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A B S T R A C T

Intrinsic image decomposition is the decomposition of an image into its reflectance and shading components.
The intrinsic image decomposition problem is inherently ill-posed, since there can be multiple solutions to
compute the intrinsic components forming the same image. In this paper, we explore the use of physics-based
priors. We also propose a new architecture that separates the learning components in a stacked manner. We
explore various ways of integrating such priors into a deep learning system. Our method is trained and tested
on a large synthetic garden dataset to assess its performance. It is evaluated and compared to state-of-the-art
methods using two standard intrinsic datasets. Finally, the pre-trained network is tested on real world images
to show the generalisation capabilities of the network.
. Introduction

Intrinsic Image Decomposition (IID), under the Lambertian assump-
ion, is the decomposition of an image (𝐼) into its constituent Re-
lectance (𝑅) and Shading (𝑆) images (Barrow and Tenenbaum, 1978).
eflectance is independent of the lighting conditions and corresponds

o the colour of the object. Shading is a function of the object’s ge-
metry and lighting conditions. IID is beneficial for different computer
ision applications, for example, shading cues helps to recover the
hape of an object (Wada et al., 1995), while reflectance cues allow
or object material editing (Ye et al., 2014; Meka et al., 2016; Beigpour
nd van de Weijer, 2011) and semantic segmentation (Baslamisli et al.,
018a).

For a given 𝐼 , there can be different combinations of 𝑅 and 𝑆.
herefore, IID is considered as an under-constrained problem. Early
ID methods use various constraints like depth and geometry cues
Barron and Malik, 2015; Gehler et al., 2011; Shen et al., 2008). These
onstraints are usually derived from the image formation model. For
xample, the Retinex model (Land and McCann, 1971) defines IID
omponents in terms of gradients. Reflectance is attributed to stronger
radient changes and shading to weaker gradient changes. Similarly,
arron and Malik (2015) defines reflectance as a piece-wise constant

mage containing a limited colour palette. Based on a general reflection
odel, these methods are quite robust at generalisation and are not
ataset biased. However, these physics-based methods are less effective
or scenes containing complex illumination conditions.

∗ Corresponding author at: University of Amsterdam, Science Park 904, Amsterdam, 1098XH, The Netherlands.
E-mail address: p.das@uva.nl (P. Das).

Recently, deep learning-based methods (Narihira et al., 2015; Li
and Snavely, 2018; Fan et al., 2018; Bell et al., 2014) are proposed to
compute IID in data-driven way. For example, Li and Snavely (2018)
use multiple datasets to solve the IID problem in an end-to-end deep
learning way. These methods show robust performance in decomposing
scenes containing complex illumination cues. However, a drawback is
that these methods are purely data-driven, and dataset biased. As a
result, they do not generalise well to scenes that are different than the
scenes used in the training set.

The two classes of approaches to compute the IID have different
sources of weaknesses and may not necessarily offer a complete frame-
work by themselves. However, their combination could provide a more
robust and complete strategy. Therefore, we propose a new integrated
approach to compute IID by leveraging the best of two worlds. We
propose (generalised) physics-based cues to steer a (data-driven) CNN
model by an integrated IID processing pipeline.

To steer our data-driven CNN pipeline, the physics-based cues are
derived from illumination and geometry invariants namely (1) Colour
Ratios (Finlayson, 1992) (CR), and (2) Cross Colour Ratios (Gevers
and Smeulders, 1999) (CCR). The aim is to compute an invariant
representation as an early stage of the pipeline using CCR and CR
defining the surface albedo and shading cues respectively.

An overview of the proposed network is given in Fig. 1. The model
uses an invariant representation to steer the (data-driven) CNN model
by an integrated IID processing pipeline. The invariant representation
https://doi.org/10.1016/j.cviu.2022.103538
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Fig. 1. An overview of the proposed network. 𝑅𝐺𝐵 images are used to calculate the pixel-wise 𝐶𝐶𝑅 and 𝐶𝑅 images. 𝐶𝐶𝑅 gives a uniform reflectance, while 𝐶𝑅 contains
geometric information, as can be observed on the highlighted rock (corresponding zoom-crops are shown). The 𝐶𝐶𝑅 and input images are then passed on to separate encoders.
The resulting features are concatenated and decoded into a reflectance image. The reflectance and 𝐶𝑅 images are used by two new encoders. The features are then decoded into
a shading image. Skip connections are added between the encoder and decoders. Only one skip connection is shown for brevity. The image encoder features are shared by both
stacks. The separated stacks model the interdependence of the components. More details about the encoder and decoder structure can be found in the supplementary material.
Best viewed on a screen.
includes both CR and CCR invariants. The computation of these physics-
based invariants may become erroneous for complex scenes where the
imaging process does not follow the reflection of a general model.
To address this shortcoming, a large learning network capacity is
exploited to cope with possible sources of erroneous invariant values
introduced by complex imaging conditions such as inter-reflections,
coloured shadows, and specularities.

