
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Relational graph convolutional networks
a closer look
Thanapalasingam, T.; van Berkel, L.; Bloem, P.; Groth, P.
DOI
10.7717/PEERJ-CS.1073
Publication date
2022
Document Version
Final published version
Published in
PeerJ Computer Science
License
CC BY

Link to publication

Citation for published version (APA):
Thanapalasingam, T., van Berkel, L., Bloem, P., & Groth, P. (2022). Relational graph
convolutional networks: a closer look. PeerJ Computer Science, 8, [e1073].
https://doi.org/10.7717/PEERJ-CS.1073

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:31 Aug 2023

https://doi.org/10.7717/PEERJ-CS.1073
https://dare.uva.nl/personal/pure/en/publications/relational-graph-convolutional-networks(6d0ef13b-00a2-4e38-8b1a-230933ab51e6).html
https://doi.org/10.7717/PEERJ-CS.1073

Relational graph convolutional networks: a
closer look
Thiviyan Thanapalasingam1,2, Lucas van Berkel1, Peter Bloem2 and
Paul Groth1

1 University of Amsterdam, Amsterdam, Noord Holland, Netherlands
2 VU University Amsterdam, Amsterdam, Noord Holland, Netherlands

ABSTRACT
In this article, we describe a reproduction of the Relational Graph Convolutional
Network (RGCN). Using our reproduction, we explain the intuition behind the
model. Our reproduction results empirically validate the correctness of our
implementations using benchmark Knowledge Graph datasets on node classification
and link prediction tasks. Our explanation provides a friendly understanding of the
different components of the RGCN for both users and researchers extending the
RGCN approach. Furthermore, we introduce two new configurations of the RGCN
that are more parameter efficient. The code and datasets are available at https://
github.com/thiviyanT/torch-rgcn.

Subjects Artificial Intelligence, Data Mining and Machine Learning, World Wide Web and Web
Science
Keywords Relational graphs, Graph convolutional network, Representation learning, Link
prediction, Node classification, Knowledge graphs

INTRODUCTION
Knowledge Graphs are graph-structured knowledge bases, representing entities and
relations between pairs of entities (Nickel et al., 2016). They have become critical for large-
scale information systems for tasks ranging from question answering to search (Noy et al.,
2019). The ability to perform statistical relational learning over such data enables new
links, properties, and types to be inferred (Nickel et al., 2016), and performing this at a large
scale is fundamental for the advancement of the Semantic Web. Additionally, models that
can be applied to Knowledge Graphs can also be applied to Relational Database
Management Systems, because there is a one-to-one mapping between the two (Bornea
et al., 2013).

Relational Graph Convolution Networks (RGCNs) (Schlichtkrull et al., 2018) are
message passing frameworks for learning valuable latent features of relational graphs.
RGCNs have become widely adopted for combining Knowledge Graphs with machine
learning applications (the original article has received over 1,200 citations) for their uses
include Knowledge Graph refinement (Paulheim, 2016), soft-query answering (Daza &
Cochez, 2020), and logical reasoning (Sinha et al., 2020). The original reference code for the
RGCN is built on old platforms that are no longer supported. Furthermore, other
reproductions (Wang et al., 2020; Fey & Lenssen, 2019) are incomplete (At the time of
writing, we are aware of additional implementations in PyTorch Geometric (Fey &
Lenssen, 2019), which reproduces only the RGCN layer, and in Deep Graph Library (Wang

How to cite this article Thanapalasingam T, van Berkel L, Bloem P, Groth P. 2022. Relational graph convolutional networks: a closer look.
PeerJ Comput. Sci. 8:e1073 DOI 10.7717/peerj-cs.1073

Submitted 1 February 2022
Accepted 28 July 2022
Published 2 November 2022

Corresponding author
Thiviyan Thanapalasingam,
t.singam@uva.nl

Academic editor
Ana Maguitman

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.1073

Copyright
2022 Thanapalasingam et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/thiviyanT/torch-rgcn
https://github.com/thiviyanT/torch-rgcn
http://dx.doi.org/10.7717/peerj-cs.1073
mailto:t.�singam@�uva.�nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1073
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

et al., 2020), which provides the node classification and link prediction model. However,
they are not focused on scientific reproducibility). Existing descriptions of the model are
are mathematically dense, with little exposition, and assume prior knowledge about
geometric deep learning.

We reproduced the model in PyTorch, a widely-used framework for deep learning
(Paszke et al., 2019). Using our reproduction, we provide a thorough and friendly
description for a wider audience. The contributions of this article are as follows:

1. A reproduction of the experiments as described in the original article by Schlichtkrull
et al. (2018);

2. A new publicly available PyTorch implementation of the model called Torch-RGCN;

3. A description of the subtleties of the RGCN that are crucial for its understanding, use and
efficient implementation;

4. New configurations of the model that are parameter efficient.

The rest of the article is organized as follows. We begin with an overview of the related
work in “Literature review”. Then, we introduce the RGCN in “Relational graph
convolutional network”, followed by a description of our re-implementation (Torch-
RGCN). We then proceed to describe the reproduction of node classification (Downstream
task: node classification) and link prediction models with associated experiments
(Downstream task: link prediction). These sections include the model variants mentioned
above. In the “Conclusion”, we discuss the lessons learned from reproducing the original
article and the implications of our findings. Finally, we discuss our results and conclude.

LITERATURE REVIEW
The ability to reproduce published work is the essence of scientific research. In machine
learning research, reproducibility is crucial for three primary reasons: (1) Validating and
verifying methods during review cycles, (2) reproducing implementations to be used as
baselines, and (3) reproducing and improving previously published work. However,
reproducibility of machine learning research methods still remains to be challenging for
various reasons, such as modern research outgrowing older methods for communicating
research results (Tatman, VanderPlas & Dane, 2018) and the lack of rigorous standards for
reproducibility in the field (Heil et al., 2021). Introducing standards for machine learning
reproducibility would make it easier for assessing and comparing which features are
required to fully support reproducibility (Isdahl & Gundersen, 2019). Tatman, VanderPlas
& Dane (2018) propose a simple taxonomy for describing reproducibility of machine
learning research articles into three categories, where the highest category describes work
that provides the code, data, and full computational environment necessary to reproduce
the results of the study. Similarly,Heil et al. (2021) propose standards for machine learning
in the life sciences based on data, model and code publication, programming best practices
and workflow automation. Ideally, reproduction is fully automated, often referred to as
out-of-box reproducibility, allowing researchers to reproduce computational methods with
little to no effort (Isdahl & Gundersen, 2019; Heil et al., 2021).

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 2/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Machine learning over Knowledge Graphs involves learning low-dimensional
continuous vector representations, called Knowledge Graph Embeddings (KGEs).
Commonly, KGE models are developed and tested using link prediction benchmark
datasets. Two key examples of KGEs are TransE (Bordes et al., 2013), in which relations are
translations operating on the low-dimensional vector representations of entities, and
DistMult (Yang et al., 2015) where the likelihood of a triple is quantified by a multiplicative
scoring function. Similarly, RGCNs can be used to embed Knowledge Graphs. However,
RGCNs are different from traditional link predictors, such as TransE and DistMult,
because RGCNs explicitly use nodes’ neighborhood information for learning vector
representations for downstream tasks (Battaglia et al., 2018). Incorporating logical
background knowledge into KGE models allow generalisation to relations not seen in the
training set (Donadello & Serafini, 2019). On the other hand, RGCNs strictly operate under
a transductive setting where entities and relations in the test set must be available during
training.

Besides RGCNs, there are other graph embedding models for relational data. Relational
Graph Attention Networks use self-attention layers to learn attention weights of edges in
relational graphs but yields similar, or in some cases poor, performance when compared to
the RGCN (Busbridge et al., 2019). Heterogenous Information Networks (HINs) exploit
meta-paths (a sequence consisting of node types and edge types for modelling particular
relationships) to low-dimensional representation of networks (Huang & Mamoulis, 2017).
HINs do not use message passing and their expressivity depends on the selected meta-
paths.

Beyond node classification and link prediction, RGCNs have other practical
applications. Daza & Cochez (2020) have explored RGCNs for soft-query answering by
embedding queries structured as small relational graphs. RGCNs can facilitate zero-shot
entity recognition by transferring the knowledge obtained from familiar entities to
unfamiliar ones (Chen et al., 2020). Mylavarapu et al. (2020) have shown that spatial
information for dynamic scene understanding can be encoded as relations between objects
using RGCNs. RGCNs can complement traditional machine learning approaches by
reasoning on contextual information (Hu et al., 2021). Furthermore, RGCNs have
contributed to the field of natural language processing by improving dependency tree
extraction (Guo et al., 2021).

In this section, we discussed a few examples of recent works that highlight the
prevalence of RGCNs and thus, show that RGCNs are still relevant today. We refer the
reader to Ruffinelli, Broscheit & Gemulla (2020) and Rossi et al. (2021) for a comprehensive
survey of the state of the art KGE models, and Wu et al. (2021) for an overview of graph
representation learning frameworks.

RELATIONAL GRAPH CONVOLUTIONAL NETWORK
Schlichtkrull et al. (2018) introduced the RGCN as a convolution operation that performs
message passing on multi-relational graphs. In this section, we are going to explain how
Graph Convolution Networks operate on undirected graphs (Kipf & Welling, 2017) and

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 3/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

how they can be extended for relational graphs. We will describe message passing in terms
of matrix multiplications and explain the intuition behind these operations.

Message passing
We will begin by describing the basic Graph Convolutional Network (GCN) layer for
directed graphs1. This will serve as the basis for the RGCN in “Extending GCNs for
multiple relations”.

The GCN (Kipf & Welling, 2017) is a graph-to-graph layer that takes a set of vectors
representing nodes as input, together with the structure of the graph and generates a new
collection of representations for nodes in the graph. A directed graph is defined as
G ¼ ðV; EÞ, where V is a set of vertices (nodes) and hi; ji 2 E is a set of tuples indicating the
presence of directed edges, pointing from node i to j. Equation (1) shows the message
passing rule of a single layer GCN for an undirected graph, G.

