X that follow fromX.

We now turn to the definition of truth for the languageLKB.
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Definition 4.4. Let M = (W,R, V,N) be an epistemic neighborhood model. We define a binary
truth relation|=n between a pointed epistemic neighborhood model(M, w) andLKB-formulas and
a functionJ·KMn : LKB → ℘(W ) as follows.

JϕKMn := {v ∈ W | M, v |=n ϕ}

M, w |=n p iff p ∈ V (w)

M, w |=n ¬ϕ iff M, w 6|=n ϕ

M, w |=n ϕ ∧ ψ iff M, w |=n ϕ andM, w |=n ψ

M, w |=n Kϕ iff [w] ⊆ JϕKMn
M, w |=n Bϕ iff [w] ∩ JϕKMn ∈ N(w)

Validity of ϕ ∈ LKB in an epistemic neighborhood modelM, written M |=n ϕ, means that
M, w |=n ϕ for each worldw ∈ W . Validity of ϕ ∈ LKB, written |=n ϕ, means thatM |=n ϕ
for each epistemic neighborhood modelM. For a classC of epistemic neighborhood models, we
write C |=n ϕ to mean thatM |=n ϕ for eachM ∈ C.

Intuitively, Kϕ is true atw iff ϕ holds at all worlds epistemically possible with respect tow,
andBϕ holds atw iff the epistemically possibleϕ-worlds make up a neighborhood ofw. Note
that it follows from this definition that the dual for belief̌Bϕ is true atw iff [w]∩ J¬ϕKMn /∈ N(w).
The latter says that the epistemically possible¬ϕ-worlds do not make up a neighborhood ofw.

4.1 Neighborhood and Probability Model Agreement

Epistemic neighborhood models describe agent knowledge and belief. Epistemic probability mod-
els can be used for the same purpose along the lines we have discussed above once we establish a
belief thresholdc ∈ (0, 1) ∩Q. This gives rise to a natural question: is there some sense inwhich
these two models for knowledge and belief can be seen to agree?

Definition 4.5 (Model Agreement). LetM = (W,R, V,N) be an epistemic neighborhood model.
For a thresholdc ∈ (0, 1) ∩ Q, to say that a probability measureP : ℘(W ) → [0, 1] agrees with
M for thresholdc means we have the following:

• P satisfies full support (i.e.,P (w) 6= 0 for eachw ∈ W ); and

• for eachw ∈ W andX ⊆ [w], we have

X ∈ N(w) iff Pw(X) := P (X|[w]) > c .

To say that an epistemic probability modelM′ = (W ′, R′, V ′, P ′) agrees withM for thresholdc
means that(W ′, R′, V ′) = (W,R, V ) andP ′ agrees withM for thresholdc. If the thresholdc is
not mentioned, it is assumed thatc = 1

2
.

Agreement for thresholdc between an epistemic neighborhood model and an epistemic proba-
bility model makes the translationc : LKB → L (Definition 4.2) truth-preserving.
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Theorem 4.6 (Agreement). Fix c ∈ (0, 1) ∩ Q, an epistemic neighborhood modelM, and an
epistemic probability modelM′. If M andM′ agree for thresholdc, then we have for each
ϕ ∈ LKB that

M, w |=n ϕ iff M′, w |=p ϕ
c .

Proof. Induction on the structure ofϕ ∈ LKB. The non-modal cases are obvious.
We first consider knowledge formulas. AssumeM, w |=n Kψ. This means[w] ⊆ JψKMn .

Applying the induction hypothesis, this is equivalent to[w] ⊆ JψcKM
′

p . By full support, the latter
holds if and only if

Pw(Jψ
cKM

′

p ) =
P (JψcKM

′

p ∩ [w])

P ([w])
= 1 ,

which is what it means to haveM′, w |=p P (ψ
c) = 1. SinceP (ψc) = 1 is what is abbreviated by

(Kψ)c, the result follows.
Now we move to belief formulas. AssumeM, w |=n Bψ. This means that[w]∩JψKMn ∈ N(w).

SinceM′ agrees withM, the latter holds iffPw([w] ∩ JψcKM
′

p ) > c. But this is equivalent to
Pw(Jψ

cKM
′

p ) > c, which is what it means to haveM′, w |=p P (ψ
c) > c. SinceP (ψc) > c is what

is abbreviated by(Bψ)c, the result follows.

4.2 Probability Measures on Epistemic Neighborhood Models

In this subsection, we take up the question of agreement between epistemic probability models
and epistemic neighborhood models from the point of view of the latter: given an epistemic neigh-
borhood model and a thresholdc, can we find an agreeing epistemic probability model for this
threshold? As we will see, we have a full answer only for the casec = 1

2
. The case forc 6= 1

2
is

open, though we will have some comments on this in the conclusion of the paper.
To begin, we adapt an example due to Walley and Fine [WF79] to show that not every epistemic

neighborhood model gives rise to an agreeing probability measure.

Theorem 4.7([WF79]). There exists an epistemic neighborhood modelM that has no agreeing
probability measure for any thresholdc ∈ (0, 1) ∩Q.

Proof. We adapt Example 2 from [WF79, pp. 344-345] to the present setting. Fix c ∈ (0, 1) ∩ Q.
Let P := {a, b, c, d, e, f, g}. Define:

X := {efg, abg, adf, bde, ace, cdg, bcf} ,

Y := {abcd, cdef, bceg, acfg, bdfg, abef, adeg} .

Notation: in the above sets,xyz denotes{x, y, z}, andwxyz denotes{w, x, y, z}. Now define

N := {X ′ | ∃X ∈ X : X ⊆ X ′ ⊆ P} .

LetM := (W,R, V,N) be defined byW := P,R :=W ×W , V (w) := {w} for eachw ∈ P, and
N(w) := N for eachw ∈ W . It is straightforward to verify thatM is an epistemic neighborhood
model and thatY ∩ N = ∅.
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Toward a contradiction, suppose there exists a probabilitymeasureP that agrees withM.
Since each letterp ∈ W occurs in exactly three of the seven members ofX , we have:

∑

X∈X

P (X) =
∑

p∈W

3 · P ({p}) .

Since each letterp ∈ W occurs in exactly four of the seven members ofY , we have:

∑

Y ∈Y

P (Y ) =
∑

p∈W

4 · P ({p}) >
∑

X∈X

P (X) .

On the other hand, sinceY ∩ N = ∅, no member ofY is a neighborhood ofM and therefore it
follows by the agreement ofP with M that we haveP (Y ) ≤ c < P (X) for eachY ∈ Y and
X ∈ X . But then ∑

Y ∈Y

P (Y ) <
∑

X∈X

P (X) ,

and we have reached a contradiction. Conclusion: no suchP exists.

Question: what are the additional restrictions on the neighborhood function that one must
impose in order to guarantee the existence of an agreeing probability measure for a given threshold
c ∈ (0, 1) ∩Q? Forc = 1

2
, the restrictions are known. For thresholdsc 6= 1

2
, the question is open.

The restrictions needed forc = 1
2

were studied first in the form of a purely probabilistic se-
mantics (i.e., something like epistemic probability models and not something like our epistemic
neighborhood models). To our knowledge, Lenzen’s [Len80] is the first complete study of the
restrictions needed in such a purely probabilistic framework over a unary modal language similar
to LKB. The conditions Lenzen proposed are targeted to satisfy theconditions of a theorem due
to Scott, which is the key result that gives rise to a probability measure in the completeness proof
for Lenzen’s logic. Here we state the required restrictionsin the language of our epistemic neigh-
borhood models. Later we will make the link with Lenzen’s axiomatic system when we consider
axiomatic theories in the languageLKB targeted to our epistemic neighborhood models.

Definition 4.8 (Extra Properties for “Mid-Threshold” Models). Let M = (W,R, V,N) be an
epistemic neighborhood model. Form ∈ Z+ and sets of worldsX1, . . . , Xm andY1, . . . , Ym, we
write

X1, . . . , XmIY1, . . . , Ym (8)

to mean that for eachv ∈ W , the number ofXi’s containingv is less than or equal to the number
of Yi’s containingv. This is the semantic counterpart of the formula from Definition 3.7. We
may write (XiIYi)mi=1 as an abbreviation for (8). Also, we write(XiEYi)mi=1 to mean that both
(XiIYi)mi=1 and(YiIXi)

m
i=1 hold, and we allow the notation withE to be used in a form as in (8).

The following is a list of properties thatM may satisfy.

(d) ∀X ∈ N(w) : [w]−X /∈ N(w).

(sc) ∀X, Y ⊆ [w]: if [w]−X /∈ N(w) andX ( Y , thenY ∈ N(w).
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(scott) ∀m ∈ Z+, ∀X1, . . . , Xm, Y1, . . . , Ym ⊆ [w] :

if X1, . . . , XmIY1, . . . , Ym and

X1 ∈ N(w) and

∀i ∈ {2, . . . , m} : [w]−Xi /∈ N(w) ,

then ∃j ∈ {1, . . . , m} : Yj ∈ N(w) .

To say an epistemic neighborhood model ismid-thresholdmeans it satisfies (d), (sc), and (scott).
We may drop the word “epistemic” in referring to mid-threshold epistemic neighborhood models.
Pointed versions of mid-threshold neighborhood models aredefined in the obvious way.

