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a b s t r a c t

Industrial applications often require federated cloud services from multiple providers to improve
reliability and flexibility. Traditional selection methods through auctions usually involve a centralized
auctioneer to coordinate the auction procedure. Blockchain and smart contracts provide a decen-
tralized mechanism to automate the cloud auction process; however, existing solutions fail in the
selection of the most suitable providers and the violation detection of the signed auction agreements,
which are also known as service-level agreements (SLAs). To tackle these problems, we propose
an integrated auction model using Bayesian game theory and blockchain techniques. The proposed
model is enhanced with two Bayesian Nash Equilibriums (BNEs); the first BNE enables the selection
of cost-effective providers to construct the federated cloud services, while the second BNE ensures
consistent and trustworthy monitoring of federated SLAs. Moreover, a timed message submission (TMS)
algorithm is proposed to protect the auction privacy during the message submission phase. This paper
validates the equilibrium results of two BNEs and implements the proposed model on the Ethereum
blockchain. The analytical and experimental results demonstrate the feasibility, trustworthiness, and
cost-effectiveness of our model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cloud computing provides on-demand elastic IT services via
he Internet and is playing an increasingly important role in the
evelopment and operations of business applications. When an
pplication is highly distributed or has high requirements for
ata availability, a single service provider is often not sufficient.
his leads to a situation where multiple service providers may
orm a group, namely a cloud federation, to provide services to-
ether [1,2]. Compared with traditional centralized cloud services,
his new cloud paradigm has many benefits. For example, a cloud
ederation allows customers to choose the best combination of
roviders considering service flexibility, availability, and cost to
eet their specific business or technical requirements. It also
nables IT companies to distribute workloads on a global scale
nd allows users to access cloud resources in a safe and reliable
ay.
Since providers on the market are diverse in terms of service

uality, price, and reputation, it is usually difficult and time-
onsuming to choose suitable providers that meet specific appli-
ation requirements. An auction is one of the effective and fair

∗ Corresponding authors.
E-mail addresses: z.shi2@uva.nl (Z. Shi), huanzhou@nudt.edu.cn (H. Zhou),

elaat@uva.nl (C. de Laat), z.zhao@uva.nl (Z. Zhao).
ttps://doi.org/10.1016/j.future.2022.05.017
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
solutions to this problem. It is a sale activity in which potential
buyers make competitive bids for assets or services [3]. In the
field of cloud computing, the auction-based pricing strategy can
effectively reflect potential trends in cloud resource demand and
supply. Thus it is an effective way to allocate resources and satisfy
both buyers and sellers [4]. Auction-based cloud pricing strategies
have been developed rapidly in the past few years. Large cloud
service providers (e.g., AWS, Azure, and Google) have supported
spot instance pricing for users to bid for unused capacity in a
cloud data center. Some users can even save up to 90% of the
cost compared with the traditional on-demand instance pricing.1
However, it is still challenging to apply auction models in a
federated cloud service scenario, which is mainly because:

• There is a lack of a trustworthy platform for users to auc-
tion cloud services from multiple providers. Most existing
cloud auction solutions have the vendor lock-in issue; the
provider also acts as an auctioneer, which may lead to bias
and untrustworthiness.
• There is a lack of an automated and cost-effective mecha-

nism to enforce the service lifecycle from auction agreement
generation to service delivery; traditional auction houses or
auctioneers are cumbersome and expensive.

1 https://aws.amazon.com/ec2/spot/.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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• There is a lack of a fair mechanism to detect the auction
agreement violation (e.g., the cloud service is not delivered
as agreed) without bias. The provider has more power in
the current model to verify service violations and decide
whether to compensate the customer.

In recent years, blockchain has attracted tremendous atten-
tion as an enabling technology for building decentralized sys-
tems. In general, blockchain is a decentralized ledger system that
combines existing technologies such as distributed data storage,
peer-to-peer networking, consensus mechanisms, and crypto-
graphic algorithms. The ledger is maintained by all nodes par-
ticipating in the system and is therefore decentralized, tamper-
proof, transparent, and secure [5]. Blockchain was originally in-
troduced as the underlying technology for Bitcoin [6]. Now, with
smart contract technology bringing powerful programmability, it
is widely believed that blockchain can be applied to build de-
centralized systems in various application scenarios, e.g., health-
care, finance, energy trading, wireless communication, service
allocation, electronic voting, and supply chain management [7–
10].

Blockchain and smart contract technologies bring new oppor-
tunities to deal with the challenges of federated cloud auctions.
Due to its immutable and verifiable properties, blockchain has
proven to be a promising tool for auction usage without requiring
a centralized trusted third party (TTP) [11,12]. In 2018, for the
first time in the world, million-dollar artworks from Andy Warhol
had been tokenized and auctioned on the blockchain.2 This mech-
anism of bidding on item ownership with cryptocurrencies and
smart contracts might become a future trend. However, since
most auction objects are not digital, blockchain and smart con-
tracts cannot handle their ownership directly. The trustworthy
enforcement of auction agreements still remains a challenge.

In this paper, an integrated auction model using Bayesian
game theory and blockchain is proposed for federated cloud
services. Specifically, blockchain and smart contracts are lever-
aged to build a decentralized, secure, and trustworthy auction
platform. Bayesian games are leveraged to model incomplete
information sharing among different auction participants, and
to enhance the effectiveness and trustworthiness of the cloud
auction. Our model considers both the effective bidding and the
trustworthy enforcement of the auction agreements. In brief, the
main contributions of this paper are summarized as follows:

• A novel blockchain-based federated cloud auction model
where a new role, called auction witness, is introduced to
support the monitoring of service delivery.
• Two unique Bayesian Nash Equilibriums (BNEs) are derived

to select cost-effective providers, and to monitor federated
service-level agreements (SLAs) in a consistent and trust-
worthy way.
• A timed message submission (TMS) algorithm is designed

to protect auction privacy during the message submission
phase.
• A prototype system based on the Ethereum blockchain is

fully developed and tested.3

The remainder of the paper is organized as follows. Section 2
briefly reviews the related works on blockchain-based cloud auc-
tion solutions. Section 3 introduces the overall architecture and
process of the proposed federated cloud auction model. Section 4
dives into the key techniques, including a federated cloud parti-
tion model, two Bayesian games with the analysis of BNEs, and

2 https://finance.yahoo.com/news/andy-warhol-multi-million-dollar-
62928721.html.
3 The code repository is open sourced in: https://github.com/ZeshunShi/
C4CloudAuction.
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the TMS algorithm. Section 5 presents the evaluation and im-
plementation details. Section 6 discusses the design choices and
concerns of the proposed model. Finally, the paper is concluded
in Section 7.

2. Related work

Auctions have attracted research attention in many fields due
to their effective and fair transaction properties. Classic auction
models, e.g., double auction, combinatorial auction, and Vickrey–
Clarke–Groves (VCG) auction, have been widely leveraged to op-
timize cloud resource allocation in a federated cloud environ-
ment [13–16]. From a practical point of view, most of the existing
solutions are centralized and need to rely on an auctioneer to
manage the auction process. However, in practice, an auctioneer
is not always trustworthy and can conspire with any auction
parties [17]. The high commission fees also limit the promotion of
the above auction models in real industries. Recently, blockchain
has been demonstrated to be a promising tool for decentralized
auctions, which is mainly because: (1) every transaction executed
on the blockchain is public, verifiable, and immutable. Therefore
blockchain can be leveraged as an audit device, and participants
cannot cheat during the auction process; (2) there is no need for
a specific auctioneer to manage the auction due to the help of
smart contracts, which greatly reduces the auction cost [11]; and
(3) blockchain cryptocurrencies can be used to complete auction
payments due to their simple and secure transaction properties.
Recent studies [17,18] have demonstrated the great potential of
using blockchain as decentralized auction platforms.

There are already several frameworks that target cloud ser-
vices and resources allocation using blockchain and auction mod-
els. For example, DeCloud [19] is a secure and decentralized
auction system specifically built for edge/cloud service trading. It
integrates a truthful double auction model and a bidding language
to match highly heterogeneous edge resources with different ser-
vice requests. CloudAgora [20] is a platform that enables low-cost
storage and computing access based on blockchain and auc-
tions, where prices are determined through an auction game.
ChainFaaS [21] is designed to run serverless tasks using the com-
puting power of personal computers. AStERISK [22] is a sealed-bid
auction platform on the blockchain. It automatically determines
the best price for cloud services and assigns customers to the
most suitable provider. Similarly, Chen et al. [23] introduced a
blockchain-based auction and trading model for cloud virtual
machine (VM) allocation. Their model can achieve fairness in
auction transactions by implementing commitment-based state
mechanisms, smart contracts, and cryptocurrency technologies.
In [24], the authors paid attention to the cloud storage problem
and proposed VCG auction-based resource trading models for
distributed cloud storage. Besides, Debe et al. [25] demonstrated
a blockchain-based reverse auction solution for public fog service
allocation. Yu et al. [26] also leveraged the reverse auction model
and presented a blockchain-based edge crowdsourcing service
system. Specifically, a changeable auction algorithm is designed
so that each request from the user will find a winner that can
provide the appropriate edge service.