An important characteristic of the IID problem is the inter-depen-
dency between the reflectance and shading components. For deep
learning-based models this by simultaneously learning the components
(Narihira et al., 2015; Shi et al., 2017), thus relying on the simultane-
ous forward and backward propagation to learn the inter-dependency.
However, this may lead to artefacts, like shading leakages in the
reflectance and vice versa. Therefore, a stacked approach is proposed
to model the reflectance–shading inter-dependency where the shading
stack exploits reflectance cues as priors.

The proposed method is trained on the NED (Baslamisli et al.,
2018a) synthetic dataset. The trained model is then tested on different
IID datasets including the MIT (Grosse et al., 2009) and Sintel (Butler
et al., 2012) datasets. In addition, we provide qualitative evaluations
on real-world datasets such as NYU (Silberman et al., 2012) and
Trimbot outdoor garden (Sattler et al., 2017) dataset. Our approach is
compared to state-of-the-art methods in terms of usual IID metrics and
generalisation capabilities.

The contributions of this paper are as follows:

• We propose (generalised) physics-based cues to steer a (data-
driven) CNN model by an integrated IID processing pipeline.

• A stacked approach is used to exploit reflectance cues for shading
computation based on the imaging formation process, i.e. separat-
ing the intrinsic components for the learning phase is beneficial.
The proposed method is able to cope with the dataset bias prob-
lem and has generalisation capacity to unseen domains.

2. Related work

Physics based: The image formation model is used to address the
problem of IID. The landmark work by Land and McCann (1971)
proposes the Retinex algorithm where stronger gradients are used to
identify reflectance changes. Funt et al. (1992) extends this principle
to colour images. Barron and Malik (2015) explores component spe-
cific properties by introducing physics-based constraints. A smoothness
prior is added to the shading image to compute a rough depth map.
Reflectance specific constraints like piece-wise constancy and parsi-
mony, are then used to optimise the reflectance. Sheng et al. (2020)
2

extends the shading constraints to compensate for shading changes.
Chen and Koltun (2013) directly breaks down the shading component
into the physical interaction of object geometry and light. Li et al.
(2021a) uses RGB-D images coupled with a sparsity regularisation
term to obtain IID components. However, the above methods are often
designed for single objects or need specialised hardware for the addi-
tional input. Moreover, they may fail for scenes with complex imaging
conditions (e.g. scenes containing unusual illumination and reflectance
properties).

Learning based: With the introduction of large datasets for the IID
problem (Chang et al., 2015; Li and Snavely, 2018; Butler et al., 2012;
Li et al., 2021b), various learning based methods are proposed. Narihira
et al. (2015) employs an end-to-end CNN to parameterise the IID
problem. Shi et al. (2017) extends it by enforcing inter-dependence
between the intrinsic components. Baslamisli et al. (2018b) uses a deep
learning approximation of the Retinex algorithm, by learning in the
gradients domain with a CNN model. The above-mentioned datasets are
synthetic and do not always model the image formation complexities
of real-world scenes. Bonneel et al. (2014) introduces a human-in-the-
loop approach to address this. This is further explored to generate
sparse crowd sourced reflectance and shading annotations (Bell et al.,
2014; Kovacs et al., 2017; Narihira et al., 2015). Zhou et al. (2015)
uses these sparse annotations to steer the proposed network. Li and
Snavely (2018) makes use of both synthetic and real-world datasets and
multiple losses to learn the IID problem. On the other hand, edge maps
are used as guidance priors to enforce piece-wise smooth reflectance
(Fan et al., 2018), while Zhu et al. (2021) uses images rendered by
game engines for training on outdoor scenes. Cheng et al. (2018)
explores different scale space properties. Shelhamer et al. (2015) and
Kim et al. (2016) include depth in their formulation in a joint learning
manner. Luo et al. (2020) uses surface normal information to cope
with illumination for indoor images. Baslamisli et al. (2018a) uses
semantic segmentation to jointly learn intrinsic image decomposition.
Sengupta et al. (2019) also introduces an inverse rendering network
that decomposes an input into its albedo, normals and illumination.
However, these fully data-driven methods are dataset biased and hence
will come up short to generalise well to unseen data.