Property (d) ensures that beliefs are consistent in the sense that the agent does not believe both
X and its complement[w]−X. Property (sc) is a form of “strong commitment”: if the agentdoes
not believe the complement[w] − X, then she must believe any strictly weakerY implied byX.
Property (scott) is a version of the syntactic scheme (Scott) from Definition 3.8.

Let us return to the modelM from the proof of Theorem 5.5. It is easy to see that for no
Xi ∈ X do we haveW −Xi ∈ N(a) = N . So, numbering the members ofX asX1, . . . , X7 and
the members ofY asY1, . . . , Y7, we see thatM satisfies

(XiIYi)
7
i=1, X1 ∈ N(a), and ∀i ∈ {2, . . . , 7} : W −Xi /∈ N(a) ,

which is the antecedent of property (scott) from Definition 4.8. However,M does not satisfy

∃j ∈ {1, . . . , 7} : Yj ∈ N(a) ,

which is the corresponding consequent of the indicated instance of (scott). So we see that if we
were to restrict ourselves to the class of epistemic neighborhood models satisfying this property,
we would no longer be able to useM as a counterexample to the claim that not every epistemic
neighborhood model gives rise to an agreeing probability measure. Of course ruling outM as a
counterexample to this claim does not prove the claim. However, utilizing (scott) in conjunction
with (d) and (sc), we are able to prove the claim. This proof makes crucial use of a theorem due to
Scott that is closely related to [Sco64, Theorem 4.1].

In preparation for the statement of Scott’s theorem, we recall some well-known notions from
linear algebra. For a nonempty setS, letL(S) denote theS-dimensional real vector space whose
vectors consist of functionsx : S → R and whose operations of vector addition and scalar multipli-
cation are defined coordinate-wise: given vectorsx, y : S → R and a scalar realr ∈ R, the vector
(x+ y) : S → R is defined by(x+ y)(s) := x(s) + y(s) for each coordinates ∈ S and the vector
(r ·x) : S → R is defined by(r ·x)(s) := r ·x(s) for each coordinates ∈ S. Note that we have just
used the usual notational overloading wherein the+ or · symbol on one side of an equation refers
to the vector operation, and yet the same symbol on the other side of the same equation refers to
the operation inR. Other common notational abbreviations such as omission of·’s and writing−x
for (−1) ·xwill be used. To say that a vectorx : S → R is rationalmeans that all of its coordinates
(i.e., values) are rational numbers. To say a setX ⊆ L(S) of vectors is rational means that every

20



vector inX is rational, and to say thatX is symmetricmeans thatX = −X := {−x | x ∈ X}.
A linear functional onL(S) is a functionf : L(S) → R satisfying the following property of
linearity: for eachr1, r2 ∈ R andx, y ∈ L(S), we havef(r1x+ r2y) = r1 · f(x) + r2 · f(y).

Theorem 4.9([Sco64, Theorem 1.2]). Let S be a finite nonempty set andX be a finite, rational,
symmetric subset ofL(S). For eachN ⊆ X, there exists a linear functionalf onL(S) thatrealizes
N , meaning

N = {x ∈ X | f(x) ≥ 0} ,

if and only if the following conditions are satisfied:

• for eachx ∈ X, we havex ∈ N or−x ∈ N ; and

• for each integern ≥ 0 andx0, . . . , xn ∈ N , we have

n∑

i=0

xi = 0 ⇒ −x0 ∈ N .

We use this theorem to show that mid-threshold models alwaysgive rise to an agreeing proba-
bility measure. That is, the neighborhood function of mid-threshold models picks out exactly those
neighborhoods that may be assigned a probability exceeding1

2
. Many of the key ideas of the proof

of the following result are due to Lenzen [Len80]. However, the argument we present here has
been rewritten in a streamlined, modern form and in the language of our epistemic neighborhood
models. Despite this difference (and the necessary work we had to undertake to translate these
results into this modern form), we are happy to credit Professor Lenzen for the following result.

Theorem 4.10([Len80]). Let M = (W,R, V,N) be a mid-threshold epistemic neighborhood
model. There exists a probability measureP : ℘(W ) → [0, 1] agreeing withM for threshold1

2
;

that is,

• P satisfies full support (i.e.,P (w) 6= 0 for eachw ∈ W ); and

• for eachw ∈ W andX ⊆ [w], we have

X ∈ N(w) iff Pw(X) := P (X|[w]) > 1
2
.

Proof. We credit Lenzen [Len80] for this proof, though we herein provide an original reformula-
tion of his work within the setting of the epistemic neighborhood models introduced in this paper.
Proceeding, forw ∈ W , defineSw := [w]. For eachX ⊆ Sw, define the relative complement
X ′ := Sw −X and letι(X) : Sw → {0, 1} be the characteristic function ofX:

ι(X)(s) :=

{

1 if s ∈ X,

0 otherwise.
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We consider the following finite subsets ofL(Sw):

Aw := {ι(X) | X ⊆ Sw} ,

Bw := {ι(X)− ι(X ′) | X ⊆ Sw & X ′ /∈ N(w)} ,

Nw := Aw ∪ Bw ,

Xw := Nw ∪ (−Nw) .

It is easy to see thatNw ⊆ Xw and thatXw is a finite, rational, and symmetric subset ofL(Sw). We
wish to show thatNw andXw satisfy the conditions of Theorem 4.9. First, we note thatx ∈ Xw

impliesx ∈ Nw or−x ∈ Nw by the definition ofXw.
For the second condition of Theorem 4.9, suppose we are givenan integern ≥ 0 such that

x0, . . . , xn ∈ Nw and
∑n

i=0 xi = 0. We wish to show that−x0 ∈ Nw. Proceeding, there exists an
integerℓ satisfying:

0 ≤ i ≤ ℓ implies xi = ι(Xi)− ι(X ′
i) ∈ Bw , and

ℓ < i ≤ n implies xi = ι(Xi) ∈ Aw .

Toward a contradiction, assume there existsi > ℓ with xi 6= 0. Then forx∗ :=
∑n

i=ℓ+1 xi, we have
x∗(s) ≥ 0 for all s ∈ Sw, and there existss∗ ∈ Sw with x∗(s∗) > 0. Hence

∑ℓ

i=0 xi =
∑ℓ

i=0

(
ι(Xi)− ι(X ′

i)
)
= −x∗ ,

where−x∗(s∗) < 0 and−x∗(s) ≤ 0 for all s ∈ Sw. So for eachs ∈ Sw, the number of the
sets in the listX ′

0, . . . , X
′
ℓ containings is greater than or equal to the number of the sets in the list

X0, . . . , Xℓ containings. Further,s∗ is a member of strictly more sets in the former list than those
in the latter. By renumbering, we may assume thats∗ ∈ X ′

0 −X0. Then we have

X0 ∪ {s∗}, X1, . . . , XℓIX
′
0, X

′
1, . . . , X

′
ℓ .

SinceX ′
0, . . . , X

′
ℓ /∈ N(w), it follows by (scott) thatX0 ∪ {s∗} /∈ N(w). ButX0 ( X0 ∪ {s∗} /∈

N(w) andX ′
0 /∈ N(w), which violates (sc). Conclusion:i > ℓ impliesxi = 0. But then we have

∑n

i=0 xi =
∑ℓ

i=0 xi. Sincexi = ι(Xi)− ι(X ′
i) for i ≤ ℓ, it follows that

∑ℓ

i=0 ι(Xi) =
∑ℓ

i=0 ι(X
′
i).

But the latter is what it means to have(XiEX ′
i)

ℓ
i=0. SinceX ′

i /∈ N(w) for i ≤ ℓ by the definition of
Bw, it follows by (scott) thatX0 /∈ N(w). But thenι(X ′

0)− ι(X0) = −x0 ∈ Bw ⊆ Nw, as desired.
So we may apply Theorem 4.9: there exists a linear functionalfw onL(Sw) that realizesNw.

That is,
Nw = {x ∈ Xw | fw(x) ≥ 0} .

Definegw : ℘(Sw) → R by the compositiongw(X) := fw(ι(X)). This function satisfies a few
important properties.

1. X ∈ N(w) iff gw(X) > gw(X
′).

SupposeX ∈ N(w). ThenX ′ /∈ N(w) by (d). Henceι(X)−ι(X ′) ∈ Bw andι(X ′)−ι(X) /∈
Bw. SinceSw ∈ N(w) by (n), it follows thatX 6= ∅ = S ′

w. But then the coordinates of
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ι(X ′)− ι(X) contain at least one1 and at least one−1. Since everyx ∈ Aw has coordinates
that are1’s or 0’s only, it follows thatι(X ′)− ι(X) /∈ Nw. As ι(X)− ι(X ′) ∈ Bw ⊆ Nw and
fw is linear and realizesNw, it follows thatgw(X) ≥ gw(X

′) andgw(X ′) � gw(X). That is,
gw(X) > gw(X

′).

Conversely, supposegw(X) > gw(X
′). Sincefw is linear and realizesNw, it follows that

ι(X ′)− ι(X) /∈ Nw ⊇ Bw. Applying the definition ofBw, we haveX ∈ N(w).

