
An Efficient Approach to
Compute Zernike Moments

With GPU-Accelerated
Algorithm

by

Zhuohao Jia

A thesis submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements

for the Master of Science degree.

Department of Applied Computer Science

The University of Winnipeg

Winnipeg, Manitoba, Canada

July 2023

Copyright c© 2023 Zhuohao Jia

Abstract

The utilization of Zernike moments has been extensive in various fields, in-

cluding image processing and pattern recognition, owing to their desirable

characteristics. However, the application of Zernike moments is hindered by

two significant obstacles: computational efficiency and accuracy. These issues

become particularly noticeable when computing high-order moments. This

study presents a novel GPU-based method for efficiently computing Zernike

moments by leveraging the computational power of the Single Instruction

Multiple Data(SIMD) architecture. The experimental results demonstrate

that the proposed method can compute Zernike moments up to order 500

within 0.5 seconds for an image of size 512 × 512. To achieve greater ac-

curacy in Zernike moments computation, a k × k sub-region scheme was

incorporated into the approach. The results show that the PSNR value of

the Lena image reconstructed from 500-order Zernike moments computed

using the 9 × 9 scheme can reach 39.20 dB. Furthermore, a method for leaf

recognition that leverages Zernike moments as image features, with the k-

Nearest Neighbors (k-NN) algorithm serving as the classifier is proposed.

The proposed method is evaluated on the Flavia leaf dataset, and the results

affirm the effectiveness of the approach.

Keywords: Zernike moments, Fast computation, GPU, Image recon-

struction.

1

Acknowledgements

I would like to express my profound appreciation to my supervisor, Dr. Si-

mon Liao, for providing me with the invaluable opportunity to pursue my

master’s degree at the University of Winnipeg. Your guidance, support, and

encouragement throughout my research have been of immeasurable value to

me. Your exceptional expertise, patience, and commitment have been instru-

mental in helping me navigate the complexities and challenges encountered

during this project.

Furthermore, I would like to extend my gratitude to Dr. Christopher

Henry for introducing me to the concept of GPU parallel computing, which

has broadened my understanding of high-performance computing. Without

the solid foundation established in your course, the completion of this project

would not have been possible.

I would also like to express my appreciation to Dr. Sheela Ramanna. The

field of AI has been a prevalent topic in recent years, and it is your teaching

that has allowed me to step into the world of AI and obtain a fundamental

understanding of this field.

I am deeply grateful to Dr. Yangjun Chen for your knowledge and ex-

pertise in the areas of data structure and algorithms, which have enriched

my understanding of these crucial domains. Your invaluable teachings have

enabled me to enhance my skillset and become more competitive in the job

market.

Additionally, I wish to extend my heartfelt gratitude to all the esteemed

members of the thesis committee, Dr. Christopher Henry and Dr. Christo-

pher Bidinosti, for the invaluable insights and comments.

Lastly, I would like to extend my deepest gratitude to my parents for

their unconditional love, nurturing, and unwavering support. It is because

of your encouragement and trust in my decisions that I was able to come to

Canada to pursue my academic aspirations.

2

Contents

1. Introduction 8

2. Zernike Moments 11

3. Zernike Moments Computation 15

3.1 Computational Accuracy . 15

3.2 Computational Efficiency . 16

3.2.1 Recursive Method . 16

3.2.2 Utilizing the Symmetry Property 19

4. GPU-Based Implementation to Compute Zernike Moments 23

4.1 GPU Architecture Introduction 23

4.2 Main Structure of the Proposed Algorithm 25

4.3 Data Pre-Processing . 25

4.4 GPU Kernel Function to Compute f(x, y)× V ∗nm(x, y) 28

4.5 GPU Kernel Function Further Optimization 29

4.6 GPU Sum Operation . 31

4.6.1 Strategy 1: Parallel Reduction 31

4.6.2 Strategy 2: Atomic Operation 34

4.7 Symmetric Algorithm on GPU 35

5. Experimental Results 39

5.1 Computational Efficiency of the Proposed Method 39

5.2 Computational Accuracy of the Proposed Method 40

5.3 Comparison Between Different GPU Optimization Strategies . 43

5.4 Comparison With the CPU-Based Implementation 45

5.5 Experiments on Additional Images 46

6. Leaf Recognition With Zernike Moments 48

6.1 Image Preprocessing . 49

3

6.2 K-Nearest Neighbors Algorithm 50

6.3 Experiment Results . 51

7. Conclusions 54

A. Source Code of the GPU Implementation 56

4

List of Tables

1 The properties of the four symmetric pixels. 19

2 The properties of the eight symmetric pixels. 21

3 The whole computation time (in seconds) of Zernike moments

with different maximum orders T and k values 40

4 The PSNR values of the reconstructed images obtained from

Zernike moments with varying maximum order T and k values 42

5 Different GPU optimization strategies. 43

6 The computation time(in seconds) of S1, S2, and S3 for Zernike

moments with maximum orders ranging from 100 to 500 with-

out applying the sub-region scheme 43

7 The computation time(in seconds) of S3, S4, and S5 for Zernike

moments with maximum orders ranging from 100 to 500 with-

out applying the sub-region scheme 44

8 The computation time(in seconds) of S3, S4, and S5 for Zernike

moments with maximum orders ranging from 100 to 500 using

the 5× 5 sub-region scheme 44

9 The computation time(in seconds) of S3, S4, and S5 for Zernike

moments with maximum orders ranging from 100 to 500 using

the 9× 9 sub-region scheme 45

10 The computation time(in seconds) of Zernike moments with

varying maximum order T and k values as calculated on both

the CPU and GPU . 46

11 The whole computation time(in seconds) of Zernike moments

of the four additional testing images with different maximum

orders T and k values . 47

12 The PSNR values of the reconstructed images from Zernike

moments with varying maximum order T and k values 48

5

13 The test results of the experiment to evaluate the classification

ability of utilizing Zernike moments with varying maximum

orders . 53

6

List of Figures

1 Illustration of an image with a size of N ×N mapped over the

unit disk . 12

2 Distribution of the real and imaginary part of V20,8(x, y) within

the pixel at location (256, 257) of an image with a size of 512×512 15

3 Illustration of symmetric methods 20

4 The architecture of the Graphics Processing Unit(GPU) . . . 24

5 Illustration of the thread divergence problem 27

6 An example of parallel reduction algorithm 33

7 Illustration of the atomic add strategy 36

8 Illustration of the image re-composition method 37

9 The testing Lena image sized at 512× 512 with 256 gray levels 39

10 A selection of the reconstructed images obtained from Zernike

moments with different maximum order T and k values 41

11 Four additional testing images: Cameraman, House, Peppers,

and Tiffany . 47

12 The proposed method for leaf recognition 48

13 An example of the image preprocessing process, where three

input images of different types of leaves have undergone pre-

processing and produced their respective output images 50

14 Some examples of the leaves from the Flavia dataset 52

7

Chapter 1

Introduction

Zernike moments, initially introduced by Teague in 1980 [21], constitute a

set of functions that map an image onto a collection of orthogonal complex

Zernike polynomials [22]. These moments not only represent an image with

minimal information redundancy, but also possess the inherent property of

being invariant to image rotation and reflection [25]. Owing to these ad-

vantageous characteristics, Zernike moments have been widely employed in

various fields including image recognition [19, 3, 10], image retrieval [12, 11],

and image watermarking [6, 7].

However, due to the intricate definition of Zernike moments, which in-

corporate a series of factorials and trigonometric functions, the computation

process of these moments can be computationally intensive, rendering them

inapplicable for real-time applications or scenarios involving a substantial

number of images. To address this issue, many studies have been conducted

by scholars to accelerate the computation process.

Several researchers have proposed the utilization of recursive relation-

ships between Zernike radial polynomials to circumvent the need for direct

calculation by definition, as the factorial terms of the radial polynomials

are a significant contributor to the prolonged computation time. Prata [17]

and Kintner [8] developed their own recursive relationships. However, both

methods have limitations and are not applicable to certain cases with spe-

cific values of order n and repetition m, and thus, those polynomials must

be calculated through the direct method. Singh [20] and Chong [1] have

modified these methods respectively to make them applicable to any cases.

Additionally, Chong [1] has also proposed a q-recursive method.

Other approaches include utilizing the symmetry properties of trigono-

metric functions to reduce computational workload. In [4], Hwang first intro-

8

duced a 4-symmetric method for computing the Angular Radial Transform

(ART). He subsequently proposed an 8-symmetric method, which was ap-

plied to the computation of Zernike moments [5]. This method requires the

computation of only one octant of the entire image, thus reducing the com-

putation time by approximately one-eighth.

The methods previously discussed are based on Central Processing Unit

(CPU). However, in recent years, Graphics Processing Unit (GPU), which

utilizes a Single Instruction Multiple Data (SIMD) architecture, has demon-

strated remarkable capability for high-performance computing and has ac-

celerated various applications that require processing-intensive operations.

Several researchers have effectively employed GPUs to enhance the compu-

tation process of Zernike moments [18, 26]. However, their methods involve

the direct calculation of factorials in the definition of Zernike radial polyno-

mials, which can result in overflow errors, leading to numerical instability for

orders greater than 45, even when double precision is used [20]. Therefore,

their methods are not suitable for the computation of high-order moments.

In this study, a GPU-based method for the computation of high-order

Zernike moments was developed using the CUDA C++ platform. The pro-

posed method employs the radial polynomials’ recursive relationship and

symmetry property and has been optimized by applying various techniques

to adapt it to the architecture of GPU. The results of the experimentation

demonstrated that the proposed method is efficient and accurate in comput-

ing Zernike moments. Furthermore, to fully leverage the high computational

capabilities of GPU, a k×k sub-region scheme was also implemented, result-

ing in more accurate Zernike moments, particularly for high-order moments.

Furthermore, given that Zernike moments can efficiently depict informa-

tion contained within an image, they can be implemented for image classi-

fication. This study proposed a method for the recognition of leaves that

utilizes Zernike moments as image features, with the k-Nearest Neighbors

algorithm (k-NN) serving as the classifier. The method was subsequently

9

evaluated utilizing the Flavia leaf dataset, with the outcomes demonstrating

the effectiveness of the approach.

The remaining chapters of the thesis are structured as follows. In Chap-

ter 2, the definition and properties of Zernike moments will be presented.

Chapter 3 will delve into the existing approaches that enhance the com-

putational efficiency and accuracy of Zernike moments. Subsequently, the

proposed GPU-based method will be thoroughly expounded in Chapter 4.

To assess the computational efficiency and accuracy of the proposed method,

experiments were conducted and the results will be presented in Chapter 5.

The method that leverages Zernike moments to perform leaf recognition will

be introduced in Chapter 6. Lastly, the conclusion will be given in Chapter

7.

10

Chapter 2

Zernike Moments

In [27], Zernike proposed a set of complex orthogonal polynomials defined

on the unit disk, i.e., x2 + y2 ≤ 1. An image’s Zernike moments are a set of

projections of that image onto these polynomials.

The initial step towards obtaining Zernike moments of a given image

is the computation of Zernike radial polynomials. The real-valued radial

polynomial Rnm(ρ) of order n with repetition m is defined as:

Rnm(ρ) =

(n−|m|)/2∑
s=0

c(n,m, s)ρn−2s. (1)

The coefficient of the radial polynomial c(n,m, s) is defined as:

c(n,m, s) = (−1)s
(n− s)!

s!((n+ |m|)/2− s)!((n− |m|)/2− s)!
, (2)

where the order n is required to be a non-negative integer, while the repetition

m is an integer that can be positive, negative, or zero. Furthermore, it is also

necessary for them to satisfy the conditions of n− |m| = even and |m| ≤ n.

The complex-valued Zernike polynomial Vnm(x, y), can subsequently be

constructed from the radial polynomial Rnm(ρ):

Vnm(x, y) = Rnm(ρ)ejmθ, x2 + y2 ≤ 1, (3)

where ρ =
√
x2 + y2 represents the distance between the pixel (x, y) and the

origin, θ = tan−1(y/x) represents the angle between the x axis and the line

formed by the pixel (x, y) and the origin. And j is the imaginary unit, which

is
√
−1.

The two-dimensional Zernike moments of order n with repetition m, de-

11

noted as Znm, are defined as follows:

Znm =
n+ 1

π

∫∫
x2+y2≤1

V ∗nm(x, y)f(x, y)dxdy, (4)

where f(x, y) represents the image intensity function and ∗ denotes the com-

plex conjugate.

