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A B S T R A C T

This paper focuses on rotation variant scene recognition. Different from existing rotation invariant recognition
approaches which learn from either rotated images or rotated convolutional filters in a bottom-up manner,
a new top-down perspective by learning is explored from instance-level semantic representation. The goal is
to eliminate the convolutional feature differences in bottom-up feature propagation caused by the rotation
sensitive nature of convolution operation. Our rotation equivalent convolutional neural network (RE-CNN)
scheme consists of three components. Firstly, our key instance selection module highlights the instances
strongly related to the scene scheme regardless of their orientation. Secondly, our key instance aggregation
module builds a scene representation invariant to the position change of each instance caused by rotation.
Finally, our semantic fusion module allows the framework to be organized as a whole and implements rotation
regularization. Notably, our RE-CNN scheme can be adapted to existing CNNs in a plug-in-and-play manner.
Extensive experiments on rotation variant scene recognition benchmarks from four domains demonstrate the
state-of-the-art performance and generalization capability of the proposed RE-CNN.
. Introduction

.1. Problem statement

Due to changes in imaging conditions, the appearance and shape of
n object in a scene may vary drastically in terms of orientation, which
s usually termed as rotation variant scenes. Typical examples are aerial
mages (Ding et al., 2019; Zheng et al., 2020; Bi et al., 2020b, 2021a;
ia et al., 2018; Cheng et al., 2018) and industrial scenes (Fernandes
nd Cardoso, 2017; Zhang et al., 2020; Iacovacci and Lacasa, 2020),
n which the texture may have a different orientation (Kylberg, 2011;
i et al., 2015). Also, the pathological regions in medical scenes can
ppear in a variety of orientations (Li et al., 2019; Ilse et al., 2018;
u et al., 2020). The orientation information in such rotation variant

cenarios is far more abundant than in natural scenes (Quattoni and
orralba, 2009; Almakady et al., 2020; Zhang et al., 2013; Hanbay
t al., 2015) (see Fig. 1 for an intuitive example). It can cause confusion
or computer vision algorithms to understand such scenes (Worrall
t al., 2017; Cohen and Welling, 2016; Xia et al., 2017; Li et al., 2019;
hang et al., 2020).

One may argue that the long-existing challenge of rotation variant
cene recognition becomes trivial in the deep learning era, as the
otation based data augmentation (Simonyan and Zisserman, 2015; He
t al., 2016; Szegedy et al., 2015; Ding et al., 2019; Xia et al., 2018;

∗ Corresponding author.
E-mail addresses: q.bi@uva.nl (Q. Bi), s.you@uva.nl (S. You).

Cheng et al., 2018; Chen et al., 2021; Wheeler and Karimi, 2021; Bo-
zorgtabar et al., 2019) has been widely utilized to relieve this problem.
However, simply using such practical yet naive rotation based data
augmentation fails to learn a discriminative feature representation from
multiple angles and limits the model’s generalization capability. This
may lead to severe performance degradation in many rotation variant
cases (Bi et al., 2020b; Xia et al., 2017; Li et al., 2019; Iacovacci and
Lacasa, 2020). This phenomenon is due to the convolution operation
which is sensitive to rotation, i.e., rotation in-equivalent (Cohen and
Welling, 2016; Barnard and Casasent, 1991; Worrall et al., 2017). As
the deviation between different rotation angles accumulates in the
entire feature propagation, the RoIs are often not activated properly (Bi
et al., 2020b, 2021a), leading to a dramatic change in the final semantic
prediction.

1.2. Motivation and objective

Many efforts have been made to learn rotation invariant deep
features for rotation variant scene recognition. Existing solutions can
be summarized into two categories: (1) selecting the representative
feature responses from a group of CNN features extracted from rotated
samples (Dmitry et al., 2016; Cheng et al., 2019; Zhang et al., 2017;
Liao et al., 2018), and (2) learning from features extracted by rotated
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Fig. 1. Different orientation information distribution between natural image scenes and
rotation variant scenes, reported in sample proportion. The main direction angle has a
range of [0, 𝜋). The statistics from generic image scenes are from MIT dataset (Quattoni
nd Torralba, 2009) (blue). The statistics from rotation variant image scenes are from
ID (Xia et al., 2017) (green), LAG (Li et al., 2019) (orange) and KTD (Kylberg, 2011)

pink) datasets respectively. It can be clearly seen that the orientation information from
otation variant scenes are more abundant and more randomly distributed, while for
atural scenes the orientation information is more gathered horizontally or vertically.
For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

onvolution filters (Cohen and Welling, 2016; Worrall et al., 2017;
hou et al., 2017).

As is shown in Fig. 2, since these approaches are in a bottom-
p manner, i.e., extracting rotation information from shallow to deep,

the rotation sensitive nature of the convolution poses a bottleneck to
learn a discriminative representation from different rotation angles.
This hinders the understanding capability of rotation variant scenes and
limits the generalization capability (Wu et al., 2020; Xia et al., 2017;
Iacovacci and Lacasa, 2020).

To this end, in contrast to existing methods, we present a novel
rotation equivalent scene representation learning scheme from a top-
down perspective. In this scheme, it is not required to extract con-
volutional features from multiple rotated samples or from rotated
convolution filters, and eliminates the drawback in existing bottom-
up pipelines. Notably, no modification is required in the convolutional
feature extraction process. We only start to build a rotation equivalent
representation from high-level, which backward guides the learning
process of the entire framework.

Specifically, our RE-CNN scheme introduces the classic multiple
instance learning (MIL) formulation (Maron and Ratan, 1998). By
describing each scene as a bag and each image patch in the scene as an
instance, the relation between high-level feature maps and the scene
scheme is built. The key instances in determining the scene scheme
are highlighted regardless of their orientation. Also, the permutation-
invariant nature of the MIL aggregation function (Zaheer et al., 2017)
allows the scene scheme prediction to be invariant to the position
change of image patches caused by rotation.

1.3. Contribution

Our contributions can be summarized as follows:

• We propose a rotation equivalent CNN (RE-CNN) scheme. To
the best of our knowledge, it is the first work to learn rotation
invariant deep features from a top-down perspective reducing the
negative influence from rotation-sensitive convolution operations
in existing bottom-up pipelines. More importantly, it can be easily
adapted to existing CNN backbones in a plug-and-play manner.
2

• We propose a rotation equivalent scene scheme learning strategy
by adapting the classic MIL formulation. It allows the scene
scheme to be invariant to the change of instance positions. It is
realized by our key instance selection (KIS), key instance aggre-
gation (KIA) and semantic fusion (SF) modules.

• Our proposed RE-CNN substantively improves the recognition
performance of rotation variant scenes, i.e., up to 8.95% with only
a 0.47% parameter number increase and a 1.78% prediction time
increase. Extensive experiments demonstrate that our approach
outperforms 24 state-of-the-art approaches on four recognition
domains.

The remainder of this paper is organized as follows. Section 2 pro-
vides a detailed summary of the related work. Section 3 offers more
background on multiple instance learning for a better understanding
of our technical insight. Then, in Section 4, our proposed RE-CNN
is introduced in detail. Section 5 reports and discusses the extensive
experiments and ablation studies. Finally, the conclusion is drawn in
Section 6.

2. Related work

2.1. Rotation variant scene recognition

Rotation variance scenes are common due to either the restriction
of view point (e.g., aerial imaging, arbitrary-oriented hand-writing
digit recognition and etc.) or the unique orientation distribution (e.g.,
medical imaging, texture recognition and etc.). Among these tasks,
arbitrary-oriented hand-writing digit recognition has been investigated
for a relatively long time (Dmitry et al., 2016; Zhang et al., 2017;
Worrall et al., 2017; Cohen and Welling, 2016; Zhou et al., 2017).
Unfortunately, for other large-scale or real-world scenarios such as
aerial, industrial and medical imaging, this challenge has not been well
tackled and the recognition capability remains to be boosted.

