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Modeling Irregular Time Series with Continuous Recurrent Units

Mona Schirmer 1 Mazin Eltayeb 2 Stefan Lessmann 3 Maja Rudolph 4

Abstract
Recurrent neural networks (RNNs) are a popu-
lar choice for modeling sequential data. Modern
RNN architectures assume constant time-intervals
between observations. However, in many datasets
(e.g. medical records) observation times are ir-
regular and can carry important information. To
address this challenge, we propose continuous
recurrent units (CRUs) – a neural architecture
that can naturally handle irregular intervals be-
tween observations. The CRU assumes a hid-
den state, which evolves according to a linear
stochastic differential equation and is integrated
into an encoder-decoder framework. The recur-
sive computations of the CRU can be derived
using the continuous-discrete Kalman filter and
are in closed form. The resulting recurrent archi-
tecture has temporal continuity between hidden
states and a gating mechanism that can optimally
integrate noisy observations. We derive an effi-
cient parameterization scheme for the CRU that
leads to a fast implementation f-CRU. We empiri-
cally study the CRU on a number of challenging
datasets and find that it can interpolate irregular
time series better than methods based on neural
ordinary differential equations.

1. Introduction
Recurrent architectures, such as the long short-term mem-
ory network (LSTM) (Hochreiter & Schmidhuber, 1997)
or gated recurrent unit (GRU) (Chung et al., 2014) have
become a principal machine learning tool for modeling time
series. Their modeling power comes from a hidden state,
which is recursively updated to integrate new observations,
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and a gating mechanism to balance the importance of new
information with history already encoded in the latent state.

Although continuous formulations were frequently consid-
ered in early work on recurrent neural networks (RNNs)
(Pineda, 1987; Pearlmutter, 1989; 1995), modern RNNs typ-
ically assume regular sampling rates (Hochreiter & Schmid-
huber, 1997; Chung et al., 2014). Many real world data
sets, such as electronic health records or climate data, are
irregularly sampled. Measurements of a patient’s health
status, for example, are only available when the patient sees
a doctor. Hence, the time between observations also carries
information about the underlying time series. A lab test not
administered for many months could imply that the patient
was doing well in the meantime, while frequent visits might
indicate that the patient’s health is deteriorating. Discrete
RNNs face difficulties modeling such data as they do not
reflect the continuity of the underlying temporal processes.

Recently, the work on neural ordinary differential equations
(neural ODEs) (Chen et al., 2018) has established an ele-
gant and practical way of modeling irregularly sampled time
series. Recurrent architectures based on neural ODEs deter-
mine the hidden state between observations by an ordinary
differential equation (ODE) and update its hidden state at
observation times using standard RNN gating mechanisms
(Rubanova et al. 2019; Brouwer et al. 2019; Lechner &
Hasani 2020). These methods typically rely on some form
of numerical ODE-solver, a network component that can
prolong training time significantly (Rubanova et al. 2019;
Shukla & Marlin 2020).

We propose continuous recurrent unit (CRU), a probabilis-
tic recurrent architecture for modelling irregularly sampled
time series. An encoder maps observations into a latent
space, which is governed by a linear stochastic differential
equation (SDE). The analytic solution for propagating the la-
tent state between observations and the update equations for
integrating new observations are given by the continuous-
discrete formulation of the Kalman filter. Employing the
linear SDE state space model and the Kalman filter has
three advantages. First, a probabilistic state space provides
an explicit notion of uncertainty for an uncertainty-driven
gating mechanism and for confidence evaluation of predic-
tions. Second, as the Kalman filter is the optimal solution
for the linear filtering problem (Kalman, 1960), the gating
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mechanism is optimal in a locally linear state space. Third,
the latent state at any point in time can be resolved analyti-
cally, therefore bypassing the need for numerical integration
techniques or variational approximations. In summary, our
contributions are as follows:

• In Sec. 3, we develop the CRU, a model that combines
the power of neural networks for feature extraction with
the advantages of probabilistic state-space models, specif-
ically the continuous-discrete Kalman filter. As a result,
the CRU is a powerful neural architecture that can nat-
urally model data with irregular observation times. A
PyTorch implementation is available on github.1

• In Sec. 3.4, we derive a novel parameterization of the
latent state transition matrices via their eigendecomposi-
tion leading to a faster implementation we call fast CRU
(f-CRU).

• In Sec. 4, we study the CRU on electronic health records,
climate data and images. We find that (i) our method
can better interpolate irregular time series than neural
ODE-based methods, (ii) the CRU can handle uncertainty
arising from both noisy and partially observed inputs, (iii)
CRU outperforms both discrete RNN counterparts and
neural ODE-based models on image data.

2. Related Work
Stochastic RNNs RNNs, such as LSTMs or GRUs, are
powerful sequence models (Hochreiter & Schmidhuber,
1997; Chung et al., 2014), but due to the lack of stochas-
ticity in their internal transitions, they may fail to capture
the variability inherent in certain data (Chung et al. 2015).
While there are various stochastic RNNs (e.g. Bayer & Os-
endorfer, 2014; Fraccaro et al., 2016; Goyal et al., 2017;
Schmidt & Hofmann, 2018), our work is most closely re-
lated to deep probabilistic approaches based on Kalman
filters (Kalman, 1960). Variations on deep Kalman filters
(Krishnan et al. 2015; Karl et al. 2017; Fraccaro et al. 2017)
typically require approximate inference, but Becker et al.
(2019) employ a locally linear model in a high-dimensional
factorized latent state for which the Kalman updates can be
obtained in closed form. By extending this approach with a
continuous latent state, the CRU can model sequences with
irregular observation times.

RNNs for Irregular Time Series Applying discrete
RNNs to irregularly sampled time series requires the dis-
cretization of the time line into uniform bins. This often
reduces the number of observations, may result in a loss
of information, and evokes the need for imputation and
aggregation strategies. To avoid such preprocessing, Choi

1https://github.com/boschresearch/
Continuous-Recurrent-Units

et al. (2018) and Mozer et al. (2017) propose to augment
observations with timestamps. Lipton et al. (2016) sug-
gest observation masks. However, such approaches have no
notion of dynamics between observations. An alternative
approach is to decay the hidden state exponentially between
observations according to a trainable decay parameter (Che
et al., 2018; Cao et al., 2018). These methods are limited to
decaying dynamics, whereas the CRU is more expressive.

Continuous-Time RNNs Continuous-time RNNs have
a long history, dating back to some of the original work
on recurrent networks in the field. They are recurrent ar-
chitectures whose internal units are governed by a system
of ODEs with trainable weights (Pearlmutter, 1995). The
theory for different gradient-based optimization schemes
for their parameters have been developed by Pineda (1987),
Pearlmutter (1989), and Sato (1990). Notably, LeCun et al.
(1988)’s derivation using the adjoint method provides the
theoretical foundation for modern implementations of neural
ODEs (Chen et al., 2018).

