
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2023

Rainbow Turan Methods for Trees Rainbow Turan Methods for Trees

Victoria Bednar
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Discrete Mathematics and Combinatorics Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7469

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarscompass.vcu.edu%2Fetd%2F7469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7469?utm_source=scholarscompass.vcu.edu%2Fetd%2F7469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Victoria Bednar, August 2023

All Rights Reserved.

i

DISSERTATION : RAINBOW TURÁN METHODS FOR TREES

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Systems Modeling and Analysis with a Concentration in

Discrete Mathematics at Virginia Commonwealth University.

by

VIC BEDNAR

Masters in Mathematics, Virginia Commonwealth University - May 2020

Bachelors of Mathematics, University of Mary Washington - May 2018

Director: Neal Bushaw,

Associate Professor, Department of Mathematics and Applied Mathematics

Virginia Commonwewalth University

Richmond, Virginia

May, 2023

ii

Acknowledgements

This endeavor would not be possible without my advisor, Dr Neal Bushaw, who

introduced me to graph theory as a first-year graduate student. None of this could

have happened without your knowledge, support, and advice guiding me through the

last five years. To the rest of my committee, Drs Glenn Hurlbert, Craig Larson, and

Puck Rombach, I am deeply appreciative of your time, energy, and support. Each

of you has broadened my horizons and provided excellent role models for how to

navigate academia. To the faculty of the Mathematics Department at VCU, who

have watched me learn and grow over the past years, thank you for showing me how

to be the best version of myself in teaching, service, research, and in my personal life.

To the graduate students at VCU - I would not have made it through without you as

sounding boards, friends, and sometimes therapists.

Special thanks to the American Mathematical Society, the Graduate Research

Workshop in Combinatorics, and the Computer Science Institute of Charles Univer-

sity. The opportunities your funding provided were invaluable. Being able to travel,

meet, and research with graph theorists from around the world was a true privilege

that assisted my development as an academic and as a collaborator. To the friends

I made along the way, thank you for making every new place feel as welcoming as

coming home.

My endless gratitude also goes to my family, especially my parents, who sup-

ported me by watching my dog, providing a quiet place to escape, and with thousands

of other little actions every day. Finally, thanks to Bones, whose constant compan-

ionship meant I was never lonely, even when trapped inside with only my computer

in the midst of a global pandemic. To all those unmentioned who helped me survive

the last few years and inspired me to succeed, thank you, thank you, thank you!

iii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . iii

Table of Contents . iv

List of Figures . v

Abstract . ix

1 Introduction . 1

1.1 Basic Definitions and Notation . 1

1.2 Graph Families . 1

1.3 Graph Coloring . 5

1.4 Extremal Graph Theory . 6

1.5 Rainbow Turán Problems . 11

1.6 Methods . 14

1.6.1 k-Unique Edge Coloring . 14

1.6.2 Reduction Method . 16

2 k-Unique Edge Coloring . 18

2.1 k-Unique Spectrum . 18

2.2 k-Unique Turán Numbers . 24

3 Rainbow Turán Bounds for Families of Trees 27

3.1 Double Stars . 27

3.2 Other Families . 34

3.3 Sharpness of Bounds . 47

4 Rainbow Turán Upper Bounds for All Trees 49

4.1 Upper Bound for All Trees . 49

4.2 A Center-Based Improvement . 52

4.3 Level-Specific Upper Bound . 54

5 Further Caterpillar Bounds . 59

5.1 Left vs. Right Endpoint . 59

iv

5.2 Caterpillar vs. Level-Specific Upper Bound 63

6 Future Work . 66

6.1 k-Unique . 66

6.2 Bounds on Specific Families . 67

6.3 Improving the Upper Bound for All Trees 67

Appendix A Code . 69

References . 74

v

LIST OF FIGURES

Figure Page

1 P3, a path of length three. 2

2 A path subgraph. 2

3 C4 as a graph (left) and as a subgraph (right). 2

4 A bipartite graph with cycles (left) and a tree (right). 3

5 Double star DSr,s . 3

6 Caterpillar Cc1,...ck . 4

7 T (k, 2). 4

8 A graph with two equivalent edge colorings. 5

9 A proper edge coloring of C4 (left) and a rainbow edge coloring of C4 (right). 6

10 P4 is rainbow P3-free. 12

11 A 3-unique edge coloring of DS2,3. 15

12 P3 has a proper edge coloring that is not rainbow. 16

13 DS1,2 always contains a rainbow P3 . 16

14 DS2,2 in K6. 23

15 Rainbow DS2,2 Subgraph: Step One. 28

16 Rainbow DS2,2 Subgraph: Step Two. 28

17 Rainbow DS2,2 Subgraph: Step Three. 29

18 Rainbow DS2,2 Subgraph: Step Four. 29

19 A proper edge coloring of DS2,2 that is not rainbow. 30

vi

20 DS2,4 always contains a rainbow DS2,2. 30

21 A rainbow DS1,2s+1 as a subgraph of K2s+4. 33

22 Caterpillar Cc1,c2,c3 . 35

23 Ensuring c1 leaves of x1 have colors distinct from x1x2 and x2x3. 36

24 Ensuring c2 leaves adjacent to x2 have distinct colors. 36

25 Augmented graph that contains rainbow Cc1,c2,c3 37

26 Caterpillar Cc1,...,ck . 38

27 Simplified diagram of a caterpillar. 39

28 New tree before edge x3x4 is considered. 39

29 c1 + c2 + 2 edges guarantees that one can serve as x3x4 in a rainbow

subgraph. 40

30 2 +
∑4

i=1 ci leaves for every potential x4. 40

31 Augmented caterpillar up to x5. 42

32 The tree T (2, 2). 43

33 Labeled T (2, 2) . 44

34 Augmented T (2, 2). 44

35 First two layers of a labeled T (k, d). 46

36 Tree T1 with diam(T) = 5 and ∆(T) = 3. 50

37 T1 embedded in T (3, 3). 50

38 T1 embedded in T (2, 3). 53

39 Tree T2 . 54

40 A tree with di indicated at each distance from the center. 55

vii

41 The same tree embedded in a rooted TD. 55

42 T3 . 57

43 T4 . 57

44 T5 . 57

45 Caterpillar Cc1,...ck . 60

46 C2,2,1,0,3,1 . 61

47 C2,0,0,2,0,1 . 61

48 C3,0,0,0,0,0,4,0,0,0,0,2 . 62

49 C7,0,0,0,0,6,0,2 . 63

50 C5,0,5 . 64

51 C1,1,1,1,2,4,6,7 . 65

52 C3,0,0,1,2 . 65

viii

Abstract

DISSERTATION : RAINBOW TURÁN METHODS FOR TREES

By Vic Bednar

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Systems Modeling and Analysis with a Concentration in

Discrete Mathematics at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Director: Neal Bushaw,

Associate Professor, Department of Mathematics and Applied Mathematics

The rainbow Turán number, a natural extension of the well-studied traditional

Turán number, was introduced in 2007 by Keevash, Mubayi, Sudakov and Verstraëte.

The rainbow Turán number of a graph F , ex⋆(n, F), is the largest number of edges for

an n vertex graph G that can be properly edge colored with no rainbow F subgraph.

Chapter 1 of this dissertation gives relevant definitions and a brief history of extremal

graph theory. Chapter 2 defines k-unique colorings and the related k-unique Turán

numbers and provides preliminary results on this new variant. In Chapter 3, we ex-

plore the reduction method for finding upper bounds on rainbow Turán numbers and

use this to inform results for the rainbow Turán numbers of specific families of trees.

These results are used in Chapter 4 to prove that the rainbow Turán numbers of

all trees are linear in n, which correlates to a well-known property of the traditional

Turán numbers of trees. We discuss improvements to the constant term in Chapters

4 and 5, and conclude with a discussion on avenues for future work.

ix

CHAPTER 1

INTRODUCTION

1.1 Basic Definitions and Notation

A graph is an ordered pair G = (V (G), E(G)), in which V (G) is a non-empty set

of vertices, and E(G) is a set of edges connecting pairs of vertices. In this paper, we are

solely concerned with simple finite graphs, that is, V (G) is finite and E(G) ⊆
(
V (G)
2

)
with no repetition. The order and size of a graph are the number of vertices and edges,

respectively. We denote the order by |G|, and ||G|| denotes the size. The neighborhood

of a vertex v in G is the collection of vertices that share edges with v, and deg(v), the

degree of v, is the number of vertices in its neighborhood. When S ⊆ E(G), deg(v, S)

is the number of edges between v and S. The distance between two vertices, d(v, u)

is the minimum number of edges that must be traversed to reach u from v. If it is

impossible to reach u from v, as is sometimes the case in disconnected graphs, we

define the distance to be infinite. A subgraph F ⊆ G is a graph with V (F) ⊆ V (G)

and E(F) ⊆ E(G). In layman’s terms, a subgraph, F , is any structure that can be

found inside of some graph, G. We call a graph F -free if it contains no copy of F

as a subgraph. When we preclude F as a subgraph, we refer to F as a forbidden

subgraph.

1.2 Graph Families

A path, Pk is a sequence of k edges that connect a sequence of distinct vertices.

The requirement that the vertices be distinct also prohibits the same edge being

used twice in a path. Note that we deviate from the standard notation, in which Pk

1

indicates a path on k vertices, because, throughout this paper, there is an emphasis

on constructing a graph, and then counting its edges. Figure 1 shows a path with

length three, and Figure 2 shows a path of length four as a subgraph.

Fig. 1. P3, a path of length three.

Fig. 2. A path subgraph.

A cycle is a path in which the first and last vertices are the same, with no other

vertices repeated. In a cycle Ck, there are k vertices and k edges. In Figure 3 we see

C4 as a graph on the left and as a subgraph on the right.

Fig. 3. C4 as a graph (left) and as a subgraph (right).

A bipartite graph has a vertex set that can be partitioned into two sets A and

B, such that every edge has one endpoint in A and one endpoint in B. Equivalently,

a bipartite graph is a graph that contains no odd cycles. A tree is a connected graph

2

with no cycles of any size. All trees are bipartite, but the converse is not necessarily

true. Figure 4 shows two bipartite graphs - the left graph contains cycles and the

graph on the right is a tree.

Fig. 4. A bipartite graph with cycles (left) and a tree (right).

There is a variety of specific families of trees addressed throughout this paper -

we define the primary families here. A double star DSr,s, as shown in Figure 5, is a

single edge with r and s leaves appended to the endpoints. The vertex labeling in

Figure 5 is the standard vertex labeling we use throughout this dissertation.

y xy2

y1

yr

x1

x2

xs

...
...

Fig. 5. Double star DSr,s

A generalization of double stars can be made by starting with a path on k vertices

and appending leaves to each vertex on that path. Such graphs are called caterpillars,

and are denoted by Cc1,c2,...,ck in which there are ci leaves attached to the ith vertex

on the path and c1 ≥ 1 and ck ≥ 1. We refer to the longest path of a caterpillar,

minus its two endpoints, as the spine. That is, the endpoints of the spine are not

3

themselves leaves. Figure 6 illustrates a caterpillar with the vertex labeling that we

use throughout this document. Note that while a longest path in this caterpillar is

y1,1x1x2 . . . xkyk,1, the spine is x1x2 . . . xk and does not include the leaves.

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

xk

yk,1 yk,ck

. . .

. . .

Fig. 6. Caterpillar Cc1,...ck

The last family of trees we consider in this dissertation is perfect k-ary trees,

T (k, d). A perfect k-ary tree of depth d is a rooted tree with a root vertex of degree

k, all vertices with distance less than d from the root have degree k+1, and all leaves

are exactly distance d from the root vertex. That is, every non-leaf vertex in the tree

T (k, d) has k children, and all leaves are distance d from the root. Figure 7 shows a

T (k, 2) with the vertex and edge labeling that we use throughout this dissertation.

For the sake of readability, only selected edges have been labeled.

v0,1

v1,1 v1,k

v2,kv2,1 v2,k2−k+1 v2,k2

e1,1

e2,k2

. . .

.

. . .

Fig. 7. T (k, 2).

4

1.3 Graph Coloring

A proper vertex coloring is a function that assigns each vertex a color, requiring

that no two adjacent vertices be assigned the same color. The minimum number of

colors required in a proper vertex coloring of a graph, G, is χ(G) or the chromatic

number. Alternatively, an edge coloring is a function ϕ : E(G) → N that assigns each

edge a “color”. For convenience, it is standard to use natural numbers to represent

the colors (it is easier to talk about color one, color two, et cetera rather than the blue

edges and purple edges, and chartreuse edges). For an edge coloring to be proper, no

two edges that share an endpoint may be assigned the same color. A color class is

the set of all edges that have been assigned the same color under some proper edge

coloring. The chromatic index of a graph, χ′(G), is the minimum number of colors

required to properly edge color G. Two proper edge colorings are equivalent if they

have the same color classes. An example of two equivalent proper edge colorings is

shown in Figure 8, with different line types to represent each color.

Fig. 8. A graph with two equivalent edge colorings.

The edge colorings in Figure 8 are equitable as well as equivalent. An equitable

edge coloring is a proper edge coloring in which the cardinalities of any two color

classes differ by at most one.

A rainbow edge coloring assigns each edge a color distinct from all other edges in

5

the graph. Then a rainbow subgraph is a subgraph, F , within a properly edge-colored

graph G for which each edge of F is assigned a distinct color among the edges of F ,

in this case, we do not require that the edges of F be assigned colors distinct from

the edges of G \ F . In Figure 9 we see two proper edge colorings of C4, but only the

one on the right is rainbow edge coloring. As a further example, we note that every

proper edge coloring of a star or triangle is rainbow. Any two rainbow edge colorings

of the same graph are equivalent.

Fig. 9. A proper edge coloring of C4 (left) and a rainbow edge coloring of C4 (right).

1.4 Extremal Graph Theory

The field of extremal graph theory asks questions of the type “How can we

maximize/minimize some graph invariant while forbidding certain substructures?”.

The prototypical result in this field was posed by Mantel and resolved in 1907 [30].

Theorem 1 (Mantel, 1907). The maximum number of edges in a graph on n vertices

with no triangle subgraph is
⌊
n2

4

⌋
. Further, the complete bipartite graph K⌊n/2⌋,⌈n/2⌉

is the unique graph that realizes this number of edges among all n-vertex graphs that

are triangle-free.

As Mantel’s Theorem is the foundation of all extremal graph theory, we include

a proof below.

