
TEASER: Simulation-based CAN Bus Regression
Testing for Self-driving Cars Software

Christian Birchler∗,†, Cyrill Rohrbach†, Hyeongkyun Kim‡,
Alessio Gambi§, Tianhai Liu∥, Jens Horneber∥, Timo Kehrer†, Sebastiano Panichella∗

∗ Zurich University of Applied Sciences, Switzerland
† University of Bern, Switzerland
‡ University of Zurich, Switzerland

§ IMC University of Applied Sciences Krems, Austria
∥ aicas GmbH, Germany

Abstract—Safety-critical systems such as self-driving cars
(SDCs) need to be tested rigorously. Especially electronic control
units (ECUs) of SDCs should be tested with realistic input data.
In this context, a communication protocol called Controller Area
Network (CAN) is typically used to transfer sensor data to the
SDC control units. A challenge for SDC maintainers and testers
is the need to manually define the CAN inputs that realistically
represent the state of the SDC in the real world. To address this
challenge, we developed TEASER tool, which generates realistic
CAN signals for SDCs obtained from sensors from state-of-the-art
car simulators. We evaluated TEASER based on its integration
capability into a DevOps pipeline of aicas GmbH, a company
in the automotive sector. Concretely, we integrated TEASER in
a Continous Integration (CI) pipeline configured with Jenkins.
The pipeline executes the test cases in simulation environments
and sends the sensor data over the CAN bus to a physical
CAN device, which is the test subject. Our evaluation shows the
ability of TEASER to generate and execute CI test cases that
expose simulation-based faults (using regression strategies); the
tool produces CAN inputs that realistically represent the state of
the SDC in the real world. This result is of critical importance
for increasing automation and effectiveness of simulation-based
CAN bus regression testing for SDCs.
Tool: https://doi.org/10.5281/zenodo.7964890
GitHub: https://github.com/christianbirchler-org/sdc-scissor/
releases/tag/v2.2.0-rc.1
Documentation: https://sdc-scissor.readthedocs.io

Index Terms—Autonomous systems, Regression Testing, Sim-
ulation Environment, CAN Bus

I. INTRODUCTION

In recent years, with the deployments of autonomous sys-
tems such as self-driving cars (SDCs) and unmanned aerial
vehicles, several accidents happened, as reported by users
and social media [1]–[6]. Hence, those incidents imply the
importance of testing for safety-critical systems such as SDCs.
Using simulation environments to test SDCs brings several
advantages over real-world testing in the field, especially the
aspects of reproducibility, safety, and determinism of the test
cases. However, testing in simulation is costly in terms of
computational power and time; therefore, it is required to do it
effectively. Testing on the system level of SDCs focuses on the
correct interaction of different components of the vehicle, such
as the engine control module, transmission control module,

brake control module, etc. Those components, also known
as electronic control units (ECUs), interact with each other
with a common protocol. In the automotive domain, the CAN
bus protocol is a widely used communication standard for
ECUs [7]. CAN bus allows the communication of different
ECUs in a vehicle over a shared bus system by a standard-
ized protocol [8]. The main challenge for SDC maintainers
and testers is to generate realistic test CAN signals which
accurately reflect the state of an SDC in the real world since
CAN signals are still manually generated for testing purposes
nowadays (e.g., at aicas GmbH).

The research on testing with CAN bus focuses on security,
model-based testing [9]–[12] and CAN queuing [13]. The
research on CAN signals generation based on simulation
environments, however, was mainly outside of the SDC do-
main [14]–[16]. Hence, to the best of our knowledge, there
is no tool that supports regression testing for SDC software
on ECUs based on the CAN bus protocol with realistic input
data. We aim to do simulation-based regression testing for self-
driving cars with their ECUs by using different simulators and
the vehicles’ CAN bus system.

To enable research on this problem, we developed TEASER
(simulaTion basEd cAn buS tEsting), a tool for simulation-
based CAN bus testing that translates simulated sensor data
of an SDC, obtained from a simulation environment, for
the CAN bus transmission. We conjecture the use of sensor
data from multiple different simulation environments produces
more realistic CAN signals for testing, which helps to detect
software defects of ECUs. Furthermore, TEASER mitigates
the currently common practice of manually generating CAN
signals to test ECUs (as done by aicas GmbH).

