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a b s t r a c t

A general framework to devise portmanteau-type test statistics for a general class of
multivariate nonlinear time series models with vector martingale difference errors is
formulated. Based on this framework a suite of individual and mixed multivariate test
statistics is considered. Two applications are developed: single- and multiple-lag test
statistics. In each case, the resulting portmanteau test statistic is based on multivariate
residuals and multivariate squared residuals. Moreover, single- and multiple-lag mixed
multivariate portmanteau-type tests are introduced. These test statistics are designed
to detect different forms of inadequacies in the model residuals jointly. All proposed
tests take uncertainty due to model estimation properly into account. The asymptotic
null distribution of each test statistic follows from the asymptotic distribution of the
general portmanteau-type test statistic in a natural way. Some considerations are given
to the empirical size and power of six test statistics via a simulation study. All tests
have satisfactory size and power properties in finite samples. To demonstrate their
practical use, the proposed test statistics are applied to the residuals of a vector bivariate
nonlinear threshold model fitted to U.S. interest rates.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the first questions that one can ask in time series model evaluation : ‘‘Are the residuals white noise?’’ A large
number of portmanteau-type tests based on the autocorrelation or the autocovariance function are proposed for this
purpose; see the monographs by Li [12] and by Akashi et al. [1] and the references therein. These tests often assume
that the data generating process (DGP) under study is linear and univariate. An example is the well-known Ljung–Box
portmanteau test statistic. For multivariate (vector) linear autoregressive (VAR) models with independent and Gaussian
errors various improvements of the Hosking test and the Li-McLeod test have been considered; see, e.g., Mahdi and
McLeod [17]. In addition, several works consider testing residuals in VAR and VARMA models with uncorrelated but
nonindependent errors; see, e.g., Francq and Raïssi [6] and Maïnassara [18]. Testing for high-dimensional white noise is
another important problem which has recently been addressed; see, e.g., De Gooijer and Yuan [3] and Li et al. [14].

With the increasing interest in modeling and forecasting multivariate nonlinear time series there is also an urgent need
to develop portmanteau-type test statistics for a wide range of error specifications. Indeed, Ling and Li [16] proposed such
a test for multivariate DGPs with conditional nonlinearity in the mean and with multivariate autoregressive conditional
heteroskedastic (ARCH) errors (Section 4.3.2). Other multivariate tests, albeit designed for particular nonlinear DGPs, are
proposed by Wong and Li [22], Duchesne and Lalancette [5], and Chabot-Hallé and Duchesne [2] among others.
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047-259X/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/
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In this paper, we offer a general framework for constructing portmanteau-type test statistics in a multivariate nonlinear
time series context. Based on this framework, we consider both individual and mixed multivariate test statistics. For
the proposed individual multivariate portmanteau tests, we distinguish between single- and multiple-lag tests using
autocovariances of residuals and autocovariances of squared residuals. However, tests based on other types of residual
autocovariances (e.g., bicovariances or autocovariances of absolute residuals) may also be derived from the general testing
framework. The proposed mixed multivariate portmanteau tests, combine the individual single- and multiple-lag tests.
These latter tests are designed to detect different forms of inadequacies in the multivariate residuals jointly. All proposed
tests take uncertainty due to model parameter estimation properly into account, and under some regularity conditions
the tests are asymptotically chi-square distributed.

The rest of the paper is organized as follows. Section 2 outlines the multivariate nonlinear model. Section 3 presents
the general testing framework, the corresponding multivariate test statistic and its asymptotic null distribution. Section 4
considers various single- and multiple-lag multivariate test statistics, using the general testing framework of Section 3. In
Section 5, we propose two mixed multivariate portmanteau-type test statistics. Section 6 reports results of a simulation
study. Section 7 presents an illustrative example, using residuals of a vector bivariate nonlinear threshold model fitted to
U.S. interest rates. Some concluding remarks are given in Section 8. The Appendix contains a proof of a theoretical result.

Unless otherwise stated all limit results assume that the sample size n goes to ∞. The symbols
D

−→ and
P

−→

signify convergence in distribution and convergence in probability, respectively. The symbol op(1) denotes a multivariate
sequence of random variables converging to zero in probability. The superscript ⊤ denotes matrix or vector transposition.

e use boldface to denote (possibly random) vector or matrix variables.

. Preliminaries

Let {Yt , t ∈ Z} be a stationary and ergodic multivariate stochastic process, where Yt = (Y1,t , . . . , Ym,t )⊤, m ≥ 1. Assume
that the process is generated by the following multivariate nonlinear time series model, defined by

Yt = f(θ0|Ft−1) + εt,θ0 , (1)

where Ft−1 represents the information set generated by {Ys, s < t}, f = (f1, . . . , fm)⊤ is a known real-valued measurable
function with values in Rm, and θ0 denotes the true, but unknown, value of the parameter vector θ = (θ1, . . . , θK )⊤. It is
assumed that each fi ≡ fi(θ|Ft−1), i ∈ {1, . . . ,m}, denote a function of the previous Yt ’s and of θ. In addition, we denote
by ft−1(Yt; θ) the conditional density function of {Yt , t ∈ Z}. The following assumption is about the error process.

Assumption 1. The process {εt,θ0 = (ε1,t,θ0 , . . . , εm,t,θ0 )
⊤, t ∈ Z} is supposed to be an m-dimensional vector martingale

difference sequence (MDS) satisfying E(εt,θ0 |Ft−1) = 0, Cov(εt,θ0 , εt,θ0 |Ft−1) = Σ ε, Cov(εt,θ0 , εs,θ0 |Ft−1) = 0 (t ̸= s), and
Σ ε = (σε,ij)mi,j=1 is a positive definite matrix. The null hypothesis of model adequacy is

H0 : Cov(εt,θ0 , εt−ℓ,θ0 ) = 0, ℓ ∈ {1, 2, . . .}.

Remark 1. Unless otherwise stated, Assumption 1 is supposed to hold throughout the paper. The assumption implies
that εt,θ0 forms an uncorrelated but not necessarily independent sequence of random vectors with mean zero. If the mean
is non-zero, the asymptotic distribution of the test statistics discussed below will remain unchanged. The MDS structure
of the error vector εt,θ0 can be directly checked by the MDS-type tests proposed by Wang et al. [21].

Let Y1, . . . ,Yn be a sample time series of length n obtained from the stationary process {Yt}. Conditional on the
set of initial values {Y0,Y−1, . . .}, the log-likelihood function of the sample takes the form Ln(θ0) =

∑n
t=1 ℓt (Yt; θ0) =∑n

t=1 log ft−1(Yt; θ0). Assume that there exists a local maximizer θ̂n of θ0 such that θ̂n
P

−→ θ0. The following Assumption 2
is sufficient for the consistency and asymptotic normality of θ̂n.

Assumption 2. Let the following assumptions hold: (a) Θ ⊂ RK is an open set; (b) Model (1) is correctly specified; (c)
The conditional density function ft−1 :Θ×Rm

→ R is supposed to have continuous second-order derivatives with respect
to θ ∈ Θ almost surely (a.s.); (d) Denote Nn,c = {θ ∈ Θ : ∥

√
n(θ − θ0)∥ ≤ c} with ∥ · ∥ the Euclidean norm, and

Bn(θ) = −
∂2Ln(θ)
∂θ∂θT = −

[ n∑
t=1

∂2ℓt (Yt; θ)
∂θi∂θj

]K

i,j=1
,

there exists a nonrandom positive definite K × K matrix I(θ0), such that for all c > 0,

sup
θ∈Nn,c

1
n
Bn(θ) − I(θ0)

 P
−→ 0;

(e) The score (gradient) vector function Sn(θ) = ∂Ln(θ)/∂θ is asymptotically normal, i.e.,
1

√
n
Sn(θ0)

D
−→ I(θ0)1/2Z, Z ∼ NK (0, IK ),

where I is a K × K identity matrix.
K

2
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Assumption 2(a) is standard. It guarantees that the maximum likelihood estimator θ̂n (or an asymptotically equivalent
estimator) of θ0 is an interior point. Assumption 2(c) combined with Assumption 2(a) implies the applicability of the
mean-value theorem for the score vector function in any convex set contained in Θ . Assumption 2(d) gives a uniform
convergence in probability of the Hessian matrix Bn(θ) on special compact sets that contain θ0. Assumption 2(e) is needed
o obtain asymptotic normality of θ̂n. The correct model Assumption 2(b) is necessary for Proposition 1 and for testing
purposes.