6

Proof. Let G be a graph on n vertices that is triangle free, and let A be the largest

independent set in graph G. For any x ∈ V (G), deg(x) ≤ |A|, otherwise G would

contain a triangle. Define B = V (G) \ A. Since A is an independent set, every edge

in G must have at least one endpoint in B. Then we can count the edges in G as

follows:

|E(G)| ≤
∑
x∈B

deg(x) (1.1)

≤ |A||B| (1.2)

≤
(
|A|+ |B|

2

)2

(1.3)

≤ n2

4
. (1.4)

There is no vertex in B with a degree larger than |A|, and each edge has at least

one endpoint in B, so the inequality between (1.1) and (1.2) holds. Note that if each

edge in G has exactly one endpoint in B, there is equality between (1.1) and (1.2).

Thus, to maximize the number of edges, G must be bipartite. The progression from

(1.2) to (1.3) is an application of the inequality of arithmetic and geometric means.

Further, equality only holds between (1.3) and (1.4) if |A| = |B|. Thus to maximize

the number of edges in G, it must be that |A| = |B| = n
2
if n is even, or |A| =

⌊
n
2

⌋
and |B| =

⌈
n
2

⌉
when n is odd.

Thus, if G is an n vertex graph with the most edges possible while prohibiting

triangles, G must be isomorphic to K⌈n
2 ⌉,⌊n

2 ⌋.

In 1941, Turán generalized the result to address cliques of fixed size [33].

Theorem 2 (Turán, 1941). The complete k-partite graph, with parts as equal as

possible, maximizes the number of edges among all n vertex graphs that are Kk+1-

free.

7

As with Mantel’s Theorem, there are many different proofs for Turán’s Theorem.

As a classical extension of a classical result, we include a proof of Turán’s Theorem

below. This proof is due to Alon and Spencer in 1992 [4] and makes use of the

probabilistic method along with a previous result of Caro and Wei [12][35].

Theorem 3 (Caro, 1979; Wei, 1981). Let G be a graph with independence number

α(G), then

α(G) ≥
∑

v∈V (G)

1

deg(v) + 1
.

Proof. Let G be an n-vertex graph. We find, through an application of Cauchy-

Schwarz, that

n2 ≤

 ∑
v∈V (H)

(deg(v) + 1)

 ∑
v∈V (H)

1

deg(v) + 1

 . (1.5)

We assume G has no k+1-clique and consider its complement, GC . Then GC contains

no independent set of size k+ 1. If it did, then G would contain a (k+ 1)-clique. By

applying the Handshaking Lemma and the result of α(G) by Caro and Wei to the

inequality (1.5) we find that ||G|| ≥ 1
2

(
n2

α(G)
− n

)
. Since α(GC) ≤ k, we further find

that

||G|| =
(
n

2

)
− ||GC || ≤

(
1− 1

k

)
n2

2
.

Turán’s result initiated the systematic study of what we now call the Turán

number of a graph (sometimes also referred to as the extremal number, although

we avoid that terminology here as many variants of the extremal question have been

considered). The Turán number of a graph F , denoted ex(n, F), is the largest number

of edges possible on an n vertex graph with no F subgraph. In particular, this means

8

two things. First, all graphs with n vertices and ex(n, F) + 1 edges must contain an

F subgraph. Second, there is at least one graph with n vertices and ex(n, F) edges

that does not contain an F subgraph.

It is worth noting that the results from Mantel and Turán are much stronger than

what is typical for the field, as they not only give the exact number of edges in the

extremal case, but provide the unique construction that realizes the extremal number.

The weak version of Mantel’s Theorem simply states that the maximum number of

edges on a triangle-free graph with n vertices is
⌊
n2

4

⌋
. This type of result is closer to

what is typically found in extremal graph theory. In general, many extremal results

give upper or lower bounds or determine the order of magnitude for the extremal

number, as is the case in the following result.

Theorem 4 (Erdős - Stone [17]). For a forbidden subgraph, F with chromatic number

χ(F), ex(n, F) ≤
(

1
1−χ(F)

) (
n
2

)
+ o(n2).

The Erdős-Stone Theorem (sometimes called the Erdős-Stone-Simonovits Theo-

rem) gives the order of magnitude for the Turán number of all graphs with a chromatic

number greater than two. As a result, much of the work in determining Turán num-

bers is focused on bipartite graphs. For a survey on the history of bipartite Turán

problems, see [20].

When we restrict our focus to trees, rather than all bipartite graphs, it is known

that the traditional Turán number is linear at most [9]. The Erdős-Sós Conjecture

proposes the exact constant.

Conjecture 5 (Erdős-Sós [15]). For a tree, T with t edges, ex(n, T) ≤ (t−1)n
2

.

The Erdős-Sós Conjecture was originally proposed in 1963 as a homework exercise

and is based on the observation that the traditional Turán number for both paths

and stars is the same. Since paths and stars represent the maximum and minimum

9

diameter trees respectively, the conjecture is that all of the trees between the two

must also have the same traditional Turán number as well.

To date, there is no published proof of the Erdős-Sós Conjecture in its entirety,

though specific cases have been resolved and there was a proof announced that will

confirm that it holds true as n approaches infinity [1][2]. Below, we include selected

cases for which the Erdős-Sós Conjecture has been confirmed for particular families

of trees.

Theorem 6 (Sidorenko, [32]). If T is a tree on k vertices that has a vertex x connected

to at least k
2
vertices of degree 1 (i.e., leaves) then the Erdős–Sós conjecture holds for

this T .

Sidorenko’s theorem applies to all trees of diameter three, a class of graphs

equivalent to double stars. It also covers some, but certainly not all, graphs with

larger diameters.

Theorem 7 (McLennan, [31]). If T is a tree with a diameter of at most 4, then the

Erdős–Sós conjecture holds for this T .

We will make extensive use of the Erdős-Sós Conjecture throughout this paper.

Note that the results in Theorems 6 and 7 confirm the conjecture for all of the trees

in Section 3.1. In the cases for which our results are sharp, there are corresponding

results that show the Erdős-Sós Conjecture holds. Otherwise, it is trivial to show

that ex(n, T) ≤ (t− 1)n for a tree with t edges. The reduction method as described

in Section 1.6.2 will still yield an upper bound if this trivial bound is used, and will

differ from the bounds given in this paper by a factor of two. For the purposes of our

research, we proceed with the assumption that the Erdős-Sós Conjecture is true.

10

1.5 Rainbow Turán Problems

There are a multitude of variations and generalizations on the Turán number of

graphs - we mention a selected few here. The generalized Turán number, ex(n,H, F),

is the maximum number of copies of H for a F -free graph on n vertices. Note that

the problem of finding ex(n,K2, F) is equivalent to the traditional Turán problem.

The systematic study of generalized Turán problems was initiated in 2016 by Alon

and Shikhelman in [3]. In this variant, the “maximum number of edges” part of the

traditional definition is generalized. Rather than generalizing part of the definition,

one may restrict the definition to create a new variant, as in the Zarankeiwicz problem.

The Zarankeiwicz problem asks for the maximum number of edges on a bipartite

graph, with part of size m and n, with no Ks,t subgraph [36].

As an analog to the question of the most edges on an F -free graph, perhaps

we ask for the minimum number of edges on an F -free graph. However, taken at

face value, the trivial answer is zero edges - if there are no edges then there is no

copy of F (for all F that are not the empty graph). Then an F -saturated graph

is a graph G that is F -free, but the addition of any edge e ∈ GC to G forces a

copy of F as a subgraph. Thus, ex(n, F) is the maximum number of edges on an

n vertex graph that is F -saturated. With this definition, we can ask a non-trivial

question about the minimum number of edges. The saturation number, sat(n, F), as

the minimum possible number of edges on an F -saturated graph [16]. For a survey

of known saturation results, see [13].

In 2007, Keevash, Mubayi, Sudakov and Verstraëte formally defined the rainbow

Turán number [28]. Although there is prior work in the equivalent field of Bk sets,

the paper “Rainbow Turán Problems” placed these problems in the framework of

extremal graph theory and initialized their systematic study [28]. The rainbow Turán

11

number, ex⋆(n, F), is the maximum possible number of edges on an n vertex graph

that is rainbow-F -free. This means that there is some proper edge coloring on a

graph G with n vertices and ex⋆(n, F) edges that contains no rainbow F subgraph

and that all graphs with n vertices and ex⋆(n, F) + 1 edges contain a rainbow F

subgraph under every proper edge coloring. We say a graph G is rainbow-F -saturated

if G has a proper edge coloring that is rainbow-F -free, but with the addition of any

edge e from GC , this new G+ e contains a rainbow-F subgraph for every proper edge

coloring.

Fig. 10. P4 is rainbow P3-free.

Due to the following result, and as with traditional Turán numbers, we know

the order of magnitude of rainbow Turán numbers for graphs with chromatic number

greater than two.

Theorem 8 (KMSV, 2007). The rainbow Turán number satisfies ex(n, F) ≤ ex⋆(n, F) ≤

ex(n, F) + o(n2).

With both upper and lower bounds for the rainbow Turán number that rely on the

traditional Turán number, much of the research in the field of rainbow Turán numbers

is focused on bipartite graphs. In [28], it was shown that ex⋆(n,C6) ≤ kex(n,C6)

when k is some constant factor - proving that the rainbow Turán numbers are not

necessarily polynomial with regards to the matching traditional Turán number.

As with the traditional Turán number, we can state this as a saturation problem.

The maximum number of edges on an n vertex graph that is rainbow-F -saturated is

the rainbow Turán number. Similarly, the minimum number of edges on an n vertex

graph that is rainbow-F -saturated is the rainbow saturation number, formally defined

12

by Bushaw, Johnston, and Rombach in [10].

There is an analog to the generalized Turán number for rainbow problems. The

generalized rainbow Turán number, ex⋆(n,H, F), is the most copies of H in a graph

that is rainbow-F -free [21]. Note that in some results, as with the paper on rainbow

paths versus cycles by Halfpap and Palmer in [23], we count copies of rainbow-H

subgraphs. Papers like [24] by Barnabás Janzer use the original definition and find

the maximum number of even cycles with no rainbow even cycles. Similarly, in [5],

the authors maximize copies of C3 while forbidding rainbow cycles.

In [28], the authors introduce the rainbow Turán problem, and further conjec-

ture that ex⋆(n,C2k) = O(n1+1/k). In 2013, Das, Lee, and Sudakov showed that

ex⋆(n,C2k) = O(n1+
(1+ϵk)lnk

k) with ϵk → 0 as k → ∞ in [14]. Oliver Janzer proves

the conjecture in its entirety and further extends the result to cover all theta graphs

in [25].

A 2016 paper by Johnston, Palmer, and Sarkar [26] disproves a conjecture on

paths from [28] showing that ex⋆(n, Pl) ≤
⌈
3l−2
2

⌉
n, and provides exact results for some

particular l. Shortly after [18] improved this bound to ex⋆(n, Pl) <
(

9(l−1)
7

+ 2
)
n. A

lower bound for the rainbow Turán number of paths is given in [27] as ex⋆(n, Pk) ≥
k
2
n+O(1). The same paper provides bounds on the rainbow Turán number of cater-

pillars and brooms, as well as an exact result for a specific family or brooms. Halfpap

further finds the exact rainbow Turán number of P5 to be 5n
2

when n is divisible by

16 in [22].

This dissertation continues the study of rainbow Turán numbers by developing

bounds on the rainbow Turán numbers for some specific families of trees and deter-

mining the order of magnitude for the rainbow Turán numbers of all trees.

13

1.6 Methods

Typically, lower bounds for rainbow Turán numbers are shown via construction.

That is, constructing a graph G and a proper edge coloring on that graph’s edges

with no rainbow F subgraph. The lower bound on the rainbow Turán number on F is

a function of n and the edge density of the constructed graph because many disjoint

copies of this G will still have a proper edge coloring that is rainbow-F -free. Upper

bounds are shown by proving that every possible edge coloring on very many edges

must always contain a rainbow F . Removing the edge coloring requirements tells

the classic way to determine bounds for traditional Turán numbers as well - lower

bounds can be determined with construction, and upper bounds can be determined by

proving that every graph with a fixed edge density contains the forbidden subgraph.

In order to study the lower bounds, we define a new type of edge coloring and

introduce a new variant of the Turán problem based on this new coloring. In Section

1.6.1 we motivate and define this new variant, and in Chapter 2 we explore the results.

The new upper bounds in Chapters 2, 3, and 4 follow the ideas laid out in the

paragraph Section 1.6.2 where we develop a method for constructing augmented trees

and applying the bound from the Erdős-Sós Conjecture.

1.6.1 k-Unique Edge Coloring

As stated above, typically lower bounds for ex⋆(n, F) are found by constructing

a graph and showing that at least one proper edge coloring of that graph is rainbow-

F -free. Then a lower bound on ex⋆(n, F) can be given as a function of n and the edge

density of the constructed graph. Of interest is to develop a new method for determin-

ing lower bounds for the rainbow Turán number that does not require constructing

these graphs.

14

Recall Theorem 8 that states that ex(n, F) ≤ ex⋆(n, F). There are no require-

ments for the edge colors in the traditional Turán number. With this in mind, we

define a new type of proper edge coloring. A k-unique edge coloring of a graph G is a

proper edge coloring in which at least k color classes have a cardinality of one. That

is, there are at least k edges assigned a color that is not seen elsewhere on G. As k

ranges from zero to ||G||, the edge colorings are incrementally “more rainbow” due

to the increasing requirement on how many edges must be assigned a distinct color.

Fig. 11. A 3-unique edge coloring of DS2,3.

We call a proper edge coloring of a graph exactly-k-unique when there are pre-

cisely k edges assigned to a distinct color. The edge coloring in Figure 11 is 3-unique

as stated in the caption, but it is also an exactly-4-unique edge coloring of DS2,3.

The k-unique spectrum of a graph G is the set of all k for which G admits an ex-

actly k-unique edge coloring. Section 2.1 contains results and proofs on the k-unique

spectrum and the particular k-unique spectrum of cycles, paths, and double stars.

This new edge coloring was defined in order to determine lower bounds for

ex⋆(n, F), so the natural next step is to define the k-unique Turán number. A graph

is k-unique-F -saturated if there is a proper edge coloring with no copies of k-unique

F , but the addition of any non-edge to our graph forces a k − unique F under ev-

ery proper edge coloring. The k-unique Turán number, exk(n, F), is the maximum

possible size of a k-unique-F -saturated graph on n vertices. Section 2.2 contains re-

sults and a discussion on the k-unique Turán number of trees, and double stars in

particular.