Neural ODEs Neural ODEs model the continuous dy-
namics of a hidden state by an ODE specified by a neural
network layer. Chen et al. (2018) propose latent ODE, a
generative model whose latent state evolves according to
a neural ODE. However, it has no update mechanism to
incorporate incoming observations into the latent trajectory.
Kidger et al. (2020) and Morrill et al. (2021) extend neural
ODEs with concepts from rough analysis, which allow for
online learning. ODE-RNN (Rubanova et al., 2019) and
ODE-LSTM (Lechner & Hasani, 2020) use standard RNN
gates to sequentially update the hidden state at observation
times. GRU-ODE-B (Brouwer et al., 2019) and Neural
Jump ODE (Herrera et al., 2021) couple ODE dynamics
with an Bayesian update step. Neural ODE approaches typ-
ically rely on a numerical ODE solver, whereas the state
evolution of a CRU is in closed form.

Neural SDEs As the stochastic analogue of neural ODEs,
neural SDEs define a latent temporal process with a SDE
parameterized by neural networks. Li et al. (2020) use the
stochastic adjoint sensitive method to compute efficient gra-
dients of their SDE-induced generative model. Jia & Benson
(2019) allow for discontinuities in the latent state to mimic
stochastic events. Deng et al. (2020) and Deng et al. (2021)
use dynamic normalizing flows to map the latent state to a
continuous-path observation sequence. Kidger et al. (2021)
fit neural SDEs in a generator-discriminator framework.
Like CRU, these methods accommodate noise in the latent
process, but generally rely on variational approximations
and numerical solvers. In contrast, CRU propagates the
latent state in closed form and can be trained end-to-end.

https://github.com/boschresearch/Continuous-Recurrent-Units
https://github.com/boschresearch/Continuous-Recurrent-Units
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Figure 1. CRU: An encoder maps the observation xt to a latent observation yt and elementwise uncertainties σobs
t . Both are combined

with the latent state prior N (µ−
t ,Σ

−
t ) to produce the posterior N (µ+

t ,Σ
+
t ) (red arrows). A decoder yields the output ot.

Transformers for Irregular Time Series Besides recur-
rent and differential equation-based architectures, recent
work proposed attention-based methods (Vaswani et al.,
2017) to model sequences with arbitrary timestamps. Zhang
et al. (2019) combines time gap decay with attention mecha-
nisms to weight for elapsed time. Horn et al. (2020) use set
functions to compress irregular sequences to fixed-length
representations. Multi-time attention network (mTAND)
(Shukla & Marlin, 2021) feeds time embeddings to an at-
tention mechanism. These models are typically quite large,
whereas the CRU achieves high performance despite its
small model size.

3. Method
The CRU is a RNN for processing sequential data with irreg-
ular observation times. It employs a nonlinear mapping (a
neural network encoder and decoder) to relate individual ob-
servations with a latent state space. In this latent state space,
it assumes a continuous latent state whose dynamics evolve
according to a linear SDE. The recursive computations of the
CRU can be derived using the continuous-discrete Kalman
filter (Jazwinski, 1970) and are in closed form. As a re-
sult, the CRU has temporal continuity between hidden states
and a gating mechanism that can optimally integrate noisy
observations at arbitrary observation times.

We first specify the modeling assumptions for the continu-
ous latent state of the CRU as well as the role of the encoder
and the decoder in Sec. 3.1. In Sec. 3.2, we derive the re-
cursive internal computations of the CRU with the resulting
recurrent architecture summarized in Sec. 3.3. We then de-
velop an efficient CRU parameterization scheme that affects
modeling flexibility and run time (Sec. 3.4). Finally, in
Sec. 3.5, we describe how to train a CRU.

3.1. Overview of Proposed Approach

The CRU addresses the challenge of modeling a time series
xT = [xt|t ∈ T = {t0, t1, · · · tN}] whose observation
times T = {t0, t1, · · · tN} can occur at irregular intervals.

Modeling Assumptions for the Latent State Unlike the
discrete hidden state formulation of standard RNNs, the
latent state z ∈ RM of a CRU has continuous dynamics,
which are governed by a linear SDE

dz = Azdt+Gdβ, (1)

with time-invariant transition matrix A ∈ RM×M and dif-
fusion coefficient G ∈ RM×B . The integration variable
β ∈ RB is a Brownian motion process with diffusion ma-
trix Q ∈ RB×B . The CRU assumes a Gaussian observation
model H ∈ RD×M that generates noisy latent observations

yt ∼ N (Hzt, (σ
obs
t )2I), (2)

with observation noise σobs
t .

Sequential Processing At each time point t ∈ T , the
latent observation yt and its elementwise latent observation
noise σobs

t are produced by a neural network encoder fθ,

encoder: [yt,σ
obs
t ] = fθ(xt), (3)

applied to the observation xt. At each observation time, we
distinguish between a prior and a posterior distribution on
zt.2

prior: p(zt|y<t) = N (µ−
t ,Σ

−
t ) (4)

posterior: p(zt|y≤t) = N (µ+
t ,Σ

+
t ). (5)

2We use the notation y<t := {yt′ for t′ ∈ T s.t. t′ < t} for
the set of all latent observations before t and y≤t := {yt′ for t′ ∈
T s.t. t′ ≤ t} for this set including yt.
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Figure 2. The internal hidden states of a CRU cell are the posterior
mean and variance µ+

t and Σ+
t of the continuous state variable z.

They are computed recursively according to Algorithm 1.

The parameters of the prior, µ−
t and Σ−

t , are computed
by propagating the latent state according to Eqn. (1) (we
call this the “prediction step”) while the parameters of the
posterior, µ+

t and Σ+
t , are computed with a Bayesian update

(which we call the “update step”). The optimal prediction
and update step will be derived in closed form in Sec. 3.2.

Fig. 1 gives an overview of the CRU from a Kalman filtering
perspective: observations (green) are mapped by the encoder
into a latent observation space (orange). The mean and
variance of the latent state is inferred using the predict and
update step of the continuous-discrete Kalman filter (red).
Finally, a decoder maps the posterior parameters to the
desired output space along with elementwise uncertainties.

decoder: [ot,σ
out
t ] = gϕ(µ

+
t ,Σ

+
t ). (6)

3.2. Continuous-Discrete Kalman Filter

The continuous-discrete Kalman filter (Jazwinski, 1970)
is the optimal state estimator for a continuous state space
model (Eqn. (1)) with a discrete-time Gaussian observation
process (Eqn. (2)). This version of the Kalman filter allows
modelling observations of a continuous process at poten-
tially arbitrary but discrete observation times. Given the
latent observations, the posterior distribution of the latent
state (Eqn. (5)) is computed recursively, alternating between
a predict and an update step. These steps are derived next.