The contribution of this paper is threefold: (i) TEASER
is publicly available on GitHub as a feature component of
SDC-SCISSOR [17] with a GPLv3 1 license. (ii) TEASER
reduces the time for generating realistic CAN bus signals
for testing CAN devices, as demonstrated at aicas GmbH
(iii) we qualitatively evaluated the usefulness of TEASER

1https://www.gnu.org/licenses/gpl-3.0

https://doi.org/10.5281/zenodo.7964890
https://github.com/christianbirchler-org/sdc-scissor/releases/tag/v2.2.0-rc.1
https://github.com/christianbirchler-org/sdc-scissor/releases/tag/v2.2.0-rc.1
https://sdc-scissor.readthedocs.io
https://www.gnu.org/licenses/gpl-3.0

Fig. 1. TEASER system view

in the industrial setting of aicas GmbH by integrating it into
their DevOps pipeline for testing a physical CAN device.

II. THE TEASER TOOL

A. Architecture overview and main scenarios

The high-level architecture of the system is illustrated in
Figure 1. TEASER is fully integrated as a component in
SDC-SCISSOR [17], which is a tool that uses machine learning
to select simulation-based test cases for SDCs, and extends the
existing tool with CAN bus functionalities. With TEASER
we can generate CAN signals based on simulated scenarios
from different simulators such as BeamNG.tech and CARLA.
Therefore, TEASER enables regression testing based on CAN
signals which are now realistically simulated by the virtual
environments.

B. Simulation environments: BeamNG.tech and CARLA

TEASER supports two simulation environments to generate
CAN signal from. The first simulator is the BeamNG.tech
simulator. BeamNG.tech simulates soft-body physics behavior
in its virtual environment. The second simulator is CARLA. In
contrast to the BeamNG.tech simulator, CARLA simulates a
rigid-body physics behavior. Both simulators are widely used
in academia and in practice [18], [19].

C. Approach and technological overview

TEASER’s main objective is to extend the test runner of
SDC-SCISSOR to enable CAN bus testing. The tool uses
two open source python libraries; the python-can 2 and
cantools 3 packages. The python-can library allows
communication with the CAN bus over specific interfaces
(e.g., sockets). Complementary to the first package, the
cantools library provides functionality to compose the can
messages to send on the CAN bus. Specifically, cantools
allows the user to specify a CAN database file, which defines
how signals are encoded into CAN messages. The Listing 1
illustrates how the wheel speed, throttle, brake, and steering
angle are encoded in a CAN message by specifying it in a
CAN database file.

2https://github.com/hardbyte/python-can
3https://github.com/cantools/cantools

1 ...
2

3 BO_ 177 sampleFrame2: 4 Vector__XXX
4 SG_ wheelspeed : 16|16@1+ (0.2,0) [0|13107] "rpm"

Vector__XXX
5

6 BO_ 161 sampleFrame1: 7 Vector__XXX
7 SG_ throttle : 16|16@1+ (0.0001,0) [0|1] "%"

Vector__XXX
8 SG_ brake : 0|16@1+ (0.0001,0) [0|1] "%"

Vector__XXX
9 SG_ steering : 32|17@1- (0.01,0) [-655.36|655.35] "

degree" Vector__XXX
10

11 ...

Listing 1. Sample entries of a CAN database file

In a nutshell, all implementations were done in the context
of the label-tests subcommand of SDC-SCISSOR. The
input number of arguments for the subcommand is increased
by CAN-specific information as illustrated in Listing 2.

1 command: ’label-tests’
2 options:
3 home: ’C:\BeamNG.tech.v0.24.0.2\BeamNG.drive

-0.24.0.2.13392’
4 user: ’C:\BeamNG.drive’
5 tests: ’C:\Users\birch\repositories\sdc-scissor\

destination’
6 rf: 1.5
7 oob: 0.3
8 max_speed: 50
9 interrupt: false

10 obstacles: false
11 bump_dist: 20
12 delineator_dist: null
13 tree_dist: null
14 field_of_view: 120
15 canbus: true
16 can_stdout: true
17 can_dbc: ’/path/to/beamng_pipeline_sample.dbc’
18 can_dbc_map: ’/path/to/dbc_map_beamng.json’
19 can_interface: ’socketcan’
20 can_channel: ’vcan0’
21 can_bitrate: 250000
22 influxdb_bucket: ’your_InfluxDB_bucket’
23 influxdb_org: ’your_InfluxDB_organization’

Listing 2. Configuration file with highlighted CAN arguments

III. USING TEASER TOOL

A. Requirements

The following external software systems are required:
(i) Windows 10 (ii) Python 3.10 (iii) Pip (iv) BeamNG.tech 4

v0.24 and/or CARLA 5 (v) Poetry 6 (optional), and (vi) In-
fluxDB 7 (optional)

The following instructions assume a full installation of the
mentioned requirements on a Windows 10 machine.