15

1.6.2 Reduction Method

The reduction method is inspired by an observation in [28]. As shown in Figure

12, there is a proper edge coloring of P3 (a path with three edges) that is not rainbow.

Fig. 12. P3 has a proper edge coloring that is not rainbow.

However, if we add one edge, as illustrated in Figure 13, the resulting graph

contains a rainbow P3 subgraph. We call the new graph, in this case, DS1,2, the

augmented graph. Although only one proper edge coloring of the augmented graph

is shown, there is a rainbow P3 in every proper edge coloring of DS1,2.

Fig. 13. DS1,2 always contains a rainbow P3

Forbidding the augmented graph forbids rainbow P3 as well as some additional

edges. Likewise, a graph containing a DS1,2 always has a rainbow P3 subgraph.

Then, the traditional Turán number of the augmented graph is an upper bound on

the rainbow Turán number of P3. In general, we refer to the forbidden graph as F

(or T when the forbidden graph is specifically a tree), and an augmented graph that

necessarily contains a rainbow F as F ′ (or T ′).

The main idea of the method used to find upper bounds for ex⋆(n, T) in Chapter

3 and Chapter 4 is the combination of the reduction method as described above in

conjunction with the bound from the Erdős-Sós Conjecture in 5. This combination

16

gives the following result.

Theorem 9 (Bednar, Bushaw [6]). For two trees T and T ′, if T ′ contains a rainbow

copy of T under every proper edge coloring and the Erdős-Sós Conjecture holds for

T ′, then ex⋆(n, T) ≤ ex(n, T ′) ≤ (||T ′||−1)n
2

.

In order to use this method, it is crucial that T ′ itself is still a tree. Although

the first inequality of Theorem 9 holds regardless of the T and T ′ (or even F and F ′),

the Erdős-Sós Conjecture can only be used when T ′ is also a tree. Further, if the new

graph T ′ is not bipartite, we encounter the additional complication that the order of

magnitude of the traditional Turán number increases with the chromatic number of

the augmented graph.

17

CHAPTER 2

K-UNIQUE EDGE COLORING

Recall, a k-unique edge coloring has at least k color classes with a cardinality of one.

An exactly-k-unique edge coloring has exactly k color classes with a cardinality of

one. The k-unique spectrum of a graph G, Speck(G) is the set of all k for which

G admits an exactly-k-unique edge coloring. Section 2.1 contains results on the k-

unique spectrum of paths, cycles, and double stars, and some more general results

on the k-unique spectrum of all graphs. Section 2.2 contains results on the k-unique

Turán number of double stars.

2.1 k-Unique Spectrum

Theorem 10 (BB). For a graph G with a dominating edge, 0 /∈ Speck(G).

Proof. Let G be a graph with some edge xy that is adjacent to all other edges in

E(G), called a dominating edge. Then under any proper edge coloring, no edge in G

may share a color with xy and the color class containing xy always has a cardinality

of one. There is no exactly-0-unique edge coloring of such a G.

Theorem 11 (BB [6]). For any graph G, ||G|| − 1 /∈ Speck(G).

Proof. Let ϕ(G) : E(G) → [n] be a proper edge coloring of G such that ||G||−1 color

classes have a cardinality of one. Then there is a single edge, xy in a color class with

cardinality two. This is a contradiction. Then xy must either be in its own color

class and ϕ(G) is a ||G||-unique edge coloring, or xy is in a color class with another

edge. Then since there are two edges in the color class of xy, there are two edges

18

that do not have a distinct color under ϕ(G), and ϕ(G) is a (||G|| − 2)-unique edge

coloring.

We say a graph has a full spectrum if Speck(G) = {0, 1, . . . , ||G|| − 2, ||G||}.

The following results give families of graphs with full spectrum and give sufficient

conditions for determining if a graph has a full spectrum.

Theorem 12 (BB [6]). Let G be a graph that admits a proper edge coloring ϕ(G)

with color classes |L1| ≥ |L2| ≥ . . . ≥ |Lr| such that |L1| ≥ 3 and |Lr| ≥ 2. Then G

has full spectrum.

Proof. Let G be a graph with proper edge coloring ϕ(G). We call the color classes

of ϕ L1, L2, . . . , Lr with ℓi = |Li| ordered such that ℓi ≥ ℓi+1 and ℓ1 ≥ 3 and ℓr ≥ 2.

Further, we label the edges of G such that Li = {ei,1, . . . , ei,ℓi}. Define a new edge

coloring ϕR : E(G) → ||G|| with each edge assigned a distinct color with the restriction

that ϕR(ei,1) = i.

Under ϕR, each edge of G is assigned a distinct color, so ||G|| ∈ Speck(G).

Reassigning e1,2 to color 1 gives a (||G|| − 2)-unique coloring since neither e1,1 nor

e1,2 are assigned a distinct color. Then reassigning the additional edges e1,j to color 1

decreases the number of distinctly colored edges by one. Doing so sequentially gives

k-unique edge colorings for ||G|| − 3 ≥ k ≥ ||G|| − ℓ1. We retain a proper edge

coloring throughout the process because in ϕ all of these edges are assigned to color

1. Further, any edges not in L1 were not assigned to color 1 under ϕR. Thus there

are no conflicts. Then for each value of ||G|| − 3 ≥ k ≥ ||G|| − ℓ1, k ∈ Speck(G).

We know that ℓ1 ≥ 3, but it is possible that ℓi = 2 for all i > 1. Additionally, if

we simply reassign ei,2 to color i, the number of distinctly colored edges decreases by

two as we saw with edge e1,2. The following color-switching operation addresses both

of these potential problems simultaneously.

19

We begin with the coloring in which all edges e1,j are assigned to color 1 and the

remaining edges are colored by ϕR. Simultaneously recolor e1,ℓ1 and e2,2 to color ϕR

and ϕ respectively. Now e1,ℓ1 has a distinct color and edge e2,2 shares a color with

edge e2,1. This new edge coloring is (||G|| − 2− ℓ1 + 1) or (||G|| − ℓ1 − 1)-unique. By

changing the color of e1,ℓ1 back to color 1, we construct a (||G|| − ℓ1 − 2)-unique edge

coloring. If ℓ2 > 2, each remaining edge in L2 can be assigned color 2 one at a time.

As before, this constructs k-unique edge colorings for ||G||−ℓ1−3 ≥ k ≥ ||G||−ℓ1−ℓ2.

If ℓ2 = 2, there are no more edges e2,j.

Repeating this color-switching process for the remaining Li, always with edges

e1,ℓ1 and e2,ℓi , constructs a set of colorings that show G is full spectrum.

While Theorem 12 provides sufficient conditions for determining which graphs

have full spectrum, Bushaw and Bidav have since given a nearly full classification of

full spectrum graphs [8].

Theorem 13 (BB [6]). Every path Pk with k ≥ 5 has full spectrum. For paths with

fewer than 5 edges we have Speck(P4) = {0, 2, 4}, Speck(P3) = {1, 3}, Speck(P2) =

{2}, and Speck(P1) = {1}.

Proof. The result for Pk with k ≥ 5 follows from Theorem 12. For Pk with k < 5, we

proceed by cases.

• Every proper edge coloring of both P1 and P2 assigns each edge a distinct color.

Then Speck(P1) = {1} and Speck(P2) = {2}.

• There are exactly two non-equivalent proper edge colorings of P3.

1. ϕ1 : E(P3) → [2] has one color class of cardinality two and one color class

of cardinality one. In this coloring, the two leaves are assigned to the

20

same color, and the dominating edge is assigned the second color. Thus,

1 ∈ Speck(P3).

2. ϕ2 : E(P3) → [3] is a rainbow coloring. Thus, 3 ∈ Speck(P3).

Alternatively, we notice that P3 has a dominating edge so 0 /∈ Speck(P3) by

Theorem 10. Further, 2 = ||P3|| − 1, so 2 /∈ Speck(P3) by Theorem 11. It

is always possible to find a ||G||-unique coloring by just assigning every edge

its own color. Then all that remains is to show that a 1-unique proper edge

coloring is possible. This is exactly ϕ1 above.

• There are three possible types of proper edge colorings of P4.

1. All proper edge colorings that use two colors are equivalent and have two

color classes with cardinality two. Then 0 ∈ Speck(P4).

2. There are two non-equivalent proper edge colorings of P4 that use three

colors. In both, there are two color classes with cardinality one and one

color class with cardinality two. They can be achieved by starting with a

0-unique coloring and then picking any one edge to receive a new color.

Thus 2 ∈ Speck(P4).

3. The rainbow edge coloring assigns every edge in P4 to a distinct color, so

4 ∈ Speck(P4).

Theorem 14 (BB [6]). Every cycle Ck with k ≥ 6 has full spectrum. For cycles with

fewer than six vertices, we have Speck(C5) = {1, 3, 5}, Speck(C4) = {0, 2, 4}, and

Speck(C3) = {3}.

Proof. The result for Ck with k ≥ 6 follows directly from Theorem 12. For k < 6, we

proceed by cases.

21

• Every proper edge coloring of C3 is equivalent, and all are rainbow edge color-

ings. Then Speck(C3) = {3}.

• There are three types of non-equivalent proper edge colorings of C4.

1. All proper edge colorings that use two colors are equivalent, with two color

classes of cardinality two. Then 0 ∈ Speck(C4).

2. There are two non-equivalent proper edge colorings of C4 that use three

colors. In both, there are two color classes with cardinality one and one

color class with cardinality two. They can be achieved by starting with a

0-unique coloring and then picking any one edge to receive a new color.

Thus 2 ∈ Speck(C4).

3. The rainbow edge coloring has four color classes of cardinality one, so

4 ∈ Speck(C4).

• There are three kinds of non-equivalent proper edge colorings of C5.

1. There are five non-equivalent proper edge colorings using three colors. In

each, one edge is assigned a distinct color and the remaining four edges are

split evenly into two color classes of cardinality two. Then 1 ∈ Speck(C5).

2. The rainbow edge coloring assigns each edge a distinct color, so 5 ∈

Speck(C5).

Theorem 15 (BB [6]). For a double star, DSr,s with r ≤ s, we have Speck(DSr,s) =

{s− r + 1 + 2l : 0 ≤ ℓ ≤ r}.

Proof. Let xy be the dominating edge of the double star DSr,s with vertices y1, . . . yr

adjacent to vertex y and vertices x1, . . . , xs adjacent to vertex x, as illustrated in

22

Figure 5. Double stars have a dominating edge, and diameter 3, so no color may be

assigned to more than two edges in a proper edge coloring. Further, in any proper

edge coloring, repeated colors must appear as pairs of pendant edges. Without loss

of generality, let the edges xxi and yyi, for 1 ≤ i ≤ r, be assigned the same color

in some proper edge coloring, ϕ, using (s − r + 1) colors. The number of repeated

colors in ϕ is exactly r, because the dominating edge and the edges adjacent to xj

with s− r+1 ≤ j ≤ s must all be assigned a distinct color. By recoloring l pendants

from the neighbors of x with colors not appearing elsewhere in the graph, we obtain

a coloring with s− r + 1 + 2ℓ distinctly colored edges.

Theorem 16 (BB [7]). Every proper edge coloring of K6 contains a 3-unique DS2,2.

Proof. Consider any proper edge coloring ϕ : E(K6) → N. Since ϕ is a proper edge

coloring, there must be a pair of two non-adjacent edges assigned to different colors.

If, for every edge, xy, all six of the non-adjacent edges are assigned the same color,

there must be adjacent edges assigned the same color, and ϕ is not a proper edge

coloring. Then there must be a pair of non-adjacent edges assigned to different colors

under ϕ. Label the vertices such that two such edges are x1x2 and x3x4 as represented

by the different dashed edges in Figure 14.

x5

x6

x2

x1x3

x4

Fig. 14. DS2,2 in K6.

23

Without loss of generality, let x1x4 be the dominating edge of a double star, as

represented by the black edge in Figure 14. Notice the C4 in grey. Regardless of how

the edges in this C4 are assigned a color, the double star with x1x4 as the dominating

edge will have either three or four colors among its leaves. Then this double star

has either three or five distinctly colored edges. In both cases the double star is

3-unique.

Theorem 16 differs from previous results in this section, as it provides structural

information about k-unique edge colorings, rather than determining which exactly-

k-unique edge colorings are possible. This structural information may improve meth-

ods for determining bounds for both rainbow and k-unique Turán numbers, as they

improve our understanding of how copies of some F may appear as a subgraph.

2.2 k-Unique Turán Numbers

The main goal of defining k-unique colorings, was to develop a way to incremen-

tally improve the lower bounds for rainbow Turán numbers. A graph is k-unique-

F -saturated if there is a proper edge coloring with no copies of k-unique F , but the

addition of any non-edge to our graph forces a k-unique F under every proper edge

coloring. The k-unique Turán number, exk(n, F), is the maximum possible size of

a k-unique-F -saturated graph on n vertices. As with previous extremal definitions,

there must be some graph of order n with exk(n, F) edges that admits a proper edge

coloring that does not contain any k-unique copies of F , and all graphs of order n with

more than exk(n, F) edges must contain a k-unique-F under every proper edge col-

oring. We further motivate the study of k-unique Turán numbers with the following

observation.

24

Observation 17 (BB [6]). For any forbidden subgraph F , the following inequalities

hold

ex0(n, F) ≤ ex1(n, F) ≤ . . . ≤ ex||F ||−2(n, F) ≤ ex||F ||(n, F).

Note that since we do not require exactly k-unique edge colorings in our defini-

tion of the k-unique Turán number, ex0(n, F) is equivalent to the traditional Turán

problem. Further, a ||F ||-unique coloring is the same as the rainbow edge coloring,

so ex||F ||(n, F) is equivalent to the rainbow Turán number. Then the intermediary

values of k define a range of Turán numbers between the traditional and the rainbow

Turán numbers.

Theorem 18 (BB [6]). For a forbidden subgraph, F , let k be given and set k′ to be

the smallest k′ ≥ k for which k′ ∈ Speck(F). Then exk(n, F) = exk′(n, F).

Proof. For given F and k, consider an extremal graph G. Then G admits a proper

edge coloring with no k-unique F , which further implies that there are no k′-unique

copies of F in G. As G is an extremal graph, the addition of some non-edge to G

forces a k-unique-F under every proper edge coloring. However, F does not admit an

exactly-k-unique coloring, so every copy of k-unique-F in G+ e must have at least k′

edges assigned a distinct color. Then exk(n, F) = exk′(n, F).

