UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Data distribution debugging in machine learning pipelines

Grafberger, S.; Groth, P.; Stoyanovich, J.; Schelter, S.

DOI
10.1007/s00778-021-00726-w

Publication date
2022

Document Version
Final published version

Published in
VLDB Journal

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)

Link to publication

Citation for published version (APA):

Grafberger, S., Groth, P., Stoyanovich, J., & Schelter, S. (2022). Data distribution debugging
in machine learning pipelines. VLDB Journal, 31(5), 1103-1126.
https://doi.org/10.1007/s00778-021-00726-w

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:31 Aug 2023

https://doi.org/10.1007/s00778-021-00726-w
https://dare.uva.nl/personal/pure/en/publications/data-distribution-debugging-in-machine-learning-pipelines(a87cddc2-b9cf-4db4-8981-02ea705f54ff).html
https://doi.org/10.1007/s00778-021-00726-w

The VLDB Journal (2022) 31:1103-1126
https://doi.org/10.1007/s00778-021-00726-w

SPECIAL ISSUE PAPER l‘)

Check for
updates

Data distribution debugging in machine learning pipelines

Stefan Grafberger' . Paul Groth' . Julia Stoyanovich? - Sebastian Schelter’

Received: 27 February 2021 / Revised: 9 September 2021/ Accepted: 3 December 2021 / Published online: 31 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Machine learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this widespread use
are garnering attention from policy makers, scientists, and the media. ML applications are often brittle with respect to their
input data, which leads to concerns about their correctness, reliability, and fairness. In this paper, we describe m1 inspect, a
library that helps diagnose and mitigate technical bias that may arise during preprocessing steps in an ML pipeline. We refer
to these problems collectively as data distribution bugs. The key idea is to extract a directed acyclic graph representation of
the dataflow from a preprocessing pipeline and to use this representation to automatically instrument the code with predefined
inspections. These inspections are based on a lightweight annotation propagation approach to propagate metadata such as
lineage information from operator to operator. In contrast to existing work, m1inspect operates on declarative abstractions
of popular data science libraries like estimator/transformer pipelines and does not require manual code instrumentation.
We discuss the design and implementation of the ml1inspect library and give a comprehensive end-to-end example that

illustrates its functionality.

Keywords Data debugging - Machine learning pipelines - Data preparation for machine learning

1 Introduction

Machine learning (ML) is increasingly used to automate deci-
sions that impact people’s lives, in domains as varied as credit
and lending, medical diagnosis, and hiring, with the poten-
tial to reduce costs, reduce errors, and make outcomes more
equitable. Yet, despite their potential, the risks arising from
the widespread use of ML-based tools are garnering atten-
tion from policy makers, scientists, and the media [52]. In
large part this is because the correctness, reliability, and fair-
ness of ML models critically depend on their training data.
Preexisting bias, such as under- or over-representation of par-
ticular groups in the training data [12], and technical bias,

B<I Sebastian Schelter
s.schelter@uva.nl

Stefan Grafberger
s.grafberger@uva.nl

Paul Groth
p-t.groth@uva.nl

Julia Stoyanovich
stoyanovich@nyu.edu
University of Amsterdam, Amsterdam, Netherlands

2 New York University, New York, USA

such as skew introduced during data preparation [49], can
heavily impact performance. In this work, we focus on help-
ing diagnose and mitigate technical bias that arises during
preprocessing steps in an ML pipeline. We refer to these
problems collectively as data distribution bugs.

Data distribution bugs are often introduced during
preprocessing Input data for ML applications come from
a variety of data sources, and it has to be preprocessed
and encoded as features before it can be used. This prepro-
cessing can introduce skew in the data, and, in particular,
it can exacerbate under-representation of historically dis-
advantaged groups. For example, preprocessing operations
that involve filters or joins can heavily change the distribu-
tion of different groups represented in the training data [58],
and missing value imputation can also introduce skew [47].
Recent ML fairness research, which mostly focuses on the
use of learning algorithms on static datasets [14], is there-
fore insufficient because it cannot address such technical bias
originating from the data preparation stage. Furthermore, it
is important to detect and mitigate bias as close to its source
as possible [52].

Data distribution bugs are difficult to catch In part, this
is because different pipeline steps are implemented using dif-
ferent libraries and abstractions, and data representation often

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00726-w&domain=pdf

1104

S. Grafberger et al.

changes from relational data to matrices during data prepa-
ration. Further, preprocessing in the data science ecosystem
[44] often combines relational operations on tabular data
with estimator/transformer pipelines." These pipelines are
composable and nestable abstractions for operations on array
data. The approach originates from scikit-learn [37] and has
been adopted by libraries like SparkML [28] and TensorFlow
Transform.” Tracing problematic featurized entries that may
be the result of nested function calls back to the pipeline’s
initial human-readable input is tedious work.

We need automated inspection of ML pipelines Due to
the pressures of their day-to-day activities, most data scien-
tists will not invest the necessary time and effort to manually
instrument their code or insert logging statements for trac-
ing, as required by model management systems [53,60]. We
envision support for data scientists in the form of automated
inspections of their pipelines, similar to the inspections used
by modern IDEs to highlight potentially problematic parts
of a program, such as the use of deprecated code. Once data
scientists become aware of such issues, they can use data
debuggers like Dagger [26] to drill down into the specific
intermediate pipeline outputs and explore the root cause of
the issue. We furthermore argue that, to be most beneficial,
automated inspections need to work with code natively writ-
ten with popular ML library abstractions.

Lightweight pipeline inspection with mlinspect We
design and implement mlinspect, a library that helps
data scientists automatically detect data distribution bugs in
their ML pipelines. The mlinspect library extracts logi-
cal query plans, modeled as directed acyclic graphs (DAGs)
of preprocessing operators, from pipelines that use popular
libraries like pandas and scikit-learn [37], and that combine
estimator/transformer pipelines and relational operators. The
pipeline code is then automatically instrumented to trace the
impact of operators on properties like the distribution of sen-
sitive groups in the data. In this way, m1 inspect empowers
data scientists to automatically and comfortably check their
ML pipeline code for data distribution bugs.

Importantly, m1inspect provides a library-independent
interface to propagate annotations such as the lineage of
tuples across operators from different libraries and intro-
duces only constant overhead per tuple flowing through the
DAG. Thereby, mlinspect offers a general runtime for
pipeline inspection and allows for integration of many detec-
tion techniques for data distribution bugs that previously
required custom code, such as automated model validation
of data slices [42], identification of distortions with respect
to protected group membership in the training data [58], and
automated dataset sanity checking [21].

! https://scikit-learn.org/stable/modules/compose.html.

2 https://github.com/tensorflow/transform.

@ Springer

We proposed the initial ideas for our approach in earlier
work [17]. In this paper, we give a comprehensive descrip-
tion of the approach and of the corresponding open source
library. We explain how to instrument estimator/transformer
pipelines (Sect. 3.2), provide implementation details for all
our components (Sect. 4), and add an extensive discussion of
related work (Sect. 6). We also present quantitative and qual-
itative experiments to evaluate m1linspect with respect to
its runtime overhead and usability.

In this paper, we make the following contributions:

We describe hard-to-identify issues in ML preprocessing
pipelines with respect to the fairness and correctness of
the resulting models (Sects. 2, 3.3).

— We discuss the design of mlinspect, which enables
lightweight lineage-based inspection of ML preprocess-
ing pipelines. The mlinspect library bases its anal-
ysis on declarative abstractions of popular data science
libraries and does not require manual code instrumenta-
tion (Sect. 3).

— We describe how to efficiently implement the instrumen-
tation and inspections of m1inspect and how to enable
support for control flow (Sect. 4).

— We experimentally show that the runtime overhead of
mlinspect is linear in the number of input and output
records of instrumented operators and highlight perfor-
mance trade-offs (Sect. 5).

— We provide a qualitative comparison of our approach to

related libraries for experiment tracking and provenance

capturing. We also conduct a user study, showing that
mlinspect is helpful to data scientists in their data

distribution debugging tasks (Sect. 5).

2 Data distribution bugs by example

We illustrate the need for assisting data scientists with the
inspection of their preprocessing pipelines with an exam-
ple from the medical domain, shown in Fig. 1. Consider a
data scientist who implements a Python pipeline that takes
demographic and clinical history data as input, and trains a
classifier to identify patients at risk for serious complications.
Further, assume that the data scientist is under a legal obliga-
tion to ensure that the resulting model works equally well for
patients across different age groups and races. This obliga-
tion is operationalized as an intersectional fairness criterion,
requiring equal false-negative rates for groups of patients
identified by a combination of age_group and race.

The pipeline first reads two CSV files, which contain
patient demographics and their clinical histories, respec-
tively. Next, the resulting dataframes are joined on the ssn
column. This join may introduce a data distribution bug (as
indicated by issue (D) if a large percentage of the records of

https://scikit-learn.org/stable/modules/compose.html
https://github.com/tensorflow/transform

Data distribution debugging...

1105

Potential issues
in preprocessing
pipeline:

with native pandas and sklearn constructs

load input data sources, join to single table
patients = pandas.read_csv(..)

histories = pandas.read_csv(..)

data = pandas.merge([patients, histories], on=['ssn'])

Join might
change proportions

of groups in data complications = data.groupby('age group')
.agg(mean_complications=("'complications"', ‘mean'))
data = data.merge(complications, on=['age group'])
Target variable: people with frequent complications
data['label'] = data['complications'] >
1.2 * data['mean_complications']

Column ‘age_group’
projected out, but
required for fairness

Selection might
change proportions
of groups in data

data = data[['smoker', 'last name', 'county',
‘num_children', 'race', 'income',
data = data[data['county'].isin(counties_of_interest)]

Imputation might
change proportions
of groups in data

impute_and_encode = sklearn.Pipeline([
(sklearn.SimpleImputer(strategy="'most frequent')),
(sklearn.OneHotEncoder())])

Define the training pipeline for the model

Embedding vectors
may not be available
for rare names!

pipeline = sklearn.Pipeline([
('features', featurisation),
('learning algorithm', neural net)])

Train-test split, model training and evaluation
train_data, test_data = train_test_split(data)
model = pipeline.fit(train_data, train_data.label)
print(model.score(test_data, test_ data.label))

Fig.1 Example of an ML pipeline that predicts which patients are at a
higher risk of serious complications, under the requirement to achieve
comparable false-negative rates across intersectional groups by age and
race. The pipeline is implemented using native constructs from the pop-
ular pandas and scikit-learn libraries. On the left, we highlight potential

some combination of age group and race do not have match-
ing entries in the clinical history dataset.

Next, the pipeline computes the average number of com-
plications per age group and adds the binary target label to the
dataset, indicating which patients had a higher than average
number of complications compared to their age group. Data
is then projected to a subset of the attributes, to be used by
the classification model. This leads to the second issue) in
the pipeline: the data scientist needs to ensure that the model
achieves comparable accuracy across different age groups,
but the age group attribute is projected out here, making it
difficult to catch this data distribution bug later in the pipeline.
The data scientist additionally filters the data to only contain
records from patients within a given set of counties. This may
lead to issue (3): a data distribution bug may be introduced
if populations of different counties systematically differ in
age.

Next, the pipeline creates a feature matrix from the
dataset by applying feature encoders with scikit-learn’s
ColumnTransformer, before training a neural network
on the features. For the categorical attributes smoker,
county, and race, the pipeline imputes missing values
with mode imputation (using the most frequent attribute
value), and subsequently creates one-hot encoded vectors
from the data. The last_name attribute is replaced with
a corresponding vector from a pretrained word embedding,

Python script for preprocessing, written exclusively

compute mean complications per age group, append as column

Project data to subset of attributes, filter by counties

‘label']]

Define a nested feature encoding pipeline for the data

featurisation = sklearn.ColumnTransformer(transformers=[

‘race’ as a feature (impute_and_encode, ['smoker', 'county', ‘'race'l]),
. 5 | (Word2VecTransformer(), 'last _name')
might be illegal! (sklearn.StandardScaler(), ['num children', 'income']])

neural_net = sklearn.KerasClassifier(build_fn=create_model())

Corresponding dataflow DAG for
instrumentation, extracted by mlinspect

[Data Source]

[Data Source]

Join

Aggregate
onssn

group by age_group

Join on age_group

[Project comp. M Project mean.]

Project label
Project

smoker, lastname, county,
n_children, race, income, label

Filter J
county
Split
Training set
Project || Project
n_child. income
Scale Scale
n_child. income

Declarative inspection
of preprocessing pipeline
.no_illegal_features() >
.no_missing_embeddings()
.verify()
Project || Project
smoker | |lastname
6
Impute || Embed
Encode
smoker

PipelineInspector

.on_pipeline('health.py")
.no_bias_introduced for(
['age group', 'race’])

L]

Split |
Test set

Project || Project
county race
4
Impute || Impute
county race
Encode
county

Neural Network

issues identified by mlinspect. On the right, we show the corre-
sponding dataflow graph extracted by mlinspect to instrument the
code and pinpoint issues. (Operations on the test set are omitted for
readability)

and we normalize the numerical attributes num_children
and income.

This feature encoding part of the pipeline introduces sev-
eral potential issues: (@ the imputation of missing values
for the categorical attributes may introduce statistical bias
by attributing records with a missing value of race to the
majority race in the dataset; (5) depending on the legal con-
text (i.e., if the disparate treatment doctrine is enforced3), it
may be forbidden to use race as an input to the classifier;
(® we may not have vectors for rare non-western names in
the word embedding, which may in turn lead to lower model
accuracy for such records. As illustrated by this example,
preprocessing can give rise to subtle data distribution bugs
that are difficult to identify manually, motivating the devel-
opment of our automatic inspection library, m1 inspect.

3 Design of mlinspect

The analysis of Python code for data science pipelines is dif-
ficult because, in contrast to SQL queries, these pipelines
are not built on top of an algebraic abstraction. Further,
these pipelines operate not only on relational data but also
on tensors, when converting input data to feature matri-
ces. However, popular data science libraries expose a set of

3 https://en.wikipedia.org/wiki/Disparate_treatment.