3.2.1. PREDICTION STEP

Between observation times, the prior density describes the
evolution of zt. It is governed by the SDE in Eqn. (1),
which has an analytical solution for linear, time-invariant
systems as considered here. To compute the prior at time t,
we assume that the posterior parameters µ+

τ(t),Σ
+
τ(t) at the

Algorithm 1 The CRU

Input: Datapoints and their timestamps {(xt, t)}t∈T
Initialize: µ+

t0 = 0,Σ+
t0 = 10 · I

for observation times t > t0 ∈ T do
yt,σ

obs
t = fθ(xt)

µ−
t ,Σ

−
t = predict(µ+

τ(t),Σ
+
τ(t), t− τ(t))

µ+
t ,Σ

+
t = update(µ−

t ,Σ
−
t ,yt,σ

obs
t )

ot,σ
out
t = gϕ(µ

+
t ,Σ

+
t )

end for
Return: {ot,σout

t }t∈T

last observation time,

τ(t) := max{t′ ∈ T s.t. t′ < t}, (7)

have already been computed. The SDE solution at time t is

zt = exp
(
A(t−τ(t))

)
zτ(t)+

∫ t

τ(t)

exp
(
A(t−s)

)
Gdβs,

which results in a prior mean and covariance of

µ−
t = exp

(
A(t− τ(t))

)
µ+
τ(t) (8)

Σ−
t = exp

(
A(t− τ(t))

)
Σ+
τ(t)exp

(
A(t− τ(t))

)T
+

∫ t

τ(t)

exp
(
A(t− s)

)
GQGTexp

(
A(t− s)

)T
ds,

where exp(·) denotes the matrix exponential. The integral
can be resolved analytically using matrix fraction decom-
position and the computation is detailed in Appendix A.2.1.
We summarize the prediction step (Eqn. (8)) for the parame-
ters of the prior with

[µ−
t ,Σ

−
t ] = predict(µ+

τ(t),Σ
+
τ(t), t− τ(t)). (9)

3.2.2. UPDATE STEP

At the time of a new observation yt, the prior is updated
using Bayes’ theorem,

p(zt|y≤t) ∝ p(yt|zt)p(zt|y<t). (10)

Due to the Gaussian assumption, the posterior is again Gaus-
sian, and its mean and covariance are given by

µ+
t = µ−

t +Kt(yt −Hµ−
t ) (11)

Σ+
t = (I−KtH)Σ−

t . (12)

The updates can be seen as weighted averages, where the
Kalman gain Kt acts as a gate between prior and observa-
tion. It contrasts observation noise with prior uncertainty
and is high when observations have a low noise level,

Kt = Σ−
t H

T (HΣ−
t H

T +Σobs
t )−1. (13)

We summarize the update step as

[µ+
t ,Σ

+
t ] = update(µ−

t ,Σ
−
t ,yt,σ

obs
t ). (14)
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3.3. Continuous Recurrent Units

A CRU is a recurrent neural architecture that uses the pre-
dict and update step of a continuous-discrete Kalman fil-
ter (Eqns. (9) and (14)) in an encoder-decoder framework
(Eqns. (3) and (6)) to sequentially process irregularly sam-
pled time series. An overview of a CRU cell is given in
Fig. 2. Algorithm 1 summarizes the recursion, which is
used by the CRU cell to update its internal parameters based
on sequential inputs and to produce the output sequence.

Even though the derivation assumes a probabilistic latent
state z, the internal computations in the CRU cell are deter-
ministic, in closed form, and amenable to back-propagation.
This means that the CRU can be used (and trained end-to-
end) like other recurrent architectures, such as LSTMs or
GRUs on various sequence modeling tasks. Its advantage
compared to these architectures is that the CRU handles
irregular observation times in a principled manner.

We next describe parameterization choices for CRU which
lead to more expressive modeling capacity (Sec. 3.4.1) and
faster computation (Sec. 3.4.2) of the state equations. Fi-
nally, we present in Sec. 3.5 how to train a CRU.

3.4. Flexible and Efficient Parameterization of the CRU

The linearity assumption of the continuous-discrete Kalman
filter is advantageous, as it leads to optimal closed-form
computations. However, it also limits the expressiveness of
the model. The idea of CRU is that the modelling flexibility
of the encoder and decoder mitigates this limitation and
that the dimensionality of the state space is large enough
for a linearly evolving latent state to lead to expressive
relationships between input and output sequences.

On the other hand, the dimensionality of the latent state
cannot be too large in practice as it affects the runtime of
the matrix inversion in Eqn. (13) and the matrix exponen-
tial in Eqn. (8). To address this trade-off between modeling
flexibility and efficient computation, we make certain param-
eterization choices for the CRU. In Sec. 3.4.1, we describe a
locally linear transition model, which maintains the closed
form updates of Sec. 3.2 while making the model more flex-
ible. In Sec. 3.4.2, we develop f-CRU, a version of the CRU
with a novel parameterization of the transition matrices via
their eigendecompositions. The resulting model has less
modeling flexibility than the CRU but is significantly faster
to train and amenable to larger state spaces.

3.4.1. LOCALLY LINEAR STATE TRANSITIONS

A locally linear transition model increases the modeling
flexibility of CRU while maintaining the closed form com-
putation of the predict and update steps in Sec. 3.2. Similar
approaches have been used in deep Kalman architectures
(Karl et al., 2017; Fraccaro et al., 2017). We employ the

parameterization strategy of Becker et al. (2019) and design
the transition matrix At at time t as a weighted average of
K parameterized basis matrices. The weighting coefficients
α
(k)
t for k ∈ {1...K} are obtained from the current posterior

mean µ+
t by a neural network wψ with softmax output,

At =

K∑
k=1

α
(k)
t A(k), with αt = wψ(µ

+
t ). (15)

To reduce the number of parameters, each basis matrix con-
sists of four banded matrices with bandwidth b. In addition,
we assume a diagonal diffusion matrix Q whose vector of
diagonal entries q is a time-invariant learnable parameter.
The diffusion coefficient G of the SDE in Eqn. (1) is fixed
at the identity matrix, i.e. G = I. This is not restrictive as
G only occurs in combination with the learnable parameter
vector q (Eqn. (8)), which is unconstrained.

3.4.2. EFFICIENT IMPLEMENTATION

The runtime of the CRU is dominated by two operations:
the matrix inversion in the computation of the Kalman gain
(Eqn. (13)) and the matrix exponential in the prediction step
(Eqn. (8)). As in Becker et al. (2019), there is a trade-off be-
tween modeling flexibility and runtime when choosing how
to parametrize the model. Becker et al. (2019) use certain
factorization assumptions on the state covariance Σt and
the observation model H that increase speed and stability
by simplifying the matrix inversion. CRU also benefits from
these assumptions, which are detailed in Appendix B. How-
ever, the CRU has an additional computational bottleneck,
namely the matrix exponential in Eqn. (8).

