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Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models and Amortized Policy Search

Qi Wang 1 Herke van Hoof 1

Abstract
Reinforcement learning is a promising paradigm
for solving sequential decision-making problems,
but low data efficiency and weak generalization
across tasks are bottlenecks in real-world appli-
cations. Model-based meta reinforcement learn-
ing addresses these issues by learning dynam-
ics and leveraging knowledge from prior expe-
rience. In this paper, we take a closer look at
this framework and propose a new posterior sam-
pling based approach that consists of a new model
to identify task dynamics together with an amor-
tized policy optimization step. We show that our
model, called a graph structured surrogate model
(GSSM), achieves competitive dynamics predic-
tion performance with lower model complexity.
Moreover, our approach in policy search is able
to obtain high returns and allows fast execution
by avoiding test-time policy gradient updates.

1. Introduction
Reinforcement learning (RL) has been successfully applied
to several complicated tasks and achieved remarkable per-
formance, even surpassing outstanding human players in a
variety of domains (Mnih et al., 2015; Silver et al., 2017;
Vinyals et al., 2019). By exploration and exploitation, a
collection of sequential decision-making problems can be
theoretically addressed in this paradigm.

As a cutting-edge research topic, there still remain long
standing challenges when putting RL into practice. In par-
ticular, these can be viewed from three aspects: i) data
efficiency, the prevalent branch of RL algorithms as model
free reinforcement learning (MFRL) poses great demands
on massive interactions with an environment, making it unre-
alistic to conduct in most real-world applications (Sutton &
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Barto, 2018; Chua et al., 2018). ii) robustness to unseen envi-
ronments, when an environment of interest drifts in terms of
dynamics or reward mechanisms, previously learned skills
suffer the risk of poor generalization (Jing et al., 2018; Clav-
era et al., 2019). And dynamics mismatch easily leads to
Sim2Real problems (Peng et al., 2018). iii) instantaneously
planning, either model predictive control or calibration in
previously learned policies consumes additional time in exe-
cution phases (Wang & Ba, 2019). And critical issues might
arise in real-time decision-making missions with strict time
constraints, e.g. autonomous driving.

To address above mentioned concerns, we propose a graph
structured surrogate model (GSSM) together with a strat-
egy of amortized policy search. The work is within the
framework of Model-based Meta Reinforcement Learning
(MBMRL) (Nagabandi et al., 2019; Sæmundsson et al.,
2018; Killian et al., 2017; Lee et al., 2020). Our approach
makes an attempt to improve dynamics prediction, accel-
erate policy learning and enable fast adaptation across
tasks via latent variables. Importantly, unlike most exist-
ing MBMRL methods using time-expensive derivative-free
algorithms in model predictive control, our developed amor-
tized policies do not require adaptation time when faced
with a new task.

Our primary contributions are two-fold, respectively in
designing flexible meta dynamics models and attaining fast
adaptation in policy search in MBMRL:

1. Graph Structured Surrogate Models. We develop a
novel graph structured dynamics model across tasks,
which enables effectively encoding of memories and
abstracting environments in a latent space. In compar-
ison to related work (Kim et al., 2019), ours is more
lightweight but achieves comparable or better perfor-
mance in forecasting dynamics.

2. Amortized Meta Model-based Policy Search. We
propose a new strategy for meta model-based policy
search that learns latent variable conditioned policies.
This enables fast adaptation without additional policy
gradient updates and significantly improves policy per-
formance. Interpretations are given from a perspective
of posterior sampling (Osband et al., 2013).
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2. Literature Review
As already mentioned, several critical bottlenecks restrict
universal applications of RL algorithms. In terms of master-
ing new skills rapidly, meta learning is an ideal paradigm
to achieve with a few instances. As for data efficiency,
both model-based reinforcement learning (MBRL) and meta
learning can reduce sample complexity.

Meta Learning. The core of meta learning is to discover
implicit common structures across a collection of similar
tasks and then generalize such knowledge to new scenarios.
Leveraging knowledge from a meta learner to a task-specific
learner is called fast adaptation. Two strategies are com-
monly used for meta learning, respectively Gradient-based
Meta Learning and Contextual Meta Learning. A represen-
tative framework for gradient-based meta learning is model
agnostic meta learning (MAML) (Finn et al., 2017; Flen-
nerhag et al., 2019; Lee & Choi, 2018), where both a meta
learner and an adaptor are derived via gradient information
after a few shots in a specific task. The contextual meta
learning algorithms rely on task specific latent variables to
identify a task after a few observations. This strategy theo-
retically does not require gradient adaptation in new tasks
but constructing task relevant latent variables is decisive
(Garnelo et al., 2018a;b; Hausman et al., 2018).

Model-based Reinforcement Learning. Key to applica-
tions within a RL framework is how to boost sample effi-
ciency, and MBRL serves a role as approximating a target
environment for the agent to interact with. In an environ-
ment with unknown dynamics, MBRL either learns a de-
terministic map or a distribution of transitions p(∆s|[s, a]).
Generally, deterministic modelling on dynamical systems
does not involve random variables in the hidden units, and
some auto-regressive neural network structures are quite typ-
ical in this family (Leibfried et al., 2016; Nagabandi et al.,
2017; Amos et al., 2018; van der Pol et al., 2020). Stochastic
modelling on dynamical systems are mainly formulated by
incorporating uncertainty in system parameters and obser-
vation noise (Deisenroth & Rasmussen, 2011; Kamthe &
Deisenroth, 2017; Hafner et al., 2018; Chua et al., 2018).

Meta Reinforcement Learning. Most of meta RL algo-
rithms follow a model-free paradigm, e.g. MAESN (Gupta
et al., 2018), RL2 (Duan et al., 2016), Learn2Learn (Wang
et al., 2016) and PEARL (Rakelly et al., 2019). But exper-
imental results show that these methods work poorly with
limited training samples. To obtain satisfying performance
with lower sample complexity, researchers are focusing on
the combination of meta learning and MBRL. Nagabandi
et al. (2019) takes a gradient-based strategy as MAML and
alleviates the gap of Sim2Real. In (Sæmundsson et al.,
2018), Gaussian process latent variable models perform task
inference and learn dynamics across tasks. CaDM (Lee
et al., 2020) is a novel SOTA MBMRL method, which in-

cludes forward and backward models to more effectively
utilize sequential dynamics. Another model strongly re-
lated to ours is in (Galashov et al., 2019), where neural
processes (NPs) are used to identify dynamics of tasks, but
it requires to re-train or fine-tune parameterized policies
via gradient updates in new tasks. Note that most of these
MBMRL methods focus on fast adaptation in dynamics
models. These either make use of derivative-free algorithms
for model predictive control or re-train policies in separate
tasks, which requires additional computational cost on envi-
ronments with higher dimensionality (Wang & Ba, 2019).
In AdMRL (Lin et al., 2020), task-specific policies are opti-
mized using an implicit function theorem, but it considers
the case when dynamics are shared across tasks with dif-
ferent goals. In MIER (Mendonca et al., 2020), labels are
updated by querying a neural network of a dynamics system,
which is efficient in practice. In our method, we amortize
this step and further reduce computations in adaptation

3. Problem Formulation and Preliminaries
The decision-making process in RL is usually charac-
terized with a discrete-time Markov Decision Process
(MDP), denoted by M. Given states st ∈ S, actions
at ∈ A, policy functions π, state transition distributions
P , reward functions R and a discount factor γ for a
step-wise reward, a MDP can be formalized with a tu-
ple of these elements Mk = (S,A,Pk,Rk, γ). The re-
turn of cumulative rewards is a summation of discounted
reward feedback r(st, at) along the trajectories τ :=
(s0, a0, r0, . . . , sH−1, aH−1, rH−1, sH).

The optimization objective in model-free RL methods is to
find policies that maximize the expected cumulative rewards
over trajectories. In contrast, MBMRL considers a distri-
bution over MDPs p(M), and the goal is to simultaneously
build dynamics models and act optimally w.r.t. the learned
dynamics models.

3.1. Optimization Objective in MBMRL

More formally, we study MBMRL problems from the opti-
mization perspective and formulate the following two corre-
lated objectives.

max
θ

E M∼p(M)

([s,a],s′)∼M
ln [pθM(s′|[s, a])] , s.t. pθM = u(θ,Dtr

M)

(1a)

max
φM

E s′∼pθM
(s′|[s,a])

a∼πφM

[
H−1∑
t=0

γtrM(st, at)

]
, M∼ p(M)

(1b)

Here Eq. (1a) is to maximize the log-likelihood of state-
transitions p(s′|[s, a]) in a collection of MDPs and u repre-
sents a fast adaptation mechanism inM to learn an updated
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Training Paradigm in GSSM in the
Background of a Collection of MDPs

*

Message Passing across
Context Points

Message Passing from the
Context to the Target

Dynamics Model Policy Network

target l.v. contextual l.v. 