To be specific, for aerial scenario, as the imaging sensor carried by
airplane or satellite is bird-view, the objects are posed in arbitrary ori-
entations in an scene. Recent works of aerial image understanding tend
to highlight these key local regions regardless of the orientation (Xia
et al., 2017, 2018; Bi et al., 2020b, 2021a; Cheng et al., 2018; Bi et al.,
2020a,c; Wang et al., 2021). Although such solutions usually lead to
an obvious performance gain compared with the baselines and former
works, the rotation invariant scene representation has not been widely
discussed in aerial imaging community (Han et al., 2021).

Different from traditional medical imaging dealing with X-ray and
ultrasound data where the body and organ is presented in a fixed
order, in fundus image the eyeball is circle-shaped, and the pathological
regions can be posed in an arbitrary orientation (Ilse et al., 2018;
Li et al., 2019; Ghamdi et al., 2019; Diaz-Pinto et al., 2019; Wu
et al., 2020). However, as fundus disease recognition is only drawing
attention in the past few years, the varied orientation of these fundus
pathological regions is still not considered so far in the medical imaging
community.

In industrial imaging, texture recognition is a typical task that
demands rotation invariant scene representation, as the texture can be
posed in arbitrary orientation. Before the deep learning era, texture
recognition with rotation-invariant hand-crafted features has been thor-
oughly investigated (Hanbay et al., 2016; Zhao et al., 2012; Sifre and
Mallat, 2013; Schmidt and Roth, 2012; Takacs et al., 2010). However,
the generalization capability of these hand-crafted features is still sig-
nificantly inferior to features learnt by deep learning models (Zhang
et al., 2020; Iacovacci and Lacasa, 2020).

To summarize, although the challenge of rotation variance has
existed and been investigated for a long time, till now few works in
the computer vision community have attempted to tackle the rota-
tion variant challenge in such more complicated real-world large-scale

scenarios.
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Fig. 2. (a) & (b): Existing rotation invariant scene recognition pipelines in a bottom-up manner by learning from either rotated samples (Zhang et al., 2017; Cheng et al., 2019;
Dmitry et al., 2016) or from rotated convolution filters (Cohen and Welling, 2016; Worrall et al., 2017; Zhou et al., 2017; Marcos et al., 2017); (c) Our RE-CNN pipeline in a
novel top-down pipeline. KIS: key instance selection module; KIA: Key instance aggregation module; SF: semantic fusion module; A and B denotes the correct and wrong category
for intuitive illustration.
2.2. Rotation invariant features & Down-stream tasks

Existing CNN based methods exploited rotation invariant feature
representation for a relatively long time. Generally speaking, these ap-
proaches can be generally divided into two categories, that is, selecting
representative feature responses from rotated samples (Dmitry et al.,
2016; Zhang et al., 2017) and using rotated convolution for feature
extraction (Zhou et al., 2017; Worrall et al., 2017; Cohen and Welling,
2016; Marcos et al., 2017).

To be specific, Dmitry et al. extracted convolutional features from
eight different rotation angles and selected the max point-wise response
from these eight representations as the rotation invariant represen-
tation (Dmitry et al., 2016). Zhang et al. designed binary filters to
generate the convolutional features from different angles, and then con-
ducted a linear combination to generate the final rotation invariant rep-
resentation (Zhang et al., 2017). On the other hand, to design rotated
filters, circular harmonics transformation (Worrall et al., 2017), group
theories (Cohen and Welling, 2016), active rotating learning (Zhou
et al., 2017) and rotation equivariant vector field (Marcos et al., 2017)
have been investigated.

In summary, both strategies are in the bottom-up manner. Their
flaw lies in that the rotation insensitive nature of convolution effects
negatively on the entire feature extraction process. Thus, it is hard for
such methods to activate the RoIs properly when posed in arbitrary
orientations, especially in more complicated scenarios.

Therefore attention has been shifted towards down-stream appli-
cations such as multi-orientation object detection and segmentation.
Instead of learning rotation equivalent representations, the perfor-

mance of such down-stream detection and segmentation tasks mainly

3

relies on the orientation sensitive region proposal strategies (Ding et al.,
2019; Liao et al., 2018; Xu et al., 2020; Jiang et al., 2017; Yang et al.,
2021; Han et al., 2021) and rotation-angle-aware loss functions (Cheng
et al., 2019; Mou et al., 2019; Yang and Yan, 2020; Qian et al., 2021;
Zheng et al., 2020).

2.3. Multiple instance learning

Multiple instance learning is initially designed to deal with weakly-
annotated data, as it formulates an object as a bag, and the bag consists
of a set of instances which do not have specific labels (Maron and
Ratan, 1998; Saad and Mubarak, 2010; Wang et al., 2015, 2013a).
Each instance is only labeled as either positive or negative. These weak
annotations are utilized to compute the final bag category.

Classic MIL describes the relation between a bag and its instances.
It allows us to compute more robust representations and is applied in
visual tasks such as image classification (Tang et al., 2017b), object
detection (Wang et al., 2012; Tang et al., 2017a), tracking (Babenko
et al., 2009) and saliency detection (Zhang et al., 2016; Wang et al.,
2013b).

In the past few years, deep multiple instance learning (deep MIL)
is drawing increasingly attention. Wang et al. uses the mean and max
pooling operation as an instance aggregation function (Wang et al.,
2016). Then, gated attention based (Ilse et al., 2018) and channel-
spatial attention based (Bi et al., 2020b) deep MIL is studied. The
insight of the attention based deep MIL lies in that the aggregation
of instance representation is averaged by the attention weights. In
this way, the generated bag probability distribution becomes more



Q. Bi, S. You, W. Ji et al. Computer Vision and Image Understanding 229 (2023) 103635

𝑊
w
f
c
t

𝑋

i
{

{

w

robust (Ilse et al., 2018; Bi et al., 2020b; Yu et al., 2021) than the
mean or max pooling based deep MIL (Wang et al., 2016). Recently,
a multi-scale form of deep MIL is proposed (Zhou et al., 2021; Bi et al.,
2022).

Using deep MIL into the rotation invariant representation learning
is not trivial or straightforward. The rotation sensitive nature of convo-
lutions leads to feature variances caused by different rotation angles.
Thus, how to learn a robust instance representation from these varied
convolutional features is an important question to be addressed.

3. Preliminary

3.1. Classic MIL formulation

In classic multiple instance learning, an object is formulated as a
bag consisting of a set of instances. Assume a bag has label 𝑌 , and each
instance {𝑥𝑠} of the bag has weakly-annotated labels 𝑦𝑠 (𝑦𝑠 = 0, 1). The
bag label 𝑌 is given by

𝑌 =

{

0 if∑ 𝑦𝑠 = 0
1 else.

(1)

3.2. Probability distribution assumption

In classic MIL, the bag probability distribution is binary, i.e., either
0 (false) or 1 (true). In contrast, in deep MIL, the bag probability
distribution 𝑌𝑝 is assumed to be continuous in [0, 1] to circumvent the
gradient vanishing problem (Ilse et al., 2018).

3.3. Deep MIL for multi-class recognition

We assume that bag label 𝑌 belongs to the 𝑙th bag category if and
only if the bag probability of the 𝑙th bag category 𝑌𝑝𝑙 is the maximum
among 𝑌𝑝1 , 𝑌𝑝2 ,… , 𝑌𝑝𝑙 ,… , 𝑌𝑝𝑁 , where 𝑁 denotes the number of bag
categories. This is defined as follows:

𝑌 =

{

1 if 𝑌𝑝𝑙 = max{𝑌𝑝1 ,… , 𝑌𝑝𝑙 ,… , 𝑌𝑝𝑁 }
0 else.

(2)

3.4. MIL aggregation function

In MIL, an aggregation function is needed to bridge the gap between
the instance representation and the bag representation. We adopt the
instance space paradigm of MIL so that the instance representation can
be directly aggregated to the bag probability distribution. The construc-
tion of bag-level probability distribution 𝑌𝑝 is a two-step process with
transformations 𝑓 and 𝑔 given by:

𝑌𝑝 = 𝑔(𝑓 ({𝑥𝑠})), (3)

where 𝑓 refers to the transformation to instance representation, and 𝑔
denotes the MIL aggregation function which directly obtains the bag
probability 𝑌𝑝.

