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Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator
(CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam
computed tomography (CBCT).
Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray atten-
uation model with respect to X-ray transmission length, which calculates associated parameters
numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is
performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement
network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are
required. The network consists of an encoder that separates artifacts and content and a decoder for the
content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft
tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images.
The proposed approach is systematically assessed using a dental phantom with two types of metal
objects for qualitative and quantitative comparisons.
Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal
while preserving native structures.
Conclusion: This study may significantly improve the detection of areas of interest in many dentomax-
illofacial applications.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dental cone-beam computed tomography (CBCT) is a well-
known imaging modality for implant site imaging, maxillofacial
diagnosis, orthodontics, and treatment planning in craniofacial
surgery. Despite being a secure and reliable diagnostic method,
CBCT suffers from high-density objects such as metal implants and
dental fillings. Such metal objects cause strong beam hardening
effects that significantly alter the energy spectrum of a beam,
resulting in prominent streak-like artifacts and shadows in CBCT
el- and Deep Learning-Based
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doi.org/10.1016/j.net.2023.00.

shin@snu.ac.kr (Y.-G. Shin),

by Elsevier Korea LLC. This is an op
images that reduce the contrast, obscure the structure, and impair
the detection of areas of interest. Therefore, the degradation of
CBCT image quality makes diagnosis challenging and time-
consuming.

Metal artifact reduction (MAR) techniques for CBCT have been
widely studied [1e15]. One approach involves mathematical
correction-based algorithms, which enhance the reconstructed
image by reducing beam-hardening artifacts and correcting the
error model. Hsieh et al. proposed a polynomial error model with
certain assumptions [16]. The error model was approximated with
a relatively simple form, reducing the computational complexity of
the estimation process. They demonstrated that two iterations are
generally sufficient to deal with awide range of densities. Park et al.
proposed a beam-hardening corrector that accurately reflected the
characteristics of beam hardening [17]. They demonstrated the
corrector's performance using numerical simulations and phantom
experiments. However, in the presence of several high-density
metals, the metal regions in the sinogram are severely corrupted,
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and the performance of this method is limited. Shi et al. analyzed
the variation in the attenuation coefficient of severalmaterials at an
energy level and discovered that these attenuation coefficients
exhibit a similar shape of variationwith only a scale difference [18].
From this perspective, they proposed a synthetic geometry pro-
jection that combined each material in the projection with a scaled
material. Hur et al. proposed a constrained beam-hardening esti-
mator (CBHE), leading to faster computation without compro-
mising MAR quality [19]. These estimator-associated parameters
were calculated numerically from an uncorrected CT image and
metal-only forward projection.

Another approach involves deep learning (DL)-based techniques
such as U-net [20] and convolutional neural networks (CNNs) [21],
which can refine the results of interpolation-based algorithms or
directly correct metal artifacts by training with supervised learning.
However, supervised learning requires anatomically identical CT
image pairs, with and without metal artifacts, which are clinically
impractical to obtain. Adversarial training has recently been stud-
ied as a novel method for image-to-image translation [22]. Isola
et al. suggested a conditional generative adversarial network
(CGAN), which is composed of two networks: a generator network
for performing image-to-image translation and a discriminator
network for the disentanglement of artifacts from CT [23,24].
Because training networks with a mean-square error loss function
have shown over-smoothed images [25], they presented a tradi-
tional loss coupled with an adversarial loss working excellent
overall for image-to-image translation tasks. Liao et al. proposed a
CycleGAN-based artifact disentanglement network that separates
metal artifacts and normal tissues from CT images in latent space
[26]. It was the first unsupervised method for CT and showed
quantitative evaluation results against other supervised/unsuper-
vised MAR methods with synthesized data. While preserving the
native anatomical structures of the patients, image correction
should focus on corrupted regions and recover hidden features
caused by metal artifacts. GAN-based methods tend to degrade
unaffected regions by metal artifacts as the training data barely
cover various artifact patterns. Several researchers have investi-
gated the use of two enhancement networks for dual domain image
processing, specifically for sinogram and CT image restoration
[27,28]. These networks are built on general image enhancement
technique. The joint utilization of two domains have shown supe-
rior performance compared to other studies. Wang et al. proposed a
dual domain network framework that effectively incorporates the
constraints of the intrinsic imaging geometry model into the pro-
cess of mutual learning between spatial (CT) and Radon (sinogram)
domains [29]. Additionally, this framework can be flexibly inte-
grated with prior learning from both domains. Notably, this
approach is distinguished by its specificity in aligning neural
network modules and algorithm operations, which establishes a
clear working mechanism.

