
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Model-Based Testing of Internet of Things Protocols

van Dommelen, X.M.; van der Bijl, M.; Pimentel, A.
DOI
10.1007/978-3-031-15008-1_12
Publication date
2022
Document Version
Final published version
Published in
Formal Methods for Industrial Critical Systems
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
van Dommelen, X. M., van der Bijl, M., & Pimentel, A. (2022). Model-Based Testing of
Internet of Things Protocols. In J. F. Groote, & M. Huisman (Eds.), Formal Methods for
Industrial Critical Systems: 27th International Conference, FMICS 2022, Warsaw, Poland,
September 14–15, 2022 : proceedings (pp. 172-189). (Lecture Notes in Computer Science;
Vol. 13487). Springer. https://doi.org/10.1007/978-3-031-15008-1_12

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:31 Aug 2023

https://doi.org/10.1007/978-3-031-15008-1_12
https://dare.uva.nl/personal/pure/en/publications/modelbased-testing-of-internet-of-things-protocols(da598ef1-1945-4fd8-a947-2a553e3460e2).html
https://doi.org/10.1007/978-3-031-15008-1_12

Model-Based Testing of Internet
of Things Protocols

Xavier Manuel van Dommelen1,2(B) , Machiel van der Bijl2,
and Andy Pimentel1

1 University of Amsterdam, Amsterdam, The Netherlands
xavier vd@outlook.com

2 Axini, Amsterdam, The Netherlands

https://www.axini.com

Abstract. Internet of Things (IoT) is a popular term to describe sys-
tems/devices that connect and interact with each other through a net-
work, e.g., the Internet. These devices communicate with each other
via a communication protocol, such as Zigbee or Bluetooth Low Energy
(BLE), the subject of this paper. Communication protocols are notori-
ously hard to implement correctly and a large set of test-cases is needed
to check for conformance to the standard. Many of us have encountered
communication problems in practice, such as random mobile phone dis-
connects, difficulty obtaining a Bluetooth connection, etc. In this paper,
we research the application of industry strength Model-Based Testing
(MBT) within the IoT domain. This technique contributes to higher
quality specifications and more efficient and more thorough conformance
testing. We show how we can model part of the BLE protocol specifi-
cation using the Axini Modeling Platform (AMP). Based on the model,
AMP is then able to automatically test the conformance of a BLE device.
With this approach, we found specification flaws in the official BLE spec-
ifications as well as conformance errors on a certified BLE system.

Keywords: Model-Based Testing · Internet of Things ·
Communication Protocol · Bluetooth Low Energy · Embedded Systems

1 Introduction

The term Internet of Things (IoT) has become well known. IoT generally refers
to everyday objects that have obtained the ability to connect and interact with
each other through a network [33]. Over the years, the number of these IoT
devices has grown tremendously, reaching an approximate amount of 9.9 billion
devices in 2021 [17]. Along with this growth, new IoT devices are being developed
that often implement the same widely accepted communication protocols [2].
Examples are Bluetooth Low Energy [6] and Zigbee [11]. It is important that
these protocols are implemented correctly. When the implementations deviate
from the specification, the functionality to interact with other systems using the
same communication protocol could be affected.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 172–189, 2022.
https://doi.org/10.1007/978-3-031-15008-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_12&domain=pdf
http://orcid.org/0000-0002-9333-3917
https://doi.org/10.1007/978-3-031-15008-1_12

Model-Based Testing of Internet of Things Protocols 173

Currently, manufacturers face several challenges that prevent them from
extensively testing the communication protocols in their IoT devices [7]. For this
reason, research has started looking into different testing approaches to overcome
these challenges. One of these approaches is Model-Based Testing (MBT) [8].

Research on MBT for IoT protocol testing looks mainly into proof of concepts
and investigates individual challenges [1,16,29]. As a result, it is difficult to
evaluate to what extent MBT is capable of resolving the problems in this domain.
Such an evaluation is needed to compare testing approaches to determine which
one is the most optimal, in particular in an industrial setting. For this reason,
our research tries to investigate which challenges industrial strength model-based
testing is able to resolve and what other influences this approach brings.

1.1 Related Work

IoT can be seen as cyber physical systems. Model-based testing is an interest-
ing technique that has shown its merits in modeling and testing cyber physical
systems [30,31].