Figure 1. Graph Structured Surrogate Models. On the Left: The colored □ denotes a node feature vector in our fully connected graphs with
nodes ⃝, and lines between ⃝ record pairwise similarities sim. V(0)

C denotes the initial feature matrix of all context nodes. Information
Flows in Dynamics Models from the left to the right describe the Message Passing between context points c (Edges in solid lines ec→c)
and to the target point xt (Edges in dashed lines ec→t) to obtain the transformed node feature matrix V(1)

C . On the Right: In amortized
policy search, latent variables participate in both approximate Dynamics Models and Policy Networks (Dashed elements are involved in
the module when using Actor-Critic frameworks and Double arrows mean interactions to learn amortized policies).

dynamics model pθM with meta-learned parameters θ and a
few transition instances Dtr

M. Eq. (1b) corresponds to learn-
ing a policy πφM or finding a planning strategy in separate
dynamics models. It is worth noting that our objective of
MBMRL differs from previous work, and it consists of two
phases as dynamics model learning and policy optimization.

3.2. MBMRL with Latent Variables

Latent variables play diverse roles in meta RL (Gal et al.,
2016; Rakelly et al., 2019). Here we focus on a branch of
MBMRL methods, which uses latent variables to help for-
mulate meta dynamics models. Mostly, a latent variable z is
inferred from a few shots of transitions to summarize statis-
tics of a specific environmentM (Garnelo et al., 2018b;a).
Then the learned latent variables participate in dynamics
prediction pθ(∆s|[s, a], z) and approximate dynamics of
different MDPs (Galashov et al., 2019; Lee et al., 2020).

The meta learning surrogate model (MLSM) (Galashov
et al., 2019) is an example of latent variable MBMRL meth-
ods, which is closest to ours in literature. The neural pro-
cesses (Garnelo et al., 2018b) work as meta dynamics mod-
els in MLSM. But we notice that in MLSM: (1) a simple
mean pooling over context points to obtain latent variables
is difficult to utilize the relevance between the context and
the target transition samples for all data points’ prediction;
(2) computationally expensive policy gradient updates are
required in policy search when faced with a new task.

4. Graph Structured Surrogate Models with
Amortized Policy Search

In this section, we aim to address the shortcomings of insuf-
ficiently expressive models and expensive policy gradient

optimization by MLSM.

In order to do so, we at first develop a graph structured sur-
rogate model to learn representations of latent variables via
message passing, which better approximates local dynam-
ics of MDPs. Then an amortized policy search strategy is
introduced to enable fast policy adaptation without gradient
updates in new tasks.

In GSSM, two types of latent variables are learned. Fig.
(1), which will be explained fully in the following section,
illustrates target latent variables zt to predict individual
state transition and a global latent variable zc to encode the
context for policies to condition. For the sake of simplicity,
we denote the dynamics model input by x = [s, a] and the
dynamics model output by y = ∆s.

4.1. Graph Structured Latent Variables

For the transition dataset from a task, we have a set of
context points [xc, yc] and the target point [xt, yt]. Similar
to other context-based meta learning algorithms (Garnelo
et al., 2018b), [xc, yc] are observed state transitions used to
infer the task. We treat these context points in a form of
graph structured dataset G =< V, E >, which comprises
of a collection of vertices V = [xc, yc] and relational edges
E ⊆ V ×V (notations edge e and vertex value v in Fig. (1)).

Here a fully connected graph is built to characterize the pair-
wise relationship. The value as the initial node feature vector
refers to [xi, yi], and the construction of a graph Laplacian
matrix is based on the pairwise similarities between sam-
ples sim(xi, xj) =

⟨u(xi),u(xj)⟩
∥u(xi)∥2·∥u(xj)∥2

, where u(x) is the
embedding of a sample input x using neural networks, and
the notation ⟨·, ·⟩ means a dot product. All of these are
illustrated on the left side of Fig. (1).
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Message Passing between Context Points. This process is
to deliver and aggregate neighborhood information for node
representations, which can be specified via the normalized
Laplacian as follows.

ŝij =
exp (β · sim(xi, xj))∑

j∈Oi
exp (β · sim(xi, xj))

(2a)

h
(l+1)
i = σ

W (l)h
(l)
i +

∑
j∈Oi

ŝijW
(l)h

(l)
j

 (2b)

where β is a tunable parameter for pairwise similarities,
W (l) is the network parameter for node feature transfor-
mations in l-th layer, ŝij is the element in a normalized
Laplacian matrix L, and h

(l)
i is the l-th intermediate node

feature vector after message passing from sample i’s neigh-
borhoods Oi to itself.

In Eq. (2), a self-loop is added for message passing. The
node j’s feature vector after the final message passing are
denoted by hj . With the operation of message passing in
Eq. (3), a learned representation for each node summarizes
statistics of interactions,

vi =
∑
j∈Oi

ŝijhj , gc =
⊕
i∈V

vi, qϕ2(zc) = N
(
µ(gc),Σ(gc)

)
(3)

where
⊕

denotes a mean pooling operation over all node
feature vectors and the last term describes the amortized
distribution (Zhang et al., 2018) for context points.

Message Passing from the Context to the Target. This
process is to transmit task-beneficial information from the
context to the target. And the representation of the node i
is vi in Eq. (3). Considering relevance to the target point
[xt, yt] varies from instance to instance, we compute the
weight for each context point xi, denoted by ŝit, via Eq.
(2.a) to measure the relevance. Then the aggregated context
message can be represented as gt in a weighted way.

gt =
∑
i∈Ot

ŝitvi, qϕ1
(zt) = N

(
µ(gt),Σ(gt)

)
(4)

After the message passing from the context to the target,
gt is further mapped into mean and variance parameters of
a proposal distribution qϕ1(zt) using neural networks, as
displayed on the right side of Eq. (4). Here we employ
mean field amortized inference, using diagonal Gaussian
distributions for the convenience of computations. Also note
that ϕ1 and ϕ2 share part of graph neural net parameters,
e.g. parameters in feature embeddings, but denote separate
variational parameters.

4.2. Approximate Inference & Scalable Training in
GSSM

To learn system dynamics with latent variables, we need
to specify an objective in optimization together with a pre-

dictive distribution p(yt|xt, xc, yc). Here we sample the
context data points [xc, yc] together with the target [xt, yt]
from meta learning dataset p(D).

Though the exact inference for this predictive distribution is
intractable, a plausible way is to use the above mentioned
variational distribution qϕ1(zt|xt, xc, yc) in Eq. (4). As a
result, the evidence lower bound (ELBO) is formulated on
the right side of Eq. (5).

Ep(D)

[
ln p(yt|xt, xc, yc)

]
≥ Ep(D)

[
Eqϕ1

[ln pθ(yt|xt, zt)]
]

−Ep(D) [DKL[qϕ1
(zt|xt, xc, yc) ∥ p(zt)]]

(5)

Similar to (Denton & Fergus, 2018; Pertsch et al., 2020; Gar-
nelo et al., 2018b), a variational distribution qϕ2

(zc|xc, yc)
is selected as a prior distribution p(zt) in ELBO to specify
a dynamical system from context points and further used
in the following amortized policy search. As a result, the
induced objective with a learned prior distribution is as
follows.

Ep(D)

[
ln p(yt|xt, xc, yc)

]
≥ Ep(D)

[
Eqϕ1

[ln pθ(yt|xt, zt)]

−DKL[qϕ1
(zt|xt, xc, yc) ∥ qϕ2

(zc|xc, yc)]
]

(6)

In implementations, the Monte Carlo estimation is per-
formed for the negative ELBO to obtain Eq. (7),

L(θ, ϕ1, ϕ2) = −
1

K

B∑
b=1

K∑
k=1

ln pθ(y
(b)
t |x

(b)
t , z

(b,k)
t )

+DKL

[
qϕ1

(z
(b)
t |x

(b)
t , x(b)

c , y(b)c ) ∥ qϕ2
(z(b)c |x(b)

c , y(b)c )
]
(7)

where B is the batch size of samples in meta training, K
is the number of particles in estimation, and latent variable
values are sampled from the approximate posterior z(b,k)t ∼
qϕ1(z

(b)
t |x

(b)
t , x

(b)
c , y

(b)
c ).

Similarly, when it comes to prediction using the learned
dynamics model, the Monte Carlo estimator can be applied
again to derive a predictive distribution in Eq. (8) with
the approximate posterior qϕ1 and collected context points
[xc, yc].

p(yt|xt, xc, yc) =

∫
qϕ1

(zt|xt, xc, yc)pθ(yt|xt, zt)dzt

≈ 1

K

K∑
k=1

pθ(y
(k)
t |xt, z

(k)
t )

(8)
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4.3. Amortized Policy Search

Once a dynamics model is learned, policy search can be ex-
ecuted by interacting with a learned dynamics model. Here
we concentrate on fast adaptation of policies in MBMRL
and introduce the concept of amortized policy search. This
is different from previous planning or policy optimization
objectives in separate dynamics models.

To this end, we utilize the strategy of posterior sampling
(Osband et al., 2013; Rakelly et al., 2019) to capture task-
specific policies. Specifically, a collection of approximate
MDPs are sampled from the posterior of task-specific dy-
namics models, and the agent acts optimally w.r.t. these
models. Finding optimal policies for different tasks are
time consuming in previous approaches, which require ei-
ther re-training or fine-tuning meta-learned policies πφ(a|s)
in separate dynamics models (Galashov et al., 2019). So
we propose to induce task-specific policies πφ(a|[s, zc]) by
sampling zc from task relevant latent variable distributions
qϕ2

(zc|xc, yc), and optimize policies w.r.t. sampled approx-
imate MDPs. The process of finding these task-specific
optimal policies is termed as amortized policy search and
the obtained policy πφ(a|[s, zc]) after meta training is called
an amortized policy.