2. gw(Sw) > gw(∅) = 0.

We havegw(∅) = fw(0) = 0 by the linearity offw. SinceSw ∈ N(w) by (n), it follows that
gw(Sw) > gw(∅) by property 1.

3. If 0 ≤ gw(X) ≤ gw(Sw).

Sinceι(X) ∈ Aw ⊆ Nw andfw realizesNw, we havegw(X) ≥ 0. So eachX ⊆ Sw satisfies
gw(X) ≥ 0. From this it follows by the linearity offw that for eachX ⊆ Sw, we have

gw(X) =
∑

v∈X gw({v}) ≤
∑

v∈Sw

gw({v}) = gw(Sw) .

4. If X, Y ⊆ Sw andX ∩ Y = ∅, thengw(X ∪ Y ) = gw(X) + gw(Y ).

By the linearity offw.

5. ∅ 6= X ⊆ Sw impliesgw(X) > 0.

Suppose∅ 6= X ⊆ Sw. By property 2, it suffices to prove the result forX 6= Sw. Toward
a contradiction, assumegw(X) = 0 for ∅ ( X ( Sw. By property 4, we havegw(Sw) =
gw(X) + gw(X

′) = gw(X
′). Sincefw is linear and realizesNw and

ι(X ′)− ι(Sw) = −(ι(Sw)− ι(X ′)) = −ι(X) ∈ Xw ,

we obtain−ι(X) ∈ Nw. But ∅ ( X ( Sw implies that−ι(X) has coordinates containing
at least one−1 and at least one0. Since members ofAw have coordinates made up of0’s
and1’s, members ofBw have coordinates made up of−1’s and1’s, andNw = Aw ∪ Bw, it
cannot be the case that−ι(X) ∈ Nw. Contradiction. Conclusion:gw(X) > 0.

Now takev ∈ [w]. SinceN(v) = N(w) by (a), it follows thatgw also realizesNv. So, letting
[W ] be the set{[w] | w ∈ W} of equivalence classes, leth : [W ] → W be a choice function that
selects for each class[w] ∈ [W ] a representativeh([w]) ∈ [w]. Using a notational overloading that
ought to be harmless, we define a new functionhw : ℘([w]) → R by settinghw(X) := gh([w])(X).
Obviously,v ∈ [w] implieshv = hw. Finally, we defineP : ℘(W ) → [0, 1] by

P (X) :=
∑

[w]∈[W ]

hw(X ∩ [w])

hw([w])
.

Note that by property 2, the denominatorhw([w]) is always nonzero.
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We prove thatP is a probability measure on℘(W ) satisfying full support. First,P satisfies the
Kolmogorov axioms over the finite algebra℘(W ): we haveP (X) ≥ 0 by property 3,P (W ) = 1
by property 2 and the definition ofP , andP (X ∪ Y ) = P (X) + P (Y ) for disjointX andY by
property 4 and the definition ofP . Second, full support follows by property 5.

Finally, forX ⊆ [w], we have by property 1 thatX ∈ N(w) iff hw(X) > hw(X
′). But the

latter holds iff we have (making use of property 4) that

2 · hw(X) > hw(X) + hw(X
′) = hw([w]) .

By property 2, the definition ofP , and the fact thatX ⊆ [w], the above inequality holds iff

P (X) =
hw(X)

hw([w])
> 1

2
.

Corollary 4.11. LetM = (W,R, V,N) be a mid-threshold epistemic neighborhood model. There
exists an epistemic probability modelN = (W,R, V, P ) that agrees withM for threshold1

2
.

Proof. Let P be the measure given by Theorem 4.10.

4.3 Epistemic Neighborhood Models from Probability Measures

In the last subsection, we investigated the question of whether an epistemic neighborhood model
gives rise to an agreeing epistemic probability model. In this section, we look at this question the
other way around: given an epistemic probability model and athresholdc, is there an agreeing
epistemic neighborhood model? As we will see, the answer is always “yes.”

Definition 4.12. Given an epistemic probability modelM = (W,R, V, P ) and a thresholdc ∈
[1
2
, 1) ∩Q, we define the structureMc := (W,R, V,N c) by setting

N c(w) := {X ⊆ [w] | Pw(X) > c} .

Intuitively, the agent believes a propositionX at worldw (i.e.,X ∈ N c(w)) if and only ifX is
epistemically possible (i.e.,X ⊆ [w]) and the probability she assigns toX at worldw exceeds the
threshold (i.e.,Pw(X) > c).

Lemma 4.13(Correctness). Fix c ∈ (0, 1) ∩Q. If M is an epistemic probability model, thenMc

is an epistemic neighborhood model. Furthermore,M
1

2 is a mid-threshold neighborhood model.

Proof. We verify thatN c satisfies the required properties.

• For (kbc),X ∈ N c(w) impliesX ⊆ [w] by definition.

• For (kbf),Pw(∅) = 0 < c, so∅ /∈ N c(w).

• For (n),Pw([w]) = 1 > c, so[w] ∈ N c(w).
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• For (a), supposeX ∈ N c(w) and v ∈ [w]. ThenPw(X) > c. Sincev ∈ [w] implies
[w] = [v], we have

Pw(X) =
P (X ∩ [w])

P ([w])
=
P (X ∩ [v])

P ([v])
= Pv(X) .

HencePv(X) > c, soX ∈ N c(v).

• For (kbm), supposeX ∈ N c(w). ThenPw(X) > c. Hence ifY satisfiesX ⊆ Y ⊆ [w], we
havePw(Y ) > c and soY ∈ N c(w).

SoMc is an epistemic neighborhood model. We now show thatM
1

2 satisfies the additional re-
quired properties.

• For (d), assumec ∈ [1
2
, 1) ∩ Q andX ∈ N c(w). ThenPw(X) > c, and thereforePw([w]−

X) ≤ 1− c ≤ c. Hence[w]−X /∈ N c(w).

• For (sc), assumeX ′ := [Γ] − X /∈ N
1

2 (w) andX ( Y ⊆ [Γ]. From the first assumption,
we havePw(X

′) ≤ 1
2
, and therefore thatPw(X) ≥ 1

2
. Applying the second assumption,

Pw(Y ) > Pw(X) ≥ 1
2
, and henceX ∈ N

1

2 (w).

• For (scott), we assumec ∈ (0, 1
2
] ∩Q along with the following:

(XiIYi)
m
i=1 (9)

X1 ∈ N c(w) (10)

∀i ∈ {2, . . . , m} : [Γ]−Xi /∈ N c(w) (11)

From (9) it follows that

Pw(X1) + · · ·+ Pw(Xm) ≤ Pw(Y1) + · · ·+ Pw(Ym) (12)

The argument for this is similar to an argument for (7) in proof of Theorem 3.9(11). From
(10), we havePw(X1) > c. From (11), we have for eachi ∈ {2, . . . , m} thatPw([w]−Xi) ≤
c and therefore thatPw(Xi) ≥ 1 − c ≥ c sincec ∈ (0, 1

2
] ∩ Q. Hence the left side of (12)

exceedsmc. Since every summand on the right side of the inequality is positive andmc > 0,
it follows that at least one member of the right side of (12) must exceedc. That is, there
existsj ∈ {1, . . . , m} such thatPw(Yj) > c and henceYj ∈ N c(w).

Theorem 4.14.Let c ∈ (0, 1)∩Q andM = (W,R, V, P ) be an epistemic probability model. The
epistemic neighborhood modelMc = (W,R, V,N c) agrees withM for thresholdc.

Proof. By definition ofN c.
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5 Calculi for Belief as Willingness to Bet

We now consider an axiomatic link both with epistemic neighborhood models and with epistemic
probability models. We study two calculi: the calculusKB of epistemic neighborhood models, and
the calculusKB.5 of mid-threshold neighborhood models. Regarding the probability interpretation,
KB is sound for every threshold but not complete for any threshold. KB.5 is both sound and
complete for the probability interpretation with threshold c = 1

2
.

KB.5 is our modern reformulation of Lenzen’s [Len80] calculus for the logic of knowledge
(i.e., Lenzen’s “acceptance”) as probabilistic certaintyand belief as probability exceeding thresh-
old 1

2
. Lenzen’s intended semantic structures are something likeepistemic probability models. Our

intended semantic structures are our mid-threshold neighborhood models, though there is a natu-
ral link with epistemic probability models via Theorem 4.10. In fact, many of the main ideas of
our proof of Theorem 4.10 are not doubt translations of Lenzen’s ideas into the language of our
epistemic neighborhood models. Since we have rewritten allproofs using our own approach and
modern modal notions, it is difficult to determine whether wehave introduced novel mathematical
results on top of Lenzen’s existing work, though we suspect that anything new we may have added
along these lines (excluding of course epistemic neighborhood models themselves and all related
results except Theorem 4.10) may be slight at best. Therefore, we are happy to credit Professor
Lenzen for the probabilistic soundness and completeness ofKB.5 and for Theorem 4.10. Never-
theless, we do think that it is worth our effort to provide this modern reformulation of his results.
In particular, we believe that in using semantic structuresmore familiar to the modern modal logi-
cian, our modern reformulation of Lenzen’s results will make the mathematical details of Lenzen’s
work more accessible to a modern English-language audience. We also hope that our use of the
modal neighborhood structures will suggest directions forfurther study of qualitative probability
via tools from modal logic.