Our work focuses on testing protocol conformance through MBT on IoT
systems, but there is related work that researches other aspects. The work of
Yoneyama et al. [34] uses MBT to test the robustness of the COAP protocol by
modeling network faults. Additionally, the work of Aziz et al. [3] demonstrates
that by formally modeling the MQ Telemetry Transport protocol, an IoT proto-
col, and analyzing the result, they can evaluate the correctness of the protocol.
These papers differ from our work by concentrating on testing the protocol itself
instead of testing the conformance of the implemented protocol. Malik et al. [22]
use MBT as a tool to demonstrate that we can automatically test IoT protocols
on systems remotely. In their work, they briefly describe why they make use of
MBT but their main topic is the framework for remotely testing IoT systems
and their protocols. The case study of Tappler et al. [29] shows how models
for a model-based testing approach can be automatically created through active
automated learning. Furthermore, this work demonstrates that by using their
automatically generated models they are capable of finding implementation mis-
takes that go against the MQTT communication protocol specifications. Ahmad
et al. [1] investigate the possibility to use a model-based testing approach to test
IoT systems in their entirety. In addition to just testing the system, they discuss
a framework that enables sharing models between developers as a service. While
the focus of these papers is to obtain a proof of concept with a specific goal in
mind, our work differs by highlighting the implications of using MBT in the IoT
domain in an industrial setting.

Finally, the work of Inçki et al. [16] presents a model-based testing imple-
mentation in which they could perform interoperability tests to evaluate the IoT
communication protocol COAP. However, they do not present any experiments
that make use of their presented approach. Consequently, we are not able to
evaluate the benefits or disadvantages of using MBT in contrast to our work.
Furthermore, they do not give an in-depth explanation and reflection on the
implications of using model-based testing.

174 X. M. van Dommelen et al.

1.2 Contributions

Our research focuses on the application of MBT with a commercial tool on
a non-trivial part of the industrial BLE protocol. We describe which implica-
tions MBT could have on the IoT protocol testing domain based on practical
experience. Furthermore, we discuss how the specifications of a widely used IoT
communication protocol, Bluetooth Low Energy, can be translated into a for-
mal model. Based on this experience, we discuss which obstacles are likely to be
encountered and how they can be overcome when translating an IoT protocal.
In this process, we highlight several flaws in the official Bluetooth Low Energy
specifications version 4.2 [6], showing that MBT is a method to improve specifi-
cations. Finally, by applying our proof of concept to test a certified BLE system,
we show that certain assumptions about MBT also hold in practice. And we find
implementation errors in the process.

2 Preliminaries

2.1 Internet of Things

IoT refers to everyday objects that have obtained the ability to connect and
interact with each other through a network [33]. According to Elnashar [10], the
challenges related to IoT fall into two categories: challenges relating to unlicensed
networks that aim for short-range communication and challenges relating to
cellular licensed networks.

This document focuses on the short-range communication category, because
this category contains significantly more manufacturers [10,15,26]. This means
that to ensure interoperability between IoT systems more parties require a suf-
ficient testing environment. Additionally, IoT systems from this category gener-
ally use the same communication protocols [2,32]. As a result, a generic testing
environment becomes more important since this would benefit all the different
manufacturers.

One of the popular communication protocols in the IoT domain is the Blue-
tooth Low Energy (BLE) protocol [2]. This protocol is known for its low power
consumption, low setup time, and supporting star network topology with unlim-
ited number of nodes. BLE systems can receive a certificate indicating that their
system conforms to the BLE specifications when they pass a list of unit tests
defined by the organisation behind BLE, Bluetooth SIG1.

2.2 Model-Based Testing

Software testing verifies that a software system implements its requirements.
Such a verification can be done in four steps [18,20,30]: specification interpre-
tation, test creation, test execution, and test result evaluation. Model-Based
Testing (MBT) is a method that can automate all of these steps except for the

1 https://www.bluetooth.com/.

https://www.bluetooth.com/

Model-Based Testing of Internet of Things Protocols 175

specification interpretation step by using a formal model defining the require-
ments/specifications [8,31]. The model describes the behavior of the System
Under Test (SUT) in terms of how the inputs and outputs of the SUT relate,
and uses this formal definition to generate and execute test cases to evaluate the
correctness of the SUT. A testing environment using MBT generally requires
three key technologies [8]: Modeling Language, Test Generation, and a Sup-
porting Infrastructure. Figure 1 gives an overview of the components which we
discuss below.

Fig. 1. Model-Based Testing pipeline [18]

Modeling Formalism. There are several modeling formalisms that can be
used in MBT [31], for example Finite State Machine (FSM), Labeled Transi-
tion System (LTS) [30], Unified Modeling Language (UML) [4], and Symbolic
Transition System (STS) [12]. FSMs and LTSs are often used for MBT [31]. To
describe a SUT using an LTS, a set of states and transitions are defined. The
transitions are used to reflect the correct behavior between the different states
in which the SUT could be. Finally, a Symbolic Transition System (STS) is an
extension to an LTS that introduces the concept of data to the models. This
addition of data is relevant since it allows us to prevent a state-space explosion
when dealing with data structures [12].

