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a b s t r a c t

Cloud computing attracts increasing attention in processing dynamic computing tasks and automating
the software development and operation pipeline. In many cases, the computing tasks have strict
deadlines. The cloud resource manager (e.g., orchestrator) effectively manages the resources and
provides tasks Quality of Service (QoS). Cloud task scheduling is tricky due to the dynamic nature
of task workload and resource availability. Reinforcement Learning (RL) has attracted lots of research
attention in scheduling. However, those RL-based approaches suffer from low scheduling performance
robustness when the task workload and resource availability change, particularly when handling time-
critical tasks. This paper focuses on both challenges of robustness and deadline guarantee among such
RL, specifically Deep RL (DRL)-based scheduling approaches. We quantify the robustness measurements
as the retraining time and investigate how to improve both robustness and deadline guarantee
of DRL-based scheduling. We propose MLR-TC-DRLS, a practical, robust Meta Deep Reinforcement
Learning-based scheduling solution to provide time-critical tasks deadline guarantee and fast adapta-
tion under highly dynamic situations. We comprehensively evaluate MLR-TC-DRLS performance against
RL-based and RL advanced variants-based scheduling approaches using real-world and synthetic data.
The evaluations validate that our proposed approach improves the scheduling performance robustness
of typical DRL variants scheduling approaches with 97%–98.5% deadline guarantees and 200%–500%
faster adaptation.
1. Introduction

Cloud computing attracts increasing attention in scheduling
nd processing dynamic and complex computational tasks [1,2],
lastic service scaling [3,4] and automating the software devel-
pment and operation pipeline [5,6]. A cloud environment can
e customized based on application requirements using differ-
nt resources, e.g., Virtual Machines (VM), docker containers,
torage, and network. To automate the provisioning of cloud
nfrastructure and deployment of software services, a resources
anager has to handle dynamic application requests with quality
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of service (QoS), e.g., video processing [1,7], time-critical tasks,
scaling services in cloud [8,9]. At an abstract level, the manage-
ment of the resources is often seen as a scheduling problem,
e.g., allocating and scheduling the placement of VMs in data
centers [10,11], deploying dynamic docker containers on a docker
cluster [12,13], handling events in a big data framework [14,15].
However, such problems are complex and NP-hard; the request
patterns from diverse users are highly dynamic, and resource
availability constraints vary.

Time-critical tasks, for example, disaster forecast, often have
very diverse time requirements in the context of execution, in-
cluding data communication, processing, and calculation [9,16,
17]. When scheduling time-critical tasks, Infrastructure as a Ser-
vice (IaaS) is a common approach to optimizing the allocation
of VMs (virtual machines), improving the network topology, and
optimizing the execution process on the virtual infrastructure [18,
19]. To this end, scheduling optimization, as an NP-hard problem,

is proposed to investigate in this field. Furthermore, with the
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evelopment of cloud platforms, the scheduling methods have
volved from heuristics and artificial intelligence methods to
achine learning-based methods.
Many works have been done on scheduling optimization by

nvestigating Machine Learning-based approaches. A common so-
ution for the scheduling optimization problem is to retrain the
odel to adapt to the dynamics. For small-scale clusters empirical
euristics [20,21] are feasible. With the growing capability of in-
rastructures, especially the requests and resources are becoming
iverse and dynamic, empirical heuristics are not ideal for apply-
ng anymore. To this end, more scheduling approaches address
ssues from perspectives: multi-resource [22,23], task depen-
encies [24,25], resource budgets [26], and task deadlines [27].
egarding different models combining calculations resources and
elated tasks, the effectiveness of those approaches is mostly
ounting on a specific kind of computational task. However, it
as no scheduling performance guarantee for scalable clusters
ith diverse tasks and resources. Then during the past decades,
einforcement Learning as its interactive learning property has
een widely applied and investigated in the context of schedul-
ng. Zhang et al. [28–30] optimize the scheduling process by using
policy model learned beforehand by RL algorithms. Many differ-
nt RL variants-based algorithms are also dealing with schedul-
ng problems: DQN [31] applies a deep Q learning algorithm
o optimize scheduling problems by calculating the Q value of
ach scheduling action. Double-DQN [32] algorithm applies ex-
ra network to calculate optimization target. CEM [33] apply-
ng cross-entropy training methods to improve the optimization
fficiency.
However, the dynamics of the scheduling environment have

arely been addressed in previous work, including empirical
ethods and Machine Learning-based approaches. The uncer-

ainty of the dynamics leads to the scheduling performance devia-
ion of the learned model, which is not beneficial for scheduling.
n increase in tasks’ deadline missing rate is one of the severe
onsequences. Intuitively, it is a standard solution to do retrain-
ng to compensate for this part of performance loss. However,
etraining time [34] could lead to degradation of QoS for time-
ritical tasks and many consequences. Retraining time spent on
daptation to a new environment shows the ability of scheduling
pproaches to adapt to dynamics. We adopt this ability as the ro-
ustness of scheduling. The less retraining time it spends in a new
nvironment, the better robustness it has. Scheduling robustness
n this paper is described as the retraining time spent adapt-
ng to the new environments. Namely, the less retraining time
eans the better robustness. If the quantified changes among
nvironments with the same changes are given, less retraining
ime means better robustness. So for better robustness, one of
he aims is to reduce retraining time; we aim to investigate more
etails of methods coping with reducing retraining time and how
o adjust it according to the requirements and the performance
eviation.
There are also many works aiming to improve scheduling

erformance: Yao et al. explicitly model the task uncertainties
hrough the scheduling process [35], and Singh et al. optimize
cheduling by predicting workload, and resource availability [36].
uo et al. improve the robustness of offloading by proposing
ailure recovery (RoFFR) [37], reducing energy consumption and
pplication completion time. Mireslami et al. focus on a spe-
ific resource allocation scenario, where their proposed hybrid
ethod [38] could handle the dynamics. Among those early
orks, the issues addressed are specific patterns of the uncertain-
ies, not the scheduling performance stability or the adaptation
peed after influences of dynamics. Moreover, the other miss-
ng part of the goal regarding scheduling is the time-critical

actor, i.e., deadlines. To this end, the motivation of this work l

19
is the improvement of scheduling performance robustness and
time-critical task scheduling.

The absence of robustness lies in cloud task scheduling opti-
mization processes, their definition and evaluation process. There
are rare systematic, comprehensive definitions and evaluations
for scheduling performance robustness. Little attention and work
have been dedicated to retraining time reduction and robust-
ness improvement without the theoretical basis. However, as
aforementioned, with the running of a cloud cluster platform,
dynamics can appear at any part of it: from requests, orchestrator,
and cluster. These dynamics directly influence the scheduling
performance of the cloud cluster system. Consequently, the QoS
it offers is not guaranteed anymore, which negatively influences
cloud service providers.

Meta-learning [39], with its focus on adaptation against dy-
namics, takes dynamics into account, acquiring a more general
model, which could help keep a compared more stable scheduling
model and also help to adapt to newly changed environments.

Thus, in this work, inspired by [39], we investigate improv-
ing the robustness of the RL-based scheduling approach [40] by
optimizing and integrating Meta Learning [41] framework. In
the meantime, we optimize the reward system of the RL-based
scheduling approach to guarantee deadlines for time-critical task
scheduling. The main contributions of the paper include:

1. Improving the robustness of Reinforcement Learning-based
task scheduling by optimizing and integrating the Meta-
Learning framework. We also propose measurements for
the robustness of RL-based scheduling.

2. Improving Reinforcement Learning-based scheduling with
support for time-critical tasks by integrating an optimized
deadline-guaranteed reward system.