The two classes of IID approaches both have their weaknesses: (1)
physics-based methods may fall short in performing well in realistic
environments and (2) (data-driven) CNN models may suffer from the
dataset bias problem. Therefore, we propose a combined approach to
compute the IID. Our method uses the strength of one approach to cope
with the weakness of the other approach. To this end, our method uses
a (generalised) invariant representation derived from general physics
modelling to steer the (data-driven) CNN model which can cope with
erroneous invariant values caused by complex scenes.
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3. Methodology

3.1. Image formation

Under the Lambertian assumption of diffuse image formation
(Shafer, 1985), we have:

𝐼 = 𝑚(𝑛, 𝑙)∫𝜔
𝜌𝑏(𝜆) 𝑒(𝜆) 𝑓 (𝜆) d𝜆 , (1)

here, 𝐼 is the captured image. 𝜆 is the incoming light wavelength
ithin the visible spectrum 𝜔. 𝑚 is a function of geometry of the object
nd lighting. 𝑛 denotes surface normal and 𝑙 denotes the light source
irection. 𝑓 indicates the spectral camera sensitivity and 𝑒 describes the
pectral power distribution of the light source. 𝜌 denotes reflectance
nd is related to the colour of the object. Assuming a linear sensor
esponse, a narrow band filter and a single (white) light source, Eq. (1)
an be simplified to:

= 𝑆 × 𝑅 , (2)

here 𝑅 is the reflectance image, the (albedo) colour of the object, and
is the shading component associated with geometry and illumination.
bviously, Eq. (2) can have multiple solutions for the same 𝐼 value.

.2. Physics-based invariants

In this paper, (generalised) invariant representations are used to
ondition the IID process.
Colour Ratios: Finlayson (1992) introduces Colour Ratios (CR),

hich are illuminant invariant edge descriptors. Consider two neigh-
ouring pixels, 𝑥1 and 𝑥2, in a 𝑅𝐺𝐵 image coming from a flat surface
ith a locally constant light source:
𝑐 (�⃗�1) = 𝑒𝑐 (�⃗�2) (3)

here, 𝑒𝑐 (𝑥𝑖) is the spectral power distribution function of the illumina-
ion for colour channel 𝑐 and pixel 𝑥𝑖. Assuming the same light source is
ustifiable for (adjacent) neighbouring pixels. Then, CR is defined by:

𝐶𝑅 =
𝑅𝑥1
𝑅𝑥2

, 𝑀𝐶𝐺 =
𝐺𝑥1
𝐺𝑥2

, 𝑀𝐶𝐵 =
𝐵𝑥1
𝐵𝑥2

. (4)

here 𝑀𝐶𝑅,𝑀𝐶𝐺 ,𝑀𝐶𝐵 are Colour Ratios for 𝑅, 𝐺 and 𝐵 channels re-
pectively. [𝑅𝑥1 , 𝑅𝑥2 ], [𝐺𝑥1 , 𝐺𝑥2 ] and [𝐵𝑥1 , 𝐵𝑥2 ] are neighbouring pixels.
aking the logarithm of Eq. (4) results in:

𝑙𝑜𝑔(𝑀𝐶𝑅) = 𝑙𝑜𝑔(𝑅𝑥1 ) − 𝑙𝑜𝑔(𝑅𝑥2 ) ,

𝑜𝑔(𝑀𝐶𝐺) = 𝑙𝑜𝑔(𝐺𝑥1 ) − 𝑙𝑜𝑔(𝐺𝑥2 ) ,

𝑙𝑜𝑔(𝑀𝐶𝐵) = 𝑙𝑜𝑔(𝐵𝑥1 ) − 𝑙𝑜𝑔(𝐵𝑥2 ).

(5)

Expanding 𝑅𝑥1 with Eq. (1), gives:

𝑥1 = 𝑚(𝑛 𝑙) 𝑒𝑅𝑥1 (𝜆) 𝜌𝑅𝑥1 (𝜆) (6)

Substituting Eq. (6) in Eq. (5), results in:

𝑙𝑜𝑔(𝑀𝐶𝑅) = 𝑙𝑜𝑔(𝑅𝑥1 ) − 𝑙𝑜𝑔(𝑅𝑥2 ),

= 𝑙𝑜𝑔(𝑚( ⃗𝑛𝑥1
⃗𝑙𝑥1 ) + 𝑙𝑜𝑔(𝑒𝑅𝑥1 (𝜆)) + 𝑙𝑜𝑔(𝜌𝑅𝑥1 (𝜆))

− 𝑙𝑜𝑔(𝑚( ⃗𝑛𝑥2
⃗𝑙𝑥2 ) − 𝑙𝑜𝑔(𝑒𝑅𝑥2 (𝜆)) − 𝑙𝑜𝑔(𝜌𝑅𝑥2 (𝜆))

= 𝑙𝑜𝑔(𝜌𝑅𝑥1 (𝜆)) − 𝑙𝑜𝑔(𝜌𝑅𝑥2 (𝜆))

(7)

where ⃗𝑙𝑥1 = ⃗𝑙𝑥2 and ⃗𝑛𝑥1 = ⃗𝑛𝑥2 assuming a white light source and a
flat surface, respectively. Finally, 𝑒𝑅𝑥1 = 𝑒𝑅𝑥2 from Eq. (3). The same
argument holds for the other channels.