Test Case Generation. Based on a formal model an algorithm can generate
test cases automatically. Using this approach, a large number of test cases can be
generated. Due to time-constraints it is not always possible to execute all of these
test cases, therefore we need test criteria [24,27] to limit the number of generated
tests. Test cases consist of two ingredients: stimuli which represents inputs to
the SUT and a set of allowed responses which represent possible outputs from
the SUT. Once a test case is generated, stimuli will be passed on to the SUT
and observed outputs are presented to the testing environment. The MBT tool
checks if the observed responses are defined in the model. If this is the case,
the test case will pass otherwise it will fail. For the assignment of verdicts a
correctness notion between the model and the SUT, a so called conformance
relation, is important. The conformance relation that we use is the input-output
conformance, IOCO theory [30] which also uses STSs [13].

176 X. M. van Dommelen et al.

In order to automatically execute test cases we need some supporting infras-
tructure. The connection to the SUT is often implementation specific, in our
case BLE. The connection to the MBT tooling is often standardized.

2.3 Axini Modeling Platform (AMP)

For our research we use the Axini Modeling Platform. Axini is a product com-
pany that specializes in modeling and model-based testing. AMP is an industry
strength MBT tool that is used in Finance, Rail and High-tech. It is based on
the IOCO theory and research from Tretmans [30].

AMP uses a modeling language called the Axini Modeling Language (AML).
This language is inspired by ProMeLa, the language of the Spin model
checker [21]. The semantics of the language is expressed in STS. The reason
we choose AMP is: the modeling language is suited to model cyber physical sys-
tems, AMP is a proven industry grade platform (10+ years) that can handle big
industrial systems and models with big state spaces. Examples are safety-critical
rail systems, pension and insurance systems and cyber-physical systems.

3 MBT in the Context of IoT

3.1 IoT Testing Challenges

Looking at existing literature, we see that one of the overarching challenges for
the industry to make fully conformant BLE devices, is that it costs too many
resources to obtain and maintain an extensive test-suite [7,19,23,29]. First, the
protocols from this domain change regularly [19,28]. As a result, testing envi-
ronments need to be updated frequently and thus require significant mainte-
nance [35]. Another obstacle is the large number of test cases necessary to test
for conformance. IoT protocols, such as BLE, contain a wide range of different
potential configurations. Optimally, a tester would test all combinations to test
for conformance. However, with conventional manual methods, this becomes too
expensive [7,19]. Finally, the quickly changing protocols also require backwards
compatibility. Manufacturers are required to test against systems implementing
older supported protocol versions.

3.2 Positioning MBT in IoT

MBT holds several benefits over traditional testing techniques. One benefit is
that the resulting testing environment can quickly respond to changing speci-
fications [24,31]. Changes made within the model are easier to maintain than
manually changing individual low-level test cases when requirements change.
Because frequently changing specifications are a problem, MBT would give a
benefit over traditional testing methods that do not use an abstract representa-
tion within this domain.

Another benefit is that MBT results in arguably better tests compared to the
manually created tests [5,31]. Pretschner [25] presents this with a different angle.

Model-Based Testing of Internet of Things Protocols 177

He mentions that the resulting tests cases are not necessarily of higher quality
but that the higher quantity is the cause for a better testing environment. This
higher number of test cases results in a higher coverage. In the IoT context,
because it is difficult to obtain high coverage, this is a desired trait. MBT makes
this possible through its high level of automation.

For MBT to reach this high level of automation, a model is required before
testing can begin. The creation of such models is a non-trivial process, result-
ing in an additional potentially time-consuming step [5,9,24]. Consequently, it
potentially takes longer before testing can begin compared to other methods
that do not require this step. The modeling step also brings benefits. Because
a modeler needs to critically think about the specifications for the creation of
the model, this increases the chance of finding specification flaws [24,31]. This is
specifically relevant in the IoT domain, where different manufacturers all need
to follow the same specifications. Additionally, because manufacturers need to
follow the same specifications, one model should suffice to supply every manu-
facturer with an extensive testing environment.

Based on the literature, we believe that MBT can form a solution to overcome
the problems in the IoT testing domain if the previously discussed assumptions
hold.

4 The AMP MBT Environment to Test BLE IoT Systems

To evaluate the assumptions from the previous section we require an MBT envi-
ronment that can test the conformance of BLE devices. In this section, we dis-
cuss our design decisions, experience, and findings when implementing such an
environment on the AMP platform.

4.1 SUT

For our experiment, we decided to model and test systems that implement the
BLE specifications version 4.2 [6] from the official Bluetooth organization: Blue-
tooth SIG2. This version was chosen because a system running this version was
easily accessible for experiments. Based on our experience we believe that the
resulting process would be similar to other protocol versions.

