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Abstract

Multimodal semantic models that extend linguistic representations with additional
perceptual input have proved successful in a range of natural language process-
ing (NLP) tasks. However, existing research has extracted visual features from
complete images, and has not examined how different kinds of visual information
impact performance. We construct multimodal models that differentiate between
internal visual properties of the objects and their external visual context. We evalu-
ate the models on the task of decoding brain activity associated with the meanings
of nouns, demonstrating their advantage over those based on complete images.

1 Introduction

Multimodal models combining linguistic and visual information have enjoyed a growing interest
in the field of semantics. Recent research has shown that such models outperform purely linguistic
models on a range of NLP tasks, including modelling semantic similarity [Silberer and Lapata, 2014],
lexical entailment [Kiela et al., 2015], and metaphor identification [Shutova et al., 2016]. Despite
this success, little is known about the nature of semantic information learned from images and why
it is useful. For instance, some concepts may be better characterised by their own (internal) visual
properties and others by the (external) visual context, in which they appear. However, existing
multimodal semantic approaches use entire images to learn visual word representations, without
differentiating between these two kinds of visual information. In contrast, we investigate whether
differentiating between internal visual properties and external visual context is beneficial compared
to learning visual representations from complete images. We construct three multimodal models
combining linguistic and visual information: using (1) internal visual features extracted from an
object’s bounding box, (2) external visual features outside the bounding box, i.e. the visual context,
and (3) visual features extracted from complete images. We use skip-gram [Mikolov et al., 2013] as
our linguistic model and extract visual representations from a convolutional neural network (CNN)
pre-trained on the ImageNet classification task [Fei-Fei, 2010].

We evaluate the models in their ability to decode patterns of brain activity associated with the
meanings of nouns, obtained via brain imaging. This choice of task allows us to assess the importance
of each type of visual information in human semantic processing. Specifically, we perform two
experiments: (1) using the Visual Genome [Krishna et al., 2016] dataset of images where objects are
manually annotated with bounding boxes, and (2) using images retrieved from Google Image Search
and automatically segmenting them using a Faster R-CNN (FRCNN) model [Ren et al., 2015]. We
find that all of our multimodal models are able to decode brain activity patterns and that the models
relying on internal visual properties are superior to all others.
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2 Related Work
Multimodal Semantics Multimodal models are inspired by cognitive science research, suggesting
that human semantic knowledge relies on perceptual and sensori-motor experience [Louwerse, 2011].
Contemporary approaches use deep CNNs trained on image classification tasks to extract visual
representations of words. Kiela and Bottou [2014] extract visual word representations from feature
extraction layers in CNNs and concatenate them with linguistic representations obtained from a skip-
gram model. Their results presented empirical improvements over the previous bag-of-visual-words
method [Bruni et al., 2012]. Other approaches use restricted Boltzmann machines [Srivastava and
Salakhutdinov, 2012], recursive neural networks [Socher et al., 2014] and autoencoders [Silberer and
Lapata, 2014].

Decoding Brain Activity Research in neuroscience supports the view that concepts are represented
as patterns of neural activation and, similarly to distributed semantic representations, are naturally
encoded in neural semantic vector space [Haxby et al., 2001, Huth et al., 2012, Anderson et al.,
2013]. Mitchell et al. [2008] were the first to employ distributional semantic models to predict neural
activation in the human brain using data obtained via functional Magentic Resonance Imaging (fMRI).
Murphy et al. [2012], Devereux et al. [2010], Pereira et al. [2013] have since successfully tested a
wider range of distributional models in this task. Recent research shows that multimodal models
grounded in the visual modality strongly correlate with neural activation patterns associated with
word meaning [Anderson et al., 2013, Bulat et al., 2017]. We aim to further our understanding of the
role of vision in semantic processing by evaluating our models on this task.

3 Data
Visual Data In the first experiment, we used the Visual Genome [Krishna et al., 2016] dataset of
images manually-annotated for objects and their bounding boxes. In the second experiment, we
trained Faster-RCNN networks on manually annotated images from ImageNet [Deng et al., 2009,
Fei-Fei, 2010], and then processed images retrieved from Google Images to construct a dataset of
automatically-annotated images. Both Visual Genome and ImageNet were selected as they contain
bounding box annotations around objects.