Cross Colour Ratios: The assumption of flat surfaces limits the ap-
plicability of the descriptors. Gevers and Smeulders (1999) introduces
Cross Colour Ratios (CCR) that are independent of both illumination and
object geometry:

𝑀1 =
𝑅𝑥1 𝐺𝑥2 ,𝑀2 =

𝑅𝑥1 𝐵𝑥2 ,𝑀3 =
𝐺𝑥1 𝐵𝑥2 . (8)
𝑅𝑥2 𝐺𝑥1 𝑅𝑥2 𝐵𝑥1 𝐺𝑥2 𝐵𝑥1

3

Fig. 2. Colour Ratio (CR) and Cross Colour Ratio (CCR) outputs. Both CR & CCR
are calculated from the input 𝑅𝐺𝐵 image. Note that the influence of geometry is
discarded by the CCR computation and that edges resemble reflectance ground-truths.
Conversely, the CR image preserves shading information. The mouth and nose are
visible for the Sun (CR) image, while fold lines are visible for the paper (CR) image.
(𝑀𝐶𝑅 , 𝑀𝐶𝐺 , 𝑀𝐶𝐵) and (𝑀1 , 𝑀2 , 𝑀3) are combined (3 channels) for CR and CCR
visualisations, respectively. Images are gamma corrected.

where 𝑀1, 𝑀2, 𝑀3 are CCR descriptors for (𝑅, 𝐺), (𝑅, 𝐵) & (𝐺, 𝐵)
channel pairs respectively. Taking the logarithm on both sides results
in:
𝑙𝑜𝑔(𝑀1) = 𝑙𝑜𝑔(𝑅𝑥1 𝐺𝑥2 ) − 𝑙𝑜𝑔(𝑅𝑥2 𝐺𝑥1 ) ,

𝑜𝑔(𝑀2) = 𝑙𝑜𝑔(𝑅𝑥1 𝐵𝑥2 ) − 𝑙𝑜𝑔(𝑅𝑥2 𝐵𝑥1 ) ,

𝑜𝑔(𝑀3) = 𝑙𝑜𝑔(𝐺𝑥1 𝐵𝑥2 ) − 𝑙𝑜𝑔(𝐺𝑥2 𝐵𝑥1 ) .

(9)

xpanding Eq. (9) by Eq. (6) we get:

𝑜𝑔(𝑀1) = 𝑙𝑜𝑔(𝑅𝑥1 𝐺𝑥2 ) − 𝑙𝑜𝑔(𝑅𝑥2 𝐺𝑥1 )

𝑜𝑔(𝑀1) = 𝑙𝑜𝑔(𝑅𝑥1 ) + 𝑙𝑜𝑔(𝐺𝑥2 )

− 𝑙𝑜𝑔(𝑅𝑥2 ) − 𝑙𝑜𝑔(𝐺𝑥1 )

𝑙𝑜𝑔(𝑀1) = 𝑙𝑜𝑔(𝑚( ⃗𝑛𝑥1
⃗𝑙𝑥1 ) + 𝑙𝑜𝑔(𝑒𝑅𝑥1 (𝜆)) + 𝑙𝑜𝑔(𝜌𝑅𝑥1 (𝜆))

+ 𝑙𝑜𝑔(𝑚( ⃗𝑛𝑥2
⃗𝑙𝑥2 ) + 𝑙𝑜𝑔(𝑒𝐺𝑥2 (𝜆)) + 𝑙𝑜𝑔(𝜌𝐺𝑥2 (𝜆))

− 𝑙𝑜𝑔(𝑚( ⃗𝑛𝑥2
⃗𝑙𝑥2 ) − 𝑙𝑜𝑔(𝑒𝑅𝑥2 (𝜆)) − 𝑙𝑜𝑔(𝜌𝑅𝑥2 (𝜆))

− 𝑙𝑜𝑔(𝑚( ⃗𝑛𝑥1
⃗𝑙𝑥1 ) − 𝑙𝑜𝑔(𝑒𝐺𝑥1 (𝜆)) − 𝑙𝑜𝑔(𝜌𝐺𝑥1 (𝜆))