It should be noted that most of the above models focus on
designing on-chain auction algorithms to improve allocation ef-
ficiency and privacy; unfortunately, none of them consider the
execution of auction contracts. iExec [27] and Golem [28] are two
popular projects that are closely related to our model. The former
aims to build a blockchain-based distributed cloud environment,
while the latter tries to build a worldwide supercomputer. They
both propose that oracles are needed to define whether a trans-
action is successful and to trigger the execution of the smart
contract when the conditions are met. However, most currently

https://finance.yahoo.com/news/andy-warhol-multi-million-dollar-162928721.html
https://finance.yahoo.com/news/andy-warhol-multi-million-dollar-162928721.html
https://github.com/ZeshunShi/SC4CloudAuction
https://github.com/ZeshunShi/SC4CloudAuction
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Table 1
Comparison with existing blockchain-based cloud auction models.
Ref. Topic Auction Algorithm Auction Privacy Auction Enforcement

DeCloud [19] Edge/Cloud service trading
CloudAgora [20] Cloud storage and computing sharing
ChainFaaS [21] Serverless computing
AStERISK [22] Shared economy service allocation
Chen et al. [23] Cloud VM allocation
Gu et al. [24] Cloud storage resource trading
Debe et al. [25] Fog service trading
Yu et al. [26] Edge service crowdsensing
iExec [27] Decentralized cloud computing
Golem [28] Worldwide supercomputer
Our model Federated cloud services trading

Notes: Filled (or half-filled) circles indicate that the properties are (partially) addressed, while empty circles mean that
properties are not considered.
existing oracle services are provided by third-party companies
(e.g., Chainlink, Provable, and Witnet) [29] and are therefore sub-
ject to single points of failure. To handle this issue, Matsushima
and Noda [30] designed a self-monitoring mechanism to enforce
digital court smart contracts. However, this mechanism may lead
to biased results and lack the prototype system’s verification. In
our previous work [31], we introduced the idea of a decentralized
monitoring mechanism for blockchain using the complete infor-
mation game theory. However, the proposed model assumes that
players possess full information about their opponents, which
is unrealistic. Besides, the model can only implement naive in-
centives to determine whether the service is violated through a
boolean value without the ability to monitor federated SLAs at
the same time.

In summary, there is an urgent need to establish a secure,
trustworthy, and cost-effective auction model in the federated
cloud services scenario. Although blockchain-based decentralized
auction models have great potential to tackle this problem, most
existing solutions only focus on optimizing bidding processes
regardless of the auction agreement enforcement. A compari-
son of our model with related studies is shown in Table 1.
Our work is among the first to combine bidding and auction
enforcement with blockchain, and enhance the auction effective-
ness and trustworthiness through Bayesian game-based incentive
mechanisms.

3. Federated cloud auction model

Based on current research gaps, we propose our federated
cloud auction model in detail. In practice, cloud customers usually
use cloud services from federated service providers to improve
fault tolerance and reliability. There are many providers with
similar functions on the market. In contrast to the spot instance
pricing that requires customers to bid for resources, providers
need to offer flexible pricing strategies and submit bids to sell
their services in our model.

3.1. Architecture overview

Fig. 1 shows the architecture overview of the proposed fed-
erated cloud auction model. Generally, there are three roles in-
volved: (1) a cloud customer who pays and consumes the feder-
ated cloud services. In the auction model, the customer works as a
service purchaser and publishes auction invitations; (2) multiple
cloud providers that collaborate to provide federated cloud ser-
vices. They act as bidders in the auction model and fight for the
right to sell services through bidding activities; and (3) a new role
called auction witnesses is introduced to monitor the federated

SLAs and ensure the successful delivery of the auctioned cloud

51
services.4 There are two types of smart contracts involved. The
auction smart contract is the main contract to manage the entire
auction process (e.g., setting parameters, auction rules, and exe-
cution orders). SLA smart contracts are sub-contracts generated
by the auction contract to specify the service details between
the customer and each provider. Here SLA smart contracts work
as the auction agreements in traditional auction activities, and
contain the terms and obligations for both sellers and buyers to
finish the deal. Smart contracts can be used as audit evidence
by both parties, making the service terms immutable, open, and
transparent. Besides, there are two types of fees involved in the
auction payment. Witness fees are leveraged to encourage po-
tential blockchain users to join the monitoring activity. They also
act as deposits to ensure that the customer and providers cannot
easily deny their obligations. By contrast, service fees are the costs
of providing cloud services, which are generated by the providers’
bids and paid by the customer in the form of cryptocurrency. It
should be noted that blockchain cannot act as an enforcement
device unless the money (i.e., tokens) is transferred to the smart
contract in advance. Therefore, these two types of fees require
prepayments to enforce the money transfer at the right time.

3.2. Model process

In Fig. 1, the numbers next to process flows represent the
sequence of the action. Different letters along with the same
number (e.g., 1a and 1b) represent that those events can happen
at the same time. The entire auction process can then be de-
scribed as follows. First, an agent (usually the customer) deploys
the auction smart contract on the blockchain. Before the auc-
tion starts, the customer needs to consider how many providers
are needed to form the cloud federation. An off-chain feder-
ated cloud partition model is therefore used to accomplish this
goal. After that, the customer can publish the bid invitation on
the auction smart contract. This invitation contains a detailed
description of the service requirement, e.g., provider numbers,
VM specifications, uptime, throughput, and the reserve price.
A certain amount of witness fees need to be prepaid at the
same time. When providers notice the auction invitation posted
by the customer, they can register as bidders to participate in
the auction. Providers can start bidding when the number of
registered providers meets the requirement within a specified
time window. Similar to the customer, providers need to prepay
part of the witness fee when submitting bids.5 When the sum

4 For simplicity, customer, provider, and witness are used in the following
text.
5 The total amount of the witness fee is shared by both the customer and
selected providers.
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Fig. 1. Architecture overview of the federated cloud auction model.
T
f

4

u
t
f
d
p
t
t
s

f k (the number of providers required by the customer) bids
s less than the customer’s reserve price, the requirements from
oth parties are met. The auction smart contract then judges this
uction as a valid auction and selects k providers with the lowest
ids as the winning providers. Otherwise, the auction is invalid
the customer’s reserve price is too low or the providers’ bids
re too high) and the witness fee prepaid by both parties will be
efunded.

Once the winning providers are selected, the auction smart
ontract generates k SLA smart contracts and waits for both
arties to sign. Next, the customer needs to prepay the service
ee generated by the bidding of providers. After all SLA smart con-
racts are signed, a witness registration window opens and allows
ormal blockchain users to register as auction witnesses to earn
ommission fees. SLA smart contracts become active only when a
ufficient number of witnesses are registered. The providers then
tart to provide the corresponding services in accordance with
he SLA smart contracts, and the witnesses start to monitor the
ervices. An example of how a witness can monitor the service
s as follows. The federated providers provide a cluster of on-
emand VMs and notify the customer and all witnesses of the
ublic IP address via the service details field in the SLA smart
ontracts. Therefore, the customer can use this cluster, and each
itness starts to ‘‘ping’’ VMs’ IP addresses constantly. If the vio-

ation happens during the service time, i.e., the IP address is not
ccessible, the witness can record this violation. However, this is
naive example with a simple monitoring task. If more advanced
onitoring tasks are required, then certain permissions need to
e granted to allow witnesses to deploy probes in the service for
onitoring. In real SLAs of more complex scenarios, the service
onitoring component can be negotiated and provided by the
ustomer and providers. Besides, this component can be delivered
n the form of containers, which are lightweight and portable.
hen, the witness is able to download the container and query
t to detect service violations. However, as with any technology,
here are trade-offs when using containers for this monitoring
omponent. Despite the flexibility of the container infrastructure,
erious security risks can arise if containers are not properly
onfigured. Therefore, container security tools and policies must
e considered to ensure that monitoring activities in the con-
ainer are operating as expected. Some popular container security
52
solutions and tools, including scanning (e.g., Docker Bench for Se-
curity), monitoring (e.g., Prometheus), and firewall configuration
(e.g., Cilium), can partially address security concerns [32]. After
the federated cloud services are completed, witnesses need to
report the monitoring results. The auction smart contract then
calculates and pays the witness fee to witnesses and finalizes
the ownership of the service fee based on the reported SLAs
violation result; if there is no violation, the service fees are paid
to all providers. Otherwise, the part of the prepaid service fee
will be refunded to the customer if any of the sub-services are
in violation.

4. Key techniques

In this section, we describe three key techniques in our fed-
erated cloud auction model in detail. This model enables the
automatic enforcement of the auction, the results of which can
convince both auction parties. Specifically, we first model the
partition of federated cloud services as a graph partition problem
(steps 1a in Fig. 1). Then, in our model, the payoff functions for
different stakeholders are hardcoded in the smart contract on the
blockchain. This means that when providers and witnesses notice
these payoff functions, they are motivated to act according to the
derived BNEs to maximize their profits. Thus, the effectiveness
and trustworthiness of the auction are guaranteed through two
BNEs among providers and witnesses (steps 2a and 7a in Fig. 1).
Finally, a timed message submission (TMS) algorithm is proposed
to protect the auction privacy during the message submission
phase. The algorithm also allows the model to satisfy the basic
assumption of the static Bayesian game (steps 2b and 7b in Fig. 1).
he notions and symbols used in this paper are listed in Table 2
or easy reference.

.1. Federated cloud partition

We consider a problem scenario where a customer used to
se the cloud service from a single provider. Now, this cus-
omer wants to switch to a federated cloud solution to improve
lexibility and reliability. Before using auction models to select
ifferent providers, the customer needs to consider how many
roviders are needed and how to allocate existing resources
o those providers. We assume that the total budget and VM
opology are fixed. In this case, the original VM topology can be
imulated as an infrastructure graph.
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Table 2
The list of symbols and notations used in this paper.
Symbol/Notation Description

G = (M, E) An undirected weighted infrastructure graph for a specific cloud service.

