
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2023

VIRTUAL PLC PLATFORM FOR SECURITY AND FORENSICS OF VIRTUAL PLC PLATFORM FOR SECURITY AND FORENSICS OF

INDUSTRIAL CONTROL SYSTEMS INDUSTRIAL CONTROL SYSTEMS

Syed Ali Qasim

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Other Computer Engineering Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7461

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarscompass.vcu.edu%2Fetd%2F7461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7461?utm_source=scholarscompass.vcu.edu%2Fetd%2F7461&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

©Syed Ali Qasim, July 2023

All Rights Reserved.

i

VIRTUAL PLC PLATFORM FOR SECURITY AND FORENSICS OF

INDUSTRIAL CONTROL SYSTEMS

This dissertation proposal document is submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy at Virginia Commonwealth

University.

by

SYED ALI QASIM

Bachelor of Science, Lahore University of Management Sciences, Pakistan, 2016

Faculty Adviser: Irfan Ahmed,

Associate Professor, Department of Computer Science

Virginia Commonwewalth University

Richmond, Virginia

July, 2023

ii

Acknowledgements

Firstly, I would like to express my deepest gratitude to Allah (SWT) for His

countless blessings and opportunities.

My profound appreciation goes to my advisor, Dr. Irfan Ahmed, for his un-

matched support and guidance throughout my doctoral journey. I am grateful to Dr.

Tamer Nadeem, Dr. Changqing Luo, Dr. Yanxiao Zhao, and Dr. Zhifang Wang for

serving on my doctoral committee; their valuable time and insightful feedback have

been indispensable.

I extend my thanks to all collaborators at other institutions and my colleagues

for their help and support. I am especially thankful to my friends and colleagues at

the SAFE lab who made this journey enjoyable and memorable.

Special gratitude goes to my family, who have always been my source of strength

and inspiration. I wish to express my heartfelt gratitude to my mother and aunt

for their significant sacrifices and tireless support toward my success. A special ac-

knowledgment goes to my brother, whose mentorship has been a beacon throughout

my life. Lastly, I am immensely grateful to my wife for her unwavering support and

constant encouragement throughout this journey.

Finally, I want to express my deep gratitude to all the individuals who supported

and motivated me, and who assisted me throughout this PhD program. I extend my

best wishes and prayers for their well-being and success.