Definition 5.1. We define the following theories in the languageLKB.

• KB is defined in Table 1.

• KB.5 is obtained fromKB by adding (D), (SC), and (Scott) from Table 2.

• KB.5− is obtained fromKB.5 by omitting (BF) and (KBM).

We will see later in Theorem 5.6 thatKB.5 andKB.5− derive the same theorems.

5.1 Results for the Basic CalculusKB

The following result shows that if we restrict attention to provable statements whose only modality
is single-agent beliefBϕ, thenKB is an extension of the minimal modal logicEMN45 + ¬B⊥ =
EMN45+(BF) obtained by addingS5-knowledge and the knowledge-belief connection principles
(Ap), (An), and (KBM).2 The modal theoryKB.5, which we will see is equivalent toKB.5−, is a

2EMN45+ (BF) is the logic of single-agent belief (without knowledge) having Schemes (CL) (Table 1), M (The-
orem 5.2(2)), (N) (Table 1), 4 (Theorem 5.2(5)), 5 (Theorem 5.2(6)), and (BF) (Table 1) along with Rules (MP)
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AXIOM SCHEMES

(CL) Schemes of Classical Propositional Logic

(KS5) S5 axiom schemes for eachK

(BF) ¬B⊥

(N) B⊤

(Ap) Bϕ→ KBϕ

(An) ¬Bϕ→ K¬Bϕ

(KBM) K(ϕ→ ψ) → (Bϕ→ Bψ)

RULES

ϕ→ ψ ϕ
ψ

(MP)
ϕ
Kϕ

(MN)

Table 1: The theoryKB

(D) Bϕ→ B̌ϕ

(SC) B̌ϕ ∧ Ǩ(¬ϕ ∧ ψ) → B(ϕ ∨ ψ)

(Scott) [(ϕiIψi)
m
i=1 ∧ Bϕ1 ∧

∧m

i=2 B̌ϕi] →
∨m

i=1Bψi

Table 2: Additional axiom schemes for the theoryKB.5

knowledge-inclusive extension ofEMND45+(Scott) that adds the additional connection principle
(SC).3 In Section 5.2, we will show thatKB.5 is the modal logic for probabilistic belief with
thresholdc = 1

2
.

Theorem 5.2(KB Derivables). We have each of the following.

1. KB ⊢ Kϕ→ Bϕ.

“Knowledge implies belief.”

2. KB ⊢ B(ϕ ∧ ψ) → (Bϕ ∧Bψ).

This is “Scheme M” [Che80, Ch. 8].

3. KB ⊢ Kϕ ∧ Bψ → B(ϕ ∧ ψ).

If the antecedentKϕ were replaced byBϕ, then we would obtain “Scheme C” [Che80,
Ch. 8]. So we do not have Scheme C outright but instead a knowledge-weakened version:

(Table 1) and RE (Theorem 5.2(12)). This is a “monotonic” system of modal logic satisfying positive and negative
belief introspection (4 and 5) and the property (BF) that falsehood⊥ is not believed. See [Che80, Ch. 8] for details on
naming minimal modal logics.

3EMND45+ (Scott) is EMN45+ (BF) minus Scheme (BF) plus Schemes (D) and (Scott) from Table 2.
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in order to conclude belief of a conjunction from belief of one of the conjuncts, the other
conjunct must be known (and not merely believed, as is required by the stronger, non-KB-
provable Scheme C).

4. KB ⊢ K(ϕ→ ψ) → (B̌ϕ→ B̌ψ).

This is the dual version of our (KBM).

5. KB ⊢ Bϕ→ BBϕ.

This is “Scheme 4” for belief [Che80, Ch. 8].

6. KB ⊢ ¬Bϕ→ B¬Bϕ.

This is “Scheme 5” for belief [Che80, Ch. 8].

7. KB ⊢ Bϕ↔ KBϕ.

This says that belief and knowledge of belief are equivalent.

8. KB ⊢ ¬Bϕ↔ K¬Bϕ.

This says that non-belief and knowledge of non-belief are equivalent.

9. KB ⊢ ϕ impliesKB ⊢ Bϕ.

This is the rule of Modus Ponens (or Modal Necessitation), sometimes called “Rule RN”
[Che80, Ch. 8].

10. KB ⊢ ϕ→ ψ impliesKB ⊢ Bϕ→ Bψ.

This is “Rule RM” [Che80, Ch. 8].

11. KB ⊢ ϕ→ ψ impliesKB ⊢ B̌ϕ→ B̌ψ.

This is the dual version of RM.

12. KB ⊢ ϕ↔ ψ impliesKB ⊢ Bϕ↔ Bψ.

This is “Rule RE” [Che80, Ch. 8].

13. KB ⊢ ϕ→ ⊥ impliesKB ⊢ ¬Bϕ.

This says that no self-contradictory sentence is believed.This may be viewed as a certain
generalization of (BF) (Table 1).

Proof. We reason inKB. For 1, we haveKϕ → K(⊤ → ϕ) by elementary modal reasoning. But
then from this,B⊤ by (N), andK(⊤ → ϕ) → (B⊤ → Bϕ) by (KBM), it follows by classical
reasoning that we haveKϕ→ Bϕ.

For 2, we derive
K((ϕ ∧ ψ) → ϕ) → (B(ϕ ∧ ψ) → Bϕ) (13)
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by (KBM), and the antecedent of (13) by (CL) and (MN). Therefore, the consequent of (13) is
derivable by (MN). By a similar argument,B(ϕ ∧ ψ) → Bψ is derivable. By classical reasoning,
2 is derivable.

For 3, we derive

Kϕ→ K(ψ → (ϕ ∧ ψ)) and (14)

K(ψ → (ϕ ∧ ψ)) → (Bψ → B(ϕ ∧ ψ)) . (15)

(14) follows byS5 reasoning. (15) follows by (KBM). Applying classical reasoning to (14) and
(15), we obtain

Kϕ→ (Bψ → B(ϕ ∧ ψ)) ,

from which 3 follows by classical reasoning.
For 4, we derive

K(ϕ→ ψ) → K(¬ψ → ¬ϕ) and (16)

K(¬ψ → ¬ϕ) → (B¬ψ → B¬ϕ) . (17)

(16) follows byS5 reasoning. (17) follows by (KBM). Applying classical reasoning to (16) and
(17), we obtain

K(ϕ→ ψ) → (B¬ψ → B¬ϕ) ,

from which 4 follows by classical reasoning (just contrapose the consequent).
5 follows by (Ap) and 1. 6 follows by (An) and 1. 7 follows by by (Ap) for the right-to-left and

(KS5) for the left-to-right. 8 follows by (An) for the right-to-left and (KS5) for the left-to-right.
9 follows by (MN) and 1. 10 follows by (MN) and (KBM). 11 follows by contraposition, (MN),
(KBM), and contraposition. 12 follows from 10 by classical reasoning.

For 13, we have
K(ϕ→ ⊥) → (Bϕ→ B⊥) (18)

by (KBM). Therefore, ifϕ → ⊥ is provable, it follows by (MN) that the antecedent of (18) isas
well. By (MP), the consequentBϕ → B⊥ is provable. Applying (BF) and classical reasoning, it
follows by contraposition that¬Bϕ is provable.

Theorem 5.3(KB Neighborhood Soundness and Completeness). KB is sound and complete with
respect to the classC of epistemic neighborhood models:

∀ϕ ∈ LKB : KB ⊢ ϕ ⇔ C |=n ϕ .

Proof. By induction on the length of derivation. We first verify soundness of the axioms.

• Validity of (CL) immediate. Validity of (KS5) follows because theR’s are equivalence
relations [BdRV01].

• Scheme (BF) is valid:|=n ¬B⊥.

J⊥Kn = ∅ /∈ N(w) by (kbf). HenceM, w 6|=n B⊥.
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• Scheme (N) is valid:|=n B⊤.

J⊤Kn ∩ [w] = [w] ∈ N(w) by (n). HenceM, w |=n B⊤.

• Scheme (Ap) is valid:|=n Bϕ→ KBϕ.

SupposeM, w |=n Bϕ. Then[w]∩ JϕKn ∈ N(w). Takev ∈ [w]. We have[v] = [w] because
R is an equivalence relation, and we haveN(v) = N(w) by (a). Hence[v] ∩ JϕKn ∈ N(v);
that is,M, v |=n Bϕ. Sincev ∈ [w] was chosen arbitrarily, we have shown that[w] ⊆
JBϕKn. HenceM, w |=n KBϕ.

• Scheme (An) is valid:|=n ¬Bϕ→ K¬Bϕ.

ReplaceBϕ by¬Bϕ and∈ by /∈ in the argument for the previous item.

• Scheme (KBM) is valid:|=n K(ϕ→ ψ) → (Bϕ→ Bψ).

SupposeM, w |=n K(ϕ → ψ) andM, w |=n Bϕ. This means[w] ⊆ Jϕ→ ψKn and
[w] ∩ JϕKn ∈ N(w). But then

[w] ∩ JϕKn ⊆ [w] ∩ JϕKn ∩ Jϕ→ ψKn ⊆ [w] ∩ JψKn .