In a previous study, we implemented CBHE derived from a
polychromatic X-ray attenuation model with respect to the X-ray
transmission length, which calculates associated parameters
numerically. In this study, we established that DL-based post-
refinement with the artifact disentanglement network (ADN) [26]
can be improved significantly without incurring excessive
computational costs when this CBHE remains in dark-shaded re-
gions around the metal. This network is trained to learn the un-
supervised mapping between metal artifact-corrupted CT images
and their corresponding metal artifact-free images. The network
uses the CycleGAN architecture, which consists of two generators
and two discriminators to learn the mapping between two do-
mains: the generators are used to translate the CBCT images with
metal artifacts to the artifact-free domain, whereas the discrimi-
nators are used to distinguish between the translated and real
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artifact-free images. The reconstructed images generated by the
CBHE are normalized to include the content from the air to the bone
region unaffected by artifacts. Performing ADN with data normal-
ization replaces metal regions with values from the bone or soft
tissue regions. Finally, the metal regions obtained from the CBHE
are blended into the reconstructed images.
2. Material and methods

2.1. Metal segmentation and X-ray transmission length calculation

Because the CBHE uses information on the transmission length
of X-rays through themetal region, a segmentedmetal region in the
CBCT image is required. A threshold-based technique is generally
used for the metal segmentation of CBCT images. Metal artifacts
appear as white streaks or dark shadows that extend radially
around the metal region. Generally, a few points separate these
artifacts from the metal region values, and the metal region can be
separated by specifying a threshold. Because, in a few cases, dis-
tinguishing between artifacts and metal regions is challenging, so
adaptive filtering or mean-shift techniques can also be applied to
weaken the streaks.

The X-ray transmission length for the metal region in each
projection was calculated using the segmented metal region. The
segmented metal region was converted into a binary mask, and CT
scan geometry for each projection was required. The process of
calculating the X-ray transmission length for each pixel on the
projection is very similar to the pixel-driven ray casting of the
volume-rendering process. The intersection lengths between each
line r from the position of the X-ray source to the pixels on the
projection P and each voxel of the metal region in the CT volume
are determined and accumulated. Because the CT value in the voxel
of the metal region is not considered, the entire process can be
transformed into line integrals for the binary mask of the metal
region as

lr ¼
Xn
i¼1

li ¼
ð
r

Mds; (1)

where M is a binary mask consisting of one for metal voxels and
zero for nonmetal voxels (see Fig. 1).
2.2. Metal artifact reduction method with constrained beam-
hardening estimator

Photons emitted from an X-ray tube do not have the same en-
ergy. The attenuation in the projections is underestimated when
polychromatic X-ray photons penetrate an irradiated object as they
shift to higher energies. The underestimated error in projections is
the accumulation of reduced polychromatic X-ray attenuation co-
efficients along the transmission length. The beam-hardening error
(BHE) jsðlÞ can be represented by the polychromatic X-ray atten-
uation coefficientcmsðlÞ for the material s, transmission length l, and
the normalized X-ray spectrum hðEÞ with E2½Em; EM � as

jsðlÞ¼cmsð0Þlþ ln

0B@ ðEM
Em

hðEÞ*expf�msðEÞlgdE

1CA: (2)

Here, lnð REM
Em

hðEÞ*expf�msðEÞlgdEÞ depends on the X-ray spectrum

hðEÞ and material attenuation coefficient msðEÞ. By applying the
constrained approximations in Ref. [19], Eq. (2) can be



Fig. 2. Correspondence between the BHE and the CBHE when the ray transmission
length is < 50 mm for titanium (Ti), iron (Fe), and copper (Cu).
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approximated using the CBHE ~jsðlÞ as

jsðlÞz ~jsðlÞ¼cmsð0Þl�msðEMÞlþ a*ln
�
1� expfcmsð0Þlgcmsð0Þl

�
: (3)