iii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . iii

Table of Contents . iv

List of Tables . viii

List of Figures . x

Abstract . xiv

1 Introduction . 1

1.1 Motivation . 2

1.1.1 Lack of Automated Forensic Tools 2

1.1.2 Vulnerability Detection . 3

1.1.3 Threat Intelligence . 3

1.2 Objective . 3

1.2.1 Development of the Virtual PLC Platform 4

1.2.2 Utilization of the Virtual PLC Platform for Forensic Analysis 4

1.2.3 Application of the Virtual PLC Platform for Vulnerability

Discovery . 4

1.2.4 Employment of the Virtual PLC Platform for Threat Intelligence 5

1.3 Challenges in Developing Scalable Security and Forensic Tools . . . 5

1.4 Contributions . 6

1.5 Organization of the proposal . 8

2 Background . 9

2.1 Introduction to Industrial Control Systems (ICS) 9

2.2 PLC, Engineering Software and Control-Logic 10

3 Developing the Virtual PLC Platform 15

3.1 PLC Communication Insights . 15

3.2 Virtual PLC Platform Design Goals 17

3.3 Virtual PLC Platform . 19

3.3.1 Overview . 19

iv

3.4 Virtual PLC Platform Design . 20

3.4.1 Data Processing . 20

3.4.2 PLC Template Generation 22

3.4.2.1 Identifying Session Dependent Fields 24

3.4.2.2 Extracting the Message Structure 28

3.4.3 Communication Interface - Virtual PLC 35

3.5 Evaluation . 36

3.5.1 Evaluation With Upload Network Dump 36

3.5.1.1 Virtual PLC as a Device 38

3.5.1.2 Function-Level Accuracy 39

3.5.1.3 Packet-Level Accuracy 44

3.5.2 Evaluation With Download Network Dump 45

3.5.2.1 Experimental Setting 45

3.5.2.2 Functional-level Accuracy 46

3.5.2.3 Packet-Level Accuracy 48

3.5.2.4 Transfer Accuracy . 49

3.6 Conclusion . 50

4 Forensic Analysis of ICS Attacks Using Virtual PLC 53

4.1 Introduction . 54

4.2 Network Based Attack on PLCs 56

4.2.1 Denial of Engineering Operations (DEO) Attack 56

4.2.2 Control-Logic Injection Attacks 57

4.3 Problem Statement and Challenges 59

4.3.1 Problem Statement . 59

4.3.2 Challenges in Control-logic Forensics 59

4.4 Forensic Analysis of Attacks Using Virtual PLC Platform 60

4.4.1 Forensic Analysis of Denial of Engineering Operations Attacks 60

4.4.1.1 DEO I . 60

4.4.1.2 DEO II . 61

4.4.2 Forensic Analysis of Control-Logic Injection Attacks 64

4.4.3 Conclusion . 64

5 PREE: Heuristic Builder for Reverse Engineering of Network Proto-

cols in Industrial Control Systems . 66

5.1 Introduction . 66

5.2 Background and Related Work . 69

5.3 Overview of PREE Architecture 71

v

5.3.1 Data Pre-Processing . 72

5.3.2 Data Analytics . 74

5.3.3 Heuristic Building . 74

5.3.4 Heuristics for Variable Fields 75

5.4 Implementation . 78

5.5 Evaluation . 79

5.5.1 Data Collection . 79

5.5.2 Evaluation Metrics . 80

5.5.3 Evaluation Methodology . 81

5.5.4 Modbus . 82

5.5.5 UMAS . 83

5.5.6 ENIP . 83

5.5.7 PCCC . 87

5.5.8 CLICK . 87

5.5.9 OMRON FINS Protocol . 90

5.6 Comparison with Existing Tools 92

5.6.1 Comparison Metrics . 92

5.6.2 Existing/comparison tools 93

5.6.3 Experiment methodology . 93

5.6.4 Comparison Results . 93

5.7 PREE Applications for Vulnerability Study and Forensic Anal-

ysis of Different Attacks . 96

5.7.1 PREE Application 1: Vulnerability Study on CLICK PLC . 96

5.7.2 PREE Application II: Forensic Analysis of Different At-

tacks on CLICK PLC Using SNORT 97

5.8 Conclusion . 99

6 Attacking IEC-61131 Logic Engine In Programmable Logic Controllers

In Industrial Control Systems . 101

6.1 Introduction . 102

6.2 Related Work . 104

6.3 Attacking the Control Logic Engine 107

6.3.1 Adversary Model . 107

6.3.2 Overview of the Case Studies 107

6.4 Case Study I: SEL-3505 RTAC . 110

6.4.1 Controller Details . 110

6.4.2 Vulnerability . 111

6.4.3 MITRE ATT&CK . 112

vi

6.4.4 Attack Implementation . 113

6.4.4.1 Evaluation . 114

6.4.4.2 Experimental Settings 114

6.4.4.3 Attack Execution and Evaluation 114

6.5 Case Study II: Traditional PLCs 117

6.5.1 Case Study II (a): Schneider Electric’s Modicon M221 117

6.5.1.1 Controller Details . 117

6.5.1.2 Vulnerability . 117

6.5.1.3 MITRE ATT&CK . 118

6.5.1.4 Attack Implementation 119

6.5.1.5 Experimental Settings 119

6.5.1.6 Attack Execution and Evaluation 120

6.5.2 Case Study II (b): Allen-Bradley’s MicroLogix 1400 & 1100 . 122

6.5.2.1 Controller Details. 122

6.5.2.2 Vulnerability . 122

6.5.2.3 MITRE ATT&CK . 123

6.5.2.4 Attack Implementation 124

6.5.2.5 Experimental Settings 125

6.5.2.6 Attack Execution and Evaluation 127

6.6 Mitigation . 127

6.7 Conclusion . 129

7 Using Virtual PLC Platform as a Honeypot for ICS Threat Intelligence . 131

7.1 Introduction . 132

7.2 BACKGROUND AND RELATED WORK 134

7.2.1 Operational and Functional Features of PLC 134

7.2.2 Related Work on ICS Honeypots 134

7.2.3 Limitations of State-of-the-art Honeypots 135

7.3 Virtual PLC Platform - Enabling Application-level PLC Func-

tionalities at Scale . 137

7.3.1 Challenges in Developing a Scalable Honeypot 137

7.3.2 Virtual PLC Platform Framework 138

7.3.2.1 Handling PLC Functionalities (C1 & C3) 138

7.3.2.2 Handling the state of the PLC 143

7.4 Evaluation . 144

7.4.1 Experimental Setup and Methodology 144

7.4.2 Device Discovery . 144

7.4.3 Operational and Functional Features 145

vii

7.4.3.1 Session Establishment and Maintenance 145

7.4.3.2 Authentication: . 146

7.4.3.3 PLC Modes . 148

7.4.3.4 Control Logic Download 149

7.4.3.5 Control Logic Upload 150

7.5 Case Study: Virtual PLC Platform for Elevator 152

7.5.1 Cyber Attacks On Virtual PLC Platform 152

7.6 Conclusion . 155

8 Conclusion . 157

Appendix A Abbreviations . 159

Appendix B List of Publications by the candidate, Syed Ali Qasim 160

References . 162