In our settings, meta model-based policy search is consid-
ered in a distribution of learned approximate dynamics mod-
els p(M̂; θ, ϕ). A parameterized policy πφ is used to collect
trajectories τ from a learned dynamics model and evaluate
rewards of policies in Eq. (9) to maximize.

J (φ; θ, ϕ) =
∫∫

p(M̂; θ, ϕ)p(τ |M̂;φ, ϕ)R(τ)dτdM̂

(9)

The following two model-based policy search strategies are
commonly-used in this domain, so we modify these to en-
able the use of amortized policies in MBMRL. Importantly,
we take more interest in computing gradients of policies
w.r.t. policy parameters φ.

(1) Direct policy search via BPTT. The objective of
back-propagation through time (BPTT) (Deisenroth & Ras-
mussen, 2011; Parmas et al., 2018) in MBMRL can be
written in the form of Monte Carlo estimation as follows.

∇φJ (φ) ≈
1

BK

B∑
b=1

K∑
k=1

(
∇φ

T−1∑
t=0

γtr
(b,k)
t+1

)
(10)

where τ = [s0, a0, s1, r1, . . . ], at ∼ πφ(·|[st, zc]), st+1 ∼
pθ(st+1|[st, at], zt), B is the number of batch in tasks, and
K is the number of sampled simulated trajectories for each
task.

(2) Actor-Critic policy gradient optimization. The in-
duced policy gradient w.r.t Eq. (9) is estimated as Eq. (11)
under our amortized policy search method, where At is the
computed advantage function.

∇φJ (φ) = E M̂∼p(M̂;θ,ϕ)

τ∼p(τ|M̂;φ,ϕ)

[

T−1∑
t=0

∇φ lnπ(at|[st, zc])

·At([st, zc], at)]

(11)

Besides, the optimization of value function approximation
is inside policy search during meta-training processes via
gradient updates. For the sake of simplicity, we skip this
step in Algorithm (1) and the optimization is executed in
step (10) as default. For more details about Actor-Critic
settings, please refer to Appendix (F) for more details.

Note that the universal value function approximator aug-
ments MDPs with goal information to identify diverse
tasks (Schaul et al., 2015). Similarly, in our settings,
the task is inferred from context points, and the transi-
tion sample is augmented with the inferred task/goal as
{([st, zc], at, rt)}Tt=1. The approximate value function
Qπφ([s, zc], a) or Vπφ([s, zc]) is task-specific. In this case,
our proposed amortized policy search can be interpreted as
finding a universal value function approximator in MDPs of
various dynamics.

Algorithm 1 Meta-Training Process.
Input :MDP distribution ρ(M); Batch of tasks B; Explo-

ration policy πe.
Output :Trained parameters ϕ, θ and φ.
Initialize parameters ϕ, θ and φ
while Meta-Training not Completed do

// meta train dynamics models
Sample a batch of tasks {Mk}Bk=1 from a distribution
ρ(M)

Perform roll-outs to collect transition dataset DB =
{Dk}Bk=1 with πe

Optimize {ϕ, θ} on DB in Eq. (8) to obtain {M̂k}Bk=1

// meta model-based policy search
for i = 1, 2, . . . , N do

Sample initial states from {M̂k}Bk=1

Collect episodes by interacting with {M̂k}Bk=1 us-
ing πφ and update dynamics buffers DB

Evaluate rewards in Eq. (9)
Optimize the policy πφ: φ← φ+ α∇φJ .

end
end

5. Experiments and Analysis
To evaluate our approach, we perform experiments in envi-
ronments with diverse task-specific dynamics. Meanwhile
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Figure 2. Experimental Results on Cart-Pole Tasks. (a) Learning curves of MBMRL algorithms using non-latent variable conditioned
policies. (b) Learning curves of GSSM using (non-)latent variable conditioned policies. (c) t-SNE visualizations of latent variables
in GSSM (samples are from 5 tasks with a pole mass as 1.0 and cart masses as {1.0, 1.25, 1.5, 1.75, 2.0}). (d) Learning curves of
GSSM+APS with different dimensions of latent variables. For all learning curves, the averaged rewards are tested after each iter in an
offline way and results indicate means and a standard error of the mean in 5 runs.

Algorithm 2 Meta-Testing Phases.
Input :Meta-trained ϕ, θ and φ ; Null buffer B; Adapta-

tion steps K.
Output :Cumulative rewards of episodes.
Sample a testing taskM∗∼ρ(M)
if Use GSSM and Amortized Policy Search then

Run πe to collect the memory τ : B ← B ∪ {τ}
Evaluate πφ(a|s, z) with z ∼ q(zc|B) in Eq. (9) inM∗.

else
Run πe to collect the memory τ : B ← B ∪ {τ}
for i = 1, 2, . . . ,K do

Sample an initial state from the learned M̂∗
Collect an episode in M̂∗ using πφ(a|s)
Evaluate return in Eq. (9)
Optimize the policy πφ: φ← φ+ α∇φJ .

end
Evaluate fine-tuned πφ(a|s) inM∗.

end

the implementation of our developed approach is available
in Appendix (G).

5.1. General Settings

In all MBMRL related experiments, meta training and test-
ing phases respectively follow that in Algorithm (1)/(2),
where M̂ is an approximate dynamics model. Similar to
that in (Galashov et al., 2019), the exploratory policy πe

is completely random without parameters to initialize the
transition buffer or collect transitions for identifying the task
in meta testing phases.

Some baseline methods include:

• L2A (Nagabandi et al., 2019). As a gradient-based
meta RL approach, the Learning to Adapt (L2A) uti-
lizes a MAML paradigm to learn dynamics and adap-
tation strategies.

• MLSM-v0 (Galashov et al., 2019). Meta Learning Sur-

rogate Model (MLSM) makes use of neural processes
in MBMRL, where latent variables are incorporated to
identify tasks.

• MLSM-v1 (Galashov et al., 2019; Kim et al., 2019).
This is a boosted version of MLSM-v0, where an atten-
tion neural network is added to learn sample dependent
latent variables.

• M-DPILCO (Gal et al., 2016). Deep PILCO, which
uses Bayesian neural networks (BNNs) to fit dynamics.
Ensemble of episodes from BNNs are used for policy
optimization.

For GSSM/M-DPILCO/MLSM-v0/MLSM-v1, we use the
same policy search strategy: a policy πφ(a|s) is optimized
across a collection of approximate dynamics models in Al-
gorithm (1) and in testing processes this policy is fine-tuned
via policy gradient updates as fast adaptation in separate dy-
namics models like that in Algorithm (2). For GSSM+APS,
we use a latent variable conditioned policy πφ(a|s, zc) to
enable amortized policy search (APS) in GSSM meta dy-
namics models. As for L2A, the implementation follows
that in (Nagabandi et al., 2019), each learned dynamics
model after fast adaptation via gradient updates is used to
plan separately.

With these models, we use formerly introduced meta model-
based policy search strategies to combine: (i) direct policy
search trained via BPTT (Parmas et al., 2018) (only applied
to Cart-Pole environments) (ii) actor-critic policy search
using proximal policy optimization (PPO) (Schulman et al.,
2017) (applied to all the other environments).

Meanwhile, DR-PPO is included as a model-free RL base-
line, where PPO is trained across tasks via Domain Random-
ization. Another algorithm as the probabilistic embedding
for actor-critic RL (referred to as PE-PPO) is also intro-
duced in comparisons, which follows the same implemen-
tation in PEARL algorithms (Rakelly et al., 2019). More
details about task settings and available PyTorch modules
are given in Appendix (G).



MBMRL using Graph Structured Surrogate Models and Amortized Policy Search

Figure 3. Meta Testing Performance. The average cost is negative
of average rewards, and standard deviations are attached as error
bars. For methods except GSSM+APS, additional time is required
to perform gradient-based adaptation in policies.

5.2. Cart-Pole Systems

At first, we evaluate MBMRL models on a Cart-Pole Swing-
Up task. The physics system can be found in (Gal et al.,
2016; Galashov et al., 2019), and meta tasks are generated in
the following way. We respectively sample masses of a cart
mc and a pole mp from uniform distributions U [1.0, 2.0]
and U [0.7, 1.0]. The mission is to perform actions to reach
the goal with the end of the pole. The state is [xc, θ, x

′
c, θ

′],
while the action corresponds to the force in a continuous
interval a ∼ [−10,+10] N . The horizon in episodes is set
to be 25 the same with that in former works.

In meta training processes, various tasks are sampled dur-
ing iterations and results are averaged step-wise rewards.
In Fig. (2.(a)), with the same policy search strategies
(non-amortized policies), we observe GSSM shows best
performance with lower variances in learning curves, fol-
lowed by MLSM-v1 with larger variances. Also note that
GSSM’s model complexity is more lightweight than AttnNP
in MLSM-v1 while retaining satisfying dynamics prediction
capability (Refer to Table (4)/Table (5)). In Fig. (2.(b)),
when amortized policies are combined with GSSM, the per-
formance is further advanced. In Fig. (2.(c)), we sample
latent values by encoding trajectories from 5 tasks to visual-
ize using t-SNE (Van der Maaten & Hinton, 2008). It can
be seen the latent embeddings of different tasks formulate
several clusters, which reveal cart masses’ impact from la-
tent variables. In Fig. (2.(d)), we also vary the dimension
of latent variables and find that when amortized policies
are used, a lower dimension results in more compact task
embeddings and obtains better results with lower variance.