Dependencies can be avoided by constrained approximation,
leading to a faster computation. Finally, the BHE can be derived in
the following linear form as

j
�
sðlÞ ¼ bj

�
s;1ðlÞ þ aj

�
s;2ðlÞ; (4)

where

b¼cmsð0Þ � msðEMÞ;

~js;1ðlÞ¼ l;

~js;2ðlÞ¼ ln
�
1� expf � msðEHÞlg

msðEHÞl
�
: (5)

Fig. 2 shows a comparison between the CBHE and BHE in tita-

nium, iron, and copper. The CBHEwas calculated by excluding ~j1ðlÞ.
For each metal, the model-associated unknown parameter was
determined to have the shape closest to the given BHE curve. For up
to 50 mm, the CBHE showed a proximity with the BHE.

The corrected projection can be expressed as Pþ ~jsðlÞ. Because
the FDK operation [30] has linearity, the corrected CT image can be
expressed as

R�1ðPþ ~jsðlÞÞ¼R�1ðPÞþR�1ð~jsðlÞÞ¼ fCT þ bR�1�~js;1ðlÞ
�

þ aR�1�~js;2ðlÞ
�
; (6)

where R�1 indicates the FDK operator and R�1ðPÞ is the uncorrected
CT fCT .

Constrained beam-hardening estimator has only been consid-
ered for a single metallic object thus far. However, in many cases,
different metals are present in the scanned area. By analyzing the
variation of the attenuation coefficients of the materials based on
the energy level, the attenuation coefficients showed a similar
shape of change with only different scales. Therefore, considering
Fig. 1. Calculation of X-ray transmission length.
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that a few of the artifacts caused by the high-density metal can be
replaced with those caused by the low-density metal, the MAR
algorithm requires slight modification in the metal segmentation.

First, the MAR method is performed sequentially from the
lowest-density metal to the highest-density metal in the entire
metal area. For each step of metal segmentation, the metal area
contains not only the area of the current metal but also the area of
the higher-density metals (Fig. 2). Therefore, the CBHE can mitigate
artifacts not only between the same metals but also between
different metals. Equation (6) can be modified as

R�1

 
Pþ

Xn
k¼1

~jskðlÞ
!
¼R�1ðPÞ þ R�1

 Xn
k¼1

~jskðlÞ
!

¼ fCT þ
Xn
k¼1

bkR
�1�~js;1ðlÞ

�þXn
k¼1

akR
�1�~js;2ðlÞ

�
: (7)

The reconstructions of R�1ð~j1ðlÞÞ and R�1ð~j2ðlÞÞ are performed
once during the entire process. They are used to alleviate the beam-
hardening effect on fCT following Eq. (5).cmsð0Þ should be calculated.
However, obtaining additional information is challenging about the
material attenuation properties (e.g., X-ray mass attenuation coef-
ficient table [31]). Thus, if the obtaining task is not possible,
empirically, the lowest value of the metal region in the CT image
before HU conversion is close to cmsð0Þ. Therefore, the lowest value
can be an alternative. b compensates for the entire metal region
only with the same value, and its value is irrelevant as long as b

makes R�1ð~j1ðlÞÞ larger than the maximum amount reduced by

R�1ð~j2ðlÞÞ. a is an unknown coefficient that minimizes the beam-
hardening error. This condition can be obtained by solving the
problem of minimizing the following function.

argmin
a

�
SD
�
fCT ðxÞþaR�1�~js;2ðlÞ

�ðxÞ�� for MðxÞ>0; (8)

where SD indicates the standard deviation operator andMðxÞ is the
mask image representing the metal region. The detailed algorithm
is presented in Algorithm 1, and Fig. 3 shows the entire process of
the CBHE method.
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Algorithm 1. MAR with CBHE for multiple types of metal
2.3. Post-refinement with DL-based network model

Although the CBHE-based MAR method may recover informa-
tion corrupted by beam-hardening artifacts, it is not appropriate for
artifacts caused by factors other than beam hardening. Therefore, a
few artifacts can remain in the MAR results. Image-domain MAR
methods focus on identifying and removing artifacts from the CT
images. In research on image processing techniques as a post-
processing strategy, MAR methods based on DL have recently
been studied. Studies based on GAN [22] are quite effective [32].