In order to compute Zernike moments of a digital image, the image must

be mapped onto the unit disk, as illustrated in Figure 1. Assuming the image

has a size of N ×N , the transformed coordinates (xi, yj) of the pixel located

in the j-th row and i-th column of the original image will be:xi = 2i+1−N
N

yj = 2j+1−N
N

(5)

-1

1

-1

1

x

y

-1

1

-1

1

x

y
0 N-1

N-1

i

j

0 N-1

N-1

i

j

Figure 1: Illustration of an image with a size of N ×N mapped over the unit
disk

The pixels with centers located within the unit disk will be utilized for the

computation of Zernike moments. Conversely, those located outside of the

unit disk will be disregarded. In accordance with Eq.(4), in order to calculate

Zernike moments of an image in the discrete domain, the integration will be

12

substituted with summations, resulting in:

Ẑnm =
n+ 1

π

∑∑
x2i+y

2
j≤1

V ∗nm(xi, yj)f(xi, yj)∆x∆y, (6)

where ∆x and ∆y are the sampling intervals in the x and y directions [13],

with the constant value ∆x = ∆y = 2
N

.

As defined in the above explanation of the Zernike radial polynomials,

it follows that any two radial polynomials with the same repetition m but

differing order n satisfy:

∫ 1

0

Rnm(ρ)Rn′m(ρ)ρdρ =

 1
2(n+1)

n = n′

0 n 6= n′
. (7)

The Zernike polynomials are orthogonal and satisfy:

∫∫
x2+y2≤1

V ∗nm(x, y)V ∗pq(x, y)dxdy =

 π
n+1

n = p,m = q

0 otherwise
. (8)

The orthogonality property results in minimal redundancy and confers the

capability of each individual Zernike moment to depict various components

of the image. Consequently, the original image can be reconstructed by the

summation of these individual Zernike moments:

f(x, y) =
∞∑
n

∑
m

ZnmVnm(ρ, θ). (9)

In actuality, it is only feasible to obtain a limited number of Zernike

moments. Assuming that a set of Zernike moments Znm for an image f(x, y)

up to a specified order Nmax is available, the approximated image can be

13

reconstructed as follows:

f̂(x, y) =
Nmax∑
n=0

∑
m

ZnmVnm(ρ, θ). (10)

14

Chapter 3

Zernike Moments Computation

As for the computation of Zernike moments, accuracy and efficiency are the

two aspects the researchers mainly focused on over the past years.

3.1 Computational Accuracy

As previously discussed in Chapter 2, when computing Zernike moments for

a digital image in the discrete domain, the double integration in Eq.(4) is

estimated through double summation, as shown in Eq.(6), which inevitably

leads to an approximation error. If the distribution of the Zernike polynomial

within each pixel is consistent, the error is generally minimal. Nonetheless,

in the majority of cases, the distribution can exhibit substantial variations

within a single pixel. Figure 2 presents the depiction of the distribution of

the real and imaginary parts of V20,8(x, y) for a single central pixel located

at (256, 257) in an image with a size of 512× 512.

(a) Real part of V20,8(x, y) (b) Imaginary part of V20,8(x, y)

Figure 2: Distribution of the real and imaginary part of V20,8(x, y) within the
pixel at location (256, 257) of an image with a size of 512× 512

15

To mitigate the approximation error, the k × k sub-region scheme [23]

can be employed. Under this scheme, each pixel is further divided into k× k
sub-regions with equal weight, which means the sampling intervals become
∆x
k

and ∆y
k

. Consequently, Eq.(6) can be reformulated as follows:

Ẑnm =
n+ 1

π

∑∑
x2i+y

2
j≤1

f(xi, yj)hnm(xi, yj), (11)

where

hnm(xi, yj) =
k∑
s=1

k∑
t=1

V ∗nm(xis, yjt)
∆x

k

∆y

k
. (12)

By utilizing a higher value of k (i.e. incorporating more sampling points),

higher computational accuracy can be achieved. However, it should be noted

that this will also result in a corresponding increase in computational work-

load.

3.2 Computational Efficiency

The computation of Zernike moments through the application of their defi-

nition is referred to as the direct method. However, due to the presence of a

multitude of factorials and trigonometric functions within the definition, the

computational process can be time-consuming. To address this issue, various

researchers have proposed alternative methods to expedite the computation.

3.2.1 Recursive Method

Kintner [8] has suggested a recursive relationship between radial polynomials

of different orders, allowing for the derivation of a radial polynomial of a

given order from two lower-order polynomials with the same repetition m.

16

The relationship is specified as follows:

Rn,m(ρ) =
(K2ρ

2 +K3)Rn−2,m(ρ) +K4Rn−4,m(ρ)

K1

n = m+ 4,m+ 6, ...

(13)

where the coefficients K1, K2, K3 and K4 are defined as:

K1 =
(n+m)(n−m)(n− 2)

2
,

K2 = 2n(n− 1)(n− 2),

K3 = −m2(n− 1)− n(n− 1)(n− 2),

K4 =
n(n+m− 2)(n−m− 2)

2
.

(14)

This approach circumvents the direct calculation of a series of factorials,

resulting in a substantial increase in computational speed. However, the

initial values of the radial polynomials, i.e. when n = m and n = m + 2,

must be obtained using the direct method. Chong [1] proposed a modified

Kintner’s method by introducing two definitions:

Rn,n(ρ) = ρn n = 0, 1, 2, ... (15)

Rn,m(ρ) = nRn,n(ρ)− (n− 1)Rn−2,n−2(ρ) n = m+ 2, (16)

so that the entire set of radial polynomials can be obtained without resorting

to the direct method.

Building upon the modified Kintner’s method, Singh [20] introduced a

Kintner’s fast method by redefining the coefficients, resulting in a reduction

of required calculations:

Rn,m(ρ) =
(K ′2ρ

2 +K ′3)Rn−2,m(ρ) +K ′4Rn−4,m(ρ)

K1

n = m+ 4,m+ 6, ...

(17)

17

where the coefficients K ′2, K ′3 and K ′4 are defined as:

K ′2 = K2/K1, K ′3 = K3/K1, K ′4 = K4/K1, (18)

with K1, K2, K3 and K4 defined in Eq.(14).

In contrast to the fixed repetition m, Chong [1] proposed a q-recursive

method that enables the derivation of a radial polynomial from two polyno-

mials of higher repetition m but the same order n:

Rn,m(ρ) = Q1Rn,m+4(ρ) + (Q2 +
Q3

ρ2
)Rn,m+2(ρ), (19)

where the coefficients Q1, Q2 and Q3 are defined as:

Q1 =
m(m− 1)

2
−mQ2 +

Q3(n+m+ 2)(n−m)

8
,

Q2 =
Q3(n+m)(n−m+ 2)

4(m− 1)
+ (m− 2),

Q3 =
−4(m− 2)(m− 3)

(n+m− 2)(n−m+ 4)
.

(20)

For those cases where n = m and n = m+ 2, the following equations will be

used:

Rn,n(ρ) = ρn n = 0, 1, 2, ... (21)

Rn,m(ρ) = nRn,n(ρ)− (n− 1)Rn−2,n−2(ρ) n = m+ 2. (22)

Another commonly used recursive relationship is Prata’s method, which

is defined as follows:

Rn,m(ρ) = P1Rn−1,m−1(ρ) + P2Rn−2,m(ρ), (23)

18

where the coefficients P1 and P2 are defined as:

P1 =
2n

n+m
,

P2 =
n−m
n+m

.
(24)

Singh [20] further modified the Prata’s method, which became:

Rn,n(ρ) = ρn n = 0, 1, 2, ... (25)

Rn+m,m(ρ) = P1ρRn+m−1,|m−1|(ρ) + P2Rn+m−2,m(ρ),

n = 2, 4, 6...(m = 0, 1, 2, ...).
(26)

3.2.2 Utilizing the Symmetry Property

In [4], Hwang proposed a 4-symmetric method for computing the Angular

Radial Transform(ART), which can also be utilized for the calculation of

Zernike moments. As depicted in Figure 3a, given a pixel P1(a, b) in an image,

it is possible to easily identify a set of pixels P2, P3 and P4 that are symmetric

to pixel P1 about the y-axis, the origin, and the x-axis, respectively. The

properties of these pixels are displayed in Table 1.

Table 1: The properties of the four symmetric pixels.

Pixel Coordinates Distance Phase angle Intensity
P1 (a, b) ρ θ f1

P2 (−a, b) ρ π − θ f2

P3 (−a,−b) ρ π + θ f3

P4 (a,−b) ρ 2π − θ f4

As per Euler’s formula, the Zernike polynomials Vnm(x, y) described in

Eq.(3) can be expanded into:

Vnm(x, y) = Rnm(ρ)cos(mθ) + jRnm(ρ)sin(mθ). (27)

19

-1

1

-1

1

x

y

-1

1

-1

1

x

y

P1(a,b)P2(-a,b)

P4(a,-b)P3(-a,-b)

ρ ρ

ρρ

(a) Four symmetric

-1

1

-1

1

x

y

-1

1

-1

1

x

y

P1(a,b)P4(-a,b)

P8(a,-b)P5(-a,-b)

ρ ρ

P2(b,a)P3(-b,a)

P6(-b,-a) P7(b,-a)

y = xy = -x

ρ ρ

ρ ρ

ρ ρ

(b) Eight symmetric

Figure 3: Illustration of symmetric methods

For the four symmetric pixels, the values of their radial polynomials

Rnm(ρ) will be equal as they have the same distance ρ. With respect to

cos(mθ) and sin(mθ), being periodic and oscillatory, their values for the

four points are either the same or opposite. Thus, once the value of one pixel

is determined, the other three can be derived from it using the symmetric

properties. As a result, the equation for Zernike moments can be rewritten

as:

Znm =
n+ 1

π

∑∑
x2
i
+y2
j
≤1,

x≥0,y≥0

Rnm(ρ)[grm(x, y)− jgim(x, y)]∆x∆y, (28)

where the real part grm(x, y) = f(x, y)cos(mθ) and the imaginary part gim(x, y) =

f(x, y)sin(mθ). Their values are separated into two cases depending on

whether m is even or odd (i.e. m = 2k or m = 2k + 1, k = 0, 1, 2, ...):

grm(x, y) =

(f1 + f2 + f3 + f4)cos(mθ), m = 2k,

(f1 − f2 − f3 + f4)cos(mθ), m = 2k + 1.
(29)

20

gim(x, y) =

(f1 − f2 + f3 − f4)sin(mθ), m = 2k,

(f1 + f2 − f3 − f4)sin(mθ), m = 2k + 1.
(30)

Adopting the four symmetric property enables the computation of the radial

polynomials for only one quadrant of the pixels, resulting in a reduction of

the computational workload to one-fourth.

Based on the 4-symmetric method, Hwang subsequently proposed an 8-

symmetric method [5]. As illustrated in Figure 3b, eight pixels are symmetric

with respect to the x-axis, y-axis, y = x and y = −x, and their properties

are presented in Table 2.

Table 2: The properties of the eight symmetric pixels.

Pixel Coordinates Distance Phase angle Intensity
P1 (a, b) ρ θ f1

P2 (b, a) ρ π
2
− θ f2

P3 (−b, a) ρ π
2

+ θ f3

P4 (−a, b) ρ π − θ f4

P5 (−a,−b) ρ π + θ f5

P6 (−b,−a) ρ 3π
2
− θ f6

P7 (b,−a) ρ 3π
2

+ θ f7

P8 (a,−b) ρ 2π − θ f8

Similar to the 4-symmetric method, Zernike moments can be calculated

using the following formula:

Znm =
n+ 1

π

∑∑
x2
i
+y2
j
≤1,

0≤x≤1,0≤y≤x

Rnm(ρ)[grm(x, y)− jgim(x, y)]∆x∆y, (31)

21

where grm(x, y) and gim(x, y) are organized into four categories:

grm(x, y) =

(f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8)cos(mθ), m = 4k,

(f1 − f4 − f5 + f8)cos(mθ) + (f2 − f3 − f6 + f7)sin(mθ), m = 4k + 1,

(f1 − f2 − f3 + f4 + f5 − f6 − f7 + f8)cos(mθ), m = 4k + 2,

(f1 − f4 − f5 + f8)cos(mθ) + (−f2 + f3 + f6 − f7)sin(mθ), m = 4k + 3.

(32)

gim(x, y) =

(f1 − f2 + f3 − f4 + f5 − f6 + f7 − f8)sin(mθ), m = 4k,

(f1 + f4 − f5 − f8)sin(mθ) + (f2 + f3 − f6 − f7)cos(mθ), m = 4k + 1,

(f1 + f2 − f3 − f4 + f5 + f6 − f7 − f8)sin(mθ), m = 4k + 2,

(f1 + f4 − f5 − f8)sin(mθ) + (−f2 − f3 + f6 + f7)cos(mθ), m = 4k + 3.

(33)

Therefore, the computation can be restricted to a single octant, resulting in

a reduction of the workload to one-eighth.