Theorem 19 (BB [6]). For a double star, DSr,s with r ≤ s that admits an exactly

k-unique coloring, exk(n,DSr,s) ≤ 3r+s+k−1
2

n
2
.

Proof. The k-unique spectrum of double stars is addressed in Theorem 15. Let DSr,s

be a dominating edge xy with r leaves adjacent to vertex y and s leaves adjacent

to vertex x. We use the reduction method as described in Section 1.6.2 to show we

must append k−s+r−1
2

new edges adjacent to vertex x in order to guarantee a k-unique

DSr,s. If r + s is even, then DSr,s only admits exactly-k-unique edge colorings when

25

k is odd. When r+ s is odd, DSr,s only admits exactly-k-unique edge colorings when

k is even. Then, we know that k−s+r−1
2

always gives an integer number of edges due

to the fact that DSr,s admits an exactly-k-unique-F .

Then this new graph, DSr, s+r+k−1
2

has exactly s+r+k−1
2

+ r + 1 or 3r+s+k+1
2

edges,

and is still a tree. Applying the bound from the Erdős-Sós Conjecture (Conjecture

5) gives the desired upper bound.

The purpose of this new variant on the Turán problem, was to develop new

methods for determining and improving lower bounds on the rainbow Turán number.

This avenue may still be fruitful, and questions of k-uniqueness are still interesting

in their own right. However, using the reduction method as in Theorem 19 gives

upper bounds on exk(n, F) for double stars. Then what we have is upper bounds for

our lower bounds. In order to improve the lower bounds for rainbow Turán numbers

using k-unique Turán numbers, new methods must be developed. In general, finding

some graph that is k-unique-F -free would provide useful information to determine or

improve lower bounds for the rainbow Turán number of F . That is, we can find a

higher lower bound for the rainbow Turán number based on this G compared to the

bound that would be achieved by simply forbidding F with no restriction on its edge

colors. Likewise, knowing that every copy of F in G with a proper edge coloring is

at most k-unique, with k < ||F ||, implies there are no rainbow copies of F in G with

that edge coloring.

26

CHAPTER 3

RAINBOW TURÁN BOUNDS FOR FAMILIES OF TREES

The reduction method as described in Section 1.6.2 is built from Theorem 9 which

combines an observation in [28] with the bound given by Conjecture 5. In order to

use the reduction method, we start with a rainbow forbidden subgraph which is a

tree T , and add new vertices and edges to T in order to create a T ′ which is still

a tree, but necessarily contains a rainbow T as a subgraph under every proper edge

coloring of T . Then, by forbidding T ′, we have reduced the rainbow Turán problem

to a traditional Turán problem. Since this new graph T ′ is still a tree, we can apply

the upper bound given by the Erdős-Sós Conjecture (Conjecture 5).

In the example given in Section 1.6.2, as well as in Theorem 19, the reduction

method is applied to trees of diameter three. This is still the case in Section 3.1, as

all double stars are trees with diameter three. It is worth noting that the reverse is

also true. All trees of diameter three are also double stars. Thus, Section 3.1 gives

bounds on the rainbow Turán number of all trees of diameter three.

In Section 3.2 we explore the application of the reduction method to trees with

higher diameter. We’ll find upper bounds for the rainbow Turán number of caterpillars

and perfect k-ary trees, and end with a discussion of the sharpness of the bounds we

have so far.

3.1 Double Stars

Lemma 20 (BB [6]). The equitable 5-color proper edge coloring of K6 is rainbow-

DS2,2-free.

27

Proof. Consider K6 with the equitable edge coloring using 5 five colors. In this proper

edge coloring, each vertex sees each color exactly once. Suppose that this edge-colored

K6 contains a rainbow DS2,2. Let the edge xy be the dominating edge of this rainbow

double star, and let x1 and x2 be the neighbors of x while y1 and y2 are the neighbors

of y. Without loss of generality, we can assign colors to the edges adjacent to y as in

Figure 15.

x

y

y1

y2

x1

x2

1

2

3

4

5

Fig. 15. Rainbow DS2,2 Subgraph: Step One.

By assumption, edges xx1 and xx2 must be assigned colors distinct from edges

xy, yy1, and yy2. Then edges xx1 and xx2 must be assigned colors 4, and 5 respec-

tively. This is shown with the large dashed lines in Figure 16.

x

y

y1

y2

x1

x2

1

2

3

4

5

5

4

Fig. 16. Rainbow DS2,2 Subgraph: Step Two.

28

Then the remaining edges adjacent to x, namely xy1 and xy2 must be assigned

colors 2 and 1 respectively. This is illustrated in Figure 17

x

y

y1

y2

x1

x2

1

2

3

4

5

5

4

1

2

Fig. 17. Rainbow DS2,2 Subgraph: Step Three.

Finally, we consider the edges x1y1 and x1y2 shown in grey in Figure 18. For

our coloring to remain proper, one of these edges may be color 3, but the other must

be assigned to a sixth color. This is in contradiction to our equitable edge coloring.

Thus, there is a proper edge coloring of K6 that does not contain a rainbow DS2,2.

x

y

y1

y2

x1

x2

1

2

3

4

5

5

4

1

2

Fig. 18. Rainbow DS2,2 Subgraph: Step Four.

29

Theorem 21 (BB [6]). For the double star DS2,2 we have the following bounds

5n

2
+O(1) ≤ ex⋆(n,DS2,2) ≤

6n

2
.

Proof. The lower bound follows directly from Lemma 20. Consider as many disjoint

copies of K6 as can fit on n vertices. This graph has 5n
2
+ O(1) edges and a proper

edge coloring with no rainbow DS2,2. We prove the upper bound using the reduction

method. Consider a properly edge colored DS2,2, it is possible to repeat colors among

the pendants on either side. In Figure 19, we see a possible proper edge color in which

no pendants have distinct colors. If we add two pendant edges adjacent to one of the

non-leaf vertices, however, we find that the resulting DS2,4 must always contain a

rainbow DS2,2 subgraph. These two edges, colored in grey in Figure 20, must be

assigned a color different from the dominating edge, different from the two pendant

edges on the left, and different from each other.

Fig. 19. A proper edge coloring of DS2,2 that is not rainbow.

Fig. 20. DS2,4 always contains a rainbow DS2,2.

By Theorem 9, we know that the Erdős-Sós Conjecture provides an upper bound

for the traditional Turán number of DS2,4, and that the traditional Turán number of

30

DS2,4 is an upper bound for the rainbow Turán number of DS2,2. Then ex⋆(n,DS2,2) ≤

ex(n,DS2,4) ≤ 6n
2
.

Theorem 8 states that the traditional Turán number is always a lower bound for

the rainbow Turán number. However, we can not use the bound from the Erdős-Sós

Conjecture, as that would only provide an upper bound for the traditional Turán

number. Lemma 23 determines a general lower bound for the rainbow Turán number

of double stars and is an implication of Vizing’s Theorem, stated below.

Theorem 22 (Vizing, 1964 [34]). The chromatic index of a graph G is either ∆(G)

or ∆(G) + 1, where ∆(G) is the maximum degree of a vertex in G.

Lemma 23 (BB [6]). For a rainbow forbidden subgraph, F , ex⋆(n, F) ≥ (||F ||−2)n
2

.

Proof. Let F be a rainbow forbidden subgraph with ||F || as the number of edges in

F . Then a rainbow copy of F must use exactly ||F || distinct colors. By Vizing’s

Theorem, we know that any graph G with ∆(G) = ||F || − 2 can be properly edge

colored with ||F || − 1 colors or less. Then there is some proper edge coloring of G

that contains no rainbow copies of F . We can then maximize the number of edges

in such G, by letting G be a ||F || − 2-regular graph. Then G has ||F ||−2
2

edges. this

construction gives a lower bound for the rainbow Turán number of F .

After [6] was in preprint, an improved lower bound was noted. Consider a tree,

T with k vertices. A disjoint union of cliques, each with k − 1 vertices, will contain

no T subgraphs because no component has enough vertices to have a copy of T as

a subgraph. Then ex(n, T) ≥ (||T ||−1)
2

. In the case of double star DSr,s, we have

ex(n,DSr,s) = (r+s)n
2

. This is a slight improvement on the lower bound given by

Lemma 23 and is reflected in the following result that has been updated from the

version found in [6].

31

The following result uses the reduction method to generalize the upper bound

from Theorem 21 to give upper bounds on the rainbow Turán number of all double

stars.

Theorem 24 (BB [6]). For a double star, DSr,s with r ≤ s,

(s+ r)n

2
+O(1) ≤ ex⋆(n,DSr,s) ≤

(s+ 2r)n

2
.

Proof. For the lower bound, note that the double star DSr,s has s + r + 2 vertices.

Then a union of disjoint cliques, each of order at most s + r + 1, contains no DSr,s

subgraphs and (s+r)n
2

≤ ex(n,DSr,s) ≤ ex⋆(n,DSr,s). The upper bound is achieved,

once again, by using the reduction method. As in Theorem 21, and by the Pigeonhole

Principle, we can always find a rainbow DSr,s as a subgraph of any properly edge

colored DSr,s+r. The requirement that r ≤ s in the statement of the theorem ensures

that DSr,s+r has fewer edges than DSr+s,s, although a rainbow DSr,s can be found in

either construction. The new double star, DSr,s+r, has exactly s+ 2r + 1 edges, and

when we apply the bound from the Erdős-Sós Conjecture to this augmented graph,

we find ex⋆(n,DSr,s) ≤ ex(n,DSr,s+r) ≤ (s+2r)n
2

.

Note that even in Theorem 25, the lower bound given by 24 is improved by a

simple construction. Lemma 23 or the traditionl Turán number may give better lower

bounds for some k-unique Turán problems, but, largely, it is included to show that

we have only a difference of r
2
between the upper and lower bounds for the rainbow

Turán number of double stars.

Theorem 25 (BB [6]). For double stars DS1,2s+1 with s ∈ N, we have

ex⋆(n,DS1,2s+1) =
(2s+ 3)n

2
+O(1).

32

Proof. The upper bound comes from the application of Theorem 24 to these specific

double stars. To show a matching lower bound, we construct a proper edge coloring

of K2s+4 that contains no rainbow DS1,2s+1. As 2s+ 4 is even it admits an equitable

proper edge coloring using 2s+3 colors. In this edge coloring, each vertex meets each

color exactly once.

Suppose that some K2s+4 does contain a rainbow DS1,2s+1, and let xy be the

dominating edge of this rainbow double star. We call the remaining vertex adjacent to

y by y1 and the vertices adjacent to x by x1, . . . , x2s, x2s+1. Without loss of generality,

we assign the edges with endpoint xi to color i and assign xy to color 2s + 2. We

began by supposing this copy of DS1,2s+1 was rainbow, so edge yy1 must take color

2s+ 3. This is illustrated in Figure 21.

y

x

y1

x1

x2

x2s+1

...

2s+3

2s+2

1
2

2s+1

Fig. 21. A rainbow DS1,2s+1 as a subgraph of K2s+4.

In order to properly assign a color to edge xy1 in K2s+4, we must make use of a

2s+4th color. This violates the assumption, and thus there is a proper edge coloring

of K2s+4 with no rainbow DS1,2s+1. Further, a graph made up of multiple disjoint

copies of K2s+4 has (2s+3)n
2

edges and a proper edge coloring with no DS1,2s+1. Thus,

we have a lower bound that matches the upper bound achieved by the reduction

33

method.

The result in Theorem 25 was also discovered by Johnston and Rombach in [27].

They use the same construction as in Theorem 25 to show a lower bound. However,

their matching upper bound was determined by a degree counting argument.

3.2 Other Families

In Section 3.1, we saw three cases in which the reduction method was applied

to trees of diameter three, including Theorem 25, where a matching lower bound

showed the result is sharp. In general, as the diameter of our tree increases, the

more difficult it is to find appropriate T ′ that necessarily contains a rainbow copy of

our forbidden subgraph. In this section, we explore the applications of the reduction

method. Lemma 26 and Lemma 28 show a simplified version of the process used in

Theorems 27 and 29, respectively. This intermediary step is not necessarily required

for the proofs of Theorems 27 and 29, but greatly enhances the reader’s understanding

of the methodology therein.

The Erdős-Sós Conjecture has not been proved for the trees in Lemma 26 and

Theorems 27 and 29. However, we assume it is true for all trees and proceed accord-

ingly.

Recall that a caterpillar, Cc1,c2,...,ck is a path on k vertices, called the spine, with ci

pendants attached to the ith vertex on the path. Although not a typical component in

the definition of a caterpillar, we further require that c1 and ck are both at least one.

That is, we do not want the endpoints of our spine to be leaves. This requirement

does not change the results in this chapter, but we discuss its importance in Chapter

5.

Under this definition, a double star is a caterpillar with spine length of one. In

34

the following Lemma 26 we apply the reduction method to caterpillars with a spine

length of two.

Lemma 26 (BB [6]). For a caterpillar Cc1,c2,c3 with spine length two and ci children

appended to the ith vertex of the spine, we have

ex⋆(n,Cc1,c2,c3) ≤
(c3 + 2c2 + 3c3 + 3)n

2
.

Proof. Consider the caterpillar Cc1,c2,c3 with vertices labeled as pictured in Figure

22. Note that the edge coloring in the image is not a proper edge coloring. Rather,

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

Fig. 22. Caterpillar Cc1,c2,c3 .

the edges have been assigned colors based on the following types - black edges of

the spine, long dashed edges for the leaves adjacent to x1, grey edges for the leaves

adjacent to x2, and short dashed edges for leaves adjacent to x3. We consider these

types of edges one at a time, and augment our caterpillar to create a tree that always

contains a rainbow Cc1,c2,c3 as a subgraph. The spine edges, x1x2 and x2x3 are always

assigned distinct colors under any proper edge coloring, because they share x2 as an

endpoint. Then, the leaves adjacent to x1, represented with the long dashed edges,

are always assigned colors distinct from each other. However, the color assigned to

x2x3 may be repeated among them. Adding one extra edge adjacent to x1 means that

35

we can always find c1 leaves adjacent to x1 that have colors not seen before on our

graph. This edge is black in Figure 23.

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

Fig. 23. Ensuring c1 leaves of x1 have colors distinct from x1x2 and x2x3.