@ Springer

https://en.wikipedia.org/wiki/Disparate_treatment

1106

S. Grafberger et al.

declarative abstractions with some algebraic properties. For
example, pandas and pyspark both operate on dataframes
with SQL-like operations, and scikit-learn, SparkML, and
TensorFlow Transform® rely on (potentially nested) estima-
tor/transformer chains.

This abstraction consists of an estimator that conducts an
aggregation over its inputs to create a reusable transformer.
The transformer applies a tuple-at-a-time transformation to
the data based on the state computed by its correspond-
ing estimator. This abstraction allows data scientists to
build nested pipelines of estimators and transformers that
combine common operations like feature transformations
(like one-hot encoding of categorical variables) with model
training and hyperparameter optimization (like k-fold cross-
validation). The estimator/transformer abstraction can be
seen as a declarative way to specify ML pipelines and has
recently been the subject of database-style research to opti-
mize execution time [50].

3.1 Overview

We propose mlinspect, a runtime for lightweight line-
age-based inspection of python scripts that uses existing
library code and does not require manual code instrumenta-
tion. In the current research prototype, we restrict ourselves
to scripts that use a combination of SQL-like operations on
dataframes and estimator/transformer pipelines, analogously
to our example in Sect. 2. This has the potential to cover a
wide range of existing ML code: According to results of a
recent analysis of several million Jupyter Notebooks, more
than 50% of these use pandas, and more than 25% use scikit-
learn [44]. The m1inspect library focuses on declarative
pipeline code, supports control flow, and has fallbacks for
when it encounters unsupported code snippets.

Themlinspect library extracts a directed acyclic graph
(DAG) representing the dataflow from ML pipelines with
logical operators like join, selection, projection, column
encoders, and missing value imputation. Based on this
extracted DAG, mlinspect automatically instruments the
code with predefined lightweight inspections that detect data
distribution bugs in the pipeline and give hints to users.

We now give a high-level overview of how mlinspect
executes and inspects data preprocessing operations based
on the architecture shown in Fig. 2. The execution takes
place as follows: (1) Users execute their data science pipeline
implemented in native pandas/sklearn code viamlinspect
and define the inspections to apply; (2) mlinspect auto-
matically instruments relevant function calls (Sect. 3.2) and
executes the instrumented program; (3) during the execu-

4 Note that TensorFlow Transform refers to estimators and transformers
as TensorFlow Transform Analyzers and TensorFlow Ops https://www.
tensorflow.org/tfx/tutorials/transform/simple?hl=en.

@ Springer

tion, mlinspect delegates instrumented function calls to
library-specific backends, which expose the inputs, annota-
tions, and outputs of operators to the configured inspections
(Sect. 3.3); (4) mlinspect extracts a dataflow representa-
tion of the program (Sect. 3.4) and maps the results of the
inspection to the corresponding operators. In the remainder
of this section, we detail the design of each component. We
will discuss implementation decisions in Sect. 4.

3.2 Instrumentation and annotation propagation

Instrumentation and DAG extraction at runtime We con-
duct all instrumentation necessary for inspection before the
execution of the pipeline and extract the DAG at runtime dur-
ing a single execution of the pipeline, as follows. During the
execution of each instrumented function call, corresponding
operator nodes are added to the DAG. For this,m1 inspect
generates a unique identifier for each DAG node. Whenever a
dataframe object is returned from an instrumented function,
mlinspect adds a new attribute that contains the identifier
of the DAG operator that produced the dataframe. For exam-
ple, when processing the pd.merge (df_a, df_b) call,
mlinspect retrieves the DAG node identifiers for df_a
and Af_b and adds a new DAG node, in this case a JOIN,
with nodes representing df _a and df_b as parents. There
might be cases where a user pipeline contains operators that
mlinspect cannot recognize (e.g., custom transformers
in a scikit-learn pipeline). Such operators are ignored and
not represented in the DAG, and execution continues with
the remaining known operations. Due to this fallback, the
library does not fail for pipelines where it recognizes only
a subset of the relevant dataflow operations, but still applies
all inspections and checks on a best-effort basis.

Handling control flow Early m1inspect versions [17]
lacked support for control flow in pipelines; they created
the DAG based on the pipeline code after execution, using
module information obtained through Python’s inspect
module. This made it difficult to deal with conditional code
such as loops, where the number of iterations depends on
runtime variables. The current DAG extraction method sup-
ports pipelines with control flow by building up the DAG
dynamically at runtime based on the actual execution of the
program. If there are branches in the user code, only oper-
ators from the executed branch are contained in the DAG.
As a consequence, mlinspect now runs and instruments
pipeline code contained in custom functions, which leverage
loops and branches. This approach enables easy instrumenta-
tion of relevant function calls, even if they happen indirectly
(as is the case with nested scikit-learn pipelines). We refer to
Sect. 4.3.2 for further details.

Annotation propagation The data flowing through the
preprocessing pipeline is further enriched with user-definable
“annotations” that propagate through operators and can be

https://www.tensorflow.org/tfx/tutorials/transform/simple?hl=en
https://www.tensorflow.org/tfx/tutorials/transform/simple?hl=en

Data distribution debugging...

1107

Executes user pipeline with No Bias || DataQuality ||lllegal Features Checks evaluate
p instrumented function calls EhEak Bk Check constraints on
on Ir ete inspection results
e Lineage ||Histogram ||Completeness | | Inspections analyse
< Inspection || Inspection Inspection intermediate results of
‘ * the ML pipeline

inspections to library-

Delegates execution of '> |nStrumentati0n Layer

DAG Builder |

specific backends

A——”—"“—:?"\--“~;

Backends[-

& S~
ﬁ?: NumPyJ [Q@ L][|:;| pandas]

Creation of a DAG
representation of
the ML pipeline

Backends execute
inspections for
specific operations

-

Fig. 2 Architecture of m1inspect. We apply checks and inspections to an instrumented ML pipeline written by the user. The instrumentation
layer delegates the execution of the inspections to library-specific backends and creates a DAG representation of the pipeline

created, read, and modified by the inspection code. This
annotation propagation mechanism offers a simple library-
independent interface to propagate annotations (e.g., for
tracking the lineage of tuples) across operators from differ-
ent libraries. We base the design of our inspections on this
annotation propagation mechanism. Each inspection retains a
fixed-size state that is reset after each operator and is invoked
only once for each DAG operator. The inspection has access
to the output tuples of the operator and the corresponding
annotated inputs. The following listing details the abstract
operations performed by such an inspection. At runtime, the
visit_op method is called for each operator invocation
and provided with information about the operator as well
as an iterator over the annotated input rows. The inspection
then produces the corresponding output annotations and can
optionally annotate the logical operator in the DAG with the
computed result (such as a histogram of the outputs) via the
op_annotation_after_visit method.

Abstract base class for all inspections
class Inspection:

Inspect intermediate data at a DAG operator, based on
operator information (op.context), and an iterator
over annotated input rows with the corresponding
output rows (row.iterator);
Return computed annotations for output rows
def visit_op(self, op_context,
row_iterator) -> Iterable

Persist inspection result for the current DAG node
def op_annotation_after_visit(self)

Users have to specify the inspections to apply in advance,
which allows only the state that is required for the actual
inspections configured by the user to be materialized. This
avoids materializing arbitrary information from the pipeline.

As long as each row annotation has a fixed size limit, and
each inspection only uses a fixed-size state, the overhead of
the framework is constant per inspected tuple. This approach
does not introduce additional memory overhead, as there is

only the constant overhead of a fixed number of additional
function calls per user function call.

‘We maintain a mapping between the input rows of an oper-
ator and their corresponding output rows and then expose
this mapping along with the corresponding annotated inputs
to each inspection. This input/output mapping is constructed
differently depending on operator semantics. Operators like
projection and transformers are guaranteed to have the same
number of input and output elements, listed in the same order.
For operators like selection, join, and train—test split, the map-
ping is maintained by generating an identifier column, which
is transparently pushed through the operator and removed
immediately afterward to hide it from user code. Note that
only one possible source tuple (and not all possible sources)
is tracked for aggregation operators and for duplicate elimi-
nation, as the performance overhead of detailed provenance
tracking using the full provenance semiring framework [18]
would be too significant, introducing dependencies between
all input—output pairs [3].

Function call capturing To allow inspections to access
the output of an operator such as a join, along with the cor-
responding input rows and their annotations, arguments and
return values of function calls must be efficiently captured.
For this, the abstract syntax tree (AST) from the Python
parser is modified before compiling and executing the code.
A function call is added before the user code to “monkey
patch” functions from libraries like pandas and scikit-learn
that are supported by m1inspect. Monkey patching [55]
allows mlinspect to extend or modify functionality of
third-party libraries at runtime by completely replacing
the original implementation of a function. These monkey
patched functions internally call the original, unpatched ver-
sion of the function, delegate the execution of the inspections,
and create new DAG operator nodes corresponding to the
function. mlinspect also captures the exact function call

@ Springer

1108

S. Grafberger et al.

location and source code snippet corresponding to each DAG
operator. See Sect. 4.3.1 for implementation details.

Backends for popular Python libraries The
mlinspect library is designed based on the semantics of
preprocessing operations from popular Python frameworks
like scikit-learn and pandas. The instrumentation based on
captured function calls described so far is independent of
the specific library. Importantly, libraries differ in their data
representation choices and in what data preprocessing oper-
ations they support. So, pandas functions can be directly
mapped to DAG operators, and each operation is executed
eagerly. In contrast, scikit-learn encourages users to first
declaratively define a nested pipeline using components like
the ColumnTrans former, which allows passing specific
columns to specific transformers like one-hot encoders. Once
a pipeline is defined in a declarative way, data is passed
to the nested pipeline object in a second, separate step.
The function calls that actually process data, such as the
fit/transform calls of transformers contained in scikit-
learn pipeline objects, may not be directly visible in user
code. The user pipeline only calls the £it method once
on the final pipeline object, and the pipeline then internally
calls the £it and transform functions of the transform-
ers and estimators it contains. We introduce library-specific
backends in m1inspect to handle the operations and data
representations of popular libraries like scikit-learn.

Execution of inspections Each backend is responsible for
hiding library implementation details from the inspections.
The pandas backend, for example, is responsible for calling
the inspections as necessary whenever it is alerted of a pan-
das function call. For this, it has access to the arguments and
return values as described before. The backend then needs to
map operator output rows to operator input rows and their cor-
responding annotations. It needs to create efficient iterators to
expose the input/output rows in a specific format. Afterward,
the backend stores the resulting new annotations created by
the inspection in an efficient manner (e.g., as attributes of the
processed dataframe in the case of pandas).

This annotation propagation functionality is enough to
implement a variety of useful inspections. For example, basic
fine-grained lineage tracking on the row level can be imple-
mented with a simple inspection on top of the annotation
propagation approach as follows: unique identifier annota-
tions are generated for each row after the data source operator
and are propagated forward through the DAG. For selec-
tions, projections, and transformers, annotations are directly
forwarded through the DAG. For joins, combinations of
identifier annotations from all join inputs are created and
forwarded.

Optimizable inspections based on dataframe operators
In addition to the generic interface for inspections written in
Python, a second interface for inspections is supported. In
this interface, inspections have to be expressed in terms of

@ Springer

operations on dataframes. This approach is less general than
the standard approach (which allows for arbitrary Python
code), but is much more performant, because inspections
can be jointly executed with the user code operations, and
common optimizations from query processing such as scan
sharing and projection pushdowns can be applied. We discuss
implementation details in Sect. 4.3.2. Note, this approach is
still in an experimental stage and not yet part of the open-
source release.

3.3 Automatic inspections and checks

Inspections serve as the basis for detecting data distribu-
tion bugs in ML pipelines. They annotate the extracted
DAG with information like computed histograms for dif-
ferent DAG nodes. On top of the extracted and annotated
DAG, mlinspect provides checks, a rule-based approach
to verify constraints on the DAG, for example, by com-
paring the change in a histogram to a threshold. Before
execution, mlinspect determines which inspections are
required based on the checks specified by the user. It then
instruments the pipeline and executes it using a minimal
set of inspections, based on what is required by the checks
and directly specified by the user. After the execution of the
instrumented pipeline and the DAG extraction, each check
can access the final result to evaluate its constraint.

In the following, we discuss a set of more complex auto-
matic inspections and checks for ML preprocessing pipelines
that are enabled by our lineage-based annotation propagation
approach.

Algorithmic fairness In recent years, problems with
respect to the fairness of ML-based decision-making sys-
tems have been uncovered [52]. Such problems are often
difficult to detect and are the focus of mlinspect. As dis-
cussed in the example from Sect. 2 and outlined in previous
work [58], operations like join and selection can acciden-
tally filter out records from protected groups and thereby
introduce or exacerbate under-representation of historically
disadvantaged groups in the data. The mlinspect library
provides an inspection that computes histograms of opera-
tor outputs based on protected groups, and alerts the user
if group membership proportions change drastically after an
operator. A related problem is the low coverage of some pop-
ulation groups identified by a combinations of attributes [7].
For tracing group membership in coverage-related problems,
mlinspect forward-propagates annotations identifying
the groups of interest and materializes the annotated input
and final output of the complete pipeline.

Furthermore, there are legal restrictions on the usage of
demographic features such as gender, race, or disability sta-
tus in automated decision making. One can check the operator
DAG against a list of sensitive features and alert the user
about the places in the code where such features are used.

Data distribution debugging...

1109

ML models may also perform particularly badly for spe-
cific demographic groups in the data (e.g., yielding higher
false-positive rates for recidivism predictions for African
Americans [6]). The identification of such groups is in the
focus of recent research [42]. This identification might be
difficult in cases where the attribute required to identify the
protected group is projected out early in the pipeline or is only
available as a specific dimension of the feature matrix during
feature transformation. To address this, mlinspect sup-
ports inspections that forward-propagate sensitive column
annotations and then materialize the minimum amount of
information needed for analyzing performance for different
groups: rows only containing the predicted label and the sen-
sitive columns.