H ¼ r AXWð Þ; (1)

Here, X is a node feature matrix, W represents the weight parameters, and r is a non-
linear activation function. A is a matrix computed by row-normalizing2 the adjacency
matrix of the graph G. The row normalization ensures that the scale of the node feature
vectors do not change significantly during message passing. The node feature matrix, X,
indicate the presence or absence of a particular feature on a node.

Typically, more than a single convolutional layer is required to capture the complexity
of large graphs. In these cases, the RGCN layers are stacked one after another so that the
output of the preceeding RGCN layer Hðl�1Þ is used as the input for the current layer HðlÞ,
as shown in Eq. (2). In our work, we will use superscript l to denote the current layer.

HðlÞ ¼ r A Hðl�1Þ W
� �

; (2)

If the data comes with a feature vector for each node, these can be used as the input X for
the first layer of the model. If feature vectors are not available, one-hot vectors, of length N
with the non-zero element indicating the node index, are often used. In this case, the input
X becomes the identity matrix I, which can then be removed from Eq. (1).

We can rewrite Eq. (1) to make it explicit how the node representations are updated
based on a node’s neighbors:

hi ¼ r
X
j2NðiÞ

1
jNðiÞjxi

TW

2
4

3
5: (3)

Here, xi is an input vector representing node i, hi is the output vector for node i, and
N(i) is the collection of the incoming neighbors of i, that is the nodes j for which there is an

edge hj, ii in the graph. For simplicity, the bias term is left out of the notation but it is

usually included. We see that the GCN takes the average of i’s neighbouring nodes, and

then applies a weight matrixW and an activation r to the result. Multiplying xiTW by
1
jNij

1 The original Graph Convolutional Net-
work (Kipf & Welling, 2017) operates
over undirected graphs.

2 For undirected graphs, a symmetrically
normalized Laplacian matrix is used
instead (Kipf & Welling, 2017).

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 4/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

means that we sum up all the feature vectors of all neighboring nodes. This makes every
convolution layer permutation equivariant, and that is: if either the nodes (in A) are
permuted, then the output representations are permuted in the same way. Overall, this
operation has the effect of passing information about neighboring nodes to the node of
interest, i and is calledmessage passing. Message passing is graphically represented in Fig. 1
for an undirected graph, where messages from neighboring nodes (a − e) are combined to
generate a representation for node i. After message passing, the new representation of node
i is a mixture of the vector embeddings of neighboring nodes.

If a graph is sparsely connected, a single graph-convolution layer may suffice for a given
downstream task. Using more convolutional layers encourages mixing with nodes more
than 1-hop away, however it can also lead to output features being oversmoothed (Li, Han
& Wu, 2018). This is an issue as the embeddings for different nodes may be
indistinguishable from each other, which is not desirable.

In summary, GCNs perform the following two operations: (1) They replace each node
representation by the average of its neighbors, and (2) they apply a linear layer with a
nonlinear activation function r. There are two issues with this definition of the GCN. First,
the input representation of node i does not affect the output representation, unless the
graph contains a self-loop for i. This is often solved by adding self-loops explicitly to all
nodes. Second, only the representations of nodes that have incoming links to i are used in
the new representation of i. In the relational setting, we can solve both problems elegantly
by adding relations to the graph which we will describe in the next section.

Extending GCNs for multiple relations
In this section, we explain how the basic message passing framework can be extended to
relational graphs, such as Knowledge Graphs. We define a Knowledge Graph as a directed
graph with labelled vertices and edges. Formally, this graph can be defined as

Figure 1 A schematic diagram of message passing in a directed graph with six nodes. hi is a vector
that represents the node embedding of the node i (in orange). hðlÞi and hðlþ1Þ

i show the node embedding
before and after the message passing step, respectively. The neighboring nodes are labelled from a to e.

Full-size DOI: 10.7717/peerj-cs.1073/fig-1

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 5/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-1
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

G ¼ ðV; E;RÞ, whereR represents the set of edge labels (relations) and hs; r; oi 2 E is a set
of tuples representing that a subject entity s and an object entity o are connected by the
relation r 2 R.

The Relational Graph Convolutional Network extends graph convolutions to
Knowledge Graphs by accounting for the directions of the edges and handling message
passing for different relations separately. Equation (4) is an extension of the regular
message passing rule (Eq. (1)).

H ¼ r
XR
r¼1

ArXWr

 !
; (4)

where R is the number of relations, Ar is an adjacency matrix describing the edge
connection for a given relation r andWr is a relation-specific weight matrix. The extended
message passing rule defines how the information should be mixed together with
neighboring nodes in a relational graph. In the message passing step, the embedding is
summed over the different relations3. We can rewrite Eq. (4) to show how the node
representations are updated based a node’s neighbors connected via different relations:

hi ¼ r
XR
r

X
j2NrðiÞ

1
jNrðiÞj

xTi Wr

2
4

3
5; (5)

where NrðiÞ is the collection of the incoming neighbors of i with the relation r.
With the message passing rule discussed thus far, the problem is that for a given triple

hs, r, oi a message is passed from s to o, but not from o to s. For instance, for the triple
hAmsterdam, located_in, The_Netherlandsi it would be desirable to update both
Amsterdam with information from The_Netherlands, and The_Netherlands with
information from Amsterdam, while modelling the two directions as meaning different
things. To allow the model to pass messages in two directions, the graph is amended inside
the RGCN layer by including inverse edges: for each existing edge hs, r, oi, a new edge
ho; r0; si is added where r0 is a new relation representing the inverse of r. A second problem
with the naive implementation of the (R)GCN is that the output representation for a node i
does not retain any of the information from the input representation. To allow such
information to be retained, a self-loop hs; rs; si is added to each node, where rs is a new
relation that expresses identity. Altogether, if the input graph contains R relations, the
amended graph contains 2R + 1 relations: Rþ ¼ R [R0 [Rs. This is graphically
represented in Fig. 2 for a directed graph.

Reducing the number of parameters
We use Nin and Nout to represent the input and output dimensions of a layer, respectively.
While the GCN (Kipf & Welling, 2017) requires Nin � Nout parameters, relational message
passing uses Rþ � Nin � Nout parameters. In addition to the extra parameters required for
a separate GCN for every relation, we also face the problem that Knowledge Graphs do not
usually come with a feature vector representing each node. As a result, as we saw in the
previous section, the first layer of an RGCN model is often fed with a one-hot vector for

3 Since RGCN layers are stacked such that
the input of a layer is the output of the
previous layer, taking the sum over R
actually inflates the activations. However,
for two-layer networks this does not
seem to affect performance. For deeper
models, taking the mean over the rela-
tions rather than the sum may be more
appropriate.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 6/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

each node. This means that for the first layer Nin is equal to the number of nodes in the
graph.

In their work, Schlichtkrull et al. (2018) introduced two weight regularisation
techniques: (1) Basis Decomposition and (2) Block Diagonal Decomposition. We believe
that these matrix decomposition techniques help to reduce the number of parameters (i.e.,
increasing parameter efficiency) and thus, prevent the model from overfitting to the
training datasets. Figure 3 shows visually how the two different regularisation techniques
work.

Basis Decomposition does not create a separate weight matrix Wr for every relation.
Instead, the matrices Wr are derived as linear combinations of a smaller set of B basis
matrices Vb, which is shared across all relations. Each matrixWr is then a weighted sum of
the basis vectors with component weight Crb:

Wr ¼
XB
b¼1

CrbVb; (6)

Both the component weights and the basis matrices are learnable parameters of the
model, and in total they contain fewer parameters than Wr . With lower number of basis
functions, B, the model will have reduced degrees of freedom and possibly better
generalisation.

Figure 2 A diagram of message passing in a directed, labelled graph with six nodes. hi is a vector that
represents the node embedding of the node i (in orange). hðlÞi and hðlþ1Þ

i show the node embedding before
and after the message passing step, respectively. The neighboring nodes are labelled from a to e.

Full-size DOI: 10.7717/peerj-cs.1073/fig-2

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 7/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-2
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Block Diagonal Decomposition creates a weight matrix for each relation, Wr , by

partitioning Wr into
Nin

B
by

Nout

B
blocks, and then fixing the off-diagonal blocks to zeros

(shown in Fig. 3)4. This deactivates the off-diagonal blocks, such that only the diagonal
blocks are updated during training. An important requirement for this decomposition
method is that the width/height of Wr need to be divisible by B.

Wr ¼

Qr1 0 . . . 0
0 Qr2 0 0
..
.

0 . .
. ..

.

0 0 . . . QrB

2
6664

3
7775 (7)

Here, B represents the number of blocks that Wr is decomposed into and Qrb are the
diagonal blocks containing the relation-specific weight parameters. Equation (7) shows
that taking the direct sum of Qr over all the blocks givesWr , which can also be expressed as
the sum of diagðQrbÞ over all the diagonal elements in the block matrix. The higher the
number of blocks b, the lower the number of trainable weight parameters for each relation,
Wr , and vice versa. Block diagonal decomposition is not applied to the weight matrix of the
identity relation rs, which we introduced in “Extending GCNs for multiple relations” to
add self-loops to the graph.

Figure 3 A simplified visualisation of the weight regularisation methods. Left: A weight matrix,Wr is
decomposed into two bases (B = 2). Bases are represented by a tensor V 2 RB�Nin�Nout and components
by matrix C 2 RRþ�B. Right: A different weight matrix, Wr , is decomposed into three blocks (B = 3).
Blocks are tensors Qrb 2 RB�Nin

B �Nout
B . Nin and Nout are the input and output dimensions of layer,

respectively. Full-size DOI: 10.7717/peerj-cs.1073/fig-3

4 The off-diagonal blocks are Nin
B by Nout

B
matrices containing only zeros. In Eq.
(7), we present these zeroed blocks sim-
ply with 0.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 8/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-3
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

TORCH-RGCN
The original implementation of the RGCN by Schlichtkrull et al. (2018) was written using
two different differentiable programming frameworks, Theano 0.9 (Al-Rfou et al., 2016)
and TensorFlow 1.4 (Abadi et al., 2016)5. Both frameworks have become obsolete in the
past 2 years. Therefore, we have reproduced the RGCN using PyTorch (Paszke et al., 2019).
We will refer to our implementation as Torch-RGCN and the original implementation by
Schlichtkrull et al. (2018) as TensorFlow-RGCN (TF-RGCN). Our RGCN implementation
is available at https://github.com/thiviyanT/torch-rgcn.