The leaves adjacent to x2 have colors distinct from each other, and since x2

is an endpoint of both spine edges, their colors are not repeated among its leaves

either. However, it is possible that all c1 of them repeat the colors of our (previously)

distinctly colored edges on leaves adjacent to x1. Then, adding c1 new leaves adjacent

to x2 ensures we can repeat those colors and still have enough edges that c2 of them will

be assigned colors not previously seen on our graph. These new leaves are represented

by the long dashed edges adjacent to x2 in Figure 24. This is to represent that these

new dashed edges are potentially repeating the colors of the previous dashed edges.

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

Fig. 24. Ensuring c2 leaves adjacent to x2 have distinct colors.

Finally, we consider the leaves adjacent to x3. In a proper edge coloring, they

may repeat the colors seen on the leaves adjacent to x1, the leaves adjacent to x1x2,

36

or the leaves adjacent to x2. To ensure there are enough edges that at least c3 of them

are assigned colors distinct from all colors we have seen previously in the graph, we

add c1 + c2 + 1 new leaves adjacent to vertex x3. The colors of these edges in Figure

25 represent the edges whose colors we are trying to avoid with our additions.

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

Fig. 25. Augmented graph that contains rainbow Cc1,c2,c3 .

This augmented graph is still a caterpillar with the same length-2 spine, and

c1 + 1 leaves adjacent to x1, and c2 + c1 leaves adjacent to x2, and c3 + c2 + c1 + 1

leaves adjacent to x3. Then the augmented graph has c3 + 2c2 + 3c3 + 4 total edges

and is a tree. Applying the bound from the Erdős-Sós Conjecture to this augmented

graph gives the desired upper bound.

Lemma 26 shows a slightly more complicated version of the reduction method,

compared to what we saw in Chapter 3.1, but we still benefit from knowing that

the two spine edges must be assigned colors distinct from one another. Just as the

augmented graphs in Section 3.1 were still double stars, our augmented graph in

Lemma 26 is still a caterpillar. However, when considering longer caterpillars, the

augmented graphs will no longer be a member of the same family we started with, and

we lose the benefit of the spine edges necessarily making a rainbow path. Theorem

27 addresses this, and generalizes the result in Lemma 26 to cover all caterpillars.

37

Theorem 27 (BB [6]). Let Cc1,...,ck be a path on k vertices labeled x1, . . . xk with ci

pendants attached at vertex xi. Then

ex⋆(n,Cc1,...ck) ≤ [3c1 + 2c2 + c3 + 3 +
k∑

j=3

Pj(Lj + 1)]
n

2

with Pj = Pj−1

∑j−2
i=4 (ci + 1) and Lj = j − 1 +

∑j
i=1 ci.

Proof. Let Cc1,...,ck be a caterpillar with vertices labeled as in Figure 26. Note that

in the image spine edges are represented by black solid lines and leaf edges are rep-

resented by small dashed lines. This distinction is used throughout the proof of

Theorem 27.

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

xk

yk,1 yk,ck

. . .

. . .

Fig. 26. Caterpillar Cc1,...,ck .

We further simplify the illustration, as in Figure 27, in order to make future

diagrams of the augmentation process more clear. Note that now, each group of

leaves is represented by a single leaf with a black outlined vertex, and the label on

the bottom row of vertices is no longer a vertex label, but now represents the total

number of vertices in that group. Vertices along the spine still represent only a single

vertex, and are represented with solid black vertices.

We proceed, as in Lemma 26, by working our way down the spine of the cater-

pillar, considering each group of edges one at a time, and then augmenting the graph

to guarantee that at each step there are enough choices that we can always pick a

“rainbow option” before moving to the next vertex along the spine. The proof here

38

x1 x2 x3

c1 c2 c3

xk

ck

. . .

Fig. 27. Simplified diagram of a caterpillar.

is identical to Lemma 26 until we finish with the children of vertex x3 and look to

spine edge x3x4. Figure 28 illustrates the first step in building our augmented tree.

x1 x2 x3

c1 + 1 c2 + c1 c3 + c2 + c1 + 1

Fig. 28. New tree before edge x3x4 is considered.

The edge x3x4 can not repeat the colors of edge x2x3 or any of the leaves adjacent

to vertex x3. However, it could repeat the colors used on edge x1x2, on x1’s leaves,

or on x2’s leaves. Then, to ensure there is one edge that could serve as x3x4, and has

a color not seen before on edges of our graph, there must be one edge to potentially

repeat the color of the non-adjacent spine edge x1x2, there must be c1 edges to

potentially repeat the colors of the leaves of x1, there must be c2 edges to potentially

repeat the colors of the leave of x2, and there must be one more edge that always

receives a new color. This is represented in Figure 29.

In the original caterpillar, x4 had c4 leaves adjacent to it. Then the vertex that

serves as x4 in our rainbow subgraph must have c1+ c2+ c3+ c4+2 leaves adjacent to

ensure that c4 of them are assigned colors not seen previously. In Lemma 26, we only

39

x1 x2 x3

c1 + 1 c2 + c1 c3 + c2 + c1 + 1

... c1 + c2 + 2

Fig. 29. c1+ c2+2 edges guarantees that one can serve as x3x4 in a rainbow subgraph.

added one in the cases for which we needed to avoid the color of a backbone edge.

However, when addressing the leaves of x4, we must add two because there are now

two non-adjacent backbone edges (x1x2 and x2x3) that have already been considered.

We can simplify this counting of leaf edges with the expression 2 +
∑4

i=1 ci. There

must be this many leaves adjacent to all vertices that may serve as x4 in a rainbow

Cc1,c2,...,ck subgraph as we don’t know which of the options for the x3x4 edge will have

received a new color. We see this in Figure 30.

x1 x2 x3

c1 + 1 c2 + c1 c3 + c2 + c1 + 1

2 +
∑4

i=1 ci

2 +
∑4

i=1 ci

...

Fig. 30. 2 +
∑4

i=1 ci leaves for every potential x4.

Then for a caterpillar with spine length four, the augmented graph would be as

pictured in Figure 30.

We call the possible x4 along with their leaves to be the fourth level of this new

40

graph, where the level of a vertex is i when xi is the closest spine vertex. At any given

level, let the total number of possible xi is Pi, and let the number of leaves attached

to each potential xi be Li. For the fourth level, we have P4 = P3(c1 + c2 +2). This is

just c1+c2+2 because P3 in one (we did not start branching until we needed multiple

copies of the edge x3x4). Then L4 = P4(2+
∑4

i=1 ci) because each of the potential x4

must have 2 +
∑4

i=1 ci adjacent leaves.

At each level j, we need enough potential edges xj−1xj to repeat the colors of

all of the non-adjacent spine edges (of which there are j − 2) and all of the non-

adjacent leaves from the previous levels (of which there are
∑j−2

i=1 ci). As j increases,

we continue branching along the vertices xj. In general, Pj = Pj−1

∑j−2
i=4 (ci + 1). We

start the sum at i = 4 because we do not branch before the edge x3x4. The “plus

one” in the sum accounts for the non-adjacent spine edges. For each of these potential

spine vertices xi, there must be enough adjacent leaves to avoid the colors of all of

the previous leaves (of which there are
∑j−1

i=1 ci) and the colors of the non-adjacent

spine edges (of which there are j − 1), and then cj many to receive colors not seen

previously on our subgraph. This gives Lj = j − 1 +
∑j

i=1 ci.

To further illustrate this idea, see Figure 31, where the branching process has

been extended to the fifth level.

It is important to note that even in the augmented tree, there is a clear distinction

between the spine vertices and the leaf vertices. That is, the vertices that may serve as

leaves in our rainbow subgraph are still leaves in our augmented graph. Further, spine

vertices will never branch out from the leaf vertices. Then the total number of leaves

at level j (not just the Lj many attached to each spine vertex) is Pj(Lj+1). Thus, the

total number of edges in our augmented graph is 3c1+2c2+c3+4+
[∑k

j=3 Pj(Lj + 1)
]
.

Applying the bound from the Erdős-Sós Conjecture gives the result stated in the

theorem.

41

x1 x2 x3

c1 + 1 c2 + c1 c3 + c2 + c1 + 1

2 +
∑4

i=1 ci

2 +
∑4

i=1 ci

3 +
∑5

i=1 ci

3 +
∑5

i=1 ci

3 +
∑5

i=1 ci

3 +
∑5

i=1 ci

...

...

...

Fig. 31. Augmented caterpillar up to x5.

Note that all the vertices of a caterpillar are at most distance one away from

the longest path in the caterpillar. This inherent structure allows us to simplify the

branching argument in Theorem 27, as it means we only branch along the spine. In

the following Lemma 28 and Theorem 29, we find a different kind of inherent structure

that allows us to simplify the process of creating augmented trees from perfect binary

and k-ary trees respectively. A perfect k-ary tree of depth d is a rooted tree with

a root vertex of degree k, all vertices with distance less than d from the root have

degree k+1, and all leaves are exactly distance d from the root vertex. That is, every

non-leaf vertex in the tree T (k, d) has k children, and all leaves are distance d from

the root. The perfect binary tree T (2, 2) is pictured in Figure 32.

In Lemma 28, we see the reduction method applied in order to obtain an upper

bound on the rainbow Turán number of binary trees. This result is then generalized

42

Fig. 32. The tree T (2, 2).

in Theorem 29 to give an upper bound on the rainbow Turán number of all perfect

k-ary trees.

Lemma 28 (BB [6]). For a perfect binary tree with depth d,

ex⋆(n, T (2, d)) ≤
(d∑

j=2

[2

j∏
i=2

(2i − 3)] + 1
)n
2
.

Proof. Summing the 2i vertices at each level of a binary tree gives a total of
∑d

i=0 2
i =

2d+1−1 vertices in T (2, d) – and thus 2d+1−2 edges. We label the vertices and edges

in T (2, d) according to the following system, an example of which is shown in Figure

33. The vertices are labeled vi,j, for 1 ≤ j ≤ 2i, when i is the distance to the root

vertex, and with vertices vi+1,2j and vi+1,2j−1 as the children of vi,j. We identify edges

using the indices of the endpoint furthest from v0,1; e.g. edge v1,2v2,4 would be labeled

e2,4. We will construct a tree T ′(2, d) that contains a rainbow T (2, d) subgraph under

every proper edge coloring in order to obtain an upper bound on the rainbow Turán

number, ex⋆(n, T (2, d)). For clarity, we do this first for T (2, 2) before generalizing

our construction to all T (2, d).

Edges e1,1 and e1,2 receive colors distinct from one another in any proper edge

coloring as they share an endpoint. Then we consider the edges e2,i with 1 ≤ i ≤ 4.

43

v0,1

v1,1 v1,2

v2,1v2,2 v2,3 v2,4

e1,1

e2,3

Fig. 33. Labeled T (2, 2)

In particular, we first consider e2,1 and e2,2 adjacent to v1,1. These two edges must

have colors distinct from each other and distinct from e1,1in a proper edge coloring.

However, they may repeat the color of edges e1,2, e2,3, or e2,4. Adding an additional

three edges ensures that there are two leaves whose edges have colors not seen else-

where on the graph. The same argument is applied to the children of v1,2, resulting

in the graph in Figure 34, where our new edges are represented by the dashed edges.

Fig. 34. Augmented T (2, 2).

The total number of leaves adjacent to v1,1 in the augmented graph is the number

of leaves in T (2, 2) plus the number of edges in T (2, 1) minus one because e1,1’s color

can not be repeated among v1,1’s other neighbors. This gives 23 − 3 leaves attached

44

to each parent vertex. Since there are two vertices at depth one, the total number of

leaves in our augmented graph is 10. Then there are 12 edges total in our augmented

graph. Applying Theorem 9 to this new tree gives ex⋆(n, T (2, 2)) ≤ 11n
2
. Note that

this bound follows the form (2(2d+1 − 3) + 1)n
2
, as in the statement of the Lemma.

To extend this argument to cover all perfect binary trees, notice that the 23 − 3

leaves at each parent vertex in T (2, 2) can be written as 2d+1 − 3. This guarantees

there are enough leaves adjacent to each vertex vd−1,i that there will be two that

have colors distinct from the other leaves in a T (2, d) subgraph under any proper

edge coloring. The number of parents of leaves in an augmented T (2, d) is the same

as the number of leaves in an augmented T (2, d − 1). Then the number of vertices

at depth d − 2 in an augmented T (2, d) is the same as the number of leaves in an

augmented T (2, d − 2). There are always two single edges e1,1 and e1,2 with colors

distinct from each other adjacent to the root vertex. Having 2d+1 − 3 leaf edges

appended to each vj−1,j guarantees that even if the colors of the other 2d − 2 leaves

and the colors of the 2d − 1 non-adjacent edges in the T (2, d − 1) subgraph are all

repeated, there are still two edges with distinct colors adjacent to vd−1,j. The number

of parents of leaves in T ′(2, d) is the same as the number of leaves in T ′(2, d − 1).

Continuing in this way, we find the number of vertices at depth d − 2 in T ′(2, d)

is the same as the number of leaves in T ′(2, d − 2). As in the previous example,

at depth 1 there are two single edges that are always assigned distinct colors. This

gives 2
∏k

i=2(2
i − 3) as the total number of leaves in an augmented T (k, d). The

sum (2 +
∑d

j=2(number of leaves in level j on an augmented T (2, d)) gives the total

number of edges in an augmented T (2, d) as (
∑d

j=2[2
∏j

i=2(2
i − 3)] + 2). Applying

the bound from the Erdős-Sós Conjecture to this number gives the desired upper

bound.

45

In Theorem 29 we generalize the result above to give an upper bound on the

rainbow Turán number for all perfect k-ary trees. To simplify the statement of the

theorem, let t(k, d) =
(
k − 1 +

∑d
j=2

[
k
∏j

i=2(k
i + ki−1

k−1
− 2)

])
n
2
.

Theorem 29 (BB [6]). For a perfect k-ary tree with depth d, ex⋆(n, T (k, d)) ≤ t(k, d).

Proof. We can generalize the geometric series in Lemma 28. Doing so shows the

number of vertices in T (k, d) is kd+1−1
k−1

, and number of edges is kd+1

k−1
− 1. Additionally,

we generalize the labeling in Figure 33 as shown in Figure 35.

v0,1

v1,1 v1,k

v2,kv2,1 v2,k2−k+1 v2,k2

e1,1

e2,k2

. . .

.

. . .

Fig. 35. First two layers of a labeled T (k, d).