3.5. T-equivalent transformation

For a group of transformations 𝑇 , a function 𝐹 is T-
equivalent (Maron et al., 2020; Han et al., 2021) if

𝐹 (𝑡(𝑥)) = 𝐹 (𝑥), (4)

for all 𝑡 ∈ 𝑇 .

3.6. Rotation equivalent bag scheme prediction

For our task, the bag (scene) scheme needs to be invariant to
changes caused by the rotation transformation 𝑇 . From the formulation
in Eq. (4), 𝑡 is a rotation operation with a certain rotation angle in the
transformation set 𝑇 . Our objective is to design such a transformation
𝐹 to predict the scene scheme invariant to the rotation angle.
4

3.7. Objective

Eq. (2) shows that the MIL aggregation function needs to meet the
aforementioned T-equivalent requirement for rotation transformation 𝑇 .
Hence, function 𝐹 needs to be permutation-invariant (Worrall et al.,
2017; Maron et al., 2020).

3.8. Permutation-invariant MIL aggregator

The MIL aggregation function itself tolerates the possible order
changes of the instances so that the bag scheme remains unchanged. It
has shown that the MIL aggregation function is permutation
-invariant (Wang et al., 2016; Ilse et al., 2018; Zaheer et al., 2017),
which is beneficial to generate a rotation equivalent bag scheme
prediction.

4. Methodology

4.1. Framework overview

Fig. 3 demonstrates the framework of our proposed rotation equiva-
lent convolutional neural network (RE-CNN). Firstly, the convolutional
feature maps from the backbone are flattened by a transitional layer
and the multi-angle class confident maps (MACCMs) are computed (in
Section 4.2). Then, for each CCM from a rotation angle, the key local
regions relevant to the scene scheme are selected by our key instance
selection (KIS) module (in Section 4.3). Later on, the key instance
aggregation (KIA) module fuses these instance representations in a rota-
tion insensitive manner. This ensures that the scene scheme is invariant
to a change of instance positions (in Section 4.4). Lastly, our semantic
fusion module (in Section 4.5) and the corresponding loss function (in
Section 4.6) minimizes the semantic variance from different rotation
angles and allows the entire framework to be optimized as a whole.

4.2. Multi-angle class confidence representation

CCMs from multiple rotation angles contain abundant orientation
information. CCMs rotated by a certain angle correspond to the sample
rotated by the same angle due to the same receptive field of a CNN.
Learning from rotated CCMs eliminates the weaknesses of existing
bottom-up rotation invariant scene recognition pipelines, which are
negatively influenced by the rotation sensitive nature of the convolu-
tion operation.

As shown in Fig. 3, a 1 × 1 convolutional layer with weight matrix
1 and bias matrix 𝑏1, also termed as transitional layer in our frame-
ork, is used to generate the CCM 𝑋1 from the extracted convolutional

eature 𝑋. Assume there are 𝑁 scene categories and ⊗ denotes the
onvolution operator, then 𝑋1 also has 𝑁 channels, each corresponding
o the feature response of a category, and is given by:

1 = 𝑊 (1×1,𝑁)
1 ⊗𝑋 + 𝑏(1×1,𝑁)

1 . (5)

Then, the CCM 𝑋1 is rotated by multiple rotation angles 𝜃𝑖 with an
nterval of 𝜋∕4. The set of multi-angle class confidence maps (MACCMs)
𝑋𝜃𝑖

1 } is defined by:

𝑋𝜃𝑖
1 } = {𝑋0

1 , 𝑋
𝜋∕4
1 , 𝑋𝜋∕2

1 ,… , 𝑋𝜋⋅𝑖∕4
1 ,… , 𝑋2𝜋

1 }, (6)

here 𝑖 = 0, 1, 2,… , 8.
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Fig. 3. Framework of our proposed RE-CNN.
t

4

t
s
s
o

s
r
d

𝑙

r

𝑋

4.3. Key instance selection module

To properly activate the key regions regardless of their orientation,
as shown in Fig. 3, the key instance selection (KIS) module consists of
two branches, i.e., one learns the key instance representation insensitive
to rotation, and the other learns representation sensitive to rotation.

The rotation insensitive representation is expected to be robust to
a shift of orientation. Following (Maron et al., 2020; Dmitry et al.,
2016), the tolerance of rotation is implemented by a weight-sharing
feature extraction module with the input from a different rotation. The
first branch only has a weight-sharing spatial attention based deep MIL
module, aiming to compute an instance spatial weight matrix {𝑎𝜃𝑖𝑤,ℎ} for
each element in our MACCMs {𝑋𝜃𝑖

1 }.
Overall, it helps to fully exploit the rotation insensitive represen-

tation for the scene scheme. This instance weight distribution {𝑎𝜃𝑖𝑤,ℎ}
provides a description on how each instance contributes to the scene
scheme. Higher weights are assigned to instances which are relevant to
the scene scheme and vise versa and is given by:

{𝑎𝜃𝑖𝑤,ℎ} = sof tmax(𝑊2 ⊗𝑋𝜃𝑖
1 + 𝑏2), (7)

where 𝑊2 and 𝑏2 denote the weight and bias matrix of the 1 × 1
convolutional layer in this weight-sharing deep MIL module, softmax
denotes the softmax function and (𝑤, ℎ) marks the position of a certain
instance in the 𝑁 channel 𝑊 ×𝐻-sized instance representation.

The aim of the second branch is to learn the instance represen-
tation sensitive to the rotation. Thus, the rotation features from all
orientations need to be included. This is obtained by the sum of the
instance representations from each rotation. Specifically, this objective
is obtained by a single spatial attention based deep MIL module, which
extracts another instance spatial weight matrix {𝛽𝑤,ℎ}. The input of this
branch 𝑋𝑠𝑢𝑚

1 is the sum of 𝑋𝜃𝑖
1 , which is calculated as

𝑋𝑠𝑢𝑚
1 =

8
∑

𝑖=0
𝑋𝜃𝑖

1 , (8)

where 𝑖 = 0, 1,… , 8. The distribution of key regions on 𝑋𝑠𝑢𝑚
1 is more

scattered, as the position of many key regions changes due to rota-
tion. Thus, this branch is capable to perceive the rotation sensitive
representation while maintaining the scene scheme.

Then, the instance spatial weight matrix {𝛽𝑤,ℎ}, derived from the
deep MIL module, is computed by

𝑠𝑢𝑚
{𝛽𝑤,ℎ} = sof tmax(𝑊3 ⊗𝑋1 + 𝑏3), (9)

5

where 𝑊3 and 𝑏3 are the weight and bias matrix of the 1 × 1 convolu-
ional layer in this deep MIL module.

.4. Key instance aggregation module

Before generating the scene probability distribution, it is required
o aggregate the above rotation insensitive and sensitive instance repre-
entation. The key instance aggregation (KIA) module allows the scene
cheme from these aggregated representations invariant to the change
f instance positions caused by rotation.

First, the instance weight distribution {𝑎𝜃𝑖𝑤,ℎ} from the above weight-
haring deep MIL module has a point-wise product on the instance
epresentations {𝑋𝜃𝑖

1 } emphasizing the contribution of key instances in
etermining the scene scheme.

Specifically, assume 1 ≤ 𝑤 ≤ 𝑊 , 1 ≤ ℎ ≤ 𝐻 and 𝑙 denotes the
th channel corresponding to the 𝑙th scene category for 𝑁 categories.

Also assume ⋅ denotes the element-wise production. Then, the feature
esponse of the 𝑙th dimension of instance 𝑋

′𝜃𝑖
1,(𝑤,ℎ,𝑙) is accentuated by

′𝜃𝑖
1,(𝑤,ℎ,𝑙) = 𝑎𝜃𝑖𝑤,ℎ⋅𝑋

𝜃𝑖
1,(𝑤,ℎ,𝑙). (10)

Similarly, for the rotation sensitive instance representation 𝑋𝑠𝑢𝑚
1,(𝑤,ℎ,𝑙),

the feature response of the 𝑙th dimension of instance 𝑋′𝑠𝑢𝑚
1,(𝑤,ℎ,𝑙) is accen-

tuated by

𝑋
′𝑠𝑢𝑚
1,(𝑤,ℎ,𝑙) = 𝛽𝑤,ℎ⋅𝑋

𝑠𝑢𝑚
1,(𝑤,ℎ,𝑙). (11)

Then, as demonstrated in Fig. 3, the instance representation 𝑋𝜃𝑖
2 is

aggregated over the sum of 𝑋
′𝜃𝑖
1 and the rotation insensitive represen-

tation 𝑋′𝑠𝑢𝑚
1 , given by

𝑋𝜃𝑖
2 = 𝑋

′𝜃𝑖
1 +𝑋

′𝑠𝑢𝑚
1 . (12)

In this way, both the summed rotation sensitive representation 𝑋′𝑠𝑢𝑚
1

and the rotation insensitive representation 𝑋
′𝜃𝑖
1 from each rotation

angle are incorporated by 𝑋𝜃𝑖
2 .