Proposition 1 ([19]). Under Assumption 2, there exists a sequence of local maximizers θ̂n such that {
√
n(̂θn − θ0)}n∈N is

ounded in probability, and[1
n
Bn(θ0)

]−1 1
√
n
Sn(θ0) −

√
n(̂θn − θ0)

P
−→ 0. (2)

Furthermore, under Assumption 2 and using Proposition 1 it can be shown that
√
n(̂θn − θ0)

D
−→ NK (0, I(θ0)−1).

3. General portmanteau-type test statistic

Given θ̂n, we denote the d × 1 vector of sample residuals by ε̂t ,̂θn = (̂ε1,t ,̂θn , . . . , ε̂d,t ,̂θn )
⊤

= Yt − f̂t−1, where
t−1 ≡ f(̂θn|Ft−1), (d ∈ {1, . . . ,N + 1};N ≪ n,N ∈ Z+). We define a vector with unobserved errors and a corresponding
ector with residuals by, respectively,

Ut,θ0,L = [ε⊤

t,θ0 , . . . , ε
⊤

t−L,θ0 ]
⊤

∈ Rm(L+1), ut ,̂θn,L = [̂εT
t ,̂θn

, . . . , ε̂T
t−L,̂θn

]
⊤

∈ Rm(L+1).

To develop a general framework for testing the adequacy of model (1) based on a transformed vector of residuals,
we define a transformation function g(·) in Assumption 3. With different choices of g(·) different types of multivariate
portmanteau-type tests can be proposed.

Assumption 3. Let the following assumption hold.

g :Rm(N−1)
→ Rd is a continuously differentiable function such that E[g(Ut,θ0 )] = 0,

where Ut,θ0 ≡ Ut,θ0,N−1 is introduced as shorthand notation.

Assumptions 2 and 3 and the following Assumption 4 together are used to establish asymptotic distributions of the
proposed test statistics.

Assumption 4. Let the following assumptions hold: (a) For all c > 0

sup
θ∈Nn,c

1
n

n∑
t=1

∂g(Ut,θ)
∂θ⊤

− G
 P

−→ 0, sup
θ∈Nn,c

1
n

n∑
t=1

g(Ut,θ)g(Ut,θ)⊤ − ∆
 P

−→ 0,

nd

sup
θ∈Nn,c

1
n

n∑
t=1

g(Ut,θ)
(∂ℓt (Yt; θ)

∂θ

)⊤

− Ψ
 P

−→ 0,

here G = E[∂g(Ut,θ0 )/∂θ T
0 ] and Ψ = E[g(Ut,θ0 )

(
∂ℓt (Yt; θ)/∂θ

)⊤
] are d × K matrices, and ∆ = E[g(Ut,θ0 )g(Ut,θ0 )

⊤
].

hese matrices exist and are finite. Moreover, the d × d matrix ∆ is positive definite; (b)

1
√
n

[
Sn(θ0)⊤,

( n∑
t=1

g(Ut,θ0 )
)⊤

]⊤ D
−→ Σ 1/2Z, Z ∼ Nd+K (0, Id+K ),

where

Σ =

[
I(θ0) Ψ⊤

Ψ ∆

]
is a (d + K ) × (d + K ) positive definite matrix.

Assumption 4(a) imposes uniform convergence on special compact sets similar to that in Assumption 2(d). Both
assumptions define the matrixΣ in Assumption 4(b). The joint weak convergence in Assumption 3(b) can be verified using
an appropriate central limit theorem see, e.g., Sweeting [19]. Note, Assumption 2(e) is a special case of Assumption 3(b).

Now we can state a central limit theorem from which the limiting distributions of the proposed general portmanteau
test statistic can be obtained.
3
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heorem 1. Under Assumptions 2–4,

1
√
n

n∑
t=1

g(Ut ,̂θn )
D

−→ Nd(0,Ω ),

where Ω is a symmetric and positive definite (commonly abbreviated as SPD) matrix defined by

Ω =
[
GI(θ0)−1

: Id
] [

I(θ0) Ψ⊤

Ψ ∆

][
I(θ0)−1G⊤

Id

]
= GI(θ0)−1G⊤

+ ΨI(θ0)−1G⊤
+ GI(θ0)−1Ψ⊤

+ ∆. (3)

roof. The proof of Theorem 1 follows as a special case from the proof of the asymptotic distribution of a function of
ultivariate quantile residuals (Kalliovirta [11]) and, hence, has been omitted. However, the Appendix of this paper
ontains a similar proof for a special case of the transformation function g(·) introduced in Section 5. □

Let Ω̂n denote an estimator of Ω . Under the additional assumption that Ω̂n is invertible, a consistent estimator of Ω
s given by

Ω̂n = ĜnÎ
−1
n Ĝ⊤

n + Ψ̂ nÎ
−1
n Ĝ⊤

n + ĜnÎ
−1
n Ψ̂

⊤

n + ∆̂n, (4)

here

Ĝn =
1
n

n∑
t=1

∂g(ut ,̂θn )

∂θT , Ψ̂ n =
1
n

n∑
t=1

g(ut ,̂θn )
(∂ℓt (Yt; θ̂n)

∂θ

)⊤

, ∆̂n =
1
n

n∑
t=1

g(ut ,̂θn )g(ut ,̂θn )
⊤,

nd În is a consistent estimator of I(θ0). Consequently, under the null hypothesis of model adequacy, we have

1
√
n

n∑
t=1

g(Ut ,̂θn )
TΩ̂

−1
n

1
√
n

n∑
t=1

g(Ut ,̂θn )
D

−→ χ2(d).

his yields the following general portmanteau-type test statistic

Q =
1

n − m + 1

n∑
t=m

g(ut ,̂θn )
⊤ Ω̂

−1
n

n∑
t=m

g(ut ,̂θn )
H0
≈ χ2(d), (5)

where m and d are the dimensions defined in Assumption 3.

Remark 2. If {εt,θ0} is a strong white noise process, i.e., a sequence of independent and identically distributed (i.i.d.)
random vectors with mean zero and variance Σ ε, then ∆ij = Σ ε ⊗Σ ε, i, j ∈ {1, . . . , d}, where ⊗ denotes the Kronecker
product. In this case (4) can be simplified, since ∆ ≡ (∆ij)di,j=1 = Id ⊗ Σ ε ⊗ Σ ε.

Remark 3. Note, Ω is SPD which ensures that Ω̂n is invertible for large sample sizes. However, there are cases where
Ω is not invertible. For this reason several authors have proposed portmanteau test statistics using a weighted sum of
independent chi-squared random variables; see, e.g., Francq and Raïssi [6] and Maïnassara [18]. Throughout Sections 4
and 5, it is implicitly assumed that all variants of Ω̂n are invertible.

4. Individual multivariate portmanteau tests

In this section we devise individual multiple-lag and single-lag portmanteau-type tests. The outcomes of single-lag
tests may give useful hints of the reasons of a potential model mis-specification. They can be used to complement the
information provided by, for instance, the matrix sample auto- and cross-correlation function. Moreover, considering
single-lag tests has the advantage to reduce the dimension of the process used to build the tests. Multiple-lag portmanteau
tests may not have good power when the value of m is large. Also, it is well known that some widely used multivariate
multiple-lag tests are sensitive to mis-specifications in the conditional variance.

In Sections 4.1–4.4, we devise portmanteau-type test statistics based on the lag-ℓ sample autocovariances of residuals
{̂εi,t ,̂θn}

m
i=1 and the lag-ℓ sample autocovariance of squared residuals {̂ε 2

i,t ,̂θn
}
m
i=1. To distinguish between both cases, we

introduce the superscripts (1) and (2) in the notations when appropriate.

4.1. Multiple-lag test based on autocovariances of residuals

The null hypothesis for testing multiple-lag residual autocovariances is given by

H(1)
: Cov(ε , ε ) = 0, i, j ∈ {1, . . . ,m}, all t, and ℓ > 0. (6)
0 i,t,θ0 j,t−ℓ,θ0

4
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he proposed test is based on the lag-ℓ autocovariances

c(1)
ij,̂θn

(ℓ) =
1

n − ℓ

n∑
t=ℓ+1

ε̂i,t ,̂θn ε̂j,t−ℓ,̂θn
, i, j ∈ {1, . . . ,m}, ℓ ∈ {1, . . . , K1}, K1 ≪ n. (7)

For stationary time series, c(1)
ij,̂θn

(ℓ) is a natural estimator of Cov(εi,t,θ0 , εj,t−ℓ,θ0 ). Given c (1)
ij,̂θn

(ℓ), we define the corresponding

residual autocovariance matrix as C (1)
θ̂n
(ℓ) =

(
c(1)
ij,̂θn

(ℓ)
)m
i,j=1. Furthermore, we denote the m2K1 × 1 vector of residual

autocovariances by c (1)
θ̂n

=
(
c(1)⊤

θ̂n
(1), . . . , c(1)⊤

θ̂n
(K1)

)T, where c (1)
θ̂n

(ℓ) = vec(C (1)
θ̂n

(ℓ)) with ‘‘vec’’ denoting the column wise
vectorization of a matrix.

