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Abstract

We present a Group Convolutional Network for Segmentation of Diffusion Weighted Imag-
ing data (DWI). The network incorporates group actions that are natural for this type
of data, in the form of SE(3) equivariant convolutions, i.e., roto-translation equivariant
convolutions. The equivariance property provides an important inductive bias and may al-
leviate the need for data augmentation strategies. Instead of performing group equivariant
convolutions via spectral (Fourier-based) approaches, as is common for SE(3) equivariance,
we implement direct and light-weight regular group convolutions. We study the effect of
equivariance and weight sharing over SE(3) on performances of the networks on DWI scans
from the Human Connectome project. We show how that full SE(3) equivariance improves
segmentations, while limiting the number of learnable parameters.

Keywords: DWI, Group action, Homogeneous spaces G-CNN, Image Segmentation

1. Introduction

In this work, we propose a group convolutional neural network (G-CNN) for Diffusion
Weighted Imaging (DWI) data. CNNs rely on assumed translational symmetries in data and
have shown very robust performance in imaging tasks, especially medical imaging ones, and
they are highly memory-efficient thanks to their weight-sharing property. When data offer
more structure than translation, they can be used to build generalized CNNs. These Group
and Geometric CNNs (GCNN) have been studied intensively and applied in many situations
in the few past years, see e.g. (Masci et al., 2015; Cohen and Welling, 2016; Boscaini
et al., 2016; Bekkers et al., 2018; Cohen et al., 2020). Structure beyond translational
symmetries is particularly apparent in DWI data; A DWI scan can be modeled as a
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function f : R3×S2 → R providing at each (x, v), with spatial position x and direction v, a
response (Tuchs, 2004). A rigid transformation of a sample (i.e. by the action of the group
SE(3)), should, up to the limitations of acquisition protocol, be reflected in the signal.

The space R3 × S2 is a homogeneous space under the action of SE(3): a point in
R3 × S2 can be transformed in any other point by a rigid transformation. This notion of
homogeneous space is at the heart of the extension of CNNS to GCNNs (Cohen et al., 2020;
Bekkers, 2019).

Our task at hand is the classification/segmentation of diffusion data. The inductive bias
provided by the knowledge of these transformations may prove important for our task, espe-
cially when annotated data is limited. How to incorporate this knowledge? This is classically
done by data augmentation, in the hope that the network will learn transformation-aware
features during training. Incorporating, on the other hand, information about group actions
on the data has shown to boost performances of these networks (Bekkers et al., 2018) whilst
avoiding the need for augmentation, which, for DWI data, is non-trivial. To exploit the
rigid motion action in the space of DWI - R3 × S2 → R, we propose an SE(3)-GCNN.

Most CNNs approaches for processing of DWI signals discard its specific structure.
For instance, Golkov et al. (Golkov et al., 2016) built multi-layer perceptrons in q-space for
kurtosis and NODDI mappings. On the other hand, the importance of spherical equivariant
or invariant structure has been acknowledged for some years now. The importance of the
extraction of rotationally invariant features beyond Fractional Anisotropy (Basser et al.,
1994) has been recognized in series of DWI works, for their usefulness in understanding
microstructures, see for instance (Schwab et al., 2013; Caruyer and Verma, 2015; Novikov
et al., 2018; Zucchelli et al., 2020). In (Sedlar et al., 2020), a spherical U-net based on
(Driscoll and Healy, 1994) was used for neurite orientation. Cohen et al. (Cohen et al.,
2018) lifted spherical functions to the 3D-rotation group SO(3) using convolutions based
on spherical/SO(3)-Fourier transforms. In (Sedlar et al., 2021), this idea was used for
microstructure parameter estimation. In (Chakraborty et al., 2018; Banerjee et al., 2019),
it was used for disease classification. In (Müller et al., 2021), a 6-D - 3D space and q-space
- NNs with roto-translation was proposed. Several authors (Gens and Domingos, 2014;
Cohen and Welling, 2016; Weiler et al., 2018; Worrall et al., 2017; Kondor and Trivedi,
2018; Bekkers et al., 2018; Andrearczyk et al., 2020; T.S. Cohen and M. Weiler and B.
Kicanaoglu and M. Welling, 2019; Cohen et al., 2020; Aronsson, 2021) further explored the
group convolution path for Lie groups and their homogeneous spaces.