4.5. Semantic fusion module

The aim of this module is two-fold: (1) convert the instance rep-
resentation to the scene probability distribution in a rotation equiva-
lent manner, and (2) guide the convolution parameter learning pro-
cess to tolerate rotation variance. In this way, two scene probability

1 2
distributions, i.e., {𝑌𝑝𝑙} and {𝑌𝑝𝑙}, are generated.
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Table 1
Summary of four rotation variant scenarios involved in our experiments, including brief descriptions, corresponding benchmarks, evaluation protocols, baselines, sample numbers,
scene category numbers and inputted image sizes.

Scenes Description Benchmark Evaluation protocol Baseline #number #category Input size

Aerial Bird view AID (Xia et al., 2017) 50% training,
10 independent runs

ResNet50 10,000 30 256 × 256

Fundus Arbitrary-oriented
pathological regions
on cycle-shaped
background

LAG (Li et al., 2019) Five-cross
test accuracy

ResNet50 4,850 2 256 × 256

Texture Arbitrary-oriented KTD (Kylberg, 2011) Five-cross
test accuracy

ResNet50 4,480 28 256 × 256

Hand-writing
digits

Arbitrary-oriented MNIST-rot (LeCun et al., 1998)
MNIST-rot-12k (LeCun et al., 1998)

Five-cross
test error

Four-layer
CNN

70,000
60,000

10 32×32
s

i
o

5

5

a
f

5

t
b
2

5

b
a
g
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For {𝑌 1
𝑝𝑙
}, only the non-rotated instance representation 𝑋𝜃0

2 is con-
idered as follows

1
𝑝𝑙
= sof tmax(

𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
𝑋𝜃0

2,(𝑤,ℎ,𝑙)). (13)

Note that that this process is the MIL aggregator 𝑔 in Eq. (3).
The MIL aggregator is permutation-invariant and hence the change of
instance position caused by rotation does not effect the scene scheme
prediction.

On the other hand, {𝑌 2
𝑝𝑙
} is the difference between 𝑋𝜃𝑖

2 (𝑖 = 1,… , 8)
and 𝑋𝜃0

2 given by:

𝑌 2
𝑝𝑙
= sof tmax(

𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
(

8
∑

𝑖=1
‖𝑋𝜃𝑖

2,(𝑤,ℎ,𝑙) −𝑋𝜃0
2,(𝑤,ℎ,𝑙)‖1)), (14)

where ‖ ⋅ ‖1 denotes the 𝑙-1 norm function.

4.6. Semantic fusion loss

The two-branch semantic fusion module matches with a specific
loss function 𝐿 consisting of a classification term ℒ𝑐𝑙𝑠 and a rotation
regularization term ℒ𝑟𝑔𝑙. The scene probability distribution {𝑌 1

𝑝𝑙
} is

directly used by the classification loss ℒ𝑐𝑙𝑠, which is calculated as

ℒ𝑐𝑙𝑠 = − 1
𝑁

𝑁
∑

𝑙=1
[𝑌𝑙 log 𝑌 1

𝑝𝑙
+ (1 − 𝑌𝑙) log(1 − 𝑌 1

𝑝𝑙
)], (15)

here 𝑌𝑙 is the true label of a scene.
𝑌 2
𝑝𝑙

describes the potential difference among 𝑋𝜃𝑖
2 (𝑖 = 1,… , 8).

It regularizes the convolutional feature learning process despite the
impact of different orientations. This regularization term ℒ𝑟𝑔𝑙 is given
y:

𝑟𝑔𝑙 = − 1
𝑁

𝑁
∑

𝑙=1
[𝑌𝑙 log 𝑌 2

𝑝𝑙
+ (1 − 𝑌𝑙) log(1 − 𝑌 2

𝑝𝑙
)]. (16)

Finally, our semantic fusion loss function ℒ is the combination of
the ℒ𝑐𝑙𝑠 and ℒ𝑟𝑔𝑙 terms and calculated as follows:

ℒ = ℒ𝑐𝑙𝑠 + 𝛼ℒ𝑟𝑔𝑙 , (17)

where 𝛼 is a hyper-parameter to balance the impact of two terms.
Empirically, we set 𝛼 = 5 × 10−4.

4.7. Discussion on rotation invariance

Assume that 𝑋1
′𝑠𝑢𝑚
𝜎(1) ,… , 𝑋1

′𝑠𝑢𝑚
𝜎(𝑊 ×𝐻) and 𝑋1

′𝜃𝑖
𝜎(1),… , 𝑋1

′𝜃𝑖
𝜎(𝑊 ×𝐻) is an

arrangement of {𝑋′𝑠𝑢𝑚
1,(𝑤,ℎ)} and {𝑋

′𝜃𝑖
1,(𝑤,ℎ)}. Then, from instance-level, the

rotation 𝑡(⋅) (defined in Eq. (4)) generates an arrangement of {𝑋′𝑠𝑢𝑚
1,(𝑤,ℎ)}

and {𝑋
′𝜃𝑖
1,(𝑤,ℎ)}, presented as:

𝑡 ∶ {𝑋
′𝑠𝑢𝑚
1,(𝑤,ℎ)} → {𝑋1

′𝑠𝑢𝑚
𝜎(1) ,… , 𝑋1

′𝑠𝑢𝑚
𝜎(𝑊 ×𝐻)}, (18)

𝑡 ∶ {𝑋
′𝜃𝑖 } → {𝑋

′𝜃𝑖 ,… , 𝑋
′𝜃𝑖 }. (19)
1,(𝑤,ℎ) 1𝜎(1) 1𝜎(𝑊 ×𝐻)
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The attention based deep MIL module (Eqs. (7) and (9)) intends to
assign a weight for each instance regardless of its spatial position. In
other words, we have:

{𝑎𝜃𝑖𝜎(𝑤,ℎ)} = sof tmax(𝑊2 ⊗ 𝑡(𝑋𝜃𝑖
1 ) + 𝑏2), (20)

{𝛽𝜎(𝑤,ℎ)} = sof tmax(𝑊3 ⊗ 𝑡(𝑋𝑠𝑢𝑚
1 ) + 𝑏3). (21)

In this case, the sum-wise instance aggregation is invariant to the
patial position change, where we have:
𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
𝑎𝜃𝑖𝑤,ℎ ⋅𝑋

𝜃𝑖
1,(𝑤,ℎ,𝑙) =

𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
𝑎𝜃𝑖𝜎(𝑤,ℎ)𝑋1

𝜃𝑖
𝜎(𝑤,ℎ),𝑙 , (22)

𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
𝛽𝑤,ℎ ⋅𝑋

𝑠𝑢𝑚
1,(𝑤,ℎ,𝑙) =

𝑊
∑

𝑤=1

𝐻
∑

ℎ=1
𝛽𝜎(𝑤,ℎ)𝑋1

𝑠𝑢𝑚
𝜎(𝑤,ℎ),𝑙 . (23)

Eqs. (22) and (23) indicate that the image-level prediction from the
nstance-level fusion (in Eqs. (12) and (13)) is unchanged despite the
rder change of instances, which guarantees the rotation invariance.

. Experiments and analysis

.1. Dataset

Five rotation variant recognition datasets from four different im-
ge domains are used to validate the effectiveness of our RE-CNN
ramework and summarized in Table 1.