3. Optimizing and integrating the robustness and time criti-
cal guarantee into our proposed Meta-Learning-based robust
Deep Reinforcement Learning scheduling (MLR-TC-DRLS) al-
gorithm, which integrates both optimized Meta-Learning-
based scheduler and our proposed deadline guaranteed
RL scheduler. In addition, we implement a comprehensive
evaluation to compare our proposed MLR-TC-DRLS with
state-of-the-art RL variants-based scheduling approaches.

n the remainder of this paper, we will first formulate the problem
nd go through state-of-the-art scheduling research in Section 2.
hen, we elaborate our methodology step by step and formu-
ate the complete algorithm MLR-TC-DRLS in Section 3. Next,
n Section 4, we evaluate MLR-TC-DRLS using a real-world data
et obtained from operational research infrastructure platform
og data and a synthetic scheduling data set. Then, in Section 5
e have further analysis and discussion regarding the evaluation
esults. The possible future work also follows in this section.
inally, Section 6 concludes the whole paper.

. Problem formulation and related work

.1. Robustness problem

Firstly, we introduce a typical cloud computing system as
hown in Fig. 1, the orchestrator schedules the deployment com-
utational requests or tasks, following specific policies, automat-
ng the following deployment process.

The deployment environment of a cloud platform consists of
any calculation resources, which are virtualized infrastructures
r networked machines. The deployment requests or tasks are
riggered by user events, e.g., remote file storage or data analysis;
hose requests or tasks are with specific calculation resource
equirements, e.g., CPU or memory usage, and execution dead-

ines if those are time-critical tasks. The orchestrator manages
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Fig. 1. Cloud scheduling processes.

Table 1
Notation list.
Tj Number j task ( j ∈ {1, . . . , n})
T arr
j The time when task j arrives the platform

dj Required calculation resource from task j
tcur Current system time
T len
j Ideal time length spent on execution of task j

σTj (t) Arrival probability of task j

T fin
j The time when the execution of task j finishes

Qfu
Tj
(t) The hard deadline value of task j at time t

QTj (t) The execution slowdown value of task j at time t
Υ Expected deadline value
rTj Reward value of task j at time t
Pa Scheduling penalty constant (reward value calculation)
Bo Scheduling bonus constant (reward value calculation)

P fuse
a Extra penalty constant (reward value calculation)

the incoming deployment tasks, making decisions on allocating
available resources to execute tasks, e.g., to execute, hold or
abandon the task. During this scheduling process, the orches-
trator’s objective is to continuously schedule tasks efficiently,
meeting the requirements given by the requests. However, with
the system running, dynamics brought by each component can
appear at any time, inducing but not limited to: requests pattern
changes, scheduling algorithm switching, hardware failures or
unexpected performance deviation, as are shown in Fig. 1. For
the orchestrator part, there are some scenarios where scheduling
algorithms got switched due to requirements when the scheduler
experiences performance deviation subject to the dynamics. As
to the cluster resources part, hardware failures, maintenance,
and many other factors could influence the resource availability,
which incurred the scheduling performance deviation. Conse-
quently, the cloud platform experiences uncertain performance
deviation, which might violate LSA (Legal Service Agreement).
Therefore, we need a more robust scheduling approach work-
ing against dynamics in all those scenarios to cope with this
undesired working mode (see Table 1).

Many RL-based scheduling approaches optimize the schedul-
ng process by learning a policy model to perform scheduling
issions after training reaches the convergence requirements. In
ther words, the training process and the eventual model are all
ased on the source of the training data, namely the environment
hown in Fig. 1, and the convergence requirements. However,
hese two parts of scheduling can change from time to time, as
e aforementioned. Consequently, the model does not fit the new
20
environment or training data anymore. To this end, retraining is
necessary to adapt the model to a newly changed environment.
However, little attention has been paid to reducing the retrain-
ing time. Consequently, most of the retraining is performing
the training from scratch again, which leads to a long time of
retraining. Time-consuming retraining is not always acceptable,
especially for time-critical task scheduling. This work addresses
the importance of retraining time reduction and the methods to
improve scheduling robustness.

The robustness of scheduling algorithm performance we refer
to in this work describes how stable the algorithm can remain
against the dynamics of the environment. More specifically, with
the inevitable change in the task workload or resource availabil-
ity, the less scheduling performance deviation after the influ-
ence, the better robustness the algorithm has. For an RL-based
scheduling approach, the higher robustness of the scheduling
performance is the better it is for platform maintenance and QoS.
We first need a clear definition of scheduling performance robust-
ness. Then based on the definition, can we propose improvement
solutions.

We define the assessment methods of scheduling performance
robustness from following aspects:

1. The scheduling performance deviation between stable
scheduling mode and instant scheduling performance after
the dynamic influences from the environment (e.g., the re-
source availability dynamics or the task workloads change).
The performance deviation can be represented as a ratio
in positive or negative numbers depending on whether
the performance decreases or increases compared with the
previous performance.

2. The scheduling performance adaptation time, which de-
scribes time spent to converge again in a newly changed
environment or retraining time recovering to the perfor-
mance before dynamics’ effects. Besides stability, we also
want this adaptive ability to improve the overall stability
of the scheduling process.

2.2. Deadline missing problem for time-critical tasks

When scheduling time-critical tasks, cloud platforms often use
Infrastructure as a Service (IaaS) to optimize overall system-level
performance by following methods: selecting the most suitable
VMs (virtual machines), customizing their network topology, and
optimizing the scheduling of execution on the virtual infras-
tructure [18,19]. Furthermore, the scheduler must be aware of
time constraints, e.g., deadlines, as shown in Fig. 2, required for
acceptable system performance. Scheduled executions, which fail
to finish within specific deadlines, directly influence the deadline
missing rate of tasks, furthermore, QoS, and serial consequences.
However, current cloud providers lack explicit support for de-
ploying time-critical applications where users need to manually
deploy their applications step by step and have no guarantee re-
garding execution deadlines. In this paper, we address the dead-
line missing issue by integrating a deadline guarantee scheme
into the scheduling approach to improving the deadline guaran-
tee of task scheduling. In this work we define the deadlines in
a more detailed manner, from the time when the tasks arrive in
the platform to the final execution finishing time. With the more
detailed deadline definition, we can better differentiate different
phases of task execution process and schedule the tasks in a
more precise way to improve the scheduling performance and ro-
bustness. Moreover, we have corresponding optimization targets
with the more detailed deadline definition. We will elaborate the
detailed optimization in Section 3.
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Fig. 2. Deadlines definition for each task.
Q

.3. Related work

For the past ten to twenty years, task scheduling for cloud
omputing platforms has been a popular topic, attracting many
esearchers to investigate. More specifically, relevant works
nclude scheduling among cloud infrastructure services [42],
nternet of Thing (IoT) [43], and scheduling of Edge platform
44]. Different strategies of optimizing scheduling have been
nvestigated, e.g., empirical heuristics methods [45], artificial
ntelligence-based approaches such as genetic-based schedul-
ng [46,47], ant colony-based scheduling [48], and particle
warm-based scheduling [49]. Those scheduling approaches are
ften designed based on particular resource and workload pat-
erns, namely certain scheduling platforms or environment mod-
ls. An ideal scheduling policy also needs to manage the dynamics
mong the cloud infrastructure services in cloud environments,
hich requires profound pruning and optimization. There are also
ome work [50] address the scheduling from a robust perspective
nd proposed a Canonical Particle Swarm Optimization (CPSO)
ased algorithm to solve the problem of resource allocation and
anagement from the perspective of considering different poli-
ies for upcoming tasks, in both homogeneous and heterogeneous
oT Cloud Computing.