4https://beamng.tech/
5https://carla.org/
6https://python-poetry.org/
7https://www.influxdata.com/

https://github.com/hardbyte/python-can
https://github.com/cantools/cantools
https://beamng.tech/
https://carla.org/
https://python-poetry.org/
https://www.influxdata.com/

Fig. 2. Infrastructure at aicas GmbH

B. Instructions

Get SDC-SCISSOR with the TEASER directly from Zen-
odo 8, GitHub 9 or PyPI 10 and run the TEASER component
by invoking the label-tests subcommand. For more de-
tails, also consolidate the demonstration video 11.

1 git clone https://github.com/christianbirchler-org/
sdc-scissor.git

2 cd sdc-scissor
3 poetry install
4 poetry run sdc-scissor label-tests [args...]

An overview of all subcommands with their options is
provided when invoking the --help flag.

1 poetry run sdc-scissor label-tests --help
2 ...

Specifying the commands and their options can also be
done inside a configuration file as illustrated in Listing 2. To
invoke TEASER with the configuration file the -c option is
provided:

1 poetry run sdc-scissor -c /path/to/config.yml

TEASER extends the existing argument options; we need
to use the highlighted arguments in Listing 2. Table I is an
overview of the arguments with their according data type and
description.

If an InfluxDB instance is in use, then the respective API ac-
cess token and host must be specified as environment variables.
TEASER provides the option to declare the environment
variable in a .env file:

1 INFLUXDB_TOKEN="SeCrEtToKeN"
2 INFLUXDB_URL="http{s}://influxdb.example.org:{PORT}"

Alternatively, the environment variables can be set explicitly
from the Windows control panel.

The TEASER component provides different options to out-
put the CAN messages: i) Standard output (stdout) ii) Phys-
ical CAN interface defined in the configuration iii) dumping

8https://doi.org/10.5281/zenodo.7964890
9https://github.com/christianbirchler-org/sdc-scissor/releases/tag/v2.2.0-

rc.1
10https://pypi.org/project/sdc-scissor/2.2.0rc1/
11https://doi.org/10.5281/zenodo.7965263

TABLE I
TEASER ARGUMENTS

Argument Type Description

canbus Boolean Indicator if TEASER should be enabled

can_stdout Boolean Indicate if TEASER should print the CAN
messages to stdout, i.e., to the console

can_dbc String Path to the CAN database file, which consists
of data encoding information

can_dbc_map String Path to a DBC map file, which consists of
information on how to assess the data from
different simulators

can_interface String Specifying the interface to use for CAN

can_channel Strick Specifingy the channel to use for CAN

can_bitrate Integer Bitrate to have for CAN

influxdb_bucket String Bucket name of an InfluxDB instance to use
or to create if it does not exist yet

influxdb_org String The organization of the InfluxDB to use

the signals to an InfluxDB instance, or iv) any combination
of the previous possibilities. This output behavior is achieved
through implementing them by applying the decorator design
pattern.

IV. EVALUATION

SDC-SCISSOR achieves an accuracy of 70%, a precision of
65%, and a recall of 80% in selecting tests leading to a fault
and improved testing cost-effectiveness [19]. The usefulness
of SDC-SCISSOR with TEASER in an industrial context is
also demonstrated and explained [19], where a tester at aicas
GmbH requires two days to produce CAN signals manually
for 15 test cases. The automation with TEASER significantly
reduces the time to generate realistic CAN signals since they
are generated at runtime, where on average, a single test case
in simulation with BeamNG.tech requires 49 seconds [20].

Furthermore, the video 12 shows the integration at aicas
GmbH use-case whose infrastructure is illustrated in Figure 2.
At aicas GmbH we have a simulation environment installed
on a Windows machine. The simulation starts when a build

12https://doi.org/10.5281/zenodo.7964959

https://doi.org/10.5281/zenodo.7964890
https://github.com/christianbirchler-org/sdc-scissor/releases/tag/v2.2.0-rc.1
https://github.com/christianbirchler-org/sdc-scissor/releases/tag/v2.2.0-rc.1
https://pypi.org/project/sdc-scissor/2.2.0rc1/
https://doi.org/10.5281/zenodo.7965263
https://doi.org/10.5281/zenodo.7964959

job from Jenkins is triggered. When the simulation starts, the
TEASER component produces the CAN frames and sends
them over the CAN bus. A Raspberry Pi, which represents
a physical CAN device, receives the messages. A separate
application (JamaicaEDG) connects to the CAN device and
displays on a dashboard the transmitted values from the CAN
bus. Specifically, the speed and throttle values are represented.