In this section, we develop fast CRU (f-CRU), a model
variant that benefits from an efficient implementation of
the prediction step. f-CRU bypasses the computation of
the matrix exponential by allowing only commutative and
symmetric base matrices A(k) with related eigenspaces.
While this limits the modeling flexibility, it reduces the
runtime of the matrix exponential from complexity O(n3)
to matrix multiplication and elementwise operations.

To avoid having to compute an eigenvalue decomposition,
we directly parameterize the basis matrices A(k) in terms of
their eigenvalues and eigenvectors, which enable a change
of basis. In the projected space, the state transitions are di-
agonal and the matrix exponential simplifies to the element-
wise exponential function. By allowing only commutative,
symmetric basis matrices, we can ensure that the matrix
exponential in the projected space is invariant to the order
in which the A(k) are summed (Eqn. (15)).

In detail, we assume diagonalizable basis matrices
{A(k)}k=1...K that share the same orthogonal eigenvec-
tors. That is to say, for all k ∈ {1...K} we have A(k) =
ED(k)ET where D(k) is a diagonal matrix whose i-th di-
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Figure 3. The parameterization of the f-CRU makes it faster than
the CRU, especially as the latent dimensionality M increases.

agonal entry is the eigenvalue of A(k) corresponding to the
eigenvector in the i-th column of E. When using E to per-
form a change of basis on the latent state zt, the SDE of the
transformed state vector w has diagonal transitions D. The
prior mean at time t simplifies to,

µ−
t = E exp

(
(t− τ(t))

K∑
k=1

α(k)D(k)
)
ETµ+

τ(t), (16)

where exp(·) denotes the elementwise exponential function.
We follow Rome (1969) to efficiently compute the covari-
ance of the projected state space Σw

t at time t, which is
mapped back to the original basis of z to yield the prior
covariance at time t

Σ−
t = EΣw

t E
T . (17)

We provide the thorough definitions and computations of
the f-CRU prior computation in Appendix A.1.2. Fig. 3
illustrates the computational gain realized by the parame-
terization scheme of f-CRU. In Sec. 4, we further study the
speed and accuracy trade-off between CRU and f-CRU.

3.5. Training

The trainable parameters of the CRU are the neural network
parameters of the encoder and decoder (θ and ϕ), and pa-
rameters associated with the locally linear SDE, namely the
diagonal q of the diffusion matrix, the network parameters
ψ for producing the weighting coefficients of the locally
linear model, and the transition matrices ({A(k)}i=1...K for
the CRU and E, {D(k)}i=1...K for the f-CRU).

To train these parameters, we assume a dataset of sequences
where each input sequence xT is associated with a target
output sequence sT . For real valued outputs, the objec-
tive function is the Gaussian negative log-likelihood of the
ground truth sT and is given for a single sample by

L(sT ) = − 1

N

∑
t∈T

logN (st|ot, (σout
t )2), (18)

where oT and the elementwise uncertainty estimate σout
T is

the output computed by the CRU. For binary outputs, the

model is trained on the Bernoulli negative log-likelihood

L(sT ) = − 1

N

∑
t∈T

D0∑
i=1

s
(i)
t log(o

(i)
t )+(1−s(i)t )log(1−o(i)t ).

(19)
We also use this loss for imputing gray scale images, where
the outputs st are D0 pixel values in the range [0, 1]. To
maintain the orthogonality constraint on E during training
of f-CRU, we use the tools by Lezcano-Casado (2019).

4. Empirical Study
We study the CRU on three different tasks (interpolation,
regression, and extrapolation) on challenging datasets from
meteorology and health care. In sequence interpolation
(Sec. 4.3), the task is to learn the underlying dynamics of
the data based on a subset of the observations. In Sec. 4.4,
we study a regression task consisting of predicting the angle
of a pendulum from noisy images of the system. Finally,
in Sec. 4.5, models learn the dynamics of a sequence from
the first half of the observations to predict the remaining
sequence. This extrapolation is challenging because the
models need to capture long-term temporal interactions.

We study CRU in comparison to other sequence models in
terms of both accuracy and runtime. We find that (i) CRU
trains consistently faster than neural ODE-based models, (ii)
our methods outperforms most baselines on interpolation
and regression, (iii) the uncertainty driven gating mecha-
nisms handles noisy and partially observed inputs systemat-
ically by attributing less weight to them in the latent state
update.

4.1. Datasets

Pendulum Images We used the pendulum simulation of
Becker et al. (2019) to generate 4 000 synthetic image se-
quences. The 24x24 pixel images show a pendulum at 50
irregular time steps T . For the interpolation task, half of the
frames of each sequence are removed at random, resulting in
an input sequence xS with a reduced set of indices S ⊂ T .
The target output is the full image sequence sT = xT .

We also use the pendulum image sequences to study CRU
on a regression task. Each frame xt is associated with a
target label st = (sin(st), cos(st)), which is the angle of the
pendulum. As in Becker et al. (2019), we corrupt the images
with a correlated noise process. We used 2 000 sequences
for training and 1 000 for validation and testing each.

Climate Data (USHCN) The United States Historical Cli-
matology Network (USHCN) dataset (Menne et al., 2015)
contains daily measurements from 1 218 weather stations
across the US for five variables: precipitation, snowfall,
snow depth, minimum and maximum temperature. We used
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the cleaning procedure by Brouwer et al. (2019) to select a
subset of 1168 meteorological stations over a range of four
years (1990 - 1993). Though collected in regular time inter-
vals, climatic data is often sparse due to, e.g., sensor failures.
To further increase the sporadicity of the data across time
and dimensions, we first subsample 50% of the time points
and then randomly remove 20% of the measurements. We
test models on a 20% hold-out set and trained on 80% of
which we used 25% for validation.

Electronic Health Records (Physionet) Finally, we also
benchmark the models on the data set of the Physionet Com-
puting in Cardiology Challenge 2012 (Silva et al., 2012).
The data reports 41 measurements of the first 48 hours
of 8000 ICU patients. We follow the preprocessing of
Rubanova et al. (2019) and round observation times to 6
minutes steps resulting in 72 different time points per patient
on average. At a single time point, an observation contains
on average only 16% of the features with measurements en-
tirely missing for some patients. We split the data into 20%
test and 80% train set of which we used 25% for validation.

4.2. Baselines

We study the CRU and f-CRU in comparison to various
baselines including RNN architectures known to be power-
ful sequence models (but for regular observation times) as
well as ODE and attention-based models, which have been
developed specifically for observations from continuous
processes.

Recurrent Neural Networks We compare our method
against two RNN architectures with discrete hidden state as-
sumption: GRUs (Chung et al., 2014) and recurrent Kalman
networks (RKNs) (Becker et al., 2019). To aid these models
with irregular time intervals, we run a version where we
feed the time gap ∆t = t − τ(t) as an additional input to
the model (denoted as RKN-∆t and GRU-∆t). Another
baseline is GRU-D (Che et al., 2018), which uses trainable
hidden state decay between observations to handle irregular
inputs on a continuous time scale.