22

Chapter 4

GPU-Based Implementation to Compute Zernike

Moments

4.1 GPU Architecture Introduction

The research utilized a GPU designed by NVIDIA, consisting of a collection

of multi-threaded Streaming Multiprocessors(SMs). The SMs are based on

Single Instruction Multiple Data(SIMD) architecture, as depicted in Figure

4. Each SM in the GPU features a control unit and multiple processing units,

allowing it to simultaneously execute numerous threads through fetching a

single instruction and processing different data elements. The fundamental

operational unit within a GPU is referred to as a warp, which comprises

32 threads, and multiple warps can be executed concurrently on a SM. The

distinction between a CPU and GPU lies in their design, as the former pri-

oritizes a robust Arithmetic Logic Unit(ALU) to attain the highest possible

speed of execution for a single thread. On the other hand, the latter has a

lower performance for a single thread, but it can process a vast number of

threads simultaneously, resulting in an overall higher throughput. Thus, a

GPU is more appropriate for handling tasks that necessitate intensive parallel

computations.

In order to create programs that utilize a GPU, the use of CUDA is re-

quired. CUDA is a general-purpose parallel computing platform developed

by NVIDIA, enabling developers to write code specifically for GPU imple-

mentation. A CUDA program consists of two components, namely the host

component and the device component. The host component refers to the

program that is executed on the CPU, while the device component refers to

the portion of the program that is executed on the GPU. The execution of a

CUDA program starts on the host component, which then invokes the func-

23

Streaming Multiprocessor

Control UnitControl Unit

Processing Unit

ALUALU RegisterRegister

Processing Unit

ALU Register

...

Processing Unit

ALU Register

...

Shared

Memory

Shared

Memory

Global MemoryGlobal Memory

Constant MemoryConstant Memory

Device(GPU)

Host(CPU)

Figure 4: The architecture of the Graphics Processing Unit(GPU)

tions on the device, referred to as kernel functions. Developers are required

to specify the quantity of CUDA threads to be executed upon invoking the

kernel functions. These threads are organized into thread blocks, which are

subsequently distributed to the SMs for execution.

It is important to note that prior to the invocation of kernel functions,

the data to be processed must be transferred from the CPU’s memory to the

GPU’s memory. Upon completion of the kernel function execution, the data

will then be transferred back. The duration of the data transfer process is

typically substantial and must be taken into account when evaluating the

computational efficiency of algorithms.

24

4.2 Main Structure of the Proposed Algorithm

As previously discussed in Chapter 2, the computation of Zernike moments

Znm of order n with repetition m requires multiplying the intensity f(x, y)

of each pixel (x, y) on the unit disk with the corresponding Zernike poly-

nomial V ∗nm(x, y). Subsequently, these products are summed to produce the

final result. The computation process for the product of each pixel is in-

dependent, thus demonstrating a substantial intrinsic parallelism within the

calculation of Zernike moments, making it suitable for the SIMD structure of

the GPU. The fundamental concept of the GPU-based algorithm is to lever-

age the parallel processing capability of the GPU by utilizing each thread

to calculate the product of individual pixels simultaneously. This approach

theoretically allows for a reduction in time complexity from O(N2n2
max) to

O(n2
max), provided that adequate computational resources are available.

The proposed method is comprised of four stages: The first stage involves

preprocessing the input image and migrating the data from the CPU memory

to the GPU. In the second stage, a GPU kernel will be activated to calculate

the value of f(x, y)×V ∗nm(x, y) for every pixel. Subsequently, the sum of the

products for all pixels obtained from the second stage will be computed in

the third stage. At the end the data will be transferred back to the CPU to

finish the whole process.

4.3 Data Pre-Processing

The data pre-processing part is executed by a CPU utilizing the pseudocode

described in Algorithm 1. It is assumed that the image to be processed has

a size of N ×N . Furthermore, the k × k sub-region scheme is implemented,

resulting in each pixel being divided into k × k sub-pixels. Consequently,

the image can be regarded as having a size of kN × kN . It should be noted

that all sub-pixels possess the same intensity as their respective parent pixel.

Prior to executing the computation via the GPU kernel, it is necessary to

25

transfer the intesity, ρ and θ values of the pixels from the memory of the CPU

to that of the GPU. The most direct approach to accomplish this objective is

to allocate memory on the CPU for three arrays, f [kN ×kN], rho[kN ×kN]

and theta[kN × kN], that store the respective values of all pixels within the

image, followed by transferring these arrays to the GPU. However, this would

result in a thread divergence issue, leading to a decrease in the computational

efficiency.

The computation process of Zernike moments only involves pixels located

on the unit disk. As such, if the raw data is transferred to the GPU with-

out modification, a data selection task must be performed by the GPU, as

depicted in Figure 5. The data is stored in a row-major layout, wherein the

contiguous elements of a given row are positioned adjacent to each other.

As previously discussed in Section 4.1, 32 threads within a warp can be exe-

cuted simultaneously on the GPU if they all follow the same execution path.

However, the task of data selection would result in the threads within a warp

taking divergent control flow paths. For instance, elements 0 and 1 in Figure

5 lie outside the unit disk and as a result, they will proceed along one branch

that skips the computation process. Conversely, elements 2 to 5, which are

situated within the unit disk, must follow another branch to partake in the

computation. Although these elements belong to the same warp, the two

branches must be executed sequentially, leading to an increase in execution

time. A similar divergence problem also occurs among the remaining ele-

ments.

To achieve increased parallelism, it is necessary to perform data pre-

processing prior to invoking the GPU kernel. This enables the CPU to handle

the data selection task and eliminate those pixels that will not participate in

the computation process, as the CPU is optimized for complex and branch-

intensive tasks. Following the data pre-processing step, as demonstrated in

Situation 2 of Figure 5, the thread divergence problem is resolved and all

elements within a warp can be executed simultaneously, leading to improved

26

computational efficiency. Additionally, pre-processing reduces the amount

of data that needs to be transferred to the GPU, potentially decreasing the

total execution time.

56

48

40

32

24

16

8

0

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

28

20

12

4

61

53

45

37

29

21

13

5

62

54

46

38

30

22

14

6

63

55

47

39

31

23

15

7

56

48

40

32

24

16

8

0

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

28

20

12

4

61

53

45

37

29

21

13

5

62

54

46

38

30

22

14

6

63

55

47

39

31

23

15

7

56

48

40

32

24

16

8

0

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

28

20

12

4

61

53

45

37

29

21

13

5

62

54

46

38

30

22

14

6

63

55

47

39

31

23

15

7

2 3 4 5 9 10 11 12 13 14 16 ...

A warp(32 threads)

No divergence

2 3 4 5 9 10 11 12 13 14 16 ...

A warp(32 threads)

No divergence

0 1 2 3 4 5 6 7 8 9 10 ...

A warp(32 threads)

Thread divergence

0 1 2 3 4 5 6 7 8 9 10 ...

A warp(32 threads)

Thread divergence

Situation 1: Without Data Pre-Processing

Situation 2: With Data Pre-Processing

Figure 5: Illustration of the thread divergence problem

Algorithm 1 Data Pre-Processing
1: function Zernike Data Processing(img,max order, k)

2: width← The width of the image

3: width k ← width× k . Split into k × k sub-region

4: total pixel num← 0 . The total number of pixels on the unit disk

5: f [width k × width k]← 0 . Store the intensity of the pixels

6: rho[width k × width k]← 0 . Store the ρ value of the pixels

7: theta[width k × width k]← 0 . Store the θ value of the pixels

8: for Each pixel of the image do

9: if All the k × k sub-pixels of the current pixel are on the unit disk then

10: for Each sub-pixel do

11: f [total pixel num]← Current pixel’s intensity

12: rho[total pixel num]← Current sub-pixel’s ρ

13: theta[total pixel num]← Current sub-pixel’s θ

14: total pixel num← total pixel num + 1

15: end for
16: end if
17: end for
18: Copy f [], rho[], theta[] respectively from CPU’s memory to GPU’s

19: z num← The total number of Zernike moments up to max order

20: Allocate memory for Znm real[z num], Znm imag[z num] on both CPU and GPU

21: Invoke Zernike Kernel() to compute Zernike moments on GPU

22: Copy Znm real[], Znm imag[] from GPU’s memory to CPU’s

23: end function

27

4.4 GPU Kernel Function to Compute f(x, y)×V ∗nm(x, y)

One of the essential components of the proposed methodology is the kernel

function, which calculates the product of f(x, y) × V ∗nm(x, y), as depicted

in Algorithm 2. The kernel is based on Kintner’s fast method. Upon each

invocation of the kernel, the results of a fixed repetition m with different

orders n, ranging from m to the maximum order, will be calculated. In order

to obtain the complete results, the kernel must be repeatedly invoked by

incrementally varying the repetition value from 0 to the maximum order.

As described in Section 4.3, following the data pre-processing stage, the

intensity f(x, y), ρ and θ values of the pixels are transferred to the global

memory of the GPU. These values can then be utilized by each thread to

calculate f(x, y) × V ∗nm(x, y). However, this results in a suboptimal perfor-

mance due to the repetitive access of the values from the global memory in

the for loop of the kernel. This is because the global memory is located off

the processor chip, resulting in a prolonged latency in accessing the data. As

illustrated in Figure 4, a GPU comprises several types of memory in addition

to global memory, such as shared memory and registers. These two types

of memory are located on chip and can be accessed with approximately 100

times greater speed than the global memory [16]. Shared memory can be

accessed by all threads within a block, while each thread possesses its own

individual access to registers. Furthermore, registers represent the quickest

form of memory as they involve fewer instructions when compared to ac-

cessing data located in shared memory, which necessitates additional load

operations [9].

Given that each thread is assigned to a single pixel, the values of f(x, y),

ρ and θ for each pixel can be stored in the registers of the respective thread,

thereby enhancing access efficiency. The utilization of Kintner’s recursive

method also offers an additional advantage, as the repetition m is fixed for

each invocation of the kernel. This means that when computing f(x, y) ×

28

V ∗nm(x, y) = f(ρ, θ)Rnm(ρ)cos(mθ)− f(ρ, θ)Rnm(ρ)sin(mθ)j, f(ρ, θ)cos(mθ)

of the real part and f(ρ, θ)sin(mθ) of the imaginary part only need to be cal-

culated once, and stored in the registers as demonstrated in Lines 10 and 11 of

Algorithm 2. These values can then be reused for computation with different

orders n throughout the current kernel invocation. For a single kernel invo-

cation to compute the results of a given repetition m, there will be x different

orders n, where x = (b(n−1)/2c+1)∗(b(n−1)/2c+1+((n−1)%2))+bm/2c.
This means that (x − 1) cosine and sine functions, as well as 2(x − 1) mul-

tiplications, can be omitted. Furthermore, the radial polynomial Rnm(ρ) is

stored in the registers of each thread and calculated through recursion. The

results produced by each thread will either be placed in the global mem-

ory and the sum will be calculated through the application of the parallel

reduction method, or be aggregated directly through the utilization of the

atomic add operation. The discussion of both methods and an analysis of

their performance will be presented in subsequent sections.

4.5 GPU Kernel Function Further Optimization

As depicted in lines 23 to 25 of Algorithm 2, it is the responsibility of all

threads to calculate the coefficients K1, K2 and K3 for their respective pix-

els. However, it should be noted that for pixels with the same order n and

repetition m, the coefficients are identical. As a result, the calculation pro-

cess for these coefficients is redundant and inefficient. A practical solution

to eliminate this redundancy is to calculate these coefficients using the CPU

and then transferring them to the GPU’s global memory, where they can be

accessed directly by all threads. This results in the coefficients of a given

order n with repetition m being calculated only once, instead of N2k2 times.

Despite this improvement, accessing these coefficients through the global

memory is still expected to result in suboptimal performance due to the long

access latency. Further optimization can be achieved by utilizing the GPU’s

constant memory.

29

Algorithm 2 Zernike Kernel Function to Compute f(x, y)× V ∗nm(x, y)

1: function Zernike Kernel(Znm real[][], Znm imag[][],
f [], rho[], theta[],m,max order, total pixel num)

2: tid← Current thread ID
3: if tid < total pixel num then . Boundary check

4: R 2← 0 . Used to store Rn−2,m(ρ)

5: R 4← 0 . Used to store Rn−4,m(ρ)

6: R← 0 . Used to store Rn,m(ρ)

7: rho t← rho[tid] . Load into register to increase access speed

8: f t← f [tid]

9: theta t← theta[tid]

10: cos f ← cos(m ∗ theta t) ∗ f t;
11: sin f ← −sin(m ∗ theta t) ∗ f t;
12: for n← m to max order do
13: nm position← (b(n− 1)/2c + 1) ∗ (b(n− 1)/2c + 1 + ((n− 1)%2)) + bm/2c
14: if n == m then
15: R 4← pow(rho t, n)

16: Znm real[nm position][tid]← R 4 ∗ cos f
17: Znm imag[nm position][tid]← R 4 ∗ sin f
18: else if n == (m + 2) then

19: R 2← (m + 2) ∗ R 4 ∗ rho t ∗ rho t− (m + 1) ∗ R 4

20: Znm real[nm position][tid]← R 2 ∗ cos f
21: Znm imag[nm position][tid]← R 2 ∗ sin f
22: else
23: K1 ←

4n(n−1)
(n+m)(n−m)

24: K2 ←
−2(n−1)(n2−2n+m2)
(n+m)(n−m)(n−2)

25: K3 ←
−n(n+m−2)(n−m−2)
(n+m)(n−m)(n−2)

26: R← K1 ∗ rho t ∗ rho t +K2 ∗ R 2 +K3 ∗ R 4

27: Znm real[nm position][tid]← R ∗ cos f
28: Znm imag[nm position][tid]← R ∗ sin f
29: R 4← R 2
30: R 2← R
31: end if
32: end for
33: end if
34: end function

The GPU’s constant memory, as the name implies, is designated as

read-only, and therefore capable of storing data that will remain unchanged

throughout the entire kernel execution process. Currently, the capacity of the

constant memory typically limited to 65536 bytes for CUDA devices. It pos-

sesses unique features, such as cache and broadcasting, which allow for rapid

access speeds, comparable to that of registers, if all threads simultaneously

read data from the same address.