Let Ut,θ ≡ Ut,θ,K1 and ut,θ ≡ ut,θ,K1 . Define the continuously differentiable transformation function g (1)
:Rm(K1+1)

→

Rm2K1 as

g (1)(ut,θ) = vec[εt,θε
⊤

t−1,θ, . . . , εt,θε
⊤

t−K1,θ]. (8)

Then E[g (1)(Ut,θ0 )] = 0. Since the limiting distribution of g (1)(ut,θ) is multivariate standard normal, it is easy to see that
the matrix ∆ in (3) is given by the identity matrix Im2K1 with dimension d = m2K1.

Using the general testing framework of Section 3, the portmanteau-type test statistic for testing residual autocovari-
ances is given by

Q (1)
K1

=
1

n − K1

n∑
t=1+K1

g (1)(ut ,̂θn )
⊤ (Ω̂

(1)
n )−1

n∑
t=1+K1

g (1)(ut ,̂θn )
D

−→ χ2(m2K1), (9)

where

Ω̂
(1)
n = Ĝ (1)

n Î−1
n Ĝ (1)⊤

n + Ψ̂
(1)
n Î−1

n Ĝ (1)⊤
n + Ĝ (1)

n Î−1
n Ψ̂

(1)⊤
n + ∆̂

(1)
n , (10)

and where by replacing g(ut ,̂θn ) in (4) by g (1)(ut ,̂θn ), we have

Ĝ (1)
n =

1
n

n∑
t=1

∂g (1)(ut ,̂θn )

∂θT , Ψ̂
(1)
n =

1
n

n∑
t=1

g (1)(ut ,̂θn )
(∂ℓt (Yt; θ̂n)

∂θ

)⊤

, ∆̂
(1)
n =

1
n

n∑
t=1

g (1)(ut ,̂θn )g
(1)(ut ,̂θn )

⊤. (11)

hese statistics are the estimators of, respectively, G (1)
= E[∂g (1)(Ut,θ0 )/∂θ⊤

0 ], Ψ (1)
= E[g (1)(Ut,θ0 )

(
∂ℓt (Yt; θ)/∂θ

)⊤
], and

(1)
= E[g (1)(Ut,θ0 )g

(1)(Ut,θ0 )
⊤
]. The matrix Ω̂

(1)
n is a consistent estimator of the covariance matrix Ω defined in (3).

emark 4. Under the hypothesis that model (1) is correctly specified, and using a conditional least squares estimator θ̂n
f θ0, Chabot-Hallé and Duchesne [2, Theorem 1] showed that

√
nc (1)

θ̂n

D
−→ Nm2K1 (0,Ω

∗), (12)

where

Ω∗
=

[
J(U−1RU−1) : Im2K1

] [
UR−1U −UR−1J∗⊤

−J∗R−1U ∆m2K1

][
(U−1RU−1)J⊤

Im2K1

]
,

= J(U−1RU−1)J⊤ − J∗R−1U(U−1RU−1)J⊤ − J(U−1RU−1)UR−1J∗⊤
+ ∆m2K1 , (13)

and

J = [J⊤(1), . . . , J⊤(K1)]⊤, J(ℓ) = E
[
(Yt − ft−ℓ−1) ⊗

∂ft−1

∂θ⊤

]
,

J∗ = [J∗⊤(1), . . . , J∗T(K1)]⊤, J∗(ℓ) = −E
[
(Yt − ft−ℓ−1) ⊗ εt,θ0ε

⊤

t,θ0Σ
−1
ε

∂ft−1

∂θ⊤

]
,

∆m2K1 = (∆ij)
K1
i,j=1, ∆ij = E(εt−i,θ0ε

⊤

t−j,θ0 ⊗ εt,θ0ε
⊤

t,θ0 ),

U = E
(∂f⊤t−1

∂θ
Σ−1

ε

∂ft−1

∂θ⊤

)
, R = E

(∂f⊤t−1

∂θ
Σ−1

ε (Yt − ft−1) (Yt − ft−1)⊤Σ−1
ε

∂ft−1

∂θ⊤

)
.

When comparing (13) with (3) we see that the m2K1 ×K matrix J replaces G, −J∗R−1U replaces Ψ , (U−1RU−1) replaces
(θ0)−1, and ∆m2K1 replaces ∆. Furthermore, if {εt,θ0} is a strong white noise process, J∗ ≡ J and R ≡ U. In that case the
ight-hand equation in (13) simplifies to −JU−1J⊤ + ∆m2K1 .

emark 5. A level-adjusted multiple-lag portmanteau test statistic follows by replacing g (1)(ut,θ) in (9) by g̃ (1)(ut,θ) =

vec[
√
n/(n − 1)ε ε⊤ , . . . ,

√
n/(n − K )ε ε⊤

]. Following similar arguments as in Hosking [10], the resulting test
t,θ t−1,θ 1 t,θ t−K1,θ

5
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tatistic should have a small-sample distribution which is more nearly χ2(m2K1) than that of Q (1)
K1

. Following Zhou et al.
25], one may also change g (1)(ut,θ) to ˆ̂g (1)(ut,θ):ˆ̂g (1)(ut,θ) = vec[ε⊤

t,θεt−1,θ, . . . , ε
⊤

t,θεt−K1,θ] ∈ RK1 .

Then the resulting portmanteau test converges to χ2(K1), which has a much smaller degree of freedom than (9).

4.2. Single-lag test based on autocovariances of residuals

Clearly, (5) is a multiple-lag test statistic. It integrates several lags jointly. The test statistic does not provide insight in
the possible residual dependence at each individual lag ℓ. A single-lag test statistic can be obtained as a special case of
(9). To this end, let

Ĝ(1)
n,ℓ =

1
n

n∑
t=1

∂

∂θ⊤
vec(̂εt ,̂θn ε̂

⊤

t−ℓ,̂θn
), Ψ̂

(1)
n,ℓ =

1
n

n∑
t=1

vec(̂εt ,̂θn ε̂
⊤

t−ℓ,̂θn
)
(∂ℓt (Yt; θ̂n)

∂θ

)⊤

,

∆̂
(1)
n,ℓ =

1
n

n∑
t=1

vec(̂εt ,̂θn ε̂
⊤

t−ℓ,̂θn
) (vec(̂εt ,̂θn ε̂

⊤

t−ℓ,̂θn
))⊤,

be consistent estimators of, respectively, G (1)
ℓ = E[∂vec(εt,θ0ε

⊤

t−ℓ,θ0
)/∂θ⊤

], Ψ (1)
ℓ = E[vec(εt,θ0ε

⊤

t−ℓ,θ0
) (∂ℓt (Yt; θ)/∂θ)⊤],

and ∆ (1)
ℓ = E[vec(εt,θ0ε

⊤

t−ℓ,θ0
) (vec(εt,θ0ε

⊤

t−ℓ,θ0
))⊤], ℓ ∈ {1, . . . , K1}. Given this setup, we propose the following

level-adjusted single-lag test statistic

S(1)
n,ℓ =

n2

n − ℓ
c(1),⊤
θ̂n

(ℓ)
(
Ω̂

(1)
n,ℓ

)−1c(1)
θ̂n
(ℓ), ℓ ∈ {1, . . . , K1}, (14)

here

Ω̂
(1)
n,ℓ = Ĝ(1)

n,ℓÎ
−1
n Ĝ (1)⊤

n,ℓ + Ψ̂
(1)
n,ℓÎ

−1
n Ĝ (1)⊤

n,ℓ + Ĝ(1)
n,ℓÎ

−1
n Ψ̂

(1)⊤
n,ℓ + ∆̂

(1)
n,ℓ. (15)

nder the null hypothesis H (1,s)
0 : Cov(εt,θ0 , εt−ℓ,θ0 ) = 0, and assuming model (1) is correctly specified, it follows that

S (1)
n,ℓ

D
−→ χ2(m2).