Following the same argument as in Lemma 28, each vertex vd−1,j in an augmented

T (k, d) must be adjacent to kd+ kd−1
k−1

−2 leaves to guarantee there are enough to choose

k many leaf edges with distinct colors in a rainbow T (k, d) subgraph. Just as in the

binary case, the number of parents of leaves in an augmented T (k, d) is the same as the

number of leaves in an augmented T (k, d−1). This process gives k[
∏j

i=2(k
i+ ki−1

k−1
−2)]

as the total number of leaves in an augmented T (k, d). Each vertex vi,j except for

v0,1 is associated with exactly one edge ei,j. Then counting the number of vertices at

each depth i ≥ 2 gives
∑d

j=2[k
∏j

i=2(k
i + ki−1

k−1
− 2)], which is the same as the number

46

of edges in an augmented T (k, d)− v0,1. By adding k more edges to account for those

adjacent to vertex v0,1, we find the total number of edges in an augmented T (k, d).

Applying the bound from the Erdős-Sós Conjecture to this edge count gives an upper

bound of ex⋆(n, T (k, d)) ≤ (k − 1 +
∑d

j=2[k
∏j

i=2(k
i + ki−1

k−1
− 2)])n

2
.

3.3 Sharpness of Bounds

The upper bounds in this chapter are not sharp, especially in the case of Theo-

rems 27 and 29. Recall that Halfpap in [22] proved that ex⋆(n, P5) = 5n
2
(when n is

divisible by 16), while the lowest upper bound achieved from the results here is 21n
2
,

from Theorem 27. While not sharp, it is notable that all of the upper bounds in this

chapter are linear in n. As the rainbow Turán number is a function of F and n, and

the results in this chapter show that ex⋆(n, F) ≤ Cn where C is some constant that

depends only on F , the order of magnitude of the rainbow Turán number for all of

the trees covered in this section is linear. It does not matter how large the constant

term is, so long as there no exponent on the n, because n is the number of vertices

in the host graph, not the number of vertices in the rainbow forbidden subgraph. As

written in Theorem 29, it may not appear that the bound is linear. However, for the

tree T (5, 4), the upper bound given by Theorem 29 is 2916800355n
2
. Regardless of its

size, we still have a constant multiple of n as n is not fixed. Note that this constant

can be quickly obtained either by putting T (5, 4) into Algorithm A.2, or by setting

k = 4, d = 5 and just running lines 31 and 33 of the same algorithm. The center-

adjusted upper bound will be discussed in Section 4.2, but the necessary adjustment

has been made with k and d as stated. In general, the algorithms in Appendix A

can quickly find the number of edges in an augmented tree for all of the methods

discussed in this dissertation, and will be of great use to us in the following chapters.

We believe the upper bound is closer to the true value of ex⋆(n, F) when fewer

47

extra edges are needed to construct the augmented tree used to determine the bound.

For example, in Theorem 25, only one extra edge is needed to construct the augmented

tree and we have a matching lower bound. Consider the double stars DS1,39 and

DS20,20. These two graphs are both trees of the same size and diameter, but the upper

bounds on their rainbow Turán numbers are 41n
2
and 60n

2
as given by Theorems 25

and 24 respectively.

Future work should focus on improving the reduction method, or finding new

ways to improve the constant term for the rainbow forbidden subgraphs when many

edges must be added to construct an augmented tree. Additionally, new construc-

tions for improving the lower bounds would be excellent progress on the results in

Chapter 3.

48

CHAPTER 4

RAINBOW TURÁN UPPER BOUNDS FOR ALL TREES

4.1 Upper Bound for All Trees

Observation 30 (BB [7]). Every tree T can be embedded in a T (k, d) when k = ∆(T)

and d =
⌈
diam(T)

2

⌉
.

For a tree T with ∆(T) = k and diam(T) = ℓ. Let x be a center vertex. Because

the center of a tree lies in the middle of a longest path, the distance d(x, y) for any

leaf y is at most
⌈
ℓ
2

⌉
. Further, there are no non-leaf vertices, v, with d(x, v) =

⌈
ℓ
2

⌉
.

Otherwise, a longest path would be greater than length ℓ and the diameter would

also be greater. Recall, in a perfect k-ary tree, the root vertex has degree k, all of the

other non-leaf vertices have degree k + 1, and all of the leaves are the same distance

from the root vertex. In our tree, T , we have deg(x) ≤ k, deg(v) ≤ k < k + 1, and

there is some “farthest” leaf from the center vertex. Then this T can be embedded in

a T (k, d) where d is the distance to the furthest leaf from the center, or root, vertex.

When the diameter of T is even, there is only one center vertex, and d = ℓ
2
. However,

T is a bicentered tree when the diameter is odd, and we must choose one of the two

center vertices to be the root vertex. An example of a tree embedded in a perfect

k-ary tree can be found in Figures 36 and 37, where T (3, 3)− T1 is represented with

open vertices and dashed edges in the second figure.

49

x

Fig. 36. Tree T1 with diam(T) = 5 and ∆(T) = 3.

x

Fig. 37. T1 embedded in T (3, 3).

Observation 30 leads us the following Theorem, in which we determine that the

rainbow Turán number of all trees is linear in n.

Theorem 31 (BB [7]). For tree T with ∆(T) = k and
⌈
diam(T)

2

⌉
= d, we have

ex⋆(n, T) ≤ ex⋆(n, T (k, d)) ≤ t(k, d).

50

Proof. For a given tree T with ∆(T) = k and
⌈
diam(T)

2

⌉
= d, a rainbow T (k, d) must

contain a rainbow T as every subgraph of a rainbow graph is also a rainbow graph.

Then applying Theorem 29 to this T (k, d) gives an upper bound on the rainbow Turán

number of T (k, d), and thus an upper bound on the rainbow Turán number of T .

Although we suspect that the bounds given in Theorem 31 are much larger than

the actual rainbow Turán numbers, they are still linear in n. Thus, the impact of

Theorem 31 is that it provides the order of magnitude for the rainbow Turán number

of every tree. This corresponds to a well-known property of the traditional Turán

number for trees. For the traditional Turán number of trees, the Erdős-Sós Conjec-

ture, which has been open for 60 years, attempts to determine the correct constant

(we do not presume to conjecture the correct constant for the rainbow variant).

Then, the next step is to find ways to improve these bounds. Since the bound

given by the Erdős-Sós Conjecture only depends on the number of edges in a tree, it is

sufficient to reduce the number of edges in an augmented tree in order to improve the

upper bound on the rainbow Turán number of that tree. The remainder of Chapter

4 discusses different methods that can be used to improve this given upper bound.

In Section 4.2, we examine how knowing just a little extra information - the degree

of the center vertices - can improve the constant in the upper bound. In Section

4.3, we discuss how knowing a lot of extra information - the degree of each vertex

and its distance from the center - can improve the bound even further. Sections 4.2

and 4.3 also contain comparisons to illustrate how the upper bound is improved by

making the adjustments therein. In Chapter 5, the upper bound given in Theorem

33 is compared to the upper bound given in 27, and how to find the lowest upper

bound for a fixed caterpillar.

51

4.2 A Center-Based Improvement

When the center vertex of a tree does not have the highest degree, we can make

the simplest potential improvement in the upper bound on the rainbow Turán number.

Theorem 32 (BB [7]). Let T be a tree with ∆(T) = k and
⌈
diam(T)

2

⌉
= d. Let

c = min{deg(x)|x is a center vertex of T}. If c < k, then ex⋆(n, T) ≤ t(k − 1, d).

Proof. Recall that in a perfect k-ary tree, the root vertex has degree k and the other

non-leaf vertices have degree k+1. Let T be a tree with ∆(T) = k and
⌈
diam(T)

2

⌉
= d.

Then for a center vertex x in T , if deg(x) < k, a perfect (k − 1)-ary tree the degree

of every non-leaf vertex will still be k, aside from the root vertex. This T can be

embedded in T (k − 1, d).

The tree T1 in Figure 36 is an example of a tree that meets this condition. We

have ∆(T1) = 3, but the degree of the center vertex, x, is two. Then T1 can be

embedded in T (3, 3) as shown in Figure 37, but it can also be embedded in T (2, 3)

as shown in Figure 38. To emphasize this point, note that the maximum degree in a

binary tree is not two. In fact, the tree in Figure 36, although not perfect, is still a

binary tree. Then, it is possible, but not optimal, to embed T1 in a 3-ary tree as seen

in Section 4.1.

This is especially clear when the tree has a single center vertex. For bi-centered

trees, it may be the case that one of the center vertices has degree equal to the highest

degree of the graph, but the other does not. Then, we compare the degrees of the two

center vertices. If they have the same degree, and it is equal to the highest degree

of the graph, we can not reduce k by one. However, in any other scenario, we can

reduce the k in our T (k, d) to T (k−1, d). That means, if the two center vertices have

different degrees, we do not even need to know what they are to know that one will

52

x

Fig. 38. T1 embedded in T (2, 3).

be less than k, and we can reduce the base. If they both have the same degree, and

we know one of the center vertices has a degree lower than the highest degree of the

graph, we can also reduce k by one.

Appendix A contains the code written to quickly compute the number of edges

in an augmented tree. The algorithm A.2 computes the number of edges in the

upper bounds given in both Theorem 31 and 32. By inputting the g6 string for the

graph from Figure 36, we find that the upper bound of T1 given by Theorem 31 is

t(3, 3) = 1289n
2
. However, we can improve this to t(2, 3) = 241n

2
just by making the

center-based improvement outlined in this section.

To further illustrate the point, consider the tree T2 in Figure 39 with k = 4,

d = 4, and a minimum center degree of two. The upper bound given by Theorem 31

is t(4, 4) = 2144799n
2
. However, we can reduce this to t(3, 4) = 273278n

2
using the

center-based adjustment from Theorem 32.

53

Fig. 39. Tree T2

4.3 Level-Specific Upper Bound

In Section 4.2 we explored how knowing a small amount of additional information

about a particular tree can improve the upper bound for the rainbow Turán number

of that tree. In this Section, we explore an improvement that can be made if we have

a lot of additional information. In particular, if we know the degree of each vertex

and its distance from the center vertex, we can adjust the expression that gives the

number of edges in the perfect k-ary tree to have a specific value for k at each level.

As a note, this new tree, which we call TD will not be a perfect k-ary tree. Although

the vertices at each level all have the same degree, the degree may differ between

levels. As in a perfect k-ary tree, the leaves are all the same distance from the center

vertex of this TD.

Theorem 33 (BB [7]). For tree T with a center vertex x, we define k = ∆(T) and

ℓ =
⌈
diam(T)

2

⌉
. Define a family of sets Si = {v|d(x, v) = i} for 0 ≤ i ≤ ℓ, and let D be

a list {d0, d1, . . . dℓ−1} with di = max{deg(v, Si+1)|v ∈ Si}. Then the number of edges

in an augmented T is d0 +
∑ℓ

i=2 ci where ci = ci−1(di−1(1 + di)− 1) and c1 = d0.

Proof. Consider some rainbow forbidden tree, T , with k = ∆(T), ℓ =
⌈
diam(T)

2

⌉
, and

let x be a center vertex. Define a family of sets Si = {v|d(x, v) = i} for 0 ≤ i ≤ ℓ,

and let D be a list {d0, d1, . . . dℓ−1} where di = max{deg(v, Si+1)|v ∈ Si}. Then T is

54

a subgraph of the rooted tree TD, with each vertex at level i having di children. We

see this in practice in Figures 40 and 41. In Figure 40 we see a tree with di listed

for each distance away from x, the center vertex. As in the previous sections, this

center vertex x acts as the root in our new tree. In Figure 41 the same tree is shown

embedded in a TD in which every vertex at level i has exactly di children.

d0 = 2

d1 = 4

d2 = 1

Fig. 40. A tree with di indicated at each distance from the center.

d0 = 2

d1 = 4

d2 = 1

Fig. 41. The same tree embedded in a rooted TD.

We use the reduction method on this new tree to get create an augmented tree

55

that must have a rainbow TD subgraph under every proper edge coloring. Since our

augmented tree will have a rainbow TD, and TD contains a copy of T , the augmented

tree must contain a rainbow copy of the original tree.

When dj < k, we do not need to add enough extra edges in our augmented tree

to allow k distinctly colored edges to children of each vertex in level j - we only need

dj such edges. In general, we need only branch enough times at each level i to have

di distinctly colored edges between the vertices in level i and those in the (i + 1)th

level.

To count the edges in the augmented tree, we use a mix of the ideas in Theorem

27 and Theorem 29. That is, because TD is not a k-ary tree (unless all di aside from

d0 and dℓ are equal), we can not use the geometric series from Theorem 29. Instead,

we have to use a recursive product as in Theorem 27 to compute the total number

of children at each level. This recursive product gives ci = ci−1(di−1(1 + di) − 1) as

the number of children at the ith level of the augmented tree. Then summing over

all levels gives the total number of edges in the augmented tree. As we do not add

additional edges adjacent to the root vertex, we count the d0 such edges outside of

our sum.

Applying the bound from the Erdős-Sós Conjecture to this augmented tree gives

the level-specific upper bound on the rainbow Turán number of T . As with previous

results, there is code that will quickly compute the number of edges in the augmented

tree for the level-specific upper bound from Theorem 33 for a fixed tree. This code can

be found in Appendix A in Algorithm A.3. The code in Algorithm A.4 will compute

the number of edges in the augmented tree as described in Theorems 31, 32, and 33

all at once in order to easily compare all the bounds from this research at once.

56

The level-specific upper bound is always at least as good as the upper bounds

given in Theorems 31 and 32. For a comparison of the bounds, consider trees T3, T4,

and T5 in Figures 42, 43, and 44 respectively.

Fig. 42. T3

Fig. 43. T4

Fig. 44. T5

57

Table 1 shows the list D of di and the upper bound from Theorems 31, 32, and 33

for each of these three trees. Note that T3 and T4 have the same list D of the number

of necessary children at each level. Then, even though these two trees differ in order

by 14 vertices, they still have the same upper bound given by all three theorems.

Even though the bounds are not believed to be sharp, the level-specific bound given

by Theorem 33 should be better for trees that are closer to being level-regular. That

is trees for whom all the vertices at a given level have the same degree.

D perfect k-ary center improvement level-specific

T3 [3, 4, 2, 0] 22479n
2

7523n
2

344n
2

T4 [3, 4, 2, 0] 22479n
2

7523n
2

344n
2

T5 [2, 2, 7, 0] 331719n
2

162686n
2

833n
2

Table 1. Comparison of Upper Bounds for T3, T4, and T5.