Note that the principal goal of MBMRL is to generalize
previously learned skills to unseen tasks, so we stress the
importance of the performance in meta testing processes,
which is more appropriate to assess the generalization ca-
pability. Here 50 unseen tasks are sampled to validate the
performance (each task with 50 episodes) and averaged
results are displayed in Fig. (3). We observe GSSM and

Table 1. Meta-testing Results using Model-free Baselines. MUL
records multiple of required samples used in MBMRL.

ENV MUL DR-PPO PE-PPO

ACROBOT 1X -0.836(±0.047) -0.828(±0.052)

3X -0.433(±0.043) -0.420(±0.05)

H-CHEETAH 1X 453.4(±150) -44.1(±51)

25X 1360.5(±130) 608.2(±73)

S-HUMANOID 1X 538.5(±91) 252.4(±260)

25X 3533.3(±110) 1248.1(±150)

MLSM-v1 are comparable in policy performance but the for-
mer has less parameters. As for M-DPILCO and MLSM-v0,
they show intermediate performance in testing results. With
the same type of dynamics models, GSSM+APS does not
require adaptation time and reduces 10% step-wise costs
than GSSM. This suggests amortized policies reveal task
relevant information from MDP embeddings and then guide
the agent to explore better in separate environments.

5.3. Other Simulation Systems

Other explorations are performed in more complicated sim-
ulation systems. These include Acrobot, Half-Cheetah and
Slim-Humanoid. For Acrobot, masses m of two pendu-
lums are respectively drawn from uniform distributions as
U [0.8, 1.2] and U [0.8, 1.2] to configure different tasks with
200 steps as the default horizon (Killian et al., 2017; Sutton
& Barto, 2018). For H(alf)-Cheetah/S(lim)-Humanoid from
Mujoco (Todorov et al., 2012), we vary mass scales and
damping coefficients for different tasks, where the default
horizon is 1000 steps.

Main Results in Meta-training Processes. It can be seen
in Fig. (4) that with the equal volume of samples, MBMRL
models mostly outperform MFRL baselines. Without the
use of amortized policies, GSSM shows advantage over
other MBMRL baselines. For MLSM-v0/MLSMv-1, in-
termediate rewards are obtained in Acrobot/H-Cheetah.
We also observe unstable results using other baselines
in S-Humanoid. When amortized policies are employed,
GSSM+APS shows significant performance improvement
over all baselines including GSSM. This reflects task-
specific information is beneficial in policy optimization.
Especially, GSSM+APS reaches around -0.57 equivalent
to model-free performance with 3x less time steps in Ac-
robot. Similar phenomenon can be seen in H-Cheetah, and
GSSM+APS mostly starts with poor initialization but gradu-
ally surpasses others as latent variables are becoming more
and more meaningful.

Main Results in Meta-testing Processes. As exhibited in
Table (4), we evaluate predictive performance of dynam-
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Figure 4. Performance of Policies in Meta-Training Processes. Figures in the first row are MBMRL results while those in the second
row are MFRL results (Red vertical dotted lines indicate the threshold of required time-steps used to train MBMRL baselines.). Here
environments are varied in terms of dynamics during iterations. The average rewards are tested after each iter in an offline way and
results indicate means and corresponding standard errors of the mean in 5 runs.

Table 2. Average Rewards in Meta-testing Tasks using Learned Policy Networks. (For each testing task, 50 episodes are sampled and
averaged in rewards. Figures in brackets are standard deviations across testing tasks, with bold ones the best.)

ENV GSSM+APS GSSM M-DPILCO MLSM-V0 MLSM-V1 L2A

ACROBOT -0.478(±0.049) -0.506(±0.068) -0.645(±0.06) -0.560(±0.064) -0.524(±0.052) -0.7775(±0.054)

H-CHEETAH 1597.4(±200) 1306.6(±140) 862.0(±280) 827.3(±190) 1226.8(±64) -17.9(±130)

S-HUMANOID 1641.8(±170) 717.1(±130) 596.0(±340) 285.9(±360) 745.6(±150) 124.9(±570)

ics models in unseen tasks. After executing paired-t test,
we find GSSM+APS significantly surpasses MLSM-v0 in
Cart-Pole/Acrobot/S-Humanoid and achieves comparable
performance to MLSM-v1 in forecasting dynamics. But
GSSM is simpler in terms of model complexities.

The corresponding policy performance is also displayed in
Table (2). We also notice that with the same policy search
strategy, GSSM outperforms other baselines in Acrobot/H-
Cheetah. When amortized policies are used, GSSM+APS
is significantly superior to MLSM-v11. These findings re-
flect strong generalization capability in unseen tasks when
combining GSSM and amortized policies. L2A works not
so well in our environments even after trying several hyper-
parameters, similar to observations in the work (Hiraoka
et al., 2020; Lee et al., 2020), and lower rewards could be
due to unstable adaptation in dynamics models. Results in
model-free cases are also illustrated in Table (1). PE-PPO
performs worse than DR-PPO in two environments, even
though probabilistic embeddings of tasks join the policy
learning. Here we use permutation invariant amortized dis-
tributions to formulate π(a|s, z) as that in PEARL (Rakelly
et al., 2019), but PEARL algorithms seem sensitive to neural

1A paired-t test between GSSM and MLSM-v1 over all tasks
is executed, and results are significant with a default significance
level 0.05.

architectures of latent variables. It turns out latent variables
in amortized policies can lead to task-specific optimal val-
ues (Schaul et al., 2015) in actor-critic policy search but
appropriate embeddings are decisive as well.

6. Discussion and Conclusion
We have proposed a novel meta dynamics model (GSSM),
which consists of a local latent variable zt for individual
dynamics prediction and a global latent variable zc to sum-
marize a MDP for the policy to condition. Learning the
representations of these latent variables is achieved via the
message passing. GSSM demonstrates its effectiveness in
capturing task-specific system dynamics and exhibits good
generalization capability across tasks.

Meanwhile, amortized policies are developed for more effi-
cient meta model-based policy search. These policies allow
for fast adaptation to meta testing tasks without additional
policy gradient updates and show competitive performance.
It is important to note that this trait helps us avoid either
re-planning or adaptation in policies. So our proposed amor-
tized policy search is more suitable to apply in time-sensitive
decision-making missions.
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Supplementary Materials

A. Limitations
In principle, we summarize three limitations in this work. (1) Even though MBMRL can achieve both data efficiency
and fast skill transfer in a theoretical sense, the instability of policy performance, including GSSM and other models, is
unavoidable due to the bias of dynamics models. This is a long-standing challenge in the model-based domain. (2) The
use of message passing enables more flexible representations of node features and improves the predictive performance
of GSSM in dynamical systems. But the performance might be restricted by the setting that a fully connected graph is
constructed as default. So future investigations can be incorporating sparse priors into graph structures to further improve
generalization. (3) Dyna-style is used in training GSSM, so a potential limitation can be additional time required to configure
appropriate hyper-parameters, which decide when to collect new transitions and where to stop policy optimization. Future
work can focus on designing heuristic rules for an optimal parameter setting of Dyna-style training.

Table 3. Summary of Typical MBMRL Models. Encoders are for dynamics models. Policy search strategies include model predictive
control (MPC), policy gradient (PG) methods and amortized policy search (APS). As for fast adaptation, we consider whether this step is
directly included in learning dynamics models or policy search.

MBMRL Encoders Policy Search Dynamics Model Fast adaptation

L2A NULL MPC MAML DM

MLSM-v0 qϕ(z|MeanPool([xc, yc])) PG LVM DM

MLSM-v1 qϕ1(z|MeanPool([xc, yc])) PG LVM DM
fϕ2(zt|Attn([xc, yc], xt))

GSSM qϕ2(zc|GNN([xc, yc])) PG LVM DM
qϕ1(zt|GNN([xc, yc], xt))

GSSM+APS qϕ2(zc|GNN([xc, yc])) APS LVM DM/PS
qϕ1(zt|GNN([xc, yc], xt))

B. Other Discussions
According to feedback from other reviewers, we summarize frequently asked questions and add explanations in this part.
This is to make our work clearer to potential readers.

(1) Possibility to combine Graph Neural Net (GNN) modules with meta model-free RL methods.

In our work, a combination of GNN latent variable and meta model-free methods is not applicable for an ablation experiment.
That is because (1) the input and output for GNN modules cannot be accordingly specified (in model-based settings, the
input and output are respectively [s, a] and ∆s; in model-free settings, the input is s for policies). (2) the optimization
objectives for GNN modules differ a lot in model-based (Maximize the likelihood of dynamics prediction in GNN related

Table 4. Mean Square Errors (MSEs) in Meta-testing Tasks using Learned Dynamics Models. (For each testing task, 50 episodes are
sampled to average. Figures in brackets are standard deviations across testing tasks, with bold ones the best.)