Hence[w] ∩ JψKn ∈ N(w) by (kbm). That is,M, w |=n Bψ.

That validity is closed under applications of the rules MP and MN follows by the standard argu-
ments [BdRV01]. This completes the proof of soundness.

Before we prove completeness, we first prove an important result that we will use tacitly
throughout the completeness proof proper. LetM be the set of allLKB-formulas having one of
the formsKϕ, ¬Kϕ, Bϕ, or¬Bϕ. We prove the followingModal-Assumption Deduction Theo-
rem: for each finiteF ⊆ M , we have

F ⊢KB ϕ iff ⊢KB (
∧
F ) → ϕ .

The right-to-left direction straightforward. The proof ofthe left-to-right direction is by induction
on the length of derivation. All cases are standard except for the induction step in which (MN)
is applied, so we focus on this case. SupposeF ⊢KB Kϕ is derived by (MP) fromϕ such that
F ⊢KB ϕ. By the induction hypothesis, we have⊢KB (

∧

χ∈F χ) → ϕ. By (MN) andK reasoning,
we have⊢KB (

∧

χ∈F Kχ) → Kϕ. However, it also follows byS5 reasoning (using schemes
4 and 5), scheme (Ap), scheme (An), and the fact thatF ⊆ M that we have⊢KB χ → Kχ
for eachχ ∈ F . Hence⊢KB (

∧

χ∈F χ) → (
∧

χ∈F Kχ), where(
∧

χ∈F χ) =
∧
F . Conclusion:

⊢KB (
∧
F ) → Kϕ.

To prove completeness, it suffices to show thatKB 0 ¬θ impliesθ is satisfiable at a pointed
epistemic neighborhood model. For two setsF andF ′ of LKB-formulas, to say thatF is maxcons
in F ′ means thatF ⊆ F ′, the setF is KB-consistent (i.e., for no finiteG ⊆ F do we have
⊢KB (

∧
G) → ⊥), and adding any formulaψ ∈ F ′ not already inF will produce aKB-inconsistent

(i.e., notKB-consistent) set.
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For a setF of LKB-formulas, we define thesingle-negation closure±F of F and themodal
closureMCl(F ) of F to be the sets

±F := F ∪ {¬ϕ | ϕ ∈ F} ∪ {⊥,⊤} ,

MCl(F ) := F ∪ {Xϕ | ϕ ∈ F andX ∈ {K,¬K,B,¬B}} .

In particular,MCl(F ) is obtained fromF by adding for each formulaϕ ∈ F the additional formulas
Kϕ, ¬Kϕ, Bϕ, and¬Bϕ. We say the each of the latter four formulas is amodalizationof ϕ.

Let S be the set of subformulas ofθ, includingθ itself. LetC0 be the Boolean closure ofS;
that is,C0 is the smallest extension ofS that contains the propositional constants⊤ (truth) and⊥
(falsehood), or their abbreviations inLKB if they are not primitive, and is closed under the Boolean
connectives (e.g., negation, conjunction, implication, and disjunction) definable in the language.
Finally, defineC := MCl(C0).

We define the structureM = (W,R, V,N) as follows:

W := {w ⊆ C | w is maxcons inC},

[ϕ] := {w ∈ W | ϕ ∈ w} for ϕ ∈ C,

R := {(w, v) ∈ W 2 | w ∩M = v ∩M},

V (w) := P ∩ w,

N(w) := {X ⊆ [w] | ∃ϕ ∈ C : (X = [ϕ] ∩ [w] andw ∩M ⊢KB Bϕ)}.

We make use (often tacitly) of the followingIn-class Identity Lemma: for eachu, v ∈ W , if
[u] = [v] andu ∩ ±S = v ∩ ±S, thenu = v. So suppose[u] = [v] andu ∩ S ′ = v ∩ S ′. Given
ϕ ∈ u, we wish to show thatϕ ∈ u. There are two cases to consider.

• Case:ϕ ∈ u ∩ C0.

ϕ is a Boolean combination of members ofS and is thereforeKB-provably equivalent to a
formulaϕ′ that is a disjunction of conjunctions of maxcons subsets of±S. It follows by
the maximalKB-consistency ofu thatϕ′ ∈ u and hence one of the disjunctsϕ′′ of ϕ′ is a
member ofu. Applying the maimalKB-consistency ofu, it follows fromϕ′′ ∈ u that every
conjunct ofϕ′′ is a member ofu. But each conjunct ofϕ′′ is a member of±S ⊆ S ′ and
hence each conjunct ofϕ′′ is a member ofv by our assumptionu ∩ S ′ = v ∩ S ′. Applying
the maximalKB-consistency ofv, it follows thatϕ′′ ∈ v, henceϕ′ ∈ v, and henceϕ ∈ v.

• Case:ϕ ∈ u ∩ (C − C0).

ϕ is a modalizationXψ of a Boolean combination of members ofS. ButXψ ∈ M and our
assumption[u] = [v] impliesu ∩M = v ∩M . SoXψ ∈ v.

The converse is proved similarly.
The In-class Identity Lemma gives rise to the followingIdentity Lemma: for eachu, v ∈ W ,

if u ∩ MCl(±S) = v ∩MCl(±S), thenu = v. Indeed, supposeu ∩ MCl(±S) = v ∩ MCl(±S).
If [u] = [v], then it follows from±S ⊆ MCl(±S) that we haveu ∩ ±S = v ∩ ±S, and therefore
u = v by the In-class Identity Lemma. So it suffices to prove that[u] = [v]; that is, we prove that
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u ∩M = v ∩M . Proceeding, takeXϕ ∈ u ∩M . If Xϕ ∈ C0, then we haveXϕ ∈ v ∩M by the
argument in the first case of the In-class Identity Lemma. So supposeXϕ ∈ C − C0 so thatXϕ
is a modalization ofϕ ∈ C0. We have⊢KB ϕ ↔ ϕ′, whereϕ′ is a disjunction of conjunctions of
maxcons subsets of±S. Applying (MN) andK reasoning, we obtain

⊢KB Kϕ↔ Kϕ′ and ⊢KB ¬Kϕ↔ ¬Kϕ′ . (19)

Applying (KBM) and classical reasoning to (19), it follows that

⊢KB Bϕ↔ Bϕ′ and ⊢KB ¬Bϕ↔ ¬Bϕ′ . (20)

SinceXϕ ∈ u, we have by (19), (20), and the maximalKB-consistency ofu thatXϕ′ ∈ u ∩
MCl(±S). Sinceu ∩MCl(±S) = v ∩MCl(±S), it follows thatXϕ′ ∈ v, and henceXϕ ∈ v by
the maximalKB-consistency ofv. The converse is proved similarly.

We may make use (often tacitly) of the followingDefinability Lemma: for eachw ∈ W and
eachX ⊆ [w], defining

Xd :=
∨

v∈X

∧
(v ∩ ±S) ,

it follows thatXd ∈ C0 ⊆ C and[Xd] ∩ [w] = X. For the proof, first note thatXd ∈ C0 because
C0 is closed under Boolean operations and±S ⊆ C0 ⊆ C. So assumeu ∈ [Xd] ∩ [w], which
impliesXd ∈ u and[u] = [w]. Sinceu is maxcons inC ⊇ ±S, we have by the above definition
of Xd as a disjunction overv ∈ X that there existsv ∈ X such that

∧
(v ∩ ±S) ∈ u and hence

v∩±S ⊆ u. Sinceu is maxcons inC and hence maxcons in±S and since±S is closed under the
operation∼ : LKB → LKB defined by

∼ϕ :=

{

ψ if ϕ = ¬ψ

¬ϕ otherwise,

it follows thatu ∩ ±S = v ∩ ±S. So since[u] = [v] andu ∩ ±S = v ∩ ±S, we haveu = v ∈ X
by the Identity Lemma. Conversely, supposeu ∈ X ⊆ [w]. By the definition ofXd, we have
KB ⊢

∧
(u ∩ ±S) → Xd and thereforeXd ∈ u becauseu is maxcons inC and

∧
(u ∩ ±S) ∈ u.

Henceu ∈ [Xd] ∩ [w] becauseu ∈ X ⊆ [w].
Our definitions above specify the structureM = (W,R, V,N). W is nonempty becauseθ is

consistent and so may be extended to a maxconswθ ∈ W . SinceMCl(±S) is finite, it follows
by the Identity Lemma thatW is finite. Further,R is an equivalence relation. So to conclude
thatM is an epistemic neighborhood model, all that remains is for us to show thatN satisfies the
neighborhood function properties.

(kbc) X ∈ N(w) impliesX ⊆ [w].

By definition.

(bf) ∅ /∈ N(w).

Chooseϕ ∈ C satisfying[ϕ] ∩ [w] = ∅. It follows thatw ∩M ⊢KB ϕ→ ⊥, since otherwise
we could extend(w∩M)∪{ϕ} to somev ∈ [ϕ]∩ [w], which would contradict[ϕ]∩ [w] = ∅.
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So by (MN), we havew∩M ⊢KB K(ϕ→ ⊥) and hencew∩M ⊢KB Bϕ→ B⊥ by (KBM).
Sincew ∩M ⊢ ¬B⊥ by (BF), it follows thatw ∩M ⊢KB ¬Bϕ. So we have shown that
w ∩M ⊢KB ¬Bϕ for eachϕ ∈ C satisfying[ϕ] ∩ [w] = ∅. KB is consistent (just apply
soundness to any epistemic neighborhood model), and therefore we havew ∩M 0KB Bϕ
for eachϕ ∈ C satisfying[ϕ] ∩ [w] = ∅. Conclusion:∅ /∈ N(w).