Vita . 176

viii

LIST OF TABLES

Table Page

1 Dataset summary of Ladder logic programs for MicroLogix 1100 38

2 Dataset summary of Ladder logic programs for MicroLogix 1400 39

3 Dataset summary of Instruction List programs for Modicon M221 41

4 Transfer accuracy of the virtual PLC . 43

5 Packet-level accuracy of the virtual PLC 45

6 Summary of our Dataset for M221 PLC 46

7 Summary of database look-ups . 47

8 Comparison of the location of different fields in an actual PLC response

and a template generated by the virtual PLC 49

9 Summary of control logic read and write messages during the experiments 50

10 Comparison of control logic uploaded by the virtual PLC & real M221 PLC 52

11 Summary of PREE data analytics functionalities 73

12 Common fields in different ICS protocols 81

13 Comparison of PREE and ground truth in Modbus 82

14 Comparison of PREE and ground truth in UMAS 84

15 Comparison of PREE and ground truth in ENIP 86

16 Comparison of PREE and ground truth in PCCC 88

17 Comparison of PREE and ground truth in CLICK 89

18 Comparison of PREE and ground truth in OMRON FINS 91

ix

19 Summary of fields identified by PREE . 92

20 Comparison of PREE with existing tools in Modbus 94

21 The comparison of different attacks on PLCs. 104

22 Subsets of MITRE ATT&CK utilized on four PLCs in the case studies . . 108

23 Summary of existing PLC honeypots in literature and their features

 = Complete Implementation G#= Partial Implementation #= No Im-

plementation . 135

24 Summary of messages exchanged between a VPP and the engineering

software for various sessions. 147

25 Summary of control logic download operations on M221 PLC 150

26 Summary of control logic upload operations and the transfer accuracy

on M221 PLC . 151

x

LIST OF FIGURES

Figure Page

1 A simplified representation of an industrial control system implemented

for a gas pipeline scenario. 10

2 Different representations of a timer program 12

3 Same request message from SoMachineBasic to Modicon M221 in two

different session. 17

4 Comparison of download and upload requests for the same address. 18

5 An overview of virtual PLC platform . 21

6 An overview of identifying session-dependent fields in PLCs protocol . . . 25

7 Comparison of the upload response template generated by VPP and

the upload response from a real PLC. 32

8 Comparison of Modicon M221 download request and upload response

for the same address. 34

9 Flowchart of virtual PLC communication 36

10 Virtual PLC identified as real PLC . 40

11 DEO Attack I: Hiding infected ladder logic from the engineering software 56

12 DEO Attack II: Crashing the decompiler running on Engineering software. 56

13 Control logic from PLC to Attacker . 61

14 Control logic from Attacker to Engineering Workstation 62

15 Request and response packets that cause the decompiler to crash 63

16 Protocol Reverse Engineering Engine (PREE) model 71

17 Rolling window approach to find message-level fields 79

xi

18 Vertical window approach to find session-level fields 79

19 Three metrics used for evaluating PREE 80

20 Fields identified in the Modbus message 83

21 Fields identified in UMAS request messages 84

22 Fields identified in ENIP request Message 85

23 Fields Identified in PCCC request Message 87

24 Fields identified in CLICK PLC request message 89

25 Fields identified in OMRON FINS command message 90

26 Comparison of PREE with NetPlier on proprietary protocols (UMAS

embedded in Modbus and PCCC embedded in ENIP) 95

27 Message of a control engine attack on CLICK PLC, showing the func-

tion code used to change the PLC mode 97

28 Snort rules to detect different attacks on CLICK PLC 99

29 Messages sent by AcSELerator software to SEL RTAC 3505 to start

and stop logic engine . 111

30 Illustration of the Ettercap filter implementation. 113

31 HMI showing ground truth (left) and SEL RTAC state (right) for a

circuit breaker (red means closed) and voltmeter with a given over-

voltage protection threshold . 115

32 HMI showing SEL RTAC is no longer reporting new values while volt-

age has surpassed the threshold . 115

33 HMI showing updated SEL RTAC after the logic engine is enabled and

the circuit breaker is now open (green means open) 116

34 Top-view of the fully-functional conveyor belt model 120

35 Request message to “START“ the Modicon M221 PLC 121

xii

36 Request message to “STOP“ the Modicon M221 PLC 121

37 Response from the Modicon M221 PLC with success function code 121

38 Request message to set the MicroLogix 1400 PLC to Remote-Run Mode . 123

39 Request message to set the MicroLogix 1400 PLC to Remote-Program Mode123

40 Request message to sent the MicroLogix 1400 PLC to inquire current status125

41 Response message from the MicroLogix 1400 PLC when in Remote-

Run mode . 126

42 Response message from the MicroLogix 1400 PLC when in Remote-

Program mode . 126

43 Front-view of the fully-functional elevator model 128

44 Client Authentication Protocol used by different PLCs 137

45 An overview of virtual PLC platform . 139

46 Process of identifying and mapping function codes with different operations 140

47 Request-Response message to read and write a control logic on M221

memory . 141

48 Virtual PLC Platform identified as a real Modicon M221 PLC in So-

MachineBasic . 145

xiii

Abstract

VIRTUAL PLC PLATFORM FOR SECURITY AND FORENSICS OF

INDUSTRIAL CONTROL SYSTEMS

By Syed Ali Qasim

A Virtual PLC Platform for Security and Forensics of Industrial Control Systems

submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Faculty Adviser: Irfan Ahmed,