Another direction of investigating scheduling related problems
s to formulate scheduling into decision-making process (MDP)
hen apply machine learning to do optimization [28–30], where
he optimization objectives include handling make-span of work-
lows [51], optimizing resource utilization rate [52], Quality of
ervice (QoS) optimization [53] and pricing models optimiza-
ion [54]. As is known, supervised learning-based methods ask
or accurately labeled training data, limiting their feasibility in
any scenarios. Consequently, the quality of the data labeling

or training determines the learned scheduling policies. Different
rom reliance on labeled data, RL-based approaches [55] learn
he scheduling policy through continuous interaction with the
nvironment, including make-span optimization for data cen-
ers [56], workflow applications scheduling optimization [57]. A
ell-pruned scheduling model experiences a certain extent of
erformance deviation when applied to cloud platforms, depend-
ng on the dynamics. We have started to pay more attention
o scheduling performance robustness issues. There has been
ffort involved in investigating this issue: robust heuristic ap-
roach [58], measuring scheduling robustness [59], improving
obustness with graphical methods [60]. For work researching
achine learning-based scheduling methods, there has also been
uch work done focusing on robustness lately. Transfer learning
as been tried [61] in terms of scheduling stability. Also, adversar-
al attacks have been taken into account for scheduling to design
ore robust algorithms, which include Fast Gradient Sign Method

FGSM) [62], Projected Gradient Descent (PGD) [63], Carlini and
agner (C&W) attack [64], and adversarial patch attack [65].
owever, robustness issues addressed here are mostly about
21
learning efficiency, where the dynamics in the environment have
rarely been taken into account.

Among many RL-based approaches, DQN [66], Double-DQN
[32], CEM [33], are representatives of them. DQN applies Q-
network to calculate the Q value of different policies to op-
timize them. Double-DQN applies an extra neural network to
improve the estimation of Q values. CEM adjusts methods of se-
lecting different data entropy to improve optimization efficiency.
Many works related to these approaches have been done: the
DQN approach easily overestimates the Q values; Double-DQN
corrects the overestimation but needs more calculation; CEM
improves optimization by changing sampling methods, which re-
quires more calculation and also brings more dynamics. Above all,
most of the works contribute to scheduling efficiency but rarely to
the robustness of scheduling performance, that is, retraining time,
which influences the stability and generality of the scheduling
a lot. We adopt three typical RL variants as comparisons in this
work. The first, Deep Q Learning (DQN), is a popular approach to
training machine learning models, aiming to optimize each action
by calculating the Q value of each action. The second double DQN
is a variant of DQN with an extraneural network to optimize
the Q value calculation. Finally, we also consider CEM to be the
approach to retaining time reduction.

DQN [67] aims to learn the estimation value of each action,
defined as the expected sum of future rewards when taking that
action and following the optimal policy after that. For example,
under a given policy π , the actual value of action a in a state s is:

π (s, a) ≡ E[R1 + γ R2 + · · · | S0 = s, A0 = a, π] (1)

where γ ∈ [0, 1] is a discount factor that trades off the impor-
tance of immediate and later rewards. The optimal value is then
Q∗(s, a) = maxπQπ (s, a). Estimates for the optimal action values
can be learned using Q-learning, a form of temporal difference
learning. The standard Q-learning update for the parameters after
taking action At in state St and observing the immediate reward
Rt+1 and resulting state St+1 is then

θt+1 = θt + α(YQ
t − Q (St , At; θt ))∇θtQ (St , At; θt ) (2)

where α is a scalar step size and target YQ
t is defined as

YQ
t ≡ Rt+1 + γ max

a
Q (St+1, a; θt ) (3)

This update resembles stochastic gradient descent, updating the
current value Q (St , At; θt ) towards target value YQ

t .
To prevent overoptimistic value estimates, double Q-learning

[32], learns two value functions by assigning experiences ran-
domly to update one of the two value functions, resulting in two
sets of weights, θ , and θ ′. For each update, one set of weights is
used to determine the greedy policy and the other to determine
its value. For a clear comparison, we can untangle the selection
and evaluation in Q-learning and rewrite its target (3) as

YQ
t = Rt+1 + γQ (St+1, argmaxQ (St+1, a; θt ); θt ) (4)
a
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Fig. 3. The MLR-TC-DRLS approach.
he double Q-learning error can then be written as
DoubleQ
t ≡ Rt+1 + γQ (St+1, argmax

a
Q (St+1, a; θt ); θ ′t ) (5)

We use the second set of weights θ ′t to evaluate the value of
this policy fairly. This second set of weights can be updated
symmetrically by switching the roles of θ and θ ′.

The basic idea behind the Cross-Entropy Method(CEM) [33]
is to tackle the original optimization problem with an adaptive
sampling algorithm. Once the associated stochastic optimization
is defined, the CE method alternates the following two phases:

1. Generation of a sample of random data (including trajecto-
ries and vectors) according to a specified random mecha-
nism.

2. Update the parameters of the random mechanism based on
the data to produce a ‘‘better’’ sample in the next iteration.

Since the Meta Learning method we integrate in our algorithm
is sampling and learning in a more general manner, to better
compare the sampling manner, we also integrated the CEM into
one of the RL-based scheduling baselines. We use CEM here as a
reference, to prove the sampling of our proposed method is more
efficient.

By revisiting the approaches mentioned above: DQN aims to
estimate the Q values of each action candidate, but because of
its overestimation, as is shown in the results, the scheduling
performance decreases with the increase of the workload and
dynamics; the Double-DQN algorithm adds an extra neural net-
work and experience memory to improve the optimization; CEM
aims to adjust the sampling process to improve the optimiza-
tion, because of the dynamics’ direct influence on the sampling
22
process the scheduling, the scheduling performance degrades
dramatically with the increase of the dynamics.

3. Methodology

As aforementioned, in this work, we address the time-critical
scheduling from robustness and deadline guarantee perspectives.
As to scheduling performance robustness, we integrate the RL-
based scheduling approach with the Meta-Learning approach and
then optimize it; as to tasks deadline guarantee, we integrate a
novel deadline guarantee scheme with the scheduling approach.

As shown in Fig. 3 we describe our methodology in the order
of the scheduling process, which starts when the cloud plat-
form receives a new task request. The new incoming task gets
sorted into a queue within the ‘‘State of Tasks’’ area waiting for
scheduling action, depicted in the middle of the figure, the red
area. The execution actions are made by the learning process
in ‘‘Deadline-Guarantee Task Scheduling’’. The process of learn-
ing scheduling policy, formulated as an MDP, depicted in the
middle, consists of states, actions, rewards, and the transitions
among states. First, each agent trains a policy model with a
scheduler. The scheduler receives information, including resource
availability and task queue information, then makes allocation
decisions based on the current policy model. Afterward, the agent
calculates the deadline critical reward function based on the
scheduling decision to update the policy model. There are N RL
learning agents running in parallel simultaneously. After the inner
learning circle of the Meta-Learning framework, the meta learner
adapts the scheduling policy model learned by RL agents into a
more general scheduling policy model and updates the original
policy model. This process is depicted at the top right of Fig. 3
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n the green area. Then the scheduler follows this updated policy
odel for each state to execute the chosen task. Finally, the meta

earner, i.e., the outer learning circle, updates the policy model
nd related state information: tasks status in different queues and
latform resource availability.

.1. Robust scheduling

It is familiar to train a model that fits the current situa-
ion among RL-based methods. The learning process relies on
he interaction with environments in the short term. However,
he environment could change interacting manners, namely dis-
ribution, consequently changing the target model. Hence the
ormer learned model gets performance deviation. Retraining
s a straightforward and standard solution to cope with this
erformance deviation.
Instead of learning a specific optimized model for each envi-

onment, Meta-Learning generalizes the learning process across
ifferent data sets and environments to adapt quickly to a new
nvironment. The randomization within the training environ-
ent is the key to its robustness, which is also regarded as
ynamics. In this way, a model trained accounting dynamics can
ffectively exploit and adapt to changes faster than the conven-
ional manner, repeating the training process from scratch once
gain [39].
As is formulated in Meta-Learning, the training data distribu-

ion is denoted as Λ. By calculating the objective function based
n πθ , the learner agent aims to optimize the policy model at the
ame time minimizing training loss: LD .
In this work, we integrate the conventional RL-based schedul-

ng algorithm with gradient-based meta-learning, where the
earning process updates the model as follows:

1. Inner circle learning: The learning agent samples training
data-set denoted as Dtr from task distribution D for train-
ing and eventually calculating the updated model θ ′ for the
next step outer circle training as follows:

θ ′ = Φβ (Dtr , θ ) (6)

2. Outer circle learning: The learning agent applies the up-
dated θ ′ from the inner circle to sample test data-set de-
noted as Dte, then uses Dte to calculate the loss function
and update the scheduling policy model.

min
θ,β

ED[L(Dte, θ
′)] (7)

For the inner circle learning update, we have:

Φβ (Dtr , θ ) = θ − α∇L(Dtr , θ ) (8)

Under objective function, after training across mutated envi-
ronments [41], the learning agent achieves a more general model.
Therefore, a model learned in this way can adapt to a changed
scheduling environment quickly.