In this section, we will describe how we implemented the Relational Graph
Convolutional Network. We begin by introducing crucial concepts for the
implementation.

Einstein summation
Message passing requires manipulating high-dimensional matrices and tensors using
many different operations (e.g., transposing, summing, matrix-matrix multiplication,
tensor contraction). We will use Einstein summation to express these operations concisely.

Einstein summation (einsum) is a notational convention for simplifying tensor
operations (Kuptsov, 2022). Einsum takes two arguments: (1) an equation6 in which
characters identifying tensor dimensions provide instructions on how the tensors should
be transformed and reshaped, and (2) a set of tensors that need to be transformed or
reshaped. For example, einsum (ik; jk ! ij;A;B) represents the following matrix
operation:

Cij ¼
X
k

Aik � Bjk; (8)

The general rules of an einsum operation are that indices which are excluded from the
result are summed out, and indices which are included in all terms are treated as the batch
dimension. We use einsum operations in our implementation to simplify the message
passing operations.

Sparsity
Since many graphs are sparsely connected, their adjacency matrices can be efficiently
stored on memory as sparse tensors. Sparse tensors are memory efficient because, unlike
dense tensors, sparse tensors only store non-zero values and their indices. We make use of
sparse matrix multiplications7. For sparse matrix operations on GPUs, the only
multiplication operation that is commonly available is multiplication of a sparse matrix
S by a dense matrix D, resulting in a dense matrix. We will refer to this operation as spmm
(S, D). For our implementation, we endeavour to express the sparse part of the RGCN
message passing operation (Eq. (4)), including the sum over relations, in a single sparse
matrix multiplication.

5 TensorFlow 2 is not backward compa-
tible with TensorFlow 1 code.

6 We use a notation that maps directly to
the way einstein summation is used in
code, rather than the standard notation.

7 Recent advances in CUDA implementa-
tions have made it possible to perform
computations involving sparse matrix
multiplications to run on the GPU.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 9/33

https://github.com/thiviyanT/torch-rgcn
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Stacking trick
Using nested loops to iteratively pass messages between all neighboring nodes in a large
graph would be very inefficient. Instead, we use a trick to efficiently perform message
passing for all relations in parallel.

Edge connectivity in a relational graph is represented as a three-dimensional adjacency
tensor A 2 RRþ�N�N , where N represents the number of nodes and Rþ represents the
number of relations. Typically, message passing is performed using batch matrix
multiplications as shown in Eq. (4). However, at the time of writing, batch matrix
operations for sparse tensors are not available in most Deep Learning libraries. Using
spmm is the only efficient operation available, so we stack adjacency matrices and
implement the whole RGCN in terms of this operation.

We augment A by stacking the adjacency matrices corresponding to the different
relations Ar vertically and horizontally into Av 2 RðNþRþÞ�N and Ah 2 RN�ðNþRþÞ,
respectively.

Av ¼

A1

A2

..

.

A10

A20

..

.

As

2
66666666664

3
77777777775

(9)

Ah ¼ A1 A2 � � � A10 A20 � � � As½ � (10)

Here, �½ � represents a concatenation operation, and Av and Ah are both sparse matrices.
By stacking Ar either horizontally or vertically, we can perform message passing using
sparse matrix multiplications rather than expensive dense tensor multiplications. Thus,
this trick helps to keep the memory usage low.

Algorithm 1 shows how message passing is performed using a series of matrix
operations. All these are implementations of the same operation, but with different
complexities depending on the shape of the input. In Theorem 1 (see the Appendix), we
prove that the the stacked formulation is equivalent to the original RGCN formulation.

1. If the inputs X to the RGCN layer are one-hot vectors, X can be removed from the
multiplication. The featureless message passing simply multiplies A with W, because
the node feature matrix X is not given. Note that X, in this case, can also be modelled
using an identity matrix I. However, since AW = AIW, we skip this step to reduce
computational overhead.

2. In the horizontal stacking approach, X multiplied with W. This yields the XW tensor,
which is then reshaped into a NRþ � N matrix. The reshaped XW matrix is then
multiplied with Ah using spmm.

3. In the vertical stacking approach, the X is mixed with Av using spmm. The product is
reshaped into a tensor of dimension Rþ � N � N . The tensor AX is then multiplied with
W.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 10/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Any dense/dense tensor operations is implemented with the einsum operation. For
reasons highlighted in “Sparsity” it is desirable to construct Ar as a sparse tensor. However,
in PyTorch (Paszke et al., 2019) sparse/dense operations only allow multiplication of
sparse matrix by dense matrix. We accept this as a limitation of the current version of
PyTorch. To circumvent this issue, we use the stacking trick to construct Ar as a sparse
matrix and use the spmm (S, D) operation. Thus, the stacking trick is a memory efficient
operation for the message passing operation in the RGCN layers.

Any dense/dense tensor operations can be implemented with einsum, but in the current
version of PyTorch sparse/dense operations only allow multiplication of sparse matrix by
dense matrix. Therefore, the stacking trick provides a memory efficient way to perform
message passing operation in the RGCN layers (see Sparsity and Stacking trick). The
vertical stacking approach is suitable for low dimensional input and high dimensional
output, because the projection to low dimensions is done first. While the horizontal
stacking approach is good for high dimensional input and low dimensional output as the
projection to high dimension is done last. These matrix operations are visually illustrated
in Fig. 4.

Thus far, we focused on how Relational Graph Convolutional layers work and how to
implement them. As mentioned in “Literature review”, RGCNs can be used for many
downstream tasks. Now, we will discuss how these graph convolutional layers can be used
as building blocks in larger neural networks to solve two downstream tasks implemented
in the original RGCN article (Schlichtkrull et al., 2018): node classification and link

Algorithm 1: Message passing layer.

Input: A, r, [X]

Result: H

if featureless then

x (einsum(ni, io → no, Ah, W)

H (r (x)

else

if horizontally stacked then

x (einsum(ni, rio → rno, X, W)

reshape x into a matrix with the dimensions NR+ × Nout

x (spmm(Ah, x)

else

x (spmm(Av, X)

reshape x into a tensor with the dimensions R+ × N × Nin

x (einsum(rio, rni → no, W, x)

end

H (r (x)

end

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 11/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

prediction. In the next two sections, we detail the model setup, our reproduction
experiments and new configurations of the models. We begin with node classification.

DOWNSTREAM TASK: NODE CLASSIFICATION
In the node classification task, the model is trained under a transductive setting which
means that the whole graph, including the nodes in the test set, must be available during
training, with only the labels in the test set withheld. The majority of the nodes in the graph
are unlabelled and the rest of the nodes are labelled (we call these target nodes). The goal is
to infer the missing class information, for example, that Amsterdam belongs to the class
City.

Model setup
Figure 5 shows the node classification models described in (Schlichtkrull et al., 2018), using
a two-layer model. Full-batch training is used for training the node classification model,
meaning that the whole graph is represented in the input adjacency matrix A for the
RGCN. The input is the unlabeled graph, the output are the class predictions and the true
predictions are used to train the model. The first layer of the RGCN is ReLU activated and
it embeds the relational graph to produce low-dimensional node embeddings. The second
RGCN layer further mixes the node embeddings. Using softmax activation the second
layer generates a matrix with the class probabilities, Y 2 RN�C, and the most probable
classes are selected for each unlabelled node in the graph. The model is trained by
optimizing the categorical cross entropy loss:

L ¼ �
XY
i¼1

XC
c¼1

tic ln h
ðLÞ
ic ; (11)

Figure 4 A simplified visual representation of different message passing approaches: featureless-
message passing (top left), message passing using horizontally stacked adjacency matrices (bottom
left), and message passing using vertically stacked adjacency matrices (top right). The black �
indicates multiplication between dense tensors, which can be implemented with an einsum operator. The
green � refers to sparse-by-dense multiplication, for which the spmm operation is required. Black arrow
indicates tensor reshaping. Full-size DOI: 10.7717/peerj-cs.1073/fig-4

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 12/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-4
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

where Y is the set of labelled nodes, C represents the number of classes, tic is one-hot
encoded ground truth labels and hðLÞic represents node representations from the RGCN.
The last layer (L) of the RGCN is softmax-activated. The trained model can be used to infer
the classes of unlabelled nodes.

e-RGCN
In GCNs (Kipf & Welling, 2017), the node features X are represented by a matrix

X 2 RN�F , where N is the number of nodes and F is the number of node features. When
node features are not available, one-hot vectors can be used instead. An alternative
approach would be to represent the features with continuous values E 2 RN�D, where D is
the node embedding dimension.

In the GCN setting (Kipf & Welling, 2017), using one hot vectors is functionally very
similar to using embedding vectors: the multiplication of the one hot vector by the first
weight matrix W, essentially selects a row ofW, which then functions as an embedding of
that node. In the RGCN setting, the same holds, but we have a separate weight matrix for
each relation, so using one-hot vectors is similar to defining a separate node embedding for
each relation. When we feed the RGCN a single node embedding for each node instead, we
should increase the embedding dimension D to compensate.

Initial experiments showed that simply replacing the node features X with node
embeddings E8 results in a drop in performance on the node classification benchmark data.
We believe that the additional parameters from E gave the model more flexibility to overfit
to training data and thus leading to an overall performance drop on the test dataset. After
some experimentation, we ended up with the following model, which we call the
embedding-RGCN (e-RGCN). Its message passing rule is described in Eq. (12). The weight

Figure 5 An overview of the node classification model with a two-layer RGCN. Different colour (magenta, green, blue yellow, violet) is used to
highlight different entity types. Unlabelled entities are in grey. Full-size DOI: 10.7717/peerj-cs.1073/fig-5

8 Message passing rule:

H ¼ rð
PR

r¼1 ArEWrÞ.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 13/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-5
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

matrix is restricted to a diagonal matrix (with all off diagonal elements fixed to zero)9 and
then the product is multiplied by the adjacency matrix.

h ¼ r
XR
r¼1

Ar E diagðwrÞ
 !

