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Abstract. A great number of methods and of accounts of rational-
ity consider at their foundations some form of Bayesian inference. Yet,
Bayes’ rule, because it relies upon probability theory, requires specific
axioms to hold (e.g. a measurable space of events). This short docu-
ment hypothesizes that Bayes’ rule can be seen as a specific instance of a
more general inferential template, that can be expressed also in terms of
algorithmic complexities, namely through the measure of unexpectedness
proposed by Simplicity Theory.

Keywords: Bayes’ rule · Unexpectedness · Algorithmic complexity ·
Simplicity Theory · Computational cognitive model

1 Introduction

Since its introduction in philosophy and mathematics to analyse chances in
games, probability theory has grown to be one of the most important ingredients
of formal accounts of how rational agents (artificial or natural) should reason
in conditions of uncertainty. Central to this enterprise is the famous Bayes’
rule, at the base of Bayesian models (a family including Bayesian networks),
Bayesian inference, maximum a posteriori (MAP) estimation in statistics, and
core component of various machine learning methods (e.g. variational autoen-
coders [13]). Besides being part of the common toolkit to support or reproduce
human decision-making (e.g. for medical diagnosis [18], for evidential reasoning
in legal cases [10], see also [9]), Bayesian models have been applied in cognitive
sciences to topics as diverse as animal learning [3], visual perception [20], motor
control [14], language processing [2], and forms of social cognition [1]. Such a
success can be explained by the clarity of the theoretical framework, and the
undoubted practical value it has proven in several application domains. How-
ever, reasons exist for which Bayesian inference may be neither a descriptive,
nor a prescriptive model of human reasoning.

As a formal framework, probability theory relies on a series of axioms to
hold (e.g. a measurable space of events), which enables a closure provided with
interesting mathematical properties, but which is not necessarily representative
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of the way in which humans mentally form or process events. Given any descrip-
tion of the world we may always find a description which differs in some aspect
from the previous one, adding any detail. As a modeling framework, the limi-
tations of standard theory of probability to capture human reasoning is proven
by the existence of several cognitive patterns (often named biases or fallacies)
which do not follow what is predicted by the formal theory, see e.g. [12,19]. The
core limitation motivating the present contribution lies however in the mismatch
between what humans see as informative and the definition of information given
by Shannon, that triggered in the ’90s the introduction of Simplicity Theory (ST)
[4]. The present paper introduces a novel hypothesis concerning the theoretical
bases which makes this cognitive model functional.

1.1 Simplicity Theory

Simplicity Theory (ST) is a computational model of cognition found to predict
diverse human phenomena related to relevance (unexpectedness [6], narrative
interest [8], coincidences [7], near-miss experiences [5], emotional interest [15],
responsibility [17]), used also for experiments in artificial creativity [16]. Core
contributions of ST are: (a) a non-extensional theory of subjective probability,
centered around the notion of unexpectedness; (b) a model of emotional intensity
predicting emotional amplification in occurrence of unexpected phenomena. For
our aims here, we will focus only on the (a) part. Formally, ST builds upon
results obtained in algorithmic information theory (AIT) (see e.g. [11]).

Kolmogorov Complexity. In AIT, the complexity of a string x is the minimal
length of a program that, given a certain optional input parameter y, produces
x as an output:

Kφ(x|y) = min
p

{|p| : p(y) = x
}

The length of the minimal program depends on the operators and symbols avail-
able to the computing machine φ.1 If specified on universal Turing machines, this
measure is generally incomputable, and it is defined always up to a constant. If
the machine is resource-bounded, complexity is computable; the bounded ver-
sion will be here denoted as C. This definition of complexity can be mapped to
any domain, as long as one defines what are the symbols and the computations
that are performed on these symbols; under certain conditions, the search for the
minimal program can be mapped to min-path or functionally similar algorithms.

Unexpectedness. ST’s measure of unexpectedness (U) is defined as the diver-
gence between two resource-bounded Kolmogorov complexities: the causal (also
world, or generation) complexity CW and the description complexity CD:

U(s) = CW (s) − CD(s)
1 K is an (algorithmic) informational complexity : it captures how much information

is needed for constructing the object, but not how much time or space is needed (it
is distinct from the algorithmic/time complexity used to study tractability).
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where s is a situation parameter. In various experiments, this measure has proven
to predict shortcomings of standard theory of information observable in everyday
life. Examples include e.g. remarkable lottery draws (e.g. 11111 is more unex-
pected than 64178, even if the lottery is fair), coincidence effects (e.g. meeting by
chance a friend in a foreign city is more unexpected than meeting any unknown
person equally improbable), deterministic yet unexpected events (e.g. a lunar
eclipse), and many others [4–7]. Representing diagrammatically the domains of
the two complexities underlying unexpectedness, we have:

CW︷ ︸︸ ︷
world → situation

CD︷ ︸︸ ︷
situation ← mind

2 Unexpectedness and Bayes’ Rule

Our aim here is to provide further arguments in support to non-probabilistic
computational models of cognition, in particular focusing on the following:

Conjecture. Bayes’ rule is a specific implementation of a more general infer-
ential template, captured by ST’s definition of unexpectedness.