The contributions of this paper are as follows:

1. Unlike existing works that use Fourier-based convolutions, we implement convolution
in all our experiments in a direct way as it is usually done in the image analysis
community, which is way more light-weight and is based on localized filters.

2. We show in our experiments that the equivariance we provide in our networks improves
tasks performed on the DWI data.

3. We demonstrate in our results that for DWI data, exploiting both the spatial and
the spherical structures of the signals is essential, as opposed to handling spatial
translations or spherical rotations individually.
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In the rest of this paper, we propose GCNNs with two types of group action, with
equivariant layers for these actions and nonlinear ones. We show how incorporating these
actions improve DWI segmentation performance compared to classical CNNs and CNNS
with limited notion of symmetry (Liu et al., 2021), by evaluating them on scans from the
Human Connectome Project (HCP) (Van Essen et al., 2013).

2. Method

The networks we present are built by extending standard CNNs to groups G and homo-
geneous spaces M on which they act by extending convolution operations to them. We
do not follow, however, the common path of irreducible representations for implementing
convolutions/correlations over S2 or SO(3) (Cesa et al., 2021). Instead, we provide a direct
convolution implementation that is much light-weight. For the general theory of convolu-
tions on groups and homogeneous spaces, we refer the readers to (Cohen et al., 2020).

2.1. Standard convolution operations

Each group G we consider is endowed with a left-invariant Haar measure. Each homoge-
neous space we consider is endowed with a G-invariant measure. Functions are assumed
to be square-integrable for these measures. The layers L we define are all equivariant
L(Lgf) = Lg(Lf), w.r.t. the regular left translation representation Lg of G on the respec-
tive input/output spaces.

Lifting layer. A function f : M → RN can be lifted to the group G via a kernel κ : M →
RN by

κ ∗ f(g) =
N∑
i=1

∫
M

fi(m)κi(g
−1m) dm (1)

Group convolution layer. A feature function F : G → RN can be transformed by a
convolution kernel K : G → RN by

K ∗ F (g) =
N∑
i=1

∫
G
Fi(h)Ki(h

−1g)dh. (2)

Projection layer. If needed, feature map F : G → Rn can be projected to a function
f : M → Rn by summarizing on the fibres

F (m) = max
h∈Gm0

F (gh), for any g with g.m0 = m, (3)

where the max is computed component-wise.

Activation functions and separable kernels. A point-wise activation function α, such
as ReLU, is trivially equivariant. On manifolds with a product structure, M = M1 ×M2,
both for homogeneous spaces and groups, using separable kernels κ = κM1⊗κM2 , the layers
can be split by sequential application of convolutions on these sub-domains as to obtain an
implementation of separable group convolutions (Knigge et al., 2022).

98



Group Convolutional Neural Networks for DWI Segmentation

Table 1: The groups and homogeneous spaces in this work. For each group and each homo-
geneous space, typical elements are provided, as well as the corresponding group actions.

HHH
HHHG
M R3, x S2,v R3 × S2, (x,v)

T3, t x+ t

SO(3), R Rv

SE(3), (R, t) Rx+ t Rv (Rx+ t, Rv)

Spaces and groups. The spaces used in this work are R3, the sphere S2 and the product
space R3×S2. The groups that we consider are: translations of R3 - T3 ≃ R3, 3D rotations
- SO(3), and the special Euclidean group SE(3) = SO(3) ⋉ T3. Table (1) shows the
different combinations of spaces and groups. Entries left empty are not used or fail to be
homogeneous spaces for standard group actions on them.

