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A B S T R A C T 

Radio frequency interference (RFI) corrupts astronomical measurements, thus affecting the performance of radio telescopes. To 

address this problem, supervised-segmentation models have been proposed as candidate solutions to RFI detection. Ho we ver, 
the unavailability of large labelled data sets, due to the prohibitive cost of annotating, makes these solutions unusable. To solve 
these shortcomings, we focus on the inverse problem: training models on only uncontaminated emissions, thereby learning to 

discriminate RFI from all known astronomical signals and system noise. We use nearest latent neighbours – an algorithm that 
utilizes both the reconstructions and latent distances to the nearest neighbours in the latent space of generative autoencoding 

models for no v elty detection. The uncontaminated re gions are selected using weak labels in the form of RFI flags (generated 

by classical RFI flagging methods) available from most radio astronomical data archives at no additional cost. We e v aluate 
performance on two independent data sets, one simulated from the Hydrogen Epoch of Reionization Array (HERA) telescope 
and the other consisting of real observations from the Low-Frequency Array (LOFAR) telescope. Additionally, we provide a 
small expert-labelled LOFAR data set (i.e. strong labels) for e v aluation of our and other methods. Performance is measured using 

the area under the receiver operating characteristic (AUROC), area under precision–recall curve (AUPRC), and the maximum 

F1-score for a fixed threshold. For the simulated HERA data set, we outperform the current state of the art across all metrics. 
For the LOFAR data set, our algorithm offers both a 4 per cent increase in AUROC and AUPRC at the cost of increasing the 
false ne gativ e rate, but without an y manual labelling. 

Key words: methods: data analysis – techniques: interferometric. 
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 I N T RO D U C T I O N  

adio frequency interference (RFI) is a growing concern for radio 
stronomy due to the proliferation of electronic equipment that 
epends on electromagnetic emissions. Radio frequency radiation 
rom astronomical sources is extremely faint relative to emissions 
rom man-made systems such as radars, telecommunication devices, 
arge satellite constellations (Hainaut & Williams 2020 ), and more. 
espite international regulation to ensure radio-quiet zones and limit 

ransmission power of emitters, there are still concerns about RFI 
ampering radio astronomy. 
For this reason, approaches for RFI detection and mitigation have 

ecome a necessity in modern radio observatories. RFI pipelines 
re commonly deployed at telescopes performing RFI detection and 
itigation in a post-correlation setting. Traditionally, algorithms 

uch as CUMSUM (Baan, Fridman & Millenaar 2004 ), singular 
alue decomposition (Offringa et al. 2010 ), wavelet-based meth- 
ds (Maslakovic et al. 1998 ), and AOFlagger (Offringa, Van De 
ronde & Roerdink 2012 ) have been used. These RFI detection 

lgorithms are widely implemented for real-time RFI detection at 
bservatories around the w orld (Kildal, Bak er & Hagfors 1991 ; van
 E-mail: m.mesarcik@uva.nl 

i
r  

t  

2022 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
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aarlem et al. 2013 ; Sokolowski et al. 2015 ; F ole y et al. 2016 ). In
f fect, all archi ved data from these instruments contain automatically
enerated RFI masks, which can be accessed with no additional cost.
Recent advances in machine learning have made data-driven ap- 

roaches unprecedentedly suitable for RFI detection. Most machine 
earning approaches to RFI detection have been based on supervised 
earning using U-Net (Ronneberger, Fischer & Brox 2015 ) and its
eri v ati ves (Akeret et al. 2017b ; Kerrigan et al. 2019 ; Sadr et al.
020 ; Yang et al. 2020 ). Research has shown that these are promising
ethods, significantly outperforming classical approaches. Ho we ver, 

n reality, supervised methods require significant amounts of expert- 
abelled time/frequency data, which are not available in practice due 
o the related cost. 

As a result, recent models are trained and e v aluated using
imulators or flags generated by classical methods, with limited 
xperimentation on real expert-labelled data sets. This is problematic 
s the ef fecti veness of these methods on unseen data is difficult to
easure and predict. Furthermore, recent machine learning-based 
ethods have not been well integrated into telescope pipelines as the

ost of labelling is prohibitive to many instrument operators. 
To solve these problems, we propose an unsupervised learn- 

ng method based on the nearest-latent-neighbours (NLN) algo- 
ithm (Mesarcik et al. 2022 ). This approach lev erages no v elty de-
ection to perform RFI detection. This is achieved using a generative
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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odel trained on uncontaminated (RFI-free) data to detect novel RFI
ontaminated emissions. Interestingly, this formulation is ef fecti vely
he inverse of how existing deep learning-based methods are trained.

In this work, RFI is detected by measuring the difference between
mall subregions (patches) of spectrograms that are known to not
ontain RFI and the patches being e v aluated. To select RFI-free data,
e break each spectrogram into a number of equally sized patches

nd use their associated AOFlagger-based flags to locate the instances
hich contain RFI. In doing so, we do not have to incur the cost of
 xtensiv e labelling as the AOFlagger masks are readily available.
t must be noted that NLN can tolerate high false positive rates in
he training masks due to the use of the inverse problem. Ho we ver,
nderflagging can cause undesired effects. 
We show that our method outperforms existing supervised models

n several benchmarks, using less data for training. Furthermore, we
emonstrate that if supervised state-of-the-art methods are trained
ith weak labels, they typically o v erfit to the training data and do
ot generalize to unseen examples. Our approach does not suffer
rom these problems. 

Additionally, as the landscape of RFI emissions changes o v er time,
e expect supervised methods to be continually retrained as future

mitters occupy newer frequenc y bands. Conv ersely, the emissions
rom celestial bodies will remain fairly consistent o v er the same time-
cale, ef fecti vely meaning that our method will not have to undergo
etraining. 