𝑙𝑜𝑔(𝑀1) = 𝑙𝑜𝑔(𝜌𝑅𝑥1 (𝜆)) + 𝑙𝑜𝑔(𝜌𝐺𝑥2 (𝜆))

− 𝑙𝑜𝑔(𝜌𝑅𝑥2 (𝜆)) − 𝑙𝑜𝑔(𝜌𝐺𝑥1 (𝜆))

(10)

Hence, for curved surfaces (i.e., ⃗𝑛𝑥1 ≠ ⃗𝑛𝑥2 ), the geometric and the
illumination term are cancelled out. The resulting descriptor corre-
sponds to a reflectance (albedo) indicator. The terms 𝑀2 and 𝑀3 can
be similarly derived and are not shown for brevity.

For constant reflectance, the value of CCR is 1. The value changes
for albedo changes i.e., reflectance transitions. Fig. 2 shows CR & CCR
examples taken from the MIT Dataset (Grosse et al., 2009). From the
figure, it is shown that the CCR ignores shadow and shading effects.
However, the CCR computation becomes erroneous when the imaging
process does not follow the reflection model including noise, sensor
artefacts and non-Lambertian cues.

In conclusion, CCR corresponds to (albedo) reflectance changes
only and CR encodes both shading and reflectance transitions. In the
following section, the integration of the invariant representations into
an end-to-end trainable network is discussed.

3.3. Network architectures

The network takes a 𝑅𝐺𝐵 image (𝐼) as input. Using Eqs. (7) and
(10), the CR invariants (𝐶𝑅𝑖) and CCR invariants (𝐶𝐶𝑅𝑖) are obtained.
𝐼 , 𝐶𝑅𝑖 and 𝐶𝐶𝑅𝑖 are passed through separate encoders to obtain the
encoded features for image (𝑖𝑚𝑔), CCR (𝑐𝑟) and CR (𝑐𝑐𝑟) respectively.
This allows the network to learn a rich feature representation for each
of the individual descriptors. For example, 𝑐𝑐𝑟 corresponds to re-
flectance features, like illumination invariance and reflectance change
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Fig. 3. The features from the image and CCR encoders are concatenated depth wise
nd passed through a decoder. The output is the predicted reflectance. This makes up
he first stack.

Fig. 4. (a) The predicted reflectance is passed through an encoder to obtain the
reflectance features. (b) The encoded reflectance features along with the CR encoded
features are concatenated depth-wise and passed to the final decoder. The output of
this decoder is the predicted shading. This is the second stack of the network.

boundaries, while 𝑐𝑟 corresponds to both illumination and reflectance
transitions.

The encoded features 𝑖𝑚𝑔 and 𝑐𝑐𝑟 are concatenated and passed
on to the reflectance decoder. Skip connections from both the two
respective encoders are used in the reflectance decoder to preserve
corresponding scale space feature consistency. This allows the network
to exploit 𝑐𝑐𝑟, which are illumination and geometry invariant features,
to disentangle the reflectance from the image. This makes up the first
stack illustrated in Fig. 3.

According to Eq. (2), reflectance is closely linked to shading. Re-
flectance features are exploited to over-constrain the shading decom-
position. The predicted reflectance is passed through an encoder to
obtain encoded reflectance features (𝑟). To further guide the shading
decomposition, 𝑐𝑟 is concatenated to 𝑟 before passing them on to the
decoder. The 𝑐𝑟 encodes reflectance and shading transition informa-
tion, while 𝑟 provides only reflectance transition information. Since
these transitions are exclusive, the network is able to disentangle the
shading transitions. Thus, the shading decoder uses 𝑐𝑟 and 𝑟 to learn
the physics based shading transition, while 𝑖𝑚𝑔 provides the perceptual
shading from the image directly. Skip connections from 𝑖𝑚𝑔 , 𝑐𝑟 and 𝑟
are added to the decoder to provide corresponding scale space encoder
features. This makes up the second stack, as illustrated in Fig. 4.

To further enforce inter-component dependency, the reflectance
stack is pre-trained first, on the same dataset, keeping the shading
stack disabled. Once the reflectance stack gains sufficient convergence
(around 50 epochs), the shading stack is enabled. This allows the
4

shading stack to focus on useful reflectance cues, along with the CR
invariant. Without the delayed start on the shading stack, the network
will learn reflectance and shading simultaneously. Since the reflectance
cues will not be sufficiently converged for the network at the beginning,
the reflectance prior for shading is not guaranteed to be correct.