; (12)

Here, E is the node embeddings broadcasted across all the relations R, wr is a vector
containing weight parameters for relation r. Here, diag(⋅) is a function that takes a vector

l 2 RQ as an input and outputs a diagonal matrix N 2 RQ�Q, where the diagonal elements
are elements from the original vector L.

Using a diagonal weight matrix improves parameter efficiency, while enabling
distinction between relations. We created a new node classification model, where the first
layer is an e-RGCN layer and the second layer is a standard RGCN (without regularisation)
that predicts class probabilities. This model provides competitive performance with the
RGCN, using only 8% of the parameters.

Node classification experiments
Datasets
We reproduce the node classification experiments using the benchmark datasets that were
used in the original article: AIFB (Bloehdorn & Sure, 2007), MUTAG (Debnath et al.,
1991), BGS (de Vries, 2013) and AM (de Boer et al., 2012). We also evaluate e-RGCN on the
same datasets. AIFB is a dataset that describes a research institute in terms of its staff,
research group, and publications. AM (Amsterdam Museum) is a dataset containing
information about artifacts in the museum. MUTAG is derived as an example dataset for
the machine learning model toolkit about complex molecules. The BGS (British Geological
Survey) dataset contains information about geological measurements in Great Britain.

Since the messages in a two-layer RGCN cannot propagate further than two hops,
we can prune away the unused nodes from the graph. This significantly reduces the
memory usage for large datasets (BGS & AM) without any performance deterioration. In
Theorem 2 (see Appendix), we mathematically show that any nodes that are more than k
hops away from the target nodes does not affect the outcome of the message passing. To
the best of our knowledge, this was first implemented in the DGL library (Wang et al.,
2020). For the AM and BGS datasets, the graph was pruned by removing any nodes that are
two hops away from the target nodes. Pruning significantly reduces the number of entities,
relations and edges and thus, lowers the memory consumption of the node classification
model, making it feasible to train it on a GPU with 12 GB of memory. Table 1 shows the
statistics for the node classification datasets. We use the same training, validation and test
split as in (Schlichtkrull et al., 2018).

Details
All node classification models were trained following (Schlichtkrull et al., 2018) using full-
batch gradient descent for 50 epochs. However, we used 100 epochs for e-RGCN on the
AM dataset. Glorot uniform initialisation (Glorot & Bengio, 2010) was used to initialise
parameters with a gain of

ffiffiffi
2

p
corresponding to the ReLU activation function. Kaiming

9 This is a special case of the block
decomposition with 1 × 1 blocks.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 14/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

initialization (He et al., 2015) was used to initialise the node embeddings in the e-RGCN
node classification model10. Basis decomposition was used for the RGCN-based node
classification11. All RGCN and e-RGCN models, except for the e-RGCN on the AM
dataset, were trained using a GPU.

Results

Table 2 shows the results of the node classification experiments in comparison to the
original RGCN article. Torch-RGCN achieves similar performances to TF-RGCN reported
in Schlichtkrull et al. (2018). We observed that the training times12 of the node
classification models largely depended on the size of the graph dataset. The CPU training
times varied from 45 s for the AIFB dataset to 20 min for the AM dataset. Since our
implementation makes use of GPU’s, we were able to run the Torch-RGCN models on a
GPU and train the model within a few minutes.

DOWNSTREAM TASK: LINK PREDICTION
We now turn towards the second task performed in the original article, multi-relational
link prediction. The aim is to learn a scoring function that assigns true triples high scores
and false triples low scores (Bordes et al., 2013), with the correct triple ranking the highest.
After training, the model can be used to predict which missing triples might be true, or
which triples in the graph are likely to be incorrect.

Table 1 Statistics about the node classification benchmark datasets.

Dataset AIFB MUTAG BGS* AM*

Entities 8,285 23,644 87,688 246,728

Relations 45 23 70 122

Edges 29,043 74,227 230,698 875,946

Labeled 176 340 146 1,000

Classes 4 2 2 11

Notes:
Number of entities, relations, edges and classes along with the number of labeled entities for each of the datasets. Labeled
denotes the subset of entities that have labels and entities are the nodes without any labels.
* Entities more than two hops away from the target label were pruned.

Table 2 Node classification accuracy for TF-RGCN, Torch-RGCN and e-RGCN.

Dataset Model accuracy (%)

TF-RGCN Torch-RGCN e-RGCN

AIFB 95.83 ± 0.62 95.56 ± 0.61 89.17 ± 0.28

AM 89.29 ± 0.35 89.19 ± 0.35 89.04 ± 0.25

BGS 83.10 ± 0.80 82.76 ± 0.89 81.72 ± 0.53

MUTAG 73.23 ± 0.48 73.38 ± 0.60 71.03 ± 0.58

Note:
Results for TF-RGCN were taken from the original article. These are averages over 10 runs, with standard deviations.

10 The gain parameter is taken from the
DGL implementation (Wang et al.,
2020). The original implementation
does not appear to apply a gain. This
choice does not seem to affect the clas-
sification performance.

11 40 bases for the AM & BGS. 30 bases for
MUTAG.

12 We measured the wall time of the
Python scripts from start to finish,
which includes training and evaluation
of the models.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 15/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Model setup
We follow the procedure outlined by Schlichtkrull et al. (2018). Figure 6 shows a schematic
representation of the link prediction model as described in the original article. During
training, traditional link predictors (Bordes et al., 2013; Yang et al., 2015) simultaneously
update node representations and learn a scoring function (decoder) that predicts the
likelihood of the correct triple being true. RGCN-based link predictors introduce
additional steps upstream.

We begin by sampling 30,000 edges from the graph using an approach called
neighborhood edge sampling (see Edge sampling). Then, for each triple we generate 10
negative training examples, generating a batch size of 330,000 edges in total. Node
embeddings E 2 RN�D are generated using a standard embedding layer and are used as an
input for the RGCN13. The RGCN performs message passing over the sampled edges and
generates mixed node embeddings. Finally, the DistMult scoring function (Yang et al.,
2015) uses the mixed node embeddings and relation embeddings to compute the likelihood
of a link existing between a pair of nodes. For a given triple hs, r, oi, the model is trained by
scoring all potential combination of the triple using the function:

f ðs; r; oÞ ¼
X
i

esreoð Þi ¼ x (13)

Here, es and eo are the corresponding node embedding of entities s and o, generated by
the RGCN encoder. r is a low-dimensional vector of relation r, which is generated by the
DistMult decoder. Relation embeddings R 2 RRþ�D are generated using a standard

Figure 6 A schematic visualisation of link prediction models. Edges are coloured (red and green) to indicate different edge labels. RGCN-based
encoders can be seen as an extension to traditional link predictors, such as DistMult (Yang et al., 2015) and TransE (Bordes et al., 2013). RGCNs
enrich the node representations used by these models by mixing them along the edges of the graph, before applying the score function. In this case,
removing the RGCN layers and the upstream edge sampling, recovers the original DistMult. In the last step, the vectors corresponding to entities and
relation are element-wise multiplied and the product x is summed. For a given triple hs, r, oi, the model produces a single scalar value x which
indicates how likely the triple is to be true. Full-size DOI: 10.7717/peerj-cs.1073/fig-6

13 In the original implementation, the
embeddings are implemented as affine
operation (i.e., biases are included) and
they are ReLU activated. We reproduce
this behaviour but it is not clear whether
this gives any benefits over simple,
unactivated embeddings (as used in the
e-rgcn).

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 16/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-6
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

embedding layer. As Schlichtkrull et al. (2018) highlighted in their work, the DistMult
decoder can be replaced by any Knowledge Graph scoring function.

Similar to previous work on link prediction (Yang et al., 2015), the model is trained
using negative training examples. For each observed (positive) triple in the training set, we
randomly sample 10 negative triples (i.e., we use a negative sampling rate of 10). These
samples are produced by randomly corrupting either the subject or the object of the
positive example (the probability of corrupting the subject is 50%). Binary cross entropy
loss14 is used as the optimization objective to push the model to score observable triples
higher than the negative ones:

L ¼ �
P

ðs;r;o;yÞ2T
y log lðf ðs; r; oÞÞ þ ð1� yÞ logð1� lðf ðs; r; oÞÞÞ; (14)

where T is the total set of positive and negative triples, l is the logistic sigmoid function,
and y is an indicator set to y = 1 for positive triples and y = 0 for negative triples. f(s, r, o)
includes entity embeddings from the RGCN encoder and relations embeddings from the
DistMult decoder.

Edge dropout
In their work, Schlichtkrull et al. (2018) apply edge dropout to the link prediction model
which acts as an additional regularisation method. This involves randomly selecting edges
and removing them from a graph. As described in “Relational graph convolutional
network”, for every edge in the graph inverse edges Ar0 and self-loops As are added within
the RGCN layer. Dropping edges after this step poses a potential data leakage issue because
inverse edges and self-loops of dropped edges will be included in the message passing step
and thus, invalidate the model performance. To circumvent this issue, edges are dropped
from a graph before feeding it into the RGCN.

Edge dropout is applied such that the dropout rates on the self-loopsRs are lower than
for the data edges R and inverse edges R0. One way to think about this that this ensures
that the message from a node to itself is prioritised over incoming messages from
neighboring nodes. In our implementation, we separate out As from A and then apply the
different edge dropout rates separately. The edge dropout is performed before row-wise
normalising A.

Edge sampling
Graph batching is required for training the RGCN-based link prediction model, because it
is computationally expensive to perform message passing over the entire graph due to the
large number of hidden units used for the RGCN15.

Schlichtkrull et al. (2018) sample an edge with the probability proportional to its weight.
In uniform edge sampling, equal weights are given to all the edges. However, in
neighborhood edge sampling, initial weights are proportional to the node degrees of vertices
connected to edges. Then as edges are being sampled, the weight of its neighboring edges is
increased and this increases the probability of these edges being sampled (Klusowski &
Wu, 2018). This sampling approach benefits link prediction because the neighboring edges
provide context information to deduce the existence of a relation between a given pair of

14 Schlichtkrull et al. (2018) multiply their
loss by 1

ð1þxÞjêj. x is the negative sam-
pling rate and jêj is the number of edges
sampled. We leave this term out of our
implementation, because it is a constant
and thus it would not affect the training.