We make the following contributions in this work: (1) a no v el
nsupervised learning-based approach to RFI detection in radio
stronomy; (2) an e v aluation of the ef fecti veness of using AOFlagger-
enerated ground truth for training of machine learning-based RFI
etection algorithms; and (3) an expert-labelled data set that can
e used for comparison and development of no v el RFI detection
lgorithms. 

This paper begins with the critical discussion of the existing
iterature concerning RFI detection in radio astronomy in Section 2 .
ection 3 explains how the NLN algorithm was adapted to work for
FI detection. In Section 4 , we explain our data selection strategy
nd outline the expert-labelled data set used for e v aluation of this
ork. Finally, we present our results and conclusions in Sections 5

nd 6 . 

 RELATED  WO R K  

achine learning for RFI detection is an actively researched field.
umerous works offer a variety of radio astronomy-specific mod-

fications to impro v e accurac y of detection. Furthermore, machine
earning-based anomaly and no v elty detection have been applied
 xtensiv ely in astronomy for purposes of no v el galaxy morphol-
gy detection, transient detection, exoplanet discovery, and more.
o we v er, there hav e been a few attempts to apply no v elty detection

o the RFI detection problem. In this section, we document the
atest astronomical developments in both RFI detection and no v elty
etection. 
In this work, we omit analysis of and comparison with classical

echniques that rely on spatial filtering, high-order statistics, and
ubspace decomposition (Fridman & Baan 2001 ). This is because
hese techniques typically require significant fine tuning on specific
elescopes, thus making comparison challenging. 

.1 RFI detection in the deep learning era 

emantic segmentation is at the heart of the deep learning-based
FI detection, with U-Net (Ronneberger et al. 2015 ) and deri v ati ves
NRAS 516, 5367–5378 (2022) 
cting as the architectural backbone of recent research. The purpose
f semantic segmentation is to determine the pixel-precise regions
here a specific class exists – in this case RFI. Architecturally, U-Net

s a convolutional neural network, with an encoder–decoder pair that
hare acti v ations between the two stages. It is trained in a supervised
anner, requiring pix el-lev el Boolean masks per spectrogram. 
The first application of U-Net to radio astronomy-based RFI detec-

ion is reported in seminal work by Akeret et al. ( 2017b ). The network
s trained and e v aluated on the magnitude of spectrograms obtained
rom both simulated data and real data from a signal antenna from
he Bleien Observatory (Chang et al. 2017 ). Interestingly, the models
re trained using masks obtained from a classical flagging approach.
e show in Section 5 that this is not ideal, as supervised methods

end to o v erfit to the weak-label-based ground truth. Additionally,
his work makes use of the HIDE & SEEK radio astronomical data
imulator (Akeret et al. 2017a ). We find the use of this simulator
roblematic because the ground truth needs to be determined by
ser-defined thresholds of the residual RFI maps as described by
adr et al. ( 2020 ). Due to this, other works such as Yang et al. ( 2020 )
o not describe the threshold used for e v aluation, making comparison
xtremely difficult. 

To counteract the issue of o v erfitting to the potentially incorrect
abels, we focus on the inverse problem. We train a model to
epresent all non-RFI signals, such that any deviation from the learnt
epresentations is flagged as RFI. It must be noted that this approach
epends on the assumption that the number of false positives of
lassical RFI detectors is higher than the number of false ne gativ es.
n other words, most RFI is flagged as RFI, but other features may
e incorrectly flagged. A detailed analysis of this effect can be found
n Section 5.2 . 

To address the limitations of the HIDE simulator, we use the
ydrogen Epoch of Reionization Array (HERA) simulator (DeBoer

t al. 2017 ). It gives a more granular control over the simulated
nterference, enabling multiple classes to be generated with pre-
ise ground truth without specifying a threshold. Furthermore, we
rain our model on multiple observations obtained from the Low-
requency Array (LOFAR) Long Term Archive (LTA; van Haarlem
t al. 2013 ) and e v aluate it on a subset of expert-labelled examples. 

Kerrigan et al. ( 2019 ) document the use and evaluation of a U-Net
eri v ati ve for RFI detection on both real and simulated data from
he HERA telescope (DeBoer et al. 2017 ). The authors propose to
nclude both the magnitude and phase as separate components of
he model, for better generalization to alternative representations. It

ust be noted that both Mesarcik et al. ( 2020 ) and Sadr et al. ( 2020 )
how that minimal impro v ements are obtained through using both the
agnitude and phase representations of the complex visibilities. For

his reason, we only use the magnitude portion of our data for RFI
etection. Additionally, we extend the e v aluation done by Kerrigan
t al. ( 2019 ) by considering how supervised RFI detection algorithms
eneralize to unseen classes of RFI, what we refer to as out-of-
istribution (OOD) RFI. 
Transfer learning (Tang, Scaife & Leahy 2019 ) or domain adap-

ation (Farahani et al. 2021 ) have been shown to be powerful tools
hen there are limited labelled data. Sadr et al. ( 2020 ) show that

t is possible to train a U-Net inspired architecture, called R-Net ,
n simulated data and then using a small sample of expert-labelled
ata to adapt the model’s domain from simulated to real world data.
o we ver, we find that R-Net does not offer significant impro v ements
 v er the standard U-Net, when e v aluating on real data without
ransfer learning, as shown in Section 5 . Similarly, Yang et al. ( 2020 )
ropose RFI-Net , a residual modification of U-Net that offers better
raining stability when using a significantly deeper network. 
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Generativ e models hav e also been used for RFI detection in the
ontext of radio astronomy. In a work by Vinsen, Foster & Dodson
 2019 ), it has been shown that generativ e adv ersarial networks
GANs) can be used for RFI detection. Ho we ver, this research is
imited in its e v aluation and does not offer a practical way to obtain
ixel-precise predictions of RFI. Finally, Vos et al. ( 2019 ) offer
 significantly different paradigm for RFI detection using GANs. 
ere, the authors propose a source-separation approach that uses 

wo separate generators to distinguish astronomical signals from 

FI. Ho we ver, this method requires significant supervision, as the 
odel needs access to the mixture as well as the separated RFI

nd astronomical sources during training. We find this requirement 
rohibitive, as to obtain these source separations for real data is
xtremely costly. We show that generative models can be used 
ithout the cost of supervision, by treating no v elty detection as a
ownstream task. 