An overview of the network is given in Fig. 1. Scale Invariant MSE
losses (Shi et al., 2017) are used for reflectance, shading and recon-
structed images to train the network. To further integrate the physical
constraints, the CCR loss is used to train the reflectance. The reflectance
prediction of the network is used to compute the CCR invariants,
using Eq. (10). This is then compared with the CCR invariants obtained
from the input 𝑅𝐺𝐵 image. Since CCR is an illumination and geometry
invariant descriptors, the CCR invariants obtained from the reflectance
should match the CCR calculated from the input 𝑅𝐺𝐵, enforcing an
explicit physics constraint.

Finally, the mutual exclusion of reflectance and shading edges is
further exploited in the form of an edge divergence regularisation. Re-
flectance and shading edges are obtained from the network predictions
using a Canny edge operator. The edges are thresholded to obtain a
binary mask. These binary edges are used as a regularisation to the
network, where the overlap between the reflectance and shading edges
are minimised. This allows the network to learn a physical model which
prevents shading leakages in the reflectance prediction and vice-versa.
The edge regularisation is defined by:

𝑅 = 1
𝑁

∑

‖(𝑟𝑐 + 𝑠𝑐 ) − 1‖ (11)

where, 𝑅𝑐 and 𝑆𝑐 are the reflectance and shading edges, respectively
nd 𝑁 is the number of edge pixels. 𝑅 is the edge divergence regular-
sation, which penalises when reflectance and shading edges overlaps.

The network is optimised with Adam optimiser with a learning rate
f 2𝑒−4. The reflectance stack is trained separately for 250𝑘 iterations.
hen, both the reflectance and shading stacks are trained for a total of
50𝑘 iterations. More details about the network architecture and losses
an be found in the supplementary material.

.4. Datasets

The proposed method is trained and assessed on the Natural Envi-
onment Dataset (NED) (Baslamisli et al., 2018a). The dataset consists
f synthetic garden scenes. All scenes are rendered using the physics-
ased Blender’s Cycles Renderer. Ambient light is simulated using real
DR sky images. The dataset consists of around 32𝐾 images of which

25𝐾 images are used for training. The dataset contains around 40
different parks/gardens under 5 lighting conditions. Our network is also
fine-tuned and evaluated on the MIT (Grosse et al., 2009) and Sintel
(Butler et al., 2012) datasets. To test real-world performance, visual
results on the NYU Dataset (Silberman et al., 2012) and the Trimbot
dataset (Sattler et al., 2017) are provided. An ablation study on the
influence of the different parts of the proposed method is provided in
the supplementary material.

4. Experiments and results

4.1. Influence of physics-based cues for IID

In this experiment, the influence of CR and CCR for IID is assessed
for two off-the-shelf networks. ShapeNet (Shi et al., 2017) is used to test
an IID network and VGG19 (Simonyan and Zisserman, 2015) is taken
to test a higher learning capacity network. VGG19 is configured as an
encoder–decoder architecture for image-to-image translation. ShapeNet
is based on a non-Lambertian assumption. Therefore, the network
is modified to output only two IID components for the Lambertian
assumption. Extra encoder paths are created for CR and CCR inputs
for both architectures. Skip connections are added. Four experiments
are conducted per network, (1) without any modification, (2) with CR
as the only prior for both components, (3) with CCR as the only prior
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Table 1
Influence of physics-based cues for two off-the-shelf architectures. Adding CCR to the
reflectance stack and CR to the shading stack yields better results. Using CCR and CR
as loss, however degrades the performance.

Conditioning MSE LMSE DSSIM

Reflectance Shading Reflectance Shading Reflectance Shading

Sh
ap

eN
et – 0.0053 0.0050 0.0597 0.0910 0.2516 0.2186

CR 0.0049 0.0051 0.0800 0.1161 0.1520 0.1792
CCR 0.0048 0.0049 0.0792 0.1100 0.1510 0.1703
CCR & CR 0.0045 0.0046 0.0748 0.1065 0.1438 0.1689

VG
G – 0.0119 0.0094 0.1463 0.1693 0.1987 0.2108

CR 0.0034 0.0032 0.0579 0.0827 0.1372 0.1640
CCR 0.0027 0.0027 0.0431 0.0616 0.1010 0.1113
CCR & CR 0.0024 0.0027 0.0404 0.0625 0.0953 0.1105

CR Loss 0.0082 0.0056 0.0842 0.1219 0.3200 0.3419
CCR Loss 0.0028 0.0030 0.0491 0.0691 0.1839 0.2456

Proposed 0.0019 0.0021 0.0343 0.0509 0.0805 0.0873

for both the components, and (4) with CCR as the prior for reflectance
and CR for shading. Both networks are trained on the NED dataset using
the same data split. Stacks are not included for the ShapeNet and VGG
networks.