(n) [w] ∈ N(w).

w ∩M ⊢KB B⊤ by (N). Hence[⊤] ∩ [w] = [w] ∈ N(w).

(a) v ∈ [w] impliesN(v) = N(w).

v ∈ [w] implies[v] = [w] andv ∩M = w ∩M . Therefore for eachX ⊆ [v] = [w], we have
ϕ ∈ C satisfyingX = [ϕ] ∩ [v] andv ∩M ⊢KB Bϕ iff X = [ϕ] ∩ [w] andw ∩M ⊢KB Bϕ.
HenceN(v) = N(w).

(kbm) If X ⊆ Y ⊆ [w] andX ∈ N(w), thenY ∈ N(w).

SupposeX ⊆ Y ⊆ [w] andX ∈ N(w). Then there isϕ ∈ C satisfyingX = [ϕ] ∩ [w]
andw ∩M ⊢KB Bϕ. SinceX ⊆ Y , it follows that [ϕ] ∩ [w] ⊆ [Y d] ∩ [w]. From this we
obtain thatw ∩M ⊢KB ϕ → Y d, since otherwise we could extend(w ∩M) ∪ {ϕ,¬Y d}
to somev ∈ [ϕ] ∩ [¬Y d] ∩ [w], which would contradict[ϕ] ∩ [w] ⊆ [Y d] ∩ [w]. Hence
w ∩ M ⊢KB K(ϕ → Y d) by (MN) and sow ∩ M ⊢KB Bϕ → BY d by (KBM). Since
w ∩M ⊢KB Bϕ, we havew ∩M ⊢KB BY

d. HenceY ∈ N(w).

SoM is indeed and epistemic neighborhood model. To complete ouroverall argument, it suffices
to prove theTruth Lemma: for eachϕ ∈ C andw ∈ W , we haveϕ ∈ w iff M, w |=n ϕ. The
argument is by induction on the construction ofϕ ∈ C. Boolean cases are straightforward, so we
restrict our attention to the modal cases: formulasBϕ andKϕ in C. Note that by the definition of
C as the Boolean closure of the setS of subformulas ofθ, either ofBϕ ∈ C orKϕ ∈ C implies
ϕ ∈ C.

SupposeBϕ ∈ w. Thenw ∩M ⊢KB Bϕ and hence[ϕ] ∩ [w] ∈ N(w) by the definition ofN
and the fact thatϕ ∈ C. Applying the induction hypothesis,[ϕ] = JϕKMn , soJϕKMn ∩ [w] ∈ N(w).
But this is what it means to haveM, w |=n Bϕ.

Conversely, assumeM, w |=n Bϕ for Bϕ ∈ C. This meansJϕKMn ∩ [w] ∈ N(w). By the
induction hypothesis and the fact thatϕ ∈ C, we have[ϕ] = JϕKMn , so[ϕ] ∩ [w] ∈ N(w). By the
definition ofN , there existsψ ∈ C such thatw ∩M ⊢KB Bψ and[ϕ] ∩ [w] = [ψ] ∩ [w]. But then
w ∩M ⊢KB ψ → ϕ, for otherwise we could extend(w ∩M) ∪ {ψ,¬ϕ} to somev ∈ [w] such that
v ∈ [ψ] ∩ [w] andv /∈ [ϕ] ∩ [w], contradicting[ϕ] ∩ [w] = [ψ] ∩ [w]. Applying (MN), we have
w ∩M ⊢KB K(ψ → ϕ) and hencew ∩M ⊢KB Bψ → Bϕ by (KBM). Sincew ∩M ⊢KB Bψ, it
follows thatw ∩M ⊢KB Bϕ. And sincew is maxcons inC, we conclude thatBϕ ∈ w.

Now supposeKϕ ∈ w. Then for eachv ∈ [w], we have thatKϕ ∈ v and thereforeϕ ∈ v by
S5 reasoning (using schemeT) and the fact thatv is maxcons inC. But then we have shown that
[w] ⊆ [ϕ]. Sinceϕ ∈ C, it follows by the induction hypothesis that[w] ⊆ JϕKMn , which is what it
means to haveM, w |=n Kϕ.
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Conversely, assumeM, w |=n Kϕ for Kϕ ∈ C. It follows that[w] ⊆ JϕKMn . By the induction
hypothesis,[w] ⊆ [ϕ]. But thenw ∩M ⊢KB ϕ, for otherwise we could extend(w ∩M) ∪ {¬ϕ}
to somev ∈ [w] satisfyingv /∈ [ϕ], contradicting[w] ⊆ [ϕ]. By (MN), we havew ∩M ⊢KB Kϕ.
SinceKϕ ∈ C andw is maxcons inC, it follows thatKϕ ∈ w.

SinceKB is sound and complete with respect to the class of epistemic neighborhood models, we
would expect that in light of Theorem 4.7 thatKB is at most sound for the probability interpretation.

Theorem 5.4(KB Probability Soundness). KB is sound for any thresholdc ∈ (0, 1) ∩ Q with
respect to the class of epistemic probability models:

∀c ∈ (0, 1) ∩Q, ∀ϕ ∈ LKB : KB ⊢ ϕ ⇒ |=p ϕ
c .

Proof. Theorems 3.2 and 3.9.

Theorem 5.5(KB Probability Incompleteness). KB is incomplete for all thresholdsc ∈ (0, 1)∩Q
with respect to the class of epistemic probability models:

∃ϕ ∈ LKB, ∀c ∈ (0, 1) ∩Q : |=p ϕ
c and KB 0 ϕ .

Proof. TakeM as in the proof of Theorem 4.7. Letσ be the modal formula describing(M, a):
informally (and easily formalizable),

σ := ab̄ · · · ḡ ∧KW ∧ (
∧

Z∈N(a)BZ) ∧ (
∧

Z′∈℘(W )−N(a) ¬BZ
′) .

We haveM, w |=n σ so that6|=n ¬σ and thereforeKB 0 ¬σ by Theorem 5.3. By the proof of
Theorem 4.7, there is no probability measure agreeing withM for any threshold. Hence|=p ¬σ

c.
Soϕ := ¬σ gives us the desired formula.

5.2 Results for the Mid-Threshold CalculusKB.5

We first show that theKB schemes (BF) and (KBM) are redundant in the theoryKB.5.

Theorem 5.6.KB.5− andKB.5 derive the same theorems:

∀ϕ ∈ LKB : KB.5− ⊢ ϕ ⇔ KB.5 ⊢ ϕ .

Proof. It suffices to prove that the schemes (BF) and (KBM) are derivable inKB.5−. For (KBM),
we have by Definition 3.7 that the formulaϕIψ is just

K
(
(¬ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)
︸ ︷︷ ︸

F0

∨ (ϕ ∧ ψ)
︸ ︷︷ ︸

F1

)
, (21)

where we have explicitly indicated the subformulasF0 andF1 used in the notation of Definition 3.7.
Semantically, (21) says that in each of the agent’s accessible worlds,ψ is true wheneverϕ is true.
Now reasoning withinKB.5−, it follows thatK(ϕ → ψ) is provably equivalent toϕIψ. But then
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fromK(ϕ→ ψ) andBϕ, we may deriveϕIψ andBϕ, from which we may deriveBψ by (Scott).
Hence (KBM) is derivable.

We now consider (BF). The formula⊥ → ¬⊤ is a classical tautology and henceK(⊥ → ¬⊤)
follows by (MN). Hence by an instance of (KBM), which can be defined away in terms of axioms
other than (BF) as above, it follows thatB⊥ → B¬⊤ and therefore that¬B¬⊤ → ¬B⊥. Also
by (N), (D), and (MP), we may derive¬B¬⊤. That is, (BF) is derivable.

Theorem 5.7(KB.5 Neighborhood Soundness and Completeness). KB.5 is sound and complete
with respect to the classC.5 of mid-threshold neighborhood models:

∀ϕ ∈ LKB : KB.5 ⊢ ϕ ⇔ C.5 |=n ϕ .

Proof. Soundness is by induction on the length of derivation. Most cases are as in the proof of
Theorem 5.3. We only need consider the remaining axiom schemes.

• Scheme (D) is valid:|=n Bϕ→ B̌ϕ.

SupposeM, w |=n Bϕ. This means[w] ∩ JϕKn ∈ N(w). By (d),

[w] ∩ J¬ψKn = [w]− JϕKn = [w]− ([w] ∩ JϕKn) /∈ N(w) .

But this is what it means to haveM, w |=n B̌ϕ.

• Scheme (SC) is valid:|=n B̌ϕ ∧ Ǩ(¬ϕ ∧ ψ) → B(ϕ ∨ ψ).