.1.1. Aerial Image Dataset (AID)
The bird view of aerial sensors results in aerial scenes posed in arbi-

rary orientations. AID dataset is a large-scale aerial scene classification
enchmark with 30 categories and 10,000 samples in total (Xia et al.,
017).

.1.2. Large Age Gap (LAG)
Images of glaucoma pathological parts are at any position and ar-

itrary orientation along with the circle-shaped optic disc. LAG, is
newly-released glaucoma recognition benchmark containing 1710

laucoma and 3140 non-glaucoma samples (Li et al., 2019).

.1.3. Kylberg Texture Dataset (KTD)
Texture is an important recognition cue in industrial applications

nd a major challenge for texture recognition is its arbitrary orientation.
TD is a 28-class texture recognition dataset with 160 samples per
lass (Kylberg, 2011).
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5.1.4. MNIST-rot & MNIST-rot-12k
These are two standard benchmarks to validate rotation robust-

ness (LeCun et al., 1998; Dmitry et al., 2016). MNIST-rot contains
60k training samples and 10k test samples. MNIST-rot-12k is more
challenging to validate the generalization ability with only 10k training
samples and 50k test samples.

The last two benchmarks (MNIST-rot & MNIST-rot-12k) are tra-
ditional small-sized standard benchmarks to validate the rotation in-
variant representation, while the first three benchmarks (AID, LAG,
KTD) are from more challenging real-world large-scale rotation variant
scenes.

5.2. Evaluation protocols & Implementation details

5.2.1. Evaluation metrics
Following the former works (Dmitry et al., 2016; Zhang et al., 2017;

Zhou et al., 2017; Cohen and Welling, 2016; Worrall et al., 2017), test
error of five-fold experiments (denoted as err) is reported on MNIST-rot
and MNIST-rot-12k.

On AID, the evaluation protocol (Xia et al., 2017) randomly selects
50% samples as the training set and the remaining samples as the test
set. The mean and standard deviation of the overall accuracy (denoted
as OA) from ten independent runs are reported (Xia et al., 2017).
Following the common evaluation protocol, both mean and variance
are presented in two-decimal format (Xia et al., 2017).

On LAG and KTD, the evaluation protocols report on test accuracy
(denoted as Acc) from five-fold cross-validation experiments (Li et al.,
2019; Kylberg, 2011).

5.2.2. Baseline
On MNIST-rot and MNIST-rot-12k, our baseline is the same

as Dmitry et al. (2016), Zhang et al. (2017), Zhou et al. (2017), Cohen
and Welling (2016), Worrall et al. (2017), which is a naive four-layer
CNN with multiple 3 × 3 filters. On AID, LAG, and KTD, ResNet-
50 (He et al., 2016) serves as the baseline for its wide utilization in
the computer vision community.

For the comparison with state-of-the-art methods on each commu-
nity, following the existing protocols the test samples are not rotated
(in Section 5.3). In contrast, to fully evaluate the performance of the
former rotation invariant methods, the test samples are rotated under
a variety of settings (in Section 5.4).

5.2.3. Hyper-parameter settings
For fair evaluation, the baseline ResNet-50 on AID, LAG and KTD

datasets is implemented by ourselves under the same hyper-parameter
settings as the proposed RE-CNN. The batch size of all our experiments
is set to 64. The Adam optimizer is used. The initial learning rate is
5 × 10−5 and is divided by 10 every 20 epochs. The training process
terminates after 60 epochs. To overcome potential over-fitting, 𝐿2
normalization with a relative importance weight of 5 × 10−4 is used.
Moreover, the dropout rate is set to 0.2 for all the experiments.

The backbone on MNIST-rot and MNIST-rot-12k is a naive four-
layer CNN. Its performance is directly cited from the corresponding
reference. All the hyper-parameter settings of our RE-CNN are the same
as Dmitry et al. (2016), Zhang et al. (2017), Zhou et al. (2017), Cohen
and Welling (2016), Worrall et al. (2017).

5.2.4. Parameter initialization
For all experiments, except for MNIST-rot and MNIST-rot-12k, the

pre-trained model on ImageNet is used as the initial parameters for the
backbone. For the rest parts of our RE-CNN, random initialization is
utilized for the weight parameters with a standard deviation of 0.001.
All bias parameters are set to zero for initialization. For the experiments
on MNIST-rot and MNIST-rot-12k, the parameter initialization is the
same as used in Dmitry et al. (2016), Zhang et al. (2017), Zhou et al.

(2017), Cohen and Welling (2016), Worrall et al. (2017).
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Table 2
Classification accuracy of our proposed RE-CNN and other approaches on the AID
dataset. Results presented in the form of ’average±deviation’ from ten independent
runs (Xia et al., 2017); Metrics presented in %. The ResNet-50 result is implemented
under the same hyper-parameter settings as the RE-CNN. The performance of the
state-of-the-art methods is directly cited from the corresponding references.

Method Publication & Year Accuracy

ResNet-50 (baseline) CVPR_2016 91.72 ± 0.17

SPPNet (Han et al., 2017) RS_2018 91.45 ± 0.38
MSCP (He et al., 2018) TGRS_2018 94.42 ± 0.17
ARCNet (Wang et al., 2018) TGRS_2018 93.10 ± 0.55
DCNN (Cheng et al., 2018) TGRS_2018 96.89 ± 0.10
APNet (Bi et al., 2020c) GRSL_2020 92.15 ± 0.29
MIDCNet (Bi et al., 2020b) TIP_2020 92.53 ± 0.18
RANet (Bi et al., 2020a) NC_2020 92.35 ± 0.19
DSENet (Wang et al., 2021) TGRS_2021 94.50 ± 0.30
MS2AP (Bi et al., 2021b) NC_2021 94.82 ± 0.20
DMSMIL (Zhou et al., 2021) ICASSP_2021 95.65 ± 0.22
LSENet (Bi et al., 2021a) TIP_2021 94.41 ± 0.16

RE-CNN (ours) 2022 96.95 ± 0.14

5.2.5. Development environment
All the experiments are implemented on a workstation with an

Intel® Core™ i7-10700K CPU and 64 GB memory. Two GeForce RTX
2080 SUPER GPUs are utilized for acceleration.

5.3. Comparison with rotation variant recognition methods

This subsection reports the performance of our RE-CNN on the three
large-scale rotation variant recognition benchmarks (AID, LAG and
KTD) and compares it with current rotation variant scene recognition
methods.

5.3.1. On AID
The performance of our RE-CNN and other state-of-the-art methods

on the AID benchmark is listed in Table 2. It is shown that the proposed
RE-CNN outperforms all these methods by a large margin. The close
performance of DCNN (Cheng et al., 2018) may be caused by the
additional pair-wise supervision used by DCNN, which is stronger than
conventional deep learning pipelines and RE-CNN.

As recent work in aerial imaging tends to highlight key regions
in an aerial scene regardless of their orientation, these methods are
still incapable of providing rotation invariant scene representation.
In contrast, our RE-CNN learns the rotation invariant representation
from a top-down manner, and thus enhances the model’s generalization
capability.

5.3.2. On LAG
Table 3 shows the performance of our RE-CNN and current fundus

disease recognition methods on the LAG dataset. It can be derived that
our RE-CNN significantly outperforms existing state-of-the-art methods
for fundus image disease recognition.

As research in high-resolution fundus image disease recognition
only intensified over the past few years, only a few methods consider
the rotation variance problem in this domain. Our RE-CNN not only
highlights small and tiny pathological regions, but also learns the
rotation invariant scene representation.