Brain Imaging Data We used a dataset of brain activity patterns associated with the meanings of
nouns created by Mitchell et al. [2008] (MITCHELL). The dataset includes 60 concrete nouns from
12 semantic categories, such as vehicles or vegetables. fMRI images were recorded when participants
were presented with line drawings of the objects and the corresponding nouns. We use 50 nouns from
the dataset in our experiments, since 10 of the nouns were not covered by the Visual Genome and
ImageNet datasets.

Following Mitchell et al. [2008], we select the 500 voxels with the most stable activation profile
across concepts. We perform leave-two-out cross validation and select voxels independently for
each of the cross validation folds during training. The stability score for a voxel is measured across
six presentations of a word and is approximated as the average pairwise Pearson correlation among
activation profiles over the training words in a cross-validation fold. The 500 voxels with the highest
stability score are chosen and combined into a vector, used to evaluate how well the multimodal
models can decode brain activity patterns.

4 Methods
We construct three visual models using three types of visual information: the internal features of
the object, the external context surrounding it, and the whole image. These representations are then
combined with linguistic representations to create the multimodal models.

4.1 Learning linguistic representations

We use the skip-gram model with negative sampling [Mikolov et al., 2013] to learn 100-dimensional
word embeddings from a lemmatized 2015 copy of Wikipedia [Rimell et al., 2016].

4.2 Learning visual representations

Object detection and segmentation We use the FRCNN unified object detection model [Ren
et al., 2015] to automatically detect objects and their bounding boxes in images associated with our
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Model Manual Auto
LINGUISTIC 0.79 0.79

VIS-INTERNAL 0.77 0.80
VIS-EXTERNAL 0.71 0.74

VIS-WHOLE 0.71 0.80
MM-INTERNAL 0.80 0.81
MM-EXTERNAL 0.80 0.81

MM-WHOLE 0.79 0.82
VIS-COMBINED 0.76 0.79
MM-COMBINED 0.81 0.82

Table 1: Mean decoding accuracies for models trained on manually annotated images from Visual
Genome, and those trained on automatically annotated Google images. Vis=visual, MM=multimodal,
and COMBINED=explicitly differentiates internal and external features. Bolded values indicate
statistical significance between the same type of model (visual-only vs multimodal) and models
trained on the same annotation type (manual vs automatic annotations).

nouns. FRCNN combines a region proposal network (RPN) with Fast R-CNN, an object detection
network, and minimizes computational cost during training and testing by sharing convolutional
layers between the networks. To maximize accuracy, we train an FRCNN network for each semantic
class in the MITCHELL dataset, starting from a VGG16 network [Simonyan and Zisserman, 2014]
pre-trained on the PASCAL VOC 2007 data set.

Extracting visual features We retrieve 60 images per word using Google Image Search. We then
create three sets of images for every word: the INTERNAL image (containing the object denoted by
the word), an EXTERNAL image (containing its visual context), and the original WHOLE image. To
generate the internal images, we crop and extract each object from within the annotated bounding
boxes. To generate external images, we fill in the annotated bounding box area with black pixels,
leaving only the visual context (black pixels are used as a simple way to represent no information). All
images are re-scaled to 256x256 and the original aspect ratios are maintained, padding any remaining
area with black pixels.

We use a Caffe [Jia et al., 2014] implementation of a pre-trained AlexNet model [Krizhevsky et al.,
2012] to extract a visual representation for each of the images. We first take an image as input to
the network, perform a forward pass, and extract the pre-softmax layer in the network (FC7) as a
representation of the image. We use the MMfeat toolkit [Kiela, 2016] to load the AlexNet model and
extract visual representations for the INTERNAL, EXTERNAL, WHOLE images corresponding to the
nouns in our data set.

4.3 Multimodal Models

We construct multimodal models by concatenating L2-normalised linguistic and visual representations.
This strategy, known as middle fusion, has been shown successful in previous multimodal semantics
research [Kiela and Bottou, 2014]. We combine the linguistic model with each of our visual models,
resulting in the three kinds of multimodal models: INTERNAL, EXTERNAL and WHOLE. Furthermore,
we construct two combined models: a COMBINED visual-only model concatenating the internal
and external models, and a COMBINED multimodal model concatenating the internal, external, and
linguistic models.