15 Schlichtkrull et al. (2018) use a large
number of hidden units: 200 for FB15k
and WN18; 500 for FB15k-237. In the
node classification fewer hidden units
are required in the RGCN. This makes
the link prediction model more memory
demanding.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 17/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

entities. In contrast, uniform edge sampling assumes that all edges are independent of each
other, which is not applicable to Knowledge Graphs.

Link prediction experiments
As in the original article, the models are evaluated using Mean Reciprocal Rank (MRR)
and Hits@k (k = 1, 3 or 10). The Torch-RGCNmodel was trained for 7,000 epochs without
early stopping16. We monitored the training by evaluating the model at regular intervals
(every 500 epochs) using the validation dataset. Schlichtkrull initialisation (see Appendix)
was used to initialise all parameters in the link prediction models and in our reproductions.
Schlichtkrull et al. (2018) trained their models on the CPU. Our Torch-RGCN
implementation can be trained using GPU acceleration. Early stopping was not used. We
used the hyperparameters described in (Schlichtkrull et al., 2018).

Datasets
To evaluate link prediction, Schlichtkrull et al. (2018) used subsets of Freebase (FB-15k and
FB15k-237), and WordNet (WN18) (Bordes et al., 2013). We only use WN1817. WN18 is a
subset of WordNet, a graph which describes the lexical relations between words. To check
our reproduction, we also used FB-Toy (Ruffinelli, Broscheit & Gemulla, 2020) which was
not in the original article. FB-Toy is a dataset consisting of a subset of FB15k. In Table 3,
we show the statistics corresponding to these graph datasets.

Details
For link prediction, a single-layer RGCN with basis decomposition for WN18 and for FB-
Toy a two-layer RGCN with block diagonal decomposition is used. An L2 regularisation
penalty of 0.01 for the scoring function is applied. To compute the filtered link prediction
scores, triples that occur in the training, validation and test are filtered. The Torch-RGCN
model is trained on the WN18 and FB-Toy datasets using batched training. Edges are
randomly sampled from a Knowledge Graph using the neighborhood edge approach. A
total of 30,000 neighboring edges are randomly sampled at every epoch for the WN18
dataset (Schlichtkrull et al., 2018), and for FB-toy dataset, we sampled 300 neighboring
edges18. An edge dropout rate of 0.2 is applied for self-loops and 0.5 for data edges and
inverse edges. In our reproduction attempts, we have found that this approach enables the
model to perform better than uniform edge sampling. The RGCN is initialised using

Table 3 Statistics about link prediction benchmark datasets.

Dataset WN18 FB-Toy

Entities 40,943 280

Relations 18 112

Train edges 141,442 4,565

Val. edges 5,000 109

Test edges 5,000 152

Note:
Number of entities and relation types along with the number of edges per split for the three datasets.

16 Personal communication with the
author confirmed that early stopping
was not used in the original work.

17 The link prediction model was expen-
sive to train (3–5 days of training for a
single model). WN18 was sufficient to
establish reproduction.

18 We sampled only 300 edges because the
FB-toy dataset was roughly 100 times
smaller than the WN18 dataset (in
terms of number of nodes).

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 18/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Schlichtkrull normal initialisation (see Appendix), while the DistMult scoring function is
initialised using standard normal initialisation.

We follow the standard protocol for link prediction. See Ruffinelli, Broscheit & Gemulla
(2020) for more details. Some of the hyperparameters used in training were not detailed in
Schlichtkrull et al. (2018). To the furthest extent possible, we followed the same training
regime as the original article and code base, and we recovered missing hyperparameters.
The hyperparameters for all experiments are provided in documented configuration files
on https://github.com/thiviyanT/torch-rgcn.

Results
We verify the correctness of our implementation by reproducing the performance on a
small dataset (FB-Toy) and by comparing the statistics of various intermediate tensors in
the implementation with those of the reference implementation (https://github.com/
MichSchli/RelationPrediction). We selected a number of intermediate tensors in the link
prediction model in our implementation and the original implementation. Then, we
measured the statistics of the intermediate tensors. In Table 4 we report the statistics of the
intermediate tensors for TF-RGCN (original model) and Torch-RGCN (our
implementation) link prediction models. These results suggests that the parameters used
by both models came from a similar distribution and thus verified that they are one-to-one
replication.

After confirming that our reproduction is correct, we attempted to replicate the link
prediction results on the WN18 dataset19. Table 5 also shows the results of the link
prediction experiments carried out. Our Torch-RGCN implementation scored lower than
the TF-RGCN model and therefore, we were unable to duplicate the exact results reported
in the original article. The exact hyperparameters that Schlichtkrull et al. (2018) used in
their experiments were not publicly available. We believe that the discrepancies between
the Torch-RGCN scores and the TF-RGCN scores was caused as a result of using different
hyperparameter configurations.

Despite our best efforts, we were unable to reproduce the exact link prediction results
reported in the original article (Schlichtkrull et al., 2018). This is due to the multitude of
hyperparameters20, not all of which are specified in the article, and the long time required
to train the model, with runtimes of several days. We did however manage to show the
correctness of our implementation using a small-scale experiment. We consider this an
acceptable limitation of our reproduction, because the current training time of the RGCN
compared to the state of the art KGE models (Ruffinelli, Broscheit & Gemulla, 2020). A
Distmult embedding model can be trained in well under an hour on any of the standard
benchmarks, and as shown by Ruffinelli, Broscheit & Gemulla (2020), outperforms the
RGCN by a considerable margin. Thus, the precise link prediction architecture described
in Schlichtkrull et al. (2018) is less relevant in the research landscape.

c-RGCN
The link prediction architecture presented in Schlichtkrull et al. (2018) does not represent a
realistic competitor for the state of the art and is very costly to use on large graphs.

19 Runs on FB15k and FB15k-237 took
from 3 to 5 days to complete training.

20 There are at least 10 non-trivial hyper-
parameters: Number of Epochs, Learn-
ing Rate, Graph Batch Size, Negative
Sampling Rate, Number of RGCN lay-
ers, Dimension of RGCN layers, Weight
Decomposition Method, Number of
Blocks or number of basis functions,
Edge Dropout Rate, L2 regularisation
penalty for the scoring function.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 19/33

https://github.com/thiviyanT/torch-rgcn
https://github.com/MichSchli/RelationPrediction
https://github.com/MichSchli/RelationPrediction
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Table 4 Parameter statistics for intermediate products at various points in link prediction model for the FB-Toy dataset.

No. Intermediate tensors Tensor dimensions Parameter statistics

TF-RGCN Torch-RGCN

1 Node Embeddings: Initialisation 280 × 500 min −0.45209 −0.48939

max 0.45702 0.48641

mean −0.00004 0.00029

std 0.10697 0.10765

2 Node Embeddings: Output 280 × 500 min 0.0 0.0

max 0.47124 0.51221

mean 0.04318 0.04290

std 0.06301 0.06273

3 RGCN Layer 1: Block Initialisation for data edges and inverse edges† 224 × 100 × 5 × 5 min −1.38892 & −1.20551 −1.28504

max 1.47686 & 1.3872786 1.26404

mean 0.00007 & −0.00008 0.00001

std 0.27726 & 0.27692 0.27715

4 RGCN Layer 1: Block Initialisation for self-loops 500 × 500 min −1.23380 −1.20324

max 1.30949 1.16375

mean −0.00049 −0.00095

std 0.27716 0.27755

5 RGCN Layer 1: Output 280 × 500 min −2.58617 −2.75152

max 2.43774 2.63124

mean 0.02317 0.00799

std 0.51760 0.53759

6 DistMult: Relation Initialisation 112 × 500 min −4.12359 −3.97444

max 4.89700 3.95794

mean −0.00947 −0.00186

std 0.99675 0.99851

7 DistMult: Output 3,300 × 1 min −27.21030 −30.75097

max 27.0885849 25.89389

mean 0.03524 0.78507

std 7.75823 7.27595

Notes:
We report the minimum, maximum, mean and the standard deviation of the distributions.
† Schlichtkrull et al. (2018) used separate weight matrices for data edgesR and inverse edgesR0, resulting in two intermediate tensors with the dimensions 112 × 100 × 5 ×
5. Thus, we report the statistics for these two tensors.

Table 5 Mean reciprocal rank (MRR) and Hits@k (k = 1, 3 and 10) for link prediction using RGCN,
Torch-RGCN and c-RGCN.

Dataset Model MRR Hits@1 Hits@3 Hits@10

WN18 TF-RGCN 0.814 0.686 0.928 0.955

Torch-RGCN 0.749 0.590 0.908 0.939

c-RGCN 0.717 0.558 0.867 0.933

Note:
Triples from the truth set (train, validation and test set) have been filtered. Results for TF-RGCN was taken from the
original article.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 20/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Furthermore, a problem with the original RGCN link predictor is that we need high
dimensional node representations to be competitive with traditional link predictors, such
as DistMult (Yang et al., 2015), but the RGCN is expensive for high dimensions. However,
we do believe that the basic idea of message passing is worth exploring further in a link
prediction setting.

To show that there is promise in this direction, we offer a simplified link prediction
architecture that uses a fraction of the parameters of the original implementation
(Schlichtkrull et al., 2018) uses. This variant places a bottleneck architecture around the
RGCN in the link prediction model, such that the node embedding matrix E is projected
down to a lower dimension, C, and then the RGCN performs message propagation using
the compressed node embeddings. Finally, the output is projected up back to the original
dimension, D, and computes the DistMult score from the resulting high-dimensional node
representations. We call this encoding network the compression-RGCN (c-RGCN).
Figure 7 shows a schematic representation of the c-RGCN model. Equations (15) and (16)
show the message passing rule for the first and second layer of the c-RGCN encoder,
respectively. We selected a node embedding size of 128 and compressed it to a vector
dimension of 16. We also include a residual connection by including E in the second layer
of the c-RGCN. The residual connection allows the model, in principle, to revert back to
DistMult if the message passing adds no value. If all RGCN weights are set to 0, we recover
the original DistMult. The c-RGCN model can be trained on the GPU.

H1 ¼ r
XRþ

r¼1

A Wr fhðEÞ
 !

; (15)

where f ðXÞ ¼ XWh þ b with Wh 2 RC�D.