One can access a Bluetooth Controller’s capabilities through the Host Con-
troller Interface (HCI) [6]. This interface functions as an API to perform specific
actions on the different lower-level software layers on a Bluetooth system. We
use this to test the conformance of the BLE protocol on a system.

The specifications of BLE describe the protocol using different layers. Each of
these layers has its requirements and provides specific functionality. For the scope
of our research, we decided to model the Link Layer. This layer describes the
steps that two systems implementing the BLE protocol should take to obtain and
sustain a connection. If a manufacturer makes a mistake in the implementation of
this layer, it can directly influence the interoperability. Because interoperability
is an important factor for IoT systems, we decided to model this specific layer.
2 https://www.bluetooth.com/.

https://www.bluetooth.com/

178 X. M. van Dommelen et al.

4.2 Model Creation

We will use a representation of the Link Layer’s behavior, see Fig. 2, to highlight
which parts we implemented within our model. The states within this figure that
are accessible within our model are marked green.

Fig. 2. State diagram of the Link Layer state machine on the Low Energy Controller
according to the Bluetooth Core Specification version 4.2 [6] (Color figure online)

Due to time constraints, we decided not to model the Connection state,
marked orange. Being able to also test this behavior would extend our work
such that we could also directly evaluate interoperability between systems. We
leave this to future work. Given the experience with the scale of models in AMP
we do not expect any problems with such an extension. Finally, a full version of
our obtained model can be requested by contacting Axini.

Model Overview. For the creation of our model, we used the state machine
from Fig. 2 as our starting point. We decided to use the same states within our
model and search through the specifications to look for the corresponding HCI
commands for the basic transitions.

Using the HCI command descriptions as a foundation, we concluded that the
following HCI commands would be most applicable to reflect the state transi-
tions:

– HCI LE Set Advertise Enable. Handles the transitions between the StandBy
and Advertising state.

– HCI LE Set Scan Enable. Handles the transitions between the StandBy and
Scan state.

– HCI LE Create Connection. Handles the transition from the StandBy to the
Initiating State.

– HCI LE Create Connection Cancel. Handles the transition from the Initiat-
ing state to the StandBy state.

Model-Based Testing of Internet of Things Protocols 179

To model the different configurations, we selected the configuration options
for the Scanning and Advertising state. The model represents this using transi-
tions that go towards the same state after successfully changing the state con-
figurations. The HCI commands that resemble these transitions are:

– HCI LE Set Advertising Parameters
– HCI LE Set Scan Parameters

4.3 AML Model Example

Given the scope of this paper it goes too far to introduce the entire AML mod-
eling language. Instead we treat a part of the model and we show a part of
the visualization of the model. The visualization is shown in Fig. 3. The model
uses similar states as the state machine from the BLE specification in Fig. 2:
Scanning, Advertising, Standby, Initiating.

Fig. 3. AMP model visualization State diagram of the Link Layer

To give the reader some idea of what AML looks like, we discuss a simpli-
fied model in which we can successfully enable advertising following the BLE
protocol. This model is shown in Listing 1.1.

Listing 1.1. AML model example

p roce s s (’main ’) {
s t imulus ’ h c i l e s e t a d v e r t i s e e n a b l e ’ ,

’ a dv e r t i s i n g enab l e ’ => : i n t e g e r
re sponse ’ s t a tu s ’ , ’ code ’ => : i n t e g e r

s t a t e ’ standbyState ’
r e c e i v e ’ h c i l e s e t a d v e r t i s e e n a b l e ’ ,

c on s t r a i n t : ’ a dv e r t i s i n g enab l e==1 ’
send ’ s t a tu s ’ , c on s t r a i n t : ’ code==1 ’
goto : ’ a dv e r t i s e S t a t e ’

. . .
}

180 X. M. van Dommelen et al.

In this model we define a process named ‘main’. This process has one interface
with one stimulus (input) ’hci le set advertise enable’ and one response (output)
’status’; both have an integer parameter. The process shows a state with two
actions: after the SUT receives a hci le set advertise enable stimulus with the
advertising enable parameter set to 1 it should give a status response back with
a value of 1. The test case will continue from the advertiseState and pick a
new action to test. For these tests, the stimulus parameters are solved with a
constraint solver. We use constraints to define more complex input domains to
model the other commands and different scenarios.

Model Configurations. In addition to the model that reflects BLE specifi-
cations, we added several model configuration options. A tester can use these
configurations to manage to what extent the model is used during the generation
of test cases. A list of supported configuration options is shown in Table 1.

Table 1. Model configuration options

ID Configuration Data Type Motivation

1 error paths Boolean Scenario Simulation

2 error self loop paths Boolean Assumption due to underspecification

3 error future param paths Boolean Assumption due to underspecification

4 error validation strength Integer Assumption due to underspecification

5 scan between duplicates Boolean Assumption due to underspecification

6 force link layer transitions Boolean Assumption due to underspecification

– Configuration 1 allows one to trigger transitions that would result in an error
code.