G′ = G1 ∪ G2 ∪ · · · ∪ Gk A partitioned infrastructure graph such that k blocks are disjoint and have
(nearly) balanced VMSize and Budget .

M = {m1,m2, . . . ,mM } A set of cloud VMs and each mi ∈ M represents a VM.

p(mi) The time unit service price of VM mi .

E A set of edges and each e = {i, j} ∈ E represents the network
communication cost between mi and mj .

J A vector of resource attributes for a cloud VM.

r =
(
r1, r2, . . . , r|J|

)
The resource capacity of the VM is a vector, where rh is a value of the hth
resource attribute in J .

cuv ∈ {0, 1} The binary decision variable for edges of the G, which is 1 if e = {u, v} is a
cut edge, otherwise it is 0.

xv,k ∈ {0, 1} The binary decision variable for vertices of the G, which is 1 if v is in
block k, otherwise it is 0.

VMSize The VM size requirement of each partition.

Budget The budget requirement of each partition.

bi The bidding function of provider i is bi ≥ 0, which is monotonically
increasing and differentiable.

vi The expected value of provider i for the service to be auctioned.

b∗i (vi) The BNE of the provider i in the BBG.

BBG An n-player static Bayesian game of incomplete information for bidding on
the federated cloud services.

N = {1, 2, . . . , n} A set of players. Each player is a provider who can offer bids for the cloud
service that the customer needs.

T =
[
vmin, vmax

]
The continuous type space of different providers. vi is independently and
identically distributed in this interval.

A = [0,∞) The non-negative continuous action space (bid) of each provider.

p A common belief of all providers that vi is independently and identically
distributed in

[
vmin, vmax

]
.

u = (u1, u2, . . . , un) A set of payoff functions for service providers, where ui : A× T → R.

CP A provider needs to pay a blockchain transaction fee CP to submit new
blockchain transactions.

s = (s1, s2, . . . , sn) The strategy profile of the Bayesian game.

WBG An m-player static Bayesian game of incomplete information for
monitoring the service j.

M = {1, 2, . . . ,m} A set of players. Each player is a witness and all the witnesses form the
witness committee for service j.

WT = {H,D, R} The type space of witness members.

WA = [0, 1] The continuous action space for witnesses to monitor the service.

P A common belief of all witness members that there are three types of
witnesses, and the proportions are pH , pD , and pR .

U = (U1,U2, . . . ,Um) A set of payoff functions for witnesses, where Ui : WT ×WA→ R.

w
j
i The monitoring report given by witness i for the SLA j.

wR, wH, wH The monitoring results of three types of witnesses.

SLAj
violate The SLA violation indicator for service j.

ϕ

(
w

j
i

)
The penalty function of witness i for monitoring service j.

ε The intensity factor of the penalty function ϕ

(
w

j
i

)
.

f
(
w

j
i

)
and g

(
w

j
i

)
The intrinsic psychological cost functions for honest and dishonest
witnesses.

h and l The preference intensity coefficients for honest and dishonest witnesses.

CW A witness needs to pay a blockchain transaction fee CW to submit new
blockchain transactions.

F j
witnessi

The witness fee of witness i for monitoring service j.

α The growth factor of the witness i’s blockchain transaction fee.
53
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efinition 1 (Infrastructure Graph). Let G = (M, E) be an undi-
rected weighted infrastructure graph for a specific cloud service,
where M is a set of vertices and E is a set of edges.

In a federated infrastructure graph, M = {m1,m2, . . . ,mM}

denotes a set of cloud VMs. Each VM mi is assigned to a value
p(mi) that indicates the unit price of this VM regarding usage
time. E is a set of edges and each e = {i, j} ∈ E represents the
network communication cost between mi and mj.

Definition 2 (Resource Capacity). Let J denote a vector of resource
attributes for a cloud VM. Thus, the resource capacity of this VM
is a vector r =

(
r1, r2, . . . , r|J|

)
, where rh is the value of the hth

resource attribute in J .

A cloud VM can have several resource attributes to determine
its pricing, e.g., vCPU, memory, instance storage, and network
bandwidth. Suppose there are two VMs with similar functions.
Their resource capacities are (2, 500, 100) and (1, 1000, 200),
and the three values represent vCPU, memory, and storage, re-
spectively. In this case, the first VM has more vCPU processors,
whereas the second VM has higher memory and storage at-
tributes. It is difficult to compare which one is more valuable.
In order to evaluate the value of VMs based on their available
resources, we use the Simple Additive Weighting (SAW) [33]
method to convert the different resource attributes into a single
value.

First, the values of different resource attributes can be normal-
ized to eliminate incompatibility. Let the resource capacity of mi
be ri =

(
ri,1, ri,2, . . . , ri,|J|

)
, then any ri,h > 0 can be normalized

by the following function:

β
(
ri,h

)
=

⎧⎨⎩
ri,h−rmin

i,h
rmax
i,h −r

min
i,h

if rmax
i,h ̸= rmin

i,h

1 if rmax
i,h = rmin

i,h

(1)

Here rmax
i,h and rmin

i,h are the maximum and minimum values of
he hth resource attribute on mi. Then, the time unit price of mi
an be converted into a single value, forming the attribute of each
ode:

(mi) =
|J|∑
h=1

(
ωh × β

(
ri,h

))
(2)

Here ωh ∈ (0, 1) is the price coefficient that determines
he unit price of the hth resource attribute. In this way, Eq. (2)
an represent the total value of the VM with different resource
ttributes. It should be noted that ωh could differ in different
roviders. However, as a partition user (i.e., the customer), it is
mpossible to know this value for specific providers until the
uction is completed (because the providers are not yet selected).
ere, the cloud partition model aims to estimate how many
roviders are most beneficial based on the existing market pat-
ern and total budget. Therefore, the user can use an expected
alue of the possible price coefficients among all candidate cloud
roviders.
We now consider partitioning the Infrastructure Graph into

ifferent blocks with a mixed-integer linear programming (MILP)
odel. A balanced partition target for both VM size and budgets

s set so that all the sub-blocks can be regarded as similar auction
bjects. At the same time, the communication costs across differ-
nt providers should be minimized since these costs are usually
onsidered the most expensive ones [34].

efinition 3 (K-Partitioned Infrastructure Graph). Let G′ = G1 ∪

∪ · · · ∪ G denote a partitioned infrastructure graph such that
2 k c
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blocks are disjoint and have (nearly) balanced VM size and
udget. Meanwhile, the total weight of cut edges6 is minimized.

In order to get G′, we first introduce binary decision variables
for edges and vertices of the G. More precisely, for each edge e =
{u, v} ∈ E, we introduce the variable cuv ∈ {0, 1}, which is 1 if e is
a cut edge, otherwise it is 0. In addition, for each v ∈ V and block
k, we introduce the variable xv,k ∈ {0, 1}, which is 1 if v is in block
k, otherwise it is 0. There are upper and lower bounds on VM
size and budget. Users can adjust the imbalance rate of VM size
and budget for different partitions based on VMSizemax, VMSizemin,
Budgetmax, and Budgetmin parameters. Finally, t(v) is the service
time of VM v. We assume that the budget is proportional to the
service time t(v) and the time unit price p(v). Thus, the objective
of an infrastructure graph partition model can be described as:

Minimize
∑
{u,v}∈E

cuv · e({u, v}) (3)

Subject to:∀{u, v} ∈ E,∀k : cuv ≥ xu,k − xv,k (4)

∀{u, v} ∈ E,∀k : cuv ≥ xv,k − xu,k (5)

∀k :
∑
v∈V

xv,k ≤ VMSizemax (6)

∀k :
∑
v∈V

xv,k ≥ VMSizemin (7)

∀k :
∑
v∈V

xv,kp(v)t(v) ≤ Budgetmax (8)

∀k :
∑
v∈V

xv,kp(v)t(v) ≥ Budgetmin (9)

∀v ∈ V :
∑
k

xv,k = 1 (10)

Objective Eq. (3) expresses the goal of this model. Constraints
Eq. (4) & Eq. (5) ensure that cuv satisfies the basic assumption of a
cut edge. Constraints Eq. (6) & Eq. (7) guarantee that partitioned
blocks are balanced regarding the VM size. Constraints Eq. (8)
& Eq. (9) make sure the block budget does not exceed the up-
per/lower bounds. Finally, constraint Eq. (10) sets that each node
can only be set to one block.

An example of a federated cloud partition is illustrated in
Fig. 2. The original infrastructure graph with nine VMs is parti-
tioned into three balanced blocks, and each block has the same
VM size and budget boundary. Meanwhile, the total communi-
cation cost across different providers (red dotted lines) is mini-
mized. After the partition, the customer should know how many
providers are needed to form the federated cloud services. The
customer can then post an auction request on the blockchain.
After the winning providers are selected, the customer needs to
prepay the service fee using cryptocurrencies. This fee will be
automatically enforced at the end of the auction. It should be
noted that here we consider a balanced infrastructure graph par-
tition. In fact, our auction model is still applicable when dealing
with an unbalanced partition scenario. The difference is that in
an unbalanced partition, the auction needs to be completed in
each sub-block independently since the requirements of blocks
are different.