.2 No v elty detection in radio astronomy 

achine learning-based no v elty and anomaly detection have gained 
ignificant attention in radio astronomy for a number of different use 
ases. Topics such as transient detection (Malanchev et al. 2021 ), 
he search for extraterrestrial intelligence (Zhang et al. 2018 ), and 
etecting outliers in radio galaxy morphology (Margalef-Bentabol 
t al. 2020 ) have been researched. 

No v elty detection in machine learning is typically done in a two-
tage process, where a model is first fitted to the in-lying classes and
hen a decision boundary is found in the learnt-representation space 
f the model. In a work by Villar et al. ( 2021 ), outlying extragalactic
ransients are detected using an isolation forest (Tony Liu, Ming 
ing & Zhou 2008 ), whereas Lochner & Bassett ( 2021 ) propose
sing the local outlier factor (Breunig et al. 2000 ) for detecting
nomalies in light curves or dynamic spectra. To the best of our
nowledge, there have been no attempts at applying these techniques 
o RFI detection in the context of radio astronomy. 

The main problem with directly applying latent-variable no v elty 
etection models to RFI detection is the resolution of the predic- 
ions. The models used for no v elty detection in radio astronomy
roduce a scalar output for a single data point (spectrogram, radio 
mage, etc.). This is problematic as RFI detection algorithms must 
roduce a Boolean mask of the pixel-precise regions of where 
FI is located in a given input. Therefore, we propose to use the
LN algorithm, an approach that combines both latent measures 
f difference and the pixel-precise reconstruction errors from a 
enerative autoencoding model (Mesarcik et al. 2022b ). This is 
n contrast to Harrison et al. ( 2019 ), where particular features are
xtracted from each spectrogram to determine the no v el differ-
nces in transmission power and frequency range. However, the 
ethod does not produce pixel-precise segmentation maps of the 

etected RFI. 

 M E T H O D  

n this work, we use NLN for RFI detection. This is moti v ated by
everal factors: (1) obtaining sufficient labels for supervised seg- 
entation of RFI has a significant o v erhead; (2) e xisting supervised

echniques o v erfit to flags from classical methods such as AOFlagger,
eading to suboptimal performance on unseen data; (3) the ever- 
hanging landscape of RFI requires continual labelling and training 
fforts to enable supervised approaches to capture new temporal and 
pectral RFI structures. 
We show that if the traditional RFI detection problem is inverted,
e can ef fecti vely address the supervised RFI detection issues. All
odels and code used in this work are publicly available. 1 

.1 Model definition and training 

 or some comple x visibility V ( υ, τ , b ) and the corresponding ground-
ruth mask for the interference G ( υ, τ , b ), the training objective for
upervised RFI detection can be formulated as follows: 

 sup = min 
θm 

H( m θm 
( V ( υ, τ, b)) , G ( υ, τ, b)) . (1) 

ere, m is a function with learnable parameters θm and H is
he entropy-based similarity between the model prediction and the 
round truth. This problem is well posed and has been used across
ultiple domains to ef fecti vely train classifiers. Ho we ver, it relies on

earning a model of the RFI using ground-truth labels, which are in
ractice hard to obtain. 
In this work, we train a model of everything other than the

nterference, so that we can perform RFI detection as a downstream
ask. This is done by first training a discriminative autoencoder, on
 × n -sized uncontaminated regions (also known as patches) of the
isibility, V n × n ( υ, τ , b ). We select these regions using the weak
abels generated by a classical method such as A OFlagger . 

First, we define the encoder f that maps from the visibility space
 

2 to a latent space L , such that 

z = f θf 
( V n ×n ( υ, τ, b)) , f : R 

2 → L . (2) 

ere, z is a low-dimensional projection of an n × n patch that
ontains no interference and θ f are the learnable parameters of the 
ncoder. Furthermore, we define the decoder g that maps back from
he low-dimensional projection to the visibility space, such that ̂ 

 n ×n ( υ, τ, b) = g θg 
( z ) , g : L → R 

2 , (3) 

here θg are the parameters of the decoder. We simultaneously train 
he encoder and decoder using the reconstruction loss, 

 recon = min 
θf ,θg 

H( V n ×n ( υ, τ, b) , ̂ V n ×n ( υ, τ, b)) . (4) 

e use mean square error (MSE) to train a standard autoencoder. 
ypically, MSE-based reconstruction losses produce blurry outputs, 
hich may affect the quality of the predicted RFI masks. The blur-

iness is a result of back-propagating the gradient from the average
ixel-wise error, which prohibits the autoencoder from producing 
igh-frequency details for given inputs. In order to counteract this 
roblem, we define a discriminator, d , that acts as a regularizer on
he decoder’s output. This discriminative loss is back-propagated 
hrough the decoder, such that it learns to produce not only low-
requency details, but also the discriminative features (Sri v astav a
t al. 2017 ). Furthermore, the discriminator enables the autoencoder 
o be used as a generative model (Larsen et al. 2016 ). The dis-
riminator maps from R 