Figure 7 A schematic visualisation of c-RGCN based link prediction model. Here, the encoder has a bottleneck architecture. fh and gf are linear
layers. Prior to message passing fh compresses the input node embeddings, and then gf projects the mixed node embeddings back up to their original
dimensions. The red arrow indicates the residual connection. All edges from the training set are used (i.e., edge sampling is not required).

Full-size DOI: 10.7717/peerj-cs.1073/fig-7

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 21/33

http://dx.doi.org/10.7717/peerj-cs.1073/fig-7
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

H2 ¼ E þ gf r
XRþ

r¼1

A Wr H
1

 ! !
; (16)

where gðXÞ ¼ XWf þ b with Wf 2 RD�C.
As shown in Table 5, the c-RGCN does not perform much worse than the original

implementation. However, it is much faster, and memory efficient enough for full batch
evaluation on the GPU. There is a clear trade-off between compression size of the node
embeddings and the performance in link prediction. While this result is far from a state of
the art model, it serves as a proof-of-concept that there may be ways to configure RGCN
models for a better performance/efficiency tradeoff.

DISCUSSION
We now discuss the implications for the use of the RGCN model, the performance of the
new variants and the lessons learned from this reproduction.

Implications for RGCN usage
We believe that Relational Graph Convolutional Networks are still very relevant because it
is one of the simplest members of the message passing models and is a good starting place
for exploration of machine learning for Knowledge Graphs.

RGCNs clearly perform well on node classification tasks because the task of classifying
nodes benefits from message passing. This means that a class for a particular node is
selected by reasoning about the classes of neighboring nodes. For example, a researcher can
be categorised into a research domain by reasoning about information regarding their
research group and close collaborators. There is no direct way to perform node
classification using traditional Knowledge Graph Embeddings (KGE) models, such as
TransE and DistMult.

While the RGCN is a promising framework, in its current setting we found that the link
prediction model proposed by Schlichtkrull et al. (2018) is not competitive with current
state of the art (Ruffinelli, Broscheit & Gemulla, 2020) and the model is too expensive with
considerably lower performance. In our article, we clarify that RGCN-based link predictors
are extensions of KGE models (Ruffinelli, Broscheit & Gemulla, 2020), thus training RGCN
to predict links will always be more expensive than using a state of the art KGE model.
RGCN-based link predictor take several days to train, while state of the art relation models
run in well under an hour (Ruffinelli, Broscheit & Gemulla, 2020).

To aid the usage of RGCN, we presented two new configurations of the RGCN:
e-RGCN. We propose a new variant of the node classification model which uses

significantly less parameters by exploiting a diagonal weight matrix. Our results indicate
that e-RGCN has the potential to perform competitively with the original model and
deserves further investigation. The potential advantage of e-RGCN is that it can operate on
graphs that are much larger than the benchmark datasets we used in our reproduction
studies.

c-RGCN. We also present a proof-of-concept model that performs message passing
over compressed graph inputs and thus, improves the parameter efficiency for link

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 22/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

prediction. The c-RGCN has several advantages over the regular RGCN link predictor:
(1) c-RGCN does not require sampling edges, because it is able to process the entire graph
in full-batch, (2) c-RGCN takes a fraction of the time it takes to train an RGCN link
predictor, (3) c-RGCN uses fewer parameters, and (4) it is straightforward to implement.
Although the results for the c-RGCN are not as strong, this sets a path for further
development towards efficient message models for relational graphs.

Reproduction
Evolving technologies pose several challenges for the reproducibilty of research artifacts.
This includes frequent updates being made to existing frameworks, such as PyTorch and
TensorFlow, often breaking backward compatibility. We were in a strong position to
execute this reproduction: (1) an author of this article also worked on the original article,
(2) we contacted one of the lead authors of this article who was very responsive and (3) we
were able to run the original source code (https://github.com/tkipf/relational-gcn and
https://github.com/MichSchli/RelationPrediction) inside a virtual environment.
Nevertheless, we found it considerably challenging to make a complete reproduction. To
explain why and to contribute to avoiding such situations in the future, we briefly outline
the lessons we have learned during the reproduction.

Parameter Statistics. There were discrepancies between the description of the link
prediction model in Schlichtkrull et al. (2018) and the source code. The source code
reproduces the values similar to the MRR scores reported in Schlichtkrull et al. (2018).
Thus, to reproduce the results we had to perform a deep investigation of the source code.
Using the original source, we relied on comparing the parameter statistics and tensor sizes
at various points in both models. Since these statistics are helpful to verify the correctness
of an implementation, we believe this is a useful practice in aiding reproduction. For
complex models with long runtimes, an overview of descriptive statistics of parameter and
output tensors for the first forward pass can help to check implementation without
running full experiments. We are publishing statistics for intermediate products that we
obtained for the link prediction models (see Table 4).

Small dataset. We found that the link prediction datasets used by Schlichtkrull et al.
(2018) were large and thus, impractical for debugging RGCN because it is costly to train
them on large graphs. Using a smaller dataset (FB-Toy (Ruffinelli, Broscheit & Gemulla,
2020)) would enable quicker testing with less memory consumption. Thus, we report link
prediction results on the FB-Toy dataset (see Table A2).

Training times. The training times were variable and strongly depended on the size of
the graph, the number of relations and the number of epochs. Schlichtkrull et al. (2018)
reported the computational complexity, but not practical training times. It turns out that
this is an important source of uncertainty in verifying whether re-implementations are
correct. We measured the runtimes, which includes training the model and using the pre-
trained model for making inference. For 7,000 epochs, the link prediction runtimes for
Torch-RGCN and c-RGCN on the WN18 dataset are 2,407 and 53 min, respectively. Node
classification experiments took a few minutes to complete, because they only required
50–100 epochs. We encourage authors to report such concrete training times.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 23/33

https://github.com/tkipf/relational-gcn
https://github.com/MichSchli/RelationPrediction
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Hyperparameter Search. We found that hyperparameters reflect the complexity of the
individual datasets. For example, AIFB, the smallest dataset, was not prone to overfitting.
Whereas, the larger AM dateset required basis decomposition and needs a reduced hidden
layer size. For link prediction, we were unable to identify the optimum hyperparameters
for WN18, FB15k and FB15k-237 due to the sheer size of the hyperparameter space and
long training times. We provide a detailed list of hyperparameter we use in our
reproduction. While this is becoming more common in the literature, this serves as further
evidence of the importance of this detailed hyperparameter reporting.

Other factors. We still faced the common challenges in software reproduction that
others have long noted (Fokkens et al., 2013), including missing dependencies, outdated
source code, and changing libraries. An additional challenge with machine learning models
is that hardware (e.g., GPUs) now also can impact the performance of the model itself. For
instance, while we were able to run the original link prediction code in TensorFlow 1.4, the
models no longer seemed to benefit from the available modern GPUs. Authors should be
mindful that even if legacy code remains executable for a long time, executing it efficiently
on modern hardware may stop being possible much sooner. Here too, reporting results on
small-scale experiments can help to test reproductions without the benefit of hardware
acceleration.

CONCLUSION
We have presented a reproduction of the Relational Graph Convolutional Network and,
using the reproduction, we provide a friendly explanation of how message passing works.
Our new implementation of RGCN using PyTorch, TorchRGCN, is made openly available
to the community. Furthermore, we also highlight subtleties of the RGCN that are crucial
for its understanding, use and efficient implementation. While message passing is
evidently useful for node classification, our findings also show that RGCN-based link
predictors are currently too costly to make for a practical alternative to the state of the art.
However, we believe that improving the parameter efficiency RGCNs could potentially
make it more accessible. We present two novel configurations of the RGCN: (1) e-RGCN,
which introduces node embeddings into the RGCN using fewer parameters than the
original RGCN implementation, and (2) c-RGCN, a proof-of-concept model which
compresses node embeddings and thus speeds up link prediction. These configurations
provide the foundation for future work. We believe that the techniques proposed in this
article may also be important for others implementing other message passing models. We
hope that this can help serve the community in the use, development and research of this
interesting model for machine learning on Knowledge Graphs.

APPENDIX
Proofs
Definition 1. We define a relational graph G as a directed graph with labelled nodes and
edges. F is the number of node features, R is the number of relations in the graph and N is the
number of nodes in the graph. Ar 2 RR�N�N is a tensor that describes the edge connectivity

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 24/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

for every relation. Ah ¼

A1

A2

..

.

AR

2
6664

3
7775 is a matrix where the adjacency matrices corresponding to

different relations are vertically stacked, and Av ¼ A1 A2 � � � AR½ � is a matrix where the
adjacency matrices corresponding to different relations are horizontally stacked. X 2 RN�F

is a feature matrix. Wr is a relation-specific weight matrix.
Theorem 1. The vertically and horizontally stacked versions of the RGCN are equivalent

to the original definition.
Proof. To show that the stacking trick yields the same operation as the original RGCN

definition.
First, we note that the non-linearity r is an element-wise operation. We can ignore this,

and show that the input to the non-linearity is the same in all three cases.
To show this, we first express all three definitions in terms of the individual matrix

elements. Writing the original R-GCN as

G ¼
XR
r¼1

Ar � X �Wr

where X is the matrix of inputs, we can rewrite this operation in terms of the individual
elements of G as

G0
r;i;j ¼

PN
k¼1

Ar
r;i;k � Xr;k;j

G00
r;i;j ¼

PF
k¼1

G0
r;i;k �Wr;k;j

Gr;i;j ¼
XF
k¼1

G00
r;i;j:

Here, the first line shows a basic matrix multiplication, expressed element-wise
ððABÞi;j ¼

P
k
Ai;k � Bk;jÞ, the second shows another matrix multiplication, and the third

sums the result over all relations.
For the vertically stacked RGCN, we can write the computation of the output matrixV as

V 0
i;j¼

XN
k¼1

Av
i;k � Xk;j

V 00
r;i;j¼ V 0

ðr�1Þnþi;j

V 000
r;i;j¼

XF
k¼1

V 00
r;i;j �Wr;k;j

Vi;j¼
XR
r¼1

V 000
r;i;j:

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 25/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

The first line again shows a matrix multiplication, but this time of the vertically stacked
adjacency matrix with the feature matrix X. The second line reshapes this into a three-
tensor separating our the relations. The third line is again a standard matrix multiplication
and the final line sums out the relation.