5.3.3. On KTD
Table 4 lists the performance of our RE-CNN and other latest deep

learning based methods on the KTD benchmark. Texture recognition
requires rotation invariant features and extensive effort is made before
the deep learning era. However, the recognition capability of these
hand-crafted features (Hanbay et al., 2016; Zhao et al., 2012; Sifre
and Mallat, 2013; Schmidt and Roth, 2012; Takacs et al., 2010) is
inferior to deep learning based methods. Therefore, they are not listed
in Table 4. It is shown that our RE-CNN outperforms the latest texture
recognition methods, as it learns the rotation invariant features from a

novel top-down manner.
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Fig. 4. Per-category classification accuracy of the baseline and RE-CNN on AID (a), LAG (b) and KTD (c) benchmarks respectively. Metrics presented in %. In (a): AP—airport;
BL—bare land; BF—baseball field; BC—beach; BD—bridge; CT—center; CC—church; CM—commercial; DR—dense residential; DS—desert; FL—farmland; FR—forest; ID—industrial;
MD—meadow; MR—medium residential; MT—mountain; PK—park; PI—parking; PG—playground; PD—pond; PT—port; RS—railway station; RT—resort; RV—river; SL—school;
SR—sparse residential; SQ—square; SD—stadium; ST—storage tanks; VD—viaduct. In (b): NG: no glaucoma; G: glaucoma. In (c): BK1—blanket1; BK2—blanket2; CV—canvas;
CL1—ceilings1; CL2—ceilings2; CS—cushion; FL1—floor1; FL2—floor2; GS—grass; LT—lentils; LS—linseeds; OM—oatmeals; PS—pearlsugar; RC1—rice1; RC2—rice2; RG—rug;
SD—sand; SF1—scarf1; SF2—scarf2; SC—screen; ST1—seat1; ST2—seat2; SS—sesameseeds; SN1—stone1; SN2—stone2; SN3—stone3; SL—stoneslab; WL—wall.
Table 3
Classification accuracy of our proposed RE-CNN and other approaches on the LAG
dataset. Results presented are five-cross test accuracy (Li et al., 2019); Metrics presented
in %. The ResNet-50 result is implemented under the same hyper-parameter settings
as the RE-CNN. The performance of the state-of-the-art methods is directly cited from
the corresponding references.

Method Publication & Year Accuracy

ResNet-50 (baseline) CVPR_2016 91.75

DAENet (Fu et al., 2018) TMI_2018 93.88
MSCNN (Li et al., 2019) CVPR_2019 92.20
semiCNN (Ghamdi et al., 2019) ICASSP_2019 95.01
AG-CNN (Li et al., 2019) CVPR_2019 95.30
CGAN (Diaz-Pinto et al., 2019) TMI_2019 93.77
L2T-KT (Wu et al., 2020) MICCAI_2020 96.04

RE-CNN (ours) 2022 97.98

Table 4
Classification accuracy of our proposed RE-CNN and other approaches on the KTD
dataset. Results presented are five-cross test accuracy (Kylberg, 2011); Metrics presented
in %. The ResNet-50 result is implemented under the same hyper-parameter settings
as the RE-CNN. The performance of the state-of-the-art methods is directly cited from
the corresponding references.

Method Publication & Year Accuracy

ResNet-50 (baseline) CVPR_2016 91.75

TCNN (Andrearczyk and Whelan, 2016) PRL_2017 96.70
CoHOG (Hanbay et al., 2016) NC_2017 98.02
Deep LBP (Fernandes and Cardoso, 2017) arXiv_2018 96.81
IVG-LD (Iacovacci and Lacasa, 2020) TPAMI_2020 95.80
KGW (Zhang et al., 2020) TPAMI_2020 93.10
M2-CNN (Aggarwal and Kumar, 2021) MTA_2021 96.36

RE-CNN (ours) 2022 99.95

5.3.4. Per-category classification accuracy
Fig. 4 lists the per-category classification accuracy of the baseline

and our RE-CNN on the AID, LAG and KTD benchmarks respectively. It
can be derived that by learning a rotation invariant feature represen-
tation from these scenes, the per-category recognition performance is
significantly increased when compared to the CNN baseline.

5.3.5. Visualization
Fig. 5 shows a number of samples from the three large-scale bench-

marks. The key instances and the key regions related to the scene
scheme have higher feature responses after they are processed by our
RE-CNN, regardless of their orientation. This may be one of the reasons
for its superior performance. Also, the interpretable feature maps indi-
cate that the representation learnt by our pipeline has the potential to
be transferred into the down-stream detection and segmentation tasks
for more rotation robust feature representation.

To understand the impact of RE-CNN on the low-level convolution
features, Fig. 6 provides visualized low-level features from the first
8

block of the ResNet-50 backbone. The cases with and without the
proposed top-down rotation invariant learning scheme on the AID
benchmark are provided. The low-level convolutional feature maps are
resized and overlaid to the samples for clarity. Without the proposed
scheme, the generic convolutional features tend to be randomly scat-
tered over the entire image. In contrast, with the proposed scheme, the
low-level convolutional features tend to highlight the corner or edge
of the key objects in the scene, which contain more abundant rotation
information. This observation may explain the performance gain from
91.72% (baseline) to 96.95% (RE-CNN), as the rotation information is
important to understand the rotation variant scenes.

5.4. Comparison with rotation invariant methods

This subsections compares and discusses the performance of our
top-down RE-CNN and existing bottom-up rotation invariant scene rep-
resentation learning methods, namely, TI-pooling (Dmitry et al., 2016),
RILBCNN (Zhang et al., 2017), ORN (Zhou et al., 2017), H-Net (Worrall
et al., 2017), RotEqNet (Marcos et al., 2017) and P4CNN (Cohen and
Welling, 2016). Moreover, the performance of baselines (for details
please refer to Table 1) and two commonly-used data augmentation
approaches (rotating samples to 45, 90 and 135 degrees, denoted as
four-angle augmt.; rotating each sample to a random angle, denoted as
random augmt.) is also reported for reference.

Note that: (1) Existing recognition methods that theoretically gen-
erate a rotation invariant representation are only validated on small-
sized standard benchmarks MNIST-rot and MNIST-rot-12k; (2) The
performance on these two benchmarks is saturated. Hence, for fair
comparison, (1) On three large-scale recognition benchmarks (AID,
LAG and KTD), the results of the above methods are re-implemented
with default settings and are under the same ResNet-50 backbone;
(2) On MNIST-rot and MNIST-rot-12k, the same baseline as former
works (Dmitry et al., 2016; Zhang et al., 2017; Zhou et al., 2017;
Worrall et al., 2017; Marcos et al., 2017; Cohen and Welling, 2016)
is adopted.

5.4.1. On overall accuracy
Table 5 lists all the experimental results of these rotation invariant

scene representation methods. Some interesting observations can be
found.

• Our RE-CNN leads to a performance gain on all these five bench-
marks, indicating its effectiveness when applied to multiple image
domains especially large-scale scenes and compared to existing
rotation invariant recognition methods in a bottom-up learning

manner.
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Fig. 5. Visualized samples from our RE-CNN. (a) samples from aerial, medical and industrial scenes; (b) instance-level semantic response; (c) heatmap based on instance response.
Fig. 6. Comparison of low-level features from the backbone without (denoted as baseline) and with (denoted as RE-CNN) the proposed top-down rotation invariant learning
scheme. The RE-CNN enforces the low-level convolution features to focus more on the edges and corners of the key objects, containing more abundant rotation information.
Table 5
Performance comparison of our RE-CNN and other rotation invariant approaches on two standard small-scale benchmarks and three large-scale visual recognition tasks (test err:
test error required by LeCun et al., 1998; OA: Overall accuracy of ten independent runs required by AID Xia et al., 2017; Acc: classification accuracy of five-fold cross validation
equired by LAG Li et al., 2019 and KTD Kylberg, 2011; Metrics presented in %). Baseline: For MNIST-rot and MNIST-rot-12k, the baseline is a four-layer CNN following (Dmitry
t al., 2016; Zhou et al., 2017; Zhang et al., 2017; Cohen and Welling, 2016; Worrall et al., 2017) and the results are directly cited from the corresponding references; For AID,
AG and KTD, the baseline is ResNet50 implemented under the same hyper-parameter settings as the RE-CNN; ’–’ denotes not reported.