Associate Professor, Department of Computer Science

Industrial Control Systems (ICS) play a pivotal role in overseeing and regulat-

ing critical infrastructures such as nuclear power plants, gas pipelines, electric grid

stations, and various commercial industries like manufacturing and packaging. Ini-

tially designed to operate in isolation, these systems, with the advent of the Industrial

Internet of Things (IIoT), are now incorporated into broader networks for enhanced

operational efficiency and economic advantages. This has inadvertently made them

appealing targets for cyberattacks. At the heart of ICS are Programmable Logic Con-

trollers (PLCs), key interfaces between the physical and cyber worlds. PLCs process

sensor inputs based on user-defined programs, sending output to actuators to control

physical processes. Given their significant role, they are often exploited by cyber

attackers aiming to sabotage physical processes by manipulating control logic or ex-

ploiting PLC vulnerabilities. Therefore, there is a pressing need for tools to conduct

forensic analysis of cyberattacks on PLCs, discover vulnerabilities before they can be

xiv

exploited by attackers, and gather reliable threat intelligence to bolster ICS security.

The proprietary nature of the software and communication protocols used by various

PLC vendors means that existing security and forensics tools rely heavily on manual

reverse engineering, thus limiting their scalability and efficiency.

To address these limitations, I have developed a Virtual PLC Platform (VPP) ca-

pable of performing forensic analyses of various ICS attacks, gathering reliable threat

intelligence, and identifying vulnerabilities in PLCs. The VPP, based on the packet

replay technique, utilizes network traffic dumps captured during the real PLCs’ com-

munication as inputs to learn the PLC template. This template contains the locations

and semantics of various fields in the PLC protocol. Upon generating the PLC tem-

plate, the VPPinitiates a virtual PLC capable of communicating over the network and

mimicking a real PLC. Additionally, the VPPincludes a Protocol Reverse Engineering

Engine (PREE) module that can be used to reverse-engineer ICS protocols, contribut-

ing to the discovery of PLC vulnerabilities and improving the development of forensic

and intrusion detection tools. The VPPis fully automated, eliminating the need for

manual reverse engineering, and can mimic PLCs from different vendors. This disser-

tation presents the architecture of the VPPand its applications in forensic analysis of

ICS attacks, reverse engineering of ICS protocols, PLC vulnerability discovery, and

gathering reliable ICS threat intelligence.

xv

CHAPTER 1

INTRODUCTION

Industrial Control Systems (ICS) are crucial for the monitoring and control of physical

and mechanical processes across diverse industries. These systems govern everything

from neighborhood traffic signals to high-stakes infrastructures like nuclear power

plants, gas pipelines, and electrical power grid stations [1]. Comprising of field sites

where actual physical processes are executed, and a control center for process monitor-

ing and management, ICS utilizes Programmable Logic Controllers (PLCs), sensors,

and actuators for controlling physical processes. The control center operates ICS

services such as the Human-Machine Interface (HMI) and engineering workstations.

Originally designed to operate in isolation, these systems are now, due to operational

efficiency and economic advantages, connected to wider networks such as enterprise

networks and the internet, consequently becoming targets for numerous cyberattacks.

PLCs are central components of an ICS. They receive input from various sensors,

process this data according to a user-defined program, known as control logic, and

govern the physical processes by sending output signals to the actuators. Due to

their pivotal role, PLCs are often the primary target of cyberattacks aimed at sab-

otaging the physical processes [2, 3, 4, 5, 6, 7]. For instance, the infamous Stuxnet

worm infects the control logic of a Siemens S7-300 PLC, modifying the motor speed

of centrifuges periodically between 1,410 Hz, 2 Hz, and 1,064 Hz [8, 9]. Stuxnet com-

promises the Siemens SIMATIC STEP 7 engineering software at the control center

and downloads malicious control logic to the PLC at field sites over the network.

Beyond compromising the control logic, attackers can also exploit other vulnerabili-

1

ties in the PLCs. For instance, Ayub et al [adeen] identified and exploited various

vulnerabilities in the authentication protocol of different PLCs. Similarly, it has been

demonstrated that if an attacker possesses knowledge of the PLC communication

protocol, they can craft malicious messages to target the PLC’s operational state

[10].