2.2. Discretization of spherical signals

The way spherical signals are numerically handled have major implications for our networks.
A DWI signal is treated as a discretization of a signal f : R3×S2 → R. DWIs are acquired,
for each voxel, at N fixed directions p1, . . . , pN on S2 (here N = 90). The directional
measurements can be represented in two different ways.

• Type 1. Ignoring the spherical structure, at each voxel x, we get a measurement vector
I(x) = (I(x, p1) . . . , I(x, pN )) ∈ RN . Thus a DWI signal is a mapping I : R3 → RN .

• Type 2. A DWI signal is a function I : R3 × S2 → R by interpolating the spherical
signal I(x,v) at each voxel x using a Watson kernel (Jupp and Mardia, 1989) s.t. that
the anti-podal symmetry of the kernel resembles the same property of DWI signals.

3. Experiments and Results

Figure 2: Left to right: original diffusion data,
the ground-truth segmentation, and the pro-
cessed ground-truth that we are going to learn
from. The label colors for CSF, subcortical,
white matter and grey matter are red, blue,
white and grey respectively. The figures only
illustrate the data, they are not necessarily
from the same slice of the same scan.

We evaluate our method on the DWI brain
scan dataset from the human connectome
project (Van Essen et al., 2013). We clas-
sify the human brains into 4 regions - cere-
brospinal fluid (CSF), subcortical, white
matter, and grey matter. An illustration
of the task can be found in fig. 2.

We used the pre-processed DWI data
(Van Essen et al., 2013) and normalized
each DWI scan for the b-1000 images with
the voxel-wise average of the b0. The la-
bels provided with the T1-image were trans-
formed to the DWI using nearest neighbor
interpolation (fig. 2). Since the 4 brain regions we are classifying have imbalanced numbers
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Figure 1: The three group convolution operators used in this paper. Fig. A shows the
spherical part of the separable lifting convolution. The star-shaped kernel moves over all 12
icosahedron vertices like a spider crawling on a sphere. At each vertex, the kernel rotates
5 times, aligned with the edges of the icosahedron, and gets 5 rotational responses as such.
There are in total 60 responses from all 12 vertices, coming from 60 rotations effectively
applied to the local spherical kernel - the icosahedral discretization ISO(3) ⊂ SO(3). Fig. B
shows the spherical part of the separable group convolution. The 1D kernel only lives on the
fibers, and is rotated (permuted) again 5 times to get the responses of different orientations,
as in the lifting convolution. Fig. C shows the spatial part of the separable convolution.
The spatial kernel is a 3D grid and is rotated 60 times with the icosahedral symmetry
rotations on which the input as sampled; each rotated kernel convolves the corresponding
input “rotation channel”.

of voxels, we use a Focal Loss (Lin et al., 2018) to counter the class imbalance. For Focal
Loss, all experiments use α = (0.35, 0.35, 0.15, 0.15) for CSF, subcortical, WM, and GM
respectively, and γ = 2. For Watson Kernel, all experiments that used this interpolation
(Type 2 discretization) have κ = 10. Batch size for all experiments is 100.
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3.1. Experiment setup

To reduce the computation burden, as inputting a full DWI volume is intractable, we
use spatial windows of N3 voxels, with N = 1 for SO(3)-action network, i.e. point-wise
spherical CNNs, and N = 7 for the rest. In addition, due to the effect of convolutions
without padding using kernels with a spatial extent, the 73 grid of voxels shrinks to 13.
S2 is discretized by a regular icosahedron. SO(3) is discretized as the icosahedral rotation
group with 60 elements. Each vertex of the icosahedron is fixed by 5 rotations, isomorphic
to the subgroup of SO(2) consisting of rotations of angle 2kπ/5, k = 0 . . . 4, see also fig. 1.