– Configuration 2 allows one to trigger transitions that could change the state
but instead would result in the same state.

– Configuration 3 allows to trigger transitions that would result in an error
because parameter values would be used that are reserved for future usage.

– Configuration 4 accepts five different strength values:
• With strength 0 all error codes are allowed when an error code is expected.
• With strength 1, only the error codes that are specifically mentioned in

the specifications need to correspond to any of the expected errors if
multiple errors could be thrown. Otherwise all error codes are accepted.

• With strength 2 we have the same situation as with strength 1 however
we apply our assumption on which error has a precedence when multiple
errors could be thrown thus only allowing only one error code.

• When strength 3 we only accept one or more of the expected errors. There
is no precedence check.

• Finally, with strength 4 we only accept the error codes with the highest
precedence according to our assumptions.

Model-Based Testing of Internet of Things Protocols 181

– Configuration 5 allows one to trigger transitions that would move between the
two possible scanning states in which Filter Duplicates is enabled or disabled.

– Configuration 6 allows one to trigger transitions that would check if tran-
sitions that would not be possible according to the link layer specification
result in the correct error code.

Motivation. While investigating the BLE specifications for the model, we found
several topics that contained underspecifications. As a result, a developer can
have different interpretations of what a correct BLE implementation would be.
For these topics, we made assumptions about what the correct behavior of the
protocol should be. However, it is also possible that a tester disagrees with
our design. To compensate, we added configuration flags that allow a tester to
configure the model such that test cases related to these assumptions will not
get generated.

Findings. During the development of the model, we encountered several obsta-
cles. The first obstacle is related to finding a point from which a tester can
start modeling using the BLE specifications. The extensive specifications make
it difficult to find a starting point. However, after finding this point, the remain-
ing modeling process became straightforward. Additionally, the creation of the
model became a time-consuming process because of the complexity of the BLE
protocol. The protocol defines actions that contain many rules and can be dif-
ferent based on the system’s state. Doing this correctly requires a tester to
fully understand the specifications and reflect this flawlessly in a model result-
ing in a time-consuming process. These findings support the assumption that
the modeling step is a time-consuming process. The authors think this could be
significantly reduced if a BLE expert is available during the modeling process.
Preferably the modeling takes place during the specification process.

After performing the modeling step, we see that the model is not our only
result. During the process, we also discovered several flaws in the official BLE
specifications. Most of these flaws are related to underspecification, but we also
found a place where the specifications were contradicting. As a result, our expe-
rience confirms the assumption that we can find specification flaws during the
modeling step and use this as a method to refine the specifications.

Limitations. We mentioned earlier that we use HCI commands to interact with
a BLE system. These commands require two types of parameters. The first type
contains parameters that together define which command should be running:
OpCode Group Field, Opcode Command Field, and the expected resulting event
code. We decided to separate these parameters from our model and put them
as constants in our adapter. As a result, we limited the model to a static set
of HCI commands that it can simulate. The second type contains parameters
that define the configuration for an HCI function. According to the specifications,
these parameters have a maximum memory size. We also followed this limitation

182 X. M. van Dommelen et al.

in our model, but as a consequence, we are unable to test outside this memory
range.

Finally, some HCI commands we simulate can generate additional event codes
in the background. In our model, we only simulate the response code behavior,
but for future work, we recommend also taking these event codes into account.

4.4 Adapter

As discussed in the background, the purpose of the adapter is to handle the com-
munication between the SUT and the testing environment, AMP. Additionally,
the adapter contains the translation logic from model labels into SUT actions
and vice versa. This translation was straightforward to implement because our
model follows the BLE specifications. However, we found that programming the
communication with the HCI layer is a rather tedious task. The reason for this is
that the documentation about programming on the HCI layer is scarce [14]. Con-
sequently, the adapter step, which is supposed to be relatively small compared
to modeling, became a more time-consuming process than expected. In the end,
we decided to go with a Python implementation for the adapter. This adapter
uses the PyBluez library3 to communicate with the HCI of a BLE system.

5 Testing BLE Using AMP

By using AMP with the described model and adapter from Sect. 4, we can test
any BLE system that implements BLE version 4.2. In this section, we describe
how we test such a system, an Intel Dual Band Wireless-AC 8265 [Bluetooth
adapter]. This SUT has received a certificate4 from the official Bluetooth SIG
organization indicating that they have correctly implemented BLE version 4.2.

To evaluate our approach and the SUT, we perform two experiments. The
first experiment tests if we can find conformance errors using the platform. The
second experiment looks into our found underspecifications that can potentially
lead to implementation assumptions.