Methodology and robustness Additionally, inexperi-
enced data scientists may make methodological mistakes,
such as fitting featurizers on the whole data instead of the
training set only, forgetting to scale numerical features even
though the model requires that (as in the case of L2 regular-
ization), or selecting hyperparameters on the test set instead
of the validation set. Such issues can impact fairness-related
metrics as well [47]. All of these issues can be identified by
analyzing the extracted operator DAG. Furthermore, there
may be robustness issues in the pipeline. For example, some
scikit-learn transformers cannot handle null values. One can
identify such cases from the operator DAG and recommend
that the user applies a simple imputation technique. Another
problem that can be detected by analyzing histograms of
operator outputs is class imbalance. The DAG can be ana-
lyzed to see whether the data scientist already addresses these
with resampling or reweighing and alert her otherwise.

Data quality Data quality testing in the form of unit tests
for data as offered by libraries like Deequ [48] can also be
implemented using mlinspect. Data unit tests typically
evaluate constraints based on aggregate statistics of the data
such as the completeness (ratio of non-NULL values) of a
column or the number of distinct values in a column. The
mlinspect library can compute these data quality statistics
over all intermediate results of a pipeline.

3.4 Algebraic definition of themlinspect
dataflow graph

Data preparation pipelines that use declarative abstrac-
tions such as pandas data slicing, scikit-learn’s Column
Transformer, or SparkML pipelines have a natural
directed acyclic graph (DAG) representation [46]. Data
sources in this DAG are typically comprised of tables or files
holding relational data. The data flowing through the DAG
is either collections of relational tuples or tensors. The oper-
ators are either relational operators like join, selection, and
projection (consuming relational data and producing rela-
tional data), standard feature encoders like one-hot encoders

(consuming relational data and producing vectors), or stan-
dard ML preprocessing operations like normalization or
concatenation (consuming vectors and producing vectors). In
the following, we list the operations supported by the current
implementation of m1inspect in Table 1, and discuss their
formalization. We would like to note that we focus on com-
mon operations from pandas and scikit-learn in our current
research prototype. That said, the instrumentation approach
of mlinspect is general, and extending its capabilities to
support additional functions can be done with moderate engi-
neering effort.

Dataframe algebra We introduced our operators as a
mixture of relational algebra operators with estimator/trans-
former pipelines. However, relational algebra is insufficient
to formalize m1inspect operators because it operates on
unordered collections, while typical exploratory operations
on dataframes (like printing the first or last #n rows) assume
an ordered data representation [39]. Estimator/transformer
pipelines in scikit-learn also fundamentally rely on order:
transformers map over a list and transform the data without
changing the order (e.g., when converting categorical strings
to one-hot vectors). Model training methods also assume that
their inputs are ordered, by implicitly associating each fea-
turized datapoint with its corresponding label. Furthermore,
support for linear algebra is crucial for typical ML pipelines,
because many operations, especially for feature processing,
have a natural representation as matrix operations and are
internally implemented on numerical array data structures. In
addition, dataframes in libraries like pandas offer many spe-
cialized methods that do not have an equivalent in relational
algebra [39]. Examples include the TRANSPOSE operation
that interchanges rows and columns, and the TOLABELS
operation that projects a column out to use it as a row label.

Peterson et al. [39] observed that dataframes combine
operations from relational algebra, linear algebra and spread-
sheets and proposed a novel dataframe algebra to unify them.
We use this algebra as a basis for the abstract representation
of ML pipelines, in order to formalize our approach. Because
mlinspect currently focuses on ML pipelines that use
relational operations and estimator/transformer operators, we
only require a subset of the dataframe algebra.

Operator formalization Peterson et al. [39] define a
dataframe as a tuple (A, Ry, Cn, Dy), where A, is an
array of entries from the domain X*, R, is a vector of row
labels from X*, C, is a vector of column labels from X*,
and D,, is a vector of n domains from Dom, one per column,
representing the schema of the dataframe. Each component
of the tuple can be left unspecified. Since D, can be left
unspecified, there is a schema induction function S(-) that,
when applied to a column of A,,,,, returns its domain i. Func-
tion p(-) can be used to get the values of the column. This
definition allows to represent matrices as dataframes with a

@ Springer

1110

S. Grafberger et al.

Table 1 Functions supported by mlinspect and their corresponding operators in the dataflow representation of the pipeline

Function call

Operator

'pandas.io.parsers’, ‘read_csv’)

'pandas.core.frame’, ’‘'DataFrame’)
'pandas.core.frame’, ’__getitem__ '), arg type: strings
'pandas.core.frame’, ’__getitem__ '), arg type: series
'pandas.core.frame’, ’‘dropna’)
'pandas.core.frame’, ’‘replace’)
'pandas.core.frame’, ’'_ setitem__ ')
'pandas.core.frame’, ’‘merge’)
'pandas.core.groupbygeneric’, ‘agg’)

"sklearn.compose._column_transformer’,

"sklearn.preprocessing._encoders’, ’‘OneHotEncoder’)
"sklearn.preprocessing._data’, ’‘StandardScaler’)
"sklearn.impute._base’, ’'SimpleImputer’)

"sklearn.preprocessing._discretization’,

'sklearn.tree._classes’,

'tensorflow.python.keras.wrappers.scikit_learn’,

"sklearn.model_selection._split’,
'sklearn.preprocessing._label’,

"sklearn.pipeline’,

(

(

(

(

(

(

(

(

(

(
("sklearn.compose._column_transformer’,
(

(

(

(

(

(

(

(

(rfit’), arg: train data
(

'sklearn.pipeline’, ’fit’), arg: train labels

'ColumnTransformer’), column selection

'ColumnTransformer’), concatenation

'KBinsDiscretizer’)

'DecisionTreeClassifier’),

‘train_test_split’)

'label _binarize’)

Data Source
Data Source
Projection
Selection
Selection
Projection (Mod)
Projection (Mod)
Join
Groupby/Agg
Projection
Concatenation
Transformer
Transformer
Transformer
Transformer
Estimator
'KerasClassifier’),..

Split (Train/Test)
Projection (Mod)
Train Data

Train Labels

homogeneous numeric schema D,,, with null labels R, and
C,. See Figure 3 in Peterson et al. [39] for an illustration.
We detail the representation of the one-hot encoder
operator in this algebra as an example. Given a DF =
(Am.1, R, C1, D1) with a categorical string column, the
one-hot encoder is a map operator MAP(DF, f) with the
output (A’ ., Ry,C),, D!, and the function f : D, —
D;,, where A is the result of the function f as applied
to each row, C), is the resulting column labels, and D;l , is
the resulting vector of domains. For a one-hot encoder, f
is a function that transforms each categorical string into an
n’-dimensional vector, where n’ is the domain cardinality of
D1, with only a single nonzero entry in the dimension corre-
sponding to the string value in a given row. The cardinality
n’ of the string column becomes the number of dimensions
of the one-hot vectors and, thus, also the number of columns
in the result dataframe. The column labels C,’l,, in this case,
are generated by combining the attribute and string values.
In general, our operators map to this algebra as follows.
Our DAGs start with one or multiple Data Source oper-
ators. In the dataframe algebra, the initial data inputs are
not operators, rather, they are modeled as leaf nodes in their
DAG. Our operator Projection has the same semantics
as the PROJECTION operator in the dataframe algebra. The
corresponding operator for our Projection (Mod) isa
MAP because the dataframe algebra does not have extended

@ Springer

projections but uses the MAP operator instead to also han-
dle that functionality. Our Selection and Join operators
work exactly like their equivalents in the dataframe alge-
bra, SELECTION and JOIN. Our Group by Agg operator
works like the GROUPBY operator in the dataframe alge-
bra that can directly apply aggregation functions. Note that
the GROUPBY operation in the data frame algebra is more
powerful than ours, in that it offers a collect aggrega-
tion function that can group rows into multiple dataframes,
which we do not support. The MAP function in the dataframe
algebra applies a function uniformly to every row. Our
Transformers have the same semantics as these MAPs.
Our Estimator can also be expressed as a MAP that does
not produce an output. The Split (Train/Test) and
its two outputs can be expressed using a MAP to add a tempo-
rary column, a SELECT to filter records using this column,
and a PROJECT to remove the temporary column afterward.
The Concatenation can be used to append the columns
of multiple dataframes that have the same number of records.
In the dataframe algebra, this can be done using TRANS-
POSE to interchange the columns and the rows, followed by
a UNION of the two dataframes, and then a TRANSPOSE
again.

Additionally, we enrich our DAG representation of ML
pipelines with other information inferred from the pipeline
code, which is potentially helpful for further analysis. Exam-

Data distribution debugging...

mm

ples for this are the Train Data and Train Label
DAG nodes that mark the data on which estimator. fit
was called. Clearly, identifying the exact version of train
and test data used to fit the ML model greatly simplifies the
implementation of inspections. When formalizing our DAG
operators, these operators can be ignored, as they result in
no-op label nodes that do not change the semantics of the
ML pipeline query but they simplify its analysis.

Discussion As we already pointed out, the major differ-
ence between the dataframe algebra and the relational algebra
is order preservation. Relational algebra operates on sets of
tuples, while dataframes are modeled as ordered collections
of tuples, and operations on them preserve this order. This
property is a fundamental obstacle for the efficient pushdown
[23] of the execution of ML pipelines and inspections into
relational databases, as we would either need to implement
order-preserving variants of common relational operators, or
introduce artificial sort columns and always sort query results
based on them.

4 Implementation

We now discuss the salient aspects of the implementation
of mlinspect and revisit the example from Sect. 2. Our
research prototype is available at: https://github.com/stefan-
grafberger/mlinspect.

4.1 Overview

Our research prototype contains the core operator DAG
extraction functionality, and it implements instrumentation,
checks, and inspections for pandas and scikit-learn. We offer
implementations of representative inspections, including an
inspection that materializes the first row output by each oper-
ator, an inspection that tracks the detailed lineage of all rows
flowing through the DAG, data quality inspections, and an
inspection that computes histograms of operator outputs for
sensitive groups. In addition, we offer implementations of
checks, which evaluate a constraint on the outputs of our
inspections, such as a threshold comparison of the magni-
tude of change in the proportions of certain groups in the
data after a filter.

4.2 Inspections

Some checks only require the extracted DAG for analy-
sis. An example for this is the NoIllegalFeatures
check, which inspects the names of projected attributes used
as features to ensure that no illegal features, such as gen-
der or race, are used. Other checks only require simple
inspections that investigate an operator in isolation. An exam-
ple is the NoMissingEmbeddings check, which simply

ssn smoke
123 Y [p1]

2
;gg ? [[53]] ssn smoke cost smoke cost

P |12 v 100 [plendy [v 100 {Sgg
2 ,

ssn cost 789 N 200 | [P3,¢c2] N 200
128 100 [c1]
789 200 [c2]

Fig.3 Lineage tracking by propagating identifier annotations through
operators

counts the null values in the outputs of embedding opera-
tors. Another example are inspections for data unit testing.
Data unit tests typically evaluate constraints based on aggre-
gate statistics of the data such as the completeness (ratio of
non-NULL values) of a column or the number of distinct val-
ues in a column. Often, these statistics only require a single
pass over the data and can therefore be pipelined with the
actual execution of an operator. The Completeness and
NumDistinctValues inspections compute these statis-
tics by iterating over the values of a given column and
maintaining the counts for NULL/non-NULL values (for
completeness) or a hashmap containing the number of occur-
rences per distinct value.

In general, however, inspections need to work with the
data annotations flowing through the operators at runtime,
as described in the previous sections. In the following, we
discuss two such cases in detail: lineage tracking and change
detection for proportions of protected groups.

Lineage tracking It is simple to integrate lineage track-
ing into mlinspect directly using the built-in annotation
propagation mechanisms. As part of lineage tracking, unique
identifier annotations for all input tuples are generated and
forwarded according to operator semantics (e.g., for a join, a
combination of the identifier annotations of matching tuples
are forwarded).

We implement lineage tracking (Fig. 3) via the lineage
inspection. To illustrate our approach, we use a pandas code
snippet that joins a table of patient data with a table of cost
data, and projects the result to the attributes smoke and
cost.

patient = pd.read_csv(...)

cost = pd.read_csv (...)

data = pd.merge ([patient, cost], on="ssn")
data = datal[["smoke", "cost"]]

The visit_op(self, op_context, row_

iterator) function of the inspection is called first, as
patient data is loaded on line 1. The inspection then
checks the type of the current operator. In our example, oper-
ator type, data source, is contained in the op_context.
After checking this, the inspection generates unique iden-
tifiers for each row. This process is repeated for the cost
data source on line 2. The third call to visit_op corre-
sponds to the join, which results from the pd.merge call
on line 3. There, visit_op operates on five-tuples com-
prised of the output row from the join, the corresponding

@ Springer

https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlinspect

1112

S. Grafberger et al.

rows from the two dataframes patient and cost, and the
annotations for the two input rows. The two input annota-
tions are then combined to create the output annotation. For
projection on smoke and cost on line 4, we only need to
forward-propagate the existing input annotations.

One notable case not shown here is lineage inspection for
the groupby operator type, where the aggregation follow-
ing the groupby is treated as a new data source. We expect
that the detailed lineage information from aggregations is not
relevant for many ML use cases, which often mostly apply
global aggregations (e.g., for normalizing features), where
each tuple depends on the whole input anyways. We leave a
more fine-grained treatment of aggregations for future work.

Change detection for proportions of protected groups
In our running example (Fig. 1 in Sect. 2), we briefly
discussed an inspection to discover the introduction of
accidental changes in the proportions of protected groups.
This refers to the issues (D, @, @ and @ from the
example and requires the histogram inspection to (i) trace
the group membership variables age_group and race
through the DAG, and handle the fact that age_group
is projected out early (issue @). We designed a custom
check called NoBiasIntroducedFor for such cases.
Internally, this check uses the Hi stogramForColumns
inspection, which we will now explain. Consider the follow-
ing selection statement:

data = datal[data.county == "CountyA"]

Figure 4 shows how this selection might affect an exam-
ple dataset flowing through it. Before the selection, the two
age_groups, 60 and 20, are distributed evenly. After the
selection, the majority of data points is in the age_group
60. This is an artifact of the strong correlation between the
attribute county and the attribute age_ group. Our simple
example illustrates a common real-world trend, namely, that
geographic and demographic attributes are often correlated.