4.2. Bayesian game-based auction enhancement

Bayesian games are often used to model economic situations
where players may not know various features of the environ-
ment. In this section, two Bayesian games are leveraged to model

6 A cut edge is an edge that connects different partitions of the graph.
herefore, cut edges can be an approximation of the cross-cloud communication
ost incurred by the partitioning.
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Fig. 2. An illustration of the federated cloud partition and auction.

ncomplete information sharing among different cloud providers
nd auction witnesses.

.2.1. Bidding Bayesian game
Some basic assumptions for the bidding Bayesian game are

escribed as follows. There are n providers simultaneously bid-
ing on the cloud services. Since they do not know the types of
ther players, it is impossible to know the true bids of others. The
idding function of provider i is bi ≥ 0, which is monotonically
ncreasing and differentiable. Moreover, vi is the expected value
of provider i for the service to be auctioned. It is the private
information of provider i and can be regarded as the provider’s
ype. We further define vi is independently and identically dis-
ributed7 on

[
vmin, vmax

]
, the cumulative density function is F ,

nd its probability density function is f . Thus, we can formulate
his bidding problem as a static Bayesian game of incomplete
nformation.

efinition 4. Let BBG = (N, T,A, p, u) denote an n-player static
ayesian game of incomplete information for bidding on the
ederated cloud services, where:

• N = {1, 2, . . . , n} is a set of players. Each player is a provider
who can offer bids for the cloud service that the customer
needs.
• T =

[
vmin, vmax

]
is the continuous type space of different

providers. Providers only observe their own types.
• A = [0,∞) is the non-negative continuous action (i.e., bid)

space of each provider.
• p is a common belief of all providers that vi is independently

and identically distributed on
[
vmin, vmax

]
with cumulative

density function F .
• u = (u1, u2, . . . , un) is a set of payoff functions for service

providers, where ui : A× T → R.

7 In practice, the distribution of vi for different providers may be different.
his brings system noises and increases the difficulty of estimating the provider’s
ids. Therefore, we assume that bidders are symmetric in our model, which is
he same assumption as in most auction studies.
 d
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We propose that in our BBG model, the providers who submit
the k-lowest bids win this auction. The rewards they can get are
their own bidding prices, and their utilities are the differences
between the bids and the internal expected values. In practice, a
provider usually does not submit the bid as the expected value
vi. Instead, a higher bid is often submitted to maximize profits.
At the same time, providers must consider submitting bids lower
than other n − k providers’ to ensure they will be selected. A
provider also needs to pay a blockchain transaction fee CP to
ubmit new blockchain transactions.8 Thus the utility function ui
f provider i can be described as:

i (bi, vi) =

{
bi − vi − CP if

∑
j 1

{
bi < bj,∀j ̸= i

}
> n− k

−CP otherwise

(11)

efinition 5. Let the strategy of player i be function si : T → A,
hus the strategy profile s = (s1, s2, . . . , sn) is a BNE if for any
∈ N, si assigns an optimal action that maximizes player i’s

xpected payoff.

heorem 1. If the bid of each provider satisfies the following
unction, the strategy profile s =

(
b∗1 (v1) , b∗2 (v2) , . . . , b∗n (vn)

)
is

unique BNE for the BBG.

∗

i (vi) = vi +

∫ vmax

vi
(1− F (v))n−kdv

[1− F (vi)]n−k
(12)

Proof of Theorem 1. Assume the BNE of the BBG can be ex-
pressed as b∗i (vi) = b (vi) for any i ∈ N , where b is an increasing
and differentiable function. A specific provider i must submit a
bid which is lower than other n − k players. Thus, the expected
utility of provider i can be described as:

E [ui (bi, vi)] (13)

= (bi − vi − CP)·Pr

⎧⎨⎩∑
j

1
{
bi < b∗j

(
vj

)
=b

(
vj

)
,∀j ̸= i

}
> n− k

⎫⎬⎭+
(−CP)·

⎛⎝1− Pr

⎧⎨⎩∑
j

1
{
bi < b∗j

(
vj

)
=b

(
vj

)
,∀j ̸= i

}
> n− k

⎫⎬⎭
⎞⎠
(14)

= (bi − vi)·Pr

⎧⎨⎩∑
j

1
{
vj > b−1 (bi) ,∀j ̸= i

}
> n− k

⎫⎬⎭− CP (15)

= (bi − vi)·
[
1− F

(
b−1 (bi)

)]n−k
− CP (16)

Therefore, the objective is to obtain the expression of bi that
aximizes the expected utility. Using the first order condition,
e get:

vi − bi) · f
(
b−1 (bi)

)
· (n− k)

[
1− F

(
b−1 (bi)

)]n−k−1
·
[
b−1 (bi)

]′
+

[
1− F

(
b−1 (bi)

)]n−k
= 0

(17)

Bringing in the equilibrium point of provider i, we get bi =
∗

i (vi). Since b∗i (vi) = b (vi), we can replace bi with b (vi) in the
above equation and get:

(vi − b (vi)) · f (vi) · (n− k) · [1− F (vi)]n−k−1 /b′ (vi)+

[1− F (vi)]n−k = 0
(18)

8 We define CP as a constant since the transaction fees are similar among
ifferent providers. The same setting is applied to C .
W
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This equation can be rearranged into:
d
dvi

b (vi)·[1−F (vi)]n−k = −vi ·f (vi)·(n−k)·[1−F (vi)]n−k−1 (19)

By integrating both sides of the equation from vi to vmax, we
get:

b (vi) =

∫ vi
vmax vi ·

[
(1− F (vi))

n−k]′ dvi

[1− F (vi)]n−k
(20)

By simplifying the above equation, the proof of Theorem 1 is
finished.

From Eq. (12) we know that when n and k are fixed, b∗i (vi)
depends on vi, vmax, and F (vi). Since we assume that all the
providers are rational, they will bid according to the BNE points
of Eq. (12) to maximize their utility. Consequently, our auction
model receives a set of bidding prices where all bidders’ utilities
are maximized. The most suitable providers (with the k lowest vi)
are selected and the effectiveness of the auction is guaranteed.

Next, we discuss the case of different distributions of vi, which
is often assumed to be uniform, normal, or log-normal distri-
bution in related research [35]. In order to show the explicit
equation, we suppose all vi follows a uniform distribution in[
vmin, vmax

]
. Using the cumulative density function of uniform

distribution F (vi) =
vi−vmin

vmax−vmin , Eq. (12) can be further simplified
as:

b∗i (vi) =
n− k

n− k+ 1
vi +

1
n− k+ 1

vmax (21)

The above equation is obtained when the number of target
providers k is known before different providers start to bid. In this
case, the bid of provider i only needs to be lower than any other
n − k providers’ to ensure the successful bidding. By contrast,
in a first-price auction model where only one provider (with
the lowest bid) can be selected, provider i’s bid must be lower
than all other n− 1 providers’ bids. The customer can also select
k providers by performing a k-round first-price auction. At this
time, provider i’s BNE is:

b∗i′ (vi) =
n− 1
n

vi +
1
n
vmax (22)

In fact, both bidding strategies (Eqs. (21) and (22)) can select
providers to form the cloud federation. However, here we only
hoose Eq. (21) in our auction model, which is mainly because:
1) the provider’s utility in Eq. (21) is higher than that in Eq. (22)
as shown in Eq. (23)), so providers are more willing to par-
icipate; and (2) Eq. (22) requires multiple loops of the auction
rocess, which is time-consuming and expensive to execute on
he blockchain.

∗

i (vi)− b∗i′ (vi) =
k− 1

n(n− k+ 1)
·
(
vmax
− vi

)
≥ 0 (23)

4.2.2. Witness Bayesian game
Once the customer and federated providers reach an agree-

ment on the auction detail, they start to follow and execute it.
Providers need to provide the federated cloud services according
to the requirements in SLAs, and the customer needs to pay the
corresponding service fees. However, any individual can violate
the previous agreement. The providers may not provide the qual-
ity of service (QoS) they promised, and the customer may also
refuse to pay service fees using the excuse of service violations.
Therefore, a trustworthy witness mechanism is proposed to mon-
itor and control the enforcement of federated SLAs. We assume
the witness committee monitors different cloud services indepen-
dently; their reporting results for one service do not affect the
results for others. Thus we can model the monitoring process of
the service j as follows.
56
Definition 6. Let WBG = (M,WT,WA, P,U) denote an m-player
static Bayesian game of incomplete information for monitoring
the service j, where:

• M = {1, 2, . . . ,m} is a set of players. Each player is a witness
and they form the witness committee for service j.
• WT = {H,D, R} is the type space of witness members,

where H , D, and R represent honest, dishonest, and ratio-
nal witness, respectively. Witnesses only observe their own
types.
• WA = [0, 1] is the continuous action space for witnesses

to monitor the service. Specifically, we denote w
j
i as the

monitoring result given by witness i for the SLA j.
• P is a common belief of all witness members that there are

three types of witnesses in total, and the proportions are pH,
pD, and pR, respectively.
• U = (U1,U2, . . . ,Um) is a set of utility functions for wit-

nesses, where Ui : WT × WA → R is the payoff function
determining the rewards of witness i.

Definition 7. Based on the monitoring result of service j, the
SLA violation is confirmed only when the majority of witnesses
report violations. Otherwise, it is treated as no violation happens.
Since w

j
i ∈ [0, 1], the witness i reports the violation of SLA j when

w
j
i > 1/2.