1.1 Motivation

1.1.1 Lack of Automated Forensic Tools

Network-based attacks on the programs (control-logic) running on PLCs can

leave evidence within network traffic. This evidence, if captured, may contain traces

of the transfer of malicious control logic. However, current research lacks forensic

techniques that can efficiently extract this control logic from network traffic and

translate it back to high-level source code for forensic analysis. There are some partial

solutions like Laddis, a state-of-the-art forensic tool to recover control logic from

ICS network traffic dump [4]. Laddis is essentially a binary control-logic decompiler

for Allen-Bradley’s RSLogix engineering software and MicroLogix 1400 PLC [11]. It

leverages complete knowledge of the PCCC proprietary protocol to extract the control

logic from the network traffic, further utilizing a low-level understanding of binary

control-logic semantics for decompilation. However, Laddis necessitates tedious and

time-consuming manual reverse engineering efforts to understand ICS proprietary

network protocols and binary control logic semantics. Given the heterogeneous ICS

environment where different PLC vendors employ their own proprietary protocols,

software, compilers, etc., it is crucial to develop a fully automated forensic solution.

Such a solution would be capable of recovering binary control logic from network

dumps and converting it into a human-readable form for forensic analysis.

2

1.1.2 Vulnerability Detection

The frequency and sophistication of attacks on critical infrastructure are escalat-

ing year by year. According to reports [12, 13], cyberattacks on critical infrastructure

saw a surge of 41% in the first half of 2021. Over time, these attacks have started to

target various components of ICS, such as control-logic and PLC vulnerabilities. To

defend our critical infrastructures effectively, the security community must outpace at-

tackers in identifying and patching existing vulnerabilities in the ICS. Unfortunately,

current solutions for vulnerability detection [14, 10, 15] heavily rely on manual reverse

engineering and lack scalability. Thus, there is an urgent need for automated tools

to aid the security community in discovering existing vulnerabilities in ICS.

1.1.3 Threat Intelligence

Reliable threat intelligence plays a vital role in helping security teams protect

critical infrastructures. Having a thorough understanding of potential adversaries

and their malicious behaviors beforehand contributes to improving security measures.

However, existing solutions for ICS threat intelligence [16, 17] are developed through

manual reverse engineering and are not scalable. This necessitates the development

of automated tools that can help the security community gain insights into attacker

behavior and gather reliable threat intelligence.

1.2 Objective

The purpose of this dissertation is to develop a Virtual PLC Platform (VPP)

that can strengthen the security community’s ability to perform forensic analysis

of network-based attacks on PLCs, pinpoint existing vulnerabilities, and generate

reliable threat intelligence. This overall objective can be further divided into the

3

following distinct goals:

1.2.1 Development of the Virtual PLC Platform

The Virtual PLC Platform is envisioned to intake network dumps stemming from

communication between any real PLC and its associated software, subsequently learn-

ing the location and semantics of various protocol fields autonomously to generate a

PLC template. The platform will host a virtual PLC that, leveraging the old network

dumps and the PLC template, can replay the network dump, thus replicating the op-

erations of an actual PLC. The salient feature of the virtual PLC platform is its fully

automated operation, eliminating the need for laborious manual reverse engineering.

Furthermore, the virtual PLC, using prior network dumps, will be able to imitate a

real PLC and interact with PLC programming software effectively.

1.2.2 Utilization of the Virtual PLC Platform for Forensic Analysis

In cases where network-based attacks target the control-logic program running on

the PLC, capturing the network traffic between the control center and field sites can

yield evidence of the transfer of malicious control logic. The goal of this dissertation

is to employ the Virtual PLC Platform for forensic analysis of such network-based

attacks. In pursuit of this goal, the platform should have the capacity to reconstruct

and transmute the binary control logic (present in the traffic dump) into its high-level

source code.

1.2.3 Application of the Virtual PLC Platform for Vulnerability Discov-

ery

Proficiency in protocol semantics can considerably assist in uncovering vulnera-

bilities in the PLC. Attackers can exploit PLC-specific features, such as programming

4

states or reverse-engineered authentication mechanisms. Therefore, another objective

is to empower the virtual PLC platform to comprehend the semantics of proprietary

PLC protocols, assisting in the timely identification of potential vulnerabilities.

1.2.4 Employment of the Virtual PLC Platform for Threat Intelligence

Once the virtual PLC platform has a firm grasp on the proprietary protocol, it

can seamlessly communicate with any network entity. The virtual PLC could then

serve as a honeypot, thereby transforming the Virtual PLC Platform into a valuable

reservoir of threat intelligence. This will provide crucial insights into attack trends

and attacker behaviors, thereby serving an essential role in the security community’s

efforts to stay ahead of threats.

1.3 Challenges in Developing Scalable Security and Forensic Tools

There exist several obstacles in realizing our aim of establishing a Virtual PLC

Platform, primarily due to the proprietary nature of control-logic formats and ICS

protocols. These challenges include:

• Variability in Binary Control-Logic Formats: Distinct PLC vendors have

implemented their own proprietary compilers to convert the human-readable

control-logic into a binary format readable by PLCs. Consequently, the binary

control-logic lacks a standardized, open format akin to Linux’s ELF and varies

across different vendors.