58

CHAPTER 5

FURTHER CATERPILLAR BOUNDS

This section explores when it is true that starting from the “left” endpoint of a

caterpillar’s spine gives a better upper bound than starting from the “right” endpoint.

Further, we discuss when the caterpillar upper bound from Theorem 27 is better than

the level-specific upper bound given in Theorem 33 for a fixed caterpillar. To assist

the examination of caterpillars, there is code in Appendix A that, given a desired

number of vertices and spine length, generates a random caterpillar (Algorithm A.7)

and code that takes a list of natural numbers and generates a caterpillar using that

list, in order, to determine the number of leaves at each spine vertex. (Algorithm

A.6). Additionally, Algorithm A.9 generates a fixed number of random caterpillars

and determines the number of edges in an augmented tree for each of them.

5.1 Left vs. Right Endpoint

Recall the requirement from Theorem 24 that in a double star DSr,s, r ≤ s. This

gives a better upper bound because when r ≤ s, the number of edges in the augmented

tree is less than the number of edges in an augmented tree when s > r. Then the

requirement from Theorem 24 clarifies which endpoint of the dominating edge is the

preferred place to start building an augmented tree. Note that a double star can be

considered a caterpillar with DSr,s isomorphic to Cc1,c2 . As a generalization of double

stars, we hope to make a similar claim about which endpoint of a caterpillar (x1 or xℓ)

is the best place to start building our augmented tree. Figure 45 shows a caterpillar,

along with its vertex labeling.

59

x1 x2 x3

y1,1 y1,c1 y2,1 y2,c2 y3,1 y3,c3

.

xk

yk,1 yk,ck

. . .

. . .

Fig. 45. Caterpillar Cc1,...ck

When c1+j = cℓ−j for 0 ≤ j ≤ ℓ
2
, the caterpillar is symmetric, and the bound

from Theorem 27 will be the same in both directions. For caterpillar Cc1,c2,...cℓ , define

si =
∑i

j=1 cj and s′i =
∑i

j=1 cℓ−j+1. While counter-intuitive at first glance, the sum

for si will make the following discussion easier to understand. Consider the caterpillar

in Figure 46 - s3 is counted up to the third vertex from the left while s′3 is counted

up to the third vertex from the left - and both of these vertices are center vertices

of the caterpillar. Then for the symmetric caterpillars described above, si = s′i for

all values of i. Further, sℓ = s′ℓ for all caterpillars, because sℓ and s′ℓ count the total

number of leaves.

In general, if s ℓ
2
≤ s′ℓ

2

, the caterpillar upper bound from Theorem 27 will be

smaller when calculated starting at vertex x1. That is, sum the number of leaves on

either side of the center vertex, and if one side has a smaller number of leaves, it

is preferred to start at the endpoint of the spine on that side. Code A.5 takes in a

caterpillar, and outputs the number of edges in the augmented tree computed in both

directions.

Consider C2,2,1,0,3,1 as shown in Figure 46. For this caterpillar, we have s3 = 5

and s′3 = 4 and the upper bound when starting from x1 is 6686n
2
while the bound

when we start from cℓ (in this case xℓ is x6) is 5814
n
2
.

However, we can easily find a counterexample to the supposition that one needs

only to examine the si and s′i to determine the best end to start building an augmented

60

x1 xℓ

Fig. 46. C2,2,1,0,3,1

tree. Consider the caterpillar C2,0,0,2,0,1 in Figure 47. In this caterpillar, s3 ≤ s′3, but

the augmented tree is smaller when we start from xℓ rather than x1 - with a calculated

upper bound of 4699n
2
when starting at vertex x6 and a calculated upper bound of

5331n
2
when starting from the opposite end of the spine.

x1 xℓ

Fig. 47. C2,0,0,2,0,1

Note that, for the caterpillar in Figure 47, the values of s3 and s′3 differ by exactly

one, and that until si ≤ s′i up until i = 2. Then, before knowing the values of sℓ/2

and s′ℓ/2, it appears that the left side would have a smaller number of leaves. Because

we branch at each spine vertex when building our augmented tree, and multiply the

number of branches each time (see Theorem 27), having a smaller number of children

among the starting vertices matters more than the supposition that we need only

examine the si. If the higher-degree vertices are closer to the center of the caterpillar,

the point at which they affect the branching does not differ by more than one in when

comparing directions.

61

In the previous example the difference in sℓ/2 and sℓ/2 is one. However, we can

engineer an example that shows we can make this difference larger and contradict the

original intuition. For the caterpillar shown in Figure 48, s6 = 3 and s′6 = 6 and it is

still advantageous to start building an augmented tree from vertex x12. In fact, the

difference in the number of edges in an augmented tree is over eight billion. This large

difference is notable for two reasons. Firstly, for a relatively small tree, the difference

between bounds is shocking as they were constructed with exactly the same method.

Second, the smallest augmented tree constructed in Theorem 27 still has more than

nine billion edges, further emphasizing that the bounds are not sharp. In Section

5.2, we compare the methods for constructing augmented trees from Theorem 33 and

Theorem 27, and mention that the level-specific upper bound for this caterpillar is a

great improvement at 697205n
2
.

x1 xℓ

Fig. 48. C3,0,0,0,0,0,4,0,0,0,0,2

Finally, we consider the caterpillar in Figure 49. With a spine length of seven,

s4 = 7, and s′4 = 8, it would seem at first glance that we should start building an

augmented tree from x1. However, the number of edges in an augmented tree is more

than two billion fewer if we start building from vertex x8. This caterpillar is again

different than those we have seen previously in this section because at s3 and s′3 (7

and 2 respectively), it still appears as though we should start building our augmented

caterpillar from vertex x1.

We have not discussed the case when sℓ/2 = s′ℓ/2 for an asymmetric caterpillar,

62

x1 xℓ

Fig. 49. C7,0,0,0,0,6,0,2

and leave this as future work.

From this point forward, when referencing the “caterpillar upper bound”, we

mean the bound from Theorem 27 when our augmented tree is built from the spine

endpoint that yields the smallest augmented tree.

5.2 Caterpillar vs. Level-Specific Upper Bound

Recall that the level-specific bound always gives the smallest upper bound among

the bounds from Chapter 4. As such, we only make comparisons with the level-

specific upper bound in this section. From the list of ci, we can quickly determine

the degree of every vertex in our graph and that vertex’s distance from the center

of the caterpillar. As such, there is no obvious computational benefit to using the

center-based improvement like there may be when examining other types of trees.

For most caterpillars with a spine length of four or less, and many with a spine

length of five, the caterpillar upper bound from Theorem is preferred when compared

to the level-specific upper bound from Theorem 33. The first part of the upper bound

is simply a linear combination of c1, c2, and c3, then for caterpillars with spine length

two, no branching is required to build the augmented tree. This gives an improvement

to the level-specific upper bound, where branching is required for all augmentations of

trees with a diameter larger than two (recall that a caterpillar with a spine length of

63

two has a diameter of four). Further, in the level-specific augmented tree, we branch⌈
diam(T)

2

⌉
− 1 times. Then for a caterpillar with a spine length of four, we branch

at x4 and x5 (two times), versus having to branch three times for the level-specific

augmented tree of the same caterpillar. The caterpillar upper bound is equivalent to

the level-specific upper bound in caterpillars of the form Ck,0,k, as in Figure 50 where

the bounds from Theorems 27 and Theorem 33 both give ex⋆(n,C5,0,5) ≤ 23n
2
.

Fig. 50. C5,0,5

The caterpillar definition used in this research requires that c1 and cℓ are both

non-zero in order to minimize the number of times we must branch when constructing

an augmented tree. If we allow c1 to be zero, for example, then the spine length

increases by one, and we must branch an additional time.

However, we can engineer caterpillars with longer spines that will violate the sup-

position that the augmented tree from the level-specific upper bound will be smaller

due to the number of times we must branch. For example, C1,1,1,1,2,4,6,7 in Figure

51 has a spine length of seven, but the augmented tree starting from vertex x1 and

built using the arguments from Theorem 27 gives a lower upper bound than the

level-specific augmented tree.

In fact, we can make the caterpillar arbitrarily long, and if either c1 or cℓ is

sufficiently large in comparison to the remaining ci, the caterpillar upper bound will

give a better result than the level-specific upper bound. Note, in these cases, we need

not be concerned with the left versus right issue. In these long caterpillars where the

64

x1 x8

Fig. 51. C1,1,1,1,2,4,6,7

caterpillar upper bound is preferred, there should be one end of the spine with a high

degree. As we saw in Section 5.1, the truth is likely more subtle than having one

“heavy” side of the caterpillar but this requires more investigation.

Finally, we see an example when a caterpillar with a spine-length of four gener-

ates a smaller augmented tree when using the level-specific method rather than the

caterpillar method of building the augmented tree. Consider C3,0,0,1,2 in Figure 52.

The caterpillar upper bound is 341n
2
, but the level-specific upper bound is 325n

2
.

Fig. 52. C3,0,0,1,2

In conclusion, none of the obvious results on which upper bound is lowest for

a fixed caterpillar are categorically true. It is possible in every scenario thus far, to

engineer a counter-example. An interesting direction for future work is to further

study these augmented trees to determine which is smaller for fixed caterpillars and

to classify caterpillars according to which upper bound is the lowest. However, we

still know that all rainbow Turán numbers of caterpillars are linear in n, and do not

believe these results are sharp, so there should be extra focus on reducing the upper

bound in general. It may be the case that a better understanding of the caterpillars’

augmented trees makes this task more approachable.

65

CHAPTER 6

FUTURE WORK

6.1 k-Unique

The open questions concerning k-unique edge colorings can be placed into two

main categories. First, questions about k-unique spectra and edge colorings them-

selves, and secondly, questions on how k-unique results can help improve our under-

standing and bounds on rainbow Turán problems. Further results like Theorem 16

help us to determine lower bounds on the rainbow Turán number. For example, since

we know that every proper edge coloring of K6 contains a 3-unique DS2,2, the sensible

next step is to determine whether it always contains a 5-unique DS2,2 (the answer is

no, as shown in Lemma 20). What other graphs exist with inherent properties, like

having a dominating edge as in the case of DS2,2, that can help us to determine results

on k-unique Turán numbers? The original purpose of defining k-unique colorings was

to develop new methods for improving lower bounds on Turán numbers. This purpose

was not fulfilled here but is likely still a fruitful avenue for further research. When

researching k-unique edge colorings for their own sake, of interest is to determine the

complete spectra for graphs that do not have a full spectrum. For example, what

can we say about the spectra of graphs that have a set of two edges that intersect all

others? Are there other properties shared by all graphs that do not have a full spec-

trum? Although these results are not directly linked to finding bounds on rainbow

Turán numbers, a better understanding of how certain graphs appear as subgraphs

and what edge colorings they admit, can only further our study of rainbow Turán

problems.

66

6.2 Bounds on Specific Families

Future work on the rainbow Turán numbers for specific families of trees can

be separated into two categories: upper and lower bounds. We may improve lower

bounds through new constructions, determining k-unique Turán numbers, or improv-

ing Lemma 23. In particular, the inherent structure of some specific family may

allow us to improve Lemma 23 for that family, which in turn will improve the lower

bound on the rainbow Turán number of that family. For upper bounds, we repeat a

familiar refrain - future work should focus on reducing the constant term. This may

be done by finding new and better ways to build augmented trees, or by developing

new methods altogether. We also should consider new families of trees for which to

build augmented trees. The obvious next families are spiders (for which the Erdős-Sós

Conjecture was confirmed in [19]), lobsters, and subdivided stars. In each case, if a

method is developed to build an augmented tree for graphs of that family, these new

upper bounds should be compared to the upper bounds from Chapter 4 in order to

determine the method that gives the lowest constant for the upper bound. It is likely

that the preferred method will depend on the specific member of the family as we

saw in Chapter 5. This itself is a promising area for future work. Finally, we may

consider graphs that are not trees - forests and unicyclic bipartite graphs are the ob-

vious starting points here. In particular, there are existing results on the traditional

Turán number for some forests, as in [11] and [29].

6.3 Improving the Upper Bound for All Trees

In Section 4.2, we saw how knowing a little bit of extra information about a tree

can help us improve the upper bound on the rainbow Turán number of that tree.

Are there simple ways to do this aside from knowing the degree of the center vertex?

67

Consider the computational difference between the center-based improvement and the

level-specific upper bound. The second method required we know a lot more infor-

mation than the first. Particularly when a tree is large, this extra information may

be difficult or time-consuming to determine (caterpillars are the obvious exception to

this, as all of the information needed is encoded in the caterpillar’s name). Then can

we find new ways to incrementally improve the upper bound just by knowing a tiny

bit of extra information at a time?

Rather than knowing a little bit more about the forbidden subgraph, is it possible

to improve the upper bound on the rainbow Turán number by knowing a little bit

of extra information about the potential host graphs? That is, instead of looking

for rainbow F inside of any/all graphs, what if we only look for them in graphs

that we know do or do not admit a particular type of edge coloring. An example

of this is Theorem 25, when we know the K2s+4 all must admit a particular type

of edge coloring. In the Theorem 25, this is done by construction, but is a similar

idea possible in a more general sense? This concept of knowing more about the host

graph edges toward generalized Turán problems. However, instead of maximizing

some subgraph with regard to a forbidden subgraph, I propose something along the

lines of maximizing the number of colors used in a proper edge coloring without

admitting a copy of a rainbow forbidden subgraph. For example, we may ask how

many (||F || − 2)-unique copies of F may be in a rainbow-F -free graph. The obvious

open question is to improve the constant term in the upper bound on the rainbow

Turán number of all trees, whether that be through an improvement of the reduction

method, a totally new idea, or some combination of the two.