We note that V 00
r;i;j ¼

PF
k¼1 A

v
ðr�1Þnþi;kXk;j ¼

PF
k¼1 A

r
r;i;kXk;j ¼ G0

i;j. It follows that V‴ =
G″and V = G.

For the horizontally stacked RGCN, we can write the computation of the output matrix
H as

H0
r;i;j ¼

XF
k¼1

Xr;i;k �Wr;k;j

H00
ðr�1Þnþi;j ¼ H0

r;i;j

Hi;j ¼
XRN
k¼1

Ah
i;k �H00

k;j:

The first line shows a matrix multiplication of the input features by the weight matrix,
per relation. The second line shows the reshaping of the result into a vertical stack of
matrices and the final line shows a single matrix multiplication between the horizontally
stacked adjacency matrix and this vertical stack.

We complete the proof by noting that

Hi;j ¼
X
k

Ah
i;k �H00

k;j ¼
X
k

X
r

Ar
i;k � H0

r;k;j

¼
X
k

X
r

Ar
i;k

X
m

Xr;k;m �Wr;m;j ¼
X
r

X
m

Wr;m;j

X
k

Ar
i;kXr;k;m

¼
X
r

X
m

Wr;m;jG
0
r;i;m ¼

X
r

G00
r;i;j ¼ Gi;j :

For the following theorem we define a relational graph G as a directed graph with
labelled nodes and edges. R is the number of relations in the graph and N is the number of
nodes in the graph.N is a set of nodes in graph G. Target nodes, T � N , are nodes in the
graph with class labels. hli is the vector representation of node i at layer l, and Wr is a
relation-specific weight matrix. k is the number of RGCN layers. Non-linear activation
function r is an element-wise operation.N rðiÞ is the collection of the incoming neighbors
of node i with the relation r.

Theorem 2. For a k-layer RGCN model, the input representation h0m of a node m more
than k hops away from any node in T is not involved in the computation of hki for any node
i 2 T .

Proof. We will prove this by induction on k.
Base case (k = 1): Let m be a node which is more than 1 hop away from all nodes in T .

We need to show that the computation of h1i , i 2 T does not involve h0m.
By definition, hi is computed as

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 26/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

h1i ¼ r
XR
r

X
j2N rðiÞ

1
jN rðiÞj

Wrh
0
j

2
4

3
5:

The only node representations involved are h0j for j 2 N rðiÞ, which are in the 1-hop
neighborhood of i.

Inductive step: We assume that the theorem holds for k = l. Let node m be more than
l + 1 hops from all nodes in T . We aim to show that for i 2 T , h0m is not involved in the
computation of hi.

The output representation of i is computed as

hlþ1
i ¼ r

XR
r

X
j2N rðiÞ

1
jN rðiÞj

Wrh
l
j

2
4

3
5 :

Here j is one hop from i so must be more than l hops fromm (if j were l hops fromm we
could get from i ! j ! m in l + 1 hops). From this we can apply our inductive assumption
and conclude that h0m is not involved in the computation of hlj.

We can now see that the only node representations involved in the computation of hlþ1
i

are hlj, none of which were computed using h0m.

Notations
We use lowercase letters to denote scalars (e.g., x), bold lowercase letters for vectors
(e.g., w), uppercase letters for matrices (e.g., A), and caligraphic letters for sets (e.g., G). We
also use uppercase letters for referring to dimensions and lowercase letters for indexing
over those dimensions (e.g.,

PB
b¼1). The dimensions of vectors, matrices and tensors are

reported in Table A1.

General experimental setup
All experiments were performed on a single-node machine with an Intel(R) Xeon(R) Gold
5118 (2.30 GHz, 12 cores) CPU and 64 GB of RAM. GPU experiments used a Nvidia
GeForce GTX 1080 Ti GPU. We used the Adam optimiser (Kingma & Ba, 2015) with a
learning rate of 0.01. The hyperparameters for the reproduction experiements were taken
from the original work by Schlichtkrull et al. (2018). However, some hyperparameters were
not report in the article, so we obtained the missing configurations from the original
codebase and personal communication with the authors. For the new models (c-RGCN &
e-RGCN), the hyperparameters were tuned using validation sets. However, we did not
perform an extensive systematic hyperparameter search. For reproducibility, we provide
an extension description of the hyperparameters that we have used in node classifications
and link predictions in YAML files under the configs directory on the project GitHub page:
https://github.com/thiviyanT/torch-rgcn.

We ran the original implementation of the link prediction model (https://github.com/
MichSchli/RelationPrediction) on the FB15-237 dataset. The exact hyperparameters for
WN18 and FB15k experiments were not available in the original codebase. We used

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 27/33

https://github.com/thiviyanT/torch-rgcn
https://github.com/MichSchli/RelationPrediction
https://github.com/MichSchli/RelationPrediction
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Tensorflow 1.4, Theano 1.0.5 and CUDA 8.0.44. This replication required a Nvidia Titan
RTX GPU with 24 GB of GPU memory, but model training and inference was performed
on the CPU.

Schlichtkrull initialisation
The initialization used in the link prediction models in Schlichtkrull et al. (2018) differs
slightly from the more standard Glorot initialization (Glorot & Bengio, 2010).

std ¼ �� 3ffi
fan inþ fan out

p ; (17)

Here, gain (�) is a constant that is used to scale the standard deviation according the
applied non-linearity. std is used to sample random points from either a standard normal
or uniform distribution. We refer to this scheme as Schlichtkrull initialisation. When gain
is not required, � is set to 1.0.

FB-Toy link prediction
We also performed link prediction experiment on the FB-Toy dataset. The mean and
standard error of the link prediction results are reported in Table A2.

Table A1 Dimensions of vectors, matrices and tensors.

Variables Dimensions

A N × N

X N × F

W Nin � Nout

hi 1� Nout

Xi 1 × F or 1� Nin

Ar Rþ � N � N

Wr Rþ � Nin � Nout

C Rþ � B

B B� Nin � Nout

Qr B� Nin

B
� Nout

B
Av Rþ � N � N

Ah N � RþN

E N × D

Wr 1� Nout

es 1 × D

r 1 × D

eo 1 × D

R Rþ � D

Wh C × D

Wf D × C

Note:
In the order as they appear in the text.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 28/33

http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
We are very grateful to Michael Schlichtkrull for supporting us with the reproduction of
the link prediction results. Experiments were ran on DAS-5 ASCI Supercomputer (Bal
et al., 2016) and on the Dutch national e-infrastructure with the support of SURF
Cooperative.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by the responsible data science track of the VSNU Digital
Society program. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
VSNU Digital Society Program.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Thiviyan Thanapalasingam conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Lucas van Berkel performed the experiments, performed the computation work,
authored or reviewed drafts of the article, and approved the final draft.

� Peter Bloem conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

� Paul Groth conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Our RGCN implementation is available at GitHub: https://github.com/thiviyanT/torch-
rgcn.

Table A2 Mean and standard error of mean reciprocal rank (MRR) and Hits@k (k = 1, 3 and 10) over
10 runs for link prediction using RGCN and Torch-RGCN on the FB-Toy dataset.

Dataset Model MRR Hits@1 Hits@3 Hits@10

FB15k-Toy TF-RGCN 0.432 ± 0.008 0.293 ± 0.007 0.482 ± 0.011 0.768 ± 0.010

Torch-RGCN 0.486 ± 0.009 0.352 ± 0.011 0.540 ± 0.009 0.799 ± 0.008

Note:
Triples from the truth set (train, validation and test set) have been filtered. All models that were trained on the GPU.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 29/33

https://github.com/thiviyanT/torch-rgcn
https://github.com/thiviyanT/torch-rgcn
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

The links to third-party datasets, and their published sources, used in this work are
available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1073#supplemental-information.

REFERENCES
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,

Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser
L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M,
Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F,
Vinyals O,Warden P,Wattenberg M,WickeM, Yu Y, Zheng X. 2016. TensorFlow: large-scale
machine learning on heterogeneous distributed systems. ArXiv preprint
DOI 10.48550/arXiv.1603.04467.

Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J,
Belikov A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J, Bisson V, Snyder JB, Bouchard
N, Boulanger-Lewandowski N, Bouthillier X, de Brébisson A, Breuleux O, Carrier P-L, Cho
K, Chorowski J, Christiano P, Cooijmans T, Côté M-A, Côté M, Courville A, Dauphin YN,
Delalleau O, Demouth J, Desjardins G, Dieleman S, Dinh L, Ducoffe M, Dumoulin V, Kahou
SE, Erhan D, Fan Z, Firat O, Germain M, Glorot X, Goodfellow I, Graham M, Gulcehre C,
Hamel P, Harlouchet I, Heng J-P, Hidasi B, Honari S, Jain A, Jean S, Jia K, Korobov M,
Kulkarni V, Lamb A, Lamblin P, Larsen E, Laurent C, Lee S, Lefrancois S, Lemieux S,
Léonard N, Lin Z, Livezey JA, Lorenz C, Lowin J, Ma Q, Manzagol P-A, Mastropietro O,
McGibbon RT, Memisevic R, van Merrienboer B, Michalski V, Mirza M, Orlandi A, Pal C,
Pascanu R, Pezeshki M, Raffel C, Renshaw D, Rocklin M, Romero A, Roth M, Sadowski P,
Salvatier J, Savard F, Schlüter J, Schulman J, Schwartz G, Serban IV, Serdyuk D, Shabanian
S, Simon t, Spieckermann S, Subramanyam SR, Sygnowski J, Tanguay J, van Tulder G,
Turian J, Urban S, Vincent P, Visin F, de Vries H, Warde-Farley D,Webb DJ, Willson M, Xu
K, Xue L, Yao L, Zhang S, Zhang Y. 2016. Theano: a Python framework for fast computation of
mathematical expressions. ArXiv preprint DOI 10.48550/arXiv.1605.02688.

Bal H, Epema D, de Laat C, van Nieuwpoort R, Romein J, Seinstra F, Snoek C, Wijshoff H.
2016. A medium-scale distributed system for computer science research: infrastructure for the
long term. Computer 49(5):54–63 DOI 10.1109/MC.2016.127.