The scheduling policy model learned within the inner circle
learning process is based on a data trajectory sampled from
a cloud log file—the dynamics among resource availability and
task workload change among training data sets or environments.
The outer circle learns across different data trajectories to adapt
to a more generalized model with better robustness. As to the
inner circle learning process, the training objective is to learn the
scheduling policy model, followed by the scheduler choosing a
task and allocating resources. Therefore, the inner circle learning
agent must continuously interact with the cloud environment
to learn the updates from different components. As its inter-
active learning pipeline, Reinforcement Learning reasonably fits
the scheduling environment in this work. The following subsec-
tion will introduce the detailed methodology, optimization, and
numerical formulation of the RL-based scheduling part.
23
3.2. Meta-reinforcement learning method

This section proposes the inner circle RL pipeline to learn
the scheduling policy model. We optimize and integrate a Meta-
Learning based approach to update the scheduling policy model
learned via RL agents. The final model is then more robust against
the uncertainties incurred by dynamics.

The RL learning agents within the inner circle learning process
updates the scheduling policy model as follows:

θ ′ = Φβ (Dtr , θ ) = argmax
θ

EAt ,St∼π (θ )[

N∑
t=0

γ tRt ] (9)

where, Dtr is sampled from tasks distribution Λ; St denotes state
At indicates action (in size of N sampled points).

Then when it comes to the outer circle learning, the updated
models from agents θ ′ will be used to calculate the final update
as follows:

θ = θ − α

N∑
j=1

Lj(Dte, θ
′) (10)

3.3. Time-critical scheduling

After integration with Meta-Learning, the robustness concern
gets addressed, but the deadline missing issue is still not ad-
dressed. RL-based methods still lack a scheme of deadline guar-
antee. For time-critical tasks, especially after dynamics from re-
source availability, hardware failure, or even requests tide, the
deadline is easily violated without a guarantee scheme.

We formulate the deadline-guarantee part of scheduling with
Reinforcement Learning. As a serial decision making on resources
allocation, the scheduling process is a perfect match with Markov
Decision Process (MDP) based optimization, where we formulate
Reinforcement Learning-based scheduling step by step later. In
this MDP process denotes as M(S,A, π,R, γ ,H), where S de-
notes task scheduling state space, A represents scheduling action
space, H represents the tasks number waiting to be calculated
in each training iteration. The reward R is the sum of rewards∑H−1

t=0 r(st , at ) from each trajectory τ := (s0, a0, . . . , sH−1, aH−1,
H ), which is defined in next section characterized as Eq. (17),
indicates the scheduling policy: S × A

π
−→ R+, which is a

robability distribution model characterized by θ over actions:
θ (s, a) ∈ [0, 1], γ ∈ (0, 1] is the discount factor in cumulative
ewards.

Time-Critical Scheduling State Space S: As shown in Fig. 4:
here are four parts of information in each scheduling state:
esource availability information, nominated tasks information,
aiting for tasks information, and abandoned tasks informa-
ion. We represent all states in a coordinate system, where each
tate’s information is formulated as a certain amount of two-
imensional units in different colors. Fig. 4 also offers an example
f the representation for each state. In the left green area of the
oordinate system, the area of resource availability: the units in
ifferent colors indicate different tasks using this resource. In this
oordinate system, the y axis denotes the spent time length, and
he x axis represents the number of resources. The blank units
how the number of available resources, while the colored units
enote the number of resources dominated by different tasks.
he nominated tasks are in the middle orange area, which are
tasks selected from the waiting area. The right blue area is the

rea of tasks waiting for the queue, including tasks waiting for
omination and new tasks. Moreover, the waiting queue tasks are
orted in the decreasing order of the execution slowdown, which
elps the agent schedule more efficiently. The right gray area is
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Fig. 4. Time-critical scheduling state representation.

the area of tasks abandoned by the scheduler. The details of each
part of the learning process follow.

Scheduling Action Space A: Scheduling action space is the
collection of scheduling choices, i.e., nominated tasks here. As
aforementioned, for each iteration, H (we set it to 50) tasks are
nominated to be this action space according to the execution
slowdown. Then the learning agent calculates each task’s reward
for deciding the action for each task. The decisions are made
based on the policy model πθ . The actions for each task are: ex-
ecuting, holding, and abandoning. After the action is executed, a
new task from the waiting queue will be added to the nominated
tasks pool. There is a check of Qfu

Tj
(t), the tasks with negative

Qfu
Tj
(t) get abandoned to ensure the deadline guarantee. While

for each task, no matter what kind of action it gets, its Qfu
Tj
(t)

variable decreases one to push the learning efficiency. With the
calculation of each iteration, Qfu

Tj
(t) becomes a deadline missing

indicator of each task. Before finally executing the chosen task,
the agent must check if the available resource matches the re-
quired amount. If not, the agent takes the action of holding upon
that task for the next iterations.

Scheduling Policy Model πθ : The scheduling policy is based
on looking up Q value table calculated via a neural network
(NN) [68]: two fully-connected layers, the activation function:
rectified linear unit (ReLU), softmax, hidden layer: 30 neurons.
The time-critical state representation we formulated previously
is the input of the NN . Then the output of the first layer of NN is
the probability distribution of selecting each task to execute (from
the nominated task pool); Then, the second layer outputs the final
choice of the task to execute. Via this two-step trick, the action
space gets decreased from 3H choices to H , which saves much of
calculation capability.

The Objective Function: In this work, we aim to formulate
an objective function to navigate the RL learning agent to op-
timize the scheduling policy π , which is interpreted into the
maximization of the cumulative rewards as follows:

E(st ,at )∼πθ

[ ∞∑
t=0

H∑
j=1

γ r(st , at )
]

(11)

where (st , at ), as aforementioned, denote state and action respec-
tively.
24
The gradient of the scheduling policy model is as follows:

∇θE∈(st ,at )∼πθ

[ ∞∑
t=0

H∑
j=1

γ r(st , at )
]

= E(st ,at )∼πθ

[
∇θ logπθ (st , at )Rπθ

(st , at )
] (12)

Then we apply gradient descent [55] to update policy model
parameters as follows:

θ ′ = θ + α

∞∑
t=0

∇ logπθ (st , at )r(st , at ) (13)

Based on this RL-based scheduling framework formulation, we
optimize it with a deadline guarantee reward system.

Time-Critical Reward System: We formulate the whole re-
ward system to guarantee the task deadline. The detailed formu-
lation of the rewards system is depicted in Fig. 2: the horizontal
axis in black color indicates the system time tcur ; Each task arrives
at the platform with its arrival time T arr

j and execution time T len
j .