To construct this claim, we start from the definition of conditional probability :

p(O ∩ M) = p(M |O) · p(O) = p(M) · p(O|M)

where O denotes an observation, and M a model (both elements from the same
measurable space). Bayes’ formula is:

p(M |O) =
p(M ∩ O)

p(O)
=

p(O|M) · p(M)
p(O)

The formula is often expressed using informal terms:

posterior =
likelihood · prior

evidence

Now, empirical observations [7] suggest that U can be put in correspondence
to posterior probability, i.e.

posterior = 2−U

This entails that when U ≈ 0 (posterior ≈ 1), the situation confirms the agent’s
model of the world (it is plausible) and therefore it is not informative. (Note that
to maintain a correspondence with probabilities, U needs also to be superior or
at least equal to 0.) However, we tacitly overlooked a detail. Unexpectedness has
only a parameter s, whereas posterior probability refers to O and M . Intuitively,
s corresponds to O and not to M : as an observation concerns the situation
in focus, possibly perceived as unexpected. But then, where can we find M?
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In order to understand this absence, let us reconsider Bayes’ formula. Inverting
the terms of the equation, and using the logarithm, we can form a mapping to
unexpectedness, i.e.:

U(s)
︷ ︸︸ ︷

log
1

p(M |O)
= log

p(O)
p(O|M) · p(M)

=

CW (s)
︷ ︸︸ ︷

log
1

p(O|M)
+ log

1
p(M)

−

CD(s)
︷ ︸︸ ︷

log
1

p(O)

Causal Complexity. Let us start from CW (s), the causal complexity, i.e. the
length in bits of the shortest path that, according to the agent’s world model,
generates the situation s. If s is a phenomenon, an event probabilistically cap-
tured by O, s can be seen as the manifestation of some pre-existing causal mech-
anisms c, that probabilistically is captured with M . Then, in order to generate
s (e.g. the symptoms of a disease), the world has first to generate its cause c
(e.g. the disease), expressing the application of a chain rule:

CW (s) � CW (c ∗ s) = CW (s||c) + CW (c)

where CW (s||c) is the complexity of generating s from a state of the world in
which c is the case, and c∗s is the sequential chaining of c and s (‘||’ and ‘∗’ add
temporal contraints that ‘|’ and ‘∩’ in probability formulas do not have). From
the definition of Kolmogorov complexity, the mapping is an equality if and only
if the shortest path to s passes from c, i.e. if c is the best explanation of s:

CW (s) = min
c

CW (c ∗ s) = min
c

[CW (s||c) + CW (c)]

Therefore the unexpectedness formula can be seen as abstracting the causally
explanatory factor c, with the implicit assumption that the best one is automat-
ically selected in the computation of complexity.

Description Complexity. Additionally, ST specifies CD, the description complex-
ity, as the length in bits of the shortest determination of the object s. Such short-
est determination may consist e.g. in specifying the address where to retrieve it
from memory. Note that from a computational point of view, U could be neg-
ative, namely when the description of s is more complex than its generation;
we are in this case in front of inappropriate descriptions, as they are adding
irrelevant information for their function.

In the terms suggested by Bayes’ formula, CD corresponds to the probability
of having observed a certain situation. The link between descriptive complex-
ity and probability can be then established through optimal encoding in Shan-
non’s terms, where probability is assessed through frequency (log 1

p(O) ). However,
this approach does not take into account possible mental compositional effects
(e.g. Gestalt-like phenomena), nor events that never occurred before. Complexity
is a more generally applicable measure.

Comparison with Bayes’ Rule. The previous observations allows us to claim that
Bayes’ rule is a specific instantiation of ST’s Unexpectedness that: (a) makes a
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candidate “cause” explicit and does not select automatically the best candidate;
(b) takes a frequentist-like approach for encoding observables. More formally:

U(s) = min
c

posterior
︷ ︸︸ ︷
[CW (c ∗ s) − CD(s)] = min

c
[

likelihood
︷ ︸︸ ︷
CW (s||c) +

prior
︷ ︸︸ ︷
CW (c) −

evidence
︷ ︸︸ ︷
CD(s) ] (1)

Note that this formula relies on the explicit assumption that c precedes s (as
indicated by the symbols ∗ and ||). This restriction is absent from Bayes’ rule,
in which the model M and the observation O can exchange roles; their causal
dependence does not lie in the rule, but solely in the eye of the modellers.