5.1 Assumption

A fundamental assumption we make for our experiments is that the test platform
does not contain errors. In other words, we assume that the model, adapter, and
testing environment (AMP) are all implemented correctly. Using this assump-
tion, we can conclude that the found mistakes are caused by the SUT and not by
potential flaws in one of these components. Our thorough analysis of the findings
support this assumption.

3 https://github.com/pybluez/pybluez.
4 https://launchstudio.bluetooth.com/ListingDetails/3524.

https://github.com/pybluez/pybluez
https://launchstudio.bluetooth.com/ListingDetails/3524

Model-Based Testing of Internet of Things Protocols 183

5.2 Test Generation Configurations

Using our model-based testing platform, we can generate test cases to test a
given SUT. The size of the test cases are configured by the tester and influence
how much of the model can be traversed during one test-case. Additionally, a
tester can set the number of test cases that during a test run are generated.
Similar to the first configuration, this configuration influences the test coverage
that can be obtained.

For our experiments, we wanted to obtain a model coverage of 100% to at
least test each transition once. Through manual experiments, we found that this
coverage can be achieved within a test case by setting the size to 30. Additionally,
we decided to set the number of test cases that are generated during one test
run to 20. We found this number to be enough for our goal to demonstrate that
we can find conformance errors.

5.3 Conformance Experiment

In this experiment, we test the SUT using the previously discussed test genera-
tion configurations. Additionally, in Sect. 4.3, we discussed model configurations
to enable and disable some of our assumptions regarding what the correct imple-
mentation should be. Because we do not want to leave room for discussion after
we would find a conformance mistake, we decided to disable all configurations
regarding assumptions.

Results. Running the testing environment with the previously described con-
figurations, we obtain the results that are displayed in Fig. 4.

The results from Fig. 4 show us that we can obtain a Transition Coverage of
100%. Furthermore, the results show us that we can automatically find 19 test
cases where the SUT does not conform to our model. If we would categorize our
failed test cases based on which behavior deviates from the specifications, we
obtain the categorization as shown in Table 2.

Table 2. Overview of the failed test cases and their cause using results from the
Conformance Experiment

Test-case ID State Label Expected Output

2,4,5,7,15,17,18,20 Scan setAdvertisingParams 0 18 (invalid parameters)

3,11,13,14 StandBy setScanParams 0 18 (invalid parameters)

8,19 StandBy createConnection 0 18 (invalid parameters)

9,12 StandBy setAdvertisingParams 0 18 (invalid parameters)

10 Advertise setScanParams 0 18 (invalid parameters)

16 StandBy createConnection 0 13 (limited resources)

184 X. M. van Dommelen et al.

Fig. 4. Screenshot of AMP showing a partial overview of the resulting test cases and
their evaluations using the configurations as discussed for the Conformance Experiment

This overview shows that we can find 6 different conformance mistakes based
on the specifications. Furthermore, we see that most failed cases are caused by
inaccurate error responses when using valid parameters.

Nonetheless, some of these error categories may be caused by the same under-
lying problem. As a result, this overview might show more errors than the SUT
contains. However, the fact remains that we can find conformance flaws in a
certified BLE system by applying a state-of-the-art MBT tool.

5.4 Model Assumption Experiment

For this experiment, we want to investigate our found underspecifications. By
running our testing environment, while enforcing all of our assumptions through
the model configurations, we can investigate if the SUT’s implementation is dif-
ferent from our definition of a correct implementation. If we find implementation
differences, we can confirm that manufacturers have different interpretations of
what the correct behavior is when following the BLE specifications. Such findings
can support the idea that our found underspecifications are a problem.

Results. Running the testing environment using our enforced assumptions on
the SUT resulted in the test-run overview shown in Fig. 5.

First, these results show that enforcing our assumption configurations results
in a Transition Coverage of 59.49%. Consequently, our test run does not cover
the entire model. However, within this test run, we can still find behavior on
the SUT that deviates from our assumptions. Table 3 shows an overview of the
related conformance errors.

Model-Based Testing of Internet of Things Protocols 185

Fig. 5. Screenshot of AMP showing a partial overview of the resulting test cases and
their evaluations using the configurations as discussed for the Model Assumption Exper-
iment

Table 3. Categorised implementation errors related to different underspecification
assumptions using the configurations as discussed for the Model Assumption Experi-
ment

Assumption Configuration Number of Failed Test Case(s)

error self loop paths 6

error future param paths 13

error validation strength 0

scan between duplicates 1

force link layer transitions 0

Based on this categorization, we can confirm that the SUT behaves differ-
ently regarding three of our specification assumptions. As a result, our approach
can highlight three topics within the specification that could lead to different
implementations due to underspecification.