SupposeM, w |=n B̌ϕ andM, w |=n Ǩ(¬ϕ ∧ ψ). It follows that

[w]− ([w] ∩ JϕKn) = [w] ∩ J¬ϕKn /∈ N(w)

and that there existsv ∈ [w] satisfyingM, v |= ¬ϕ∧ψ. But then[w]∩Jϕ ∨ ψKn ) [w]∩JϕKn
and therefore[w] ∩ Jϕ ∨ ψKn ∈ N(w) by (sc). HenceM, w |= B(ϕ ∨ ψ).

• Scheme (Scott) is valid:

|=n [(ϕiIψi)
m
i=1 ∧ Bϕ1 ∧

∧m

i=2 B̌ϕi] →
∨m

i=1Bψi .

Suppose(M, w) satisfies the antecedent of scheme (Scott). It follows that eachv ∈ [w]
satisfies at least as manyϕi’s asψi’s, that[w]∩ Jψ1Kn ∈ N(w), and that[w]− JϕkKn /∈ N(w)
for eachk ∈ {2, . . . , m}. Hence

[w] ∩ Jϕ1Kn, . . . , [w] ∩ JϕmKnI[w] ∩ Jψ1Kn, . . . , [w] ∩ JψmKn ,

from which it follows by (scott) that[w] ∩ JψjKn ∈ N(w) for somej ∈ {1, . . . , m}. Hence
M, w |=n Bψj , and thusM, w |=n

∨m

i=1Bψi.

Soundness has been proved.
For completeness, it suffices to show that the modelM defined as in the proof of Theo-

rem 5.3—except that now derivability is always taken with respect toKB.5—is a mid-threshold
neighborhood model; the rest of the argument is as in that proof, mutatis mutandis. Most of the
properties ofM are shown in that proof. What remains is for us to show thatM also satisfies (d),
(sc), and (scott).
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(d) X ∈ N(w) impliesX ′ /∈ N(w), whereX ′ := [w]−X.

SupposeX ∈ N(w). Then we haveϕ ∈ C such thatX = [ϕ] ∩ [w] andw ∩M ⊢KB.5 Bϕ.
By (D), it follows thatw ∩M ⊢KB.5 B̌ϕ. Chooseψ ∈ C satisfyingX ′ = [ψ]∩ [w]. We have
w ∩M ⊢KB.5 ψ → ¬ϕ, since otherwise we could extend(w ∩M) ∪ {ψ, ϕ} to av ∈ [w]
such thatv ∈ [ψ] ∩ [w] = X ′ andv ∈ [ϕ] ∩ [w] = X, contradictingX ′ ∩X = ∅. By (MP),
we havew ∩M ⊢KB.5 K(ψ → ¬ϕ) and thereforew ∩M ⊢KB.5 Bψ → B¬ϕ by (KBM). So
sinceB̌ϕ = ¬B¬ϕ, it follows by classical reasoning thatw ∩M ⊢KB.5 B̌ϕ→ ¬Bψ. Since
w ∩M ⊢KB.5 B̌ϕ, it follows thatw ∩M ⊢KB.5 ¬Bψ. By the consistency ofKB.5 (which
follows by applying soundness to any mid-threshold epistemic neighborhood model), we
havew ∩M 0KB Bψ. So we have shown thatw ∩M 0KB.5 Bψ for eachψ ∈ C satisfying
X ′ = [ψ] ∩ [w]. Conclusion:X ′ /∈ N(w).

(sc) If X ′ /∈ N(w) andX ( Y ⊆ [w], thenY ∈ N(w).

AssumeX ′ /∈ N(w) andX ( Y ⊆ [w]. It follows from X ′ /∈ N(w) that we havew ∩
M 0KB.5 B(X ′)d. Since(X ′)d ∈ C0, it follows thatB(X ′)d ∈ C = MCl(C0) and therefore
¬B(X ′)d ∈ w ∩M becausew is maxcons inC. Hencew ∩M ⊢KB.5 ¬B(X ′)d. Now we
havew∩M ⊢KB.5 ¬Xd → (X ′)d, for otherwise we could extend(w∩M)∪{¬Xd,¬(X ′)d}
to somev ∈ [w] such thatv ∈ [¬Xd]∩ [w] = X ′ andv ∈ [¬(X ′)d]∩ [w] = X, contradicting
X ′∩X = ∅. By (MP), we havew∩M ⊢KB.5 K(¬Xd → (X ′)d) and thereforew∩M ⊢KB.5

B¬Xd → B(X ′)d by (KBM). Sincew∩M ⊢KB.5 ¬B(X ′)d, it follows by classical reasoning
thatw ∩M ⊢KB.5 ¬B¬Xd. That is,w ∩M ⊢KB.5 B̌X

d.

Further, sinceX ( Y ⊆ [w], it follows that there existsy ∈ Y − X satisfyingy ∈ [Y d] −
[Xd] = [Y d ∧ ¬Xd]. Since¬(Y d ∧ ¬Xd) ∈ C0, it follows that¬K¬(Y d ∧ ¬Xd) ∈ C =
MCl(C0). But thenK¬(Y d ∧ ¬Xd) /∈ w, for otherwise it would follow fromy ∈ [w] that
w ∩M = y ∩M and henceK¬(Y d ∧ ¬Xd) ∈ y, from which it would follow byT and
the fact thaty is maxcons inC that¬(Y d ∧ ¬Xd) ∈ y, contradictingy ∈ [Y d ∧ ¬Xd].
So sinceK¬(Y d ∧ ¬Xd) /∈ w, we have by the fact that¬K¬(Y d ∧ ¬Xd) ∈ C and the
maximalKB.5-consistency ofw that ¬K¬(Y d ∧ ¬Xd) = Ǩ(Y d ∧ ¬Xd) ∈ w. Hence
w ∩ M ⊢KB.5 Ǩ(Y d ∧ ¬Xd). As w ∩ M ⊢KB.5 B̌Xd as well, it follows by (SC) that
w∩M ⊢KB.5 B(Y d ∨Xd). But [Y d ∨Xd] = Y by our assumptionX ( Y and therefore we
have shown thatY ∈ N(w).

(scott) If X1, . . . , Xm, Y1, . . . , Ym ⊆ [w], (XiIYi)mi=1, X1 ∈ N(w), andX ′
i := [w]− Xi /∈ N(w)

for all i ∈ {2, . . . , m}, then there existsj ∈ {1, . . . , m} such thatYj ∈ N(w).

Assume we have the above-stated antecedent of the (scott) property. It follows fromX1 ∈
N(w) thatw ∩ M ⊢KB.5 BX

d
1 . For i ∈ {2, . . . , m}, it follows from X ′

i /∈ N(w) by an
argument as in the above proof for (sc) thatw ∩ M ⊢ B̌Xd

i . If we can prove thatw ∩
M ⊢KB.5 (X

d
i IY

d
i )

m
i=1 as well, then we would have by (Scott) thatw ∩M ⊢KB.5

∨m

j=1BY
d
j .

But then sinceBY d
j ∈ C for eachj ∈ {1, . . . , m}, we would haveBY d

k ∈ w for some
k ∈ {1, . . . , m} by the maximalKB.5-consistency ofw, hencew ∩ M ⊢KB.5 BY

d
k , and

henceYk = [Y d
k ] ∈ N(w).
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So it suffices for us to prove thatw ∩ M ⊢KB.5 (Xd
i IY

d
i )

m
i=1. Proceeding, we recall that

(Xd
i IY

d
i )

m
i=1 abbreviates the formulaK(F0 ∨ · · · ∨ Fm), whereFk is the disjunction of all

conjunctions
d1X

d
1 ∧ · · · ∧ dmX

d
m ∧ e1Y

d
1 ∧ · · · ∧ emY

d
m , (22)

satisfying the property that exactlyk of thedi’s are the empty string, at leastk of the ei’s
are the empty string, and the rest of thedi’s andei’s are the negation sign¬. Since each
of theXi’s andYi’s is a member ofC0 andC0 is closed under Boolean operations, each
conjunction (22) is a member ofC0, and hence so is the disjunctionF0 ∨ · · · ∨ Fm. But then
K(F0 ∨ · · · ∨ Fm) ∈ C = MCl(C0). We make use of these facts tacitly in what follows.
Now we have by our assumption(XiIYi)mi=1 and the fact that theXi’s andYi’s are subsets
of [w] that every world in[w] is contained in at least as many of theXi’s as in theYi’s.
Every world in[w] therefore contains at least one of theFi’s, for otherwise it would follow
by maximalKB.5-consistency that we could find a worldv ∈ [w] that is not contained in
at least as many of theXi’s as in theYi’s, a contradiction. By maximalKB.5-consistency,
every world in [w] thereby contains the disjunctionF0 ∨ · · · ∨ Fm. But then it follows
by maximalKB.5-consistency andT-reasoning thatK(F0 ∨ · · · ∨ Fm) ∈ w, and hence
w ∩M ⊢KB.5 (X

d
i IY

d
i )

m
i=1.

SinceKB.5 is sound and complete with respect to mid-threshold neighborhood models, we
would expect from Corollary 4.11 thatKB.5 is sound and complete with respect to the probability
interpretation for thresholdc = 1

2
.