For Algorithm 2, the coefficients for a given order n and repetition m

are constant, and all threads within a warp will simultaneously access the

same elements of those coefficients. Therefore, the use of GPU’s cached

constant memory to store these coefficient elements is an optimal solution.

30

A coefficient element can be loaded into the cache and utilized by all threads

within a warp. If 32 threads within a warp need to access the coefficients, 31

of them will be served by the cache, resulting in a reduction of nearly 97% in

access to the global memory. Should the threads of other warps access the

same coefficients, they can also be retrieved from the cache, further enhancing

the access efficiency.

Furthermore, the cosine and sine functions in lines 10 and 11 of Al-

gorithm 2 are computationally expensive. They can be substituted with

CUDA’s hardware trigonometry functions cos() and sin(). These hard-

ware functions are executed on the Special Function Units (SFUs) of the

CUDA devices, resulting in significantly improved performance compared to

their equivalent CPU versions [9].

4.6 GPU Sum Operation

Another crucial aspect of the methodology involves obtaining the sum of the

products generated by each thread through the kernel function described in

Section 4.4. There are two methods to achieve this objective.

4.6.1 Strategy 1: Parallel Reduction

One approach is through the utilization of parallel reduction, which was

employed by Xuan et al. in their study of GPU-based Zernike computations

[26]. The products generated by each thread will initially be stored in the

global memory. This results in a two-dimensional array that comprises the

values of f(x, y)× V ∗nm(x, y) for all pixels on the unit disk, for orders n and

repetitions m up to the specified maximum order. Given that T represents

the total number of pixels on the unit disk, the two-dimensional array can

be represented as follows:

31

f(x0, y0)V ∗0,0(x0, y0) f(x1, y1)V ∗0,0(x1, y1) . . . f(xT−1, yT−1)V ∗0,0(xT−1, yT−1)

f(x0, y0)V ∗1,1(x0, y0) f(x1, y1)V ∗1,1(x1, y1) . . . f(xT−1, yT−1)V ∗1,1(xT−1, yT−1)

f(x0, y0)V ∗2,0(x0, y0) f(x1, y1)V ∗2,0(x1, y1) . . . f(xT−1, yT−1)V ∗2,0(xT−1, yT−1)

f(x0, y0)V ∗2,2(x0, y0) f(x1, y1)V ∗2,2(x1, y1) . . . f(xT−1, yT−1)V ∗2,2(xT−1, yT−1)
...

...
...

...

f(x0, y0)V ∗n,m(x0, y0) f(x1, y1)V ∗n,m(x1, y1) . . . f(xT−1, yT−1)V ∗n,m(xT−1, yT−1)

.

(34)

Assuming we are addressing a specific row in Eq.(34), which can be de-

noted as:

[
Data[0] Data[1] . . . Data[T − 1]

]
. (35)

The traditional sequential approach utilized by CPU to determine the

sum of Data[0] + Data[1] + ... + Data[T − 1] involves iteratively visiting

each element and incrementing the sum with its value. The computational

complexity of this approach is O(T). However, T is typically massive in

size, leading to a substantial workload that results in significant processing

time. Given an image with a size of 512 × 512 utilizes a 9 × 9 sub-region

scheme and π
4

of the pixels fall within the unit disk, the total number T =

512× 512× 9× 9× π
4
≈ 16.7 million.

By utilizing the parallel reduction algorithm, more computational effi-

ciency can be achieved. The core concept of the algorithm is to partition

the entire data elements into multiple pairs and allocate multiple threads to

concurrently compute the sum of each pair. Each thread will be assigned

responsibility for a specific data pair. As an illustration, consider the case

where there are 16 elements to be computed, as depicted in Figure 6. In the

initial step, 8 threads are utilized. Thread 0 calculates the sum of Data[0]

and Data[8], and stores the result in Data[0]. The other threads perform

similar operations simultaneously. As a result of this step, the number of

32

data elements requiring processing is reduced to 8. With only 4 steps total,

the sum of all data elements can be obtained.

It is worth noting that, as previously mentioned, the global memory of

GPU has a prolonged access latency. Directly implementing the parallel

reduction algorithm on the global memory would result in suboptimal per-

formance. To enhance efficiency, each thread block can be utilized to load

a segment of the data into shared memory, and perform reduction on that

segment within the shared memory. Additional optimization techniques for

the parallel reduction algorithm can be found in [2].

Global Memory

Data T-1

Shared Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 30 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00

Thread Step 1

Step 2

Step 3

Step 4

...

Figure 6: An example of parallel reduction algorithm

33

4.6.2 Strategy 2: Atomic Operation

Prior to executing the parallel reduction operation, it is imperative to ensure

that all threads within the current kernel have completed their computations,

which necessitates waiting for the return of the current kernel before calling

another kernel to perform the parallel reduction. And this additional kernel

call also incurs overhead.

Another drawback of utilizing the parallel reduction algorithm is that

it requires a large number of memory-loading operations. As discussed in

Section 4.4, each thread calculates the value f(x, y) × V ∗nm(x, y) for each

pixel and stores the results in their respective registers. These values then

need to be transferred to the GPU’s global memory. Given a specific order

n with repetition m, and assuming T pixels fall on the unit disk, then the

number of elements that must be written to the global memory is T . In

addition, the parallel reduction process entails T + T
2

+ T
4

+ ...+ 2 = 2(T − 1)

read operations and T
2

+ T
4

+ T
8

+ ...+ 1 = T − 1 write operations. Although

the shared memory can increase the overall speed of the process, the memory

loading overhead remains substantial.

To mitigate the extensive amount of memory reading and writing opera-

tions, the utilization of CUDA’s atomic add operation can be employed. Pre-

viously, this operation had a subpar performance. However, with the advent

of Fermi, the availability of an L2 cache significantly improves the perfor-

mance by executing these operations at the L2 bank. By utilizing the atomic

operation, the products computed by each thread can directly contribute to

the sum. As depicted in Figure 7, an array designated to store the sum

of various orders n and repetitions m will be allocated in the GPU’s global

memory. Upon any thread’s computation of the value f(x, y)×V ∗nm(x, y) for a

given order n with repetition m, it contributes the value to the corresponding

sum using the atomic add operation.

The utilization of the atomic add operation instead of the simple addi-

tion of a value to the sum is necessitated by the possibility of race conditions

34

occurring during the process. Race conditions are a prevalent challenge in

multi-thread programming, arising from the concurrent access attempts of

multiple threads to a shared resource, potentially resulting in adverse out-

comes. As an illustration, consider a scenario where two threads aim to

increment the value of a shared memory location by one, and the current

value at the location is 0. Under normal circumstances, the updated value

should be 2. However, it is possible that both threads may retrieve the value

of 0 simultaneously from the memory, then both increment the value by one,

and write the result of 1 back to the memory. This would result in the incor-

rect outcome of the memory location being incremented by only one instead

of two. In order to prevent race conditions, the use of atomic operations as

provided by CUDA can be employed. As the name suggests, atomic opera-

tions ensure that the read-modify-write operations are indivisible, meaning

that if one thread is currently executing a read-modify-write operation at

a specific memory location, any other threads attempting to perform the

same operation at that location will be suspended and queued, thereby guar-

anteeing the absence of race conditions. However, it should be noted that

utilizing atomic operations comes at the cost of serialization, which can lead

to decreased program performance.

It is also noteworthy that in our program, all data was stored using

double-precision floating-point format to achieve the most accurate results.

However, the atomic operations for double-precision data type are only sup-

ported by CUDA on GPU devices with a compute capability of 6.x or higher.

This means that older GPU devices cannot utilize this method for computing

the sum.

4.7 Symmetric Algorithm on GPU

The utilization of 4-symmetric and 8-symmetric algorithms can effectively

decrease the computational workload to one-fourth and one-eighth, respec-

tively, as discussed in Chapter 3. Nonetheless, their implementation on GPUs

35

Global Memory

0Thread *
0 0 0,0 0 0(,) (,)f x y V x y*
0 0 0,0 0 0(,) (,)f x y V x y *

0 0 1,1 0 0(,) (,)f x y V x y*
0 0 1,1 0 0(,) (,)f x y V x y *

,0 0 0 0(,) (,)n mf x y V x y*
,0 0 0 0(,) (,)n mf x y V x y...0Thread *

0 0 0,0 0 0(,) (,)f x y V x y *
0 0 1,1 0 0(,) (,)f x y V x y *

,0 0 0 0(,) (,)n mf x y V x y...

1Thread *
1 1 0,0 1 1(,) (,)f x y V x y*
1 1 0,0 1 1(,) (,)f x y V x y *

1 1 1,1 1 1(,) (,)f x y V x y*
1 1 1,1 1 1(,) (,)f x y V x y *

,1 1 1 1(,) (,)n mf x y V x y*
,1 1 1 1(,) (,)n mf x y V x y...1Thread *

1 1 0,0 1 1(,) (,)f x y V x y *
1 1 1,1 1 1(,) (,)f x y V x y *

,1 1 1 1(,) (,)n mf x y V x y...

T-1Thread *
1 1 0,0 1 1(,) (,)T T T Tf x y V x y− − − −

*
1 1 0,0 1 1(,) (,)T T T Tf x y V x y− − − −

*
1 1 1,1 1 1(,) (,)T T T Tf x y V x y− − − −

*
1 1 1,1 1 1(,) (,)T T T Tf x y V x y− − − −

*
,1 1 1 1(,) (,)n mT T T Tf x y V x y− − − −

*
,1 1 1 1(,) (,)n mT T T Tf x y V x y− − − −

...T-1Thread *
1 1 0,0 1 1(,) (,)T T T Tf x y V x y− − − −

*
1 1 1,1 1 1(,) (,)T T T Tf x y V x y− − − −

*
,1 1 1 1(,) (,)n mT T T Tf x y V x y− − − −

...

...

...

...

0,0Sum0,0Sum 1,1Sum1,1Sum0,0Sum 1,1Sum ,n mSum ,n mSum... ,n mSum0,0Sum 1,1Sum ... ,n mSumSum

Atomic AddAtomic Add Atomic AddAtomic Add Atomic AddAtomic Add

RegisterRegister

RegisterRegister

RegisterRegister

Figure 7: Illustration of the atomic add strategy

could be challenging due to the presence of the complex conditional state-

ments, which can result in thread divergence issues, thereby negatively im-

pacting performance. To resolve this issue, Xuan et al. [26] proposed a data

re-layout method, which involves separating the symmetrical pixels of the

original image into eight arrays and subsequently invoking the appropriate

kernel function based on the repetition m. This approach resulted in a sig-

nificant improvement in the acceleration rate. However, when computing a

set of Zernike moments, the calculation of the pixel intensities as described

in Eq. (32) and (33) becomes redundant. To further enhance the efficiency,

we propose a novel image recomposition approach, wherein the calculation of

pixel intensities is performed only once to complete the computation of the

entire set of Zernike moments. Figure 8 presents a graphical representation

of the recomposition process for the 4-symmetric algorithm.

The image recomposition is performed during the data preprocessing

stage by a CPU. The original image is recomposed into four separate im-

ages, each containing one-quarter of the original image’s pixels. In accor-

dance with Eq. (29), the value of each pixel in the first image F1(x, y) can

36

1

1

x

y 1

1

x

y
F1(x,y) = f1 + f2 + f3 + f4

1

1

x

y
F1(x,y) = f1 + f2 + f3 + f4

1

1

x

y 1

1

x

y
F2(x,y) = f1 - f2 - f3 + f4

1

1

x

y
F2(x,y) = f1 - f2 - f3 + f4

1

1

x

y 1

1

x

y
F3(x,y) = f1 - f2 + f3 - f4

1

1

x

y
F3(x,y) = f1 - f2 + f3 - f4

1

1

x

y 1

1

x

y
F4(x,y) = f1 + f2 - f3 - f4

1

1

x

y
F4(x,y) = f1 + f2 - f3 - f4

-1

1

-1

1

x

y

-1

1

-1

1

x

yF(x,y)

-1

1

-1

1

x

yF(x,y)

......