ENV GSSM M-DPILCO MLSM-V0 MLSM-V1 L2A

CART-POLE 0.0296(±0.042) 0.0475(±0.051) 0.0626(±0.081) 0.0310(±0.036) 0.0397(±0.04)

ACROBOT 0.0024(±0.0019) 0.0030(±0.0029) 0.004(±0.0042) 0.0024(±0.0021) 0.0039(±0.0017)

H-CHEETAH 0.530(±0.22) 0.678(±0.14) 0.533(±0.14) 0.636(±0.14) 0.785(±0.084)

S-HUMANOID 1.78(±0.13) 1.9(±0.15) 2.0(±0.16) 1.75(±0.15) 2.364(±0.078)
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Table 5. Parameter Scales of Context-based Dynamics Models in different tasks. It can be found GSSM and MLSM-v0 have the same
model complexity while MLSM-v1 has more parameters in meta dynamics models.

MLSM-V0 MLSM-V1 GSSM

CART-POLE 8.9 ∗ 1e4 9.3 ∗ 1e4 8.9 ∗ 1e4
ACROBOT 8.1 ∗ 1e5 8.4 ∗ 1e5 8.1 ∗ 1e5
H-CHEETAH 2.1 ∗ 1e5 2.3 ∗ 1e5 2.1 ∗ 1e5
S-HUMANOID 2.3 ∗ 1e5 2.6 ∗ 1e5 2.3 ∗ 1e5

modules) and model-free cases (Maximize the expected rewards in GNN related modules). (3) we do not find an appropriate
GNN related meta model-free RL baseline, and the extension is non-trivial to design.

(2) Technical summary of context-based meta model-based RL methods.

Comparisons between our developed graph structured surrogate model and other dynamics models are summarized in Table
(3). We mainly focus on methods to enable fast adaptation in both dynamics models and policy networks.

(3) Performance comparison to other meta model-based RL algorithms with non-GNN encoders.

In Section 5.1, non-GNN encoders correspond to NPs in MLSM, where a mean reduction is already used to obtain the
encoded latent variable. Recurrent encoders are improper in our settings since the randomly sampled transitions from the
memory buffer to identify the dynamical system are not completely sequential in dataset. But the use of Recurrent encoders
are more effective when the transitions in the dynamics buffer are collected and stored in an ordered way. The model benefits
from the sequential information. In this case, CaDM (Lee et al., 2020) can achieve SOTA performance in the domain.

(4) Performance comparison to other existing meta model-free RL methods, e.g. RL2 (Duan et al., 2016).

See Section 5.1, PE-PPO follows the same implementation in PEARL (Rakelly et al., 2019) except that PPO is used in
policy optimization. This is to make sure all policy optimization methods are consistent in experimental analysis. We also
try PEARL in model-free experiments with 1x volume of samples, but results are poorer than used baselines. Meanwhile,
please refer to learning curves of other model-free meta RL papers with 1x volume of samples, e.g. FOCAL (Li et al.,
2020) and MBML (Li et al., 2019), conclusions are: with limited episodes (1x samples), model-free ones, including RL2 or
Learn2Learn, work far worse than model-based baselines illustrated in our papers. This means the selection of model-free
meta RL baselines does not influence the comparison results and this is due to the performance bottleneck of model-free
ones with limited training episodes.

C. GSSM Modules in PyTorch
Our work GSSM is built up on structures of GNNs (Kipf & Welling, 2016; Satorras & Estrach, 2018; Wang et al., 2018).
But unlike vanilla GNNs, we try to learn the normalized graph Laplacian in modeling. Also, GSSMs make use of message
passing in GNN modules and transform the learn node representations into target transition latent variable zt and the prior
global latent variable zc for a MDP.

Here we rewrite the graph convolutional operation in the form of a node feature matrix VC , which is easier to implement in
programming. The graph convolution operator ◦ over any data point xt can be defined,

f(VC) = σ
(
D−1L[VCW]

)
(12a)

G(xt) ◦ f =
∑
i∈Ot

f(vi)sim(xt, xi) (12b)

where VC is the feature matrix of the context points and W denotes a trainable layer matrix. The weight parameter is
sim(xt, xi) and f(vi) is the embedding of a node in the graph G after message passing processes from its neighbors Ot.
The graph Laplacian matrix L reveals the connection relationship, where D is a diagonal matrix to normalize the row
elements in Eq. (12). All of these correspond to the left side of Fig. (1). The equivalent element-wise graph operation can
be found in Eq. (2). The following PyTorch code is about our defined graph convolution operations and the induced meta
dynamics model.

1 import torch
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2 import torch.nn as nn
3 import torch.nn.functional as F
4 from torch.nn.parameter import Parameter
5 from torch.autograd import Variable
6

7

8 class GC_Net(nn.Module):
9 '''

10 Graph convolutional layer for message passing: graph Laplacian matrix construction.
Feature transformation used only once.

11 Message passing across context points [x_c,y_c] and from context points to target
points [x_t,y_t].

12 '''
13 def __init__(self,dim_x,dim_y,dim_emb_x,dim_lat,dim_h_lat,num_h_lat,
14 trans_xy:bool=True,requires_grad:bool=False):
15 super(GC_Net,self).__init__()
16

17 self.dim_x=dim_x
18 self.dim_y=dim_y
19 self.dim_emb_x=dim_emb_x
20 self.dim_lat=dim_lat
21 self.dim_h_lat=dim_h_lat
22 self.num_h_lat=num_h_lat
23 self.trans_xy=trans_xy
24 self.requires_grad=requires_grad
25

26 if self.requires_grad:
27 self.beta=Parameter(torch.Tensor(1).uniform_(0,1),requires_grad=self.

requires_grad).cuda()
28 else:
29 self.beta=Variable(torch.ones(1),requires_grad=self.requires_grad).cuda()
30

31 self.fc_x=nn.Sequential(nn.Linear(self.dim_x, self.dim_emb_x, bias=False)).cuda()
32

33 self.trans_modules=[]
34 if self.trans_xy :
35 self.trans_modules.append(nn.Linear(self.dim_x+self.dim_y, self.dim_h_lat,

bias=False))
36 else:
37 self.trans_modules.append(nn.Linear(self.dim_y, self.dim_h_lat, bias=False))
38 self.trans_modules.append(nn.LayerNorm(self.dim_h_lat))
39 self.trans_modules.append(nn.ReLU())
40 for i in range(self.num_h_lat):
41 self.trans_modules.append(nn.Linear(self.dim_h_lat, self.dim_h_lat))
42 self.trans_modules.append(nn.ReLU())
43 self.trans_modules.append(nn.Linear(self.dim_h_lat, self.dim_lat))
44

45 self.trans_net=nn.Sequential(*self.trans_modules).cuda()
46

47

48 def emb_aggregator(self,h_context,aggre_dim):
49 '''
50 aggregation embeddings from the context points.
51 '''
52 h_aggre=torch.mean(h_context,dim=aggre_dim)
53

54 return h_aggre
55

56

57 def forward(self,x_context,x_target,y_context,
58 self_addition=True,whether_l2norm=False):
59 '''
60 construct GL based on pairwise similarities.
61 x_context-->shape [num_task,num_c_points,dim_x].
62 '''
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63 assert x_context.dim()== 3
64

65 x_emb_c, x_emb_t = self.fc_x(x_context), self.fc_x(x_target)
66

67 x_emb_cn, x_emb_tn = torch.norm(x_emb_c, p=2, dim=-1, keepdim=True).detach(),
torch.norm(x_emb_t, p=2, dim=-1, keepdim=True).detach()

68 x_emb_c, x_emb_t = x_emb_c.div(x_emb_cn.expand_as(x_emb_c)),\
69 x_emb_t.div(x_emb_tn.expand_as(x_emb_t))
70

71

72 b_mask=(zero_diag_mask(x_emb_c)).cuda()
73

74 c_inner_prod=self.beta*torch.matmul(x_emb_c,x_emb_c.transpose(1,2))
75 c_n_prod=F.softmax(c_inner_prod,dim=-1)
76

77 mask_c_n_prod=torch.mul(c_n_prod,b_mask)
78 rand_mat=F.normalize(mask_c_n_prod,p=1,dim=-1)
79 b_id_mat=batch_eye_mat(x_emb_c)
80 g_lap_mat=rand_mat+b_id_mat
81

82 # compute normalized dot products between x_c and x_t
83 t_inner_prod=self.beta*torch.matmul(x_emb_t,x_emb_c.transpose(1,2))
84 t_n_prod=F.softmax(t_inner_prod,dim=-1)
85

86 # formulate the latent representation for each context data point
87 if self.trans_xy:
88 context_mat=torch.cat((x_context,y_context),dim=-1)
89 else:
90 context_mat=y_context
91 emb_context=self.trans_net(context_mat)
92

93 if self_addition:
94 c_n_prod_unsq=g_lap_mat.unsqueeze(-1)
95 else:
96 c_n_prod_unsq=c_n_prod.unsqueeze(-1)
97 emb_c_unsq=emb_context.unsqueeze(1).expand(-1,context_mat.size(1),-1,-1)
98 c_message_pass=emb_c_unsq.mul(c_n_prod_unsq)
99 c_message_aggregation=c_message_pass.sum(2)