ODE-based Models We also test CRU against three ODE-
based models that can naturally deal with irregularly sam-
pled time series: (1) ODE-RNN (Rubanova et al., 2019)
alternates between continuous hidden state dynamics de-
fined by an ODE and classical RNN updates at observation
times. (2) Latent ODE (Chen et al. (2018), Rubanova et al.
(2019)) is a generative model that uses ODE-RNN as recog-
nition network to infer the initial value of its latent state and
models the state evolution with an ODE. (3) GRU-ODE-B
(Brouwer et al., 2019) combines a continuous-time version
of GRUs with a discrete update network.

Attention-based Model We also compare CRU against a
transformer network: mTAND (Shukla & Marlin, 2021) is a
generative model that employs multi-time attention modules
in the encoder and decoder.

Implementation Details For a fair comparison, we use
the same latent state dimension for all approaches (M = 30
for pendulum, M = 20 for Physionet and M = 10 for
USHCN), except for GRU, where we increase the latent
state size such that the number of parameters is comparable
to CRU. For the Physionet and USHCN experiments, the
encoder and decoder architecture of the CRU mimic that of
the latent ODE in Rubanova et al. (2019)’s Physionet set-up.
(Details can be found in Appendix D.)

For processing pendulum images, the CRU encoder and de-
coder are a convolutional architecture (see Appendix D.8).
To ensure a fair comparison, we follow the set-up of Becker
et al. (2019) and use the same encoder and decoder ar-
chitecture as for RKN, CRU and f-CRU to give the same
feature extraction capabilities to the other baseline models:
the baseline models are applied to the latent observations
that the encoder produces from the inputs and the decoder
maps the baseline outputs to the target output. In this aug-
mented framework, the encoder, the baseline model, and
the decoder are trained jointly. More information and other
implementation details can be found in Appendix D.

4.3. Results on Sequence Interpolation

We first examine the efficacy of CRU in sequence interpola-
tion on pendulum images, USHCN and Physionet. The task
consists of inferring the entire sequence sT = xT based on
a subset of observations xS where S ⊆ T . In the pendulum
interpolation task, S contains half of the total time points
sampled at random. For USHCN and Physionet, we fol-
low the Physionet set-up in Rubanova et al. (2019), where
reconstruction is based on the entire time series, i.e. S = T .

Tab. 1 reports mean squared error (MSE) on full test se-
quences and average runtime per epoch for USHCN and
Physionet. Tab. 2 summarizes results on the pendulum im-
age imputation task. All reported results are averages over
5 runs. The runtime measures a training pass through the
entire dataset while keeping settings such as batch size and
number of parallel threads comparable across architectures.
Both CRU and f-CRU outperform baseline models on the
interpolation task on most datasets. The efficient imple-
mentation variant, f-CRU, is consistently faster than neural
ODE-based architectures. f-CRU produces results compa-
rable to the CRU baseline, while reducing training time by
up to 50% even in low-dimensional state spaces. Though
discrete RNNs are still faster, f-CRU takes only a fraction
of time to train as neural ODE-based methods.

Three noteworthy factors influence training and inference
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Table 1. Test MSE (mean ± std) and runtime (average seconds/epoch) for interpolation and extrapolation on USHCN and Physionet.

Interpolation MSE (×10−2) Extrapolation MSE (×10−2) Runtime (sec./epoch)
Model USHCN Physionet USHCN Physionet USHCN Physionet

mTAND 1.766 ± 0.009 0.208 ± 0.025 2.360 ± 0.038 0.340 ± 0.020 7 10
RKN 0.021 ± 0.015 0.188 ± 0.088 1.478 ± 0.283 0.704 ± 0.038 94 39
RKN-∆t 0.009 ± 0.002 0.186 ± 0.030 1.491 ± 0.272 0.703 ± 0.050 94 39
GRU 0.184 ± 0.183 0.364 ± 0.088 2.071 ± 0.015 0.880 ± 0.140 3 5
GRU-∆t 0.090 ± 0.059 0.271 ± 0.057 2.081 ± 0.054 0.870 ± 0.077 3 5
GRU-D 0.944 ± 0.011 0.338∗ ± 0.027 1.718± 0.015 0.873 ± 0.071 292 5736
Latent ODE 1.798 ± 0.009 0.212∗ ± 0.027 2.034± 0.005 0.725 ± 0.072 110 791
ODE-RNN 0.831 ± 0.008 0.236∗ ± 0.009 1.955± 0.466 0.467 ± 0.006 81 299
GRU-ODE-B 0.841 ± 0.142 0.521 ± 0.038 5.437± 1.020 0.798 ± 0.071 389 90
f-CRU (ours) 0.013 ± 0.004 0.194 ± 0.007 1.569± 0.321 0.714 ± 0.036 61 62
CRU (ours) 0.016 ± 0.006 0.182 ± 0.091 1.273 ± 0.066 0.629 ± 0.093 122 114

∗ Results from Rubanova et al. (2019).

time: (1) Unlike ODE-based methods, CRU has closed-from
computation, whereas ODE-based methods still need to call
an ODE solver during inference. (2) Our method can make
efficient use of batching and unlike neural ODE-based archi-
tectures, CRU does not require solving the state propagation
in sync for the union of all timestamps in a minibatch. Thus,
the complexity of CRU does not scale with the heterogeneity
of timestamps in a minibatch. On data where timestamps
vary widely across sequences (e.g. Physionet), the number
of required update steps can be up to B-times more for re-
current neural ODE-architectures than for CRU, where B
denotes batch size. A batch size of 1 foregoes this advantage
of CRU. (3) The operations of the encoder and decoder can
counteract the speedup gained from closed-form latent state
propagation. We found the speedup to be less significant on
the pendulum data, where the encoder and decoder have a
stronger influence on runtime (Tab. 2).

4.4. Results on Pendulum Angle Prediction from Images

Next, we consider a regression task on irregularly sampled
pendulum image sequences. Here, each observed image xt
is mapped to a continuous target variable st representing the
pendulum angle at each time step. To assess the noise ro-
bustness of the methods, the image sequences are corrupted
by a correlated noise process as in Becker et al. (2019).

Figure 4 shows how the gating mechanism of CRUs works
under varying degrees of observation noise. The norm of
the Kalman gain mirrors the noise process of the sample
sequence. At times of high observation noise, the norm of
the Kalman gain is small and consequently the state update
is dominated by the history encoded in the latent state prior.
In contrast, when the pendulum is clearly observed, the
Kalman gain attributes high weight to the new observation.

This principled handling of noise is one of the factors that

Table 2. Test MSE ×10−3 (mean ± std) and runtime (average
sec/epoch) on pendulum interpolation and regression.