2 to a classification on the interval [0, 1],
f fecti vely trying to determine whether the input is generated or
ampled from the original data set. In this case, the original data set
s the uncontaminated patches selected using the weak labels. The 
iscriminative loss is given by 

 disc = min 
θd 

E [ log ( d θd 
(( V n ×n ( υ, τ, b)))] 

+ E [ log (1 − d θd 
( ̂  V n ×n ( υ, τ, b)))] . (5) 
MNRAS 516, 5367–5378 (2022) 
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M

Figure 1. Block diagram of the training and inference procedures of NLN-based RFI detector. Here, we use a discriminative autoencoder as the backbone of 
the architecture. The top half of the figure shows the training procedure, whereas the bottom half illustrates how NLN is used for inference. The recombination 
of latent distances z k and nearest reconstructions ˆ V 

k ( υ, τ, b) is performed according to equation ( 6 ). 
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e train the discriminator simultaneously with the decoder, such
hat the total loss is L unsup = αL recon + (1 − α) L disc , where α is a
yper-parameter between 0 and 1 that determines how much of
n effect the discriminative and reconstruction losses have on the
raining, respectively. An illustration of the training procedure for
he discriminative autoencoder is shown in the top half of Fig. 1 . 

.2 NLN for RFI detection 

iven some trained latent-variable model such as the discriminative
utoencoder, g ( f ( V )), we need to formulate a measure of similarity
r difference between the learnt distribution of RFI-free patches and
hose that are unseen. In practice, several options exist such as pixel-
e vel dif ference (Akcay, Atapour-Abarghouei & Breckon 2019 ),
tructured-similarity measure (Bergmann et al. 2019b ), residual
easures (Schlegl et al. 2017 ), purely latent measures (Bergman,
ohen & Hoshen 2020 ), and many more. The most important factor
hen selecting a measure for RFI detection is the resolution of the
utput. F or e xample, using a purely latent measure would result in
he resolution of the output RFI masks to be fixed by the resolution
f each patch, as shown in Fig. 2 (e). Ho we v er, using a pix el-lev el
ifference may cause the predictions to be sensitive to noise. 
To counteract this problem, we propose using a distance function

hat utilizes both latent and pixel-wise measures of difference, namely
LN. NLN is a no v elty detection technique that works by performing
 nearest-neighbour lookup in the latent space of generative models.
t training time, it operates as a standard discriminative autoencoder,

raining on the aforementioned loss. During inference, a test sample
s given to the model, with the objective to determine which parts
if any) of the input sample are novel. A combination of two metrics
s used: the first measures the latent distance from the given test
ample to its nearest neighbours from the distribution of in-lying data,
s illustrated in Fig. 2 (e), and the other is the reconstruction error
etween the given sample and the reconstructions of all its neighbours
ound in the latent space. Figs 2 (b) and (c) demonstrate that when
he autoencoder is trained on only RFI-free data, it is capable of
NRAS 516, 5367–5378 (2022) 
nly reconstructing the non-novel astronomical signals and cannot
enerate RFI found in the input. In effect, the reconstruction error
hown in Fig. 2 (d) has a higher dynamic range than the input. For
ore details and analysis of the method, see Mesarcik et al. ( 2022b ).
We modify the original NLN-distance function such that the latent

istances are used as a coarse selection for the higher resolution pixel-
ased error. An illustration of this selection mechanism is shown in
ig. 2 (f). The modified NLN measure is the reconstruction error of
 test sample’s nearest neighbours multiplied by its latent-distance
ector, as given by 

 NLN = 

( 

1 

K 

K ∑ 

| V i,n ×n ( υ, τ, b) − g θg 

(
z k i 

) | 
) 

× D latent , (6) 

here k is the nearest neighbour of the i th sample in the latent
pace given by z . The nearest neighbours are selected through the
 -nearest-neighbours algorithm using the default implementation of
AISS (Johnson, Douze & Jegou 2021 ). Furthermore, D latent is the

hresholded mean latent-distance vector of the i th query patch and
ts k RFI-free neighbours, as given by 

 latent = 

{ 

1 , 
1 

K 

∑ K | z i − z k i | ≥ T 

0 , otherwise 
. (7) 

e treat both K and T as hyper-parameters of our algorithm and
etermine them experimentally across our data sets. In effect, the
atent-distance function offers a coarse resolution view of the RFI,
nd the reconstruction error offers a finer grained resolution. It must
e noted that the only additional o v erhead of NLN is that it requires
he representations of the training set to be stored. An illustration of
he inference mode of the NLN algorithm is shown in the bottom
alf of Fig. 1 . 

.3 Architectural considerations 

e use a strided convolutional architecture for the encoder, decoder,
nd discriminator. Both the encoder and decoder have the same
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Figure 2. Stages of NLN-based RFI detection on the 30th sample of the LOFAR data set. The white grid illustrates the re-composition of the 32 × 32 patches 
to their corresponding locations in the original spectrogram. Each subplot reflects a part of the modified NLN algorithm from equation ( 6 ). 
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Table 1. Attributes of each data set used for training and e v aluation. The 
low test-train-ratio is due to the use of weak labels generated from classical 
methods, which are not directly used in the NLN training. 

Data set 
No. of 

baselines 
No. of training 

samples 
No. of test 
samples % RFI 

HERA 28 420 140 2.76 
LOFAR 2775 7500 109 1.26 
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rchitecture except that the decoder uses transposed convolutions 
n place of the encoder’s convolutional layers. Furthermore, the 
iscriminator uses the same architecture as the encoder, except for 
he final layer, which is a linear layer with a sigmoid acti v ation for
he discriminator. 