100 c2t_message_aggregation=(torch.mean(c_message_aggregation,dim=1)).unsqueeze(1)
101 c2t_message_aggregation=c2t_message_aggregation.expand(-1,x_target.size(1),-1)
102

103 # message passing from the context to the target point
104 c_message_aggregation_unsq=c_message_aggregation.unsqueeze(1).expand(-1,
105 x_target.size(1),-1,-1)
106 t_n_prod_unsq=t_n_prod.unsqueeze(-1)
107 t_message_pass=c_message_aggregation_unsq.mul(t_n_prod_unsq)
108 t_message_aggregation=self.emb_aggregator(t_message_pass,aggre_dim=2)
109

110 if whether_l2norm:
111 c2t_message_aggregation = l2_normalization(c2t_message_aggregation)
112 t_message_aggregation = l2_normalization(t_message_aggregation)
113

114 return c_message_aggregation, c2t_message_aggregation, t_message_aggregation
115

116

117 def batch_eye_mat(x):
118

119 identity_mat=(torch.eye(x.size(1))).reshape((1,x.size(1),x.size(1)))
120 b_identity_mat=identity_mat.repeat(x.size(0),1,1).cuda()
121

122 return b_identity_mat
123

124

125 def zero_diag_mask(x):
126
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127 identity_mat=(torch.eye(x.size(1))).reshape((1,x.size(1),x.size(1)))
128 b_identity_mat=identity_mat.repeat(x.size(0),1,1)
129

130 b_one_mat=torch.ones(x.size(0),x.size(1),x.size(1))
131

132 b_mask=b_one_mat-b_identity_mat
133

134 return b_mask
135

136

137 def l2_normalization(x_tensor):
138 x_l2_norm = torch.norm(x_tensor, p=2, dim=-1, keepdim=True).detach()
139 normalized_x = x_tensor.div(x_l2_norm.expand_as(x_tensor))
140

141 return normalized_x

Listing 1. Message Passing Modules in the PyTorch Version.

1 class GS_DM(nn.Module):
2 '''
3 Learning meta dynamics model via a Graph Structured Surrogate Model.
4 '''
5 def __init__(self,args):
6 super(GS_DM,self).__init__()
7

8 #extract parameters from args
9 self.dim_x=args.dim_x

10 self.dim_y=args.dim_y
11

12 self.dim_emb_x=args.dim_emb_x
13 self.dim_lat=args.dim_lat
14 self.dim_h_lat=args.dim_h_lat
15 self.num_h_lat=args.num_h_lat
16

17 self.dim_h=args.dim_h
18 self.num_h=args.num_h
19 self.act_type=args.act_type
20 self.amort_y=args.amort_y
21

22 #graph context embeddings
23 self.gc_net=GC_Net(self.dim_x, self.dim_y, self.dim_emb_x,
24 self.dim_lat, self.dim_h_lat, self.num_h_lat).cuda()
25

26 self.mu_net=nn.Sequential(nn.Linear(self.dim_lat, self.dim_lat)).cuda()
27 self.logvar_net=nn.Sequential(nn.Linear(self.dim_lat, self.dim_lat)).cuda()
28

29 self.mu_net_g=nn.Sequential(nn.Linear(self.dim_lat, self.dim_lat)).cuda()
30 self.logvar_net_g=nn.Sequential(nn.Linear(self.dim_lat, self.dim_lat)).cuda()
31

32 self.dec_modules=[]
33 self.dec_modules.append(nn.Linear(self.dim_x+self.dim_lat, self.dim_h))
34 for i in range(args.num_h):
35 self.dec_modules.append(get_act(args.act_type))
36 self.dec_modules.append(nn.Linear(self.dim_h, self.dim_h))
37 if self.amort_y:
38 self.dec_modules.append(get_act(args.act_type))
39 self.dec_modules.append(nn.Linear(self.dim_h, 2*self.dim_y))
40 else:
41 self.dec_modules.append(get_act(args.act_type))
42 self.dec_modules.append(nn.Linear(self.dim_h, self.dim_y))
43 self.dec_net=nn.Sequential(*self.dec_modules).cuda()
44

45

46

47 def get_context_idx(self,M):
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48 # generate the indeces of the N context points from M points
49 N = random.randint(1,M)
50 idx = random.sample(range(0, M), N)
51 idx = torch.tensor(idx).cuda()
52

53 return idx
54

55

56 def idx_to_data(self,data,sample_dim,idx):
57 # get subset of an array
58 ind_data= torch.index_select(data, dim=sample_dim, index=idx)
59

60 return ind_data
61

62

63 def reparameterization(self,mu,logvar):
64 #sample some random variable from N(0,I) and derive the correspinding z-sample.
65 std=torch.exp(0.5*logvar)
66 eps=torch.randn_like(std)
67

68 return mu+eps*std
69

70

71 def forward(self,x_memory,y_memory,x_pred):
72 c_emb, c2t_message_aggregation, gc_emb=self.gc_net(x_memory,x_pred,y_memory)
73 mu=self.mu_net(gc_emb)
74 logvar=self.logvar_net(gc_emb)
75 mu_g=self.mu_net_g(c2t_message_aggregation)
76 logvar_g=self.logvar_net_g(c2t_message_aggregation)
77

78 z=self.reparameterization(mu, logvar)
79

80 output=self.dec_net(torch.cat((x_pred,z),dim=-1))
81

82 if self.amort_y:
83 y_mean,y_var=output[:,:,:self.dim_y],F.softplus(output[:,:,self.dim_y:])
84 return mu,logvar,mu_g,logvar_g,y_mean,y_var
85 else:
86 y_pred=output
87 return mu,logvar,mu_g,logvar_g,y_pred

Listing 2. Graph Structured Surrogate Models in the PyTorch Version.

D. Evidence Lower Bound for GSSM
Here P (D) denotes the distribution of state action pairs in meta-training processes, and each data point is attached with
a context set [xc, yc] (a batch of transition data points) to imply the statistics information from a task. With a Jessen’s
inequality and an approximate posterior qϕ(zt|xt, xc, yc), we can have evidence lower bound as follows.

Ep(D) ln p(yt|xt, xc, yc) = Ep(D) lnEqϕ

[ p(z∗)

qϕ(zt|xt, xc, yc)
pθ(yt|xt, zt)

]
≥ Ep(D)

[
Eqϕ ln

[
pθ(yt|xt, zt)

]
− Eqϕ ln

[qϕ(zt|xt, xc, yc)

p(zt)

]] (13)

By replacing the zero information prior distribution p(zt) with q(zt|xc, yc), we can derive the formerly mentioned ELBO.

Ep(D)

[
ln p(yt|xt, xc, yc)︸ ︷︷ ︸

intractable data likelihood

]
≥ Ep(D)

[
Eqϕ1

[ln pθ(yt|xt, zt)]−DKL[qϕ1
(zt|xt, xc, yc)︸ ︷︷ ︸

approximate posterior

∥ qϕ2
(zc|xc, yc)︸ ︷︷ ︸

approximate prior

]
]

(14)
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Note that both the approximate prior and the posterior are learnable with a partially shared neural network in meta learning
scenarios, which is similar in work (Denton & Fergus, 2018; Pertsch et al., 2020; Garnelo et al., 2018b). And the learned
prior qϕ2(zc|xc, yc) can be viewed as a summary of context points, which is further used to help induce amortized policies
πφ(a|s, zc). For more details on encoding relationship between these context points and target points, refer to Fig. (1).

Besides, the number of context points is a random number smaller than the batch size in meta training dynamics models,
which shares the same setting as Neural Processes. As mentioned in the Main Paper, a fully connected graph is built among
context points, and the graph Laplacian matrix is learned based on Eq. (2.a). Here we treat all the context points as the
neighborhood Ot of a target point xt. The way of constructing fully connected graphs is a limitation for GSSMs, and future
work can be discovery of optimal graph structures to further improve performance.

(a) Computational Graph in Meta-training
Dynamics Models

Interactions

Dynamics Model

Policy Network

(b) Meta-training Amortized Policies

Figure 5. Computational Graphs of GSSM in Meta-training Processes. Note that amortized policy search is used here. On the Left side of
the Figure: it describes the connections of variables in neural networks for meta dynamics models. On the Right side of the Figure: it
illustrates the process in meta model-based policy search (Note that the reparameterization trick is used here and sampled latent variables
zt and zc are deterministic, denoted by squares).

E. Computational Graphs and Detailed Descriptions
Here we add more explanations about our developed GSSM and amortized policy search. This section corresponds to Fig.
(1). Especially, computational processes are displayed in Fig. (5).

On the Left of Fig. (5), the GNNϕ2 module is used to summarize the task using qϕ2(zc) from the context points C, while
the GNNϕ1 module is used to learn state-action pair xt dependent latent variables qϕ1(zt). As mentioned in the Main paper,
these two modules share part of parameters. The concatenation of xt and sampled zt is input into the Decoderθ module to
predict the transited state st+1 or state difference ∆st.