Model Interpolation R.time Regression

mTAND 15.400 ± 0.071 3 65.640 ± 4.050
RKN 5.200 ± 0.051 20 8.433 ± 0.610
RKN-∆t 1.903 ± 0.137 20 5.092 ± 0.395
GRU 5.086 ± 0.028 12 9.435 ± 0.998
GRU-∆t 2.073 ± 0.185 12 5.439 ± 0.988
Latent ODE 15.060 ± 0.138 52 15.700 ± 2.848
ODE-RNN 2.830 ± 0.137 37 7.256 ± 0.406
GRU-ODE-B 9.144 ± 0.020 60 9.783 ± 3.403
f-CRU 1.386 ± 0.162 29 6.155 ± 0.881
CRU 0.996 ± 0.052 36 4.626 ± 1.072

can help explain the success of CRU in pendulum angle
prediction. Results in terms of MSE are shown in Tab. 2.
CRU outperforms existing baselines. In Appendix C, we
also report log-likelihood results for this task. CRU and
f-CRU yield the best performance.

4.5. Results on Sequence Extrapolation

Finally, we study the performance of CRU on extrapolating
sequences far beyond the observable time frame. We split
the timeline into two halves T1 = {t0, ...tk} and T2 =
{tk+1, ...tN}. Models are tasked to predict all time points
of the sequence T = T1 ∪ T2 based on time points in T1
only. In the Physionet experiment, the input consists of the
first 24 hours and the target output of the first 48 hours of
patient measurements. For USHCN we split the timeline
into two parts of equal length tk = N/2. During training,
the entire observation sequence is used as target to guide
the training process, except for GRU-ODE-B, where we
used the training strategy proposed by the authors. During
evaluation, performance is assessed only on the extrapolated
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Figure 4. Pendulum angle prediction: The figures show noise corrupted observations and the corresponding Kalman gain norm for a
pendulum trajectory sampled at irregular time intervals. The Kalman gain reflects the underlying noise process of the data.

Figure 5. USHCN extrapolation: Distribution of the Kalman gain
norm for different percentages of sparseness. For highly sparse
observation vectors (e.g. 80% sparse), the distribution is shifted
towards low norm values.

part of the test sequences.

Tab. 1 reports test errors on the extrapolated test sequences,
sT2

. On the Physionet data, mTAND achieves the lowest
errors. On climate data, CRU reaches the highest perfor-
mance.

Partial Observability To study the CRU gating mecha-
nism in the presence of partially observed inputs, we also
run the extrapolation task on the five-dimensional USHCN
data while, this time, explicitly controlling the degree of
partial observability. For each time point, we sample one to
four features each with probability 0.1. The remaining 60%
of observations are fully observed to ensure stable learning.
Fig. 5 shows how the Kalman gain reacts to the sparseness
of an observation. The distribution of fully observed feature
vectors (0% sparseness) is centered around comparably high
values of the Kalman gain norm, whereas sparse observa-
tions are associated with lower Kalman gain norm values.
Thus, sparse observations are given less weight in the latent
state update than fully observed feature vectors.

5. Conclusion
We have developed CRU, a RNN that models temporal
data with non-uniform time intervals in a principled man-
ner. It incorporates a continuous-discrete Kalman filter into
an encoder-decoder structure thereby introducing temporal
continuity into the hidden state and a notion of uncertainty
into the network’s gating mechanism. Our empirical study

finds that the gating mechanism of the CRU weights noisy
and partially observed input data accurately. Our method
outperforms established recurrent sequence models such
as GRU on irregularly sampled data and achieves better
interpolation accuracy than neural ODE-based models on
challenging datasets from various domains.
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A. Prior Computation
A.1. f-CRU

For an efficient implementation, we assume locally linear transitions with symmetric basis matrices {A(k)}k=1...K that
share the same eigenvectors,

At =

K∑
k=1

α
(k)
t A(k), with A(k) = ED(k)ET . (20)

A.1.1. PRIOR MEAN

We can simplify the matrix exponential in Eqn. (8) to the elementwise exponential function:

µ−
t = exp

(
At(t− τ(t))

)
µ+
τ(t)

= exp
( K∑
k=1

α(k)A(k)(t− τ(t))
)
µ+
τ(t)

= exp
( K∑
k=1

α(k)ED(k)ET (t− τ(t))
)
µ+
τ(t)

= E exp
( K∑
i=1

α(k)D(k)(t− τ(t))
)
ETµ+

τ(t)

(21)

In the last step, we exploit a property of the matrix exponential. The exponential of diagonalizable matrices can be obtained
by exponentiating each entry on the main diagonal of the matrix of eigenvalues.

A.1.2. PRIOR COVARIANCE

For diagonalizable transition matrices of a linear time-invariant system Rome (1969) proposes an analytical solution for the
computation of the prior covariance based on the eigendecomposition of the transition matrix. Precisely, we can define a
new state vector w with covariance Σw

τ(t)

wτ(t) = ET zτ(t) Σw
τ(t) = ETΣ+

τ(t)E (22)

We further define D̃ as the matrix whose ij-th element is the sum of the i-th and j-th diagonal entry of
∑K
k=1 D

(k),

D̃ij =

K∑
k=1

D
(k)
ii +D

(k)
jj (23)

Let S be the transformed noise component,
S = ETGQGTE, (24)

then we can compute the covariance of w at time t with

Σw
t = (S⊙ exp(D̃(t− τ(t)))− S)⊘ D̃+Σw

τ(t) ⊙ exp(D̃(t− τ(t))) (25)

Mapping back to the space of z, we obtain for the prior covariance of z at time t

Σ−
t = EΣw

t E
T (26)



Modeling Irregular Time Series with Continuous Recurrent Units

A.2. CRU

A.2.1. PRIOR COVARIANCE

The integral in the prior covariance (Eqn. (8)) can be resolved analytically using matrix fraction decomposition (Axelsson &
Gustafsson, 2014). The idea of the method consists in computing the integral by solving a matrix valued ODE. We compute
the matrix exponential of the matrix B

B =

(
A GQGT

0 −AT

)
exp(B(t− τ(t))) =

(
M1 M2

0 M3

)
(27)

where M1, M2, M3 and 0 are of dimension M ×M . The prior covariance matrix at time t is then given by

Σ−
t =exp

(
A(t− τ(t))

)
Σ+
τ(t)exp

(
A(t− τ(t))

)T
+M2exp

(
A(t− τ(t))

)T (28)

B. Approximations
In their work on RKNs, Becker et al. (2019) exploit assumptions on the structure of components of the Kalman filter to
simplify computation. In particular, they reduce the matrix inversion in the Kalman gain to elementwise operations. We also
exploit these approximations for the CRU. The following summarizes the approximations by Becker et al. (2019) and the
resulting simplified update equations. We refer to Becker et al. (2019) for detailed derivations.

Observation Model The dimension of the latent state M is twice of the dimension of the latent observation space D,
i.e. M = 2D. The observation model links both spaces and is fixed at H = [ID,0D] where ID denotes the D-dimensional
identity matrix and 0D the D-dimensional zero matrix. The idea is to split the latent state into an observed part, which
extracts information directly from the observations and a memory part, which encodes features inferred over time.