6 Discussion

The conformance experiment from Subsect. 5.3 shows us that we can find con-
formance flaws in a certified BLE system. This suggests that MBT can test more
thoroughly than the testing environment that was used for the BLE certifica-
tion of the SUT. This means that MBT can assist in obtaining more extensive
testing environments and thus can assist in improving conformance and finally
interoperability on IoT systems. Additionally, because our experiment showed
that we can test BLE systems, a similar approach can be used to also test other
communication protocols within the IoT domain.

186 X. M. van Dommelen et al.

One of the potential benefits discussed in Sect. 3 is that MBT can be used to
refine the specifications of a tested system. During the assumption experiment
from Subsect. 5.4, we show that specification flaws can be discovered during the
creation step of the model. This suggests that the assumption that MBT can
help refine the specifications also holds for BLE. Consequently, we can assume
that this will also hold for other IoT communication protocols. As a result,
MBT can become a method to refine the different communication protocol spec-
ifications. Such refinements will improve the overall interoperability within the
domain because different manufacturers will be able to obtain more conformant
implementations.

Based on our results, we decided to get in touch with Bluetooth SIG to
highlight our results. We sent an e-mail after crosschecking if these flaws also
remained in the latest, 5.2, specifications. As of writing this paper, we have not
received a response.

Furthermore, we discussed our approach and findings with the creator of
Bluetooth, Dr. Ir. Jaap C. Haartsen. In this meeting, he highlighted the current
problems in the IoT Bluetooth domain. He mentioned that interoperability with
machines from other manufacturers is a challenge for IoT manufacturers. In this
context, it would be interesting to extend our work to the higher software layers
that apply the BLE protocol.

7 Conclusion

It is crucial for IoT systems that the communications protocols such as BLE con-
form to the protocol’s specifications. In our research, we have shown that manu-
facturers struggle to obtain testing environments that can test the specification
conformance of their systems. Our experiments confirmed this by demonstrating
that we can find conformance flaws in a certified BLE system using our proposed
MBT environment. Additionally, we showed that we can find weaknesses in the
official BLE specification by using MBT. Correcting these flaws will allow dif-
ferent manufacturers to create implementations that are more conformant and
thus will assist in ensuring interoperability. Finally, based on these findings, we
believe that MBT can be a solution within the IoT protocol testing domain using
existing MBT tools such as AMP.

7.1 Future Work

Our work focuses on researching the possibilities of MBT to test IoT protocols.
However, our research does not perform a comparison study with other testing
methods for this domain. The next step would be to compare this method to
other testing methods and discuss what method would be the most optimal for
this domain. Another direction that research could look into is testing the inter-
operability between IoT systems. This direction would be interesting because

Model-Based Testing of Internet of Things Protocols 187

our work assumes that conformance errors will result in interoperability issues
but does not test it directly. Finally, because our testing environment was able
to find conformance errors on a certified BLE system, it becomes interesting to
research if such errors also occur on more systems in the market.

References

1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based
testing as a service for IoT platforms. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9953, pp. 727–742. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47169-3 55

2. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (IoT)
communication protocols. In: 2017 8th International Conference on Information
Technology (ICIT), pp. 685–690. IEEE (2017)

3. Aziz, B.: A formal model and analysis of an IoT protocol. Ad Hoc Netw. 36, 49–57
(2016)

4. Bernard, E., et al.: Model-based testing from UML models. INFORMATIK 2006-
Informatik für Menschen-Band 2, Beiträge der 36. Jahrestagung der Gesellschaft
für Informatik eV (GI) (2006)

5. Binder, R.V., Legeard, B., Kramer, A.: Model-based testing: where does it stand?
Commun. ACM 58(2), 52–56 (2015)

6. Bluetooth SIG: Core specification 4.2 (2014). https://www.bluetooth.com/
specifications/specs/core-specification-4-2/. Accessed 28 June 2021

7. Bures, M., Cerny, T., Ahmed, B.S.: Internet of things: current challenges in the
quality assurance and testing methods. In: Kim, K.J., Baek, N. (eds.) ICISA 2018.
LNEE, vol. 514, pp. 625–634. Springer, Singapore (2019). https://doi.org/10.1007/
978-981-13-1056-0 61

8. Dalal, S.R., et al.: Model-based testing in practice. In: Proceedings of the 21st
International Conference on Software Engineering, pp. 285–294 (1999)

9. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies: Held in Conjunction with the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007, pp. 31–36
(2007)

10. Elnashar, A.: IoT evolution towards a super-connected world. arXiv preprint
arXiv:1907.02589 (2019)

11. Ergen, S.C.: ZigBee/IEEE 802.15.4 summary. UC Berkeley, 10 September 2004
12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic

specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-
4 1

13. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
-2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). https://doi.org/
10.1007/11940197 3