4.3. Multiple-lag test based on autocovariances of squared residuals

4.3.1. General case
The null hypothesis for testing multiple-lag squared residual autocovariances is given by

H (2)
0 : Cov(ε2

i,t,θ0 , ε
2
j,t−ℓ,θ0

) = 0, i, j ∈ {1, . . . ,m}, all t, and ℓ > 0. (16)

Now consider an ARCH error process εt,θ0 = ηth
1/2
t,θ0

where ht,θ0 = α0 +
∑r

i=1 αiε
2
t−i (α0 > 0, αi ≥ 0, i ∈ {1, . . . , r},

θ0 = (α0, α1, . . . , αr ) and {ηt} is a sequence of i.i.d. random variables with mean zero and variance one. Let θ̂n, ε̂2
t ,̂θn

and

t ,̂θn be the corresponding definitions of θ0, ε2
t,θ0

and ht,θ0 . Then it can be shown that ε̂θn
=

∑
t ε̂

2
t ,̂θn

/̂ht ,̂θn converges to
ne in probability. Hence, the proposed test is based on the autocovariance-type statistic

c (2)
ij,̂θn

(ℓ) =
1

n − ℓ

n∑
t=ℓ+1

(̂ε 2
i,t ,̂θn

− 1) (̂ε 2
j,t−ℓ,̂θn

− 1),

=
1

n − ℓ

n∑
t=ℓ+1

(̂ηi,t ,̂θn − 1) (̂ηj,t−ℓ,̂θn
− 1), i, j ∈ {1, . . . ,m}, ℓ ∈ {1, . . . , K2}, K2 ≪ n, (17)

where η̂i,t ,̂θn ≡ ε̂ 2
i,t ,̂θn

, i = 1, . . . ,m. We define the corresponding residual autocovariance matrix as C (2)
θ̂n

(ℓ) =
(
c (2)
ij,̂θn

(ℓ)
)m
i,j=1.

Furthermore, let η̂t ,̂θn = (̂η1,t ,̂θn , . . . , η̂m,t ,̂θn )
⊤ and c (2)

θ̂n
=

(
c (2)T

θ̂n
(1), . . . , c (2)T

θ̂n
(K2)

)⊤, where c (2)
θ̂n

(ℓ) = vec(C (2)
θ̂n

(ℓ)).
Let Ut,θ ≡ Ut,θ,K2 and ut,θ ≡ ut,θ,K2 . Define the continuously differentiable transformation function g (2)

:Rm(K2+1)
→

m2K2 as

g (2)(ut,θ) = vec[wt,θv⊤

t−1,θ, . . . ,wt,θv⊤

t−K2,θ], (18)

where wt,θ = [ε2
1,t,θ − 1, . . . , ε2

m,t,θ − 1]⊤ and vt−ℓ,θ = [ε2
1,t−ℓ,θ − 1, . . . , ε2

m,t−ℓ,θ − 1]⊤, ℓ ∈ {1, . . . , K2}. Note that
E[g (2)(U )] = 0.
t,θ0

6
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Using the general testing framework of Section 3, we propose the following multiple-lag portmanteau-type test statistic
for testing squared residual autocovariances

Q (2)
K2

=
1

n − K2

n∑
t=1+K2

g (2)(ut ,̂θn )
⊤ (Ω̂

(2)
n )−1

n∑
t=1+K2

g (2)(ut ,̂θn )
D

−→ χ2(m2K2), (19)

here Ω̂
(2)
n has the same structure as Ω̂n in (4) but with g(ut ,̂θn ) replaced by g (2)(ut ,̂θn ). Thus,

Ĝ (2)
n =

1
n

n∑
t=1

∂g (2)(ut ,̂θn )

∂θ⊤
, Ψ̂

(2)
n =

1
n

n∑
t=1

g (2)(ut ,̂θn )
(∂ℓt (Yt; θ̂n)

∂θ

)⊤

, ∆̂
(2)
n =

1
n

n∑
t=1

g (2)(ut ,̂θn )g
(2)(ut ,̂θn )

⊤. (20)

hese statistics are consistent estimators of, respectively, G (2)
= E[∂g (2)(Ut,θ0 )/∂θ⊤

0 ], Ψ (2)
=

[g (2)(Ut,θ0 ) (∂ℓt (Yt; θ)/∂θ)⊤], and ∆ (2)
= E[g (2)(Ut,θ0 ) g

(2)(Ut,θ0 )
⊤
]. Since the limiting distribution of g (2)(ut,θ) is

m2K2 (0, Im2K2 ), it is easy to show that ∆ = E[g (2)(Ut,θ0 ) g
(2)(Ut,θ0 )

⊤
] = Im2 ⊗ (4IK2 + 11⊤), where 1 is a K2 × 1 vector

ith all elements equal to 1. The sth row of the m2K2 × K matrix G (2) is given by 2E[(ε2
i,t−s,θ0

− 1)εj,t,θ0 (∂εj,t,θ0/∂θ⊤) +

ε2
j,t−s,θ0

− 1)εi,t,θ0 (∂εi,t−s,θ0/∂θ⊤)].

emark 6. As an alternative to (19), ARCH effects can also be tested using cross-correlations of powers of residuals; see,
.g., Section 8.4 of Francq and Zakoïan [7].

.3.2. Special case
It is interesting to apply the general testing framework to a special case of (1). Specifically, consider a nonlinear

ultivariate time series model with m-dimensional conditional mean function and m-dimensional ARCH errors, i.e., Yt =

µt + εt,θ0 , εt,θ0 = V1/2
t ηt,θ0 , where µt = E(Yt |Ft−1), Vt = Var(Yt |Ft−1) and V1/2

t denotes the (positive) square root of Vt .
Assume that {ηt,θ0 = (η1,t , . . . , ηm,t )⊤} is a sequence of i.i.d. random vectors with mean 0 and covariance matrix Im, and
ηt is independent of {Yt−ℓ, ℓ ≥ 1} for all t . Furthermore, assume that µt and Vt have continuous second-order derivatives
with respect to θ0 a.s., and that the stationarity, invertibility and identifiability conditions hold for µt and an identifiability
condition holds for Vt . Using the notations and definitions introduced in Section 2, let

A ≡ E
[( 1

√
n
Sn(θ0)

) ( 1
√
n
Sn(θ0)

)⊤]
, B ≡ E[Bn(θ0)], X = [X(1), . . . ,X(M)]⊤

ith X(ℓ) = E[(∂Vt/∂θ) vec{V−1
t (ε⊤

t−ℓ,θV
−1
t−ℓεt−ℓ,θ − 1)}], ℓ ∈ {1, . . . ,M}. The null hypothesis of interest is given by

H0 : Cov(ηi,t,θ0 , ηj,t−ℓ,θ0 ) = 0 i, j ∈ {1, . . . ,m}, all t , and ℓ > 0. Suppose the corresponding test statistic is based on the
lag-ℓ residual autocovariance-type statistic ĉθn (ℓ) = (n − ℓ)−1 ∑n

t=ℓ+1 (̂η
⊤

t η̂t − 1)(̂η⊤

t−ℓ̂ηt−ℓ − 1), ℓ ∈ {1, . . . ,M}, M ≪ n.
ing and Li [16] showed that the asymptotic joint distribution of

√
n(̂θn − θ0) and

√
nĉθn

=
√
n(ĉθn (1), . . . , ĉθn (M))⊤, is

ormal with mean 0 and covariance matrix[
B−1AB−1 κB−1X⊤/2
κXB−1/2 κ2IM

]
,

here κ = E[η2
i,t (η

⊤
t ηt −1)] = E[η4

i,t −1], i ∈ {1, . . . ,m}. From these results it can be shown that
√
nĉθn

D
−→ NM (0, κ2Ω ),

here Ω = IM − X(κB−1
− B−1AB−1)X⊤/κ2 while the corresponding multiple-lag test statistic is asymptotically χ2

M
istributed if the model is correct. Remark 7 shows how this test relates to the results in Section 3.

emark 7. Let Ut,θ0 = [η⊤
t ηt − 1, . . . , η⊤

t−Mηt−M − 1]⊤ ∈ RM+1. In addition, we define the continuously differential
ransformation function g :RM+1

→ RM as

g(ut,θ) = [w⊤

t,θvt−1,θ, . . . ,w⊤

t,θvt−M,θ], (21)

here wt,θ = [η1,t − 1, . . . , ηm,t − 1]⊤ and vt−ℓ,θ = [η1,t−ℓ − 1, . . . , ηm,t−ℓ − 1]⊤, ℓ ∈ {1, . . . ,M}. Then, under
Assumptions 2–4, the multiple-lag portmanteau test statistic for testing multivariate ARCH residuals is given by