Figure 8: Illustration of the image re-composition method

be derived from its corresponding 4-symmetric pixels in the original image

F (x, y) through the formula f1 + f2 + f3 + f4. The second image F2(x, y) is

formed by the formula f1− f2− f3 + f4. Similarly, the remaining two images

F3(x, y) and F4(x, y) can be derived from Eq. (30). Furthermore, the pixels

outside the unit disk are excluded to avoid the thread divergence problem.

Subsequently, Eq. (28) can be rewritten as:

Znm =
n+ 1

π

∑∑
x2
i
+y2
j
≤1,

x≥0,y≥0

Rnm(ρ)[f rm(x, y)− jf im(x, y)]∆x∆y, (36)

where

f rm(x, y) =

F1(x, y)cos(mθ), m = 2k,

F2(x, y)cos(mθ), m = 2k + 1.
(37)

37

f im(x, y) =

F3(x, y)sin(mθ), m = 2k,

F4(x, y)sin(mθ), m = 2k + 1.
(38)

The recomposed images can be fed into the kernel function according to

different repetition m. If the result of dividing m by 2 leaves a remainder of 0,

the images F1(x, y) and F3(x, y) will be input into the kernel, with F1(x, y)

being designated to compute the real part, and F3(x, y) to compute the

imaginary part. Conversely, if the division of m by 2 results in a remainder

of 1, the images F2(x, y) and F4(x, y) will be input into the kernel. Similarly,

the method can be altered to accommodate the implementation of the 8-

symmetric algorithm on a GPU.

By employing this method, the calculation of the pixel intensity is re-

quired only once and can be applied to the entire set of Zernike moments.

Furthermore, this approach obviates the need for the GPU kernel to carry

out complex conditional statements and retrieve the symmetrical pixels’ val-

ues from the original image data in an un-coalesced manner. Instead, the

threads within the kernel function can consecutively fetch data from the re-

composed images to perform computations in parallel, resulting in coalesced

memory transactions and improved efficiency for the GPU kernel.

38

Chapter 5

Experimental Results

In order to assess the accuracy and efficiency of our proposed method, ex-

periments were carried out to obtain Zernike moments from an image with

varying maximum orders, and subsequently reconstruct the image using the

computed moments. A test image of size 512× 512 with 256 gray levels was

employed in this research, which is depicted in Figure 9.

Figure 9: The testing Lena image sized at 512× 512 with 256 gray levels

5.1 Computational Efficiency of the Proposed Method

In the course of our experiments, a program was developed utilizing CUDA

C++ and subsequently evaluated on a desktop computer that was outfitted

with an Intel i9 12900K CPU and an Nvidia GeForce RTX 4090 GPU that

boasts 16384 CUDA cores. In the program, all data was stored utilizing

the 64-bit double-precision floating-point format. The maximum order T of

Zernike moments was systematically set to 100, 150, ..., and 500, respectively.

Additionally, the k value of the sub-region scheme was varied from 1 to 9.

Table 3 presents the total computation time, including the data transfer and

GPU computation time, for the calculation of Zernike moments with varying

39

maximum orders and k values.

As can be observed from Table 3, without the application of the k × k
sub-region scheme (i.e. k = 1), the computation of Zernike moments with

maximum order up to 500 took less than 0.5 seconds, surpassing the perfor-

mance of the other fast computation methods documented in the literature.

After applying the k × k sub-region scheme, an augmented computational

workload resulted in a corresponding increase in the computational time, yet

remained within seconds.

Table 3: The whole computation time (in seconds) of Zernike moments with
different maximum orders T and k values

k\T 100 150 200 250 300 350 400 450 500
1 0.114 0.145 0.184 0.219 0.248 0.304 0.357 0.404 0.461
3 0.340 0.371 0.390 0.562 0.647 0.901 1.009 1.322 1.423
5 0.596 0.689 0.774 1.218 1.387 1.893 2.201 2.899 3.187
7 0.724 1.103 1.397 2.072 2.474 3.395 4.037 5.161 5.754
9 1.106 1.783 2.240 3.273 3.999 5.296 6.340 8.151 9.267

5.2 Computational Accuracy of the Proposed Method

Zernike moments computed through the original testing image with different

maximum orders and k values were subsequently used for image reconstruc-

tion. A selection of the reconstructed images is presented in Figure 10.

To analyze the computational accuracy, the Peak Signal to Noise Ratio

(PSNR) measurement was utilized to assess the quality of the reconstruc-

tion. A higher PSNR value for the reconstructed image indicates a closer

resemblance to the original image. The PSNR is defined as:

PSNR = 10 log10(
G2
max

MSE
), (39)

where Gmax is the maximum gray level of the original image (in our experi-

ments Gmax = 255) and MSE is the Mean Square Error between the original

40

k\T 100 300 500

1

5

9

 Figure 10: A selection of the reconstructed images obtained from Zernike
moments with different maximum order T and k values

image f(x, y) and the reconstructed image f̂(x, y):

MSE =
1

MN

M∑
i=1

N∑
j=1

[f(xi, yj)− f̂(xi, yj)]
2, (40)

where M and N are the width and height of the image respectively. However,

it should be noted that since Zernike moments are defined over the unit disk,

any pixels that fall outside of the unit disk are not used in the calculation

41

of Zernike moments, nor do they participate in the reconstruction process.

Therefore, when calculating the PSNR, these pixels must also be excluded.

The PSNR values of the reconstructed images from our experiments are

presented in Table 4.

Table 4: The PSNR values of the reconstructed images obtained from Zernike
moments with varying maximum order T and k values

k\T 100 150 200 250 300 350 400 450 500
1 26.87 28.14 28.17 27.26 25.94 24.68 23.36 21.98 20.75
3 27.06 29.00 30.69 32.20 33.35 34.48 34.89 35.12 35.25
5 27.06 29.01 30.71 32.33 33.82 35.28 36.64 37.63 38.15
7 27.06 29.01 30.71 32.33 33.90 35.29 36.76 37.90 39.19
9 27.06 29.01 30.71 32.33 33.90 35.29 36.76 38.04 39.20

As evident from Figure 10, when Zernike moments with a higher maxi-

mum order were utilized, the reconstructed images displayed improved clar-

ity, as they incorporated greater details from the original image. However,

prior to the application of the k × k sub-region scheme(i.e., k = 1), an in-

crease in the maximum order led to the emergence of white image distortion

around the rim of the reconstructed images, resulting in a marked decrease

in the PSNR values, as depicted in Table 4. The occurrence of the image

distortion was the result of the accumulation of the approximation errors

during the calculation of Zernike moments, as discussed in Section 3.1. The

implementation of the k × k sub-region scheme allowed for the obtaining

of more accurate Zernike moments, leading to the elimination of the im-

age distortion phenomenon. For high-order moments, such as 400 and 500,

the use of the 3 × 3 sub-region scheme significantly improved the quality

of the reconstructed image. And the utilization of higher k values was also

observed to result in higher PSNR values, making it particularly useful in

situations where high precision results are required. When the maximum

order of Zernike moments was 500 and the 9×9 sub-region scheme was used,

the PSNR value of the reconstructed image was recorded as 39.20 dB.

42

5.3 Comparison Between Different GPU Optimization

Strategies

This subsection presents the performance of different GPU optimization

strategies discussed in Chapter 4. The different strategies are listed in Table

5. The same test image was utilized to conduct the performance compari-

son. Table 6 displays the computation time of S1, S2, and S3 for Zernike

moments with maximum orders ranging from 100 to 500 without applying

the sub-region scheme.

Table 5: Different GPU optimization strategies.

Strategy Description
S1 Using parallel reduction
S2 Using atomic operation
S3 S2 + Using constant memory and hardware functions
S4 S3 + Using four symmetric strategy
S5 S3 + Using eight symmetric strategy

Table 6: The computation time(in seconds) of S1, S2, and S3 for Zernike
moments with maximum orders ranging from 100 to 500 without applying
the sub-region scheme

Strategy\T 100 200 300 400 500
S1 2.072 7.533 17.068 29.699 46.357
S2 0.276 0.492 0.892 1.413 2.108
S3 0.266 0.444 0.691 1.033 1.449

As discussed in Section 4.6.2, the parallel reduction kernel can be invoked

once all threads within a given kernel have completed their calculation of the

values f(x, y) × V ∗nm(x, y) for their corresponding pixels. This kernel incurs

not only a launch overhead, but also requires a substantial amount of memory

read and write operations. The comparison of the computation times of S1

and S2, as presented in Table 6, demonstrates that the use of the atomic

43

add operation to calculate the sum for all pixels significantly enhances the

computation efficiency in comparison to the parallel reduction algorithm.

Furthermore, a comparison of the computation times of S2 and S3 in-

dicates that the utilization of the constant memory to store the coefficients

K1, K2 and K3, in conjunction with the hardware trigonometry functions

provided by CUDA to compute the sine and cosine functions, resulted in fur-

ther improvement of the computation efficiency. This improvement became

more pronounced when higher maximum orders were used, as they involved

more computational workload.

In order to evaluate the efficacy of the proposed image recomposition

method for the implementation of the 4-symmetric and 8-symmetric algo-

rithms on a GPU, experiments were conducted to calculate Zernike moments

with varying maximum orders and distinct sub-region schemes, using the

methods S3, S4, and S5. The results of these experiments are documented

in Tables 7, 8, and 9.

Table 7: The computation time(in seconds) of S3, S4, and S5 for Zernike
moments with maximum orders ranging from 100 to 500 without applying
the sub-region scheme

Strategy\T 100 200 300 400 500
S3 0.266 0.444 0.691 1.033 1.449
S4 0.153 0.214 0.331 0.450 0.591
S5 0.114 0.184 0.248 0.357 0.461

Table 8: The computation time(in seconds) of S3, S4, and S5 for Zernike
moments with maximum orders ranging from 100 to 500 using the 5 × 5
sub-region scheme

Strategy\T 100 200 300 400 500
S3 2.749 5.268 9.196 15.400 22.223
S4 0.832 1.496 2.623 4.324 6.039
S5 0.596 0.774 1.387 2.201 3.187

44

Table 9: The computation time(in seconds) of S3, S4, and S5 for Zernike
moments with maximum orders ranging from 100 to 500 using the 9 × 9
sub-region scheme

Strategy\T 100 200 300 400 500
S3 8.278 16.395 29.473 48.474 71.593
S4 2.233 4.472 8.087 12.671 18.450
S5 1.106 2.240 3.999 6.340 9.267

According to Table 7, the proposed method for implementing the 4-

symmetric and 8-symmetric algorithms on the GPU demonstrated a notable

improvement in computation efficiency. However, as the sub-region scheme

was not utilized in this scenario, which led to a limited computational work-

load, the time for data preprocessing and memory transactions between the

CPU and GPU made up a substantial portion of the total elapsed time. As

a result, the computation times for S4 and S5 did not experience a 4× and

8× speed-up compared to S3, respectively. On the other hand, in Tables 8

and 9, with the implementation of the 5× 5 and 9× 9 sub-region schemes, a

significantly larger computational workload was required. The time for data

preprocessing and memory transactions became negligible in comparison to

the total elapsed time, thus S4 and S5 experienced nearly 4-fold and 8-fold

speed-up compared to S3. This confirms the validity of the proposed image

recomposition method for the GPU implementation of the 4-symmetric and

8-symmetric algorithms.

5.4 Comparison With the CPU-Based Implementation

In order to determine the superiority of our proposed GPU-accelerated imple-

mentation over the CPU-based baseline implementation, which employs the

Kintner’s fast method in conjunction with the eight-symmetric method, an

experiment was performed using the same test image. Table 10 presents the

computation time of Zernike moments with varying maximum order T and

45

k values as calculated on both the CPU and GPU, enabling a comparative

analysis to be performed.

Table 10: The computation time(in seconds) of Zernike moments with vary-
ing maximum order T and k values as calculated on both the CPU and GPU

k\T 100 300 500
CPU GPU CPU GPU CPU GPU

1 1.030 0.114 7.329 0.248 19.289 0.461
5 24.682 0.596 180.090 1.387 480.928 3.187
9 79.547 1.106 583.205 3.999 1549.963 9.267

As can be observed from Table 10, prior to dividing the original pixels

into k × k sub-pixels, the GPU-based method achieved a modest speed-up

compared to the baseline CPU method, with the rate increasing as the max-

imum order increased. When computing Zernike moments with a maximum

order of 100, the speed-up rate was 1.030
0.114

≈ 9.04×. For 500-order moments,

the speed-up rate reached 19.289
0.461

≈ 41.84×. Additionally, with the applica-

tion of the k × k sub-region scheme, which required a significantly greater

computational workload, the benefits of using GPU became even more pro-

nounced. It took the CPU approximately 26 minutes to calculate 500-order

moments using the 9×9 scheme, while the GPU only required approximately

9 seconds, yielding a speed-up rate of 1549.963
9.267

≈ 167.26×.