3.2. Networks and architectures

3.2.1. T3: Classical CNN

For the T3 group action, the S2-structure of the signals is ignored, using Type 1 discretiza-
tion. Each voxel becomes a flattened vector. Using the group T3, we just obtain a multi-
channel standard CNN. We use a ReLU(R3conv)−ReLU(R3conv)−ReLU(R3conv)−FC
architecture, with a small and a big network setup. The number of feature channels in the
small network is (90− 5− 5− 5− 4), which we label as Classical-, and the big network with
(90− 120− 120− 90− 4) is labeled as Classical+.

3.2.2. SO(3): Baseline

This time the spatial structure is ignored, thus each voxel is a data sample. Type 2 dis-
cretization is used. The GCNN takes as input a spherical function, and classifies it by
performing SO(3)-lifting, SO(3)-convolutions and summarization. The convolved function
on SO(3) is then projected back to S2 by this summarization. Convolutions over the SO(2)
fibers is illustrated in fig. 1 B. In the experiments, we use the ReLU(lift)−ReLU(gconv)−
project−FC architecture as was used in (Liu et al., 2021), but with true SO(3)-convolution.
Here lift corresponds to the spherical lifting convolution (fig. 1 A) and gconv to the fiber
convolution (fig. 1 C). The projection layer takes the maximum of the 5 rotations (fibers) to
collapse the function back to the sphere. Two capacities are used (1−5−4) and (10−20−4),
resp. named Baseline- and Baseline+.

3.2.3. SE(3): Ours

Type 2 discretization is used and the network uses the full interplay between spatial roto-
translations and corresponding rotations of the spherical signal. It is separated into a
spherical part and a spatial part as explained above. To perform the segmentation task, the
projection layer collapses the function on SE(3) back to R3 by summarizing over SO(3).
Both lifting and group convolution layers are separated into 2 parts - the spherical and
the spatial part. Detailed illustrations can be found in fig. 1. We use the ReLU(lift) −
ReLU(gconv) − ReLU(gconv) − ReLU(gconv) − project − FC architecture. Here gconv
refers to a separable SE(3) convolution with a fiber convolution (fig. 1 B) followed by a
spatial group convolution (fig. 1 C). The separable convolution explained above is illustrated
in fig. 3. We use (5− 5− 5− 5− 5− 5− 5− 4) for a small network (Ours-) and (10− 20−
20− 40− 40− 20− 10− 4) for a big network (Ours+).
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      Lifting on

      Lifting on

      Gconv on

      Gconv on

      Gconv on

      Gconv on

      Gconv on
FC

Proj.

Figure 3: Architecture of our SE(3) network. Each block is a convolutional layer split into
2 separable layers. The last block before the FC layer is equivalent to a single S2-layer as
explained in section 3.1. The vertical arrows in each block shows the separable convolutions.
First the spherical convolution is applied, followed by the spatial convolution.

3.3. Results

As was done in (Liu et al., 2021), we trained all networks using 1 scan, validated using 1
scan, and tested using 50 scans. Training with more scans has been tried, but it did not
seem to improve the results significantly, thus we continued using only one scan in training.

We evaluate the accuracies and Dice scores and accuracies of the classification of the 4
regions respectively, and the overall classification accuracy across all test scans. Numbers
reported in table 2 are the means and standard deviations of the respective criteria across
50 test scans. For each class, the accuracy is calculated by #ClassCorrect

#ClassSamples , and the Dice score

by 2TP
2TP+FP+FN for the class. The overall accuracy is calculated by #Correct

#AllSamples .

We trained all models until they converge and start to overfit, thus models are stopped
at different epochs based on evaluation on the validation set. Classical- and Classical+ were
trained for 34 and 19 epochs, Baseline- and Baseline+ were both trained for 31 epochs, and
Ours- and Ours+ were trained for 41 and 15 epochs.

Figure 4: From top to bottom: ground-truth, predictions from Classical+, Baseline+, and
Ours+. The colors of CSF, subcortical, WM and GM resp. are red, blue, white, and grey.