To detect such distribution changes, we apply the
HistogramForColumns ([’'age_group’]) inspec-
tion that annotates both the DAG node before the selection
and the selection DAG node itself with an age_ group his-
togram of the outputs. After inspection execution and DAG
extraction, the NoBiasIntroducedFor check can then
look at these two annotated DAG nodes. For each sensitive
attribute, it checks whether there is a significant distribution
change of group memberships, and, if so, alerts the user.

We use a simple detection strategy that is easy for users to
understand and configure. We start by calculating the group
membership ratio compared to the overall number of people
in the data. Here, this group membership ratio for people
with age_group=20 is 0.5 before the selection and 0.33
after it. We compute the relative change before and after the
selection as (0.33 — 0.5)/0.5 = —0.34. We then compare
this quotient to a test threshold, set to —0.3. If the change is

@ Springer

age_group county
60 Sy age_group county
€0 CountyA ;30 CountyA
20 CowtA =P 60 Countya
60 CountyB
20 CountyB 20 CountyA
20 CountyB 66% vs 33%

50% vs 50%

Fig. 4 Histogram-based change detection for the proportions of pro-
tected groups in operators such as selections and joins. Here, in the
beginning, the two age groups are distributed evenly, with a drastic
change after the operator application

below that minimal threshold, as is the case in our example,
we warn the user. This approach is especially sensitive to
changes in the proportion of minority groups.

What is not encountered in this example is the removal
of a group membership attribute. If projection is used to
remove the attribute age_group, we annotate each row
with its corresponding age_group value and propagate
these row annotations forward. Subsequent operations like
join, selection, and missing value imputation, which may
change group proportions in the data, rely on these propa-
gated group membership annotations to compute a histogram
of group memberships of all inspected operator outputs, and
test them for distribution changes.

We implement additional inspections to compute his-
tograms of intersectional group membership. We also pro-
vide a check for calculating the removal probabilities of
different demographic groups in the data. This check detects
cases where filter-like operations that affect only a small
subset of the data disparately impact specific demographic
groups.

4.3 Execution of inspections, checks, and
DAG extraction

Next, we discuss the detailed execution of inspecting a pre-
processing script withml inspect. The execution proceeds
according to the following steps (which we detail in the
remainder of this section):

1. Preparation: Determination of a minimal required set of
inspections based on the inspections and checks specified
by the user.

2. Instrumentation: Instrumentation of function calls in the
AST of the user program.

3. Execution of the instrumented program: Delegation of
the execution of inspections to library-specific backends;
joint execution with pipeline operations; creation of the
dataflow DAG.

4. Results: Evaluation of checks using the DAG and the
inspection results.

Data distribution debugging...

1113

4.3.1 Preparation

Determining a minimal required set of inspections The
first step consists of determining which inspections to exe-
cute. Users have two ways to specify inspections: they can
either use the check API or specify inspections they are inter-
ested in directly. We collect all of the required inspections
from these two sources and build a unified set with them.

Capturing relevant function calls As discussed in
Sect. 3.2, we instrument the user code via monkey patch-
ing and callback functions. It is crucial to only patch relevant
function calls, due to the high amount of additional func-
tion calls for the callback functions. Determining whether a
given function call is relevant for us (e.g., maps to an operator
in our DAG) is difficult without executing the code. Monkey
patching allows us to create specific patches for function calls
relevant for m1 inspect, while leaving other function calls
unaffected. We leverage the Python package gorilla’,
which simplifies monkey patching, while also retaining the
original unpatched version of the function. When a user
executes source code with mlinspect, AST nodes corre-
sponding to the following code before and after the original
user code are added. The two added function calls only need
to be executed once per user script and patch all functions
supported by mlinspect from libraries like pandas and
scikit-learn.

from mlinspect.instrumentation

import monkey_patch, undo_monkey_patch
monkey_patch ()

...original user code...
undo_monkey_patch ()

Handling indirect function calls Monkey patching affects
all calls to a patched function, even though we only want to
execute inspections for calls relevant to the user pipeline.
An example for a problematic case is the constructor
pandas.DataFrame (. . .), which is internally used by
Pandas as well. As we are only interested in the invocations
by our user program, we detect whether a certain operation is
directly called by the user program as follows: In the patched
code, we call the Python function sys._getframe to
determine the source code filename of the stack frame of
the call and check whether the source file is the root level file
executed by mlinspect.

Example We present the code for a simplified exam-
ple of our instrumentation technique, which adds support
for the sklearn function label_binarize (which cre-
ates a binary vector from a categorical column with two
distinct values). We initiate the patching of the method
label_binarize in the package sklearn.
preprocessing viagorilla’s annotations. Next, we imple-
ment a patched version of the function, which creates a new
DAG operator and retrieves the corresponding DAG parent

3 https://pypi.org/project/gorilla/.

node and the input annotations required for our inspections.
Afterward, we call both the backend responsible for the oper-
ation (the SklearnBackend in this case), as well as the
original function and insert the newly created operator node
to our DAG. We would like to note that adding support for
a new API function to m1inspect only requires a similar
patching implementation, which makes it easy to extend our
library with moderate engineering efforts.

@gorilla.patches(sklearn.preprocessing)
class SklearnPreprocessingPatching:
@gorilla.name(’label _binarize’)
@gorilla.settings(allow_hit=True)
def execute_label_binarize(*args, **kwargs):
original = gorilla.get_original_attribute(
sklearn.preprocessing, label_binarize’)
Patched function
def patched(...):
function_info = FunctionInfo(
klearn.preprocessing. _label’,

Operator mapping for DAG

op_ctx = OperatorContext(
OperatorType.PROJECTION_MODIFY,
function_info)

parent_info = get_parent_node_info(
args[0], ...)

Initiate inspection execution via

Dbackend

input_df = SklearnBackend.before_call(
op_ctx, [parent_info])

Execute original function

result = original(input_df,
*args [1:], *xkwargs)

Finalize inspection execution via

Dbackend

backend_result = SklearnBackend)\
.after_call(op_ctx, input_df, result)

Append DAG node with inspection result

add_new_operator_node_to_dag/(
DagNode(...), [parent_info],
backend_result)

Return original result

return backend_result.updated_result_df

return execute(original, patched, *args,
*xkwargs)

Indirect data processing ML pipelines often contain
several functions calls that only lead to data processing indi-
rectly. Scikit-learn’s ColumnTrans former pipeline step
for specifying a set of feature transformations on a dataframe
is an example for this. The user code defines a nested pipeline
first and then passes the data to it in a second step by calling
f£it on the final pipeline object. The resulting £it calls on
the contained transformers such as a OneHotEncoder or
the projections required by the ColumnTransformer are
only executed indirectly. Our approach identifies and han-
dles these indirect calls by patching the constructors of the
pipeline steps and using the source code location retrieved
during the constructor invocation to determine that the fit
calls originate from the user pipeline code (and must there-
fore be handled by the system).

Tracking source code locations of operators Python
stack frames only contain the line number of the corre-

@ Springer

https://pypi.org/project/gorilla/

1114

S. Grafberger et al.

sponding operations. mlinspect can add extra function
calls to the AST to track code locations. The AST of the
user program, extracted by the Python parser, contains more
detailed information: nodes have the attributes 1ineno and
colof fset that indicate the start of the code location, and
one can also determine where the snippet corresponding to an
operator ends (the end_lineno and end_coloffset).
These two attributes are provided by a recent addition to
the parser in Python 3.8. Instrumentation is conducted with
an ast.NodeTransformer in Python, where the code
locations are directly added as arguments to callback func-
tions. This more detailed tracking is configurable, as the
additional function calls introduce a minor overhead. We
experimentally evaluate the overheads of different instru-
mentation techniques in Sect. 5.1.4.

4.3.2 Execution of the instrumented program

After instrumenting the user pipeline code, the instrumented
AST is compiled and executed, which triggers the execu-
tion of the patched functions and the build up of the DAG
as described in Sect. 3.2. The execution of each inspection
is delegated to the corresponding backend, e.g., inspections
for a merge call on a pandas dataframe will be handled by
the pandas backend. The API for the different backends com-
prises of two functions: before_callandafter_call,
where the before_call function can modify the input
before the original function is called. In case of a pandas
merge call, for example, an index column is introduced
to later associate output rows with the corresponding input
rows. The after_call method then executes the inspec-
tions and removes metadata such as the index column.

Handling control flow We discuss the implementation
details for handling control flow (Sect. 3.2). In order to be
able to work with pipelines containing control flow, a DAG is
built from the actual execution of the program, instead of just
relying on information in the AST (as in previous versions
of mlinspect [17]). This prior approach does not allow
for the determination of which branches are executed. The
current version directly patches function calls, independently
of where they occur. Based on these function calls, the DAG
is built up dynamically at runtime. During the execution of
a patched function, the current stack frame is investigated to
determine whether the function call is relevant for the inspec-
tions, as described in Sect. 4.3.1. We carefully implemented
the corresponding logic to ensure a low overhead for repeated
function calls that are not of interest to mlinspect, and
experimentally evaluate this overhead in Sect. 5.1.4.

Efficient execution of our Python-based inspections via
scan-sharing We implement inspections to both consume
and produce iterators, based on for-comprehensions and the
yield keyword in Python.

@ Springer

def visit_op(self, op_context, rows) ->Iterable
for row in rows:
annotation = annotate_and_update_state (self, row)

yield annotation

The inspections are supplied with an iterator over their
input rows. To create the iterator, three different arguments
are needed: the output of the operator, the corresponding
input, and the annotations for the input. They all have the
same order and an equal number of rows, so one can scan
over those three list-like elements at the same time to cre-
ate the row_iterator. However, we only want to do a
single scan over this even if we have multiple inspections.
The only complication is that each inspection has its own
separate annotations for each record. The following listing
shows how scan-sharing is done with Python iterators and the
itertools library®. It starts by creating multiple iterators
over the input and output rows, one copy per inspection. For
each inspection, an iterator is constructed over the inspec-
tion’s annotations of the input rows. Finally, the functions
zip and map are used to create a single iterator that outputs
simple data class objects with the current input row, the input
row annotation, and the output row. These data class object
iterators are the input for the inspections.

Duplicate iterators for each inspection

duplicated_inputs = itertools.tee(input_rows,
len (inspections))
duplicated_outputs = itertools.tee(output_rows,
)

len (inspections)
Create the inspection_iterator for each inspection
for inspection_index, _ in enumerate (inspections):

inputs = duplicated_inputs[inspection_index]

outputs = duplicated_outputs[inspection_index]

annotations = iterator_for_annotation (
input_annotations, inspection_index)
row_it_for_inspection = map (

lambda input_tuple: RowUnaryOperator (*input_tuple),

zip (inputs, annotations, outputs))

The function itertools. tee internally uses one iter-
ator over the input and one over the output and buffers the
values until each duplicated iterator processed the value.
All inspections consume the iterator elements at the same
pace, so only one pass over the data is being made and
itertools. tee only needs to buffer the current input
and output row. This approach is based on the banana split
law [20] for loop fusion. When we have multiple functions
that we can express using a fold (e.g., computing the count or
the sum for a numerical column), we can build a single fold
function that combines them to conduct the same computa-
tion with a single pass over the data. Here, the visit_op
functions of each inspection work similarly to folds. There-
fore, we can apply the fusion from the banana split law, to
avoid repeated scans over the data.

Handling different types of data Backends also provide
a custom function to create datatype-specific iterators for all
datatypes that can currently be passed around in the supported
ML pipelines. For example, the following listing shows the
code to create iterators for pandas dataframes.

© https://docs.python.org/3/library/itertools.html.

https://docs.python.org/3/library/itertools.html

Data distribution debugging...

1115

Table 2 Overview of the internal operator types

Operator(s) Operator type

Data Source, Group by Agg Data Source

Projection (Mod), Transformer, Unary map
Train Data, Train Labels
Concatenation N-ary map

Selection, Train/Test-Split Unary resampling
Join Join

Estimator Sink

def get_df_row_iterator (dataframe):

column_info = ColumnInfo (list (
dataframe.columns.values))
arrays = []
arrays.extend (dataframe.iloc[:, k] for k in
range (0, len(dataframe.columns)))

return column_info, map (tuple, zip(*arrays))

We provide corresponding implementations for other
datatypes like the ndarray in numpy, the Series in pan-
das, the sparse matrix csr_matrix in scipy, and plain
Python 1ist objects. Our support for tensors is currently
restricted to two-dimensional cases where it is obvious
which dimensions correspond to the rows and columns of
a dataframe. A prime example for this is feature matrices
built from vectorized input samples. We leave support for
operations on higher-dimensional tensors (e.g., to represent
images, pixels, and channels in three dimensions) for future
work.

Instrumentation for different operator types To exe-
cute our inspections, we only need to differentiate between a
small set of different types of operators, as listed in Table 2.
We base the classification on the number of parent opera-
tors, whether the operator produces output data, and whether
the operator can change the order or number of elements. A
Data Source-type operator does not get input data from
a parent operator and does produce an arbitrary output. A
Unary map uses the data from one parent operator as input
and outputs one output row per input row without changing
the existing order of elements. The N-ary map has data
from multiple parent operators as input, each of them having
the same number of elements, and maps n-tuples of input
rows to one output row without changing the existing order
of elements. Unary resampling receives data from one
parent operator as input, and can arbitrarily reorder or drop
input elements to produce its output. A Join-type opera-
tor receives input data from multiple parent operators, and
combines and reorders them in arbitrary ways to produce its
output. A Sink-type operator gets input data from a parent
operator but does not produce any output data.

The previous examples assumed the operator type of a
unary map. In the following, we describe how to handle the
remaining types of operators. Data source operator types are

simpler because we do not have input data or input annota-
tions we need to consider. The N-ary map works analogously:
we can associate row annotations, input, and the correspond-
ing output based on them having the same order and number
of elements. The only difference is that we have multiple
input dataframes instead of a single one, each with its own
annotations. The sink also works analogously; we can asso-
ciate input and input annotations based solely on the order and
number of elements. Functions for operators of the type unary
resampling require more complex logic to associate input
rows, input annotations and the corresponding output rows.
For them, an index column to the input data using the call-
back functions like before_call needs to be added. After
execution, this column is removed during the after_call
function to hide it from the user code. We then utilize these
index columns as follows. We start by concatenating the
input and the input annotations. Next, we read the index
column and join the annotated input with the output. Subse-
quently, we create iterators over this join result, giving us the
required for input, output, and the different annotations. The
remaining execution proceeds analogously to the unary map
function. In the case of joins, we need to apply the described
indexing techniques for both join inputs. In the majority of
cases, we use pandas dataframes as data structure to store the
actual annotations. They are convenient because we can then
leverage joins and concatenation in pandas for the execution
of inspections. Once the data is inside a scikit-learn pipeline,
we switch to plain Python lists to store the annotations.