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M,
Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J,
Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P,
Botvinick M, Vinyals O, Li Y, Pascanu R. 2018. Relational inductive biases, deep learning, and
graph networks. ArXiv preprint DOI 10.48550/arXiv.1806.01261.

Bloehdorn S, Sure Y. 2007. Kernel methods for mining instance data in ontologies. In:
Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O,
Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G,
Aberer K, Choi KS, Noy N, Allemang D, Lee K-I, Nixon L, Golbeck J, Mika P, Maynard D,
Mizoguchi R, Schreiber G, Cudré-Mauroux P, eds. The Semantic Web. Vol. 4825. Berlin
Heidelberg: Springer, 58–71.

Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O. 2013. Translating embeddings
for modeling multi-relational data. In: Proceedings of the 26th International Conference on

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 30/33

http://dx.doi.org/10.7717/peerj-cs.1073#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1073#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1073#supplemental-information
http://dx.doi.org/10.48550/arXiv.1603.04467
http://dx.doi.org/10.48550/arXiv.1605.02688
http://dx.doi.org/10.1109/MC.2016.127
http://dx.doi.org/10.48550/arXiv.1806.01261
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Neural Information Processing Systems, NIPS’13. Vol. 2. Red Hook, NY, USA: Curran Associates
Inc, 2787–2795.

Bornea MA, Dolby J, Kementsietsidis A, Srinivas K, Dantressangle P, Udrea O, Bhattacharjee
B. 2013. Building an efficient RDF store over a relational database. In: Proceedings of the 2013
International Conference on Management of Data – SIGMOD ’13. New York, New York, USA:
ACM Press, 121.

Busbridge D, Sherburn D, Cavallo P, Hammerla NY. 2019. Relational graph attention networks.
ArXiv preprint DOI 10.48550/arXiv.2109.05922.

Chen J, Pan L, Wei Z, Wang X, Ngo C-W, Chua T-S. 2020. Zero-shot ingredient recognition by
multi-relational graph convolutional network. Proceedings of the AAAI Conference on Artificial
Intelligence 34(07):10542–10550 DOI 10.1609/aaai.v34i07.6626.

Daza D, Cochez M. 2020. Message passing for query answering over knowledge graphs. ArXiv
preprint DOI 10.48550/arXiv.1908.06917.

de Boer V, Wielemaker J, van Gent J, Hildebrand M, Isaac A, van Ossenbruggen J, Schreiber G.
2012. Supporting linked data production for cultural heritage institutes: the amsterdammuseum
case study. In: Simperl E, Cimiano P, Polleres A, Corcho O, Presutti V, eds. The Semantic Web:
Research and Applications. Berlin, Heidelberg: Springer, 733–747.

de Vries GKD. 2013. A fast approximation of the Weisfeiler-Lehman graph kernel for RDF data.
In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M,
Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY,
Weikum G, Salinesi C, Norrie MC, Pastor S, eds. Advanced Information Systems Engineering.
Vol. 7908. Berlin, Heidelberg: Springer, 606–621.

Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C. 1991. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation
with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry 34(2):786–
797 DOI 10.1021/jm00106a046.

Donadello I, Serafini L. 2019. Compensating supervision incompleteness with prior knowledge in
semantic image interpretation. In: 2019 International Joint Conference on Neural Networks
(IJCNN). Budapest, Hungary: IEEE, 1–8.

Fey M, Lenssen JE. 2019. Fast graph representation learning with PyTorch geometric. ArXiv
preprint DOI 10.48550/arXiv.1903.02428.

Fokkens A, van Erp M, Postma M, Pedersen T, Vossen P, Freire N. 2013. Offspring from
reproduction problems: what replication failure teaches Us. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Sofia,
Bulgaria: Association for Computational Linguistics, 1691–1701.

Glorot X, Bengio Y. 2010. Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics. 249–256.

Guo X, Hsu I-H, AbdAlmageed W, Natarajan P, Peng N. 2021. MrGCN: mirror graph
convolution network for relation extraction with long-term dependencies. CoRR
DOI 10.48550/arXiv.2101.00124.

He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In: 2015 IEEE International Conference on Computer
Vision (ICCV). Santiago, Chile: IEEE, 1026–1034.

Heil BJ, Hoffman MM, Markowetz F, Lee S-I, Greene CS, Hicks SC. 2021. Reproducibility
standards for machine learning in the life sciences. Nature Methods 18(10):1132–1135
DOI 10.1038/s41592-021-01256-7.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 31/33

http://dx.doi.org/10.48550/arXiv.2109.05922
http://dx.doi.org/10.1609/aaai.v34i07.6626
http://dx.doi.org/10.48550/arXiv.1908.06917
http://dx.doi.org/10.1021/jm00106a046
http://dx.doi.org/10.48550/arXiv.1903.02428
http://dx.doi.org/10.48550/arXiv.2101.00124
http://dx.doi.org/10.1038/s41592-021-01256-7
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Hu X, Fan H, Noskov A, Wang Z, Zipf A, Gu F, Shang J. 2021. Room semantics inference using
random forest and relational graph convolutional networks: a case study of research building.
Transactions in GIS 25(1):71–111 DOI 10.1111/tgis.12664.

Huang Z, Mamoulis N. 2017. Heterogeneous information network embedding for meta path
based proximity. ArXiv preprint DOI 10.48550/arXiv.1701.05291.

Isdahl R, Gundersen OE. 2019. Out-of-the-box reproducibility: a survey of machine learning
platforms. In: 2019 15th International Conference on eScience (eScience). San Diego, CA, USA:
IEEE, 86–95.

Kingma DP, Ba J. 2015. Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y, eds.
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7–9, 2015, Conference Track Proceedings.

Kipf TN, Welling M. 2017. Semi-supervised classification with graph convolutional networks. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–
26, 2017, Conference Track Proceedings OpenReview.net.

Klusowski JM, Wu Y. 2018. Counting motifs with graph sampling. In: Proceedings of the 31st
Conference On Learning Theory. PMLR, 1966–2011.

Kuptsov L. 2022. Einstein rule – Encyclopedia of Mathematics. Available at http://
encyclopediaofmath.org/index.php?title=Einstein_rule&oldid=11443.

Li Q, Han Z, Wu X-M. 2018. Deeper insights into graph convolutional networks for semi-
supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 32.

Mylavarapu S, Sandhu M, Vijayan P, Krishna KM, Ravindran B, Namboodiri A. 2020. Towards
accurate vehicle behaviour classification with multi-relational graph convolutional networks. In:
2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA: IEEE, 321–327.

Nickel M, Murphy K, Tresp V, Gabrilovich E. 2016. A review of relational machine learning for
knowledge graphs. Proceedings of the IEEE 104(1):11–33 DOI 10.1109/JPROC.2015.2483592.

Noy N, Gao Y, Jain A, Narayanan A, Patterson A, Taylor J. 2019. Industry-scale knowledge
graphs: lessons and challenges. Communications of the ACM 62(8):36–43 DOI 10.1145/3331166.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L, Desmaison A, Kopf A, Yang EZ, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S. 2019. PyTorch: an imperative style, high-performance
deep learning library. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché Buc F, Fox EB,
Garnett R, eds. Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver,
BC, Canada. 8024–8035.

Paulheim H. 2016. Knowledge graph refinement: a survey of approaches and evaluation methods.
Semantic Web 8(3):489–508 DOI 10.3233/SW-160218.

Rossi A, Barbosa D, Firmani D, Matinata A, Merialdo P. 2021. Knowledge graph embedding for
link prediction: a comparative analysis. ACM Transactions on Knowledge Discovery from Data
15(2):1–49 DOI 10.1145/3424672.

Ruffinelli D, Broscheit S, Gemulla R. 2020. You CAN teach an old dog new tricks! On training
knowledge graph embeddings. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020.

Schlichtkrull MS, Kipf TN, Bloem P, Berg Rv d, Titov I, Welling M. 2018. Modeling relational
data with graph convolutional networks. In: Gangemi A, Navigli R, Vidal M-E, Hitzler P,
Troncy R, Hollink L, Tordai A, Alam M, eds. The Semantic Web. ESWC 2018. Lecture Notes in
Computer Science. Vol. 10843. Cham: Springer, 593–607 DOI 10.1007/978-3-319-93417-4_38.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 32/33

http://dx.doi.org/10.1111/tgis.12664
http://dx.doi.org/10.48550/arXiv.1701.05291
http://encyclopediaofmath.org/index.php?title=Einstein_rule&oldid=11443
http://encyclopediaofmath.org/index.php?title=Einstein_rule&oldid=11443
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.1145/3331166
http://dx.doi.org/10.3233/SW-160218
http://dx.doi.org/10.1145/3424672
http://dx.doi.org/10.1007/978-3-319-93417-4_38
http://dx.doi.org/10.7717/peerj-cs.1073
https://peerj.com/computer-science/

Sinha K, Sodhani S, Pineau J, Hamilton WL. 2020. Evaluating logical generalization in graph
neural networks. ArXiv preprint DOI 10.48550/arXiv.2003.06560.

Tatman R, VanderPlas J, Dane S. 2018. A practical taxonomy of reproducibility for machine
learning research. In: Reproducibility in Machine Learning Workshop at ICML 2018.

Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, Xiao T, He T,
Karypis G, Li J, Zhang Z. 2020.Deep graph library: a graph-centric, highly-performant package
for graph neural networks. Technical Report DOI 10.48550/arXiv.1909.01315.

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. 2021. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems 32(1):4–24
DOI 10.1109/TNNLS.2020.2978386.

Yang B, Yih W-t, He X, Gao J, Deng L. 2015. Embedding entities and relations for learning and
inference in knowledge bases. In: Bengio Y, LeCun Y, eds. 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track
Proceedings.

Thanapalasingam et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1073 33/33

http://dx.doi.org/10.48550/arXiv.2003.06560
http://dx.doi.org/10.48550/arXiv.1909.01315
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1073

	Relational graph convolutional networks: a closer look
	Introduction
	Literature review
	Relational graph convolutional network
	Torch-rgcn
	Downstream task: node classification
	Downstream task: link prediction
	Discussion
	Conclusion
	Appendix
	flink10
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