SLAj
violate =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

∑
i

1

{
0 ≤ w

j
i ≤

1
2

}
>

m
2

1 if
∑

i

1

{
1
2

< w
j
i ≤ 1

}
>

m
2

(24)

Here SLAj
violate = {0, 1} is used to denote the finial result of

whether SLA j is violated; SLAj
violate = 1 means SLA j is violated

while SLAj
violate = 0 means not. The above definition shows that

when most witnesses report violations, the model determines
that the SLA j is violated. Next, we further design that witnesses
should be penalized if their reports fail to match the reports of
others. Thus the penalty function of witness i can be described
as:

ϕ

(
w

j
i

)
=

ε

n− 1

∑
i̸=k

(
w

j
i − w

j
k

)2
(25)

Here ε is defined as the intensity factor of the penalty function.
ince each type of witness will give out the same report based on
heir strategy profile, the penalty function ϕ

(
w

j
i

)
can be further

escribed as:(
w

j
i

)
= ε

[
(1− pH − pD)

(
w

j
i − wR

)2
+ pH

(
w

j
i − wH

)2
+

pD
(
w

j
i − wD

)2 ]
(26)

Here wR, wH, and wD are used to denote the monitoring
esults from three types of witnesses. We further assume hon-
st and dishonest witnesses have a psychological cost to tell a
ie/truth, while rational witnesses have no psychological burden.
he quadratic functions f

(
w

j
i

)
and g

(
w

j
i

)
can well represent the

sychological burden of two types of witnesses.(
w

j
i

)
=

{
h ·

(
1− w

j
i

)2
if SLAj

violate = 1

h · (wj
i)
2 if SLAj

violate = 0
(27)

(
w

j
i

)
=

{
l ·

(
1− w

j
i

)2
if SLAj

violate = 0
j 2 j

(28)

l · (wi) if SLAviolate = 1
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Here f
(
w

j
i

)
, g

(
w

j
i

)
: [0, 1] → R+. h and l are the prefer-

ence intensity coefficients for honest and dishonest witnesses.
We design that honest and dishonest witnesses have inherent
psychological costs, which means that when honest witnesses
tell lies or dishonest witnesses tell the truth, their psychological
burden will increase. Especially, we set h = l = 1 in the following
text to simplify the calculation. Thus, we can describe the utility
function of three types of witnesses as follows, where CW is
the blockchain transaction fee and F j

witnessi
is the witness fee of

witness i for service j. We specify that the witness fee is large
enough so that the witness’s utility is always positive (Ui > 0).
In this way, witnesses always have an incentive to participate in
our model and receive a reward.

Ui

(
w

j
i, SLA

j
violate, R

)
= F j

witnessi
− ϕ

(
w

j
i

)
− CW (29)

Ui

(
w

j
i, SLA

j
violate,H

)
= F j

witnessi
− ϕ

(
w

j
i

)
− f

(
w

j
i

)
− CW (30)

Ui

(
w

j
i, SLA

j
violate,D

)
= F j

witnessi
− ϕ

(
w

j
i

)
− g

(
w

j
i

)
− CW (31)

Theorem 2. In a WBG, when the monitoring result of each type
of witness satisfies the following equations, the strategy profile s =(
w∗R, w

∗

H, w∗D
)
constitutes a unique BNE.

w∗R =

{
pH

pH+pD
if SLAj

violate = 1
pD

pH+pD
if SLAj

violate = 0
(32)

∗

H =

{
1− ε·pD

(ε+1)(pH+pD)
if SLAj

violate = 1
ε·pD

(ε+1)(pH+pD)
if SLAj

violate = 0
(33)

w∗D =

{
1− pH+(ε+1)·pD

(ε+1)(pH+pD)
if SLAj

violate = 1
pH+(ε+1)·pD
(ε+1)(pH+pD)

if SLAj
violate = 0

(34)

Proof of Theorem 2. Since the situation about SLA violation is
symmetric, we only consider SLAj

violate = 1 to prove Theorem 2.
Here the iterated elimination of strictly dominated strategies
(IESDS) method [36] is leveraged to narrow down and solve the
BNE of the WBG. Specifically, with IESDS the original game can be
divided into an n-round game to remove dominated strategies. In
each round, witness i wants to maximize the utility by reporting
different w

j
i . The monitoring result of round t + 1 is determined

by round t when the payoff is maximized.

wR(t + 1) = arg max
w

j
i∈wR(t)

[
F i
witness − ϕ

(
w

j
i

)
− CW

]
(35)

wH(t + 1) = arg max
w

j
i∈wH(t)

[
F i
witness − ϕ

(
w

j
i

)
− f

(
w

j
i

)
− CW

]
(36)

wD(t + 1) = arg max
w

j
i∈wD(t)

[
F i
witness − ϕ

(
w

j
i

)
− g

(
w

j
i

)
− CW

]
(37)

Specifically, the utility would be maximized when the first-
order condition is satisfied. For three types of witnesses, let w

j
i =

wR, w
j
i = wH, and w

j
i = wD, respectively. We get:

wR(t + 1) =
pH

pH + pD
wH(t)+

pD
pH + pD

wD(t) (38)

wH(t + 1) =
ε · (1− pH − pD)

ε − ε · pH + 1
wR(t)+

ε · pD · wD(t)+ 1
ε − ε · pH + 1

(39)

D(t + 1) =
ε · (1− pH − pD)

ε − ε · pD + 1
wR(t)+

ε · pH
ε − ε · pD + 1

wH(t) (40)

From the above combined equations we can see that the
maximum/minimum value of wR in round t + 1 is determined
by the maximum/minimum value of wH and wD in round t .
The cases of w and w are similar. We then use the proof by
H D
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contradiction to show the uniqueness of the Nash Equilibrium.
Assume in the IESDS process, w∗R , w∗H, w∗D finally converge to an
interval [min (s∗) ,max (s∗)] separately instead of a single point.
Thus, min

(
w∗R

)
, max

(
w∗R

)
, min

(
w∗H

)
, max

(
w∗H

)
, min

(
w∗D

)
, and

max
(
w∗D

)
should all satisfy the combined equations. At the Nash

equilibrium state the witnesses should report the same result at
round t and t + 1. However, given the fixed ε, pH, and pD, the
above combined equations only have one unique set of solution,
as shown in equation Eq. (41), Eq. (42), and Eq. (43).

w∗R =
pH

pH + pD
(41)

w∗H = 1−
ε · pD

(ε + 1) (pH + pD)
(42)

∗

D = 1−
pH + (ε + 1)pD

(ε + 1) (pH + pD)
(43)

This means w∗R = min
(
w∗R

)
= max

(
w∗R

)
, w∗H = min

(
w∗H

)
=

ax
(
w∗H

)
, and w∗D = min

(
w∗D

)
= max

(
w∗D

)
in the Nash Equilib-

ium. The same conclusion can also be obtained in the situation
hen SLAviolate = 0. Therefore, the original assumption (i.e., the
trictly dominated strategies converge to an interval) does not
old. Theorem 2 is proved.

In the above modeling, witness i only monitors the SLA j.
hen k federated SLAs need to be monitored together, the overall
ayoff of witness i then changes to Eq. (44) (with the rational
ype). Since we assume the witness committee monitors different
ub-cloud services independently, the BNE of the monitoring
esult for a specific provider does not change.

i (wi, SLAviolate, R) = k · F j
witnessi

−

∑
j∈J

ϕ

(
w

j
i

)
− α · CW (44)

Here α is the growth factor of the witness i’s blockchain trans-
ction fee. It is also noted that the witness committee monitors
ach sub-service separately in the above modeling process. This
eans that the monitoring result of each witness is a k-dimension
ector, and each value of the vector indicates whether a sub-
loud service is violated. By contrast, each witness can also make
general judgment about whether the whole federated cloud

ervice is violated or not. In this case, the monitoring result
s a value from 0 to 1 instead of a vector, and the federated
loud services formed by k providers are actually regarded as one
ervice. However, this design may be unfriendly to providers who
o not violate the SLA when the whole judgment is a violation.

.3. Timed Message Submission (TMS) algorithm

In the BBG and WBG of the proposed federated cloud auction
odel, we assume that both providers and witnesses submit
essages (bids and reports) to the blockchain simultaneously.
he simultaneity and data privacy during the submission phase
re crucial to:

• Satisfy the basic assumption of game theory. The static
Bayesian game requires all players to submit messages to
the blockchain simultaneously. However, this is very diffi-
cult to achieve in reality.
• Protect bid privacy and avoid possible plagiarism among

submitters. Since data on the blockchain is public and trans-
parent, if users who submit later can see the predecessors’
message, their judgment may be affected.
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Algorithm 1 TCS algorithm – Phase 1
Input:
1: Length of the registered witnesses array: len(RW );
2: Length of the SLA array: len(SLAs);
3: Sealed message array of witness i: sealedMessagesi;
4: Submission deposit of the witness i: Depositi.
Output:
5: Sealed message map for all witnesses: sealedMap;
6: // Phase 1: sealed message array submission
7: function submitMessages(sealedMessagesi)
8: require (now < submitEnd)
9: require (RW [addressi].registered == true)
10: require (msg.value >= Depositi)
11: if len(sealedMessagesi) == len(SLAs) then
12: submissionDeposit[addressi] = msg.value
13: sealedMap[addressi] ← sealedMessagesi
14: witnessNum++
15: if witnessNum == len(RW ) then
16: return sealedMap
17: end if
18: end if
19: end function

In this context, we propose the TMS algorithm to handle
he above-mentioned challenges. Our algorithm consists of two
hases: (1) sealed message array submission; and (2) message
rray reveal and deposit refund. Correspondingly, there are two
unction interfaces named ‘‘submitMessages’’ and ‘‘RevealMes-
ages’’ in the auction smart contract. The proposed algorithm can
e leveraged by both providers and witnesses. Here we use the
itness’s case as an example to explain the algorithm details.
Algorithms 1 and 2 demonstrate the two phases of the TMS

lgorithm. In the first phase, only registered witnesses can sub-
it the sealed message array. This array contains k values, and
ach value is a hash of the witness’s judgment and the private
ey. When the current time is in the submission time window
nd the size of the message array meets the requirement, the
itness can submit a deposit and store the sealed message array

n sealedMap. After all witnesses submit their sealed message
arrays, the function outputs a sealed message map, where keys
are the addresses of witnesses, and values are the arrays of hash
values. Considering the irreversibility of the hash function, it is
impossible for witnesses to detect the true messages of others in
this phase.