• Language Support in PLC Programming Software: PLC programming

software typically supports one or more languages as defined by the IEC 61131-

3 standard. For example, RsLogix (programming software for Allen-Bradley

MicroLogix 1400 and 1100) exclusively supports ladder logic, while SoMachine-

5

Basic (programming software for SchneiderElectric’s Modicon M221 PLC) sup-

ports both ladder logic and instruction list. Therefore, for a precise forensic

analysis, the binary control-logic needs to be translated back into its respective

high-level language.

• Proprietary Nature of ICS Protocols: Proprietary ICS protocols serve as

the communication medium between a PLC (at the field site) and its program-

ming software. More often than not, these protocol specifications aren’t pub-

licly accessible. Even when an open protocol is in use, it usually encapsulates a

proprietary layer. For instance, the Modicon-M221 PLC and SoMachine-Basic

employ the open Modbus protocol, yet its ’data’ field further comprises propri-

etary fields, such as a control-logic address in PLC memory, function code, and

control logic content.

1.4 Contributions

With respect to the objectives mentioned earlier, this dissertation offers the fol-

lowing contributions:

• Contribution 1: Design and Development of a Virtual PLC Platform

(VPP) that Mimics Real PLCs

– I designed and developed a Virtual PLC Platform (VPP) that is capable of

mimicking real PLCs. The VPP processes network dumps of actual PLC

communication and generates a PLC template by learning the location

and semantics of various PLC protocol fields. Subsequently, it initiates

a virtual PLC capable of network communication similar to a real PLC.

The VPP is fully automated, scalable, and has been successfully tested on

various PLCs from different vendors and ICS protocols.

6

• Contribution 2: Forensic Analysis of Network-based ICS Attacks Us-

ing the VPP

– I evaluated the forensic analysis capability of the VPP by using it to in-

vestigate a “Denial of Engineering Operations” attack. The VPP was

successful in recovering the malicious control logic. Similarly, I used the

VPP to recover the malicious control logic from the network dumps of a

“Control Logic Injection“ attack.

• Contribution 3: Development of a Protocol Reverse Engineering En-

gine (PREE)

– I designed and built a Protocol Reverse Engineering Engine (PREE) adept

at dissecting a wide range of Industrial Control Systems (ICS) protocols.

This empowers control engineers to formulate heuristics for identifying

fields across diverse ICS protocols. Through rigorous testing and evalua-

tion across six different ICS protocols and five PLCs from four vendors, I

demonstrated the versatility and effectiveness of PREE.

• Contribution 4: Development of Control Logic Engine Attack

– I developed a new form of cyber-attack called “Control Engine Attack,“

which targets the control logic engine of Programmable Logic Controllers

(PLCs). This innovative attack methodology manipulates inherent PLC

features to disable the control logic engine, effectively halting operational

processes. I successfully demonstrated the execution and effectiveness of

this attack on five industry-standard PLCs, expanding the understanding

of potential vulnerabilities in industrial control systems

• Contribution 5: Demonstration of VPP’s Honeypot Capabilities

7

– I demonstrated the VPP’s ability to act as a PLC honeypot, mimicking

different PLCs. I also present a case study using a lab model of an elevator

with VPP, performing various ICS attacks on it. This showcases VPP’s

capacity to engage with an attacker and store attack data.

1.5 Organization of the proposal

Chapter 2 explains the relevant industrial control systems (ICS) background.

Chapter 3 explains the architecture of the virtual PLC platform (VPP). The applica-

tion of VPP for the forensics analysis on network-based attacks on PLC is explained

in chapter 4. Chapter 5 presents the Protocol Reverse Engineering Engine. Chap-

ter 6 show the development of a novel, control engine attack on the PLCs. Chapter 7

presents another use case of the virtual PLC platform for threat intelligence and

information gathering. Finally chapter 8 concludes the proposal.

8

CHAPTER 2

BACKGROUND

This chapter will cover the relevant background, section 2.1 provides a detailed picture

of an industrial control system followed by PLC programming details in section 2.2.

2.1 Introduction to Industrial Control Systems (ICS)

Figure 1 depicts a typical industrial control system setup tailored for a gas

pipeline. This architecture consists of two key components: the control center and

the field sites.

Physical Process: In this gas pipeline instance, the physical process involves

compressing the gas and channeling it to a remote receiver via a pipeline. The process

includes an air compressor, storage and receiver tanks, and solenoid valves. The air

compressor pressurizes the air and stores it in a designated storage tank, which is

linked to a receiving tank via a pipeline. Solenoid valves seal the tanks and are

opened to allow the pressurized air to flow to the receiving tank when necessary.

Field Site: The physical infrastructure of the gas pipeline, located at field sites,

is supervised and regulated via a pressure transmitter, solenoid valves, and Pro-

grammable Logic Controllers (PLCs). The pressure transmitters, attached to the

receiving and storage tanks, relay data to corresponding PLCs. The PLCs are em-

bedded with a control logic to execute two primary functions: first, they open the

valves to transport the compressed air to the receiving tank. Second, they continu-

ously monitor the pressure within the tanks, maintaining an optimal level by releasing

9

PLC

Gas Receiving
Tank

PLC

Gas Compressor
and Storage Tank

Transfer Gas

Control LAN

Historian Control Server
(MTU)

Engineering
WorkstationHMI

Control Center Field Sites

Fig. 1. A simplified representation of an industrial control system implemented for a

gas pipeline scenario.

excess air when the pressure becomes too high.