14. Huang, A.S., Rudolph, L.: Bluetooth Essentials for Programmers. Cambridge Uni-
versity Press, Cambridge (2007)

https://doi.org/10.1007/978-3-319-47169-3_55
https://doi.org/10.1007/978-3-319-47169-3_55
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://doi.org/10.1007/978-981-13-1056-0_61
https://doi.org/10.1007/978-981-13-1056-0_61
http://arxiv.org/abs/1907.02589
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/11940197_3

188 X. M. van Dommelen et al.

15. Hwang, J., Aziz, A., Sung, N., Ahmad, A., Le Gall, F., Song, J.: AUTOCON-IoT:
automated and scalable online conformance testing for IoT applications. IEEE
Access 8, 43111–43121 (2020)

16. Incki, K., Ari, I.: Observing interoperability of IoT systems through model-based
testing. In: Fortino, G., et al. (eds.) InterIoT/SaSeIoT -2017. LNICST, vol. 242,
pp. 60–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93797-7 8

17. Statista Inc.: Internet of things (IoT) active device connections installed base
worldwide from 2015 to 2025* (2020). https://www.statista.com/statistics/
1101442/iot-number-of-connected-devices-worldwide/

18. Janssen, S.: Transforming source code into symbolic transition systems for practical
model-based testing (2017)

19. Kim, H., et al.: IoT-TaaS: towards a prospective IoT testing framework. IEEE
Access 6, 15480–15493 (2018)

20. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44854-3 6

21. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6 8

22. Malik, B.H., et al.: IoT testing-as-a-service: a new dimension of automation. Int.
J. Adv. Comput. Sci. Appl. 10(5) (2019)

23. Marinissen, E.J., et al.: IoT: source of test challenges. In: 2016 21th IEEE European
Test Symposium (ETS), pp. 1–10. IEEE (2016)

24. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg
(2005). https://doi.org/10.1007/11526841 37

25. Pretschner, A., et al.: One evaluation of model-based testing and its automation.
In: Proceedings of the 27th International Conference on Software Engineering, pp.
392–401 (2005)

26. Saleem, J., Hammoudeh, M., Raza, U., Adebisi, B., Ande, R.: IoT standardisation:
challenges, perspectives and solution. In: Proceedings of the 2nd International Con-
ference on Future Networks and Distributed Systems, pp. 1–9 (2018)

27. Schieferdecker, I.: Model-based testing. IEEE Softw. 29(1), 14 (2012)
28. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software

challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)
29. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication

via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 276–287. IEEE (2017)

30. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

31. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

32. Vorakulpipat, C., Rattanalerdnusorn, E., Thaenkaew, P., Hai, H.D.: Recent chal-
lenges, trends, and concerns related to IoT security: an evolutionary study. In: 2018
20th International Conference on Advanced Communication Technology (ICACT),
pp. 405–410. IEEE (2018)

33. Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Int. J. Commun. Syst.
25(9), 1101 (2012)

https://doi.org/10.1007/978-3-319-93797-7_8
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://doi.org/10.1007/3-540-44854-3_6
https://doi.org/10.1007/978-3-540-24732-6_8
https://doi.org/10.1007/11526841_37
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Model-Based Testing of Internet of Things Protocols 189

34. Yoneyama, J., Artho, C., Tanabe, Y., Hagiya, M.: Model-based network fault
injection for IoT protocols. In: Proceedings of the 14th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering, pp. 201–209.
SCITEPRESS-Science and Technology Publications, Lda (2019)

35. Ziegler, S., Fdida, S., Viho, C., Watteyne, T.: F-interop – online platform of interop-
erability and performance tests for the internet of things. In: Mitton, N., Chaouchi,
H., Noel, T., Watteyne, T., Gabillon, A., Capolsini, P. (eds.) InterIoT/SaSeIoT -
2016. LNICST, vol. 190, pp. 49–55. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-52727-7 7

https://doi.org/10.1007/978-3-319-52727-7_7
https://doi.org/10.1007/978-3-319-52727-7_7

	Model-Based Testing of Internet of Things Protocols
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 Internet of Things
	2.2 Model-Based Testing
	2.3 Axini Modeling Platform (AMP)

	3 MBT in the Context of IoT
	3.1 IoT Testing Challenges
	3.2 Positioning MBT in IoT

	4 The AMP MBT Environment to Test BLE IoT Systems
	4.1 SUT
	4.2 Model Creation
	4.3 AML Model Example
	4.4 Adapter

	5 Testing BLE Using AMP
	5.1 Assumption
	5.2 Test Generation Configurations
	5.3 Conformance Experiment
	5.4 Model Assumption Experiment

	6 Discussion
	7 Conclusion
	7.1 Future Work

	References