5.5 Experiments on Additional Images

In order to thoroughly validate the proposed method, four additional testing

images, as depicted in Figure 11, were utilized to conduct experiments. All of

the images had a size of 512×512 with 256 gray levels. The total computation

time of Zernike moments for the testing images is presented in Table 11, while

the PSNR values of the reconstructed images from those moments are shown

in Table 12.

As evidenced by Table 11, the computation time of moments with identi-

46

Figure 11: Four additional testing images: Cameraman, House, Peppers, and
Tiffany

Table 11: The whole computation time(in seconds) of Zernike moments of
the four additional testing images with different maximum orders T and k
values

Cameraman House Peppers Tiffany
k\T 300 500 300 500 300 500 300 500

1 0.265 0.478 0.277 0.457 0.243 0.483 0.259 0.463
5 1.408 3.207 1.379 3.163 1.363 3.216 1.376 3.189
9 3.968 9.294 4.016 9.231 3.974 9.283 4.025 9.301

cal maximum order and k value for various images with equivalent dimensions

were nearly identical. In terms of the quality of the reconstructed images from

these moments, Table 12 reveals that higher PSNR values can be achieved by

using greater maximum order and k values. However, the PSNR values for

distinct images reconstructed from moments with the same maximum order

and k value may differ, owing to variations in image content.

47

Table 12: The PSNR values of the reconstructed images from Zernike mo-
ments with varying maximum order T and k values

Cameraman House Peppers Tiffany
k\T 300 500 300 500 300 500 300 500

1 26.55 21.62 27.94 22.20 26.32 21.13 25.85 20.89
5 34.27 40.83 40.71 42.81 33.87 37.17 31.43 34.99
9 34.39 42.49 41.33 43.83 33.93 37.39 31.47 35.23

Chapter 6

Leaf Recognition With Zernike Moments

As elucidated in Chapter 2, Zernike moments possess several advanced prop-

erties, such as the ability to represent images with minimal redundant infor-

mation and invariance to rotations and reflections. Therefore, they can be

utilized as image features to perform image classification. In this Chapter,

a method is proposed for leaf recognition that employs Zernike moments as

image features and the k-Nearest Neighbors algorithm (k-NN) as a classifier.

The method is depicted in Fig. 12. Initially, the leaf images undergo pre-

processing, followed by computation of Zernike moments from the processed

images. These moments are then utilized to construct the feature vectors

of the images. Subsequently, the feature vectors are supplied to the k-NN

classifier for training or classification purposes.

Training

Data

Testing

Data

Image Preprocessing
Zernike Moments Feature

Extraction
K-NN Classifier

Figure 12: The proposed method for leaf recognition

48

6.1 Image Preprocessing

Prior to extracting the image features, it is necessary to preprocess the input

image. This entails scaling the image and positioning the leaf at its center.

The initial step in the image preprocessing stage is to convert the input

RGB image to a grayscale image, which is then resized to a suitable dimension

to decrease the computational workload. In this study, the size is set to

256× 256. To position the leaf in the center of the image, the centroid of the

leaf must be determined. Otsu’s method is employed to create a binary copy

of the image, allowing the shape of the leaf to be obtained. Subsequently, the

centroid can be obtained using the regular moments of the image. The regular

moments of a two-dimensional image f(x, y) are defined as the projections

of f(x, y) onto the monomial xpyq:

mpq =
∑
x

∑
y

xpyqf(x, y), (41)

where p denotes the order of x, and q represents the order of y.

The centroid (x, y) can be obtained by:

x =
m10

m00

, y =
m01

m00

. (42)

Assuming the input image f(x, y) has a width of w and a height of h, the

centered image g(x, y) can be obtained as follows:

g(x, y) = f(x+ [
w

2
− x], y + [

h

2
− y]). (43)

Subsequently, the leaf is scaled using the formula:

g(x, y) = f(
x√
β
m00

,
y√
β
m00

), (44)

so that the leaf of each image has a uniform area β, which is set to 10000

49

in this study. Following this, a bitwise operation is performed on the binary

image and the grayscale image, allowing only the leaf to be retained while

the background is set to a value of 0, which is black.

Fig. 13 illustrates an example of the image preprocessing process, where

three input images of different types of leaves have undergone preprocessing

and produced their respective output images. These preprocessed images can

then be utilized to compute their Zernike moments as features.

Preprocessor

Leaf 1 (Size: 1600 × 1200)

Leaf 2 (Size: 1600 × 1200)

Leaf 3 (Size: 1600 × 1200)

Leaf 1 (Size: 256 × 256)

Leaf 2 (Size: 256 × 256)

Leaf 3 (Size: 256 × 256)

Figure 13: An example of the image preprocessing process, where three in-
put images of different types of leaves have undergone preprocessing and
produced their respective output images

6.2 K-Nearest Neighbors Algorithm

The Zernike moments obtained from each leaf image can be utilized to gener-

ate a feature vector: ~v = (v1, v2, v3, ..., vl) = (|Z00|, |Z11|, |Z20|, ..., |Znmax,nmax|),
where |Znm| denotes the magnitude of Zernike moment of order n with rep-

50

etition m, and nmax is the chosen maximum order. Subsequently, machine

learning algorithms can be employed on these feature vectors for the purposes

of learning and recognition. In this study, the k-nearest neighbors algorithm

(k-NN) has been utilized.

The k-NN algorithm is a non-parametric supervised learning algorithm

that formulates predictions based on the distance between the object to be

classified and all the available samples in the training set. To be specific,

when the algorithm is provided with a new input object, it searches for the

k closest objects in the training set and identifies the majority class of those

k nearest neighbors as the predicted class for the new object.

The distance between any two objects can be determined by employing

different methods. In this study, Euclidean distance has been utilized. As-

sume that two objects X and Y possess feature vectors of ~X = (x1, x2, ..., xn)

and ~Y = (y1, y2, ..., yn), the Euclidean distance between them is defined as

follows:

D(~X, ~Y) =

√√√√ n∑
i=1

(xi − yi)2. (45)

6.3 Experiment Results

To assess the proposed method, several databases can be utilized, such as the

Flavia dataset, Swedish dataset, ICL dataset, and ImageCLEF dataset [15].

In this study, the Flavia dataset was selected, which is frequently utilized by

numerous researchers for plant leaf recognition. In [24], a Probabilistic Neural

Network (PNN) approach was tested on the Flavia dataset and achieved a

success rate of 90%. In [14], an approach using SVM as a classifier and Hu

moments and uniform local binary pattern histogram parameters as features

was tested on the Flavia dataset, which achieved an accuracy of 94.13%.

The dataset comprises 1800 images of leaves from 32 distinct species.

The images in the dataset solely include the blades of the leaves, without

any petioles, and have a resolution of 1600 × 1200. Some examples of the

51

leaves from this dataset are presented in Fig. 14.

Pre-processor

First leaf (Size: 1600 × 1200)

Second leaf (Size: 1600 × 1200)

Third leaf (Size: 1600 × 1200)

First leaf (Size: 256 × 256)

Second leaf (Size: 256 × 256)

Third leaf (Size: 256 × 256)

Input Output

……

Figure 14: Some examples of the leaves from the Flavia dataset

In this study, a total of 50 samples were used for each of the 32 species

from the Flavia dataset to perform the leaf recognition experiment. For each

species, 40 samples were allocated for training and 10 samples for testing.

Zernike moments with varying maximum orders were employed to evaluate

the classification ability, and the results of the experiment are presented in

Table 13. The maximum order of the Zernike moments was set to 6, 8, 10,

15, 20, 30, 40, and 50, respectively, which corresponded to the usage of 16,

25, 36, 72, 121, 256, 441, and 676 Zernike moments as features for the leaf

images. Furthermore, the 5-NN algorithm was employed as the classifier.

As presented in Table 13, it can be observed that the recognition accuracy

of the leaf classification task increased as the maximum order of the Zernike

moments used as features was increased. When the maximum order was set

to 6 or 8, the classification accuracy was low as the information captured in

the Zernike moments was not sufficient to distinguish between the different

52

types of leaves. With the use of higher order moments, more details were

taken into account, leading to improved recognition ability. The highest

recognition accuracy of 97.19% was obtained when Zernike moments with a

maximum order of 30 were utilized. However, as the maximum order was

further increased, the high-dimensional features would lead to the curse of

dimensionality and hence, a reduction in the recognition accuracy.

Table 13: The test results of the experiment to evaluate the classification
ability of utilizing Zernike moments with varying maximum orders

Experiment
Maximum order

of Zernike
moments

Number of
Zernike

moments
(Features)

Accuracy

1 6 16 64.38%
2 8 25 75.00%
3 10 36 79.06%
4 15 72 85.00%
5 20 121 89.06%
6 30 256 97.19%
7 40 441 95.31%
8 50 676 94.06%

53

Chapter 7

Conclusions

In this research, we examined the existing algorithms for fast computation of

Zernike moments. Building on the radial polynomials’ recursive relationship

and symmetry property, we proposed a novel method for efficiently comput-

ing high-order Zernike moments. By utilizing thousands of CUDA cores on

a GPU to compute intermediate results for image pixels simultaneously, our

method demonstrates greater computation efficiency than traditional CPU-

based methods. Additionally, we implemented the k × k sub-region scheme,

so that more accurate moments can be obtained, which is useful for those

situations where high-precision results are required.

Our implementation differs from existing GPU implementations that em-

ploy the direct method, as it is capable of computing high-order moments.

Additionally, we have proposed a method to effectively utilize symmetric al-

gorithms on the GPU. Our experimental results have demonstrated that this

method can achieve almost four-fold and eight-fold speed-up rates. Regard-

ing the summation of intermediate results, existing GPU methods have relied

on the parallel reduction algorithm. We have explored the use of the atomic

add operation for this purpose and achieved better performance. Neverthe-

less, given that atomic operations can result in serialization and performance

limitations, there is a necessity for further research to explore more effective

solutions aimed at enhancing the overall performance. Furthermore, we have

also implemented diverse optimizations, such as the utilization of registers,

constant memories, and the GPU’s hardware trigonometry functions, with

the aim of further augmenting the performance.

To evaluate the efficiency of our proposed algorithm, several testing im-

ages sized at 512 × 512 were employed to compute Zernike moments. The

results demonstrated that it took less than 0.5 seconds to compute Zernike

54

moments with a maximum order of 500, which makes the real-time applica-

tion of high-order Zernike moments become feasible. To assess the accuracy

of our proposed algorithm, we used the computed Zernike moments to per-

form image reconstruction and evaluated the quality of the reconstruction

using the PSNR measurement. The experiments showed that without the

k × k sub-region scheme, the reconstructed image suffered from undesirable

distortion, particularly when the maximum order was high. However, the

introduction of the k× k scheme significantly improved computational accu-

racy and eliminated image distortion in the reconstructed images. Specifi-

cally, when using the 9× 9 sub-region scheme to compute Zernike moments

with a maximum order of 500, the PSNR value of the reconstructed Lena

image reached 39.20 dB, and the total computation time was 9.267 seconds.

Furthermore, a method was proposed for the recognition of leaves, which

leverages Zernike moments as image features and k-nearest neighbors as

the classifier. The proposed approach was subsequently evaluated using the

Flavia dataset. The results revealed that the use of low-order moments re-

sulted in poor performance, as they contain insufficient information to dis-

tinguish between different types of leaves. When Zernike moments with a

maximum order of 30 were employed, the best recognition ability was at-

tained, with an accuracy of 97.19%. However, increasing the maximum order

further led to the curse of dimensionality, resulting in decreased recognition

performance. To tackle this issue, future research will necessitate data se-

lection to identify moments with greater variances, thereby facilitating the

improvement of both efficiency and performance.

55

Appendix A

Source Code of the GPU Implementation

This chapter provides the CUDA C++ source code snippets for the GPU im-

plementation. To compute Zernike moments, the initial step involves invok-

ing the function Zernike k subregion() for data preprocessing, followed by

repeated invocations of the GPU kernel functions calculate Zernike m02()

and calculate Zernike m13() based on varying repetitions of m.