To achieve the goal of deadline guarantee, we define an execution
slowdown value QTj (t) [56] for each task, whose calculation is as
follows:

QTj (t) =
tcur − T arr

j

T len
j

(14)

he f (QTj (t)) function is meant to check whether execution slow-
own of a task exceed the expected deadline or not. It is formu-
ated as follows:

(QTj (t), Υ ) =

⎧⎨⎩
1, if QTj (t) ≤ Υ

0, otherwise
(15)

hen the objective of RL process is formulated as follows:

ax
∑
Tj∼D

[f (QTj (t), Υ )] (16)

here D indicates the sampled data trajectory, Υ represents the
xpected execution deadline threshold, which is defined accord-
ng to Service Level Agreement (SLA) made between cloud user
nd provider. With the reward system, the execution slowdown
ariable of each task shall be bounded to guarantee that the tasks
o not miss the deadlines.
More specifically, the execution slowdown variable calculation

or a different group of the tasks is as follows for nominated tasks:

Tj∈(st ,at ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max[0, (QTj (t)− Qfu
Tj
)T len

j ]Pa + P fuse
a ,

if to be abandoned
max[0, (QTj (t)− Υ )T len

j ]Pa + Bo,

if to be executed
max[0, (QTj (t)− Υ )T len

j ]Pa,
if to be held

(17)

where, Pa is a penalty constant threshold, Υ denotes expected
deadline threshold. For tasks to be abandoned, whose execu-
tion slowdown value violates hard deadline Qfu

Tj
, in their reward

function, max[0, (QTj (t) − Qfu
Tj
)T len

j ]Pa is an execution slowdown

penalty, while P fuse
a is an extra penalty. For tasks to be executed,

hich do not exceed hard deadline while the current resource
vailability is enough according to their resource requirement, in
heir reward function, max[0, (QTj (t)− Υ )T len

j ]Pa is an execution
slowdown penalty, and Bo is a constant bonus value; For tasks
o be held, which do not exceed hard deadline but the current
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esource availability is enough according to their resource re-
uirement, in their reward function, max[0, (QTj (t) − Υ )T len

j ]Pa
is execution slowdown penalty. Overall, as shown in Fig. 4, the
dynamics after each iteration are: successfully executed tasks
get removed from nominated pool while new tasks get added to
nominated pool; The held tasks remain in the nominated queue;
The abandoned tasks get sorted in the abandoned queue.

Rewards of tasks in the waiting queue:

rTj∈(st ,at ) = max[0, (QTj (t)− Υ )T len
j ]PaQTj (t)T

len
j (18)

We also guide the learning agent to schedule waiting for tasks
faster by giving them a waiting time related to their reward
function.

3.4. MLR-TC-DRLS algorithm description

Algorithm 1 MLR-TC-DRLS algorithm

Require: Tasks distribution: Λ,
Require: Environment number: N , trajectory size: h
Require: Learning rate: α, β ∼ R+
1: Initialize the policy πθ and D← ∅
2: for i = 1, ...N do
3: Use pre-adapted policies πθ ′H

to sample D′ ∼ Λ

4: Add samples: D← D′

5: for j = 1, ...,H do
6: Sample the trajectories in the size hi ∈ (0,H)
7: for hi do
8: Use policies πθ to sample trajectories within first hi

samples τhi ∼ H
9: Use τH to calculate adapted parameters: θ ′hi = θ +

α
∑hi

j=1 ∇ logπθ (st , at )rTj (st , at )
10: Use adapted policy πθ ′hi

sample trajectories τ ′hi ∼ H

1: end for
2: Use τH to calculate adapted parameters: θ ′H = θ +

α
∑

hi
∇ logπθhi

(st , at )rTj (st , at )
13: Use adapted policy θ ′H sample trajectories τ ′H ∼ D
14: end for
15: Calculate update: θ ← θ − β∇θ

1
H

∑H
j=1 Lj(θ ′H ) using τ ′H

6: end for
7: returnθ as θ ′

After two phases of scheduling design described above: ro-
ustness and deadline guarantee of schedule, in this section, we
ntegrate them to propose our approach MLR-TC-DRLS (Time-
ritical Meta-DRL-Based Robust Scheduling). First, we will inte-
rate the deadline guarantee scheme into the RL-based schedul-
ng approach and then integrate the scheduling approach into the
eta-Learning paradigm. We formulate and explain the details of
ur proposed algorithm, MLR-TC-DRLS, by integrating inner circle
earning, the RL-based approach, and the outer circle learning,
hich are described previously. As is shown in Algorithm 1, the

nput of the algorithm includes task distribution: Λ, learning
ates: α, β ∼ R+, of the inner circle learning process and outer
ircle learning process, respectively. The initialization of the MLR-
C-DRLS in line 1: initialization of the scheduling policy model
nd resetting D. Then the training data-set is pre-processed,
enoted from lines 2 to 4: sampling N data trajectories from
he distribution Λ by using the current scheduling policy model,
hen adding these trajectories to D. The next step is the inner
cheduling policy learning circle, described from lines 5 to 9,
here the RL learning agents are ruining in parallel iterations.
ach of them is an independent RL-based learning agent. The
ample data sets τH inside D to calculate updated θ ′H . After achiev-
ng updated θ ′ , each RL agent uses θ ′ model to sample new data
H H

25
samples τ ′H from D. After this, the algorithm turns to the outer
learning circle, as shown in line 10, and the meta learner uses θ ′H
o calculate the loss function based on τ ′H to achieve an update of
he overall policy model. The time complexity of MLR-TC-DRLS is
(N×H×h). We will evaluate MLR-TC-DRLS in different aspects
o see its performance.

. Evaluation

We conduct a series of implementations to evaluate MLR-
C-DRLS by comparing it with basic RL-based scheduling ap-
roaches and state-of-the-art RL variants-based ones. It demon-
trates that our approach achieves better time-critical scheduling
erformance and scheduling robustness.

.1. Setup

Training Platform Settings: The details of the hardware plat-
orm where we implement all evaluations are: 18 × nodes, each
ode: GTX 1080 Ti×4, Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz
12 cores per cpu)×2, 128 GB memory, 10 TB local HDD×2, 4 TB
ocal SSD×2. The details of software environment are: Anaconda,
ython-numpy, python-scipy, python-dev, python-pip, python-
ose, g++ libopenblas-dev, git, Theano 1.4 version, Lasagne 0.1
ersion, and python-matplotlib.
Scheduling Platform Settings: The platform we implement

ur scheduling algorithm is from EauroArgo, BlueCloud projects,
hose structure is shown in Fig. 5. The platform consists of:
esource Management System, Information System(IS), Security
ystem, and the MicroService Orchestrator System. These are
omplex ICT systems that exploit tailored persistence technolo-
ies managed via web services. The Resource Management Sys-
em supports the creation of a Virtual Research Environment and
ts exploitation via the registration, management, and utilization
f the resources assigned to it. The Information System supports
he registration, discovery, and access of the resources profile. The
ecurity System ensures the correct exploitation, auditing, and
uditing of the resources under the policies defined at registra-
ion time and customized at VRE definition time. It is orthogonal
o all services operating in the infrastructure, and its components
re deployed on all computing nodes. The MicroService Orches-
rator System allows for a declarative definition of workflows,
hich are then executed by an engine. Decoupling orchestration

ogic of complex management tasks from the internals of single
ervices enables a more scalable and manageable approach to
omplex procedures, facilitates tracking, monitoring and inspec-
ion of service interactions and finally provides a non-opinionated
ocation for concentrating cross service logic (see Tables 2 and 3).

.2. Data sets

Real-World Data Sets
The real-world data sets used in the evaluation are log files

rom the Euro-Argo Data Service, which includes more than 3500
utonomous float instruments worldwide. The purpose is to mea-
ure, collect and deliver temperature-salinity and related prop-
rties. Then those data are stored at the Euro-Argo data portal
or different research communities to access and analyze. To en-
ure data availability, the Euro-Argo data portal has to efficiently
anage resources for data storage, service request execution, and
andwidth allocation for downloads and uploads tasks. Therefore,
he log data is a series of resource requests in this work, ideal
or our scheduling use case. The data is collected 24 h per day,
ne-month-long recording continuous services. The data sam-
ling frequency is 43200 samples taken per minute from the
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Fig. 5. Workload platform.
Table 2
Configuration of Fine-tuned RL baselines: We do fine-tuning of different RL-based scheduling approaches to be baselines. The configuration details of
these baselines include different neural network layers, amount of neurons in each layer, optimizer, learning rate, discounted rate, and activation functions.