Control Center: The PLCs transmit data to the control center, which includes a

Human-Machine Interface (HMI), Historian, and an Engineering Workstation. The

HMI provides a graphical display of the current state of the gas pipeline operation.

The Historian, a database application, archives the PLC data for potential future

processing. The Engineering Workstation employs engineering software for the remote

programming, configuration, and maintenance of the PLCs.

2.2 PLC, Engineering Software and Control-Logic

Programmable Logic Controller (PLC): PLCs are robust, embedded devices

strategically located at field-sites to directly monitor and control physical processes.

Each PLC features input and output modules: the input module connects to sensors,

such as temperature and pressure sensors, while the output module interfaces with

actuators to effect the desired process state. Internally, the PLC uses control logic to

10

process input data and determine the appropriate output. Furthermore, PLCs come

with network communication capabilities, such as Ethernet or serial ports, enabling

them to communicate with ICS services at the control center, like the engineering

software.

Engineering Software: The engineering software is a vital tool for programming

control-logic in PLCs. Typically proprietary and vendor-specific, these software so-

lutions like SoMachineBasic, RsLogix 500, and CX-Programmer are instrumental in

the configuration, programming, and remote maintenance of their respective PLCs.

PLC Communication: PLCs employ a variety of proprietary ICS protocols for

communication, including but not limited to Modbus, EtherNet/IP (ENIP), and

s7comm. Oftentimes, these PLCs utilize more than one protocol in conjunction,

embedding one within another to facilitate communication with the engineering soft-

ware. For instance, the Schneider Electric Modicon M221 PLC uses the UMAS pro-

tocol encapsulated within the Modbus protocol. Likewise, Allen-Bradley MicroLogix

1400 and 1100 PLCs encapsulate the PCCC protocol within the ENIP protocol. This

protocol coupling enhances the communication capabilities and flexibility of PLCs

within the ICS environment.

PLC Programming: The operation of a Programmable Logic Controller (PLC)

is guided by a user-defined program known as control-logic. IEC 61131-3[18], the

international standard for programmable controllers, prescribes five distinct languages

to create control-logic. These languages are classified into two categories: Textual

and Graphical. The Textual category includes ’Structured Text’ and ’Instruction

List’, while the Graphical category encompasses ’Ladder Logic’, ’Functional Block

Diagram’, and ’Sequential Function Chart’. For the purpose of this proposal, we

11

(a) Ladder Logic

(b) Instruction List

Fig. 2. Different representations of a timer program

have selected ’Ladder Logic’ from the graphical languages and ’Instruction List’ from

the textual languages to illustrate their utility in PLC programming.

• Ladder Logic: Derived from Relay Logic, Ladder Logic is a graphical language

utilized in PLC programming. It is characterized by a diagrammatic structure,

with each horizontal line in the program referred to as a rung. These rungs are

composed of a series of input and output instructions, each defining a specific

operation to be performed by the processor [19].

Figure 2(a) is a ladder logic program consisting of one rung and two instructions:

1) XIC (Examine if closed) on left is associated with the input address I:0/0, 2)

TON (timer on delay) on right. The timer instruction has three attributes, i)

time base (the unit of time, 1.0 means one second). ii) Preset (maximum time

to wait). iii) Accumulator (the time that has passed). It also has two control

12

bits, EN (enable) and DN (Done).

When the program executes and the XIC is true, it will start the timer and EN

will become true. The preset is 6 and the time-base is one second. When the

timer completes 6 seconds, the DN bit turns to true and the accumulator is

changed to the preset value.

• Instruction List: Unlike Ladder Logic, Instruction List resembles assembly

language consisting of a sequence of instructions. Figure 2(b) shows an equiva-

lent program in Figure 2(a). The first instruction BLK is the start of the timer

function block. The second instruction, LD (load operator) looks for close edge

contact, which is associated with the input %I0.0. The contact is closed when

bit%I0.0 is 1. The following instructions are as follows: IN represents the input

of Timer function block; Out BLK wires the output of timer; Q represents the

output of timer, and it becomes 1 when the timer expires; ST is store operator,

which is equivalent to a coil in ladder logic and takes the value of previous logic

and is used to store output. Finally, END BLK represents the end of the timer

function block [20].

When the program executes and LD is true, it sets IN true and starts the timer.

The timer has a time-base of 1 second and preset of 6 second. When the timer

completes 6 seconds, it sets Q (output of timer) true and then both LD and Q

go into ST. LD and Q are in series. When both LD and Q are true, it will turn

the output ST true.