On the Right of Fig. (5), this depicts the process in learning amortized policies (Mainly refer to the loop iterations step
(6)-(10) in Algorithm (1)). Given a batch of MDPs, context points C are sampled using a uniform random policy and
input into GNNϕ2

to formulate task-specific latent variables. Note that the reparameterization trick is used in this process,

which means we sample ϵ ∼ N (0, I) during the loop of iterations to formulate zt = µt + Σ
− 1

2
t ϵ for state-action pairs

xt = [st, at]. This operation can be interpreted as sampling MDPs from the posterior in posterior sampling (Osband et al.,

2013). Similarly, we sample ϵ ∼ N (0, I) to formulate zc = µc + Σ
− 1

2
c ϵ and get this sample value retained in the loop

iterations (In Actor-Critic cases, the sampled value also takes part in value function approximators). During the process,
these task-specific policies interact with a collection of sampled MDPs to seek optimal results like that in BOSS (Asmuth
et al., 2009), and this corresponds to find optimal policies w.r.t sampled MDPs in posterior sampling. In the next loop
of iterations, new transitions are collected using the amortized policy and the dynamics model is retrained to update the
posterior.
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F. Policy Gradient Estimates in Amortized Policy Search
Due to page limits, we provide more details in actor critic cases. Just as revealed in Fig. (1), the right one is to show
amortized policy search in a collection of approximate dynamics models. Estimates of policy gradients are formulated and
these details will tell readers how our amortized policies are learned in MBMRL. All of these correspond to step (10) in
Algorithm (1).

Note that parameters φ in our amortized policies πφ(a|[s, zc]) are optimized in developed dynamics models. Dynamics
models as GSSMs consist of parameters θ and ϕ = [ϕ1, ϕ2], and we denote a sampled approximate dynamics model for one
task as M̂. As for a distribution of synthetic trajectories τ from a learned dynamics model M̂, we use p(τ |M̂;φ, ϕ) to
define, where qϕ2

encodes contextual information from [xc, yc] for different tasks. Given a sampled trajectory τ from an
approximate dynamics model M̂, we can decompose it according to the Markov property.

p(τ |M̂;φ, ϕ) = p(s0)

T−1∏
t=0

[p(st+1|st, at, zt)πφ(at|[st, zc])] (15)

Besides, the proposed amortized policy search strategy can be combined with any other dynamics model with contextual
latent variables, not limited to Graph Structured Surrogate Models in our paper (e.g. NP (Garnelo et al., 2018b; Galashov
et al., 2019), it is also available to combine with our developed policy search strategy).

We consider actor-critic frameworks, where a value function is also conditioned on the latent variable (Refer to the right
side of Fig. (1). Hence, two objectives, namely value function approximation and policy optimization, are involved in this
setting.

LC(φ̂) = EM̂∼p(M̂;θ,ϕ)E (s,a,s′,r)∼B(M̂)
zc∼qϕ(zc|[xc,yc])

[Qφ̂([s, zc], a)− (r + γVφ̃([s
′, zc]))]

2
(16)

The value function approximation objective is Eq. (16), where B(M̂) is a batch of synthetic transition samples from M̂
and φ̂ is the parameter of value function approximators. The critic optimization process is inside policy search during
meta-training processes via gradient updates. The actor optimization objective can be found in the main paper.

To optimize policy functions as that in Eq. (10), we can utilize a likelihood ratio trick (Williams, 1992) and compute the
derivative in transitions as follows.

ln p(τ |M̂;φ, ϕ) = ln p(s0) +

T−1∑
t=0

[ln p(st+1|st, at, zt)) + lnπφ(at|[st, zc])] (17)

∇φ ln p(τ |M̂;φ, ϕ) = ∇φ ln���p(s0) +

T−1∑
t=0

∇φ

[
ln(((((((

p(st+1|st, at, zt) + lnπφ(at|[st, zc])
]

(18)

Based on Eq. (18), we formulate the estimated policy gradient in Eq. (19), and a modified PPO (Schulman et al., 2017) is
used as an instantiation to implement in our settings.

∇φJ (φ) = EM̂∼p(M;θ,ϕ)

[∫
∇φp(τ |M̂;φ, ϕ)R(τ)dτ

]
= EM̂∼p(M;θ,ϕ)Eτ∼p(τ |M̂;φ,ϕ)

[
∇φ ln p(τ |M̂;φ, ϕ)R(τ)

]
= EM̂∼p(M;θ,ϕ)Eτ∼p(τ |M̂;φ,ϕ)

[
T−1∑
t=0

∇φ lnπ(at|[st, zc])

]
·

[
T−1∑
t=0

r(st, at, st+1)

] (19)
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Meanwhile, the policy gradient in the form of advantage functions is derived in Eq. (20),

∇φJ (φ) = E M̂∼p(M̂;θ,ϕ)

τ∼p(τ|M̂;φ,ϕ)

[

T−1∑
t=0

∇φ lnπ(at|[st, zc]) ·At([st, zc], at)] (20)

where At([st, zc], at) is an advantage function, mostly written as the difference between a cumulative reward term and a
baseline term At([st, zc], at) =

∑T−1
t′=t+1 r([st′ , zc], at′)− bt([st, zc]).

Similar to the term on the right side of Eq. (10), the corresponding Monte Carlo estimate of the policy gradient can be easily
obtained from Eq. (20), and we skip this step in this section.

G. Experimental Settings and Training Details
In this section, we provide information about environments and give more details in meta training/testing processes.
Especially, the updated code file can be found in (https://github.com/hhq123gogogo/GSSM APS). Only one
layer graph convolution is used in general settings.

G.1. Environmental Details

MBMRL Tasks. Here we describe meta reinforcement learning tasks in this paper. The Cart-Pole environment can be
found in the link2 here. The Acrobot is based on open-ai gym3: with continuous states [θ1, θ′1, θ2, θ

′
2] as angles and instant

angle velocities, the goal is to sequentially select an action from {−1, 0,+1} (respectively Right Torque, No Torque, Left
Torque) to reach the height above the top of the pendulum as early as possible. Half-Cheetah/Slim-Humanoid are from a
Mujoco package4 and both are to conduct locomotion tasks. Generations of diverse Cart-Pole/Acrobot environments have
been introduced in the main paper. As for Cart-Pole tasks, 50 unseen tasks are sampled from simulators for meta testing
and each task is with 50 episodes in evaluation (refer to Fig. (2)). As for Acrobot tasks, 33 unseen tasks are sampled from
simulators for meta testing and each task is with 50 episodes in evaluation (refer to Table (2)/(4)). As for configurations of
Half-Cheetah/Slim-Humanoid environments, we generate the Meta-training MDPs via the combination of the mass re-scaled
coefficient in the list {0.8, 0.9, 1.0, 1.1, 1.2} and the damping coefficient in the list {0.8, 0.9, 1.0, 1.1, 1.2}, while those
hyper-parameters for Meta-testing phases are {0.85, 0.95, 1.05, 1.15} for both mass-rescaled and damping coefficients. As a
result, totally 16 unseen MDPs are generated by the Cartesian of mass coefficients and damping coefficients for meta-testing
processes (refer to Table (4) and Table (2)/(4)).

Goal

(a) Cart-Pole (b) Acrobot (c) Half-Cheetah (d) Slim-Humanoid

Figure 6. Fundamental Environments used in Meta Model-based Reinforcement Learning Experiments.

Reward Descriptions. Besides, reward functions are listed here (refer to Table (6)). More details are as follows. In
Cart-Pole environments, d in a reward function measures the square of the distance between the pole’s end point and its
goal, and hyper-parameter σc = 0.25. In Acrobot environments, the list of parameters {l1, l2, θ1, θ2} corresponds to Fig.
(6) in terms of meanings in a reward function. In Half-Cheetah environments, xt is the notation of the x-coordinate in the
Half-Cheetah agent at time slot index t,∇t is time difference in dynamics (the resulted ratio is the speed of agent.) and at is

2https://github.com/BrunoKM/deep-pilco-torch
3https://gym.openai.com/
4http://www.mujoco.org/
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Table 6. Reward Functions in Related Environments.

ENV REWARD FUNCTIONS HORIZON CONTROL

CART-POLE 1− exp (− ∥d2∥
σ2
c
) 25 CONTINUOUS

ACROBOT BOOL(−l1 cos (θ1)− l2 cos (θ1 + θ2)− l1) 200 DISCRETE

H-CHEETAH
xt+1−xt

∇t
− 0.1 ∗ ∥at∥22 1000 CONTINUOUS

S-HUMANOID
50(xt+1−xt)

3∇t
− 0.1 ∗ ∥at∥22 + 5.0 ∗ BOOL(1.0 ≤ xt,h ≤ 2.0) 1000 CONTINUOUS

the action performed instantly. In Slim-Humanoid environments, notations are similar to those in Half-Cheetah and xt,h in
reward functions refer to the instant torso’s height. Horizons of trajectories as well as types of action spaces can also be
found in Table (6).

Learning Parameterized Policies in the Background of MBMRL

Dynamics ModelsMDPs

......
Dynamics ModelsMDPs

...... ...

Policy Networks

Adaptation

(a) In GSSM Cases (Using Amortized Policies) (b) In NonLV-GSSM/Other Baseline Cases

Fine-t
uning

Figure 7. Meta Model-based Policy Search used in Models. Note that reducing adaptation time in policies is the first priority in this work.
On the Left, amortized policies are used and latent variables are to specify different tasks. On the Right, the meta-trained policy is not
conditioned on latent variables and needs to be adapted to respective tasks, which consumes additional time.