3 All Prior is Posterior of Some Other Prior?

By accepting the previous mapping, we find ourselves in front of a dilemma.
Probability functions are functions of the same type, independently on whether
they are prior or posterior, whereas for instance complexity of description (that
maps to evidence in Bayes’ terms) and unexpectedness (to posterior) are not.

Let us consider an additional prior in Bayes’ formula (a sort of contextual
prior), denoted with E (standing for ‘environmental context’):

p(M |O,E) =
p(M ∩ O|E)

p(O|E)
=

p(O|M,E) · p(M |E)
p(O|E)

Following probability theory, an equivalent form for computing the posterior
would be considering the composite event O ∩ E:

p(M |O,E) =
p(M ∩ O ∩ E)

p(O ∩ E)

These two formulations, rewritten in terms of complexities, are not equivalent.
First, a sequential chaining of situations (e.g. e ∗ s, using e for environmental
situation) is not the same as an unordered conjunction of random events (O∩E).
The environmental situation e (the context) has to be generated before the situa-
tion c (the cause), which in turns occurs before the target situation s (the effect).
Accepting these temporal constraints, the second expression can be mapped to:

p(M ∩ O ∩ E)
p(O ∩ E)

� CW (e ∗ c ∗ s) − CD(e ∗ s)

As before, c can disappear when it is assumed to be part of the “best avail-
able” course of events to produce s from e. By doing this, the measure becomes
equivalent to the unexpectedness of the chaining of s after e:

CW (e ∗ s) − CD(e ∗ s) = U(e ∗ s)

In contrast, the conditional version expression of the probability ratio refers to
a distinct computation:

p(M ∩ O|E)
p(O|E)

� CW (c ∗ s||e) − CD(s|e)
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where CD(s|e) is the complexity of describing s when e is given as input. Taking
c out, the formula suggests introducing the notion of conditional or hypothetical
unexpetedness:

CW (s||e) − CD(s|e) ≡ U(s||e)
This definition is in line with the fact that the descriptive (e.g. conceptual)
remoteness of s from e, expressed by the term CD(s|e), discounts the unlikelihood
of their causal connection (related to the improbability of O given E), making
it more plausible (less unexpected).

As we can see, ST makes a distinction between two versions of the proba-
bilistic conditional p(M |O,E) that probability calculus conflates. This leads us
to considering notions such as framing and relevance.

3.1 Informational Principle of Framing

The difference between the two formulations of the posterior p(M |O,E), when
mapped to complexities, can be computed as:

U(e ∗ s) − U(s||e) = CW (e ∗ s) − CD(e ∗ s) − CW (s||e) + CD(s|e)

The use of chaining (∗) within CW shares similar form than the chain rule in
probability:

CW (e ∗ s) = CW (e) + CW (s||e)
that is, in order to generate e and then s, the world needs first to generate e (from
the current configuration), and then to generate s in a configuration in which e
has been generated. Instead, the chain rule for the description complexity CD

depends on the description machine and provides us only an upper bound:

CD(e ∗ s) ≤ CD(e) + CD(s|e)

This is because we do not have the temporal constraints, and the minimal path
for describing e and s together may turn out to be simpler than a constrained
path in which one term is fully determined before the other. Applying the two
chain rules we have:

U(e ∗ s) − U(s||e) ≥ CW (e) − CD(e) = U(e)

Thus, a necessary condition for which the two formulations may be equivalent is
that U(e) = 0, i.e. when the contextual prior is not unexpected. This constraint
implicitly brings forward an informational principle of framing : all contextual
situations e which are not unexpected (shared facts, defaults, but also improba-
ble but descriptively complex situations) provide grounds to be neglected. The
remaining situations provide the “relevant” context for the situation in focus.
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4 Likelihood and Prediction

Suppose we want to predict ex-ante a certain outcome, given certain circum-
stances. In probabilistic terms, the relevant measure for prediction is the likeli-
hood p(O|M). The conjecture expressed above suggests that likelihood matches
ST’s notion of conditional causal complexity: CW (s||c) (where M and c play the
role of contextual priors).

However, ST’s framework also suggests that humans have limited access to
CW . When there are n options playing symmetrical roles, it seems there is no
difficulty to measure CW = log2(n). Otherwise, people tend to imagine a situa-
tion in which s occurred in order to measure its likelihood. To do so, s needs to
be adequately framed, and therefore there needs to be some calculation of CD,
so in this case there cannot be CW without CD. This implies that the assessment
of the likelihood probability p(O|M) is indirect in ST. Let’s call CU

W (s||c) the
causal complexity derived from unexpectedness:

CU
W (s||c) = U(s||c) + CD(s|c)

The formula captures the fact that the conceptual remoteness of s from c this
time adds to the unexpectedness (implausibility) of observing their connection,
making this connection less likely (more improbable).