State Covariance The covariance matrix of the latent state Σt is built of diagonal blocks Σu
t ,Σ

l
t,Σ

s
t , whose vectors of

diagonal entries are denoted by σut ,σ
l
t,σ

s
t , respectively.

Σt =

(
Σu
t Σs

t

Σs
t Σl

t

)
(29)

The observation part of the latent state is thus only correlated with the corresponding memory part. The argument behind
this strong assumption is that the free parameters in the neural encoder and decoder suffice to find a representation where the
above limitations hold.

Simplified Update Step The Kalman gain simplifies to a structure with two diagonal blocks of size D ×D, i.e. Kt =[
Ku
t Kl

t

]T
. The vector of diagonal entries kut , klt can be computed with element wise division (⊘)

kut = σu,−t ⊘ (σu,−t + σobs
t ) klt = σs,−t ⊘ (σu,−t + σobs

t ) (30)

The posterior mean update then simplifies to

µ+
t = µ−

t +

[
kut
klt

]
⊙

[
yt − µu,−t
yt − µu,−t

]
(31)

where µut and µlt denote the upper and lower part of the prior mean respectively, i.e. µ−
t =

[
µu,−t µl,−t

]T
. The update of

the posterior covariance reduces to

σu,+t = (1m − kut )⊙ σu,−t (32)
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σs,+t = (1m − kut )⊙ σs,−t (33)

σl,+t = σl,−t − klt ⊙ σs,−t (34)

where ⊙ denotes elementwise multiplication.

C. Log-likelihood Results
To assess uncertainty computation in the presence of high observation noise, we report negative log-likelihood on pendulum
regression. Tab. 3 shows Gaussian negative loglikelihood (NLL) on test data for methods providing uncertainty estimates.
As for MSE results, CRU outperforms baseline models.

Table 3. Test Gaussian NLL (mean ± std) on pendulum regression.
Model Regression

GRU -4.78 ± 0.48
GRU-∆t -5.45 ± 0.09
RKN -4.38 ± 0.82
RKN-∆t -5.26 ± 0.24
f-CRU -5.46 ± 0.11
CRU -5.49 ± 0.05

D. Implementation Details
Training In all experiments, we train each model for 100 epochs using the Adam optimizer (Kingma & Ba, 2015).
Reported MSE and Gaussian NLL results are averages over 5 runs. We used a batch size of 50 for the pendulum and USHCN
data and a batch size of 100 for Physionet. For USHCN and Physionet, we split the data into 80% train and 20% test and
used 25% of the train set for validation. For the pendulum experiments, we generated 2 000 training sequences, 1 000
validation sequences and report results on a hold-out set of 1 000 sequences. The folds are reused for each compared model.

Hyperparameters and Architecture Here, we summarize hyperparameter choices made in the empirical study with
details provided in Appendices D.1 to D.8. We used the following procedure to select latent state size, number of layers,
number of hidden units, and training parameters: For GRU-D, latent ODE and ODE-RNN, we use the choices optimized
by Rubanova et al. (2019) in their Physionet setup. For mTAND, we keep the hyperparameters chosen by the authors on
Physionet and adjust the number of hidden units to control for model size. We then designed the encoder and decoder of the
CRU such that the CRU has roughly the same number of parameters as the latent ODE model. We proceed analogously
for hyperparameters of GRU-ODE-B: We employ the hyperparameter settings optimized by the authors on their USHCN
experiment. We keep the baseline architectures fixed across experiments, except for the latent state size, which we chose
separately for each experiment according to the dimensionality of the input and previous work. See Appendix D.8 for the
latent state size of each experiment, which is shared across architectures. For the pendulum image set, encoder, decoder and
latent space sizes of CRU follow the RKN (Becker et al., 2019) baseline on this set. To scale the methods based on neural
ODEs to images, we also embedded ODE-RNN, latent ODE and GRU-ODE-B into the same encoder-decoder structure as
CRU. Similarly, the GRU baseline is augmented with the same encoder and decoder. This was also done in the pendulum
experiments of Becker et al. (2019) and more details and justification can be found there. The transformer method, mTAND,
scales to high-dimensional input and we thus apply it directly on the raw images. We found GRU-ODE-B unstable when
trained jointly with an encoder and decoder on the image interpolation task and therefore trained it directly on the raw
images.

D.1. mTAND

We use a hidden state size of M = 30 for pendulum, M = 20 for Physionet, and M = 10 for USHCN. We use a learning
rate of 0.001 and 64 reference time points as in Shukla & Marlin (2021). For interpolation and extrapolation, we train
mTAND-Full with 10 hidden units in encoder and decoder resulting in a model that has still three times as many parameters
as CRU. For the per-time-point regression task, we use mTAND-Enc with 10 hidden units.
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D.2. RKN

We use a hidden state size of M = 30 for pendulum, M = 20 for Physionet, and M = 10 for USHCN. For the pendulum
experiment, we keep the architecture and hyperparameter choices from Becker et al. (2019). We employ the same choices
for CRU across all experiments, which are detailed in Appendix D.8. For the time-aware variant, RKN-∆t, we feed
the time gaps as additional input to the transition net that learns weights ατ(t) for the basis matrices (Eqn. (16)), i.e.
ατ(t) = wψ([t− τ(t),µ+

τ(t)]).

D.3. GRU

To make parameter sizes comparable, we use a hidden state size of 75 for GRU and GRU-∆t on all datasets. To test GRU
on image data, we embed a GRU cell in the encoder-decoder architecture employed for RKN and CRU as in Becker et al.
(2019). For GRU-∆t, the time gap between observations is concatenated to the input of the GRU cell.

D.4. GRU-D

We use a hidden state size ofM = 30 for pendulum, M = 20 for Physionet, andM = 10 for USHCN. The other parameters
are fixed across experiments. As described previously, we use hyperparameter and architecture choices by Rubanova et al.
(2019), which result in 100 hidden units, a learning rate of 0.01 with a decay factor of 0.999.

D.5. Latent ODE

We use a latent state size of M = 30 for pendulum, M = 20 for Physionet, and M = 10 for USHCN. The other parameters
are fixed across experiments. We used the latent ODE with an ODE-RNN recognition model. The recognition model has a
hidden state of 40 dimensions, an ODE function with 3 layers and 50 hidden units and a GRU update with 50 hidden units.
The ODE function of the generative model has 3 layers with 50 hidden units. We train the method with a learning rate of
0.01 and a decay rate of 0.999.

D.6. ODE-RNN

We use a hidden state size of M = 30 for pendulum, M = 20 for Physionet and M = 10 for USHCN. The other parameters
are fixed across experiments. We use the hyperparameter choices proposed by Rubanova et al. (2019). Notably, we use 100
hidden units and a learning rate of 0.01 with a decay rate of 0.999.