Then, the algorithm comes to the second phase. At this time,
ach witness needs to submit a message array (with true values
nstead of hashes) and a right witness key to reveal and verify
he previously submitted sealed message array. Only witnesses
ho have submitted the sealed message in the first stage can
all this function. In this stage, when the length and range of the
eal message array entered by the witness meet the requirement,
he function checks whether the hash of each message value
nd witness key is equal to the sealed one submitted in the
revious phase. We design that the smart contract can confis-
ate the deposit as a penalty if a submitter does not disclose
he information within a specific time window. In this way, the
ubmitter is forced to open the sealed message in time. When
ll values are revealed successfully, the real message array of the
itness is stored in the smart contract for further processing.
hen, when all witnesses are verified successfully, the algorithm
nds and the ‘‘revealedMap’’ is exported. With these two steps,
ata privacy and simultaneity submission are guaranteed within
time window. The algorithm further discourages irresponsible
ubmitters from causing losses to others by not revealing the
essage in time.
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Algorithm 2 TCS algorithm – Phase 2
Input:
1: Message array of witness i: realMessagesi;
2: Private key of witness i: witnessKeyi;
3: Sealed message map obtained in the previous phase: sealedMap;
Output:
4: Revealed message map for all witnesses: revealedMap
5: // Phase 2: message array reveal and deposit refund
6: function revealMessages(realMessagesi,witnessKeyi)
7: require (now > submitEnd && now < revealEnd)
8: require (sealedMap[addressi] ! = null)
9: require (len(realMessagesi) == len(SLAs))
0: for j = 0; j < len(SLAs); j++ do
1: require (realMessagesi[j] ∈ [0, 1] )
2: if Hash(realMessagesi[j], witnessKeyi) ==

sealedMap[addressi][j] then
3: SLAsNum++
4: end if
5: end for
6: if SLAsNum == len(SLAs) then

17: revealedMap[addressi] ← realMessagesi
8: addressi.transfer(submissionDeposit[addressi])
9: submissionDeposit[addressi] = 0
0: revealNum++
1: if revealNum == len(RW ) then
2: return revealedMap
3: end if
4: end if
5: end function

5. Evaluation and implementation

In this section, we design and implement experiments to test
the proposed federated cloud auction model. Our evaluation is
in the following parts. We first evaluate each of the three key
techniques introduced in Section 4, namely the cloud partition
model, the BNE strategies of two Bayesian games, and the TMS
algorithm. Then, the entire smart contract implementation and
the cost details are presented.

5.1. Cloud partition benchmark

To benchmark the proposed federated cloud partition model,
we prepared four graph datasets. Table 3 shows the statisti-
cal information of the selected graphs, in which both synthetic
and real-world datasets are used. We first used three types of
synthetic workflows provided by the workflow generator in the
Pegasus community [37]. These datasets simulate real scientific
applications in seismology (CyberShake), biology (Genomes), and
astronautics (Montage) fields. The datasets provide information
about the application patterns and task dependencies performed
on benchmark workstations, and are therefore suitable for testing
our graph partition model. We also used a real-world dataset
that contains cluster traces from the Alibaba Cluster Trace Pro-
gram [38]. The trace is sampled from a real production cluster
with long-running applications and batch workloads on each
machine.

The cut edge proportion is used as a metric to evaluate the
graph partitioning performance. We use Gurobi 8.1.1 as the MILP
solver to find the optimal solution of the partitioned combina-
tions. In addition, a popular graph partitioning tool called METIS
is used as the benchmark for comparison. METIS could partition
unstructured graphs into user-specified parts using either recur-
sive bisection or k-way partitioning algorithms, both of which
produce high-quality partitions [39].

Fig. 3 consists of 12 plots, where each column represents the

result of one dataset. The four plots above show the performance
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Fig. 3. Performance analysis of the federated cloud partition model.
Table 3
Statistics of the tested graph datasets.
Graph Dataset Vertices Edges Average

Degree
Category

CyberShake 100 192 3.84 Synthetic (Pegasus)

Genomes 100 122 2.44 Synthetic (Pegasus)

Montage 100 234 4.68 Synthetic (Pegasus)

Alibaba 100 178 3.56 Real-world (Clusters
trace 2018)

with different partition blocks when the number of nodes and the
load imbalance are fixed (n = 100, r = 1.1). It can be concluded
that the proportion of cut edges tends to increase linearly with
the increase in the number of partitioned blocks. Our model
performs better in the CyberShake, Montage, and Alibaba datasets
than in the Genome case. The middle four plots present the result
of increasing the node numbers when the number of partitions
and the load imbalance are fixed (k = 3, r = 1.1). Although
n increase in graph nodes can increase the total number of
dges, there is no such an increasing trend in the proportion of
ut edges. Finally, the four plots below show the performance
hen the nodes and partition blocks are fixed (n = 100, k =
). In general, when relaxing the constraint of the maximum
oad imbalance, our model obtains better performance to a linear
rend. The case of METIS is more complex, and both partitioning
ethods’ performance fluctuates under different configurations.

t is worth noting that in the two special cases (i.e., CyberShake
n = 40, k = 3, r = 1.1) and Montage (n = 100, k = 3, r =
.5)) the METIS method outperforms our model. After analysis,
e found that METIS could not obtain feasible solutions in both
ases; despite the lower value of the cut edge proportion, the load
59
imbalance actually exceeds the maximum limit and thus leads to
partition failures. This also proves the advantage of our model
from the side. In summary, the number of nodes and partitions,
the maximum load imbalance, and the model solving methods
all affect the partition performance. Our model shows different
degrees of improvement in different datasets and experimental
settings compared to the two METIS approaches. The maximum
performance improvement in CyberShake, Genome, Montage, and
Alibaba datasets are 12%, 5.2%, 5.6%, and 10.2%, respectively.

Another finding is from Eq. (12) and Fig. 3, the fewer parti-
tioned blocks result in lower bids and less cut edges. Therefore,
the cloud customer seems to prefer to partition fewer blocks.
However, in real life, the customer’s decision on partitioning can
be very complex and depends on many factors. Choosing fewer
partition blocks means putting all their eggs in fewer baskets,
which increases the risk of single points of failure. More parti-
tioned blocks may also have advantages, such as better flexibility,
reliability, and scalability — which is why federated cloud services
are needed. Therefore, customers need to consider the trade-off
between partitioning cost and QoS requirements.

Besides, we notice that the execution time is acceptable
(within a few minutes) for most of the tested graphs. However,
when dealing with large-scale graphs (e.g., more than several
hundred nodes or when the graph density is very high), the
model may take more than several hours to solve. This is mainly
because the proposed MILP model is an NP-hard problem aimed
at obtaining an optimal solution, which is a trade-off compared
to METIS where fast partitioning results (but not optimal) can
be obtained within seconds. The goal of the proposed federated
cloud partition model is to find an optimal solution that helps
customers to choose the right number of providers. Based on this
consideration, we value partition quality as a more important



Z. Shi, H. Zhou, C. de Laat et al. Future Generation Computer Systems 136 (2022) 49–66

m
a
w

5

t
s
a
t

l
o
p
b
r
i

Fig. 4. Equilibrium strategies of the providers.
etric than execution time in the current model. We leave the
lgorithmic optimization of the model execution time to future
ork.

.2. Bayesian Nash equilibrium analysis

In this section, we analyze and validate BNE strategies of
he BBG and WBG in our model. Fig. 4 shows the equilibrium
trategies of providers (bidders) when the types and distributions
re different. There are three rows of plots, representing three
ypes of bidders, namely vi = 0.1, vi = 0.5, and vi = 0.9.
Different bidders will submit bids based on their own expected
values. Usually, bidders with higher vi can offer higher bidding
prices. The three columns correspond to three different distri-
butions of V , namely V ∼ U (0, 1), V ∼ N (0.5, 1), and V ∼
og−N (0.5, 1). The x-axis of each plot represents the number
f bidding providers (n), and the y-axis represents the number of
roviders to be selected (k). The color of the square is the final bid
∗

i (vi) submitted by provider i at the equilibrium point, where the
edder the color, the higher the bid. It should be noted that there
s no equilibrium when k > n.

First, when vi and k are fixed, b∗i (vi) will decrease with the
increase of n. This is because the bidding becomes more com-
petitive when n increases, and bidders must submit a lower bid
to defeat their competitors. Similarly, when n and vi are fixed,
b∗i (vi) will increase as k increases due to the bidding competition
is weakened when k becomes larger. Thus, bidders can increase
profits by submitting higher bids. When k approaches to n, b∗i (vi)

reaches its highest point. Besides, in the BBG bidders needs to
detect other bidders’ types from the current distribution of V
to determine their own bids. For example, when vi = 0.1 for
bidder i, the probabilities of the other bidders’ vj locating between
0 to 0.1 for uniform, normal, and log-normal distribution are
10%, 3.6%, and 0.25%, respectively. The smaller probability means
that potential competitors (people with lower bids than bidder i)
60
are less likely to appear. So bidder i can submit a higher bid to
increase profits.