Examples. Consider the estimation of the likelihood that the wall changes colour
(s) if I close the door (c). The wall is part of perceptions, therefore its determi-
nation is immediate (CD ≈ 0), so U ≈ CW 
 0 (because I never experienced
something similar). It would then be highly unexpected if it occurred. The like-
lihood would also be very low, as the derived causal complexity is very high:

CU
W = U + CD ≈ U + 0 
 0

Now suppose that someone tells me that there is a special light projector com-
manded by the door state. CW would drop, as well as the posterior U , and in
turn the derived likelihood CU

W .
Consider instead the likelihood that, when I close the door, a certain stone

somewhere in the world moves. The complexity for determining that specific
stone is high, i.e. CD 
 0. The causal complexity of seeing that specific stone
moving is also very high CW 
 0, therefore we have U ≈ 0: it is plausible
that some essentially random stone may move at the moment I open the door.
However, the resulting likelihood is still very high, because:

CU
W = U + CD ≈ 0 + CD 
 0

If we had CD = 0, the likelihood would be just the same as the posterior. If, in
the stone example, the portion of the world we look at includes the stone (e.g. in
front of us), CD is reduced (up to ≈ 0), increasing U , but maintaining the same
value of CU

W . A similar consideration applies if we repeat the experiment twice
with the same remote stone (we do not need to describe it again).
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5 Posterior and Post-diction

Suppose that we want to retrodict or abduce certain circumstances given a cer-
tain outcome, or ex-post. From a probabilistic perspective, this amounts to com-
puting the posterior p(M |O). Following the conjecture expressed above, this
corresponds to computing U(s), if the cause c lies in the generative path bring-
ing to s. But what if c is not part of that path? On some occasions, one may
want to compute the complexity of an alternative path in which c plays a role.
Looking back at the conjecture expressed in (1), this can be captured via a
causally constrained unexpectedness Uc(s), where c is the constraining cause:

Uc(s) = CW (c ∗ s) − CD(s) U(s) = min
d

Ud(s)

Note that the cause does not play an explicit role in the computation of the
description complexity. Then we have:

Uc(s) − U(s) = min
d

[CW (s||c) − CW (s||d) + CW (c) − CW (d)] ≥ 0

However, when the cause is described explicitly, the observer has to consider the
full sequence, and this corresponds to computing U(c∗ s), with U(c∗ s) ≤ Uc(s).

Prosecutor’s Fallacy. Suppose that, following forensic studies, the likelihood
p(O|M) (e.g. the probability that a certain DNA evidence appears if the defen-
dant is guilty) is deemed very high, i.e. p(O|M) ≈ 1. The prosecutor’s fallacy
[19] occurs when the posterior p(M |O) (the probability that the defendant is
guilty given that there is DNA evidence) is also concluded to be comparatively
high:

p(O|M) ≈ 1 � p(M |O) ≈ 1 [Prosecutor’s fallacy]

This is a fallacy, because the correct criterion for applying this reasoning pattern
would be that the priors compensate each other, i.e. p(M) ≈ p(O).

Now, let us look at the same scenario in terms of complexity. For the conjec-
ture, the posterior p(M |O) maps to U(s), if c lies in the causal path; to Uc(s) in
the general case. The likelihood p(O|M), on the other hand, maps to CW (s||c).
Let us retake the definition of Uc(s):

Uc(s) = CW (c ∗ s) − CD(s) = CW (s||c) + CW (c) − CD(s)

Knowing that CW (s||c) ≈ 0 (the causal connection is deemed strong), Uc(s) can
be zero only if CW (c) ≈ CD(s). If the cause is not unexpected—it is deemed
plausible from the prosecutor standpoint (e.g. an adequate explanation can be
found of how the defendant was there), we have U(c) = CW (c) − CD(c) ≈ 0.
In other words, the prosecutor’s fallacy emerges if the complexity of description
of outcome (e.g. evidence) and cause (e.g. being guilty) are comparable, i.e.
CD(c) ≈ CD(s), which seems a sound hypothesis considering the usually limited
list of suspects in the mind of the prosecutor.
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6 Conclusion

Our conjecture that Bayes’ rule is a specific form of a more general inferen-
tial template provides further arguments in support to non-probabilistic com-
putational models of cognition. A complexity-based account of the posterior
allows distinguishing between relevant and irrelevant contextual elements, while
the probabilistic account treats them equally. Acknowledging that measures of
bounded complexity are computable, the question becomes then how the under-
lying machines should be defined, for developing computational agents, or with
the purpose of modeling human cognition. Yet, the abstraction level of algo-
rithmic information complexity is already relevant to draw conclusions about
expected outcomes, even without looking at internal workings. This opens the
possibility of novel insights, as we have shown here for instance with the analysis
of the prosecutor’s fallacy.
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