Several parameters of the architecture are constrained by the 
hosen patch size and stride width. We find that a patch size of
2 × 32 generally exhibits the best performance, as shown in Fig. 8 ;
his limits both the depth and latent dimensionality of our networks. 
or this reason, the three networks have two convolutional layers 
ith 3 × 3 filters and a stride of 2. Each convolutional layer is

ollowed by a batch normalization layer and a dropout layer with a
ate of 5 per cent to regularize the network. Lastly, the convolutional
utput is projected to a specified latent dimensionality by a linear 
ayer. 

A base number of filters of 32 is used for the AE and is increased
r decreased on each subsequent layer by a factor of 2. We use ReLU
cti v ations for all models and they are trained for 100 epochs using
DAM (Kingma & Ba 2015 ) with a learning rate of 1 × 10 −4 . 

 DATA  SELEC TION  A N D  PRE-PROCESSING  

xisting machine learning-based approaches rely on significant 
mounts of labelled data for training and e v aluating the models. By
nverting the RFI detection problem, we do not need explicit training 
abels, but rather rely on the weak labels that typically come without
dditional cost from data archives such as the LOFAR LTA (van
aarlem et al. 2013 ). This means that we only need very few expert-

abelled examples for e v aluation of our model while training on a
arge data set as shown in Table 1 . 

We use two different data sets from two different telescopes to
 v aluate our work: simulated data from HERA (DeBoer et al. 2017 )
nd calibration data from the LOFAR LTA. We use AOFlagger-based 
eak labels for training all models shown in this work on both the
ERA and LOFAR data sets. For e v aluation with HERA, we use the
round truth supplied by the simulator, whereas for the LOFAR we
and-annotate a selection of baselines obtained from the archive. We 
ave made all data sets used in this work publicly available. 2 
MNRAS 516, 5367–5378 (2022) 
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.1 Simulated HERA data set 

he HERA simulator 3 generates complex spectrograms from a simu-
ated radio telescope. It uses models of diffuse sources, multiple types
f RFI emissions, and systematic models of the HERA telescope for
arameters such as antenna cross-coupling, bandpass effects, and
ore. Importantly for this work, the simulator gives operators a
ne-grained control o v er the generated RFI types as well as their
ixel-precise ground-truth maps. Thanks to these properties, we can
se the HERA data for the validation of our approach. 
In this work, we simulate a hexagonal array with 14.6 m between

ach station, as specified by the 19-element array (DeBoer et al.
017 ). To synthesize our data set, we create a 30 min observation
ith an integration time of 3.52 s and a bandwidth of 90 MHz

rom 105 to 195 MHz (with 512 frequency channels). The specific
ntegration interval is used to ensure that the resulting spectrograms
re square; this is done to simplify the arithmetic of creating and
econstructing the spectrograms from patches. Furthermore, we use
he default number of diffuse galactic emissions specified in Kerrigan
t al. ( 2019 ) for the H1C observation season from 2017 to 2018
nd we include additive noise at a temperature of 180 K in our
imulations. 

In the generation of our training set, we individually synthesize
ultiple RFI emissions based on the models specified in Kerri-

an et al. ( 2019 ). These being narrow-band continuous emissions
odelled satellite communication such as ORBCOM , broad-band

ransient emissions that imitate events such as lightning, as well as
arrow-band burst RFI based on ground communication. Addition-
lly, we include random single time–frequency blips . 

Using the hexagonal array, we simulate 28 baselines of both
uto and cross-correlations. We repeat this 20 times to obtain 560
omplex spectrograms to train and e v aluate our models with. This
pproach was deemed more appropriate than simulating a single
ong observation as performed in Kerrigan et al. ( 2019 ), as there is

ore diversity in the RFI landscape from multiple initializations of
he simulator. The simulated data have an RFI occupancy rate of
.76 per cent and is split into 75 per cent for training and 25 per cent
or testing, as reported in Table 1 . 

The simulated data are pre-processed before training and e v alu-
tion. For simplicity purposes, we only use the magnitude of the
omplex visibilities. To deal with the high dynamic range, we clip
he data in the range [ | μ − σ | , μ + 4 σ ] and take the natural log of
he clipped spectrograms. Finally, before training, we standardize
ur data between 0 and 1 to ensure that the gradients while training
o not explode or vanish. 

.2 LOFAR 

s previously mentioned, we use publicly available data from the
OFAR LTA (van Haarlem et al. 2013 ). Five measurements were

andomly selected from 2017 to 2018 for the e v aluation of our model.
e select calibration measurements that point at strong radio sources,

sing 51 stations in the band 120–190 MHz for 600 s. The precise
etails of the observations are available in Mesarcik et al. ( 2022 ). 
A common challenge in applying machine learning to radio

stronomy is the amount of data generated by observations. This
s especially problematic when training models with limited GPU
emory. F or e xample, the fiv e ra w measurement sets used in this
ork are 1.7 TB cumulatively in size. Therefore, in order to decrease
NRAS 516, 5367–5378 (2022) 
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he data size, we use only the magnitude of the first Stokes parameter
nd randomly sample 1500 baselines of each observation. This
f fecti vely reduces the data set size to ∼10 GB. 

For purposes of further reducing the training memory footprint
f the data and simplifying the arithmetic of reconstructing the
pectrograms from their respective patches, we first create approx-
mately square spectrograms. As there are 599 time samples per
bservation and 16 subbands per channel, we concatenate each
4 consecutive subbands together to form spectrograms of size
99 × 616. Additionally, we discard the first and last channels of
ach subband due to bandpass effects. Finally, we randomly crop the
esulting spectrograms to 512 × 512. This is done, as cropping gives
n equal representation of all frequency bands. 