G.2. Training Details

Data Preprocessing. In Acrobot tasks, the output of dynamics models is the next or transited state (x = [s, a], y = s′ ). In
other tasks, the output of dynamics models is the difference of the next state and the current state (x = [s, a], y = ∆s). For
the input of dynamics models, it is the state-action pair in all environments. For Half-Cheetah/Slim-Humanoid environments,
standardization is required for both the input and the output of dynamics models in meta training processes.

More Details in Policy Search. In Cart-Pole Swing-Up environments, Back-Propagation Through Time (BPTT) is used
in model-based policy search and the policy network parametrized with a radial basis function follows that in (Gal et al.,
2016),for GSSM+APS, a latent variable is concatenated with the state variable as the input. In Acrobot/Half-Cheetah/Slim-
Humanoid, we combine PPO with the learned dynamics model (We also perform additional trials in BPTT strategies but this
kind of model-based policy search suffers from gradient exploding in practice), and a direct combination of model-based
and model-free RL algorithms in meta-learning leads to stable training.

Besides, meta-trained policies in MLSM-v0/MLSM-v1/M-DPILCO require additional policy gradient updates in separate
dynamics models of tasks and these are up to tasks based on our trials: for Cart-Pole/Acrobot, five trajectories are enough to
fine-tune these policies, and for Half-Cheetah/Slim-Humanoid one trajectory is enough to fine-tune these policies. Such
adaptation in MLSM-v0, MLSM-v1 and M-DPILCO consumes additional time when the learned policy is implemented in
unseen environments.

The pipeline is reflected in Fig. (7). Traditional model predictive control strategies are prohibitively expensive in implemen-
tations, costing much more time with lower efficiency in high dimensional action space. Since related work employing
parameterized policies in MBMRL remains limited, our proposed method can be deemed as a preliminary exploration.
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Further Descriptions in Fig.s/Tables. Here we add more descriptions on Cart-Pole, where authors can follow the
implementations in the work5, and the state-of-art performance using Deep-PILCO is about -0.6 in episodes for a single task.
We also try DR-PPO and PE-PPO in Cart-Pole tasks with more than 10x required time steps in training, but the resulted
performance in testing is far worse than MBMRL ones and we guess the PPO algorithm here cannot well handle planning
with short horizons (Other referred model-free results can be found in (Lillicrap et al., 2016). In addition, the estimated
required samples of all MBMRL baselines for Cart-Pole are even 2x less than model-free ones (Lillicrap et al., 2016; Gal
et al., 2016) to train in one single MDP.).

In Fig. (2.(a)/(b)/(d)), each iter in x-axis indicates that a new trajectory is sampled to update the dynamics buffer, the batch
size of samples in dynamics memory buffer is 100, the default epoch in training dynamics models is 5 in each iter, and
the Cart-Pole environment changes every every 10 iter. Meanwhile, for each iter, 25 trajectories are sampled using the
updated policy to average results for evaluating the performance in the trained task (this process results in learning curves).

Fig. (4) keeps track of meta-training performance using MBMRL algorithms in Acrobot/H-Cheetah/S-Humanoid, and
dynamics of MDPs change with iterations (the batch numbers of tasks are 1 for Acrobot/H-Cheetah and 3 for S-Humanoid).
In Acrobot, the batch size of samples in dynamics memory buffer is 100, the default epoch in training dynamics models is
20 in each iter, and 15 trajectories are sampled for evaluation to show performance on learning curves. In H-Cheetah,
the batch size of samples in dynamics memory buffer is 1000, the default epoch in training dynamics models is 20 in each
iter, and 15 trajectories are sampled for evaluation to show performance on learning curves. In S-Humanoid, the batch
size of samples in dynamics memory buffer is 1000, the default epoch in training dynamics models is 10 in each iter, and
15 trajectories are sampled for evaluation to show performance on learning curves. And every fixed number of iterations,
MDPs in meta-training are resampled (for Acrobot, every 3 iters; for H-Cheetah, every 3 iters; for S-Humanoid, every
1 iter).

Table (4) and Table (1)/(2) summarize the meta-testing results over unseen MDPs. We collect the rewards in each task
using these models to obtain the average results in each task and then report average rewards over meta testing tasks in
the table. Some additional explanations are as follows. In meta-testing tasks of Cart-Pole, contextual latent variables in
GSSM/MLSM-v0/MLSM-v1 are computed after transitions of two trajectories (50 transition steps) are aggregated. In
meta-testing tasks of Acrobot, contextual latent variables in GSSM/MLSM-v0/MLSM-v1 are computed after transitions of a
one-sixth trajectory (50 transition steps) are aggregated. In meta-testing tasks of Half-Cheetah/Slim-Humanoid, contextual
latent variables in GSSM/MLSM-v0/MLSM-v1 are computed after transitions of a half trajectory (500 transition steps) are
aggregated.

Meanwhile meta-training processes in model-free meta reinforcement learning are recorded in Fig. (4) . All of these are
trained with Adam optimizers and learning rates are 5e-4 in default.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. More Visualized Results of Latent Variables in Meta Trained Models. (a) is the plot of sampled latent variables with a pole
mass as 1.0 and cart masses as {1.0, 1.25, 1.5, 1.75, 2.0} in CartPole. Similarly, (b)/(c) are results by varying the pendulum1’s mass with
pendulum0’s mass fixed to be 1.0 in Acrobot. Similarly, (d)/(e) are results by varying damping scale values with mass scale fixed to be 1.0
in Meta-HCheetah. Similarly, (f)/(g) are results by varying damping scale values with mass scale fixed to be 1.0 in Meta-SHumanoid.

5https://github.com/BrunoKM/deep-pilco-torch
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Table 7. Neural Network Structure of MBMRL Models. The transformations in the table are linear, followed with ReLU activation mostly.
As for MLSM-v1, the encoder network is doubled in the table since there exists a local variable for prediction.

NP MODELS ENCODER DECODER

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
n times

[dim x, (2∗)dim lat] 7→ dim h 7→ dim h︸ ︷︷ ︸
m times

MLSM-V0/V1 dim latxy 7→ dim lat. dim h 7→ dim y

[dim x, dim y] 7→ dim latxy 7→ dim latxy︸ ︷︷ ︸
n times

[dim x, dim lat] 7→ dim h 7→ dim h︸ ︷︷ ︸
m times

GSSM dim x 7→ dim latx;
[dim latx, dim laty] 7→ dim lat. dim h 7→ dim y

Table 8. Neural Network Structure in Meta Policy Networks. For Back-propagation Through Time (BPTT) and Actor-Critic Policy
Gradient Algorithms, neural architectures are different. ReLU is used as an activation function. Soft-max is used in the output of Actor
Networks in the discrete control.

POLICY SEARCH NEURAL ARCHITECTURES

[dim obs]/[dim obs, dim lat] 7→ dim ph 7→ dim ph︸ ︷︷ ︸
np times

BPTT dim ph 7→ dim act.

[dim obs]/[dim obs, dim lat] 7→ dim ph 7→ dim ph︸ ︷︷ ︸
npc times

7→ dim act (ACTOR NETWORK)

AC-PG (PPO) [dim obs]/[dim obs, dim lat] 7→ dim ph 7→ dim ph︸ ︷︷ ︸
npa times

7→ 1 (CRITIC NETWORK).

H. Neural Architectures and Parameter Settings
Here neural architectures in meta dynamics models are listed in Table (7). These architectures are shared across all
implemented tasks in the paper. And one layer graph encoding is enough to guarantee performance in our GSSM
implementations for all experiments. For Meta-DPILCO, neural architectures resemble that in the table except that encoders
for latent variables are removed and dropout modules are integrated in each layer. In Cart-Pole environments, parameters
in Table (7) are {n = 2, dim latxy = 32, dim lat = 16,m = 2, dim h = 200}. In Acrobot environments, parameters
in Appendix Table (7) are {n = 2, dim latxy = 32, dim lat = 16,m = 5, dim h = 400}. In Mujoco environments,
parameters in Appendix Table (7) are {n = 2, dim latxy = 32, dim lat = 16,m = 5, dim h = 400}. Also note that
in our implementations, we set dim lat = 8 for GSSM in Cart-Pole/Acrobot/H-Cheetah because lower dimensional
information bottlenecks are more compact and help amortized policy search, while for models using non-latent variable
conditioned policies better results are achieved with information bottleneck dim lat = 16.

As for meta policy networks or latent variable conditioned policy networks (used in GSSM), we adopt the ordinary ones and
these are listed in Table (8). In Cart-Pole environments, parameters in Table (8) are {np = 1, dim ph = 50}. In Acrobot
environments, parameters in Appendix Table (8) are {npa = 1, dim ph = 128, npc = 1}. In Half-Cheetah environments,
parameters in Table (8) are {npa = 1, dim ph = 128, npc = 1}. In model-free meta reinforcement learning scenarios, the
contextual encoder is permutation invariant the same with that used in MLSM-v0, and the optimization objectives follow
those in PEARL (Rakelly et al., 2019). Besides, we implement the vanilla version of PEARL with the same training sample
volume as that in MBMRL but find the results are inferior to mentioned model-free baselines.

I. Computing Devices and Required Platforms
Throughout the work, we run experiments in a GTX 1080-Ti GPU, and Pytorch6 is used in implementations.

6https://pytorch.org/