The Dice scores and accuracies of all experiments can be found in table 2. It is easy
to see that our method, with the smallest model capacity, has the best performance. The
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Table 2: Statistics of Dice scores and Accuracies.

G Model (#Param) CSF Subcortical WM GM Overall

Dice scores
I : R3 → RN

T3 Classical-(13539) 0.756± 0.07 0.376± 0.043 0.834± 0.011 0.839± 0.02
Classical+(972694) 0.804± 0.053 0.583± 0.036 0.856± 0.011 0.893± 0.009

I : R3 × S2 → R

SO(3)
Baseline-(286) 0.75± 0.073 0.185± 0.04 0.801± 0.012 0.83± 0.011
Baseline+(2104) 0.754± 0.069 0.334± 0.037 0.805± 0.013 0.841± 0.012

SE(3)
Ours-(2514) 0.769± 0.06 0.621± 0.038 0.854± 0.01 0.891± 0.008
Ours+(59914) 0.788± 0.05 0.746± 0.034 0.877± 0.008 0.909± 0.006

Accuracies

I : R3 → RN

T3 Classical-(13539) 0.792± 0.08 0.415± 0.053 0.879± 0.024 0.789± 0.034 0.806± 0.017
Classical+(972694) 0.815± 0.061 0.702± 0.026 0.834± 0.022 0.89± 0.011 0.854± 0.012

I : R3 × S2 → R

SO(3)
Baseline-(286) 0.742± 0.082 0.145± 0.04 0.804± 0.024 0.85± 0.016 0.788± 0.011
Baseline+(2104) 0.778± 0.07 0.379± 0.065 0.784± 0.024 0.848± 0.02 0.792± 0.013

SE(3)
Ours-(2514) 0.81± 0.065 0.692± 0.029 0.857± 0.022 0.874± 0.019 0.856± 0.01
Ours+(59914) 0.896± 0.042 0.826± 0.023 0.857± 0.017 0.912± 0.014 0.883± 0.008

Accuracies from rotated test set

T3 Classical+ 0.632± 0.097 0.452± 0.02 0.434± 0.018 0.5± 0.03 0.471± 0.015

SO(3) Baseline+ 0.769± 0.074 0.307± 0.059 0.782± 0.024 0.846± 0.02 0.786± 0.013

SE(3) Ours+ 0.88± 0.048 0.659± 0.028 0.83± 0.019 0.868± 0.018 0.84± 0.009

Classical+ setup works well, but it is at the cost of much bigger model capacity. Additionally,
Classical- is not significantly better than Baseline+, even though it has a way larger capacity.
Demonstrations of predictions from all models with high capacity can be found in fig. 4.
Predictions from Ours+ are much less noisy - especially for subcortical regions - than others.

In order to test the model resistance to variations, we rotated the test set using rotations
randomly sampled from an octahedral rotation group; Accuracies from the rotated data
with high capacity models are found at the bottom of table 2. Models with rotational
group actions (Baseline+ and Ours+) are resistant to data variation, and Ours+ remains
the best in performance.

4. Conclusion

We proposed an SE(3) GCNN for DWI scan segmentation by using a natural action of
SE(3) on the product space R3×S2, which models the space where DWI data is measured.
As it is a homogeneous space for this action, we develop equivariant/invariant GCNNs for
functions defined on it. This strategy keeps the required network capacity small, while
mitigating the need for data augmentation, which is usually more expensive either in com-
putation or in storage. Experiments show that our method is superior to ones that discard
either the spatial symmetries on R3 or the rotational symmetries on S2. Additionally, tested
with rotated data, models with rotational group actions demonstrate again the impact of
equivariance, especially for our SE(3)-based model.
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D. Cremers. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI
Scans. IEEE Trans. Med. Im., 35(5):1344–1351, 2016.

P. E. Jupp and K. V. Mardia. A Unified View of the Theory of Directional Statistics,
1975-1988. International Statistical Review / Revue Internationale de Statistique, 57(3):
261–294, 1989.