QM =
1

n − M

n∑
t=1+M

g(ut ,̂θn )
⊤ Ω̂

−1
n

n∑
t=1+M

g(ut ,̂θn )
D

−→ χ2(M), (22)

here

Ω̂n =
[
−X̂n : IM

] [
B̂−1
n ÂnB̂−1

n κ̂nB̂−1
n X̂⊤

n /2

κ̂nX̂nB̂−1
n /2 κ̂ 2

n IM

][
−X̂⊤

n

IM

]
= X̂nB̂−1

n ÂnB̂−1
n X̂⊤

n − κ̂nX̂nB̂−1
n X̂⊤

n + κ̂ 2
n IM . (23)

Here Ân, B̂n, and X̂n are consistent estimators of A, B, and X, respectively. The constant κ̂n = n−1 ∑n
t=1 (̂η

⊤

t η̂t − 1)2 is
consistent estimator of κ . When comparing (23) with (4) we see that κ̂ 2I replaces ∆̂ , B̂−1Â B̂−1 replaces Î−1, −X̂
n M n n n n n n

7
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r
r

4

(

w

w

eplaces Ĝn, and κ̂nX̂nB̂−1
n /2 replaces Ψ̂ nÎ

−1
n . If {ηt , t ∈ Z} follows a multivariate normal distribution, B̂−1

n ÂnB̂−1
n can be

eplaced by B̂−1
n or Â−1

n .

.4. Single-lag test based on autocovariances of squared residuals

Similar to the single-lag test of Section 4.2, a one-lag test statistic based on squared residuals can be obtained from
5). In particular, for a fixed lag ℓ the level-adjusted single-lag test statistic is given by

S (2)
n,ℓ =

n2

n − ℓ
c (2)⊤

θ̂n
(ℓ)

(
Ω̂

(2)
n,ℓ

)−1c (2)
θ̂n
(ℓ), (24)

here

Ω̂
(2)
n,ℓ = Ĝ (2)

n,ℓÎ
−1
n Ĝ (2)⊤

n,ℓ + Ψ̂
(2)
n,ℓÎ

−1
n Ĝ (2)T

n,ℓ + Ĝ (2)
n,ℓÎ

−1
n Ψ̂

(2)⊤
n,ℓ + ∆̂

(2)
n,ℓ, (25)

with

Ĝ (2)
n,ℓ =

1
n

n∑
t=1

∂

∂θT vec(̂ηt ,̂θn η̂
⊤

t−ℓ,̂θn
), Ψ̂

(2)
n,ℓ =

1
n

n∑
t=1

vec(̂ηt ,̂θn η̂
⊤

t−ℓ,̂θn
)
(∂ℓt (Yt; θ̂n)

∂θ

)⊤

,

∆̂
(2)
n,ℓ =

1
n

n∑
t=1

vec
(̂
ηt ,̂θn η̂

T
t−ℓ,̂θn

) (
vec(̂ηt ,̂θn η̂

T
t−ℓ,̂θn

)
)T

.

The statistics Ĝ (2)
n,ℓ , Ψ̂

(2)
n,ℓ and ∆̂

(2)
n,ℓ are consistent estimators of, respectively, G (2)

ℓ = E[∂vec(ηt,θ0η
⊤

t−ℓ,θ0
)/∂θ⊤

], Ψ (2)
ℓ =

E[vec(ηt,θ0η
⊤

t−ℓ,θ0
) (∂ℓt (Yt; θ)/∂θ)⊤], and ∆ (2)

ℓ = E[vec(ηt,θ0η
⊤

t−ℓ,θ0
) (vec(ηt,θ0η

⊤

t−ℓ,θ0
))⊤], ℓ ∈ {1, . . . , K2}. If the null

hypothesis H (2,s)
0 : Cov(ε2

t,θ0
, ε2

t−ℓ,θ0
) = 0 is satisfied and model (1) is correctly specified, it follows that S (2)

n,ℓ
D

−→ χ2(m2).

Remark 8. Using the general testing framework of Section 3, the tests constructed in Sections 4.3 and 4.4 can be extended
to powers of residuals. However, for the case of absolute residuals the so-called quasi-maximum likelihood approach is
recommended for estimating model (1) with i.i.d. (non-Gaussian) errors εt,θ0 ; see, e.g., Li and Li [15] and Zhu [26].

5. Mixed multivariate portmanteau tests

For univariate ARMA-GARCH models, mixed portmanteau test statistics have been proposed by Wong and Ling [23],
and Zhu [26]. Also, for a univariate nonlinear conditional mean and conditional variance model, Li [13] utilized different
forms of autocorrelations to devise portmanteau test statistics. In this section, we combine the individual multiple- and
single-lag test statistics of Sections 4.1 and 4.3, respectively, and construct mixed multivariate portmanteau-type tests
based on residual autocovariances and squared residual autocovariances. To distinguish the mixed-type tests from the
individual tests of Section 4, we introduce the superscript (1,2) in the notations when appropriate.

5.1. Mixed multiple-lag test

Let Ut,θ ≡ Ut,θ,K1+K2 and ut,θ ≡ ut,θ,K1+K2 . For a fixed integer M ≡ K1 + K2, define the continuously differentiable
transformation function g :Rm(M+1)

→ Rm2M as

g(ut,θ) = [g (1)(ut,θ)⊤, g (2)(ut,θ)⊤ ]
⊤, (26)

where g (1)(ut,θ) is given by (8) and g (2)(ut,θ) by (18). Note that E[g(Ut,θ0 )] = 0. The null hypothesis for testing mixed
multiple-lag residual model inadequacies is given by

H (1,2)
0 : Cov(εi,t,θ0 , ε

2
j,t−ℓ,θ0

) = 0, i, j ∈ {1, . . . ,m}, all t, and ℓ > 0. (27)

Assume without loss of generality that {εt,θ0}
i.i.d.
∼ NM (0, IM ). Then the joint distribution of g (1)(ut ,̂θn ) and g (2)(ut ,̂θn ) is

given by the following theorem.

Theorem 2. Under Assumptions 2–4,
1

√
n

[
g (1)(ut ,̂θn )

⊤, g (2)(ut ,̂θn )
⊤

]⊤ D
−→ Nm2M (0, PΩ (1,2)P⊤),

here the m2M × (m2M + K ) block matrix P and the (m2M + K ) × (m2M + K ) block matrix Ω (1,2) are given by

P =

[
Im2K1 0m2K1×m2K2 G(1)I(θ0)−1

0m2K2×m2K1 Im2K2 G(2)I(θ0)−1

]
, Ω (1,2)

=

⎡⎢⎣ Im2K1 0m2K1×m2K2 Ψ (1)

0m2K2×m2K1 Im2K2 Ψ (2)

(1)T (2)T

⎤⎥⎦ , (28)
Ψ Ψ I(θ0)
8



J.G. De Gooijer Journal of Multivariate Analysis 195 (2023) 105157

a
i

P

d
F

R
T

S
Ω

s

T
o

nd where the m2K1 × K matrices G(1) and Ψ (1) are defined in Section 4.1, the m2K2 × K matrices G(2) and Ψ (2) are defined
n Section 4.3.1, and I(θ0) is defined in Section 2.

roof. See Appendix. □

The ith, m2Ki × m2Ki principal diagonal matrix Ω (1,2)
i,i of PΩ (1,2)P⊤ is given by

Ω (1,2)
i,i = G (i)I(θ0)−1G (i)T

+ Ψ (i)I(θ0)−1G (i)⊤
+ G (i)I(θ0)−1Ψ (i)⊤

+ Im2Ki , i ∈ {1, 2}. (29)

We see that for i ∈ {1, 2}, (29) is a special case of the SPD matrix (3). It is easy to see that the upper off-diagonal matrix of
PΩ (1,2)P⊤ is given byΩ (1,2)

1,2 = G(1)I(θ0)−1G (2)T
+Ψ (1)I(θ0)−1G (2)T

+G(1)I(θ0)−1Ψ (2)⊤, andΩ (1,2)
2,1 = (Ω (1,2)

1,2 )⊤ is the lower
off-diagonal matrix. But Ω (1,2)

1,2 and Ω (1,2)
2,1 are not positive definite matrices, and hence PΩ (1,2)P⊤ is not (semi) positive

efinite. However, from Higham [9] we know that the nearest symmetric positive semidefinite matrix in the sense of the
robenius norm to an arbitrary real matrix A is (B + H)/2 where H is the symmetric polar factor of B = (A + A⊤)/2.