4.4 Decoding Brain Activity

We evaluate our models in their ability to decode brain activity associated with unseen words, i.e.
to predict the correct label associated with their fMRI patterns. We follow the same procedure as
Anderson et al. [2016], computing a semantic model similarity matrix consisting of semantic model
similarity codes for each of the 50 nouns from the MITCHELL dataset. Similarly, we construct a brain
activity similarity matrix consisting of brain activity similarity codes of the 50 nouns. We perform
leave-two-out cross validation, selecting the semantic model similarity codes (−→s i,−→s j) and brain
activity similarity codes (−→a i,−→a j) for two nouns. We remove the i-th and j-th elements from each of
the similarity codes as these entries correspond to the nouns being tested. Decoding is successful if
the sum of Pearson correlations for the correct pairings is greater than the sum of Pearson correlations
for the incorrect pairings, resulting in decoding accuracy of 1 for this pair and 0 otherwise. The
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expected chance-level decoding accuracy is 50% if a model were to match word labels with similarity
vectors at random.

5 Experiments
We first experiment with a set of manually-annotated images from Visual Genome and then with
images where objects and their bounding boxes have been automatically detected using FRCNN
networks.

5.1 Manually annotated images

Experimental Setup We use 50 nouns from the MITCHELL dataset and assess each model’s ability
to decode brain activity vectors using leave-two-out cross validation, resulting in 1225 (50 choose 2)
cross-validation folds per model.

Results The results, presented in Table 4.1, show all semantic models trained on manually annotated
images decode brain activity patterns significantly above chance levels1. The INTERNAL visual-only
model achieves a mean accuracy of 0.77, significantly2 outperforming (V={36, 43}, all p<0.015)
the EXTERNAL and WHOLE visual-only models, using the paired Wilcoxon signed rank test. The
INTERNAL and EXTERNAL multimodal models both achieve a mean accuracy of 0.80, outperforming
the WHOLE multimodal model with a mean of 0.79. Finally, the COMBINED multimodal model
outperforms the INTERNAL and EXTERNAL multimodal models, and significantly outperforms (V=35,
p<0.02) the WHOLE multimodal model with a mean accuracy of 0.81. These results demonstrate
that it is beneficial to differentiate between internal and external visual information, but that both are
useful for semantic processing, with the internal visual features having the most prominent influence
for visual-only models.

5.2 Automatically annotated images

Experimental Setup For each of our 50 nouns from the MITCHELL dataset, we retrieve 60 images
using Google Image Search. The images are annotated using FRCNNs and then processed to create
INTERNAL, EXTERNAL and WHOLE models. We follow the same evaluation procedure as in the
previous experiment, performing 1225 (50 choose 2) cross-validation folds.

Results Table 4.1 also presents decoding accuracies for the semantic models trained on the auto-
matically annotated images, averaged over nine participants. We again find that all models decode
brain activity vectors significantly above chance level. The results also show multimodal models con-
structed with automatic object detection perform on par with representations learned from manually
annotated images. Overall, we observe a similar trend; the INTERNAL visual-only model significantly
outperforms (V=43, p<0.015) the EXTERNAL visual-only model (mean accuracies of 0.80 and 0.74).

Besides corroborating the findings of the previous experiment on the importance of the internal visual
features, these results show that high quality visual representations capturing the objects’ internal
properties and their visual context can be learned through automatic object detection techniques,
decreasing the reliance on human annotated datasets (albeit some annotated data is required to train
the object detection system) and allowing for a greater scalability of the models.

6 Conclusion
Our results show that multimodal semantic models correlate with human neural semantic represen-
tations associated with concrete concepts, and the visual-only model using internal visual features
outperforms the other visual-only models in most cases. Similar performance across models using
manual and automatically annotated images demonstrates progress in object detection systems,
presenting opportunities to expand to other evaluation tasks where evaluation datasets may not be
covered by manually annotated image datasets. Future research might investigate alternative fusion
strategies, or whether NLP tasks benefit from visual feature differentiation.

1Using permutation testing with 1000 repeats, we found all models perform significantly above chance
level. We follow the same shuffling procedure detailed in Anderson et al. [2017] to obtain a null distribution of
chance-level decoding accuracies. The p-value of decoding accuracy is the proportion of chance-level accuracies
greater than or equal to the observed cross-validated decoding accuracy.

2When comparing two models, we used paired Wilcoxon signed rank tests (two-tailed) to tell us whether
their mean accuracy scores significantly differ from each other.
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