D. M. Knigge, D. W. Romero, and E. J Bekkers. Exploiting redundancy: Separable Group
Convolutional Networks on Lie Groups. In International Conference on Machine Learn-
ing, pages 11359–11386. PMLR, 2022.

R. Kondor and S. Trivedi. On the Generalization of Equivariance and Convolution in Neural
Networks to the Action of Compact Groups. In Proc. ICML, pages 2747–2755, 2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for
Dense Object Detection, 2018.

R. Liu, F. Lauze, K. Erleben, and S. Darkner. Bundle Geodesic Convolutional Neural
Network for DWI Segmentation from Single Scan Learning. In Suheyla Cetin-Karayumak,
Daan Christiaens, Matteo Figini, Pamela Guevara, Noemi Gyori, Vishwesh Nath, and
Tomasz Pieciak, editors, Computational Diffusion MRI, pages 121–132, Cham, 2021.
Springer International Publishing. ISBN 978-3-030-87615-9.

J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic Convolutional Neural
Networks on Riemannian Manifolds. In Proceeding of 3dRR, 2015.

P. Müller, V. Golkov, V. Tomassini, and D. Cremers. Rotation-Equivariant Deep Learning
for Diffusion MRI, 2021.

D.S. Novikov, J. Veraart, I.O. Jelescu, and E. Fieremans. Rotationally-Invariant Map-
ping of Scalar and Orientational Metrics of Neuronal Microstructure with Diffusion MRI.
NeuroImage, 174:518–538, 2018.

E. Schwab, H. E. Cetingül, B. Asfari, and E. Vidal. Rotational Invariant Features for
HARDI. In Proc. IPMI, 2013.

S. Sedlar, T. Papadopoulo, R. Deriche, and S. Deslauriers-Gauthier. Diffusion MRI fiber
Orientation Distribution Function Estimation using Voxel-wise Spherical U-net. In Inter-
national MICCAI Workshop 2020 - Computational Diffusion MRI, Lima, Peru, October
2020. URL https://hal.archives-ouvertes.fr/hal-02946371.

S. Sedlar, T. Alimi, A.and Papadopoulo, R. Deriche, and S. Deslauriers-Gauthier. A Spher-
ical Convolutional Neural Network for White Matter Structure Imaging via dMRI. In
M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert,
editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2021,
pages 529–539. Springer, 2021.

T.S. Cohen and M. Weiler and B. Kicanaoglu and M. Welling. Gauge Equivariant Convo-
lutional Networks and the Icosahedral CNN. In Proc. ICML, pages 1321–1330, 2019.

105

https://hal.archives-ouvertes.fr/hal-02946371


Lauze Bekkers Erleben Darkner

D. S. Tuchs. Q-Ball Imaging. Magnetic Resonance in Medicine, 52:1358–1372, 2004.

David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E.J. Behrens, Essa
Yacoub, and Kamil Ugurbil. The WU-Minn Human Connectome Project: An Overview.
NeuroImage, 80:62 – 79, 2013.

M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T.S. Cohen. 3D Steerable CNNs:
Learning Rotationally Equivariant Features in Volumetric Data. In Proc. NIPS, 2018.

D.E. Worrall, S.J. Garbin, D. Turmukhambetov, and G.J. Brostow. Harmonic Networks:
Deep Translation and Rotation Equivariance, 2017.

Mauro Zucchelli, Samuel Deslauriers-Gauthier, and Rachid Deriche. A Computational
Framework for Generating Rotation Invariant Features and its Application in Diffusion
MRI. Medical Image Analysis, 60, 2020.

106


	Introduction
	Method
	Standard convolution operations
	Discretization of spherical signals

	Experiments and Results
	Experiment setup
	Networks and architectures
	T3: Classical CNN
	SO(3): Baseline
	SE(3): Ours

	Results

	Conclusion