Optimizable inspections based on dataframe opera-
tors A drawback of our Python-based inspections is the high
runtime overhead inherited from Python and a lack of vec-
torization, which typically requires calling external C code.
Due to this, we design an alternative, less general but more
efficient method for executing inspections. As outlined in
Sect. 3.2, we also support the implementation of inspections
based on dataframe operators. The core idea is to model both
the inspections and the user program operations as dataframe
operators and execute them jointly. This approach is less
general than allowing users to write arbitrary python code
for inspections, but has a much lower overhead, as we can
leverage optimized operator implementations (which apply
vectorization) and common techniques from query optimiza-
tion.

For this approach, inspections are again expressed via two
functions, one for computing output annotations for each row
and one for computing the final annotations for the current
DAG operator. However, instead of relying on the Python
generator abstraction, these functions return a partial query
plan comprised of dataframe operators. For the annotation
propagation, inspections still operate on output rows of the
instrumented user operations and the corresponding anno-
tated input rows, but express the computation of the output
annotations for each row with dataflow operators.

@ Springer

1116

S. Grafberger et al.

Inspection results Lmeage_
Join result for Annotations | |for mlinspect Inspection
user program of join result -
Inspoction
User output Annotations Inspection ;

{ Projection } { Projection } [Count Agg.] [Projection]

Rename of columns
for histograms

Combination of
lineage annotations

Rename

Projection to required
columns, can be
pushed down

[Projection + Rename}

Join from
Join user program

Concat + Rename Concat + Rename

Right
Annot

Join inputs (+ corresponding annotations)

Concatenation
of inputs with
their annotations

Fig.5 Example for optimizable inspections: we generate and execute a
query plan to apply the histogram and the lineage annotations to a join
on two dataframes

Example We discuss how to build up a query plan to apply
the histogram and the lineage annotations to a join on two
dataframes, illustrated in Fig. 5. As shown in the figure,
we start by concatenating each of the two input dataframes
with the dataframes holding their input annotations. Next,
we apply the original user operation, the join. We use a pro-
jection on the joint results to create the result from which the
inspections compute the output annotations. This dataframe
contains all input columns from both sides and the output
columns. This dataframe offers our optimized inspection the
same logical view with separated input and output columns
as we provide for the Python-based inspections. The his-
togram inspection forwards the existing annotation column
and renames it to follow our naming conventions for inputs
and outputs; the lineage inspection combines the two lineage
annotation input columns using a map operation. Now, we
have a dataframe with the annotated output rows and their
corresponding input rows.

In our example, we compute four final outputs from the
intermediate dataframe with the annotated output rows and
the corresponding inputs. The first output is for the user
program: the original result dataframe of the join without
annotations and inputs. We use a projection on the interme-
diate result to remove the annotations and the input columns.
Subsequently, we compute the dataframe containing the new

@ Springer

output annotations for each row, again using a projection to
retrieve only the annotation columns from the intermediate
result. The last two outputs correspond to the DAG node
annotations from the histogram inspection and the lineage
inspection. The histogram inspection uses a groupby opera-
tion with a count aggregation, while the lineage inspection
applies a limit operation and a projection to materialize the
first n output rows and their lineage annotations. Finally, we
can optimize and execute the query plan. We experimen-
tally evaluate the performance benefits of this approach in
Sect. 5.1.3.

Garbage collecting the annotations Once we obtain the
final data structure with the annotations, we need to decide
where to store it. One option would be to just save the anno-
tations in the different backends. For example, we could
maintain a map from specific function calls to the annota-
tions. However, this would result in unnecessary memory
overhead because we do not know when we can free the
annotation variables. We only want to remember annotations
for a variable as long as that version of the variable exists. For
this reason, we store the annotations along with the variables
themselves. We achieve this for each data representation rele-
vant to the ML pipelines by either adding the attributes to the
original class via monkey patching for pure Python classes,
or via a simple wrapper class for classes like numpy arrays
that are partially implemented directly in C. These wrapper
classes extend the original class and do not change the behav-
ior in any way observable by the original pipeline. Based on
this design, the garbage collector of the Python runtime auto-
matically takes care of freeing obsolete annotations.

4.3.3 Extraction of the dataflow graph and evaluation of
checks

As discussed in Sect. 3.2, we extract the DAG during the
execution of the instrumented user code. As a consequence,
the DAG exactly represents the actual dataflow, even if the
user code has complex control flow. After obtaining all
inspection results and the dataflow graph, we evaluate all
user-specified checks on the DAG and the inspection results.
Finally, m1inspect returns the complete DAG, the inspec-
tion results, and the check results.

4.4 Implementation of our example

We provide an executable implementation of our example
from Sect. 2, along with a Jupyter Notebook 3 that details

7 https://github.com/stefan-grafberger/mlinspect/tree/
19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines.
8 https://github.com/stefan-grafberger/mlinspect/blob/
19¢a0d62e8672249891835190c9e2d9d3c14£28t/demo/
feature_overview/feature_overview.ipynb.

https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature_overview/feature_overview.ipynb
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature_overview/feature_overview.ipynb
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature_overview/feature_overview.ipynb

Data distribution debugging...

117

and visualizes the automatically extracted DAG represen-
tation and inspection results for this example. We offer a
declarative API for users to state their expectations using the
aforementioned checks, which we will then internally con-
vert to constraints on inspection results, e.g.,
PipelineInspector
.on_pipeline_from_py_file(’'healthcare.py’)
.check (NoBiasIntroducedFor ([age_group’,
‘"race'’']))
.check (NoIllegalFeatures ())

.check (NoMissingEmbeddings ())
.execute ()

The expectation about the lack of the introduction of tech-
nical bias refers to the issues @O, @,3), and @ from our
example and requires the aforementioned change detection
inspection from Sect. 4.2 to (i) trace the group membership
variables age_group and race through the DAG, and han-
dle the fact that the former is projected out early (issue).

With this in mind, mlinspect proceeds as follows:
when we visit the projection operator that removes the
attribute, we annotate each row with its corresponding
age_group value and propagate these row annotations
forward; (ii) the join, selection, and imputation operators
might change the proportions of groups in the data. To
handle this, we use the propagated group membership anno-
tations, compute a histogram of group memberships of all
inspected operator outputs, and test them for distribution
changes afterward. To check whether illegal features have
been used (issue (5), we simply search the list of projected
attributes that are used as features. This information is avail-
able as part of our DAG. The check for missing embeddings
(issue (®) only requires counting the null values in the out-
puts of the embedding operator.

5 Experimental evaluation

In this section, we present results of an extensive quantita-
tive and qualitative evaluation of m1inspect. In Sect. 5.1,
we measure the runtime overhead of m1inspect for differ-
ent operators, inspections, and instrumentation techniques.
Then, in Sect. 5.2, we present results of an interview-based
user study of effectiveness of mlinspect. Finally, in
Sect. 5.3, we qualitatively compare our library to an experi-
ment tracking and workflow provenance solution.

5.1 Runtime overhead

As mlinspect operates on Python scripts and allows for
user-defined inspection functions with generic code, it natu-
rally runs in Python, inheriting its overheads. Therefore, our
experiments focus on the overhead in terms of the number
of input and output rows of the operators. We designed our
approach with a constant overhead per tuple and therefore

expect the overhead to be linear in the number of input and
output rows of an instrumented operator. This is due to the
fact that our design requires us to only conduct a single scan
over operator inputs and outputs to execute our Python-based
inspections and to only materialize intermediate results of
interest, which requires a constant overhead per processed
row for our discussed inspections. We present a set of exper-
iments to measure the runtime overhead of our ml inspect
research prototype. We evaluate the overhead of instrument-
ing operators in Sect. 5.1.1, the overhead of our Python-based
inspection execution in Sect. 5.1.2, and we show how we
can drastically reduce the inspection overhead with our opti-
mized execution of inspections in Sect. 5.1.3. Additionally,
we measure the overhead of instrumenting function calls in
the AST in Sect. 5.1.4.

5.1.1 Overhead of python-based operator instrumentation

In our first experiment, we measure the runtime overhead of
instrumenting different operators. In particular, we focus on
the selection, projection and join operators of pandas, and
on an ML-specific operator, the one-hot encoder from scikit-
learn, which transforms a categorical string column into a
sparse matrix representation. For each operator, we measure
the execution time (i) without instrumentation; (ii) with
instrumentation without inspections; and (iii) with instru-
mentation and with one to three empty inspections that read
the respective inputs and outputs of operators but do not prop-
agate annotations.

We report the average runtime from 20 repetitions of the
experiment for 1000 to 1,000,000 input rows on the logarith-
mic scale. (For join, we generate the same number of rows for
both join inputs.) The results are shown in Fig. 6. We observe
the expected increase in the absolute runtime stemming from
our usage of Python. However, the overhead per tuple is con-
stant, indicated by the fact that the runtime overhead grows
linearly with the number of input and output rows for all
operators, as expected. We scale with operator output size
for operations like many-to-many joins, where the output is
potentially larger than the inputs. This is because inspections
need to scan all output rows, along with the corresponding
input rows and input annotations. Note that the runtime for
projection without instrumentation, and with instrumentation
but without inspections, is constant due to the underlying
columnar data layout.

5.1.2 Python-based inspection overhead

We repeat our experiment with the four previously chosen
operators and measure the runtime overhead of inspections.
For each instrumented operator, we compare the runtime of
an empty inspection to the runtime of the following inspec-
tions (each of which scans all processed rows): (i) materialize

@ Springer

1118

S. Grafberger et al.

10° B 10° B
no inst. no inst. no inst. no inst.
5] instrum 103] - instum = | | instrum 103 - instrum
@ 0% insp @ — linsp 71031 — 1linsp - —— 1linsp
£ 2 insps ~E«102 2 insps E —— 2insps E , 2 insps
© 10 — 3insps v — 3insps o ,| — 3insps o 1071 — 3insps
£ £ £ E
0 B
= | T e — TS 2| =
100 of T e | T e T
10 100
2 > R g iJ > o J el > 9 g iJ > kel g
N N N N N N N N > > N N N N N N
rows # rows # rows # rows
(a) Selection. (b) Projection. (C) Join. (d) One-Hot-Encoder.

Fig. 6 Instrumentation overhead for different operators. We compare
the runtime of the execution of a given operator with no instrumenta-
tion (no inst), instrumentation without inspections (instrum), and

with one to three empty inspections. We find that the overhead is linear
in the number of input and output rows of the operators

»»»»» empty
—— materialise

»»»»» empty
103 — materialise

----- empty
—— materialise

----- empty
103, —— materialise

@ 103 — lineage @ —— lineage @ —— lineage @ —— lineage
£ hist_one £ hist_one £10° hist_one £ hist_one

—— hist_three —— hist_three hist_three hist_three
g - 210 - g = g 102 =
21 2 g 2
S S S 102 S
2 2 2 2

10! 1014
10! z
> > o o > > o o 2 > o o 2 > o o
~ ~ N N N ~ N N ~® > ~® ~> ~® ~ ~ N
rows # rows # rows # rows
(a) Selection. (b) Projection. (c) Join. (d) One-Hot-Encoder.

Fig. 7 Runtime overhead for different inspections in various opera-
tors. We compare the runtime of the execution of a given instrumented
operator with an “empty” inspection (empty) to inspections for
materialization (materialize), lineage tracking (lineage) and

histogram computation for one and three columns (hist_one and
hist_three). We find that the overhead is linear in the number of
input and output rows of the operators

5 no inst. no inst. 5 no inst.
L Jp— hist P R hist I hist
i —— hist (opt) -~ 'J;loa —— hist (opt) —— hist (opt) g - no-inst inspect-loc
g |- lineage g |- lineage £ 102 lineage L0 — legacy inspect
"o 10%] —— lineage (opt) . 0. .,| — lineage (opt) .~ o —— lineage (opt) .-~ 5 -_—
E EY E 30
€ € €10 4]
S 10 20 . 2 B0 e
o
100 2100 e ———
10° > > o o
> > o © > > o © > > o o o QS o QS
» > » > > . ¥ > ¥ > > ¥ ” #Toop repeti:,ions ”
rows # rows # rows

(a) pandas dropna. (b) pandas merge.

Fig. 8 (a)—(c) Runtime overhead for executing inspections. Our opti-
mized execution with dataframe operators reduces the overhead by
an order of magnitude compared to the Python-based execution and
exhibits an overhead of less than 8% compared to non-instrumented exe-
cution in some cases; (d) AST instrumentation overhead for function

a sample of output rows for each operator; (ii) track the lin-
eage via annotation propagation for a sample of output rows
for each operator; (iii) compute histograms over one or three
columns of the outputs for each operator. We report the aver-
age runtime from 20 repetitions of the experiment for 1000,
10,000, 100,000, and 1,000,000 input rows.

The results are shown in Fig. 7. We again observe an over-
head for all inspections that is linear in the number of input
and output rows. We see that the overhead for the actual
inspection logic (e.g., lineage tracking via annotation prop-
agation) is low compared to the empty inspection, which

@ Springer

(€) sklearn 1-hot. (d) AST instrumentation.

calls in a loop. Our patched-based instrumentation approach outper-
forms the previous approach by up to an order of magnitude and its
runtime is within a factor of two of the uninstrumented runtime for a
large number of repetitions with disabled code location tracking

indicates that most of the overhead stems from instrumenta-
tion and data access. We also see that the overhead of running
additional inspections within one execution is a tiny fraction
of the overall instrumentation overhead. This is a validation
of the benefits of our loop fusion technique from Sect. 4.3.2.
Recall that we implement our inspections with generator-like
iterators that yield their elements, and execute the inspections
in a way that avoids multiple scans over the data by exposing
each record to all inspections during a single scan over the
data.