Among the GAN-based MAR methods, the CycleGAN-based
Fig. 3. Illustration of the entire process of CBHE w
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artifact disentanglement network (ADN) [26] can be used to
separate metal artifacts and normal tissues from CT images in the
latent space. This approach involves training a deep neural network
to learn the mapping between input and target image spaces,
where the input space includes the original CT image and the target
space includes the CT image with the metal artifact removed (see
Fig. 4). The network architecture generally consists of a generator
and discriminator. The generator transforms the input CT image
into a target image that does not contain metal artifacts. The
discriminator was used to distinguish between the transformed
and real target images. This is repeated cyclically with the
hen containing two types of metal objects.



Fig. 5. Process of the collaboration with ADN.

Fig. 4. MAR process of ADN network.

J. Hur, Y.-G. Shin and H. Lee Nuclear Engineering and Technology 55 (2023) 2854e2863
generator trying to produce increasingly accurate transformed
images, whereas the discriminator becomes better at distinguish-
ing between real and generated target images. The key innovation
of this approach is the use of latent space to separate metal artifacts
from normal tissues in CT images. This is achieved by training the
generator to transform the input image into the target image while
minimizing the distance between the input and generated images
in the latent space. This enables the network to disentangle metal
artifacts from normal tissues in the input image, resulting in a
target image that reflects the underlying anatomy accurately.

The CBHE-based mathematical correction method and ADN
have features that complement each other's shortcomings. The
CBHE method reduces the artifact complexity of CBCT images
rapidly, and the remaining artifacts can be reduced through the
ADN effectively. The author of ADN provided pretrained models
that were trained using DeepLesion [33] and Spineweb [34] data-
sets, respectively. We attempted to train a newmodel by combining
both datasets. For the Adam optimizer, we set the initial learning
rate to 0.001 and used (0.5, 0.999) for beta. The hyper-parameters
for each loss term were consistent with those stated by the
author, which were 1.0 for adversarial losses and 20.0 for recon-
struction, artifact consistency, and self-reduction losses. Metal re-
gions were defined as regions with HU values greater than 2500.
However, the newmodel combining the two datasets did not show
significant differnce in performance compated to the pretrained
models. In the end, we used the pretrained model using Spineweb.
To apply ADN, we implemented additional modules that deal with
the input and output of both CBHE and ADN methods. These
modules include normalization/denormalization component and a
complement that supplements metal regions removed by ADN.

The overall process is illustrated in Fig. 5. As the ADN network
takes a normalized image in the range of [�1, 1] as input, data
normalization is performed to load the MAR results from the CBHE
method. A normalization range should contain unaffected regions
from the air to the bones. After preparation, an artifact-free image
was generated using the ADN. The metal region in the artifact-free
image was replaced by values in the bone or soft-tissue regions.
Therefore, the metal regions obtained in the previous CBHE process
should be blended. Furthermore, because ADN supports 256 � 256
input images only, downsampling before normalization and
upsampling after denormalization are required.

2.4. Experimental evaluation

A dental phantom with two metal types (JawEquivPhantom) is
used to evaluate the performance of the conventional sinogram-
inpainting methods (LIMAR and NMAR), recent model-based
method (CBHE), and post-refinement of ADN to each MAR
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method, as shown in Fig. 6. With a similar structure to the
mandibular, JawEquivPhantom consists of bones, teeth, and
aluminum and titanium rods. It was scanned using a cone-beam CT
(CBCT) system (Ray Co., Korea) with a peak voltage of 90 keV. The
source-to-axis is 468 mm and the source-to-detector is 661 mm.
The projection has a resolution of 786 (w) � 960 (h) pixels with a
detector pitch size of 0.15 mm. The reconstructed image has a
resolution of 512 � 512 � 256 voxels and a voxel pitch size of
0.18 mm. Water correction was not applied to the dental phantom
before performing MAR methods.