MNIST-rot MNIST-rot-12k AID LAG KTD

Test err Test err OA Acc Acc

Baseline 2.82 4.34 91.72 ± 0.17 91.75 91.74

Four-angle augmnt. – – 92.56 ± 0.15 92.44 92.48
Random augmnt. – – 88.75 ± 0.23 89.04 89.96

TI-pooling (Dmitry et al., 2016) – 2.20 89.95 ± 0.16 92.47 94.08
P4CNN (Cohen and Welling, 2016) 2.28 – 92.06 ± 0.18 92.50 92.50
RILBCNN (Zhang et al., 2017) 1.85 3.05 92.42 ± 0.11 91.93 95.33
ORN (Zhou et al., 2017) 1.42 2.25 93.55 ± 0.17 94.65 97.12
H-Net (Worrall et al., 2017) 1.69 – 94.16 ± 0.19 95.74 97.21
RotEqNet (Marcos et al., 2017) 1.58 2.31 93.48 ± 0.21 93.48 95.82

RE-CNN (ours) 1.31 1.92 96.95 ± 0.14 97.98 99.95
9
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Fig. 7. Classification performance comparison between two commonly-used rotation based data augmentation strategies and other rotation invariant scene recognition methods
when all the test samples are rotated by a specific angle ((a), (b) and (c)) and by a random angle ((d), (e) and (f)). In (a), (b) and (c), four-angle augmnt. and random augmnt.
enotes the rotation based data augmentation when samples are rotated by 0, 45, 90 or 135 degrees and rotated by random angles respectively. In (d), (e) and (f), BS: baseline,
A: four-angle rotation based data augmentation, RA: random rotation based data augmentation, TI: TI-pooling (Dmitry et al., 2016), P4: P4CNN (Cohen and Welling, 2016), RI:
ILBCNN (Zhang et al., 2017), OR: ORN (Zhou et al., 2017), RN: RotEqNet (Marcos et al., 2017); HN: HNet (Worrall et al., 2017); RE: RE-CNN.
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• Both our top-down pipeline and existing bottom-up pipelines
outperform the commonly-used rotation based data augmentation
strategies in learning rotation invariant representation. Moreover,
four-angle augmentation can slightly improve the overall recogni-
tion capability, but random rotation augmentation decreases the
overall recognition capability.

The reason is that the convolution operation is sensitive to rota-
ion. Hence, the feature representation from different angles can vary.
ometimes it is difficult for existing bottom-up methods to learn a more
obust rotation invariant representation. The case of random rotation
ased data augmentation is also similar, as the features from a variety
f rotation angles vary too much and the overall recognition capability
eclines.

To show how the proposed top-down rotation invariant learning
cheme outperforms the existing bottom-up schemes, a visualization is
iven in Fig. 8. The proposed RE-CNN learns the rotation invariant rep-
esentation from the instance-level representation. Thus, the last-layer
eature maps from the other six bottom-up schemes are averaged and
ormalized for comparison. It is shown that although all six bottom-up
ethods provide different responses to different rotation angles, five

ut of six methods have a scattered activation over the image. They do
ot properly activate the key local regions in the image. In contrast, the
roposed RE-CNN not only has different response to different rotation
ngles, but also activates the key local regions properly despite the
otation.

However, directly investigating the overall classification perfor-
ance is still not sufficient to fully evaluate a model’s capability of

earning rotation invariant representations. Hence, the following two
ubsections consider the model’s performance when all the test samples
re rotated by a specific angle and by random angles.

.4.2. On specific rotation angle
Fig. 7(a), (b) and (c) demonstrate the recognition performance

ariation when all test samples from AID, LAG and KTD are rotated
y a specific angle. For full testing, the rotation range is [0, 𝜋] with an
nterval of 𝜋∕12.

It is shown that our RE-CNN not only outperforms existing rotation

nvariant recognition approaches on every specific rotation angle, but
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lso demonstrates a more stable performance on all rotation angles. As
he backbone is kept the same, the effectiveness of our RE-CNN may is
rovided by the novel top-down rotation invariant representation learn-
ng scheme. It bypasses the feature variance caused by the convolution
peration in the feature extraction stage.

.4.3. On random rotation angle
Fig. 7(d), (e) and (f) demonstrate the recognition performance

luctuation when each sample from AID, LAG and KTD is rotated
y a random angle. In this way, every sample contains a different
rientation. To provide results that are statistically significant and
epresentative, such observations are based on 20 independent runs.

It is shown in Fig. 7 that our RE-CNN has the least fluctuation among
hese rotation invariant recognition approaches. This observation is
lso not difficult to explain, as the flaw of existing bottom-up rotation
nvariant recognition approaches is obvious. The difference of feature
epresentation from multiple rotation angles exists and accumulates
n the feature extraction process, and it lows down the generalization
apability. In contrast, our top-down scheme bypasses this problem,
nd thus has stronger generalization capability.

.5. Ablation studies

Our RE-CNN consists of a backbone, a transitional layer (TL), a key
nstance selection (KIS) module, a key instance aggregation (KIA) mod-
le and a semantic fusion (SF) module. The ablation studies investigate
he performance gain of each component and all results are listed in
able 6. Note that, for fair comparison, in all the cases without SF,
he scene probability distribution is directly generated from a global
verage pooling followed by a softmax function, and the cross-entropy
oss function is utilized.

.5.1. Effect of TL
The experiments on both AID and LAG benchmarks indicate that

imply using KL to generate MACCMs only slightly improves the clas-
ification performance. This observation also demonstrates that more
dvanced solutions are needed to solve the rotation invariant problem
nstead of simply rotating samples as augmentation.
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Fig. 8. Feature maps from different rotation angles learnt by the proposed top-down RE-CNN and the other six bottom-up rotation invariant learning methods. The instance-level
top-down scheme is more effective to highlight the key local regions regardless of the rotation angle.
Table 6
Ablation study of our RE-CNN on the AID and LAG dataset (OA: Overall Accuracy required by Xia et al.,
2017; Acc: Five-fold test accuracy required by Li et al., 2019; Metrics presented in %; ResNet: Backbone
ResNet-50; TL: Transitional layer for MACCMs; KIS: Key instance selection module; KIA: Key instance
aggregation module; SF: semantic fusion module).
Module AID LAG

ResNet TL KIS KIA SF OA Acc

✓ 91.72 ± 0.17 91.75

✓ ✓ 92.05 ± 0.22 92.56
✓ ✓ ✓ 93.53 ± 0.13 94.45
✓ ✓ ✓ ✓ 95.39 ± 0.10 96.34
✓ ✓ ✓ 93.43 ± 0.15 94.21
✓ ✓ ✓ ✓ 95.26 ± 0.17 96.19
✓ ✓ ✓ ✓ w.o 𝐿𝑟𝑔𝑙 96.30 ± 0.19 97.23

✓ ✓ ✓ ✓ ✓ 96.95 ± 0.14 97.98
5.5.2. Effect of KIS
Two comparison pairs on AID indicate that the utilization of KIS

leads to a performance gain of 1.48% and 1.83% respectively. Sim-
ilarly, the improvement on LAG is 1.89% and 1.98% respectively.
The effectiveness of KIS may be explained that our deep MIL module
stresses the region of interest (RoI) in an scene regardless of the rotation
angle. Hence, the representation can be more insensitive to the changes
caused by rotation.

5.5.3. Effect of KIA
Two comparison pairs on AID and LAG demonstrate that the perfor-

mance gain of KIA are 1.86%, 1.69% and 1.89%, 1.79% respectively.
The function of KIA is important as it aggregates both the rotation sen-
sitive and insensitive representation from KIS in a rotation equivalent
manner. Bear in mind that the permutation invariant nature of MIL
aggregation function allows the scene representation invariant to the
position change of instances caused by rotation.

For an intuitive understanding, some instance representations from
different rotation angles are visualized in Fig. 9 (I), where the key
instances are activated properly regardless of the orientation. Also,
some heatmaps processed by either only KIS or by both KIS and KIA
are displayed in Fig. 9 (II), reflecting our KIA helps activate the RoIs
more accurately.
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5.5.4. Effect of SF
Among three comparison pairs on either using or not using our SF

module, the performance gain on AID dataset varies from 1.38% to
1.73%. Similarly, the performance gain on LAG dataset varies from
1.64% to 1.74%. Generally speaking, our SF can not only stress the
contribution of key instances but also regularize the entire learning
process to be rotation tolerable.