68

Appendix A

CODE

1 def double_star(T):
2 #Input: A double star
3 #Output: The number of edges in DS_{r,s+r}
4 deg_seq=T.degree_sequence ()
5 r = deg_seq [1]-1
6 s = deg_seq [0]-1
7 ds_bound = s + 2*r +1
8 return ds_bound

Listing A.1 Calculates the Number of Edges in an Augmented DSr,s

1 def edges_in_tkd(T):
2 #Input: A tree , T
3 #Output: Print the number of edges in the All -Trees Upper

Bound and the number of edges in the All -Trees Upper
Bound after checking center degree

4 Verts = T.vertices ()
5 diam = T.diameter ()
6 centers = T.center ()
7 k = max(T.degree ())
8 d = ceil(diam /2)
9 kprime = 0

10 dprime = 0
11 if len(centers) == 1:
12 if T.degree(centers [0]) == k:
13 for v in Verts:
14 if T.distance(centers [0], v) == 1:
15 if T.degree(v) < k:
16 kprime = k-1
17 dprime = d+1
18 else:
19 kprime = k
20 dprime = d+1
21 else:
22 kprime = k-1
23 dprime = d
24 else:
25 if T.degree(centers [0]) == T.degree(centers [1]) ==

k:
26 kprime = k
27 dprime = d
28 else:

69

29 kprime =k-1
30 dprime = d
31 karybus = k + sum(k*prod(k^i + (k^i - 1)/(k-1) -2 for

i in (2..j)) for j in (2..d))
32 karybusprime = kprime + sum(kprime*prod(kprime^i + (k^

i - 1)/(k-1) -2 for i in (2..j)) for j in (2.. dprime))
33 print(f’The original k-ary upper bound is {karybus}’)
34 print(f’The adjusted k-ary upper bound is {

karybusprime}’)

Listing A.2 Calculates the Number of Edges in the Augmented k-ary Tree

1 def lsub_but_correct(T):
2 #Input: A tree , T
3 #Output: Prints the list of highest degrees and returns

the number of edges in the level specific augmented
tree

4 diam = T.diameter ()
5 d = ceil(diam /2)
6 Verts = T.vertices ()
7 root = T.center ()[0]
8 hd = [T.degree(root)]
9 for i in range(1, d+1):

10 level_d = 0
11 for v in Verts:
12 if T.distance(root , v) == i:
13 if T.degree(v) > level_d:
14 level_d = T.degree(v)
15 hd.append(level_d)
16 print(f’The list of highest degrees is {hd}’)
17 c = [0, hd[0]]
18 for i in range(2, d+1):
19 ci =(c[i-1])*(hd[i -1]*(1+ hd[i]) -1)
20 c.append(ci)
21 lvlbus = hd[0] + sum(c[i] for i in range(2,d+1))
22 return lvlbus

Listing A.3 Calculates the number of edges in the level-specific augmented tree

1 def all_tree_bounds(T):
2 #Input: A tree
3 #Output: Print the number of edges in the augmented graph

for the all -trees bound , the adjusted all -trees bound ,
and if T is a double star , the double star bound , then
show T

4 lvlbus = lsub_but_correct(T)
5 if T.diameter () == 3:
6 ds_bound = double_star(T)
7 print(f’The double star bound is {ds_bound}’)
8 edges_in_tkd(T)

70

9 print(f’The level specific upper bound is {lvlbus}’)
10 T.show()

Listing A.4 All previous methods combined

1 def caterpillars(T):
2 #Input: A caterpillar
3 #Output: Prints the two endpoints of the spine , and the

number of edges in the caterpillar bound from both
directions

4 #Optional: both lists of c_i and spine
5 Verts = T.vertices ()
6 diam = T.diameter ()
7 H=T.longest_path ()
8 endpoint = []
9 for v in H.vertices ():

10 if H.degree(v) == 1:
11 endpoint.append(H.neighbors(v)[0])
12 children1 =[0, T.degree(endpoint [0]) -1]
13 for i in range(1, diam -2):
14 level_d = 1
15 for v in Verts:
16 if T.distance(endpoint [0], v) == i:
17 if T.degree(v) > level_d:
18 level_d = T.degree(v)
19 children1.append(level_d -2)
20 level_d =1
21 for v in Verts:
22 if T.distance(endpoint [0], v) == diam -2:
23 if T.degree(v) > level_d:
24 level_d = T.degree(v)
25 children1.append(level_d -1)
26 L = [children1 [1]+1 , children1 [1]+ children1 [2]]
27 for i in range(2, diam -1):
28 li = i-1+ sum(children1[j] for j in range(0,i+2))
29 L.append(li)
30 P = [1,1,1]
31 for i in range(3, diam -1):
32 pi =(P[i-1])*(sum(children1[j]+1 for j in range(1,

i)))
33 P.append(pi)
34 if diam >= 4:
35 catbus1 = 3* children1 [1] + 2* children1 [2] +

children1 [3] + 4 + sum(P[j]*(L[j]+1) for j in range(3,
diam -1))

36 if diam < 4:
37 catbus1 = 2* children1 [1]+ children1 [2] +1
38 children2 =[0, T.degree(endpoint [1]) -1]
39 for i in range(1, diam -2):
40 level_d = 1

71

41 for v in Verts:
42 if T.distance(endpoint [1], v) == i:
43 if T.degree(v) > level_d:
44 level_d = T.degree(v)
45 children2.append(level_d -2)
46 level_d =1
47 for v in Verts:
48 if T.distance(endpoint [1], v) == diam -2:
49 if T.degree(v) > level_d:
50 level_d = T.degree(v)
51 children2.append(level_d -1)
52 L = [children2 [1]+1 , children2 [1]+ children2 [2]]
53 for i in range(2, diam -1):
54 li = i-1+ sum(children2[j] for j in range(0,i+2))
55 L.append(li)
56 P = [1,1,1]
57 for i in range(3, diam -1):
58 pi =(P[i-1])*(sum(children2[j]+1 for j in range(1,

i)))
59 P.append(pi)
60 if diam >= 4:
61 catbus2 = 3* children2 [1] + 2* children2 [2] +

children2 [3] + 4 + sum(P[j]*(L[j]+1) for j in range(3,
diam -1))

62 if diam < 4:
63 catbus2 = 2* children2 [1]+ children2 [2] +1
64 print(endpoint)
65 #print(children1)
66 #print(children2)
67 print(f’vertex {endpoint [0]} bound is {catbus1}’)
68 print(f’vertex {endpoint [1]} bound is {catbus2}’)
69 #print(f’spine length is {H.diameter () -2}’)

Listing A.5 Calculate the number of edges in an augmented Caterpillar

1 def catbuild(feet):
2 #Input: A list of integers
3 #Output: A caterpillar
4 last = len(feet)
5 diam=last+1
6 cat=graphs.PathGraph(diam +1)
7 feet [0]= feet [0]-1
8 feet[last -1]= feet[last -1]-1
9 totchi = [0]

10 total = 0
11 for i in range(0,last):
12 total = total + feet[i]
13 totchi.append(total)
14 for i in range(1,diam):
15 foot=0

72

16 while foot < feet[i-1]:
17 cat.add_edge(i, (diam+foot+i+totchi[i-1]))
18 foot = foot + 1
19 return cat

Listing A.6 Build a caterpillar from the list of ci

1 def randcat(n,spine):
2 #Input: two integers
3 #Output: random caterpillar with given spine length and n

total vertices
4 if spine == 0:
5 spine = random.randint(1,n)
6 caterp = graphs.PathGraph(spine)
7 for i in range(spine ,n):
8 caterp.add_vertex(i)
9 caterp.add_edge(i, random.randint(0,spine -1))

10 return caterp

Listing A.7 Random Caterpillar Generator

1 def allcatbounds(T):
2 #Input: A caterpillar
3 #Output: Print the number of edges in each version of an

augmented tree , and show the caterpillar
4 lvlbus = lsub_but_correct(T)
5 edges_in_tkd(T)
6 print(f’The level specific upper bound is {lvlbus}’)
7 caterpillars(T)
8 T.show()

Listing A.8 Finds the number of edges in all augmented trees for a caterpillar.

1 def rcit(cats ,n,spine):
2 #Input: Three integers
3 #Output: Prints bounds , shows graph for many random

caterpillars
4 for i in range(0,cats):
5 allcatbounds(randcat(n,spine))

Listing A.9 Generate many random caterpillars and run allcatbounds on each

73

REFERENCES

[1] Miklós Ajtai, János Komlós, Miklós Simonovits, and Endre Szemerédi. Some

elementary lemmas on the Erdős-T. Sós conjecture for trees, (manuscript).

[2] Miklós Ajtai, János Komlós, Miklós Simonovits, and Endre Szemerédi. The solu-

tion of the Erdős-T. Sós conjecture for large trees, (manuscript, in preparation).

[3] Noga Alon and Clara Shikhelman. Many T Copies in H-free Graphs, Journal of

Combinatorial Theory, Series B(121): 146-172, 2016.

[4] Noga Alon and Joel Spencer. The Probabilistic Method, Second Edition. Wiley

Interscience, New York, 2000.

[5] József Balogh, Michelle Delcourt, Emily Heath, and Lina Li. Generalized Rain-

bow Turán Numbers of Odd Cycles. Discrete Mathematics, 345(2), 2022.

[6] Vic Bednar and Neal Bushaw. Rainbow Turán Methods for Trees. arXiv preprint,

arXiv:2203.13765, 2022.

[7] Vic Bednar and Neal Bushaw. Multi-colored Extremal Numbers, (manuscript,

in preparation).

[8] Yunus Bidav and Neal Bushaw. Uniqueness Spectrum, (manuscript, in prepara-

tion).

[9] Béla Bollobás. Modern Graph Theory. Graduate Texts in Mathematics, Springer,

New York, 1998.

[10] Neal Bushaw, Daniel Johnston, and Puck Rombach. Rainbow Saturation. Graphs

and Combinatorics, 38(5), 2022.

74

[11] Neal Bushaw and Nathan Kettle. Turán Numbers of Multiple Paths and Equibi-

partite Forests. Combinatorics, Probability and Computing, 20(6): 837-853, 2011.

[12] Yair Caro. New Results on the Independence Number. Technical Report, Tel

Aviv University, 1979.

[13] Bryan Currie, Jill Faudree, Ralph Faudree, and John Schmitt. A Survey of Min-

imum Saturated Graphs. The Electronic Journal of Combinatorics, DS19, 2011.

[14] Shagnik Das, Choongbum Lee, and Benny Sudakov. Rainbow Turán Problem

for Even Cycles. European Journal of Combinatorics, 34(5): 905-915, 2013

[15] Pál Erdős. Some Problems in Graph Theory, Theory of Graphs and Its Applica-

tions. M. Fielder, Editor, Academic Press, New York, 1965, pp 29-36.

[16] Pál Erdős, András Hajnal, and John Moon. A Problem in Graph Theory. Amer-

ican Mathematical Monthly, 71:1107–1110, 1964.

[17] Pál Erdős and Arthur Harold Stone. On the Structure of Linear Graphs. Bulletin

of the American Mathematical Society, 52:1087–1091, 1946.

[18] Beka Ergemlidze, Ervin Győri, and Abhishek Methuku. On the Rainbow Turán

Number of Paths. Journal of Combinatorics, 26(1), 2019.

[19] Genghua Fan, Yanmei Hong, and Qinghai Liu. The Erdős-Sós Conjecture for

Spiders. arXiv preprint. arXiv: 1804.06567, 2018.

[20] Zoltán Füredi, Miklós Simonovits. The history of degenerate (bipartite) extremal

graph problems. Bolyai Soc. Math. Stud., 25, 2013.

75

[21] Dániel Gerbner, Tamaás Mészáros, Abhishek Methuku, and Cory Palmer. Gen-

eralized Rainbow Turán Problems. Electronic Journal of Combinatorics. 29(2),

2022.

[22] Anastasia Halfpap. The Rainbow Turán Number of P5. arXiv preprint.

arXiv:2210.03376, 2022.

[23] Anastasia Halfpap and Cory Palmer. Rainbow Cycles vs. Rainbow Paths. Aus-

tralasian Journal of Combinatorics, 81(1): 152 - 169, 2021.

[24] Barnabás Janzer. the Generalised Rainbow Turán Problem for Cycles. SIAM

Journal of Discrete Math, 36: 436-448, 2020.

[25] Oliver Janzer. Rainbow Turán Number of Even Cycles, Repeated Patterns and

Blow-ups of Cycles. arXiv preprint, arXiv: 2006.01062, 2020.

[26] Daniel Johnston, Cory Palmer, and Amites Sarkar. Rainbow Turán Problems

for Paths and Forests of Stars. The Electronic Journal of Combinatorics, 24(1),

2017.

[27] Daniel Johnston and Puck Rombach. Lower Bounds for Rainbow Turán Numbers

of Paths and Other Trees. Australasian Journal of Combinatorics, 78(1): 61-72,

2020.

[28] Peter Keevash, Dhruv Mubayi, Benny Sudakov, and Jacques Verstraëte. Rain-

bow Turán Problems. Combinatorics, Probability, and Computing, 16(1): 109-

126, 2007.

[29] Bernard Lidický, Hong Liu, and Cory Palmer. On the Turán Number of Forests.

Electronic Journal of Combinatorics, 20(2), 2013.

76

[30] Willem Mantel. Problem 28, Wiskundige Opgaven. 10:60, 1907.

[31] Andrew McLennan. The Erdős-Sós Conjecture for Trees of Diameter Four. Jour-

nal of Graph Theory, 49(4): 291-301, 2005.

[32] Alexander Sidorenko. Asymptotic Solution for a New Class of Forbidden r-

graphs. Combinatorica 9(2): 207-217, 1989.

[33] Pál Turán. On an Extremal Problem in Graph Theory. Matematikai és Fizikai

Lapok (in Hungarian), 48: 436–452, 1941.

[34] V.G. Vizing. On an Estimate of the Chromatic Class of a p-Graph. Diskret Analiz

(in Russian), 3:25–30, 1964.

[35] V.K. Wei. A Lower Bound on the Stability Number of a Simple Graph. Bell

Laboratories Technical Memorandum, 81-11217-9, Murray Hill, NJ, 1981.

[36] Kazimierz Zarankiewicz. Problem 101. Colloquium Mathematicum, 2:301, 1951.

77

	Rainbow Turan Methods for Trees
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Figures
	Abstract
	 Introduction
	Basic Definitions and Notation
	Graph Families
	Graph Coloring
	Extremal Graph Theory
	Rainbow Turán Problems
	Methods
	k-Unique Edge Coloring
	Reduction Method

	 k-Unique Edge Coloring
	k-Unique Spectrum
	k-Unique Turán Numbers

	 Rainbow Turán Bounds for Families of Trees
	Double Stars
	Other Families
	Sharpness of Bounds

	 Rainbow Turán Upper Bounds for All Trees
	Upper Bound for All Trees
	A Center-Based Improvement
	Level-Specific Upper Bound

	 Further Caterpillar Bounds
	Left vs. Right Endpoint
	Caterpillar vs. Level-Specific Upper Bound

	 Future Work
	k-Unique
	Bounds on Specific Families
	Improving the Upper Bound for All Trees

	Appendix Code
	 References