V. IMPLICATIONS & FUTURE WORK

With TEASER, regression testing for SDCs is not limited
towards the fully black box approach as initially done by [17],
[19]–[22] by neglecting ECU components and their interac-
tions; instead, testing of individual physical CAN devices
is feasible based on input data obtained from a simulation
environment to test the CAN system of SDCs. TEASER
provides the technological possibility of testing ECUs individ-
ually focusing on CAN messages as input and output. Instead
of manually testing CAN devices by defining specific CAN
messages upfront, which is the standard industrial approach of
our evaluation partner aicas GmbH, using simulated signals
sent over the CAN bus enables more realistic input data
for the CAN devices since the CAN messages are based on
simulated scenarios. To enable future research on SDC testing,
the modular architecture of TEASER can be enabled in co-
simulation environments by implementing the given APIs.

The TEASER component extends the SDC-SCISSOR tool
by supporting data transmission over the CAN bus to test CAN
devices. We showed the usefulness of the tool in practice by
integrating it into the DevOps pipeline of aicas GmbH. The
tool enables regression testing for SDC CAN devices based
on signals generated from simulators such as BeamNG.tech
or CARLA. We believe that TEASER enables future research
on testing CAN devices and SDCs in general based on state-
of-the-art simulation data.

ACKNOWLEDGEMENTS

We thank the Horizon 2020 (EU Commission) support for
the project COSMOS (DevOps for Complex Cyber-physical
Systems), Project No. 957254-COSMOS) and the DFG project
STUNT (DFG Grant Agreement n. FR 2955/4-1).

REFERENCES

[1] N. H. T. S. Administration, “Summary report: Standing general order on
crash reporting for level 2 advanced driver assistance systems,” National
Highway Traffic Safety Administration, 1200 New Jersey Avenue, SE
Washington, D.C. 20590, Tech. Rep. DOT HS 813 325, June 2022.

[2] NPR, “Nearly 400 car crashes in 11 months involved
automated tech, companies tell regulators,” npr.org. [Online]. Avail-
able: https://www.npr.org/2022/06/15/1105252793/nearly-400-car-
crashes-in-11-months-involved-automated-tech-companies-tell-regul

[3] 9News Staff, “Warning for drivers using autopilot after melbourne
crash that critically injured woman,” 9news.com.au. [Online]. Available:
https://rb.gy/60rhn

[4] S. Khatiri, S. Panichella, and P. Tonella, “Simulation-based test
case generation for unmanned aerial vehicles in the neighborhood
of real flights,” in Conference on Software Testing, Verification
and Validation. IEEE, 2023, pp. 281–292. [Online]. Available:
https://doi.org/10.1109/ICST57152.2023.00034

[5] A. Di Sorbo, F. Zampetti, A. Visaggio, M. Di Penta, and S. Panichella,
“Automated identification and qualitative characterization of safety
concerns reported in uav software platforms,” vol. 32, no. 3, 2023.
[Online]. Available: https://doi.org/10.1145/3564821

[6] A. D. Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,”
in International Symposium on Foundations of Software Engineering,
T. Zimmermann, J. Cleland-Huang, and Z. Su, Eds. ACM, 2016, pp.
499–510. [Online]. Available: https://doi.org/10.1145/2950290.2950299

[7] CAN in Automation (CiA), “History of can technology.” [Online].
Available: https://www.can-cia.org/can-knowledge/can/can-history/

[8] Road vehicles – Controller area network (CAN) – Part 1: Data
link layer and physical signalling, ISO 11898-1:2015, International
Organization for Standardization, 2015. [Online]. Available: https:
//www.iso.org/standard/63648.html

[9] T. Huang, J. Zhou, and A. Bytes, “ATG: an attack traffic generation tool
for security testing of in-vehicle CAN bus,” in International Conference
on Availability, Reliability and Security. ACM, 2018, pp. 32:1–32:6.
[Online]. Available: https://doi.org/10.1145/3230833.3230843

[10] S. Yang, D. Tang, and X. Shi, “Testing system for CAN bus-oriented
embedded software,” in International Conference on Computer and
Information Science. IEEE Computer Society, 2014, pp. 379–384.
[Online]. Available: https://doi.org/10.1109/ICIS.2014.6912162

[11] O. Cros, A. Thiroux, and G. Chênevert, “Cacao, a can-bus simulation
platform for secured vehicular communication,” in Ad Hoc Networks
- International Conference, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, vol. 345. Springer, 2020, pp. 213–224. [Online].
Available: https://doi.org/10.1007/978-3-030-67369-7 16

[12] M. Bozdal, M. Samie, and I. Jennions, “A survey on can bus
protocol: Attacks, challenges, and potential solutions,” in International
Conference on Computing, Electronics & Communications Engineering,
2018, pp. 201–205. [Online]. Available: https://doi.org/10.1109/
iCCECOME.2018.8658720