This result has been implemented in the MATLAB code nearestSPD written by D’Errico [4]. The code is able to convert
PΩ (1,2)P⊤ into something that is indeed SPD. We denote the consistent estimator of the resulting SPD matrix by Ω̂

∗,(1,2)
.

Let P̂ be a consistent estimator of P. Then, from Theorem 2, we have the mixed multiple-lag multivariate portmanteau-
type test statistic

Q (1,2)
M =

[ 1
n − K1

n∑
t=1+K1

g (1)(ut ,̂θn )
⊤,

1
n − K2

n∑
t=1+K2

g (2)(ut ,̂θn )
⊤

]⊤

(̂PΩ̂ ∗,(1,2)̂P⊤)−1

×

[ 1
n − K1

n∑
t=1+K1

g (1)(ut ,̂θn )
⊤,

1
n − K2

n∑
t=1+K2

g (2)(ut ,̂θn )
⊤

]
D

−→ χ2(m2(K1 + K2)). (30)

emark 9. Consider the case K2 = 0, i.e., only residual autocovariances are used for testing the adequacy of model (1).
he matrix P in (28) becomes P = [Im2K1 G(1)

], and Ω (1,2) is given by

Ω (1,2)
=

[
Im2K1 Ψ (1)

Ψ⊤ I(θ0)

]
.

o, PΩ (1,2)P⊤ reduces to expression (29) for i = 1. In this case, the sample analogue of PΩ (1,2)P⊤ is given by the matrixˆ (1)
n in (10). Similarly, in the case K1 = 0 the sample analogue of PΩ (1,2)P⊤ is given by Ω̂

(2)
n . So, Q (1,2)

M nests the test
tatistics Q(1)

M and Q (2)
M when M = K1 = K2.

Remark 10. Consider the case m = 1. Assume that K1 = K2 ≡ k. The matrices P and Ω (1,2) in (28) are given by

P =

[
Ik 0k×k G(1)I(θ0)−1

0k×k Ik G(2)I(θ0)−1

]
, Ω (1,2)

=

⎡⎢⎣ Ik 0k×k Ψ (1)

0k×k Ik Ψ (2)

Ψ⊤ Ψ (2)T I(θ0)

⎤⎥⎦ .

Here G (i) and Ψ (i) are two k × K matrices, i ∈ {1, 2}. These matrices are special cases of similar matrices defined in
Sections 4.1 and 4.3.1. For the construction of the mixed multiple-lag univariate test statistic, we define the continuously
differentiable transformation function g∗,(1,2)

: R2k+1
→ R2k as g∗, (1,2)(ut,θ) = [g∗, (1)(ut,θ)⊤, g∗, (2)(ut,θ)⊤]

⊤, where
g ∗,(1)(ut,θ) = [εt,θεt−1,θ, . . . , εt,θεt−k,θ]

⊤ and g∗, (2)(ut,θ) = [(ε2
t,θ − 1) (ε2

t−1,θ − 1), . . . , (ε2
t,θ − 1) (ε2

t−k,θ − 1)]⊤. Assume that
the null hypothesis H∗,(1,2)

0 : Cov(εt,θ0 , ε
2
t−ℓ,θ0

) = 0 is satisfied for all t and ℓ > 0. In addition, assume that the univariate
nonlinear model is correctly specified. Then, similar to (30), the mixed multiple-lag univariate portmanteau-type test
statistic is given by

Q∗, (1,2)
k =

[ 1
n − k

n∑
t=1+k

g∗, (1)(ut ,̂θn )
⊤,

1
n − k

n∑
t=1+k

g∗, (2)(ut ,̂θn )
⊤

]⊤

(̂PΩ̂ (1,2)̂P⊤)−1

×

[ 1
n − k

n∑
t=1+k

g∗, (1)(ut ,̂θn )
⊤,

1
n − k

n∑
t=1+k

g∗, (2)(ut ,̂θn )
⊤

]
D

−→ χ2(2k). (31)

his test statistic can be viewed as a generalized version of a test proposed by Li [13, Sect. 3.3] used for diagnostic checking
f univariate nonlinear DGPs with conditional mean function and ARCH errors.
9
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Table 1
Empirical sizes (in percentages) of single-lag portmanteau-type test statistics at the nominal significance levels α = 0.05
and α = 0.10 using DGP-0 with Gaussian errors, ARCH errors and weak WN errors.
n ℓ Gaussian errors ARCH Weak WN Gaussian errors ARCH Weak WN

S(1)
n,ℓ S(2)

n,ℓ S(1,2)
n,ℓ S(1)

n,ℓ S(1)
n,ℓ S(1)

n,ℓ S(2)
n,ℓ S(1,2)

n,ℓ S(1)
n,ℓ S(1)

n,ℓ

500 1 6.6 5.9 7.7 6.5 7.1 12.7 11.6 13.8 12.4 12.9
2 5.7. 5.6 6.1 5.3 4.8 10.8 10.6 11.4 10.9 10.1
3 5.3 5.7 5.8 5.3 4.8 10.6 10.9 10.9 10.5 10.1
4 5.2 5.6 5.4 4.8 4.9 10.3 10.8 10.6 10.0 9.7
5 5.2 5.9 5.4 4.5 4.8 10.4 11.2 11.1 9.9 9.9

1000 1 5.8 6.3 7.1 5.2 6.2 10.9 11.6 12.8 11.1 11.6
2 4.9 5.7 5.7 4.9 5.2 10.0 11.5 11.1 10.2 10.4
3 5.1 5.9 5.5 5.5 5.2 10.1 10.7 10.9 10.9 10.6
4 5.0 6.3 6.2 5.2 5.1 10.0 11.5 11.6 10.4 9.9
5 5.4 6.0 5.7 5.2 4.8 10.6 11.2 11.0 10.3 10.1

5.2. Mixed single-lag test

Similar to the single-lag test statistics S(1)n,ℓ and S (2)
n,ℓ , a mixed single-lag test statistic may be derived. In particular, the

mixed single-lag test statistic S (1,2)
n,ℓ is given by

S (1,2)
n,ℓ =

1
n

[
c (1)T

θ̂n
(ℓ), c (2)T

θ̂n
(ℓ)

]⊤
(
PℓΩ

(1,2)
ℓ P̂⊤

ℓ

)−1[
c (1)T

θ̂n
(ℓ), c (2)T

θ̂n
(ℓ)

]
, (32)

here

Pℓ =

[
Im2 0m2×m2 G(1)

ℓ I(θ0)−1

0m2×m2 Im2 G(2)
ℓ I(θ0)−1

]
, Ω (1,2)

ℓ =

⎡⎢⎣ Im2 0m2×m2 Ψ (1)
ℓ

0m2×m2 Im2 Ψ (2)
ℓ

Ψ (1)T
ℓ Ψ (2)T

ℓ I(θ0)

⎤⎥⎦ .

On replacing G(i)
ℓ , Ψ (i)

ℓ and I(θ0) by consistent estimators and assuming model (1) is correctly specified, it follows that
S (1,2)
n,ℓ

D
−→ χ2(2m2) under H(s,1,2)

0 : Cov[(εt,θ0 , ηt,θ0 ) (εt−ℓ,θ0 , ηt−ℓ,θ0 )
⊤
] = 0, ℓ ∈ {1, . . . ,M}.

6. Monte Carlo simulations

In this section, we examine the size and power of the set of multiple-lag test statistics {Q(1)
M ,Q (2)

M ,Q (1,2)
M } and the set

of single-lag test statistics {S(1)
n,ℓ, S (2)

n,ℓ , S (1,2)
n,ℓ } with K1 = K2 ≡ M ∈ {2, 3, 6, 10}, and ℓ ∈ {1, . . . , 5}, and for various sample

sizes n. For the empirical sizes reported in Tables 1 and 2 the number of replications is 3000 for each model and sample
size combination. The parameters are estimated by conditional least squares. To study the size we employ the following
DGP.

DGP-0: Two-regime first-order self-exciting threshold autoregressive model (VSETAR(2;1,1))

Yt = {Φ(1)
1 Yt−1 + εt}I(Y1,t−1 < 0) + {Φ(2)

1 Yt−1 + εt}I(Y1,t−1 ≥ 0), (33)

where I(·) is the indicator function, and where

Φ(1)
1 =

[
0.6 0
0.3 0.6

]
,

Φ(2)
1 = −Φ(1)

1 . The random variables Yt−1 and εt are independent for all t . The innovations satisfy the following three
specifications:

(i) {εt}
i.i.d.
∼ N2(0,Σ ε) with

Σ ε =

[
1 0.2
0.2 1

]
.