Theorem 5.8(Due to [Len80];KB.5 Probability Soundness and Completeness). KB.5 is sound
and complete for threshold1

2
with respect to the class of epistemic probability models:

∀ϕ ∈ LKB : KB.5 ⊢ ϕ ⇔ |=p ϕ
1

2 .

Proof. Soundness is by Theorems 3.2 and 3.9. Completeness is by Theorem 5.7 and Corol-
lary 4.11.

6 Conclusion

Summary We have provided a study of unary modal logics of high probability. We introduced
epistemic neighborhood models and studied their connection to traditional epistemic probability
models by way of a natural notion of “agreement.” We listed the Lenzen-derivative properties of
epistemic neighborhood models that guarantee the existence of an agreeing probability measure
for thresholdc = 1

2
. The list of properties required to guarantee the existenceof an agreeing

probability measure for other thresholds is unknown. We also presented our study from a proof
theoretic point of view by introducing a probabilisticallysound but incomplete logicKB and our
version of Lenzen’s probabilistically sound and complete logic KB.5 for thresholdc = 1

2
. It is

open as to the principles one must add toKB in order to obtain probabilistic completeness for
other thresholds. We also proved soundness and completeness of KB and ofKB.5 with respect
to a corresponding class of epistemic neighborhood models.The result forKB.5 along with our
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Theorem 4.10, a theorem we credit to Lenzen, shows thatKB.5 is the logic of probabilistic certainty
and of probability exceedingc = 1

2
. It is our hope that our repackaging of Professor Lenzen’s result

will make his work more accessible to a broad audience of modern modal logicians. We also hope
that the connection we have made with neighborhood semantics will prove useful in future work
on modal logics of qualitative probability.

Open Questions for Future Work

1. The main open question is the following: given a “high-threshold”c ∈ (1
2
, 1) ∩ Q, find the

exact extensionKBc of KB that is probabilistically sound and complete for thresholdc with
respect to the class of epistemic probability models, in thesense that we would have:

∀ϕ ∈ LKB : KB
c ⊢ ϕ ⇔ |=p ϕ

c .

Observing that (SC) and (Scott) are not valid for high-thresholdsc > 1
2
, we conjecture that

what is required are threshold-specific variants of (SC) and(Scott) that will together guar-
antee probability soundness and completeness. Toward thisend, we suggest the following
schemes as a starting point:

(SCs
0) (Ǩϕ0 ∧

∧s

i=1 B̌ϕi ∧
∧s

i 6=j=0K(ϕi → ¬ϕj)) → B(
∨s

i=0 ϕi)

(SCs
1) (

∧s

i=1 B̌ϕi ∧
∧s

i 6=j=1K(ϕi → ¬ϕj)) → B(
∨s

i=1 ϕi)

(WS) [(ϕiIψi)
m
i=1 ∧

∧m

i=1Bϕi] →
∨m

i=1Bψi

Observe that (SC) is just (SC10). Further, if we defines′ := c/(1 − c) ands := ceiling(s′),
then scheme (SCs0) is probabilistically sound ifs = s′ and scheme (SCs1) is probabilistically
sound ifs 6= s′. The reasoning for this is as follows:s′ tells us the number of(1 − c)’s that
divide c. In particular, recall from Lemma 3.5 that the probabilistic interpretation ofB̌ϕ is
thatϕ is assigned probability at least1 − c. Therefore, if we haves disjoint propositions
that each have probability at least1 − c, then the probability of their disjunction will have
probabilitys ·(1−c) ≥ c. This inequality is strict ifs 6= s′ and is in fact an equality ifs = s′.
Therefore, in the cases 6= s′, scheme (SCs1) is sound:s disjoint propositions each having
probability1− c together sum to a probability exceeding the thresholdc. And in cases = s′,
scheme (SCs0) is sound:s disjoint propositions each having probability1 − c together sum
to a probability that equalsc, so adding some additional probability from another disjoint
propositionϕ0 will yield a disjunction whose probability again exceedsc. In either case,
exceeding probabilityc is what we equate with belief, so soundness is proved. We note
that scheme (WS) can be shown to be sound by adapting the proofTheorem 3.9(11). The
epistemic neighborhood model versions of (SCs

0), (SCs
1), and (WS) are:

(scs0) ∀X1, . . . , Xs, Y ⊆ [w]: if [w] − X1, . . . , [w] − Xs /∈ N(w), theXi’s are pairwise
disjoint, andY )

⋃s

i=1Xi, thenY ∈ N(w).

(scs1) ∀X1, . . . , Xs ⊆ [w]: if [w] − X1, . . . , [w] − Xs /∈ N(w) and theXi’s are pairwise
disjoint, then

⋃s

i=1Xi ∈ N(w).
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(ws) ∀m ∈ Z+, ∀X1, . . . , Xm, Y1, . . . , Ym ⊆ [w] :

if X1, . . . , XmIY1, . . . , Ym and

∀i ∈ {1, . . . , m} : Xi ∈ N(w) ,

then ∃j ∈ {1, . . . , m} : Yj ∈ N(w) .

If M is an epistemic neighborhood model, then a slight modification of the proof of property
(scott) in Lemma 4.13 shows thatM c satisfies (ws). We presume that an adaptation of the
proof for the proof of property (sc) in the same lemma will show thatM c satisfies (scs0) if
s = s′ and (scs1) if s 6= s′.

We remark that (WS) is not threshold-specific, though it is sound for all high-thresholdsc >
1
2
. We suspect that a threshold-specific variant may be required in order to adapt Lenzen’s

proof ofKB.5 probability soundness and completeness for thresholdc = 1
2

(Theorem 4.10).

2. Another open question is the exact relationship between Segerberg’s comparitive operator
ϕ � ψ (“ϕ is no more probable thanψ”) [Gär75, Seg71] and our unary operatorsK andB.
The formulaBϕ is equivalent to¬ϕ ≺ ϕ. However, it is not clear how the logics of these
operators are related. Also, we suspect that a language with� is strictly more expressive.

3. Yet another direction is the extension of our work to Bayesian updating. Given a pointed
epistemic probability model(M, w) satisfyingϕ, let

M[ϕ] = (W [ϕ], R[ϕ], V [ϕ], P [ϕ])

be defined by

W [ϕ] := JϕKMp
R[ϕ] := R ∩ (W [ϕ]×W [ϕ])

V [ϕ](w) := V (w) for w ∈ W [ϕ]

P [ϕ](w) :=
P (w)

P (JϕKMp )

It is not difficult to see thatM[ϕ] is an epistemic probability model and

P [ϕ](X) =
P (X ∩ JϕKMp )

P (JϕKMp )
= P [ϕ](X|JϕKMp ) ,

where the value on the right is the probability ofX conditional onJϕKMp . It would be
interesting to investigate the analog of this operation in epistemic neighborhood models.
The operation may also have a close relationship with the study of updates in Probabilistic
Dynamic Epistemic Logic [vBGK09, BS08].
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4. Finally, we have only considered a single-agent version of our logicsKB andKB.5. The
reason for this is that obtaining completeness forKB.5 with respect to the class of finite
mid-threshold neighborhood models requires us to construct a finite countermodel satisfying
(sc), as we did in the completeness portion of the proof of Theorem 5.7. However, this prop-
erty has an antecedent that includes the negative conditionX ′ /∈ N(w) and from this and
X ( Y ⊆ [w], we are to conclude the positive conditionY ∈ N(w). Referring the reader to
the completeness portions of the proofs of Theorems 5.3 and 5.7 for definitions and termi-
nology, the trick to making things work in the single-agent case is to prove the Definability
Lemma using a particular closure construction that ensuresevery potential neighborhood
X ⊆ [w] is definable by a formulaXd such thatBXd is a member of the closure setC.
This makes crucial use of the In-class Identity Lemma. However, our proof of this lemma
depends on the assumption that maxcons setsu, v ∈ [w] differ only in non-modal formu-
las. In the straightforward multi-agent version of our setting, we would have an equivalence
class[w]a consisting of all maxcons sets that agree on modal formulasKaϕ andBaψ for a
given agenta. But then two worldsu, v ∈ [w]a could disagree on modal formulasKbϕ or
Bbψ for some agentb 6= a, which leads to a breakdown in the current proof of the In-class
Identity Lemma and therefore presents problems for guaranteeing definability of potential
neighborhoods satisfying the desired membership property. Remedying this in a multi-agent
version of a finite mid-threshold neighborhood model is not straightforward because it is dif-
ficult to simultaneously satisfy (sc), all other propertiesof finite mid-threshold neighborhood
models, and the definability-with-membership property. Wetherefore leave for future work
the matter of proving completeness of multi-agentKB.5 with respect to the class of finite
multi-agent mid-threshold neighborhood models. We note that multi-agentKB.5 is obtained
from our existing axiomatization by simply adding a subscript to all occurrences of a modal
operatorK orB in our present axiomatization. Multi-agentKB is obtained similarly, though
completeness for multi-agentKB with respect to the full class of finite multi-agent epis-
temic neighborhood models can be shown without much difficulty because the problematic
property (sc) need not be satisfied.

Acknowledgements Thanks to Alexandru Baltag, Johan van Benthem, Jim Delgrande, Peter
van Emde Boas, Andreas Herzig, Thomas Icard, Sonja Smets, and Rineke Verbrugge for helpful
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