5.5.5. Effect of regularization loss
The loss function of the proposed RE-CNN is a combination of

the conventional classification loss term and the regularization loss
(Eq. (15)). The impact of the regularization loss, which is based on
the difference between feature representations from different rotation
angles, is also investigated. When the RE-CNN framework only has the
classification loss, the performance on AID and LAG declines 0.65%
and 0.75% respectively. The regularization loss helps the representation
from different rotation angles to align to the same semantic label of the
scene, and thus can benefit the model’s robustness to some extent.

5.6. Generalization capability test

To validate the generalization capability of our RE-CNN scheme,
we report its performance when embedded into three conventional
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Fig. 9. (I) Instance-level semantics from multiple rotation angles are activated properly. (II) Samples (a) and the corresponding heat maps when processed only by the KIS module
(b) or by both the KIS and KIA modules (c).
Table 7
Performance of our RE-CNN on different backbones on the AID dataset (OA: Overall
Accuracy required by Xia et al., 2017; Metric presented in %; Para. num.: Parameter
numbers; presented in million; FPS: Frame Per Second.).

OA Para. num. FPS

VGG 90.64 ± 0.14 15.43 245.82
Ours with VGG 95.02 ± 0.13 15.52 232.41

↑ 4.83% ↓ 0.58% ↓ 5.77%

ResNet 91.72 ± 0.17 23.46 422.30
Ours with ResNet 96.95 ± 0.14 23.57 414.94

↑ 5.70% ↓ 0.47% ↓ 1.74%

Inception 91.40 ± 0.19 6.64 704.22
Ours with Inception 95.67 ± 0.17 6.65 700.28

↑ 4.67% ↓ 0.15% ↓ 0.56%

Swin-T 98.30 ± 0.04 27.63 213.47
Ours with Swin-T 99.23 ± 0.18 27.75 198.72

↑ 0.95% ↓ 0.43% ↓ 6.91%

ViTAEv2 98.22 ± 0.09 18.82 336.12
Ours with ViTAEv2 99.21 ± 0.23 18.91 314.66

↑ 1.01% ↓ 0.48% ↓ 6.38%

CNN backbones, namely, VGGNet-16 (Simonyan and Zisserman, 2015),
ResNet-50 (He et al., 2016), Inception-V2 (Szegedy et al., 2015),
and two latest backbones, namely, Swin-T (Liu et al., 2021) and
ViTAEv2 (Wang et al., 2022) (denoted as VGG, ResNet, Inception,
Swin-T and ViTAEv2 in Table 7) on the AID benchmark. Apart from
the required overall accuracy metric (Xia et al., 2017), the parameter
number and the frame per second are also reported to evaluate its
impact on parameter number and inference time.

From all the outcomes on Table 7, it is clearly seen that our RE-
CNN framework significantly boosts the recognition performance on
not only the three classic CNN backbones but also the two latest state-
of-the-art backbones, only slightly increasing the parameter number
and prediction time. Hence, our RE-CNN scheme can be easily adapted
to existing CNN backbones with a generic performance boost.

5.7. Sensitivity analysis

5.7.1. Influence of the sampling interval for 𝜃𝑖
The sampling interval for our 𝜃𝑖 is 45 degrees in our framework

by default. It is also interesting to observe the influence of sampling
interval on the overall recognition performance. A larger interval leads
to a less number of MACCMs while a smaller interval leads to a larger
number of MACCMs. To investigate this impact, we test the cases
when the sampling interval is 15, 30, 45, 60 and 75 degrees on AID
benchmark, while all the other default settings keep the same.
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Table 8
Influence of sampling interval (presented in degree)
for 𝜃𝑖 on the performance of our RE-CNN on the
AID benchmark (OA: Overall Accuracy required by Xia
et al., 2017; Metrics presented in %).
Sampling interval (in degree) OA

15 96.87 ± 0.18
30 96.89 ± 0.16
45 96.95 ± 0.14
60 96.90 ± 0.15
75 96.75 ± 0.17

Table 8 lists all the results. It can be seen that when the interval
is 15, 30, 45 and 60 leads to an outcome of 96.89%, 96.95% and
96.90%, indicating that there is no significant difference regarding the
interval. When the sampling interval is too large, feature responses may
be not sufficient for the entire model in the learning phase, and thus
the performance shows a slight decline.

Our RE-CNN only utilizes the instance representation rotated by 45,
90, 135, 180, 225, 270, 315 and 360 degrees respectively. But it still
demonstrates a stable performance on a variety of rotation angles. The
effectiveness lies in two-folds: (1) The permutation-invariant nature
of MIL aggregation function allows the scene scheme invariant to the
position change of instances caused by rotation. Thus, the specific
rotation angle does not influence much on the recognition performance.
(2) As the high-level feature maps are often small in sizes (e.g., 8 × 8
in ResNet), the rotated high-level feature maps are not that sensitive to
specific rotation angles.

5.7.2. Influence of the hyper-parameter 𝛼
Our loss function has two terms 𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑔𝑙, which are balanced

by a hyper-parameter 𝛼. Table 9 shows the impact of 𝛼 on classification
results.

It can be seen that when 𝛼 is set 5×10−3, 10−4, 10−5, the performance
of our RE-CNN is relatively stable. However, when 𝛼 is either too large
or too small, 5×10−2 or 5×10−6, the performance of our model degrades.
A too-small 𝛼 indicates that the model does not fully learn the rotation
robust features from MACCM, while a too-large 𝛼 may overwhelm the
impact of the original scene representation.

5.7.3. Influence of network initialization
Two network initialization settings, namely, optimization and

weight initialization, may have an impact on the classification perfor-
mance of RE-CNN. Multiple variations of these settings are studied on
the KTD dataset (Kylberg, 2011).
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Table 9
Influence of hyper-parameter 𝛼 on the perfor-
mance of our RE-CNN on the AID benchmark
(OA: Overall Accuracy required by Xia et al.,
2017; Metrics presented in %).
𝛼 value OA

5 × 10−2 95.99 ± 0.18
5 × 10−3 96.62 ± 0.16
5 × 10−4 96.95 ± 0.14
5 × 10−5 96.74 ± 0.15
5 × 10−6 96.58 ± 0.17

Table 10
Influence of a different optimization on the performance of our RE-CNN
on the KTD benchmark (Acc: Five-fold test accuracy required by Kylberg,
2011; Metrics presented in %).
Optimization SGD SGDM Adam

Acc 99.79 99.84 99.95

Table 11
Influence of different standard deviations of weight initialization on the performance of
our RE-CNN on the KTD benchmark (Acc: Five-fold test accuracy required by Kylberg,
2011; Metrics presented in %). The optimizer is fixed as the Adam in all experiments.

Standard deviation 1 × 10−5 1 × 10−4 1 × 10−3 1 × 10−2

Acc 99.84 99.84 99.95 99.95

Fig. 10. The curves of training and test losses on KTD (Kylberg, 2011). Both curves
become stable after 4000 iterations and do not shown over-fitting.

Table 10 reports the five-fold test accuracy (denoted by Acc) when
using stochastic gradient descent (SGD), stochastic gradient descent of
momentum (SGDM) and Adam optimizer. Generally, the performance
of RE-CNN is not influenced by a different setting of the optimizer.

Table 11 reports the five-fold test accuracy (denoted by Acc) when
the standard deviation of weight initialization varies from 1 × 10−5

to 1 × 10−2. It is shown that the weight initialization has very little
influence on the performance of the proposed RE-CNN.

The curves of training and test losses are shown in Fig. 10. After
about 4000 iterations, both the training and test losses on KTD dataset
become stable. It shows that there is no indication of over-fitting in the
learning process.

6. Conclusion

In this paper, we proposed a RE-CNN framework for rotation variant
scene recognition. Compared with existing rotation invariant scene
recognition methods learning in a bottom-up manner, the RE-CNN
scheme uses the classic MIL formulation and learns in a novel top-
down manner. It not only eliminates the problem caused by the rotation
sensitive nature of convolution operations in the existing bottom-up

pipelines, but also accentuates the key regions in a scene regardless of
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their orientation. Furthermore, by exploiting the permutation-invariant
characteristic of the MIL aggregation function, it allows the scene
scheme prediction invariant to a position change of instances caused
by rotation. Extensive experiments demonstrate that our RE-CNN out-
performs 24 representative SOTA approaches on five rotation variant
scene benchmarks.
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