Fig. 5 consists of 12 plots showing the equilibrium strategies
of three witnesses types (WTi = R, WTi = H , and WTi = D).
The x-axis of each plot is the proportion of honest witnesses
pH, while the y-axis is the proportion of dishonest witnesses
pD. The color in the square represents the monitoring result w∗i
reported by witness i at the equilibrium point. The equilibrium
strategy does not exist when pH + pD > 1. Besides, The first two
columns indicate the situation of an SLA violation, while the last
two columns indicate there are no violations. We set the penalty
function factor ε = 1 in the first and third columns, and ε = 10
in the second and fourth columns. When SLAj

violate = 1, it can be
observed that the w∗i of rational witnesses are only influenced
by the current pH and pD. As pH increases, they tends to report
the true result where SLAj

violate > 1/2. Otherwise when pD is
larger, they will report SLAj

violate < 1/2. Next, the w∗i of hon-
est and dishonest witnesses are affected by both their intrinsic
psychological cost and penalty function factor ε. When ε = 1,
the penalty function is not enough to restrict their behaviors.
Therefore, the honest/dishonest witnesses will follow their nature
to tell the truth/lie. However, when ε is 10, witnesses’ reports
need to be consistent with others’ to reduce the huge penalty.
In conclusion, when ε is large enough and pH > pD, all three
types of witnesses will report the consistent true SLA violations
in the Nash equilibrium in order to improve their utility. The
consistency and trustworthiness of monitoring, in this way, are
guaranteed.

5.3. TMS algorithm evaluation

In Section 4.3 we proposed that the TMS algorithm can be
applied to both providers and witnesses for submitting bids and
monitoring results while protecting privacy. In this section, we
evaluate the performance of the TMS algorithm using the case
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Fig. 5. Equilibrium strategies of the auction witnesses.
Fig. 6. Execution time and cost evaluation of the TMS algorithm.
f witnesses. The on-chain execution overhead, including exe-
ution time and cost, is tested in a local Ethereum blockchain.
pecifically, time is calculated as the difference between block
imestamps [40], and the cost is the gas consumption to perform
ransactions on the Ethereum blockchain. Different numbers of
itnesses, as well as the SLAs they need to monitor, are tested.
wo mining network congestion situations of the blockchain are
imulated: ‘‘Best’’ means that there are enough miners who will
rocess the transactions in time, while ‘‘Average’’ means that
ining is congested and there is a delay in transaction processing.
Fig. 6 consists of eight plots. In the four plots above, plots

a) and (d) show that the execution time of the TMS algorithm
ncreases linearly with the growth of witnesses and SLA numbers.
pecifically, the algorithm execution time is less affected by the
61
number of SLAs compared to the number of witnesses. When the
witness number increases to 100, the execution time increases
significantly. In contrast, when the SLA is increased by a factor
of 100, the execution time increases only a little. Besides, plot
(b) shows that the execution time of phases 1 and 2 are similar.
Plot (c) indicates that the congestion of the blockchain mining
network plays a critical role in the algorithm performance; it
takes only a few seconds when the network is in the ‘‘best’’
condition but can last for several minutes when the network is
congested (i.e., ‘‘average’’ condition).

The lower four plots of Fig. 6 demonstrate the total cost of the
TMS algorithm and the average cost per user. First, plots (e) and
(f) show that the total gas consumption for both phases of the

TMS algorithm increases linearly with the number of witnesses
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Fig. 7. Implementation and evaluation of the auction smart contract.
and SLAs. By comparing the two graphs, it can be seen that when
the number of witnesses is very high, the gas consumption of
phase 1 is about twice that of phase 2. When the number of SLAs
increases, the total cost of phase 1 increases more significantly.
Next, plot (g) shows a linear increase in the average cost per
user as the number of SLAs changes. When the SLA increases
to 100 times, the gas consumption increases only by less than
three times. In addition, plot (h) shows the predicted transaction
costs of the TMS algorithm on the Ethereum main chain for two
transaction speed cases.9 The results show that the transaction
fee increases by 21.95% when the requested transaction speed
is changed to ‘‘high’’. However, the amount of Ether spent per
user remains low, and in the worst case (i.e., SLA number is
100 and transaction speed is high), the algorithm spends less
than $3. In summary, we argue that the execution overhead of
the TMS algorithm is acceptable for each user compared to its
improvement in model trustworthiness.

5.4. Smart contract implementation and evaluation

According to the architecture and payoff functions of our
federated cloud auction model, we implement a prototype system
based on the Ethereum blockchain with Solidity programming
language.10 Fig. 7(a) shows the state transitions of the auction
smart contract. The rectangles in the figure represent different
composite states, where the upper part shows the current state
of the auction, and the lower part are the actions that can occur
in this state. The C , P , and W next to the actions represent the
customer, provider, and witness. We design different function in-
terfaces to be initiated by different auction roles, and the initiator
is the beneficiary with the greatest benefit at the current stage.
The deployer of the smart contract (usually the customer) needs
to check the current conditions and determine the confirmation
of the state transfer. For money refunding, instead of automat-
ically transferring money from the smart contract to users, we
design that users need to withdraw the money by themselves.
This is because when transferring money to multiple addresses,
an attacker can trap the contract into an unusable state. In con-
trast, in the ‘‘withdrawal’’ mode, an attacker can only cause his
or her own withdrawals to fail without affecting the rest of the
contract’s work [41,42]. Also, we omit the introduction of states
in the SLA smart contracts for simplicity. SLA smart contracts are

9 https://etherscan.io/gastracker.
10 https://solidity.readthedocs.io/en/latest/.
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sub-contracts generated by the auction smart contract and are not
the focus of this paper on the auction problem. Their functions
and state machines can be customized by users themselves.

The auction smart contract can be expressed in seven states:
‘‘Ready’’, ‘‘Initialized’’, ‘‘Pending’’, ‘‘Settled’’, ‘‘Violated’’, ‘‘Success-
ful’’, and ‘‘Canceled’’. The ‘‘Ready’’ state is automatically enabled
when the auction smart contract is deployed on the blockchain.
Within this state, the customer can set up an auction and promote
the required services. Providers can then register as bidder candi-
dates; when enough bidders register, the auction is ‘‘Initialized’’.
In this state, registered providers can submit and reveal their
bids. The customer also needs to reveal the reserve price and
place all the bids by order. If there are enough bids to meet the
customer’s requirement, the auction comes into the ‘‘Pending’’
state. This means that the bidding phase has finished and the
auction enforcement is pending. The customer must now invoke
the interface to automatically generate SLA smart contracts for
winning providers and wait for their acceptance. The auction is
only ‘‘Settled’’ when all SLA smart contracts are signed and there
are enough registered witnesses to monitor the SLAs. In this stage,
witnesses monitor and submit their results and the customer
calculates the witness fee for each witness according to the payoff
functions. Finally, if all SLAs are performed as agreed, the auction
state changes to ‘‘Successful’’. The providers can withdraw their
own service fees. By contrast, if there are any violations occur, the
auction state then converts to ‘‘Violated’’, and the customer can
withdraw the prepaid service fee for specific violated providers. It
should be noted that if any of the above auction conditions are not
met, the sale is ‘‘Canceled’’. To retrieve the prepaid deposit, the
customer and providers can use the ‘‘withdrawDeposit’’ interface.
The customer can also use the ‘‘resetAuction’’ interface to reset
the auction state to the ‘‘Ready’’ stage and wait for the next
auction round.

It should be noted that the above process may cause a waste
of resources for the customer and providers when they have
already reached an agreement and there are not enough wit-
nesses. However, we argue that such design is necessary and
reasonable; if we let witnesses register in advance, this may also
result in a waste of resources for witnesses, i.e., one may register
as a witness (with a transaction fee on the blockchain) but not
perform the monitoring task to win profits because the bidding
fails. We chose the current design because the trustworthy en-
forcement of our model is based on witnesses’ monitoring, and
thus more witnesses should be incentivized to participate. To

reduce the possibility of the waste of resources for the customer

https://etherscan.io/gastracker
https://solidity.readthedocs.io/en/latest/
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Table 4
Transaction fee of each auction participant in a specific auction event.
Participant Gas Consumption Transaction Fee USD

Customer 3202593 Gas 0.0342 ETH $91.00

Provider 464057 Gas 0.0048 ETH $12.76

Witness 456688 Gas 0.0050 ETH $13.25

and providers in the current model, some measures can be taken.
For example, an option could be added to extend the witness
registration window to wait for more witnesses to join. The
original witness fee can also be upgraded to provide an incentive
for more witnesses to join within a specified time window.