Model (33) is similar in structure as a VSETAR model specified by Tsay [20], albeit using different parameter
specifications.

(ii) ARCH errors, i.e., εt = V1/2
t ηt , where

Vt =

[
0.7 + 0.3ε2

1,t 0
0 0.5 + 0.5ε2

2,t

]
,

(iii) weak white noise (WN) errors, i.e., ε = (η η , η η )⊤, where η = (η , η )⊤
i.i.d.
∼ N (0, I ).
t 1,t 1,t−1 2,t 2,t−1 t 1,t 2,t 2 2

10
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Table 2
Empirical sizes (in percentages) of multiple-lag portmanteau-type test statistics at the nominal significance levels
α = 0.05 and α = 0.10 using DGP-0 with Gaussian errors, ARCH errors and weak WN errors.
n M Gaussian errors ARCH Weak WN Gaussian errors ARCH Weak WN

Q(1)
M Q(2)

M Q(1,2)
M Q(1)

M Q(1)
M Q(1)

M Q(2)
M Q(1,2)

M Q(1)
M Q(1)

M

500 2 5.8 5.2 2.8 7.4 6.9 11.0 10.4 5.2 7.7 12.7
3 5.6 4.7 4.0 7.3 6.3 11.3 10.3 6.8 7.4 12.4
6 10.2 3.5 11.7 8.6 6.2 16.1 8.3 16.3 7.3 12.4
10 12.1 2.5 25.3 7.1 5.9 17.7 6.7 31.1 6.9 10.9

1000 2 5.0 6.0 2.7 5.8 5.6 19.9 11.9 5.0 11.3 11.1
3 5.4 5.8 5.2 5.7 5.6 10.4 11.0 6.6 11.7 10.7
6 7.4 5.0 7.1 5.9 5.8 12.7 10.7 11.8 11.1 10.6
10 9.6 4.2 14.6 5.3 5.3 15.4 9.0 21.7 10.9 10.5

Table 3
Power (in percentages) of the multivariate single-lag test statistics S(i)

n,ℓ , (i ∈ {1, 2}) and S(1,2)
n,ℓ and the multivariate

multiple-lag test statistics Q(i)
M , (i ∈ {1, 2}) and Q(1,2)

M at a 5% nominal significance level.

n ℓ Single-lag M Multiple-lag

S(1)
n,ℓ S(2)

n,ℓ S(1,2)
n,ℓ Q(1)

M Q(2)
M Q(1,2)

M

250 1 6.5 2.5 43.3 2 100 100 93.7
2 97.1 96.3 99.8 3 100 100 95.3
3 99.4 99.2 99.8 6 100 100 99.8
4 99.9 99.9 100 10 98.2 98.2 99.9
5 100 99.9 100

500 1 74.8 66.8 98.5 2 100 100 97.9
2 100 100 100 3 100 100 96.3
3 100 100 100 6 100 100 99.5
4 100 100 100 10 100 100 100
5 100 100 100

Table 1 shows the empirical sizes of the single-lag portmanteau test statistics S (.)
n,ℓ at the nominal significance levels

= 0.5 and α = 0.10 using DGP-0 with error processes (i)–(iii). Note that for all values of n and ℓ, there is a close
greement between the empirical and nominal sizes of all test statistics, with some improvements as the sample size
ncreases from n = 500 to n = 1000. The overall pattern of empirical sizes remains satisfactory for ℓ ∈ {6, . . . , 10} (not
shown here). Table 2 displays similar results for the multiple-lag portmanteau test statistics Q (.)

M using again DGP-0 with
error processes (i)–(iii). We see that for M ∈ {2, 3, 6}, the test statistics Q (i)

M (i ∈ {1, 2}), defined in (9) and (19), are well
approximated by a χ2(m2M) distribution for all error distributions and both values of n. However, this is not the case
for Q (1,2)

M with severe overrejections of the null hypothesis in the case of ARCH errors and weak WN errors. Nonetheless,
we like to point out that in the particular case of VARMA processes with i.i.d. innovations, the chi-square distribution
is an approximation as the number of autocorrelations is taken large together with the sample size. It is clear that this
phenomenon also holds for model (1).

To study the power of each portmanteau-type tests statistics, we choose DGP-0 as the null hypothesis and the following
DGP as the alternative model.

DGP:

Yt = {Φ(1)
1 Yt−1 + Φ(1)

2 Yt−2 + εt}I(Y1,t−1 < 0) + {Φ(2)
1 Yt−1 + Φ(2)

2 Yt−2 + εt}I(Y1,t−1 ≥ 0),

εt = Πεt−1 + ut , (34)

where Φ(i)
1 is defined in DGP-0, i = 1, 2,

Φ(1)
2 =

[
0 −0.2
0.5 −0.3

]
, Φ(2)

2 = −Φ(1)
2 , Π =

[
0.10 0.06
0.01 0.90

]
,

nd where {ut}
i.i.d.
∼ N2(0, I2).

To make the rejection rates comparable across the test statistics, the estimated rejection rates are size-adjusted.
amely, based on 1000 replications, we empirically find the 95% percentiles of each test statistic and use these values
s the corrected critical value for the power comparison. Table 3 shows size-adjusted power results for the single- and
ultiple-lag test statistics. Here, the results are based on 1000 replications of sample sizes n = 250 and n = 500. It is

nteresting to see that all tests have good power for all lags ℓ and all values M considered.
11
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Fig. 1. U.S. interest rates 1951-01–1991-02.

7. Empirical application

To illustrate the usefulness of the proposed multivariate portmanteau test statistics in an empirical setting, we consider
a set of residuals obtained from fitting a two-regime bivariate threshold vector error model (TVECM) to the U.S. long-term
interest rate (Rt ) and the U.S. short-term interest rate (rt ). The dataset can be downloaded from the Huston McCulloch
ebsite (https://www.asc.ohio-state.edu/mcculloch.2/ts/mcckwon/mccull.htm). Also it is included in the R-tsDyn package
nder the name zeroyld. Fig. 1 displays a plot of the data. Following Hansen and Seo [8], the period of interest is 1952-01
o 1991-02 (n = 482). We see a strong similarity between the patterns of both interest rate series indicating that Rt and
t are cointegrated. Indeed, after a preliminary analysis Hansen and Seo [8] find evidence that a TVECM(2;1,1) fits the
ata better than a linear VECM. Here, we assume that the TVECM is correctly specified and analyze its residuals by the
ndividual and mixed multivariate portmanteau tests discussed in the previous sections. So, to some extent our analysis
s of historical interest.

First, we report estimation results for the TVECM(2;1,1). Using the R-tsDyn package, the fitted model is given by[
∆Rt
∆rt

]
=

{[
0.56 ∗∗

1.94

]
+

[
0.23 ∗

1.15 ∗∗∗

]
wt−1 +

[
0.21 −0.13
0.76 ∗∗∗ 0.02

][
∆Rt−1
∆rt−1

]
+

[
ε1,t
ε1,t

]}
I(wt−1 ≤ −1.05)

+

{[
0.01

−0.00

]
+

[
−0.00
0.05

]
wt−1 +

[
−0.03 0.08
0.14 0.17 ∗

][
∆Rt−1
∆rt−1

]
+

[
ε2,t
ε2,t

]}
I(wt−1 > −1.05), (35)

here wt = Rt −1.046rt−1 and ∆Yt = Yt −Yt−1, i.e., the first difference of a time series {Yt}. Here, ∗ ∗ ∗ denotes a p-value
n the range [0, 0.001], ∗∗ denotes a p-value in the range (0.001, 0.01], and ∗ is a p-value in the range (0.01, 0.05].

The estimation results are in close agreement with those reported by Hansen and Seo [8, pp. 310–311]. Based on 8.8%
f the observations, we see that the first regime occurs when Rt ≤ 1.05rt − 1.046, i.e., when {Rt} is more than 1.046
ercentage points below rt . The second regime (with 91.2% of the observations) is when Rt > 1.05rt − 1.046.
Next, we perform the proposed tests of Sections 4 and 5. The results are given in Table 4. Clearly, the S (i)

n,ℓ (i ∈ {1, 2}; ℓ ∈

1, . . . , 5}) tests indicate that (35) is adequate in modeling the interest rates. But this observation is not supported by
he mixed single-lag test statistics with all p-values equal 0.000 at all lags ℓ. The values of S(i)M (i ∈ {1, 2};M ∈ {2, 3})
ndicate that the fitted TVECM(2;1,1) might be suitable to describe the interest rates. But at M = 6 these statistics indicate
odel inadequacies. Similarly, the mixed test statistic Q (1,2)

M rejects model (35). However, as noted in Section 6, there are
ases where this latter test statistic performs poorly. Hence, the results for Q (1,2)

M should be interpreted carefully. Finally,
e would like to stress that the empirical application is intended as an illustration of the proposed portmanteau test
tatistics, not as an in-depth analysis of the residuals series based on the fitted TVECM(2;1,1).