Fine-tuned RL approaches

RL approaches
Parameters NN layer number Neuron amount Optimizer Discounted rate Learning rate Activation function

RL1 2 20 RMSProp 0.9 1e−5 ReLU, Softmax
RL2 3 30 RMSProp 0.8 1e−5 ReLU, Softmax
RL3 3 40 Adam – 1e−5 ReLU, Softmax
RL4 3 50 RMSProp 0.7 1e−5 ReLU, Softmax
Table 3
Configuration of Fine-tuned RL Advanced Variants Baselines: We also fine-tune advanced RL variants DQN, Double-DQN, and CEM-based scheduling approaches
to be baselines. The configuration details of these baselines include different neural network layers, replay buffer size, optimizer, learning rate, discounted rate,
and activation functions.

Fine-tuned RL approaches

Baseline approaches
Parameters NN layer number Replay buffer size Optimizer Discounted rate Learning rate Activation function

DQN 4 – Adam 0.95 1e−3 ReLU, Softmax
Double-DQN 3 500 Adam 0.95 1e−3 ReLU, Softmax

CEM 3 − Adam 0.95 1e−3 ReLU, Softmax
t
u
t
r
f
d
b
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v
t
o

Table 4
Table of scheduling performance measurements.

Scheduling performance measurements
MRED ≜ Missing Rate of Expected Deadline
MRHD ≜ Missing Rate of Hard Deadline
NAI ≜ Necessary Adaptation Iterations
CSP ≜ Converged Scheduling Performance
CW1,0000 ≜ Convergence within 1,0000 times of iterations

Table 5
Table of robustness measurements.

Robustness measurements
SPD ≜ Scheduling Performance Deviation
AIDURP ≜ Adaptation Iteration and Data Usage for Performance Recovery

4094157 raw log data. The data samples include task numbers,
task transfer time, and requested data size.
26
Synthetic Data
Besides real-world data, we also adopt synthetic data, which

includes two types of resources, i.e., CPU cores and memory, each
with a capacity of m. There are three kinds of tasks depending on
workload: light, medium, and heavy. More specifically, the ideal
execution duration of light tasks follows uniform distribution
between 1t0 and 5t0; the medium tasks follow uniform distribu-
ion from 5t0 and 10t0, and the duration of heavy tasks follows
niform distribution from 10t0 to 15t0, t0 is one unified system
ime step. To be more practical, each task is configured with a
andomly chosen dominant resource [56]. The desired amount
ollows uniform distribution between 0.25 m and 0.5 m, and the
esired amount of other resources follows uniform distribution
etween 0.05 m and 0.1 m. The expected deadline threshold Υ

s configured to be three, and for the hard execution slowdown
ariable, the configuration is 5. According to serial implementa-
ions and the prior work, [69] to compare the different results of
ptimization and robustness.
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Table 6
General Configuration: We configure resources, CPU cores, and memory with
a total capacity of m. Tasks are further divided into easy, medium, and heavy
tasks. The duration of the tasks is chosen uniformly. For example, t0 is a
single step in the system. The execution slowdown is set to three times the
duration of each task.

General setups

Workload modes
Parameters

σTj dj Tmax
j

Light (0.1,0.3) < 0.3m < 5t0
Medium (0.4,0.5) < 0.5m < 10t0
Heavy (0.5,1) < 0.8m < 15t0

4.3. Evaluation measurements

We define two groups of measurements to indicate and com-
are different experimental results and investigate different met-
ics (see Tables 4 and 5). The first group is related to deadline
issing rate and scheduling performance:
Missing Rate of Expected Deadline (MRED) [70]: the proportion

of executed task, which violate expected deadline, to all of tasks.
MRED indicates the performance of time-critical scheduling for
each method.

Missing Rate of Hard Deadline (MRHD) [70]: the proportion of
executed task, which violate hard deadlines, to all of tasks.

Necessary Adaptation Iterations (NAI): the number of iterations
each learning approach takes to reach a new convergence after
the dynamic change in the environment.

Converged Scheduling Performance (CSP): a scheduling perfor-
mance deviation measurement, which describes the portion of
scheduled tasks that meet the expected deadline after retraining
convergence:

CSP = 1− [Qconv − Υ ]/Υ (19)

where, Qconv is converged slowdown value.
Convergence within 1,0000 times of iterations (CW1,0000):

whether retraining converged within 1,0000 iterations of adap-
tation in a new environment or not (yes/no).

In addition to defining the missing deadline metrics, we define
two measurements to compare the robustness of scheduling per-
formance: Schedule Performance Deviation (SPD) and Adaptive
Iteration and Data Usage for Performance Recovery (AIDUPR).
Therefore, the instantaneous performance deviation, just after the
influence of workload dynamics or resource availability dynam-
ics. The formulations are as follows:

SPD =
|PERafter − PERbefore|

PERbefore
(20)

here, PERafter denotes the instant average task execution slow-
down value, PERbefore indicates the previous converged task exe-
ution slowdown value.
In addition to the instant performance deviation, we also

how the retraining convergence speed, namely how quickly each
cheduling approach adapts to dynamics. We use AIDUPR to
ndicate the time needed for iterations and the data needed for
etraining adaptation and performance recovery:

IDUPR = SPD ∗ ITER ∗ t (21)

here ITER denotes the iteration number of adaptation, t de-
cribes time length spent by each iteration.

aseline Configuration
We build up the RL-based scheduling baselines to compare

heir scheduling performance against our proposed MLR-TC-DRLS
o investigate MLR-TC-DRLS’s performance from different aspects.
o this end, we also optimize the RL-based algorithms in a similar
cheduling manner as follows:
27
• Scheduling State Space We represent and store all schedul-
ing states in the same way as we do for MLR-TC-DRLS,
in a coordinate system, where each state’s information is
formulated as a certain amount of two-dimensional units in
different colors. Similarly, as shown in Fig. 4, there are three
areas of information areas in the coordinate system: the area
of resource availability, in this coordinate system, the y axis
denotes the spent time length, and the x axis represents the
number of resources; The nominated tasks area, which are
H tasks selected from the waiting area; The awaiting tasks
area, includes tasks waiting for nomination and new tasks;
Moreover, the awaiting tasks are sorted in the decreasing
order of the execution slowdown, which helps the agent
schedule more efficiently.
• Scheduling Action Space We formulate the scheduling ac-

tion space as the collection of scheduling choices, i.e., nom-
inated tasks here. As aforementioned, for each iteration, H
(we set it to 50) tasks are nominated to be this action space
according to the execution slowdown. Then the learning
agent calculates each task’s reward for deciding the action
for each task. The decisions are made based on the learned
scheduling policy model πθ .
• Scheduling Policy Model The scheduling policy is based on

different learning methods calculating via a neural network
(NN): the NN structure and the configurations vary among
the perspectives which we compare with our proposed algo-
rithm, which will be elaborated in the baseline configuration
section.

ll RL-based scheduling baselines are all based on the work [56]
ith the integration of DQN, Double-DQN, and CEM methods to
etter compare their scheduling performance.
Before the adaptation comparison with RL-based approaches,

e apply our approach, MLR-TC-DRLS, to learn a generic schedul-
ng policy model by training across 30 trajectories sampled from
ach environment. Each environment has 4×4×4 types of config-
ration with mix of following properties: σTj , dj, T

max
j with respect

f general configuration. Thus 1920 trajectories in total. The algo-
ithm only gets to train in a new trajectory when it achieves the
cheduling convergence in the previous trajectory. After finishing
he generalization throughout this training process, we apply the
earned scheduling policy model to new environment training.