For quantitative evaluation, two metrics were employed: mean
absolute deviation (MAD) [9] and contrast-to-noise ratio (CNR)
[35]. Because of the lack of reference images, the MAD was
computed on the outside part of the metal area in regions of in-
terest (ROIs) by referencing the homogeneous region of the un-
corrected image. The CNR was computed for the two selected
regions, i.e., bone and air areas.

MADðHUÞ¼ 1
N
*
X
i2ROI

���xMAR
i � xTruei

���; (9)

CNR¼2jMA �MBjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A þ s2B

q ; (10)

where xMAR
i and xTruei denote the ith HU value of the ROI in the

corrected and reference images, respectively, and N is the total
number of selected ROIs.MA andMB denote the mean value of each
region A and B in the CBCT, respectively, and sA and sB are the
standard deviations.



Fig. 6. Photo and 3D visualization (emphasized metal region with transparent overall volume) of JawEquivPhantom.

Fig. 7. Comparison of conventional and hybrid MAR methods for JawEquivPhantom. From the left, the uncorrected image, LIMAR result, NMAR result, and CBHE result are shown.
The first row shows the results of each method and the second row shows adding ADN to each MAR method. The reconstruction images are displayed at window (center and width)
settings of (500, 3000) HU.
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3. Results

Fig. 7 shows a comparison among the three MAR methods:
LIMAR, NMAR, and CBHE, for the JawEquivPhantom. The top row
shows the reconstructed CBCT images generated using each
method on the uncorrected CBCT images. The bottom row shows
the application of post-refinement using ADN on the initial metal
artifact-reduced image obtained by each method. All methods
reduced the beam-hardening artifacts shown in the uncorrected
CBCT images. Furthermore, LIMAR and NMAR with ADN signifi-
cantly suppressed dark and white streak artifacts. However, it lost
Table 1
Quantitative evaluation of the MAR methods for ROIs of JawEquivPhantom.

Methods Uncorrected Uncorrected þ ADN LIMAR LIMAR

MAD 458.15 312.80 118.13 68.16
CNR 13.32 14.06 7.22 6.73
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morphological information around the metal region and intro-
duced secondary artifacts (Fig. 9).

Table 1 lists the quantitative results of each method. Addition-
ally, MAD was calculated on ROI1 in Fig. 8 (red box in Fig. 7) by
referring to the homogeneous ROI (yellow box in Fig. 7). The CNR
was calculated using the orange and blue circles in Fig. 9 (blue box
in Fig. 7).

Comparing ADN to each MAR method, only relatively small
amounts of artifacts without morphological loss were reduced.
Cooperation between ADN and each MAR method showed signifi-
cantly improved results. The remaining dark shadows and a few
þ ADN NMAR NMAR þ ADN CBHE CBHE þ ADN

132.08 79.50 318.35 194.14
5.45 5.53 14.20 17.17



Fig. 8. Zoomed CBCT images for ROI1 (the red box) in Fig. 7. From the left, the uncorrected image, LIMAR result, NMAR result, and CBHE result are shown. The first row shows the
results of each method and the second row shows adding ADN to each MAR method. These images are displayed at window (center and width) settings of (500, 3000) HU.

Fig. 9. Zoomed CBCT images for ROI2 (the blue box) in Fig. 7. From the left, the uncorrected image, LIMAR result, NMAR result, and CBHE result are shown. The first row shows the
results of each method and the second row shows adding ADN to each MAR method. These images are displayed at window (center and width) settings of (500, 3000) HU. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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white streaks around the metal region in the center were reduced
significantly in cooperation with ADN and CBHE. The result of the
collaboration shows a 39% improvement over the CBHE method
and a 38% improvement over the ADN method in terms of MAD
(Table 1). In terms of CNR, it demonstrated a 21% improvement
compared with the CBHE-based MAR method and 22% improve-
ment compared with the ADN method. Although the others
showed better results in terms of MAD, they showed little better
(NMAR) or poorer results (LIMAR) in CNR.