Snippet 1: Function to compute Zernike moments

1 zernike_moments Zernike_k_subregion(Mat& img , int max_order ,

int k)

2 {

3 int width = img.cols;

4 int width_k = width * k;

5 int mid = width / 2;

6 int total_pixel_num = 0; // Those pixels out of the unit

disk will not be counted

7

8 // Store image pixels , and convert range from [0, 255] ->

[0.0 - 1.0]

9 // each original pixel will be seperated into k pixels and

have the same value

10 double* f_m0_real = new double[width_k * width_k];

11 double* f_m0_real_d; // on GPU memory

12 double* f_m0_imag = new double[width_k * width_k];

13 double* f_m0_imag_d; // on GPU memory

14

15 double* f_m1_real_cos = new double[width_k * width_k];

16 double* f_m1_real_cos_d; // on GPU memory

17 double* f_m1_real_sin = new double[width_k * width_k];

18 double* f_m1_real_sin_d; // on GPU memory

19 double* f_m1_imag_sin = new double[width_k * width_k];

20 double* f_m1_imag_sin_d; // on GPU memory

56

21 double* f_m1_imag_cos = new double[width_k * width_k];

22 double* f_m1_imag_cos_d; // on GPU memory

23

24 double* f_m2_real = new double[width_k * width_k];

25 double* f_m2_real_d; // on GPU memory

26 double* f_m2_imag = new double[width_k * width_k];

27 double* f_m2_imag_d; // on GPU memory

28

29 double* f_m3_real_cos = new double[width_k * width_k];

30 double* f_m3_real_cos_d; // on GPU memory

31 double* f_m3_real_sin = new double[width_k * width_k];

32 double* f_m3_real_sin_d; // on GPU memory

33 double* f_m3_imag_sin = new double[width_k * width_k];

34 double* f_m3_imag_sin_d; // on GPU memory

35 double* f_m3_imag_cos = new double[width_k * width_k];

36 double* f_m3_imag_cos_d; // on GPU memory

37

38 // Calculate Rho and Theta for each pixel

39 double* rho = new double[width_k * width_k]; // Store each

pixel ’s rho

40 double* rho_d; // on GPU memory

41 double* theta = new double[width_k * width_k]; // Store each

pixel’s theta

42 double* theta_d; // on GPU memory

43

44 double delta_xy = 2.0 / width_k; // width between sub -pixels

45

46 for (int j = 0; j < width / 2; j++) // j_row

47 {

48 for (int i = mid - 1 - j; i < mid; i++) // i_col

49 {

50 double x = ((2 * (i + mid) + 1 - double(width)) /

double(width)) - (floor(k / 2) * delta_xy);

51 double y = ((double(width) - 2 * j - 1) / double(width)

) - (floor(k / 2) * delta_xy);

52

53 bool is_on_unit_disk = true;

57

54

55 for (int a = 0; (a < k) && is_on_unit_disk; a++)

56 {

57 for (int b = 0; (b < k) && is_on_unit_disk; b++)

58 {

59 double xx = x + a * delta_xy;

60 double yy = y + b * delta_xy;

61 double rho_temp = sqrt(pow(xx , 2) + pow(yy , 2));

62 if (rho_temp > 1.0)

63 {

64 is_on_unit_disk = false;

65 break;

66 }

67 }

68 }

69

70 if (is_on_unit_disk)

71 {

72 // Use eight symmetric method

73 double f1, f2, f3, f4, f5 , f6 , f7 , f8;

74

75 if (i + j == mid - 1) // For those points on diagonal

, only 4-symmetric

76 {

77 f1 = img.at <unsigned char >(j, mid + i) / 255.0;

78 f2 = 0;

79 f3 = 0;

80 f4 = img.at <unsigned char >(j, mid - 1 - i) / 255.0;

81 f5 = img.at <unsigned char >(width - 1 - j, mid - 1 -

i) / 255.0;

82 f6 = 0;

83 f7 = 0;

84 f8 = img.at <unsigned char >(width - 1 - j, mid + i)

/ 255.0;

85 }

86 else // the other points have 8-symmetric

87 {

58

88 f1 = img.at <unsigned char >(j, mid + i) / 255.0;

89 f2 = img.at <unsigned char >(mid - 1 - i, width - 1 -

j) / 255.0;

90 f3 = img.at <unsigned char >(mid - 1 - i, j) / 255.0;

91 f4 = img.at <unsigned char >(j, mid - 1 - i) / 255.0;

92 f5 = img.at <unsigned char >(width - 1 - j, mid - 1 -

i) / 255.0;

93 f6 = img.at <unsigned char >(mid + i, j) / 255.0;

94 f7 = img.at <unsigned char >(mid + i, width - 1 - j)

/ 255.0;

95 f8 = img.at <unsigned char >(width - 1 - j, mid + i)

/ 255.0;

96 }

97

98 double f_m0_real_tmp = f1 + f2 + f3 + f4 + f5 + f6 +

f7 + f8;

99 double f_m0_imag_tmp = f1 - f2 + f3 - f4 + f5 - f6 +

f7 - f8;

100

101 double f_m1_real_cos_tmp = f1 - f4 - f5 + f8;

102 double f_m1_real_sin_tmp = f2 - f3 - f6 + f7;

103 double f_m1_imag_sin_tmp = f1 + f4 - f5 - f8;

104 double f_m1_imag_cos_tmp = f2 + f3 - f6 - f7;

105

106 double f_m2_real_tmp = f1 - f2 - f3 + f4 + f5 - f6 -

f7 + f8;

107 double f_m2_imag_tmp = f1 + f2 - f3 - f4 + f5 + f6 -

f7 - f8;

108

109 double f_m3_real_cos_tmp = f1 - f4 - f5 + f8;

110 double f_m3_real_sin_tmp = -f2 + f3 + f6 - f7;

111 double f_m3_imag_sin_tmp = f1 + f4 - f5 - f8;

112 double f_m3_imag_cos_tmp = -f2 - f3 + f6 + f7;

113

114 for (int a = 0; a < k; a++)

115 {

116 for (int b = 0; b < k; b++)

59

117 {

118 double xx = x + a * delta_xy;

119 double yy = y + b * delta_xy;

120 double rho_temp = sqrt(pow(xx , 2) + pow(yy , 2));

121

122 f_m0_real[total_pixel_num] = f_m0_real_tmp;

123 f_m0_imag[total_pixel_num] = f_m0_imag_tmp;

124

125 f_m1_real_cos[total_pixel_num] =

f_m1_real_cos_tmp;

126 f_m1_real_sin[total_pixel_num] =

f_m1_real_sin_tmp;

127 f_m1_imag_sin[total_pixel_num] =

f_m1_imag_sin_tmp;

128 f_m1_imag_cos[total_pixel_num] =

f_m1_imag_cos_tmp;

129

130 f_m2_real[total_pixel_num] = f_m2_real_tmp;

131 f_m2_imag[total_pixel_num] = f_m2_imag_tmp;

132

133 f_m3_real_cos[total_pixel_num] =

f_m3_real_cos_tmp;

134 f_m3_real_sin[total_pixel_num] =

f_m3_real_sin_tmp;

135 f_m3_imag_sin[total_pixel_num] =

f_m3_imag_sin_tmp;

136 f_m3_imag_cos[total_pixel_num] =

f_m3_imag_cos_tmp;

137

138 rho[total_pixel_num] = rho_temp;

139 theta[total_pixel_num] = atan2(yy, xx);

140 total_pixel_num ++;

141 }

142 }

143 }

144 }

145 }

60

146

147 cudaMalloc ((void **)&f_m0_real_d , sizeof(double) *

total_pixel_num);

148 cudaMemcpy(f_m0_real_d , f_m0_real , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

149 cudaMalloc ((void **)&f_m0_imag_d , sizeof(double) *

total_pixel_num);

150 cudaMemcpy(f_m0_imag_d , f_m0_imag , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

151

152 cudaMalloc ((void **)&f_m1_real_cos_d , sizeof(double) *

total_pixel_num);

153 cudaMemcpy(f_m1_real_cos_d , f_m1_real_cos , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

154 cudaMalloc ((void **)&f_m1_real_sin_d , sizeof(double) *

total_pixel_num);

155 cudaMemcpy(f_m1_real_sin_d , f_m1_real_sin , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

156 cudaMalloc ((void **)&f_m1_imag_sin_d , sizeof(double) *

total_pixel_num);

157 cudaMemcpy(f_m1_imag_sin_d , f_m1_imag_sin , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

158 cudaMalloc ((void **)&f_m1_imag_cos_d , sizeof(double) *

total_pixel_num);

159 cudaMemcpy(f_m1_imag_cos_d , f_m1_imag_cos , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

160

161 cudaMalloc ((void **)&f_m2_real_d , sizeof(double) *

total_pixel_num);

162 cudaMemcpy(f_m2_real_d , f_m2_real , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

163 cudaMalloc ((void **)&f_m2_imag_d , sizeof(double) *

total_pixel_num);

164 cudaMemcpy(f_m2_imag_d , f_m2_imag , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

165

61

166 cudaMalloc ((void **)&f_m3_real_cos_d , sizeof(double) *

total_pixel_num);

167 cudaMemcpy(f_m3_real_cos_d , f_m3_real_cos , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

168 cudaMalloc ((void **)&f_m3_real_sin_d , sizeof(double) *

total_pixel_num);

169 cudaMemcpy(f_m3_real_sin_d , f_m3_real_sin , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

170 cudaMalloc ((void **)&f_m3_imag_sin_d , sizeof(double) *

total_pixel_num);

171 cudaMemcpy(f_m3_imag_sin_d , f_m3_imag_sin , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

172 cudaMalloc ((void **)&f_m3_imag_cos_d , sizeof(double) *

total_pixel_num);

173 cudaMemcpy(f_m3_imag_cos_d , f_m3_imag_cos , sizeof(double) *

total_pixel_num , cudaMemcpyHostToDevice);

174

175 cudaMalloc ((void **)&rho_d , sizeof(double) * total_pixel_num

);

176 cudaMemcpy(rho_d , rho , sizeof(double) * total_pixel_num ,

cudaMemcpyHostToDevice);

177 cudaMalloc ((void **)&theta_d , sizeof(double) *

total_pixel_num);

178 cudaMemcpy(theta_d , theta , sizeof(double) * total_pixel_num

, cudaMemcpyHostToDevice);

179

180 // Store Zernike moments real and imaginary part

181 int max_zernike_num = (int((max_order - 1) / 2) + 1) * (int

((max_order - 1) / 2) + 1 + ((max_order - 1) % 2));

182 zernike_moments Znm;

183 Znm.real = new double[max_zernike_num];

184 Znm.imag = new double[max_zernike_num];

185

186 double* Znm_real_d;

187 double* Znm_imag_d;

188 cudaMalloc ((void **)&Znm_real_d , sizeof(double) *

max_zernike_num);

62

189 cudaMalloc ((void **)&Znm_imag_d , sizeof(double) *

max_zernike_num);

190 cudaMemset ((void **)&Znm_real_d , 0, sizeof(double) *

max_zernike_num);

191 cudaMemset ((void **)&Znm_imag_d , 0, sizeof(double) *

max_zernike_num);

192

193 // GPU to calculate Zernike moments

194 dim3 DimBlock = BLK_SIZE;

195 dim3 DimGrid = ceil(total_pixel_num / float(BLK_SIZE));

196

197 // Calculate Kinterner ’s M1 ,M2 ,M3 coefficient

198 kintner_coefficient k_h[k_c_size];

199

200 for (int m = 0; m < max_order; m++)

201 {

202 // Kinterner ’s M1,M2,M3 coefficient into constant memory

203 int n_num = int(ceil((max_order - m) / 2.0)); // Get n

number for each m

204 for (int n = m + 4; n < max_order; n = n + 2)

205 {

206 int n_current_position = (n - m) / 2;

207

208 k_h[n_current_position].M1 = 4 * n * (n - 1) / double ((

n + m) * (n - m));

209 k_h[n_current_position].M2 = -2 * (n - 1) * (n * (n -

2) + m * m) / double ((n + m) * (n - m) * (n - 2));

210 k_h[n_current_position].M3 = -1 * n * (n + m - 2) * (n

- m - 2) / double ((n + m) * (n - m) * (n - 2));

211 }

212 cudaMemcpyToSymbol(k_c , k_h , sizeof(kintner_coefficient)

* n_num);

213

214 if (m % 4 == 0)

215 calculate_Zernike_m02 << <DimGrid , DimBlock >> > (

Znm_real_d , Znm_imag_d , f_m0_real_d , f_m0_imag_d , rho_d ,

theta_d , m, max_order , total_pixel_num);

63

216 else if (m % 4 == 1)

217 calculate_Zernike_m13 << <DimGrid , DimBlock >> > (

Znm_real_d , Znm_imag_d , f_m1_real_cos_d , f_m1_real_sin_d ,

f_m1_imag_sin_d , f_m1_imag_cos_d , rho_d , theta_d , m,

max_order , total_pixel_num);

218 else if (m % 4 == 2)

219 calculate_Zernike_m02 << <DimGrid , DimBlock >> > (

Znm_real_d , Znm_imag_d , f_m2_real_d , f_m2_imag_d , rho_d ,

theta_d , m, max_order , total_pixel_num);

220 else if (m % 4 == 3)

221 calculate_Zernike_m13 << <DimGrid , DimBlock >> > (

Znm_real_d , Znm_imag_d , f_m3_real_cos_d , f_m3_real_sin_d ,

f_m3_imag_sin_d , f_m3_imag_cos_d , rho_d , theta_d , m,

max_order , total_pixel_num);

222 }

223

224 cudaMemcpy(Znm.real , Znm_real_d , sizeof(double) *

max_zernike_num , cudaMemcpyDeviceToHost);

225 cudaMemcpy(Znm.imag , Znm_imag_d , sizeof(double) *

max_zernike_num , cudaMemcpyDeviceToHost);