Data distribution debugging...

119

5.1.3 Optimized execution of inspections

We introduced an additional approach to execute inspections
in Sect. 4.3.2, based on query plans built from dataframe
operations. This approach is less general than Python-based
inspections from Sect. 5.1.2 that allow for arbitrary Python
code, but has a much lower overhead. In the following, we
evaluate both approaches on three operators and two inspec-
tions. We implement the optimized execution for our lineage
and histogram inspections applied to the pandas functions
dropna and merge, as well as for the OneHotEncoder
from scikit-learn. We vary the number of randomly generated
input rows from 1000 to 1,000,000 on the logarithmic scale
and compare the runtime of the original operation without
instrumentation no_inst, the Python-based m1inspect
execution from Sect. 5.1 (hist and lineage), and the
optimized execution with dataframe operators (hist-opt
and 1ineage-opt).

Figure 8a—c shows the results of this experiment. We find
that the relative overhead of our optimized inspections is an
order of magnitude lower than for the Python-based execu-
tion. For the highest number of rows in this experiment, the
overhead varies between the factors of only 1.08 and 4.3,
compared to the runtime of the operation without instrumen-
tation. This is due to the fact that we can optimize data access
during the execution of the query plan corresponding to the
inspections, that is, the lineage inspection no longer needs to
scan all of the data. For the one-hot encoder, for example, it
only needs to forward-propagate the existing lineage anno-
tation column. We only materialize a small row sample from
the output dataframe with an additional lineage column, and
apply selection pushdown to optimize the computation of
the final DAG node annotation. In summary, the optimized
execution strategy drastically reduces overhead.

5.1.4 AST instrumentation overhead

In Sect. 4.3.1, we introduced an improved patch-based AST
instrumentation mechanism. In the following, we measure
the overhead of the instrumentation approach in a worst-case
scenario, where it is necessary to instrument a cheap function
that is invoked an excessive number of times. The following
code snippet is used for the experiment, where list access via
an index subscript is executed n-times in a loop.

n = “ ..

test_list = list (range(n))

for index in range (0, n):
test_list[index] = index

We execute this code snippet for different values of n with
different instrumentation mechanisms: inspect refers to
the instrumentation mechanism described in Sect. 4.3.1,
inspect-loc refers to the instrumentation mechanism
with detailed source location tracking enabled, legacy

refers to the instrumentation used in previous versions of
mlinspect [17], and no-inst refers to the execution of
the code without any instrumentation. In this experiment, we
exclude the time it takes the library gorilla to apply the
monkey patches and remove them again after execution of
the instrumented user code. This constant cost only needs to
be paid once per script and it is independent of the user code.
In our measurements, this one-time cost was lower than 7ms.

Figure 8d shows the corresponding execution times. We
find that the patch-based instrumentation approach is more
than an order of magnitude faster than the earlier legacy
approach. We also find that the instrumentation overhead
diminishes for large values of n, where inspect exhibits
less than twice the runtime of the uninstrumented execution
no-inst as soon as the number of loop repetitions is 10,000
or higher. Furthermore, we find that inspect-1oc, which
tracks the exact source code locations (e.g., not only the line
number but the character offsets in the line), introduces an
overhead proportional to the overhead of inspect. Note
that these experiments show an extreme worst-case scenario
and that code location tracking is optional.

In summary, we find that instrumentation based on mon-
key patching drastically reduces AST instrumentation over-
head.

5.2 Exploratory interview study with experts

We conduct an exploratory interview study with six expert
users to qualitatively evaluate mlinspect in an ML
pipeline debugging task. We provide the materials used in
the study”.

Participants Six participants solicited from our profes-
sional networks were interviewed. All participants have
several years of experience in domains like data science, data
engineering, and algorithmic fairness. The group consists of
an expert data scientist from a large European retail com-
pany, a research engineer who previously worked on data
science topics at an NLP-focused startup, three PhD students
in machine learning and data management, and a data science
Masters student.

Methodology We first give a fifteen-minute presentation
about mlinspect, focused on data distribution bugs, to
the participants. Next, a demonstration of mlinspect was
given for ten-to-fifteen minutes, showing the detection of
a data distribution bug in an example pipeline. Participants
were allowed to ask questions. After this introduction, partic-
ipants were instructed to individually solve two tasks similar
to the demonstration. The first task uses a pipeline on a
dataset about recidivism [6] with two artificial data distri-
bution bugs caused by filter operations, which participants

9 https://github.com/stefan-grafberger/mlinspect-exploratory-user-
study/tree/b9546a7{f675af95811d3fe0c517093eb184e8d2.

@ Springer

https://github.com/stefan-grafberger/mlinspect-exploratory-user-study/tree/b9546a7ff675af95811d3fe0c517093eb184e8d2
https://github.com/stefan-grafberger/mlinspect-exploratory-user-study/tree/b9546a7ff675af95811d3fe0c517093eb184e8d2

1120

S. Grafberger et al.

had to identify. In the second task, a synthetic dataset from
the healthcare domain and a pipeline with one data distri-
bution bug were used. The goal of this setting was to find
out whether mlinspect helps participants to quickly dis-
cover data distribution bugs and understand their root cause
in complex pipelines with multiple operations, all potentially
affecting the data distribution. Once participants completed
the tasks, we studied their solutions, asked them a prede-
fined set of questions about their experience with the library
and about the technical aspects of its application, and also
gathered their unstructured verbal feedback.

Results We briefly summarize the results from the tasks
and interview questions.

Feasibility of the tasks All participants were successfully
able to perform the two tasks within half an hour, despite not
having any previous experience with the library. Most partic-
ipants solved the second task much faster than the first one,
after getting more familiar with the library. One participant
stated that she spent most of the time on understanding the
task pipeline, not on the usage of mlinspect.

Effectiveness for debugging All participants stated dur-
ing the user interview that they could complete the tasks
usingmlinspect effectively. None of the participants were
aware of alternative libraries to mlinspect for debugging
ML pipelines. When asked how they would handle the tasks
without m1inspect, all participants stated that they would
repeatedly adjust the code to compute histograms of interme-
diate results and analyze the distribution changes manually.
Based on their professional experience, all of them estimated
that the alternative approach would have been more time-
intensive, tedious, and error-prone than usingmlinspect.

We highlight one quote from a participant: The tool [...]
can detect bias to the precision of which operator. That is
quite impressive. [...] The DAG representation is powerful.

Real-world applicability All participants thought that
mlinspect is useful for data scientists; one participant
commented that PySpark support is required to work with
larger datasets. All but one participant stated that they would
use mlinspect again when encountering an applicable
problem. The remaining participant said they would only
use our library again if it included additional functionality
for model debugging.

Feature requests Participants named features they would
like to see added to m1inspect, such as support for PyS-
park and support for detecting intersectional data distribution
bugs. Another suggested feature was the detection of bias
that is gradually amplified by multiple operators. The cur-
rent implementation will not detect an issue if all operator
changes are under the detection threshold, despite the over-
all change being over the threshold. Four users stated that
they would have liked a final report by mlinspect that
directly summarizes all potential issues, and includes detailed
information about the issues that triggered alerts. One of the

@ Springer

participants wanted mlinspect to integrate the detection
of data quality issues like duplicate rows. Another sugges-
tion was to test the initial input distribution and not just detect
whether user code introduces new issues or amplifies exist-
ing issues. We note that the modular design of m1inspect
allows for the implementation of all of the suggested fea-
tures in future work. Indeed, we were able to already build an
inspection for intersectional group memberships in response
to a feature request.

In summary, participants confirmed the need to simplify
data distribution debugging and found m1inspect helpful
and usable.

5.3 Qualitative comparison against experiment
tracking and workflow provenance tools

We are not aware of any system that offers the functional-
ity mlinspect provides. As a consequence, we compare
it against two systems from adjacent use cases: MLFlow!°
and noWorkflow [40]. MLFlow is an open-source experi-
ment tracking solution with a rich feature set; noWorkflow is
an open-source workflow provenance system that can handle
unmodified programs. We qualitatively evaluate these tools
for detecting the issues outlined in our example pipeline from
Sect. 2.

5.3.1 MLFlow

MLFlow offers two different ways to log experiment data:
(i) users can manually add logging statements to their code to
track events and parameters of experiments with statements
like create_experiment (), start_run(), log_
param(), log_metric (), and log_ar-tifact();
(ii) the tool offers an auto-logging API, which is still in
an experimental state, to log certain parameters and metrics
for libraries like scikit-learn and Tensorflow. Auto-logging
is implemented by patching all £it methods of all esti-
mators. To enable auto-logging, users only need to add
a single function call to the beginning of the pipeline,
mlflow.sklearn.autolog ().MLFlow thenlogsdata
like sampled input rows from the train_data used as
input to pipeline. £it, the parameters of all nested esti-
mators, the training score, as well as strings describing the
applied transformers. During execution, MLFlow saves all of
the captured data to a directory. Afterward, a Ul can be started
with the command m1flow ui inthe browser. There, users
can get an overview of past runs and experiments and see a
summary of important information, including certain met-
rics. There is also a detailed view for runs. Based on the
information presented in the UI, it is easy for users to find a
particular version of the experiment code, deploy the trained

10 https://github.com/mlflow/mlflow.

https://github.com/mlflow/mlflow

Data distribution debugging...

1121

model from that run, and obtain a file containing the initial
column names and five example rows.

However, MLFLow does not capture intermediate ver-
sions of the data between different transformers in the
pipeline. It also does not capture preprocessing operations in
pandas. For discovering data distribution bugs like the shown
in Fig. 1, users will still have to debug the pipeline on their
own; the only help they would get from MLFLow would be
artifact logging, to save CSV-versions of dataframes. To add
detailed logging to scikit-learn pipelines, users still have to
modify the pipeline code, for example, by adding transform-
ers with the sole purpose of logging the data flowing through
them!!.

Revisiting our running example in Fig. 1: we could detect
issue (D with the help of straightforward artifact logging to
the pandas part of the code. However, we would still need to
directly load the CSV-files created by MLFlow and manually
compute histograms. We could also deal with issue) and
® in a similar way, but we would have to build a custom
mechanism to track group membership through the selection.
For detecting issues @ and (6), we would have to implement
scikit-learn debug transformers using CSV logging provided
by MLFlow. For issue (5), we would have to manually inspect
the code to discover columns used as features.

In summary, we find that MLFlow is designed for record-
ing experiment metadata, but it does not provide strong
support for debugging data-related issues in the user code.
Using MLFlow does not make it significantly more con-
venient to identify data distribution bugs in our running
example. However, for other use cases, the auto-logging
approach is very convenient.

5.3.2 noWorkflow

The noWorkflow!? tool runs unmodified Python files, col-
lects provenance information, and optionally other informa-
tion such as variable usage and dependencies. It allows users
to browse the data of past executions and investigate details
such as module dependencies, function activations, and file
accesses. Furthermore, it can generate a dataflow graph with
fine-grained provenance data for the function call graph. (Fig-
ure 9 shows this call graph for our example pipeline.)

How can noWorkflow help us detect the data distribution
bugs outlined in Sect. 2?7 We can list all function activations,
including their parameters and return values. For these cap-
tured function calls, noworkflow stores and can display all
intermediate dataframes and tensors passed around. We could
use this to detect issue (D), but we would have to implement
custom code to compute histograms of the data before and

I https://stackoverflow.com/questions/34802465/sklearn-is-there-
any-way-to-debug-pipelines.

12 https://github.com/gems-uff/noworkflow.

after the join. Issues) and (3) are more problematic: once
the projection removes important columns, the intermedi-
ate results stored by noWorkflow will not help us anymore;
we would have to write custom debugging code to trace the
group membership attributes. For detecting issues @) and
®, noWorkflow provides no help. Unfortunately, the tool
only captures function calls related to user-defined functions.
Because of this, noWorkflow cannot capture the intermedi-
ate data of nested scikit-learn pipelines: apipeline.fit
call lead to many . £it calls on child transformers. These
indirect calls are not captured. To detect issue), we would
also have to identify it manually, by looking at the code.

In addition to not providing the required support for detect-
ing these issues, noWorkflow also slows down the pipeline’s
execution: its execution time for our example pipeline is
about an order of magnitude longer thanmlinspect’s exe-
cution time. For its detailed tracking, noWorkflow saves all
inputs and outputs of captured function calls to disk, leading
to a considerable overhead compared tom1l inspect, which
only stores histograms and group membership information
in-memory. Overall, modifying the pipeline code directly
instead of using noWorkflow would likely be easier for data
distribution debugging. This is because working with the
original pipeline code is more straightforward in this case
than implementing custom code that uses the data captured
by noWorkflow.

Internally, noWorkflows captures function calls via the
Python profiling API'3, where it registers itself as a lis-
tener. During pipeline execution, the Python profiler informs
noWorkflow of all function activations. However, even a sim-
ple test script provided by the noWorklow authors leads to
156,086 function activations [33]. This is because the pro-
filing API itself also considered function activations that
were called indirectly. To avoid overloading users with large
volumes of information (and likely to avoid performance
problems), the authors decided to let noWorkflow only reg-
ister function activations related to user-defined functions.
This decision, in turn, leads to noWorkflow ignoring indirect
scikit-learn calls.

In summary, we find that noWorkflow is designed for
provenance tracking at a lower level (function calls) than
mlinspect, and, as a consequence, it does not appropri-
ately capture the semantics of relational and ML operations
in the code, which greatly reduces its utility as a data distri-
bution debugger, the issue of the interest of our work.

13 https://github.com/gems-uff/noworkflow/blob/
cbb8964eba7d58a5e87f96fb5bb91ac452b80763/capture/noworkflow/
now/collection/prov_execution/profiler.py.