Fig. 10 demonstrates that residual artifacts can be effectively
removed when CBHE is first applied to the bone and then ADN is
used. It can be observed that the performance of reducing residual
artifacts is better in the order of 1) using ADN after applying CBHE
2860
to metal and bone, 2) applying CBHE to metal and bone, 3) using
ADN after applying CBHE to metal only, and 4) applying CBHE to
metal only.
4. Discussion

The proposed hybrid MAR approach based on CBHE and ADN is
in sharp contrast to previous MAR approaches, and it can improve
clinical diagnosis and treatment planning in awide range of clinical
applications. Furthermore, CBHE-based mathematical correction is
a model-based approach that considers the physics of the CT im-
aging process and uses the energy-dependent attenuation co-
efficients of the materials in the CT image to estimate the photon



Fig. 10. Comparison of CBCT images generated by applying CBHE based on metal only and CBHE based on metal and bone for JawEquivPhantom, with the representative slices with
metal counts of one (a), two (b), and three (c) in the center. From left to right, the odd columns show the results of applying CBHE based on metal only and the even columns show
the results of applying CBHE based on metal and bone. The first row is the result before using ADN and the second row is the result after using ADN for each result. The
reconstruction images are displayed at window (center and width) settings of (500, 3000) HU.
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flux that passes through the metal object and the corresponding
beam hardening effect. An ADN-based post-refinement step is a
data-driven approach that uses deep neural networks to learn the
mapping between metal artifact-corrupted CT images and their
corresponding artifact-free images. By combining these two ap-
proaches, the hybrid method can exploit the strengths of model-
2861
based and data-driven approaches, leading to a more accurate
and robust solution for reducing metal artifacts in CT images. This
approach can provide better metal artifact reduction than either
approach alone or other MARmethods that rely solely on empirical
or model-based approaches. Additionally, the additional processing
time using ADN can be negligible because many CT slices can be
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forwarded to the model, as the GPU memory capacity allows.
Whether only one CT slice or multiple CT slices are being processed,
it takes approximately a second or less.

Reconstructions performed with the JawEquivPhantom
demonstrated that CBHE-based MAR can be applied to cases con-
taining metallic objects of several types by separately performing
MAR for each metal. Specifically, it follows a sequential process of
performing MAR on the metal with the lowest density in the entire
metal area and then on the metal with the next-lowest density,
while excluding the previous metal area. Therefore, the proposed
method can reveal artifacts not only between the same metals but
also between different metals. In the proposed hybrid approach,
the image quality of volumetric CBCT imaging was similar or su-
perior to that of the sinogram inpainting-based and model-based
approaches without losing morphological information locally.
Quantitative analysis using MAD and CNR calculations substanti-
ated the increased quality of the reconstructed images. Further-
more, LIMAR and NMAR showed better MAD values for the
JawEquivPhantom. However, they lost the anatomical shape around
the metal area. Thus, they had lower CNR values with and without
ADN.

Although the proposed hybrid scheme can effectively correct
metal-induced artifacts in dental CBCT images, our future work
should be improved. First, as it inherits the CBHE, it has identical
dependencies on accurately segmenting the metal region, X-ray
spectrum information, etc. Second, the ADN-based post-refinement
stage is vulnerable to mapping input data to the desired format.
Even small changes in the mapping range can yield significantly
different results. Third, as shown in Fig. 2, the CBHE model can
provide a good approximationwhen themetal length is < 50mm. If
the ray transmission length of the metal is > 50 mm, more exper-
iments are required to test the feasibility of this hybrid scheme.
Fourth, our method should be explored further because of the
limited data available in this study. Only one dental phantom was
used as validation data. As proof of concept, we demonstrated the
feasibility of using the proposed hybrid method to correct metal
artifacts in dental CBCT. Fifth, the currently designed learning
model has a size limitation of 256� 256 as an input, which requires
additional downsampling and upsampling before and after passing
through the model. Modifying the model to enable inputs of
512 � 512 would eliminate the requirement for samplings that are
no longer needed. However, this may increase GPU memory re-
quirements slightly by a factor of two or less.

5. Conclusions

We developed a hybrid MAR approach based on CBHE-based
mathematical correction followed by post-refinement with a
CycleGAN-based ADN and validated its performance through
phantom measurement data. The hybrid approach can be a
powerful tool for improving the quality of CBCT images in the
presence of metal artifacts. By combining the strengths of both
approaches, this hybrid method can provide a more accurate and
robust solution for reducing metal artifacts and improving the
detection of areas of interest in dentomaxillofacial applications.
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