For the e v aluation of the models on the LOFAR data set, we
andomly select 109 baselines for expert labelling. This is in line
ith the number of baselines used for e v aluation in the simulator-
ased setting. As noted in Kerrigan et al. ( 2019 ), and Sadr et al.
 2020 ), there are often discrepancies between the AOFlagger masks
nd those given by an expert, and this is highlighted in Fig. 3 . For
 alidation and e v aluation of this work, we treat the hand-annotated
xamples as the ground truth, as described in Section 5 . Furthermore,
e use the AOFlagger masks associated with the measurement sets

rom the LTA for training our models. 
In Table 1 , we report the percentage of RFI contamination and

he data set sizes. We ensured that the contamination is in line with
hat is reported in van Haarlem et al. ( 2013 ). Furthermore, as our
ethod does not rely on human-labelled examples to train, we only

equire a small number of expert-labelled examples to e v aluate the
erformance of our models. 
We pre-process the LOFAR data in a similar manner to the

imulated data. We first clip the data in the range [ | μ − σ | , μ +
0 σ ] and followed by the natural logarithm. We finally standardize
he data between 0 and 1 to ensure that the gradients while training
o not explode or vanish. 

 RESULTS  

e e v aluate the performance of NLN applied to RFI detection
xperimentally on both simulated and real data from HERA and
OFAR, respectively. Unlike previous works, we perform our e v alu-
tion in a two-step process, first by finding an appropriate AOFlagger
hreshold to generate the training annotations and then calculating
he respective performance of each model on the real ground truth.
o ensure the correctness of the e v aluation, we use the ground-truth
asks from the simulator in the test set for the HERA models and

uman-generated annotations for the testing of the LOFAR models. 

.1 Evaluation methodology 

ollo wing pre vious ef forts to e v aluate the performance of RFI
etection (Offringa et al. 2012 ; Akeret et al. 2017b ; Kerrigan et al.
019 ; Sadr et al. 2020 ), we use the three most common metrics: the
rea under the receiver operating characteristic (AUROC) score, area
nder precision–recall curve (AUPRC), and F1-score. The AUROC
etric e v aluates the ratio of true positive rate (TPR) and false positive

ate (FPR) across several thresholds. In this case, the TPR is the
raction of RFI that is correctly classified as RFI and the FPR is
he fraction of misclassified signals. The AUPRC metric gives the
atio of precision and recall when the model’s output is e v aluated
cross several thresholds. In this case, precision refers to the fraction
f correctly classified RFI across all RFI predictions, and the recall
s simply the TPR. Finally, the F1-score is the harmonic mean of

https://github.com/HERA-Team/hera_sim
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Figure 3. Spectrograms and their masks from the LOFAR data set with the highest o v erlap between AOFlagger and expert-labelled annotations (top row) and 
the lowest o v erlap (bottom row), where similarity is measured using the F1-score. 
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he precision and recall for a given threshold. For all e v aluations
cross all models in this work, the threshold is fixed to the maximum
btainable F1-score. 
In the class-imbalanced scenario of RFI detection, high AUROC 

cores imply that a model is ef fecti ve in classifying the majority
lass. This means that all non-RFI signals are detected as not RFI.
onversely, the AUPRC and F1-scores focus on the minority class, 
eaning that when AUPRC is high, the model is better at detecting
FI with a low RFI misdetection rate. Therefore, in order to maintain
onsistency with previous works’ evaluations and to give insight into 
 model’s performance on the both the majority and minority classes,
e e v aluate using both A UPRC and A UROC. 
We use the AOFlagger masks to train all models in this work. In

he case of LOFAR, we use the flags provided by the FLAG field of
he measurement sets obtained from the LTA. For the HERA data 
et, the optimal flagging strategy is determined experimentally. As 
here is no pre-specified strategy for the HERA telescope, we test the
ERA data set on all available strategies for several different base 

hresholds. We find that the bighorns -telescope strategy with a 
tarting threshold of 10 is optimal with respect to the joint maximum
f AOFlagger across AUROC, AUPRC, and F1-score as shown in 
ig. 4 . 
For comparison with existing work, we select the state-of-the- 

rt RFI detection models. As described in Section 2 , we e v aluate
ith supervised-segmentation algorithms, based on the U-Net (Ron- 
eberger et al. 2015 ) architecture. These being the magnitude-only 
-Net for RFI detection (Akeret et al. 2017b ; Kerrigan et al. 2019 )
s well as its residual adaptations, R-Net (Sadr et al. 2020 ) and RFI-
et (Yang et al. 2020 ). Additionally, we measure the AOFlagger
n both data sets and report its performance. We train and e v aluate
very model three times with a randomly initialized seed and report
he mean and standard deviation for each evaluation. 

For both data sets, we perform an independent coarse grid search
cross the hyper-parameters of NLN. These being patch size ( n ), the
umber of latent space dimensions ( L ), number of neighbours ( K ),
aximum latent-distance threshold ( T ), and discriminative training 
eight ( α). We determine the optimal hyper-parameters based on the

verage maximum of A UROC and A UPRC. For LOFAR and HERA,
e use 16 and 20 neighbours, respectively, and find a patch size of
2 × 32 to be optimal for both. Furthermore, the latent dimension
ize of 8 is used for HERA, whereas we find 32 dimensions to
e optimal for LOFAR. We threshold the latent-distance vector at 
ts 66th percentile for LOFAR and the 10th percentile for HERA.
inally, we find that the optimal discriminative hyper-parameter α is 
.6 for both the HERA and LOFAR data sets. For all other models,
e use all parameters specified by the authors other than the patch

ize, which we fix to 32 × 32 in order to keep comparison consistent.
The difference in the hyper-parameters between the data sets is 

ue to the increased complexity of the real LOFAR data relative
o the simulated HERA data. This complexity is due to stochastic
nstrumentation effects, ionospheric artefacts, increased dynamic 
ange, and many more. Therefore, the autoencoder requires a larger 
MNRAS 516, 5367–5378 (2022) 
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Figure 4. Performance of NLN, U-Net, and AOFlagger on the HERA data. Both U-Net and NLN are trained on the AOFlagger masks for a given starting 
threshold and e v aluated on the simulator ground truth. 