. Concluding remarks

In this paper, we proposed a general framework for testing multivariate white noise in multivariate nonlinear time
eries models with vector martingale errors. One advantage of the testing framework is that uncertainties due to model
arameter estimation are naturally taken into account. Another advantage is that a large number of portmanteau-type
ests follow as a special case of the proposed general test statistic. Specifically, we considered individual and mixed
ultivariate portmanteau-type test statistics. In each case, we distinguished between single- and multiple-lag tests using
utocovariances of residuals and autocovariances of squared residuals, resulting in four individual tests and two mixed
ests. A summary of these tests is given in Table 5. The results of the empirical application indicated that both individual
nd mixed tests are indispensable in detecting mis-specifications of the fitted VECM.
No attempt has been made to extend the individual tests to other forms of autocovariances, like bicovariances or,

ore general, cross-correlations of residuals, and their weighted variants. But by defining different forms of the transition
12
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Table 4
P-values of the single-lag and multiple-lag portmanteau-type test statistics based on residuals obtained from the fitted
TVECM(2;1,1) as given by (35).
Single-lag Multiple-lag

ℓ S(1)
n,ℓ S(2)

n,ℓ S(1,2)
n,ℓ M Q(1)

M Q(2)
M Q(1,2)

M

1 0.580 0.579 0.000 2 0.314 0.312 0.000
2 0.957 0.956 0.000 3 0.391 0.388 0.000
3 0.848 0.847 0.000 6 0.025 0.023 0.000
4 0.239 0.235 0.000 10 0.000 0.000 0.000
5 0.063 0.061 0.000

Table 5
Summary of the individual multiple-lag test statistics Q(i)

Ki
, the individual single-lag test statistics S(i)

n,ℓ , (i ∈ {1, 2}), and the mixed multiple- and

ingle-lag test statistics Q(1,2)
M and S(1,2)

n,ℓ . Equation numbers are given in parentheses.

Null hypothesis (H0) Individual Distribution Null hypothesis (H0) Mixed Distribution

Cov(εi,t,θ0 , εj,t−ℓ,θ0 ) = 0 Q(1)
K1

(9) χ2(mK1) Cov(εi,t,θ0 , ε
2
j,t−ℓ,θ0

) = 0 Q(1,2)
M (30) χ2(m2M)

Cov(εt,θ0 , εt−ℓ,θ0 ) = 0 S(1)
n,ℓ (14) χ2(m2) (M = K1 + K2)

Cov[(εt,θ0 , ηt,θ0 ) (εt−ℓ,θ0 , ηt−ℓ,θ0 )
T
] = 0 S(1,2)

n,ℓ (32) χ2(2m2)

Cov(ε2
i,t,θ0

, ε2
j,t−ℓ,θ0

) = 0 Q(2)
K2

(19) χ2(m2K2)

Cov(ε2
i,t,θ0

, ε2
j,t−ℓ,θ0

) = 0 S(2)
n,ℓ (24) χ2(m2)

function g(·), special cases of the general portmanteau test statistic can be easily obtained. One may also explore the
ink between the well-known Lagrange multiplier portmanteau-type tests and each test statistic discussed in the paper.
dditionally, a reviewer has suggested to study diagnostic tests under the weaker assumption of no correlated errors,
.e., that are not necessarily of an MDS-type. Another issue that will possibly be interesting for future research is to consider
tructural changes in the unconditional variance of model (1) as in Xu and Philips [24]. These issues could broaden the
cope of the present study. Nevertheless, we hope that the proposed general testing framework can serve as a first step
o derive other (omnibus) portmanteau-type tests for detecting multivariate white noise errors.
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ppendix

roof of Theorem 2. Since limn→∞ P(̂θn ̸= ∞) = 1 by Proposition 1, it is assumed that θ̂n ̸= ∞. Also by Proposition 1,
for every ϵ > 0 there exist c0 and n0 such that P(̂θn ∈ Nn,c0 ) > 1 − ϵ for all n > n0. By Assumption 2(a),

−1 ∑n
t=1 ∂g ( i)(ut ,̃θn )/∂θT P

−→ G( i), and for all θ̃n ∈ Nn,c0 and c > 0, so that especially n−1 ∑n
t=1 ∂g ( i)(ut ,̂θn )/∂θT P

−→ G (i),
∈ {1, 2}.
Let ξn =

[
(1/

√
n)

∑n
t=1 g

(1)(ut ,̂θn )
T, (1/

√
n)

∑n
t=1 g

(2)(ut ,̂θn )
T
]T. The mean-value theorem implies that

1
√
n
ξn =

1
√
n

[ n∑
t=1

g (1)(ut,θ0 )
T,

n∑
t=1

g (2)(ut,θ0 )
T ]T

+
1

√
n

[ n∑
t=1

∂g (1)(ut ,̃θ)

∂θT ,

n∑
t=1

∂g (2)(ut ,̃θ)

∂θT

]T
(̂θn − θ0), (A.1)

where

∂g (i)(ut ,̃θ)

∂θT =

[∂g (i)(ut ,̃θ(1) )

∂θ
, . . . ,

∂g (i)(ut ,̃θ(m)
)

∂θ

]T
,

ith g (i)(ut ,̃θ(j) ) = [g (i)(ut ,̃θ(j) )
T, . . . , g (i)(ut−Ki+1,̃θ(j) )

T
]
T, θ̃ = (̃θ(1), . . . , θ̃(m)) and ∥̃θ(j) − θ0∥ < ∥̂θn − θ0∥ for each i ∈ {1, 2}

and j ∈ {1, . . . ,m}. By Assumption 3(a) and Proposition 1, (A.1) can be written as

1
√
n
ξn = P

1
√
n

[ n∑
t=1

g (1)(ut ,̂θn )
T,

n∑
t=1

g (2)(ut ,̂θn )
T,

1
√
n

( n∑
t=1

∂ℓt (Yt; θ0)
∂θ

)T]T
+ op(1),

here P is an (m2(K1 + K2) × (m2(K1 + K2) + K )) block matrix given by

P =

[
Im2K1 0m2K1×m2K2 G(1)I(θ0)−1

(2) −1

]
.
0m2K2×m2K1 Im2K2 G I(θ0)

13
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D

a

I
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w

T

enote

Zn =

[ 1
√
n

( n∑
t=1

g (1)(ut,θ0 )
)T

,
1

√
n

( n∑
t=1

g (2)(ut,θ0 )
)T

,
1

√
n

n∑
t=1

∂ℓt (Yt; θ0)/∂θT
]T

,

n (m2(K1 + K2) + K ) × 1 vector. By Assumption 3(a), we have n−1 ∑n
t=1 ∂ℓt (Yt; θ0)/∂θT

} · op(1) = op(1). Then

1
√
n

[( n∑
t=1

g (1)(ut,θ0 )
)T

,
( n∑
t=1

g (2)(ut,θ0 )
)T]T

= PZn + op(1).

Using the concept of stacked matrices, we write Zn = (1/
√
n)

∑n
t=1 νt + op(1), where

νt =
[
vec(εt,θε

T
t−1,θ), . . . , vec(εt,θε

T
t−K1,θ), vec(wt,θvTt−1,θ), . . . , vec(wt,θvTt−K2,θ), (1/

√
n)∂ℓt (Yt; θ0)/∂θT]T.

t is straightforward to check that E(νt |Ft−1) = 0, and furthermore {νt} is a martingale difference relative to F1,F2, . . . .
y the martingale central limit theorem, we have

Zn
D

−→ Nm2(K1+K2)+K (0,Ω
(1,2)),

here

Ω (1,2)
= E(νtν

T
t ) =

⎡⎢⎣ Im2K1 0m2K1×m2K2 Ψ (1)

0m2K2×m2K1 Im2K2 Ψ (2)

Ψ (1)T Ψ (2)T I(θ0)

⎤⎥⎦ .

herefore, with M = K1 + K2,
1

√
n
ξn

D
−→ Nm2M (0, PΩ (1,2)P⊤). □
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