@ Springer

https://stackoverflow.com/questions/34802465/sklearn-is-there-any-way-to-debug-pipelines
https://stackoverflow.com/questions/34802465/sklearn-is-there-any-way-to-debug-pipelines
https://github.com/gems-uff/noworkflow
https://github.com/gems-uff/noworkflow/blob/cbb8964eba7d58a5e87f96fb5bb91ac452b80763/capture/noworkflow/now/collection/prov_execution/profiler.py
https://github.com/gems-uff/noworkflow/blob/cbb8964eba7d58a5e87f96fb5bb91ac452b80763/capture/noworkflow/now/collection/prov_execution/profiler.py
https://github.com/gems-uff/noworkflow/blob/cbb8964eba7d58a5e87f96fb5bb91ac452b80763/capture/noworkflow/now/collection/prov_execution/profiler.py

1122

S. Grafberger et al.

16 join 16 train_file

(17 train_data Yoo
(21 train Iabels)’

24 nested_categorical_) ‘
29 nested feature 17 parser_f
25 Simplelmputer (fe‘wmformatm) (7 parserd] | [21 Tabel_binarize | .

I 25 Simplelmputer I< { 27 Plpelme I 31Standard T G
N L -
Scaler o 32 Column " 36 Pipeline income_pipeline 40 <lambda>
26 OneHotEncoder Transformer

36 DecisionTree
Classifier

18 join 18 test_file

Fig.9 Simplified illustration of the call graph for our example pipeline
produced by noWorkflow. Unfortunately, it is difficult to understand
the dataflow of ML pipelines using pandas and scikit-learn. The graph

6 Related work

The challenges of data management for end-to-end ML
pipelines [41] and the Python-based data science ecosystem
[44,45] are coming into the focus of the data manage-
ment community in recent years. Proposed approaches often
borrow ideas from provenance for relational workloads, a
well-studied subject [13].

6.1 Provenance for relational workloads

There have been different notions of provenance for rela-
tional workloads, and there are several surveys of the field
[13,19]. In the rest of this section, we will highlight a few
important notions and use examples and explanations, mainly
taken from the survey by Cheney et al. [13]. For more infor-
mation, we refer to that survey and other papers cited in this
section.

Provenance information is sometimes also called lineage.
Three forms of provenance we want to discuss here briefly
are why-, how-, and where-provenance. However, a lot of
existing work does not fall into one of these categories. The
idea behind why-provenance is to collect a set of all witness
tuples that contributed to the existence of a tuple in the output
of a query. However, for example, when the distinct keyword
isused in a query, multiple tuples can result in the same output
tuple while not needing to coexist. In contrast, the results
of a natural join require multiple tuples to coexist. Why-
provenance does not capture these distinctions as precisely
as necessary for some purposes. Further, because the number
of witnesses for each output tuple can be exponential in the
size of the input database, the focus is usually on subsets of
witnesses.

The precision issues mentioned just now are addressed by
how-provenance, which aims to capture how a query out-
put was derived. Important work in this area are provenance
semirings [18]. The idea behind this is to use polynomials to

@ Springer

22 test_labels

22 label_binarize

19 parser_fl«{ 19 test_data)«

directly reflects each function call in the user code and does not provide
an abstract representation of the dataflow of the ML components

capture how a query output was derived. Suppose two iden-
tical tuples #; and #, are present in a dataset, and we use the
distinct keyword to only get one of the two in the result. In
that case, we can represent the provenance information of
the output tuple as #; + #»: the existence of one of the two is
enough to produce that output tuple. If we join #; and t>, we
can represent the output’s provenance as 71 * f, because both
tuples need to coexist to produce that output. If a tuple can be
the output of joining #; with either #, or 3, then we can rep-
resent the provenance of the tuple as ¢ * (> +#3). Extensions
of this approach to aggregate queries [4] and linear algebra
operators [57] also exist. In practice, however, it is not easy
to use this approach due to performance reasons. It requires
a lot of metadata to be captured, as the polynomial for one
single output tuple can be arbitrarily complex depending on
the query and the data.

Where-provenance captures the relationship between
source and output locations. In a relation, the location refers
to the cell. For example, where-provenance can capture that
the Smith cell in the tuple #1: (123, Jane, Smith) was
copied from the name cell of some tuple #,. However, where-
provenance would not capture that #; is only present in the
output because a join partner 3 existed at some point during
query execution.

There are many applications and implementations of the
different notions of provenance. When using provenance in
practice, paying attention to performance is crucial. Psallidas
et al. [43], for example, present many tricks to implement
provenance capturing efficiently. The authors implement
core database operators with fine-grained lineage support
baked-in. They list many optimization techniques that can
be used when considering lineage support from the start.

6.2 Workflow provenance

There exist a large number of approaches for tracking
provenance more broadly [31] and specifically in general

Data distribution debugging...

1123

data processing workflows [3,5,22,24,27,35,40,61]. How-
ever, none of these approaches can leverage the semantics of
ML-specific operators such as the components of estimator/-
transformer pipelines. NoWorkflow [40] is such an approach.
It extracts provenance from function calls in Python scripts
in three different levels: definition, deployment, and execu-
tion. It also uses the AST and extracts a dependency graph
of the variables and directly handles unmodified programs.
However, it considers functions as black boxes and does
not capture fine-grained provenance inside called functions.
Their system has many technical similarities with ours. How-
ever, their focus is on general Python scripts containing
arbitrary functions. Because of that, they do not know of,
e.g., the semantics of declarative pipeline operators and can-
not track finer-grained lineage. For more information, we
refer to Sect. 5.3.2. YesWorkflow [27] is a system that aims
to bring the advantages of workflow analysis and modeling
features to scripts written in languages like Python and R
that define workflows. However, they heavily rely on users
annotating their code. StarFlow is similar to YesWorkflow,
but offers features like automatic parallelization [5]. It com-
bines dynamic runtime analysis, static code analysis, and
user annotations. It enables workflow abstraction, and it was
implemented in the cloud. Lipstick [3] is a system that mar-
ries database-style and workflow-style provenance. While
typical workflow provenance systems treat different mod-
ules as black box, they expose the functionality of modules
using Pig Latin. This way, they can generate a detailed prove-
nance graph with fine-grained provenance information. They
use a provenance formalization that is based on the prove-
nance semiring framework. Further, Inspector Gadget [35]
is a framework for custom monitoring and debugging of dis-
tributed dataflows. They implemented it in Pig and called
the implementation Penny. They exploit forward processing
only, do not require dataflow engine modifications, and do
not rely on injecting paint columns that may be observed by
the operators. They allow users to insert monitoring agents
that observe edges in the dataflow graph and propagate anno-
tations through the execution. Their system is technically
similar to our system in some aspects but does not consider
ML-specific operators or applications. Titian [22] is another
system using provenance to support users with debugging.
It enables fine-grained data provenance capturing in Apache
Spark. When implementing Spark support for our system
in future work, the implementation described in their paper
will likely be a great reference. Logothetis et al. [24] present
Newt, a scalable architecture for capturing and using record-
level data lineage to discover and resolve errors in analytics.
As case studies, Newt is used to instrument two DISC sys-
tems, Hadoop and Hyracks. Zhang et al. [61] propose a
system to capture lineage for distributed machine learn-
ing pipelines. Their focus is on how to efficiently encode
the lineage information, especially in scenarios with image

features. It records input and output datasets and cell-level
mapping between the two. They do this by defining differ-
ent mapping types for operators, e.g., a geometric mapping
that can map regions of pixels to other regions of pixels.
They built their system to support KeystoneML, which runs
over Spark and HDFS. They expose this mapping interface
to users, who need to decide which information they want to
capture with it. Users can then ask provenance queries after
executing the pipeline with lineage capturing. Not knowing
the types of queries before pipeline execution requires a lot
of metadata capturing, so they use these mapping types to
reduce this overhead.

6.3 Experiment tracking and model management

Capturing high-level provenance, hyperparameters, and eval-
uation results is in the focus of model management systems
such as ModelDB [53], mlflow [60], and ExperimentTracker
[46], where the latter proposed the analysis of declarative
abstractions like estimator/transformer pipelines. In contrast
to our work, these systems only capture basic metadata and
mainly require users to instrument their code with system-
specific logging statements manually. ModelDB automati-
cally tracks ML models in their native environment [53].
It tracks metadata about models and allows visual explo-
ration of this metadata. To capture this metadata, it requires
users to modify their script and add logging statements. Mod-
elHub [29] focuses on deep neural networks and captures
used parameters and hyperparameters like neural network
weights across different versions of a model. It also logs
information like loss values during the training of the model
and performance metrics. Then, it allows users to query this
captured information. In 2017, ExperimentTracker was pro-
posed, a system for tracking metadata and provenance of
ML experiments [46]. It tracks data provenance for SparkML
and scikit-learn pipelines. For this, it also relies on abstrac-
tions like transformers and estimators. However, it relies on
the user to expose certain data structures and integrate their
code with their system’s API. To our knowledge, this sys-
tem was the first to use logical abstractions of SparkML and
scikit-learn pipelines. ProvDB [30] stores metadata and some
provenance information as well. It focuses on collaborative
model development and offers a command-line interface for
users to commit their changes. It uses a graph-model inter-
nally to store this provenance information. Node types in this
graph are agents (e.g., team members or system components),
activities (train, git commit, cron), and entities (project arti-
facts like files, datasets, and scripts). It then allows users to
query this information. As a lot of information is being pro-
duced, they carefully consider how to store and efficiently
query it. Overall, the tool requires users to organize their
whole workflow around this system and use their command-
line interface tools. Another system from 2018 is MLFlow

@ Springer

1124

S. Grafberger et al.

that also aims to address challenges like experimentation and
reproducibility [60]. They offer an API to support experi-
ment tracking, reproducible runs, and model packaging and
deployment. They again rely on users to provide additional
metadata and integrate their pipelines with MLFlow. They
then help in tasks like production deployment and reproduc-
ing, e.g., parameter settings of previous experiment runs. As
MLFlow is currently one of the most successful tools in this
area, we decided to try it out in practice and discovered that
they recently added a still experimental option to log certain
predefined metadata for libraries like scikit-learn automati-
cally. For this, MLFlow requires users to add an auto-logging
statement to their code. For more information, we refer to
Sect. 5.3.1.

While systems like MLFlow rely on users to explicitly
mark operations in their ML pipeline that should be saved
in their metadata store, Ormenisan et al. [36] try to move
from explicit provenance capturing to implicit provenance
capturing. To achieve this, the authors rely on change cap-
ture APIs that capture events such as the usage or creation of
files. In addition to this, they rely on file naming conventions
and tagging of files. This way, they can capture the rela-
tion between different ML artifacts. However, only capturing
events like the creation of files is not fine-grained enough
for many use-cases. While these experiment-tracking tools
mostly focus on particular experiments by particular teams,
there also is the need to communicate information like how
a particular dataset or model was created across different
teams. For datasets, Gebru et al. [16,32] propose manually
curated information in the form of datasheets and model
cards to accompany them. The FAIR data principles [56] also
propose guidelines to improve the findability, accessibility,
interoperability, and reuse of digital assets but emphasize
machine-actionability. Stoyanovich et al. [S1] go one step
further and propose nutritional labels for data and models,
analogous to nutritional labels for the food industry. The goal
is to provide simple, standard labels to evaluate the “fitness
for use” of a model or dataset. The authors discuss these
labels’ desired properties and describe Ranking Facts [59], a
system that can automatically derive labels for rankings.

6.4 Debugging for ML pipelines and data

Dagger [26] is a data-centric debugger that allows users
to set data-breakpoints and store and query intermediate
results from Python-based data pipelines. It requires users
to mark code blocks in their Python pipelines, becoming
nodes in their Dagger pipeline. It logs the data and provides
its own query language for users to post queries through
a command-line interface. Data breakpoints allow users to
write assertions for the data between the different user-
defined blocks. We see our system, m1inspect, as a com-
plementary solution to Dagger: m1 inspect can point users

@ Springer

to hard-to-identify issues in their pipeline; Dagger will then
enable them to drill-down and explore the data and identify
the root causes of the problems. Vamsa [34] is a provenance-
based analysis approach for data science scripts in Python
that is technically close to ours. Like, mlinspect, Vamsa
does not require changes to user code and uses a knowl-
edge base about different ML libraries. However, Vamsa has
a much narrower focus, as it only aims to identify which
columns of the input contributed to a particular feature used
for an ML model. Their system also aims to work for general
Python code using various libraries and leverages the AST
and intermediate representations. Vizier [9] is a notebook
environment integrating Python, SQL, and data debugging
and exploration techniques. It requires a tight integration
into the user’s development process and offers support for
fine-grained provenance capture for SQL queries only.

Deequ [48] is another approach for the validation of
ML data. It enables users to write “unit tests for data”
using a declarative API. Breck et al. propose another data
validation system [10]. It was integrated into TensorFlow
Extended (TFX) to detect anomalies specifically in data
fed into machine learning pipelines. However, these tools
mostly focus on detecting data issues, not debugging them.
There is also MISTIQUE, a system from 2018 to store and
query model intermediates from ML pipelines and hidden
representations from deep learning [54]. BugDoc [25] is a
framework that implements and combines methods to select
pipeline instances to try out to find root causes of problems
in pipelines. However, it can only identify the root causes of
problems related to the input parameter space, which has to
be manually specified by the user.

There has been a large-scale study of the usage of different
data science tools [44]. Many of their findings support our
research direction, despite our restriction to specific libraries.
Besides confirming assumptions that Python is by far the
most used language for these types of problems, they also find
that most data science code is linear and a mere orchestration
of different libraries. This makes projects like ours feasible.
They also confirm that most work relies on a handful of core
libraries, such as scikit-learn, numpy, matplotlib and pan-
das. Another important finding is that in the last few years,
declarative specification of data science logic is becoming
increasingly common. Polyzotis et al. [41] wrote a survey
of data lifecycle challenges in production ML. They identify
data-related open challenges in areas such as data under-
standing, data validation and cleaning, and data preparation.
An interesting tool inspired by various best practices in ML
data preparation is DataLinter [21]. They propose data linting
for deep neural networks, based on predefined linting rules
applied to the training data and the outputs of the model, but
they cannot inspect pipeline code. DeepXplore [38] is a sys-
tem for automated white-box testing of ML models. It can
find corner cases in application areas like self-driving cars.

Data distribution debugging...

1125

They measure neuron coverage, which they describe as mea-
suring the part of the neurons that are exercised in test inputs.
Then they try to generate test cases that produce errors. Their
test inputs can also be used to train the model to improve its
performance.