Table 2. Performance of RFI detection models on the simulated HERA data 
set when trained using the AOFlagger annotation at a threshold of 10 and 
e v aluated on the ground truth from the simulator. We do not report standard 
deviation of AOFlagger as it is deterministic. Best scores are shown in bold. 

Model AUROC AUPRC F1-score 

AOFlagger (Offringa et al. 2012 ) 0.9736 0.8799 0.8729 

U-Net 0.9746 ± 0.0009 0.8963 ± 0.0074 0.9015 ± 0.0074 

RFI-Net (Yang et al. 2020 ) 0.9728 ± 0.0007 0.8898 ± 0.0086 0.8950 ± 0.0068 

R-Net (Sadr et al. 2020 ) 0.9751 ± 0.0016 0.8456 ± 0.0134 0.8460 ± 0.0223 

NLN (ours) 0.9805 ± 0.0017 0.9265 ± 0.0117 0.9103 ± 0.0229 
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Figure 5. OOD RFI detection performance of the NLN, U-Net, and the 
A OFlagger . As the RFI is excluded in the training process of NLN, the 
method is unaffected by OOD effects. 
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atent dimensionality to better represent this increased complexity.
imilarly, an increased latent-distance threshold is used to mitigate

he ele v ated reconstruction error-based noise. 
Finally, to validate the suitability of the NLN algorithm for

o v elty-based RFI detection, we compare it against three commonly
sed no v elty detection techniques. In this case, we consider deep
 -nearest neighbours (DKNN; Bergman et al. 2020 ), autoencoding
odels with an L2 loss (Bergmann et al. 2019a ), and SSIM-based

oss (Bergmann et al. 2019b ). 

.2 HERA results 

n Fig. 4 , we illustrate the performance sensitivity of the magnitude-
ased U-Net and NLN when modifying the AOFlagger starting
hreshold for the bighorns strategy. It is clear that NLN is less
ensitive to changes in the validity of the training data, exhibiting
ittle variation relative to the AOFlagger-based masks. This is because
he model is not directly trained on the AOFlagger-based masks.
o we ver, U-Net’s performance is shown to be more dependent on

he accuracy of the AOFlagger masks, indicating that it indeed is
 v erfitting to the training labels. 
For low thresholds ( > 5), the training data are o v erflagged, mean-

ng that all RFI is flagged along with a large percentage of the
stronomical data. Conversely, for high thresholds ( < 10), the data
re underflagged, meaning that some RFI is not flagged. From this
ntuition, it is clear that the NLN algorithm is less sensitive to
 v erflagging, but its performance deteriorates when the training data
re underflagged. For the experiments using the simulated HERA
ata set in the remainder of this paper, we fix the AOFlagger threshold
o 10, as it gives optimal flagging performance. 

In Table 2 , we show the performance of NLN for RFI detection
elative to the current state of the art. It is clear that the NLN offers
NRAS 516, 5367–5378 (2022) 
uperior performance across all metrics demonstrating the success
f our approach to use clean data for training. 
In Fig. 5 , we demonstrate an interesting unintended consequence

f our work in the HERA setting. Here, we train each model on
he data set but excluding a particular type of RFI, then during
esting we expose the model to the unseen RFI type. This paradigm
f fecti vely e v aluates ho w well models generalize to OOD RFI. As
he training process of NLN excludes all RFI (OOD or not) from the
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Table 3. Performance of RFI detection models on the real LOFAR data set 
when trained using the AOFlagger annotations from the LTA and e v aluated 
on the expert-labelled ground truth. We do not report AOFlagger and DKNN 

standard deviations as they are deterministic. Best scores are shown in bold. 

Model AUROC AUPRC F1-score 

AOFlagger (Offringa et al. 2012 ) 0.7883 0.5716 0.5698 

U-Net 0.8017 ± 0.0058 0.5920 ± 0.0031 0.5876 0.0031 

RFI-Net (Yang et al. 2020 ) 0.8109 ± 0.0037 0.5991 ± 0.0038 0.5979 ± 0.0012 

R-Net (Sadr et al. 2020 ) 0.8301 ± 0.0084 0.5495 ± 0.0145 0.5286 ± 0.0195 

AE-L2 (Bergmann et al. 2019a ) 0.8397 ± 0.0019 0.3933 ± 0.0036 0.4491 ± 0.0007 

AE-SSIM (Bergmann et al. 2019b ) 0.7748 ± 0.0046 0.3913 ± 0.0186 0.4801 ± 0.0115 

DKNN (Bergman et al. 2020 ) 0.8285 0.0704 0.1528 

NLN (ours) 0.8622 ± 0.0006 0.6216 ± 0.0005 0.5114 ± 0.0004 
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Figure 6. AUPRC performance of each model when training on a percentage 
of the original LOFAR data set and e v aluating on the original LOFAR test 
data set. 
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raining set, it does not learn explicit models of the RFI; in effect,
ur method significantly outperforms both supervised and classical 
ethods across all metrics. This is also clearly demonstrated by the 

ariance across each experiment. 