D.7. GRU-ODE-B

We use a latent state size of M = 30 for pendulum, M = 20 for Physionet and M = 10 for USHCN. The other parameters
are fixed across experiments. As outlined above, we keep the hyperparameters determined by the authors in their USHCN
experiment. That is to say, we use 50 hidden units, a learning rate of 0.001, weight decay of 0.0001, and a dropout rate of
0.2. The fprep function of the GRU-Bayes component has 10 hidden units, the fobs mapping has 25 hidden units.

D.8. CRU and f-CRU

We trained CRU with an Adam optimizer (Kingma & Ba, 2015) on the Gaussian negative log-likelihood (Eqn. (18)) for
Physionet, USHCN and pendulum angle prediction and on the loss of Eqn. (19) for the pendulum interpolation task. On
the validation set in the Pendulum interpolation experiment, we found a learning rate of 0.001 to work best for CRU and
a slightly higher learning rate of 0.005 for f-CRU. We kept this choice for all datasets throughout all other experiments.
(Through hyperparameter optimization on each dataset separately, the experimental results might improve further.) Gradient
clipping was used on USHCN and Physionet.

The initial conditions for the latent state are set to µ−
t0 = 0 and Σ−

t0 = 10 ·I. We found an initialization of the transitions such
that the prior mean is close to the posterior mean of the previous time step crucial for performance and stability. Thus, we
initialized the basis matrices {A(k)}k=1...K filled with zeros to start off with a prediction step of µ−

t′ = Iµ+
t . Equivalently,

we chose E = I and D(k) = 1e−5 · I,∀k = 1...K for the f-CRU initialization. Missing features are zero-encoded and
masked out in the NLL and MSE computation. For all experiments, we used a transition net wψ with one linear layer and
softmax output.
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The CRU architecture used in each experiment is explicitly summarized next.

D.8.1. PENDULUM INTERPOLATION

Continuous-discrete Kalman filter

• Latent observation dimension: 15

• Latent state dimension: 30

• Number of basis matrices: 15

• Bandwidth (for CRU): 3

Encoder: 2 convolution, 1 fully connected, linear output

• Convolution, 12 channels, 5 × 5 kernel, padding 2, ReLU, max pooling with 2 × 2 kernel and 2 × 2 stride

• Convolution, 12 channels, 3 × 3 kernel, padding 1, 2 × 2 stride, ReLU, max pooling with 2 × 2 kernel and 2 × 2 stride

• Fully-connected, 30 neurons, ReLU

• Linear output for latent observation; linear output, elu+1 activation for latent observation variance

Decoder output sequence oT : 1 fully-connected, 3 Transposed convolution

• Fully connected, 144 neurons, ReLU

• Transposed convolution, 16 channels, 5 × 5 kernel, padding 2, 4 × 4 stride, ReLU

• Transposed convolution, 12 channels, 3 × 3 kernel, padding 1, 2 × 2 stride, ReLU

• Transposed convolution, 1 channel, 2 × 2 kernel, padding 5, 2 × 2 stride, sigmoid activation

D.8.2. PENDULUM REGRESSION

We used the same encoder and Kalman filter architecture as in the pendulum interpolation task.

Decoder output sequence oT : 1 fully-connected, linear output

• Fully connected, 30 neurons, Tanh

• Linear output

Decoder output variance σoutT : 1 fully-connected, linear output

• Fully connected, 30 neurons, Tanh

• Linear output, elu+1 activation

D.8.3. USHCN

Continuous-discrete Kalman filter

• Latent observation dimension: 5

• Latent state dimension: 10

• Number of basis matrices: 15

• Bandwidth (for CRU): 3
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Encoder: 3 fully connected, linear output

• Fully connected, 50 neurons, ReLU, layer normalization

• Fully connected, 50 neurons, ReLU, layer normalization

• Fully connected, 50 neurons, ReLU, layer normalization

• Linear output for latent observation; linear output, square activation for latent observation variance

Decoder output sequence oT : 3 fully connected, linear output

• Fully connected, 50 neurons, ReLU, layer normalization

• Fully connected, 50 neurons, ReLU, layer normalization

• Fully connected, 50 neurons, ReLU, layer normalization

• Linear output for latent observation; linear output, square activation for latent observation variance

Decoder output variance σoutT : 1 fully-connected, linear output

• Fully connected, 50 neurons, ReLU, layer normalization

• Linear output, square activation

D.8.4. PHYSIONET

We used the same encoder and decoder architecture as in the USHCN experiment.

Continuous-discrete Kalman filter

• Latent observation dimension: 10

• Latent state dimension: 20

• Number of basis matrices: 20

• Bandwidth (for CRU): 10

E. Data Preprocessing
E.1. USHCN

Daily weather records can be downloaded at https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/. We
remove observations with a bad quality flag as in Brouwer et al. (2019). However, unlike Brouwer et al. (2019) we are
interested in long term extrapolation and thus, select a different time window of four years from 1990 to 1993. We keep only
centers that start reporting before 1990 and end reporting after 1993. We split the remaining 1168 centers into 60% train
20% validation and 20% test set. For each set, we remove measurements that are more than four standard deviations away
from the set mean and normalize each feature to be in the [0,1] interval individually per set. For the baselines, we apply the
time scaling strategies of previous work: we scale timestamps to be in the [0,1] for ODE-RNN, latent ODE and GRU-D as
in Rubanova et al. (2019) and feed time points unprocessed to GRU-ODE-B as in Brouwer et al. (2019). For CRU, we scale
the timestamps, which unit is days, by a factor of 0.3.

E.2. Physionet

The data is publicly available for download at https://physionet.org/content/challenge-2012/1.0.0/.
We preprocess the data as in Rubanova et al. (2019): We discard four general descriptors reported once at admission (age,
gender, height, ICU-type) and keep only the remaining set of 37 time-variant features. Time points are rounded to 6 minutes
steps. We split the patients into 60% train, 20% validation and 20% test set. Lastly, we normalize each feature to be in the
[0,1] interval separately per set. To mimic the training routine proposed by the authors, we scale the timestamps to the [0,1]
interval for GRU-D, ODE-RNN and latent ODE, leave the timescale unchanged for GRU-ODE-B, and multiply timestamps
by 0.2 for CRU.

https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/
https://physionet.org/content/challenge-2012/1.0.0/
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F. Computing Infrastructure
Models were trained on one Nivida TU102GL Quatro RTX 6000/8000 with 40 physical Intel Xeon Gold 6242R CPU.

G. Source Code
Our code is available at https://github.com/boschresearch/Continuous-Recurrent-Units.

H. Sample Trajectory

Figure 6. f-CRU

Figure 7. Test trajectory for the pendulum interpolation task: The f-CRU predicts images precisely despite irregular intervals between
image frames.

https://github.com/boschresearch/Continuous-Recurrent-Units