The proposed network, with the stacked learning, uses the VGG
backbone. The quantitative results are presented in Table 1.

It is shown that adding physics-based invariant priors to existing
architectures improves the performance, regardless of the underlying
architecture. The additional modifications of the priors are simple
copies of the encoder blocks. However, using CR and CCR only as a loss
instead of a prior, degrades the performance, even when the proposed
stacked learning is used. Subsequently, enabling the stack with explicit
physics constraints in the form of an invariant descriptor consistency
loss and edge regularisation improves the performance. This shows
not only the flexibility of the use of physics-based cues, but also the
physics-based learning capability of the network. Additional details can
be found in the supplementary material.

4.2. Comparison to state of the art

In this experiment, performance of the proposed method to different
state-of-the-art methods is studied. The proposed method is trained on
the NED (synthetic garden scenes) (Baslamisli et al., 2018a) dataset.
Each epoch takes about 20 min for the first stack and 30 min for the
ull pipeline with the NED dataset, on a Nvidia RTX A6000 GPU.

MIT Intrinsics(real objects) (Grosse et al., 2009) and Sintel(synthetic
nimated scenes) (Butler et al., 2012) datasets are used to test the
eneralisation of the proposed method. For all methods, the train and
est splits provided by the authors are used. All experimental settings
re kept the same according to the respective publications.

.2.1. Comparison on the NED dataset
Results are shown in Table 2. Qualitative results are shown in Fig. 5.
Despite being trained on a single type of loss, the proposed method

utperforms all baselines. Fig. 5 shows a better disentanglement of IIDs
y the proposed method, while preserving fine details (e.g. the bush
n the third row). The baselines miss fine details and generate blurry
utputs. Additionally, shadow leakages are shown to be minimised (row
, shadow at the base of the tree), which are misclassified as reflectance
ues by the baselines.

.2.2. Comparison on MIT and sintel
Numerical results are presented in Tables 3 and 4. MIT visuals are

rovided in Fig. 6. The results for Grosse et al. (2009), Barron and Malik
2015) and Gehler et al. (2011) are computed by the code provided by
he authors. The results for Narihira et al. (2015), Shi et al. (2017),

nd Li and Snavely (2018) are obtained from Li and Snavely (2018).

5

Fig. 5. Comparison between outputs of the proposed method and baselines. It can be
observed that the proposed method is able to better separate shading from reflectance
(e.g. shading leakages for the baselines).

Fig. 6. Qualitative results on MIT dataset. The proposed method is better in separating
reflectance and shading cues for objects containing complex lighting effects.

Baslamisli et al. (2018b, 2020) are provided by the author. The missing
values are due to the missing results in the original work.

The proposed method with finetuning is shown to outperform other
baselines for almost all metrics. Fig. 6 shows better recovery of re-
flectance and shading patterns by the proposed method. The baselines
may incorrectly classify shadows by reflectance cues. In the second
row, the shadow on the frog’s mouth is missed by the baselines, while
the proposed method can disentangle the IID components correctly.
The fifth row demonstrates a challenging case for the turtle. The pro-
posed method preserves texture while removing shadows. The baselines
methods employ specialised loss functions and specific datasets. Our
method is only trained on a synthetic garden dataset and a simple loss,
showing that the (generalised) invariant representation and component
separation is beneficial in modelling the image formation process.
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Table 2
Comparison of the proposed method with state-of-the-art baselines for the NED dataset. The proposed method shows an improvement across
all evaluation metrics.

MSE LMSE DSSIM

Reflectance Shading Reflectance Shading Reflectance Shading

Grosse et al. (2009) 0.0114 0.0193 0.1204 0.2334 0.3280 0.3515
Bell et al. (2014) 0.0095 0.0111 0.1343 0.1861 0.2098 0.3511
Narihira et al. (2015) 0.0073 0.0065 0.1205 0.1798 0.3756 0.3843
Shi et al. (2017) 0.0053 0.0050 0.0597 0.0910 0.2516 0.2186
Li and Snavely (2018) 0.0149 0.0175 0.0447 0.0698 0.2229 0.2346
Baslamisli et al. (2018b) 0.0035 0.0037 0.0449 0.0791 0.2367 0.2110
Yu and Smith (2019) 0.0478 0.0505 0.0642 0.2597 0.2751 0.3382
Liu et al. (2020) 0.0081 0.0143 0.0360 0.0608 0.1886 0.2140
Proposed 0.0019 0.0021 0.0343 0.0509 0.0805 0.0873
Table 3
Comparison of performance on the MIT dataset with current baselines.