[13] J. Zhang and T. Li, “Based on the queuing model of CAN bus
simulation and application,” in International Conference on Bio-Inspired
Computing: Theories and Applications, ser. Advances in Intelligent
Systems and Computing, vol. 212. Springer, 2013, pp. 631–639.
[Online]. Available: https://doi.org/10.1007/978-3-642-37502-6 76

[14] Y. Vershinin, B. Nnadiekwe, and S. Schulz, “Simulation of signal
transmission in motion simulator using controller area network
(can-bus),” in International Conference on Intelligent Transportation
Systems. IEEE, 2015, pp. 2688–2693. [Online]. Available: https:
//doi.org/10.1109/ITSC.2015.432

[15] R. Louali, S. Bouaziz, A. Elouardi, and M. Abouzahir, “Platform
simulation based unmanned aircraft systems design,” in Second
World Conference on Complex Systems, 2014, pp. 736–742. [Online].
Available: https://doi.org/10.1109/ICoCS.2014.7061002

[16] C. Liu and F. Luo, “A co-simulation-and-test method for CAN bus
system,” J. Commun., vol. 8, no. 10, pp. 681–689, 2013. [Online].
Available: https://doi.org/10.12720/jcm.8.10.681-689

[17] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, and S. Panichella,
“Cost-effective simulation-based test selection in self-driving cars
software with sdc-scissor,” in International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2022, pp. 164–168.
[Online]. Available: https://doi.org/10.1109/SANER53432.2022.00030

[18] International Workshop on Search-Based Software Testing. IEEE,
2021. [Online]. Available: https://doi.org/10.1109/SBST52555.2021

[19] C. Birchler, S. Khatiri, B. Bosshard, A. Gambi, and S. Panichella,
“Machine learning-based test selection for simulation-based testing of
self-driving cars software,” Empirical Software Engineering, vol. 28,
no. 3, p. 71, 2023. [Online]. Available: https://doi.org/10.1007/s10664-
023-10286-y

[20] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and
A. Panichella, “Single and multi-objective test cases prioritization
for self-driving cars in virtual environments,” ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 2, apr 2023. [Online]. Available:
https://doi.org/10.1145/3533818

[21] C. Berger, “Accelerating regression testing for scaled self-driving cars
with lightweight virtualization – a case study,” in International Workshop
on Software Engineering for Smart Cyber-Physical Systems, 2015, pp.
2–7. [Online]. Available: https://doi.org/10.1109/SEsCPS.2015.9

[22] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, and S. Panichella,
“Cost-effective simulation-based test selection in self-driving cars
softwareimage 1,” Science of Computer Programming, vol. 226,
p. 102926, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167642323000084

https://www.npr.org/2022/06/15/1105252793/nearly-400-car-crashes-in-11-months-involved-automated-tech-companies-tell-regul
https://www.npr.org/2022/06/15/1105252793/nearly-400-car-crashes-in-11-months-involved-automated-tech-companies-tell-regul
https://rb.gy/60rhn
https://doi.org/10.1109/ICST57152.2023.00034
https://doi.org/10.1145/3564821
https://doi.org/10.1145/2950290.2950299
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
https://doi.org/10.1145/3230833.3230843
https://doi.org/10.1109/ICIS.2014.6912162
https://doi.org/10.1007/978-3-030-67369-7_16
https://doi.org/10.1109/iCCECOME.2018.8658720
https://doi.org/10.1109/iCCECOME.2018.8658720
https://doi.org/10.1007/978-3-642-37502-6_76
https://doi.org/10.1109/ITSC.2015.432
https://doi.org/10.1109/ITSC.2015.432
https://doi.org/10.1109/ICoCS.2014.7061002
https://doi.org/10.12720/jcm.8.10.681-689
https://doi.org/10.1109/SANER53432.2022.00030
https://doi.org/10.1109/SBST52555.2021
https://doi.org/10.1007/s10664-023-10286-y
https://doi.org/10.1007/s10664-023-10286-y
https://doi.org/10.1145/3533818
https://doi.org/10.1109/SEsCPS.2015.9
https://www.sciencedirect.com/science/article/pii/S0167642323000084
https://www.sciencedirect.com/science/article/pii/S0167642323000084

	Introduction
	The TEASER tool
	Architecture overview and main scenarios
	Simulation environments: BeamNG.tech and CARLA
	Approach and technological overview

	Using TEASER tool
	Requirements
	Instructions

	Evaluation
	Implications & Future work
	References