.3 LOFAR results 

n Table 3 , we show the performance of NLN relative to the state
f the art on the LOFAR data set. Here, we see a similar trend
o the HERA-based results; NLN offers superior performance in 
erms of AUROC and AUPRC. Ho we ver, in terms of F1-score, RFI-
et offers best performance. The decrease in F1-score is due to the
LN algorithm yielding more false ne gativ es when thresholding all 
redictions with a single threshold. This is attributable to the large 
uctuations in power of the RFI in the LOFAR data set in combination 
ith the reconstruction-error term of the NLN RFI detector. When the 
FI po wer is lo w, the reconstruction error will be of a low amplitude
nd NLN will produce predictions with low power. In effect, when 
hese lo w-po wer predictions are thresholded using the same threshold 
s the high-power RFI (in this case one that maximizes F1-score),
he outputs have more false ne gativ es. This is in contrast with the
ERA data set, which has RFI with a consistently higher power level

han the astronomical and system-based signals. A possible solution 
o this is to predict a threshold on a per spectrogram or patch level;
o we ver, we consider this out of scope for this research. 
Furthermore, in the bottom half of Table 3 , we compare NLN with

ommonly used no v elty detection methods. Here, we see that NLN
ignificantly outperforms these methods on all metrics. We attribute 
he performance impro v ement to the combination of reconstruction 
rror and latent error. 

Additionally, to test the model’s reliance on data set size, we 
 v aluate each model on a percentage of the training data. We show
n Fig. 6 that NLN is less sensitive to reductions in training data
ize, performing almost uniformly even with large decreases in 
raining data size. Conversely, the supervised methods’ performance 
cales asymptotically with data set size, exhibiting significantly 
igher variance in their performance with smaller data set sizes. 
e associate the asymptotic scaling and increased variance with 

oth the supervised model’s larger capacity (due to residual and 
kip connections) as well as the diversity of the RFI landscape. An
llustration of these effects and a comparison between the models is
hown in Fig. 7 . 

To determine the sensitivity of the parameters of the NLN 

lgorithm, we perform a course grid search of its hyper-parameters. 
e search across the number of latent dimensions, patch size, and 

umber of neighbours as illustrated in Fig. 8 . In order to better
isualize the four-dimensional space, we plot cross-sections of the 
igh-dimensional landscape. First, we fix the number of neighbours 
o 16, as shown in Figs 8 (a)–(c). It can be seen that the optimal number
f latent dimensions is 32, with respect to the average maximum of
 UPRC and A UROC. We then set the optimal number of latent
imensions and plot the effect of varying the number of neighbours
n Figs 8 (d)–(f). Through this, we determine the optimal number of
eighbours to be 16 with respect to the average maximum AUROC
nd AUPRC. We conclude that NLN gives optimal performance 
hen the number of latent dimensions is 32, the patch size is 32 × 32,

nd the number of neighbours is 16. 
Finally, as a consequence of our RFI-free selection algorithm, 

e find that NLN requires 66 per cent less data in comparison to its
upervised counterparts. This amount is naturally data set dependent; 
o we v er, we e xpect that due to the reduced training data, there will
e less compute time and less power consumption while training. 

 C O N C L U S I O N S  

FI detection is an increasingly important research topic for radio 
stronomy. State-of-the-art solutions to the RFI problem have been 
ased on supervised machine learning techniques, which fail to 
ddress the prohibitive cost of labelling astronomical data. In this 
ork, we have documented how inverting the detection problem 

f fecti vely addresses this issue. We have shown that NLN provides
etter than state-of-the-art RFI detection without incurring the cost 
f labelling. 
Furthermore, we have demonstrated that our method better gener- 

lizes to unseen RFI, whereas current supervised approaches o v erfit
o weak-label-based RFI masks. As a consequence, we hypothesize 
hat our approach will better generalize to future generations of 
mitters, whereas existing supervised methods will have to be reg- 
larly retrained. Additionally, we find that due to our training patch
election process, we need less data for training, hence decreasing 
oth the training time and energy cost. 
This being said, there is suf ficient e vidence in several other

omains that suggests supervised-segmentation algorithms will 
utperform unsupervised approaches gi ven suf ficient high-quality 
abels. Ho we ver, in the current state of the RFI detection domain,
here there are still a few labelled data sets available and the high

ost of obtaining labelled data, we propose the inverted approach as
he way forward. 

We plan to further impro v e the performance of NLN applied to
FI detection through additional training priors. Contrastive self- 

upervised learning is a candidate solution, thanks to its ability to
enerate more robust latent representations that can be leveraged in 
he NLN algorithm. Furthermore, in order to impro v e the increased
MNRAS 516, 5367–5378 (2022) 
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Figure 7. The 95th sample from the testing set, its corresponding mask, and the predictions of each model. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/4/5367/6692884 by guest on 08 August 2023
NRAS 516, 5367–5378 (2022) 

art/stac2503_f7.eps


Learning to detect RFI without seeing it 5377 

Figure 8. Sensitivity of the hyper-parameters on the LOFAR-based performance of NLN when varying latent dimensionality, patch size, and number of 
neighbours. In order to visualize the four-dimensional space, the number of neighbours is fixed to 16 in the top row, whereas in the bottom row, we fix the 
number of latent dimensions to 32. The optimal parameters for the LOFAR data set are a patch size of 32 × 32, 32 latent dimensions, and 16 neighbours. 
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alse ne gativ e rate of NLN on the LOFAR data set, we suggest
ore research to be done into automated processing schemes to deal 
ith the high dynamic range of astronomical data when training 
nsupervised models. This could be additionally impro v ed using 
 hybrid approach through SumThreshold or trying to directly 
redict a threshold on a per patch basis. Finally, we plan to extend
his work to more general anomaly detection-based problems within 
adio astronomy. 
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