Workload Setup
For comparison with RL, based on workloads of [56] (see

ig. 6), we set up three kinds of environments with respect to
orkload: Light workload: with σTj ∈ (0.1, 0.3), dj < 0.3 m,
max
j < 5t0. Medium workload: with σTj ∈ (0.4, 0.5), dj < 0.5 m,
max
j < 10t0. Heavy workload: with σTj ∈ (0.5, 1), dj < 0.8 m,
max
j < 15t0. Each set we sampled 3× 3× 3 environments to do
omparison (see Table 6).

.4. Experiments

We aim to investigate three aspects:

1. To assess how much improved scheduling performance
robustness the Meta-Learning approach could achieve, we
conducted an implementation to compare different RL-
based approaches’ scheduling performance with NAI and
CSP metrics. Before and after integration with the Meta
Learning approach, the results will be demonstrated in Sec-
tion 4.5.1.

2. To assess the deadline guarantee achieved by our novel
reward function, we conduct implementations to compare
RL variants-based approaches with MRED and MRHD met-
rics before and after integration with our deadline guar-
antee reward function; the results will be demonstrated

in Section 4.5.2.
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Table 7
Scheduling Adaptation Iteration: we compare four fine-tuned DQN, Double-DQN, and CEM-based approaches based on real-world Argo
log records and showed that the meta-learning paradigm improves performance stability and speed of adaptation across different
workload modes.

Workload Light Medium Heavy

Approaches
Indicators NAI CSP NAI CSP NAI CSP

DQN 5035± 523 90.21± 3.76% 8789± 982 89.76± 3.62% 9265± 1210 86.28± 9.45%
Meta-DQN 4522 ± 352 92.54 ± 2.65% 7832 ± 650 91.22 ± 3.21% 8266 ± 1522 89.35 ± 5.36%
Double-DQN 5247± 335 92.35± 3.21% 7056± 754 91.25± 2.65% 8932± 942 89.31± 5.50%

Meta-Double-DQN 3568 ± 632 94.53 ± 3.71% 6533 ± 1504 92.82 ± 6.43% 20270 ± 3502 90.31 ± 7.50%
CEM 5537± 314 91.76± 5.97% 8247± 2324 89.65± 4.23% 8983± 2525 85.35± 6.68%

Meta-CEM 4326 ± 714 92.21 ± 3.53% 7765 ± 2124 91.35 ± 5.65% 8306 ± 2231 87.73 ± 4.62%
Table 8
Time-Critical Comparison: We implement fine-tuned DQN, Double-DQN, and CEM-based scheduling approaches twice: the
first time is without integrating our proposed time-critical deadline guarantee scheme, and the second time is with the
guarantee scheme. As is shown in the table, our proposed time-critical deadline guarantee scheme can effectively decrease
the deadline missing rate.

Workload Light Medium Heavy

Approaches
Indicators MRED MRHD MRED MRHD MRED MRHD

DQN 8.1± 1.6% 6.8± 2.4% 11.2± 2.1% 7.5± 1.7% 15.2± 3.6% 10.6± 3.2%
DQN_Guaranteed 7.1 ± 2.5% 4.2 ± 1.4% 9.2 ± 2.3% 5.5 ± 2.6% 11.7 ± 3.2% 8.4 ± 3.7%

Double-DQN 5.5± 2.6% 3.2±0.6% 8.8± 3.2% 6.7± 2.4% 12.5± 3.2% 9.4± 2.2%
Double-DQN_Guaranteed 3.2 ± 0.6% 2.1 ± 1.2% 5.7 ± 2.6% 3.7 ± 1.4% 8.7 ± 1.2% 6.7 ± 2.2%

CEM 9.7± 3.1% 6.5± 3.2% 13.7± 5.5% 8.2± 4.2% 15.1± 3.3% 11.6± 4.1%
CEM_Guaranteed 8.4 ± 2.2% 6.1 ± 1.4% 10.7 ± 3.5% 7.2 ± 3.2% 13.3 ± 2.1% 10.6 ± 3.3%
Fig. 6. Workload distributions.

3. To assess MLR-TC-DRLS’ performance and robustness, we
implement the comparisons between our MLR-TC-DRLS
with other RL-based approaches; the results will be
demonstrated in Section 4.5.3.

4.5. Experimental results

4.5.1. Robustness validation
As is shown in Table 7, we integrate our Meta-Learning

scheme with the other four fine-tuned RL and three advanced
variants DQN, Double-DQN, and CEM. We perform the imple-
mentations with Euro-Argo data sets and synthetic data sets
with light, medium, and heavy workloads. The training iteration
needed is shown in Table 7; the shorter ones are in bold font.
As shown in Table 8, compared with the training before integra-
tion of the Meta-Learning scheme, the one integrated with the
Meta-Learning scheme needs around 1000 times less iteration to
converge and with around 2.0%–5.0% better performance when
reaching the new convergence after workload change.
28
This part of the experiment validates the improvement of
robustness brought by Meta-Learning. According to the results,
Meta-Learning could improve the robustness of each RL schedul-
ing method by reducing around 1000 times iterations, answering
the first question: how much improvement in scheduling perfor-
mance robustness could the Meta-Learning approach achieve? By
improving robustness, we could offer around 90% of scheduling
performance before dynamics but no deadline guarantee from
each of them. Next step, we aim to improve the deadline guaran-
tee of the scheduling.

4.5.2. Deadline guarantee validation
As shown in Table 8, for deadline guarantee, we integrate

other three fine-tuned advanced RL variants based on scheduling
methods with our deadline guarantee scheme: DQN, Double-
DQN, and CEM. We perform comparison implementations based
on the synthetic data and Euro-Argo data. We compare the
scheduling performance before and after the integration with our
deadline guarantee scheme. Finally, we increase the same pro-
portion of workload for each method in the same environment.
Then, we calculate the average of two deadline missing rates
assessing the performance deviation due to integration. As shown
in Table 8, all values in bold font are the best ones compared
with others in the same row; all three RL methods’ scheduling
performance is improved, with a lower deadline missing rate,
after integration with our proposed deadline guarantee scheme.

This part of the experiment is to validate our proposed dead-
line guarantee scheme. According to the results, our deadline
guarantee scheme could lower the missing deadline rate by 1.0%–
4.2%, answering the first question: how is the deadline guarantee
achieved by integrating our novel reward function?

4.5.3. MLR-TC-DRLS validation
After validating our proposed robustness and deadline guar-

antee schemes for scheduling, we integrate them into complete
MLR-TC-DRLS and validate its deadline guarantee and robust-
ness. As shown in Table 9, we increase the same proportion of
workload for each method in the same environment then we
calculate the average of two deadline missing rates. As shown in
Table 9, all values in bold font are the best ones compared with
others in the same row. MLR-TC-DRLS steadily guarantees task
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Table 9
Time-Critical Task Scheduling Performance Comparison: We conduct comprehensive implementation regarding time-critical tasks
with MLR-TC-DRLS, and four fine-tuned RL-based approaches to assess their scheduling performance in terms of deadline
guarantee. The results demonstrate that MLR-TC-DRLS outperforms the other RL-based scheduling methods by scheduling more
percentage of tasks without violating their deadlines.

Workload Light Medium Heavy

Approaches
Indicators MRED MRHD MRED MRHD MRED MRHD

MLR-TC-DRLS 1.5 ± 0.5% 1.2 ± 0.7% 2.2 ± 0.6% 2.3 ± 0.4% 5.2 ± 1.1% 3.5 ± 0.9%
RL1 10.1± 2.4% 5.5±3.6% 12.2± 5.3% 8.2± 3.3% 22.9± 6.1% 11.4± 5.2%
RL2 15.2± 4.3% 7.3± 3.1% 21.7± 10.3% 12.3± 5.5% 33.2± 7.9% 17.4± 11.2%
RL3 13.3± 3.1% 10.5± 3.1% 14.7± 5.5% 10.6± 4.6% 15.3± 2.5% 12.5± 3.3%
RL4 13.5± 5.3% 8.2± 2.1% 14.1± 6.4% 7.4±3.3% 16.3± 5.2% 10.2± 4.3%
Table 10
Scheduling Adaptation Speed Comparison: We conduct comprehensive implementation regarding adaptation speed with MLR-TC-DRLS and four fine-tuned
RL-based approaches. We collect the measurements after changing the environment to assess the adaptation speed of each approach. According to the figures
in the table, MLR-TC-DRLS’ are all in bold, which outperform the others in adaptation speed and newly converged scheduling performance after influence
under different workload.