MSE LMSE DSSIM

Reflectance Shading Reflectance Shading Reflectance Shading

Gehler et al. (2011) 0.0065 0.0051 0.0393 0.0282 – –
Barron and Malik (2015) 0.0129 0.0066 0.0572 0.0309 – –
Baslamisli et al. (2018b) 0.0104 0.0304 0.0854 0.2038 – –
Li and Snavely (2018) 0.0167 0.0127 0.0319 0.0211 0.1287 0.1376
Yu and Smith (2019) 0.0234 0.0186 0.0573 0.0765 0.1148 0.1276
Yuan et al. (2019) 0.0109 0.0086 0.0462 0.0537 0.0929 0.0999
Xu et al. (2020) 0.0137 0.0114 0.0614 0.0672 0.1196 0.0825
Liu et al. (2020) 0.0156 0.0102 0.0640 0.0474 0.1158 0.1310
Ma et al. (2020) 0.0091 0.0081 0.0212 0.0192 0.0730 0.0659
Baslamisli et al. (2020) 0.0060 0.0069 0.0438 0.0418 – –
Proposed (MIT Finetuned) 0.0047 0.0045 0.0210 0.0220 0.0647 0.0608
Table 4
Numerical results for the Sintel dataset. The proposed method is finetuned.

MSE LMSE DSSIM

Reflectance Shading Reflectance Shading Reflectance Shading

Retinex 0.0606 0.0727 0.0366 0.0419 0.2270 0.2400
Lee et al. (2012) 0.0463 0.0507 0.0224 0.0192 0.1990 0.1770
Barron and Malik (2013) 0.0420 0.0436 0.0298 0.0264 0.2100 0.2060
Chen and Koltun (2013) 0.0307 0.0277 0.0185 0.0190 0.1960 0.1650
Narihira et al. (2015) 0.0100 0.0092 0.0083 0.0085 0.2014 0.1505
Fan et al. (2018) 0.0069 0.0059 0.0044 0.0042 0.1194 0.0822
Proposed 0.0010 0.0010 0.0046 0.0047 0.0450 0.0400
4.3. Real world dataset evaluation

In this experiment, the generalisation capability of the network is
tested. The proposed method is trained only on synthetic images. Since
there are no dense ground truth annotations for these datasets, only the
qualitative evaluations are shown. The datasets are real world gardens
(Sattler et al., 2017) and indoor (Silberman et al., 2012) images. The
results are shown in Figs. 7 & 8, respectively.

The proposed method can separate reflectance and shading for
complex light and object interactions (Fig. 7). The cast shadows around
bushes and trees are removed from reflectance images. The bushes,
grass and the trees are shown to maintain more uniformity in re-
flectance predictions.

The proposed method trained and fine-tuned on only the syn-
thetic dataset before it is applied to indoor images (NYU Dataset).
Fig. 8 shows that it can recover reflectance and shadings. Predicted
reflectance for the wall behind the toilet is flat (third row, fifth column).
Similarly, the shadow under the sink is mostly removed (second row,
fifth column). This shows that the proposed method has generalisation
capabilities.

Some failure cases are shown in Fig. 9. For extreme cases like nearby
light sources or specularities, the proposed method falls short to obtain

the correct decomposition.

6

Fig. 7. Qualitative results for Trimbot dataset images. The proposed method generalises
well to unseen real world images. It is able to distinguish reflectance and shading cues
for complex light and object interactions.

5. Conclusion

In this paper, the use of physics-based descriptors to constrain
the problem of intrinsic image decomposition has been investigated.
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Fig. 8. Qualitative results for the NYU dataset. The proposed method removes shadows
from reflectance (first row, fifth column, base of the sofa). The shadows around the
toilet are removed, while the wall behind it has a much flatter reflectance (third row,
fifth column). This shows the generalisation capability of the proposed method.

Fig. 9. Some failure cases for the NYU dataset. Scenes with strong local light sources
(first column) violates the assumption of locally consistent illumination. Thus, the light
is classified as a separate texture. The fourth column contain glossy surfaces violating
the Lambertian assumption. This results in erroneous reflectance separation.

Physics-based cues in the form of Colour Ratios and Cross Ratios have
been explored. Inter-dependency of reflectance and shading have been
exploited through a stacked approach. Component specific physics-
based priors and stacked learning have shown to improve IID per-
formance. Qualitative and quantitative improvement on two standard
benchmark datasets were discussed. The network has shown to be
able to cope well with dataset bias and generalise well by training on
synthetic data and testing on real world, unseen images.

For future directions, stricter guidance from the illumination in-
variant descriptors could be integrated in the form of edges. Further,
explicit edge guidance and attention could be used.
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