226

227 for (int m = 0; m < max_order; m++)

228 {

229 for (int n = m; n < max_order; n = n + 2)

230 {

231 int current_nm_position = (int((n - 1) / 2) + 1) * (int

((n - 1) / 2) + 1 + ((n - 1) % 2)) + int(m / 2);

232 double coefficient = 4.0 * (n + 1.0) / (CV_PI * pow(

width_k , 2));

233

234 Znm.real[current_nm_position] *= coefficient;

235 Znm.imag[current_nm_position] *= coefficient;

236 }

237 }

238

239 delete [] f_m0_real;

240 delete [] f_m0_imag;

64

241 delete [] f_m1_real_cos;

242 delete [] f_m1_real_sin;

243 delete [] f_m1_imag_sin;

244 delete [] f_m1_imag_cos;

245 delete [] f_m2_real;

246 delete [] f_m2_imag;

247 delete [] f_m3_real_cos;

248 delete [] f_m3_real_sin;

249 delete [] f_m3_imag_sin;

250 delete [] f_m3_imag_cos;

251 delete [] rho;

252 delete [] theta;

253 cudaFree ((void*) Znm_real_d);

254 cudaFree ((void*) Znm_imag_d);

255 cudaFree ((void*) f_m0_real_d);

256 cudaFree ((void*) f_m0_imag_d);

257 cudaFree ((void*) f_m1_real_cos_d);

258 cudaFree ((void*) f_m1_real_sin_d);

259 cudaFree ((void*) f_m1_imag_sin_d);

260 cudaFree ((void*) f_m1_imag_cos_d);

261 cudaFree ((void*) f_m2_real_d);

262 cudaFree ((void*) f_m2_imag_d);

263 cudaFree ((void*) f_m3_real_cos_d);

264 cudaFree ((void*) f_m3_real_sin_d);

265 cudaFree ((void*) f_m3_imag_sin_d);

266 cudaFree ((void*) f_m3_imag_cos_d);

267 cudaFree ((void*)rho_d);

268 cudaFree ((void*) theta_d);

269

270 return Znm;

271 }

Snippet 2: GPU kernel function for m = 4k and m = 4k + 2

1 __global__ void calculate_Zernike_m02(double* Znm_real ,

double* Znm_imag , double* f_real , double* f_imag , double*

rho , double* theta , int m, int max_order , int

65

total_pixel_num)

2 {

3 int current_pixel_id = blockDim.x * blockIdx.x + threadIdx.

x;

4 if (current_pixel_id < total_pixel_num) // Boundary check

5 {

6 double R_minus_2; // Register to reduce IO operation

7 double R_minus_4;

8 double R_Current;

9 double rho_current = rho[current_pixel_id];

10 double f_real_tmp = f_real[current_pixel_id];

11 double f_imag_tmp = f_imag[current_pixel_id];

12 double theta_current = theta[current_pixel_id];

13 double cos_m_theta_multipiled_f = __cosf(m *

theta_current) * f_real_tmp;

14 double sin_m_theta_multipiled_f = -__sinf(m *

theta_current) * f_imag_tmp;

15

16 for (int n = m; n < max_order; n = n + 2)

17 {

18 int current_nm_position = (int((n - 1) / 2) + 1) * (int

((n - 1) / 2) + 1 + ((n - 1) % 2)) + int(m / 2);

19 int n_current_position = (n - m) / 2;

20

21 if (n == m)

22 {

23 R_minus_4 = pow(rho_current , n);

24 atomicAdd (& Znm_real[current_nm_position], R_minus_4 *

cos_m_theta_multipiled_f);

25 atomicAdd (& Znm_imag[current_nm_position], R_minus_4 *

sin_m_theta_multipiled_f);

26 }

27

28 else if (n == (m + 2))

29 {

30 R_minus_2 = (m + 2) * R_minus_4 * rho_current *

rho_current - (m + 1) * R_minus_4;

66

31 atomicAdd (& Znm_real[current_nm_position], R_minus_2 *

cos_m_theta_multipiled_f);

32 atomicAdd (& Znm_imag[current_nm_position], R_minus_2 *

sin_m_theta_multipiled_f);

33 }

34

35 else

36 {

37 R_Current = (k_c[n_current_position].M1 * rho_current

* rho_current + k_c[n_current_position].M2) * R_minus_2 +

k_c[n_current_position].M3 * R_minus_4;

38 atomicAdd (& Znm_real[current_nm_position], R_Current *

cos_m_theta_multipiled_f);

39 atomicAdd (& Znm_imag[current_nm_position], R_Current *

sin_m_theta_multipiled_f);

40 R_minus_4 = R_minus_2;

41 R_minus_2 = R_Current;

42 }

43 }

44 }

45 }

Snippet 3: GPU kernel function for m = 4k + 1 and m = 4k + 3

1 __global__ void calculate_Zernike_m13(double* Znm_real ,

double* Znm_imag , double* f_real_cos , double* f_real_sin ,

double* f_imag_sin , double* f_imag_cos , double* rho ,

double* theta , int m, int max_order , int total_pixel_num)

2 {

3 int current_pixel_id = blockDim.x * blockIdx.x + threadIdx.

x;

4 if (current_pixel_id < total_pixel_num) // Boundary check

5 {

6 double R_minus_2; // Register to reduce IO operation

7 double R_minus_4;

8 double R_Current;

9 double rho_current = rho[current_pixel_id];

67

10 double f_real_cos_tmp = f_real_cos[current_pixel_id];

11 double f_real_sin_tmp = f_real_sin[current_pixel_id];

12 double f_imag_cos_tmp = f_imag_cos[current_pixel_id];

13 double f_imag_sin_tmp = f_imag_sin[current_pixel_id];

14 double theta_current = theta[current_pixel_id];

15 double real_part_tmp = __cosf(m * theta_current) *

f_real_cos_tmp + __sinf(m * theta_current) *

f_real_sin_tmp;

16 double imag_part_tmp = -__sinf(m * theta_current) *

f_imag_sin_tmp - __cosf(m * theta_current) *

f_imag_cos_tmp;

17

18 for (int n = m; n < max_order; n = n + 2)

19 {

20 int current_nm_position = (int((n - 1) / 2) + 1) * (int

((n - 1) / 2) + 1 + ((n - 1) % 2)) + int(m / 2);

21 int n_current_position = (n - m) / 2;

22

23 if (n == m)

24 {

25 R_minus_4 = pow(rho_current , n);

26 atomicAdd (& Znm_real[current_nm_position], R_minus_4 *

real_part_tmp);

27 atomicAdd (& Znm_imag[current_nm_position], R_minus_4 *

imag_part_tmp);

28 }

29

30 else if (n == (m + 2))

31 {

32 R_minus_2 = (m + 2) * R_minus_4 * rho_current *

rho_current - (m + 1) * R_minus_4;

33 atomicAdd (& Znm_real[current_nm_position], R_minus_2 *

real_part_tmp);

34 atomicAdd (& Znm_imag[current_nm_position], R_minus_2 *

imag_part_tmp);

35 }

36

68

37 else

38 {

39 R_Current = (k_c[n_current_position].M1 * rho_current

* rho_current + k_c[n_current_position].M2) * R_minus_2 +

k_c[n_current_position].M3 * R_minus_4;

40 atomicAdd (& Znm_real[current_nm_position], R_Current *

real_part_tmp);

41 atomicAdd (& Znm_imag[current_nm_position], R_Current *

imag_part_tmp);

42 R_minus_4 = R_minus_2;

43 R_minus_2 = R_Current;

44 }

45 }

46 }

47 }

69

References

[1] Chee-Way Chong, P Raveendran, and Ramakrishnan Mukundan. A

comparative analysis of algorithms for fast computation of zernike mo-

ments. Pattern Recognition, 36(3):731–742, 2003.

[2] Mark Harris. Optimizing Parallel Reduction in CUDA.

https://developer.download.nvidia.com/assets/cuda/files/

reduction.pdf.

[3] Heloise Hse and A Richard Newton. Sketched symbol recognition using

zernike moments. In Proceedings of the 17th International Conference

on Pattern Recognition, 2004. ICPR 2004., volume 1, pages 367–370.

IEEE, 2004.

[4] Sun-Kyoo Hwang and Whoi-Yul Kim. Fast and efficient method for

computing art. IEEE Transactions on Image Processing, 15(1):112–117,

2005.

[5] Sun-Kyoo Hwang and Whoi-Yul Kim. A novel approach to the fast

computation of zernike moments. Pattern Recognition, 39(11):2065–

2076, 2006.

[6] Ismail A Ismail, Mohamed A Shouman, Khalid M Hosny, and Hayam

M Abdel Salam. Invariant image watermarking using accurate zernike

moments 1. 2010.

[7] Hyung Shin Kim and Heung-Kyu Lee. Invariant image watermark using

zernike moments. IEEE transactions on Circuits and Systems for Video

Technology, 13(8):766–775, 2003.

[8] Eric C Kintner. On the mathematical properties of the zernike polyno-

mials. 1976.

70

[9] David B Kirk and W Hwu Wen-Mei. Programming massively parallel

processors: a hands-on approach. Morgan kaufmann, 2016.

[10] AH Kulkarni, HM Rai, KA Jahagirdar, PS Upparamani, et al. A leaf

recognition technique for plant classification using rbpnn and zernike

moments. International Journal of Advanced Research in Computer and

Communication Engineering, 2(1):984–988, 2013.

[11] Yogesh Kumar, Ashutosh Aggarwal, Shailendra Tiwari, and Karam-

jeet Singh. An efficient and robust approach for biomedical image re-

trieval using zernike moments. Biomedical Signal Processing and Con-

trol, 39:459–473, 2018.

[12] Shan Li, Moon-Chuen Lee, and Chi-Man Pun. Complex zernike mo-

ments features for shape-based image retrieval. IEEE Transactions

on Systems, Man, and Cybernetics-Part A: Systems and Humans,

39(1):227–237, 2008.

[13] Simon Liao and George A Papakostas. Accuracy analysis of moment

functions. Moments and Moment Invariants-Theory and Applications,

edited by George A. Papakostas, 1:33–56, 2014.

[14] Marko Lukic, Eva Tuba, and Milan Tuba. Leaf recognition algorithm

using support vector machine with hu moments and local binary pat-

terns. In 2017 IEEE 15th international symposium on applied machine

intelligence and informatics (SAMI), pages 000485–000490. IEEE, 2017.

[15] Petr Novotnỳ and Tomáš Suk. Leaf recognition of woody species in

central europe. Biosystems Engineering, 115(4):444–452, 2013.

[16] Chhaya Patel. Different optimization strategies and performance evalu-

ation of reduction on multicore cuda architecture. International Journal

of Engineering Research & Technology (IJERT), 3(4), 2014.

71

[17] Aluizio Prata and WVT Rusch. Algorithm for computation of zernike

polynomials expansion coefficients. Applied Optics, 28(4):749–754, 1989.

[18] Manuel Jesús Mart́ın Requena, Pablo Moscato, and Manuel Ujaldón.

Efficient data partitioning for the gpu computation of moment functions.

Journal of Parallel and Distributed Computing, 74(1):1994–2004, 2014.

[19] Chandan Singh, Neerja Mittal, and Ekta Walia. Face recognition using

zernike and complex zernike moment features. Pattern Recognition and

Image Analysis, 21(1):71–81, 2011.

[20] Chandan Singh and Ekta Walia. Fast and numerically stable methods for

the computation of zernike moments. Pattern Recognition, 43(7):2497–

2506, 2010.

[21] Michael Reed Teague. Image analysis via the general theory of moments.

Josa, 70(8):920–930, 1980.

[22] Zernike von F. Beugungstheorie des schneidenver-fahrens und seiner

verbesserten form, der phasenkontrastmethode. physica, 1(7-12):689–

704, 1934.

[23] Xiaoyu Wang and Simon Liao. Image reconstruction from orthogonal

fourier-mellin moments. In International Conference Image Analysis

and Recognition, pages 687–694. Springer, 2013.

[24] Stephen Gang Wu, Forrest Sheng Bao, Eric You Xu, Yu-Xuan Wang,

Yi-Fan Chang, and Qiao-Liang Xiang. A leaf recognition algorithm for

plant classification using probabilistic neural network. In 2007 IEEE in-

ternational symposium on signal processing and information technology,

pages 11–16. IEEE, 2007.

[25] Yongqing Xin, Simon Liao, and Miroslaw Pawlak. Circularly orthog-

onal moments for geometrically robust image watermarking. Pattern

Recognition, 40(12):3740–3752, 2007.

72

[26] Yubo Xuan, Dayu Li, and Wei Han. Efficient optimization approach

for fast gpu computation of zernike moments. Journal of Parallel and

Distributed Computing, 111:104–114, 2018.

[27] F Zernike. Diffraction theory of the knife-edge test and its improved

version, the phase-contrast method. Physica, 1:689–704, 1934.

73