The smart contract is tested using the Kovan11 testnet, which
s one of the most famous Ethereum testnets in the community.
o evaluate the cost of a real cloud auction, we create several
ccounts, deposit some tokens (Ethers) in advance, and then
imulate a federated cloud auction scenario with four providers
nd six witnesses. Fig. 7(b) reveals the detailed gas consumption
f each interface, while Table 4 shows the total transaction fee of
ach auction participant (converted to US dollars). In general, the
ustomer needs to invoke the largest number of interfaces (more
han 50%) and consume the largest amount of gas, which is in
ine with our expectations. The customer is the beneficiary and
nitiator of the service auction and therefore should bear more
ommission charges. In fact, the customer not only acts as the
uction publisher in the model, but also assumes the tasks of de-
loying contracts (consuming the most gas) and triggering some
unctions related to auction management, e.g., ‘‘setupAuction’’,
‘placeBids’’, and ‘‘genSLAContract’’. These tasks are performed by
uctioneers or auction platforms in traditional auctions. Besides,
ince all the auction rules are openly hard-coded in the smart
ontract, any specific third party can initiate the smart contract
hile ensuring the fairness and credibility of the auction. It can
lso be found from Table 4 that the transaction fees of each
itness and provider are not expensive (around $13), which
nsures both parties have sufficient motivation to participate in
he auction.12

We further compare the commission fees of our model with
opular online auction platforms (eBay and eBid), as shown in
ig. 8. The eBay auction fee is 12.9% of the total sale ($7500
n maximum) plus an insertion fee ($0.35) and an additional
andling fee per order ($0.30) [43]. In contrast, eBid’s base fee is
% of total sales [44]. The difference between the two is that while
Bid is cheaper, eBay is generally considered to have a stronger
arket share and buyer base. As can be seen from the plot, the

ees for eBay and eBid increase exponential as the service time
nd resource units increases. This is based on the fact that their
ee mechanism is determined in proportion to the final sale price
f the auction. In contrast, the customer, as the initiator of the
uction, only pays a fixed commission fee (i.e., $91.00 in this case)
n our blockchain-based model. This fee is independent of the
inal price of the auctioned services.

Fig. 9 shows the comparison of the fees when auctioning
ifferent applications and services. We selected five real scientific
orkflow applications provided by the Pegasus workflow gallery;
heir computational resources and running time can be found

11 https://kovan-testnet.github.io/website/.
12 The exchange rate between ETH and USD is changing continuously. When
ollecting the data, the exchange rate is 1 Ether = $2662 .08. Here the
ransaction fee is determined by both gas consumption and gas price. The
ifference in gas prices caused a larger transaction fee for witnesses than
roviders.
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Fig. 8. Theoretical comparison of auction commission fees. The unit price of
resources in the figure is illustrated using the cost of the smallest and cheapest
Amazon EC2 instance t2.nano ($0.0058/h).

Fig. 9. Experimental comparison of auction commission fees.

in [45]. As observed from the figure, our model has different
price advantages compared to eBay and eBid when deploying
LIGO, Periodogram, and CyberShake applications. In the case of
CyberShake, due to the need for a massive computing cluster
and service time, our commission fees are just 2.89% and 1.12%
of eBay and eBid, respectively. Whereas in Galactic and DART
applications, choosing eBid would be more economical because
of the small final auction price. In fact, when the price of the
auctioned cloud service is less than the commission fee, our
model will not be applicable to public blockchains like Ethereum.
At this time, a fee-free permissioned blockchain can be used as
an alternative, and the whole proposed model is still valid.

Finally, it is important to note that the price of Ether is volatile,
and there is a payment risk for users. We thus consider the
fluctuations in the history of Ether to USD. Fig. 10 shows the
changing trend in fees for the three actors in our model over
the last year. It can be observed that the provider and witness
only pay a small fee with small changes. In November 2021, the
transaction fee reached its maximum, making it more expen-
sive for customers to initiate an auction. However, the recent
trend of a significant decrease indicates that our model is more
cost-effective compared to other online auction platforms.

https://kovan-testnet.github.io/website/
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Fig. 10. Historical changes in auction transaction fees on Ethereum.

6. Discussion

In this section, we discuss the design choices and concerns of
the proposed federated cloud auction model.

6.1. Model design concerns

In our federated cloud auction model, an off-chain balanced
graph partition process is required at the beginning of the auc-
tion. This process guarantees each sub-provider bid on the same
sub-service regarding price and VM size; therefore, the multi-
object auction (services for multiple providers) can be imple-
mented in just one round. We believe that this design is effective
and can save extra execution costs on the blockchain. It should be
noted that our model is also applicable in the case of an unbal-
anced partition; the only difference is that each sub-service needs
to be auctioned independently, and therefore a k-round auction is
required. Besides, a reverse sealed bid auction mechanism among
federated cloud providers is used to conduct efficient and fair ser-
vice auctions. We argue that such a reverse auction can motivate
sellers’ competition and bring substantial cost savings to buyers.
It also helps streamline the auction process; auction time is saved
because buyers do not need to send requests to different sellers
one by one [46]. Other auction models (e.g., forward auction
and open-cry auction) can also be integrated into the current
model. However, those options increase the model complexity
and require more execution costs on the blockchain [47].

6.2. Penalty and witness fee settings

The witnesses’ penalty function factor ε directly affects the
trustworthiness of auction agreement violation detection. Ac-
cording to the analysis results shown in Section 5, when ε is
too small, the inherent psychological costs of witnesses dominate
their utility equations. In this way, both honest and dishonest
witnesses will make decisions according to their intrinsic types,
e.g., honest witnesses tell truths and dishonest witnesses tell
lies. This causes an inconsistent and untrustworthy monitoring
result. To ensure that all witnesses tell the truth consistently, the
value of ε must be large enough. At the same time, one basic
assumption is that F j

witnessi
and ϕ(

w
j
i

) are weakly balanced and

F j
witnessi

≥ ϕ(
w

j
i

) = ε
n−1

∑
i̸=k

(
w

j
i − w

j
k

)2
. Otherwise, witness i

ay have a negative utility and cannot be motivated to join the
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monitoring. Thus the maximum value of ε also depends on the
urrent witness fee F j

witnessi
. Normally we believe that setting the

itness fee as 10%–30% of the service fee is a reasonable option
nd can be accepted by all auction participants.

.3. Blockchain and cryptocurrency choices

There are many alternative blockchain technologies and plat-
orms on the market. We design and implement our feder-
ted cloud auction model using the permissionless Ethereum
lockchain to ensure that the auction process is completely de-
entralized and trustworthy. At the same time, the cryptocur-
ency Ether can be leveraged to execute the auction and witness
ee payment. Some permissioned blockchain platforms (e.g., Hy-
erledger Fabric) have better scalability compared with permis-
ionless ones, but their trust attributes are compromised (because
f partial decentralization) and there is no stable cryptocur-
ency support.13 We believe that the cryptocurrency itself has a
olatility issue. Some emerging cryptocurrencies have tiny trad-
ng markets, so they may lack liquidity or may not be considered
quivalent to fiat money in the auction. This is the main reason
hy we chose Ethereum and Ether to design the auction model.

.4. Possible attacks

Blockchain technology is generally considered to be highly se-
ure, but it may also suffer from some attacks, e.g., 51% attack and
ybil attack. Our blockchain-based federated cloud auction model
uffers from those attacks as well. Taking the Sybil attack as an
xample, any parties of the auction (provider or customer) may
ry to control the auction/monitoring result by registering a large
umber of fake bidder/witness users. In response to this issue,
e set a registration threshold (e.g., a non-refundable registration

ee and a minimum reputation value) in the smart contract to
imit arbitrary blockchain users from joining the auction. This
echanism partly guarantees that no party is able to register
any malicious accounts because such an activity requires a

arge amount of money. Besides, the unbiased sortition algorithm
roposed in our previous work [31] can also be used to select
idders/witnesses in a random and independent way, and to
void possible unfairness or collusion.

.5. Practical issues

Bayesian games are leveraged to build the proposed model and
olve a practical problem (i.e., federated cloud auction). Therefore,
ur model is also subject to the limitations of game theory. For
xample, there is a basic assumption that players within the
ame will instinctively strive to maximize their payoffs. Bayesian
ames also assume that players have incomplete information
bout other players. However, these assumptions may be diffi-
ult to satisfy in real life since the player’s decision is affected
y complex factors, e.g., personal relationships and experiences.
herefore, our model may still have gaps when fully applied to
eality. However, examples like the FCC auction model14 have
roved that game theory can indeed play a key role in guiding
uction practices. We believe that our model could offer some
ew ideas for the current cloud auction research and industrial
ractices.

13 https://cryptobriefing.com/hyperledger-fabric-forbes-50-blockchain/.
14 https://www.nobelprize.org/prizes/economic-sciences/2020/popular-
information/.
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. Conclusion

In this paper, a Bayesian game and blockchain-based auction
odel for federated cloud services is proposed. We leverage

ncomplete information game theory to analyze the bidding of
roviders and the SLA monitoring of witnesses, with two unique
NEs generated for two respective groups. The first BNE enables
he selection of cost-effective and suitable service providers to
onstruct the federated cloud services, while the second BNE
nsures that the witnesses can report the truth about service
iolations consistently, which further makes the auction enforce-
ent trustworthy. Finally, we evaluate the key techniques of the
roposed model, and a prototype system using the Ethereum
lockchain is fully implemented and verified. Our experimental
esults show that the prototype implementation is consistent
ith our model design expectations. Although we are targeting a
loud service auction scenario, the model can be easily extended
o other service types as well.

The future work can be mainly targeted at two directions:
mart contract and game theory. For the auction smart contract,
e will continue to expand more functions and optimize the
ontract code to reduce transaction costs. In addition, we will try
o improve the contract security to cope with possible attacks.
egarding the game theory, more complicated models, such as
ynamic games and Perfect Bayesian Equilibriums (PBEs), will
lso be considered for integration with the proposed model.
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