Approaches

Indicators Workload Modes
Light Medium Heavy

NAI CSP CW1,0000 NAI CSP CW1,0000 NAI CSP CW1,0000
MLR-TC-DRLS 1210 ± 300 96.13 ± 3.24% ✓ 2677 ± 657 95.22 ± 2.82% ✓ 4366 ± 1211 91.23 ± 5.15% ✓

RL1 10423± 2145 91.45± 5.21% X 22754± 1203 75.31± 11.46% X 8422± 2102 67.62± 14.71% X
RL2 13473± 1133 85.36± 5.17% X 17621± 3125 76.65.45 ± 4.81% X 10125± 1014 82.45± 6.33% X
RL3 6623± 765 92.12 ± 3.36% X 12500± 1423 88.9 ± 7.53% X 15032± 600 77.8± 5.76% X
RL4 5477± 675 87.25± 7.56% ✓ 9644± 1325 73.23± 9.77% − 9642± 1742 85.67.45 ± 5.21% −
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execution time within the deadline in each environment, which
is better than the other four fine-tuned RL-based methods. Among
tasks scheduled by MLR-TC-DRLS, only 3.0± 1.5% executed tasks
iolate hard execution slowdown variable 5. In contrast, among
he tasks scheduled by RL-based methods, at least 10% of the tasks
issed the expected deadline. With the increase in workload,

or heavy tasks, as shown in Table 9, MLR-TC-DRLS offers the
asks deadline guarantees among different workloads. As shown
n Table 10, we compare MLR-TC-DRLS’s scheduling performance
daptation speed against four fine-tuned RL-based approaches.
LR-TC-DRLS takes fewer times to reach a new convergence and
etter scheduling performance. Above all, MLR-TC-DRLS works
etter than the other four fine-tuned RL in terms of task deadline
uarantee and adaptation speed. We also compare the scheduling
erformance deviation right after dynamics to assess how robust
ach approach is. The task trajectories are sampled from the Euro-
rgo log data and synthetic data. As shown in Fig. 7(a): with
he same proportional workload increase, MLR-TC-DRLS’ perfor-
ance deviation remains within 50%, at the lowest point is even
ithin 20%. While the fine-tuned RL-based methods experience
he scheduling performance deviation ratio from −200% to even
eyond −800% with the exact proportional change of workload.
s shown in Fig. 7(a) the adaptation speed of MLR-TC-DRLS is
ore than 5 to 10 times faster than RL-based approaches on
verage after each time workload increase, demonstrating better
obustness against dynamics.

As shown in Fig. 7(a): with the same proportional workload in-
rease, MLR-TC-DRLS’ scheduling performance deviation remains
ithin −50%, at the lowest point even within −20%. In compari-
on, the fine-tuned RL-based methods experience the scheduling
erformance deviation ratio from−50% to even−250%. As shown
n Fig. 7(c), the adaptation speed of MLR-TC-DRLS is more than
ive times faster than RL variants-based approaches on average
fter some proportional workload increase, demonstrating better
obustness against dynamics. In the meantime, MLR-TC-DRLS sta-
ly guarantees the tasks’ deadline across different environments,
hich beats the other three fine-tuned RL-based approaches.
ore specifically, only 3 ± 1.5% tasks scheduled by MLR-TC-
RLS violate hard execution deadline variable 5. In contrast, at
east 7%–11.7% of other tasks scheduled by RL-based methods
 i

29
iolate the expected deadline. As shown in Table 9, MLR-TC-DRLS
onverges with less time and with better-converged scheduling
erformance than RL-based methods. Thus MLR-TC-DRLS works
etter than the other three fine-tuned RL variants-based methods
egarding deadline guarantee and adaptation speed.

As to the comparison with advanced RL variants, shown in
ig. 7(b): with the same proportional workload increase, MLR-TC-
RLS’ performance deviation remains within −50%, even within
20% at the lowest point. On the other hand, the fine-tuned
L variants-based approaches experience the scheduling perfor-
ance deviation ratio from −200% to even more than −600%.
rom this, the robustness of MLR-TC-DRLS outperforms DQN,
ouble-DQN, and CEM-based approaches. As shown in Fig. 7(d)
he adaptation speed of MLR-TC-DRLS is more than 5 to 10 times
aster than advanced RL variants-based methods averagely after
he same proportional workload increase, demonstrating better
obustness against dynamics.

. Discussion

As shown in Section 4.5, MLR-TC-DRLS improves schedul-
ng robustness and deadline guarantee. MLR-TC-DRLS outper-
orms the four conventional RL approaches and three advanced
L variants in scheduling performance robustness and adapta-
ion speed to changing environments. MLR-TC-DRLS’ schedul-
ng performance deviation and adaptation speed change and the
orkload increase: both start firstly with 10%–30% increase then
xperience 30%–50% decrease finally increase again. While other
ine-tuned RL-based methods do not show accordingly change
n the pattern as workload changes in terms of their scheduling
erformance stability and adaptation speed. Moreover, MLR-TC-
RLS can keep the scheduling performance deviation within 30%
hen workload increase is within 50%. The deviation only experi-
nces a more noticeable decrease when workload increases more
han 50% but is still lower than fine-tuned RL methods, which
re more than 200%. The advanced RL variants-based approaches:
QN, Double-DQN, and CEM, shows a decrease in scheduling
tability and adaptation speed with the increase in workload. We
re currently working on diversifying the resources to schedule
n more complex service scenarios.
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t

Fig. 7. Comprehensive comparisons in terms of scheduling performance deviation and adaptation speed between MLR-TC-DRLS and typical RL-based approaches.
MLR-TC-DRLS’s overall scheduling performance deviation re-
mains stable within −30% to −50%, which is much more stable
han fine-tuned RL-based approaches, from −200% to −1000%.
We plan to investigate the optimization approach to reduce and
stabilize the instant scheduling deviation right after the dynamic
influences for future work. Furthermore, we are also working on
the online optimization of our proposed approach. We are also
profiling reward function switches with different Reinforcement
Learning approaches, considering an extension of our approach to
be a framework, which is easy to automate integration with dif-
ferent RL-based scheduling approaches and platforms. Finally, we
are also investigating more heterogeneous resource management
regarding the increasing resource diversity. Another direction of
future work is to minimize the time between arrival time and the
start of execution time. Currently, we are guiding the scheduler
to schedule tasks to wait longer time earlier. The next step would
be further shortening the time period between arrival time and
starting time of the execution. By reducing this period, we could
achieve lower expected deadline missing rate and lower hard
deadline missing rate as well.
30
6. Conclusion

This work presents MLR-TC-DRLS, a task scheduling approach
that offers time-critical tasks deadline-guarantee at a cloud
computing platform while improving scheduling performance
robustness. We firstly optimize and upgrade RL-based schedul-
ing approach with a Meta-Learning framework to improve the
robustness and adaptation speed of the scheduling policy model
against dynamics in the environment. Then we propose a novel
deadline-guaranteed reward system for time-critical tasks. After
validation of each approach, we optimize them together to pro-
pose MLR-TC-DRLS. Experimental results show that MLR-TC-DRLS
can satisfy the deadline guarantee, outperforming fine-tuned
basic RL methods and advanced RL variants. Furthermore, our
proposed MLR-TC-DRLS can adapt to new environments taking
200%–500% less time than the fine-tuned RL and its variant-based
scheduling approaches, achieving better scheduling performance
robustness while offering deadline guarantees. Moreover, our
proposed approach can also integrate with different RL-based
scheduling algorithms to improve their scheduling performance

robustness.
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