6.5 Fairness-specific analysis of ML pipelines and
predictions

In recent years, a set of specialized analysis tools with
respect to the fairness and accountability of ML-based
decision-making systems has been developed. Examples
include SliceFinder [42], Coverage [7], and fairDags [58].
mlinspect provide a general runtime for implementing
and integrating these and similar approaches into a com-
mon inspection platform. In our work on FairDags [58], we
initially proposed extracting a DAG from ML pipelines to
check for data distribution issues that result in bad model
performance for sensitive demographic groups. Asudeh et
al. [7] propose techniques to assess the coverage of a dataset
over multiple categorical variables. The authors present an
efficient strategy for traversing the combinatorial explosion
of value combinations to identify problematic regions of
the attribute space. Even with their optimized approach, the
number of attributes to consider has a high impact on the
performance. Slice finder [42] is a system to assist with find-
ing slices of data an ML model performs particularly bad on.
Al Fairness 360 (AIF360) [8] is a Python toolkit to calculate
many fairness metrics and different algorithms to mitigate
bias in datasets and models. Fairlearn [1] is another Python
package to assess the fairness of Al systems and mitigate
observed unfairness issues. Fairlearn also contains different
mitigation algorithms and a Jupyter widget for model assess-
ment.

Fairness issues in software are not just limited to issues
specific to ML pipelines. Brun et al. [11] discuss how soft-
ware engineering as a discipline needs to consider fairness
from the start when building software systems (e.g., with fair-
ness annotations like in Fairness-Aware Programming [2]),
and Galhotra et al. [15] propose to test software for discrim-
ination issues based on a schema of valid system inputs.

7 Conclusion and future work

We discussed several hard-to-identify data issues in ML
pipelines that have the potential to impact correctness, reli-
ability, and fairness. We proposed mlinspect, a library
that enables lightweight lineage-based inspection of ML pre-
processing pipelines. The mlinspect library extracts a
directed acyclic graph representation of the dataflow from
a pipeline and automatically instruments the code with pre-
defined inspections based on a lightweight annotation prop-

agation approach. We describe several custom inspections
that data scientists can use to detect data distribution bugs
in their pipelines. In contrast to existing work, mlinspect
operates on declarative abstractions of popular data science
libraries like estimator/transformer pipelines and does not
require manual code instrumentation. We discuss the design
and implementation of m1inspect and give a comprehen-
sive end-to-end example that illustrates its functionality.

A future challenge is to assist data scientists in the anal-
ysis of the outputs of mlinspect. Complex pipelines
can produce a variety of inspection results, and it may be
helpful to explore anomaly detection techniques to point
data scientists to potentially problematic cases or to suggest
thresholds for checks. We also plan to incorporate additional
backends for popular ML libraries intoml inspect, includ-
ing Tensorflow Transform and Apache SparkML [28]. For
these libraries, it will be challenging to find efficient ways
to include inspections during the distributed execution of
Beam and Spark operators. As discussed in Sect. 4.3.2, a
future challenge is to support complex ML pipelines on high-
dimensional tensors; it is still unclear whether such tensor
operations are sufficiently captured by the dataframe alge-
bra (Sect. 3.4) onto which mlinspect is built. As also
outlined in Sect. 4.3.2, we intend to explore query optimiza-
tion techniques for more efficient execution of inspections
based on dataframe operations as a means to reduce the run-
time overhead induced by Python.

Acknowledgements This work was supported in part by Ahold Del-
haize, and by NSF Awards No. 1934464, 1916505 and 1922658. All
contents represent the opinion of the authors, which is not necessarily
shared or endorsed by their respective employers and/or sponsors.

References

1. Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach,
H.: A reductions approach to fair classification. In: FAT* (2017)

2. Albarghouthi, A., Vinitsky, S: Fairness-aware programming. In:
FAT* (2019)

3. Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T, Stoy-
anovich, J. Tannen, V. Enabling database-style workflow prove-
nance. In: PVLDB, Putting Lipstick on Pig (2011)

4. Amsterdamer, Y., Deutch, D., Tannen, V: Provenance for aggregate
queries. In: PODS (2011)

5. Angelino, E., Yamins, D., Seltzer, M.: Starflow: a script-centric
data analysis environment. In: Provenance and Annotation of Data
and Processes (2010)

6. Angwin,J., Larson,J., Mattu, S., Kirchner, L.: Machine bias. (prop-
ublica) (2016)

7. Asudeh, A., Jin, Z., Jagadish, H.V.: Assessing and remedying cov-
erage for a given dataset. In: ICDE (2019)

8. Bellamy, R.K.E., Dey, K., Hind, M., Hoffman, S.C., Houde, S.,
et al.: Al fairness 360: an extensible toolkit for detecting, under-
standing, and mitigating unwanted algorithmic bias (2018)

9. Brachmann, M., Bautista, C., Castelo, S., Feng, S., Freire, J., et al.:
Data debugging and exploration with vizier. In: SIGMOD, Su Feng
(2019)

@ Springer

1126 S. Grafberger et al.
10. Breck, E., Zinkevich, M., Whang, S., Roy, S.: Data validation for 38. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore. In: SOSP (2017)
machine learning. In: SysML, Neoklis Polyzotis (2019) 39. Petersohn, D., Macke, S., Xin, D., Ma, W., Lee, D., Mo, X.,

11.
12.

13.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Brun, Y., Meliou, A.: Software fairness. In: ESEC/FSE (2018)
Chen, I., Johansson, ED., Sontag, D.: Why is my classifier dis-
criminatory? In: NeurIPS (2018)

Cheney, J., Chiticariu, L., Tan, W.C: Provenance in Databases:
Why, How, and Where. Found. Trends Databases, vol. 1, no. 4
(2009)

Chouldechova, A., Roth, A.: A snapshot of the frontiers of fairness
in machine learning. In: CACM, vol 63, no. 5 (2020)

. Galhotra, S., Brun, Y., Meliou, A: Testing software for discrimina-

tion. In: ESEC/FSE, Fairness Testing (2017)

Gebru, T., Morgenstern, J., Vecchione, B. et al.: Datasheets for
datasets (2018)

Grafberger, S., Stoyanovich, J., Schelter, S.: Lightweight inspec-
tion of data preprocessing in native machine learning pipelines. In:
Conference on Innovative Data Systems Research (CIDR) (2021)
Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings.
In: PODS (2007)

Herschel, M., Diestelkdmper, R., Lahmar, H.B.: A survey on prove-
nance: What for? What form? What from? VLDBIJ 26(6) (2017)
Hutton, G.: A tutorial on the universality and expressiveness of
fold. J. Funct. Program, 8 (1999)

Hynes, N., Sculley, D., Terry, M. The data linter: lightweight, auto-
mated sanity checking for ml data sets. In: MLSystems workshop
at NeurIPS (2017)

Interlandi, M., Shah, K., et al. Titian: data provenance support in
spark. In: VLDB (2015)

Jindal, A., Emani, K.V.,Daum, M., Poppe, O., et al: Magpie: python
at speed and scale using cloud backends. In: CIDR (2021)
Logothetis, D., De, S., Yocum, K: Scalable lineage capture for
debugging disc analytics. In: SoCC (2013)

Lourenco, R., Freire, J., Shasha, D.: A system for debugging com-
putational pipelines. In: SIGMOD, Bugdoc (2020)

Madden, S., Ouzzani, M., Tang, N., Stonebraker, M.: Dagger: a
data (not code) debugger. In: CIDR (2020)

McPhillips, T.M., Song, T., Kolisnik, T., et al.: Yesworkflow: a
user-oriented, language-independent tool for recovering workflow
information from scripts. In: CoRR, abs/1502.02403 (2015)
Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S.,
Liu, D., Freeman, J., Tsai, D.B., Amde, M., Owen, S., et al.: Mllib:
machine learning in apache spark. IMLR 17(1), 1235-1241 (2016)
Miao, H., Li, A., Davis, L.S., Deshpande, A.: Towards unified data
and lifecycle management for deep learning. In: ICDE, pp. 571-
582 (2017)

Miao, H., Deshpande, A.: Provdb: provenance-enabled lifecycle
management of collaborative data analysis workflows. IEEE Data
Eng. Bull 41 (2018)

Moreau, L.: The foundations for provenance on the web. Found.
Trends Web Sci. 2(2-3), 29, 99-241 (2010)

Mitchell, M., et al.: Model cards for model reporting. In: FAT*
(2019)

Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.:
noworkflow: capturing and analyzing provenance of scripts. In:
VLDB (2017)

Namaki, M.H., Floratou, A., Psallidas, F., Krishnan, S., Agrawal,
A., Wu, Y.: Tracking provenance in data science scripts. In: KDD,
Vamsa (2020)

Olston, C., Reed, B.: Inspector gadget: A framework for custom
monitoring and debugging of distributed dataflows. In: SIGMOD
(2011)

Ormenisan, A.A., Meister, M., Buso, F., Andersson, R., Haridi,
S., Dowling, J.: Time travel and provenance for machine learning
pipelines. In: OpML at USENIX (2020)

Pedregosa, F., Varoquaux, G., Gramfort, A. et al.: Scikit-learn:
Machine learning in python. In: JMLR, vol. 12 (2011)

@ Springer

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Gonzalez, J.E., Hellerstein, J.M., Joseph, A.D., Parameswaran, A:
Towards scalable dataframe systems. In: VLDB (2020)

Pimentel, J.F., Murta, L., Braganholo, V. and Freire, J.: noworkflow:
a tool for collecting, analyzing, and managing provenance from
python scripts. In: PVLDB (2017)

Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle
challenges in production machine learning: a survey. In: SIGMOD
Record (2018)

Polyzotis, N., Whang, S., Kraska, T.K. and Chung, Y.: Automated
data slicing for model validation. In: ICDE, Slice finder (2019)
Psallidas, F., Wu, E.: Smoke: Fine-grained lineage at interactive
speed. In: VLDB (2018)

Psallidas, F., Zhu, Y., Karlas, B., et al: Data science through the
looking glass and what we found there (2019)

Raasveldt, M., Miihleisen, H.: Data management for data science-
towards embedded analytics. In: CIDR (2020)

Schelter, S., Boese, J.H., Kirschnick, J., Klein, T., Seufert, S.: Auto-
matically tracking metadata and provenance of machine learning
experiments. In: ML Systems Workshop at NeurIPS (2017)
Schelter, S., He, Y., Khilnani, J. and Stoyanovich, J.: Fairprep: Pro-
moting data to a first-class citizen in studies on fairness-enhancing
interventions. In: EDBT (2019)

Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F.,
Grafberger, A: Automating large-scale data quality verification.
In: PVLDB, Meltem Celikel (2018)

Sebastian, S.: Stoyanovich, J: Taming technical bias in machine
learning pipelines. IEEE Data Eng. Bull. 43, 39-50 (2020)
Sparks, E.R., Venkataraman, S., Kaftan, T., Franklin, M.J., Recht,
B.: Keystoneml: Optimizing pipelines for large-scale advanced
analytics. In: ICDE (2017)

Stoyanovich, J., Howe, B.: Nutritional labels for data and models.
IEEE Data Eng. Bull. 42(3), 13-23 (2019)

Stoyanovich, J., Howe, B., Jagadish, H.V.: Responsible data man-
agement. In: VLDB (2020)

Vartak, M., Madden, S.: Modeldb: opportunities and challenges in
managing machine learning models. IEEE Data Eng. Bull. 41(4),
16-25 (2018)

Vartak, M., Joana, Trindade, J.M., Madden, S., Zaharia, M: A sys-
tem to store and query model intermediates for model diagnosis.
In: SIGMOD (2018)

Wikipedia. Monkey patch. https://en.wikipedia.org/wiki/Monkey_
patch (2021). Accessed 9 Sept 2021

Wilkinson, M.D., Dumontier, M., Aalbersberg, 1.J.J., Appleton,
G., Axton, M., Baak, A., Blomberg, N., et al.: The fair guiding
principles for scientific data management and stewardship. Sci.
Data 3(1), 1-9 (2016)

Yan, Z., Tannen, V., Ives, Z.G.: Fine-grained provenance for linear
algebra operators. In: TaPP (2016)

Yang, K., Huang, B., Stoyanovich, J., Schelter, S.: Fairness-aware
instrumentation of preprocessing pipelines for machine learning.
In: HILDA Workshop at SIGMOD (2020)

Yang, K., Stoyanovich, J., Asudeh, A., Howe, B., Jagadish, H.V.,
Miklau, G.: A nutritional label for rankings. In: SIGMOD (2018)
Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S.A., Kon-
winski, A., Murching, S., et al.: Accelerating the machine learning
lifecycle with MLflow. IEEE Data Eng. Bull. 41(4), 39-45 (2018)
Zhang, Z., Sparks, E.R., Franklin, M.J.: Diagnosing machine learn-
ing pipelines with fine-grained lineage. In: HPDC (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://en.wikipedia.org/wiki/Monkey_patch
https://en.wikipedia.org/wiki/Monkey_patch

	Data distribution debugging in machine learning pipelines
	Abstract
	1 Introduction
	2 Data distribution bugs by example
	3 Design of mlinspect
	3.1 Overview
	3.2 Instrumentation and annotation propagation
	3.3 Automatic inspections and checks
	3.4 Algebraic definition of the mlinspect dataflow graph

	4 Implementation
	4.1 Overview
	4.2 Inspections
	4.3 Execution of inspections, checks, and DAG extraction
	4.3.1 Preparation
	4.3.2 Execution of the instrumented program
	4.3.3 Extraction of the dataflow graph and evaluation of checks

	4.4 Implementation of our example

	5 Experimental evaluation
	5.1 Runtime overhead
	5.1.1 Overhead of python-based operator instrumentation
	5.1.2 Python-based inspection overhead
	5.1.3 Optimized execution of inspections
	5.1.4 AST instrumentation overhead

	5.2 Exploratory interview study with experts
	5.3 Qualitative comparison against experiment tracking and workflow provenance tools
	5.3.1 MLFlow
	5.3.2 noWorkflow

	6 Related work
	6.1 Provenance for relational workloads
	6.2 Workflow provenance
	6.3 Experiment tracking and model management
	6.4 Debugging for ML pipelines and data
	6.5 Fairness-specific analysis of ML pipelines and predictions

	7 Conclusion and future work
	Acknowledgements
	References