Control-logic Transfer: Once a control logic program is composed in one of

the high-level languages defined by IEC, a mechanism is required to transfer it to

the Programmable Logic Controller (PLC). In this context, the engineering software

13

provides two essential functionalities - “Upload” and “Download” - which enable the

transition of control-logic to and from the PLC.

• Upload Function: The ‘Upload’ functionality is a crucial tool enabling remote

retrieval of the binary form of control logic from a PLC. This process initiates

a decompiling procedure within the engineering software, which translates the

binary data back into a high-level source code. As the control engineer triggers

the ’Upload’ command, the engineering software facilitates a series of commu-

nication exchanges between itself and the PLC, involving session-establishment

messages, echo messages, and control-logic messages.

Initially, the engineering software establishes a connection session with the PLC.

Subsequently, it transmits read-request messages targeted at accessing the mem-

ory locations of the control logic within the PLC. In reciprocation, the PLC

returns the requested data, which constitutes the control logic, encapsulated in

the payload of response messages. After the engineering software receives the

complete binary control-logic, it directs it towards the decompiler to initiate

the decompilation process, which consequently produces the source code in a

high-level language format.

• Download Function: The ‘Download’ functionality is akin to the ‘Upload’

process, and it facilitates control engineers in transferring a newly crafted or

modified control-logic to the PLC from the engineering software. On execut-

ing the ‘Download’ command, the engineering software once again establishes

a session with the PLC. It then translates the high-level control-logic into a

machine-readable binary format. Post this transformation, it dispatches write-

request messages to the PLC, guiding it to inscribe the control-logic binary into

its memory.

14

CHAPTER 3

DEVELOPING THE VIRTUAL PLC PLATFORM

This chapter presents the first significant milestone of my dissertation: the design and

development of the Virtual PLC Platform (VPP). It demonstrates my deliberate effort

to emulate the precise operations of a real Programmable Logic Controller (PLC). I

begin by discussing the motivation that led to the inception of the VPP, illustrating

its importance in the wider context of PLC systems. Then, I move on to explain the

objectives I sought to achieve during the design and development stages. Overcoming

the challenges encountered throughout this journey was not an easy task; I delve into

these issues and the strategies implemented to navigate them. The evolution of the

VPP has been driven by key insights gained from an in-depth understanding of real

PLCs, which are also shared in this chapter. Lastly, I provide an in-depth evaluation

of the VPP, confirming its capabilities and effectiveness in mimicking the functionalities

of an actual PLC.

3.1 PLC Communication Insights

During the analysis of interactions between a real PLC and engineering software, I

gleaned several key insights that proved instrumental in the development of the virtual

PLC framework, VPP. These observations were critical in shaping the functionalities

and performance of the VPPto accurately mimic a real-world PLC

Variety in Message Types During Communication: In a standard commu-

nication session between a PLC and the engineering software, post session establish-

ment, a control engineer has the flexibility to perform three operations: monitor the

15

PLC state, upload the control-logic from the PLC, or download the control-logic to

the PLC. Interestingly, the structure of messages for session establishment, PLC state

observation, and control-logic upload remains consistent. However, the structure for

the control-logic download message deviates from this. For instance, as illustrated in

figure 4, the upload request from SoMachineBasic to Modicon M221 PLC solely in-

cludes the memory address and the number of bytes to read. Conversely, the download

request extends beyond this to incorporate the control logic itself. This understanding

proved critical in the design and development of VPP.

Deterministic Communication Behavior: Through my observation, I dis-

cerned a deterministic behavior exhibited by the communication process. Irrespec-

tive of circumstances, the engineering software consistently sends a limited set of

unique requests to either establish a session with the PLC or to retrieve (upload)

the control logic from the PLC. Notably, when we responded to a request message

from the engineering software with a response message taken from a prior network

dump, the engineering software’s subsequent request message aligned exactly with the

next request message in the network traffic dump. This deterministic communication

pattern was a key insight in the development of VPP.

Control Logic Segmentation: The engineering software implements an inter-

esting strategy while transferring control logic over the network—it partitions the

binary control logic into multiple segments, or ’chunks’. In the context of the Schnei-

derElectric Modicon M221 PLC, the maximum size of a single chunk can be 236 bytes.

During both upload and download operations, the engineering software consistently

begins reading from and writing to a predetermined memory address. Furthermore,

for both operations, the number of bytes read or written for each memory address

16

Transaction
ID

Transaction
ID

Rest of the message
remains same

Fig. 3. Same request message from SoMachineBasic to Modicon M221 in two different

session.

remains consistent. As seen in Figure 4, during the download request, the engi-

neering software writes 43 bytes of control logic at the address “c404“ in the PLC

memory. The corresponding upload request replicates this, using the same address

and byte count, thus defining the binary chunk. The advantage of this behavior is

that VPP can utilize the downloaded network capture to reconstruct the control logic

without requiring any binary or decompilation information, significantly streamlining

the process

3.2 Virtual PLC Platform Design Goals

Building on the insights gained from analysing the communication between a

real PLC and the engineering software, I aimed to develop a virtual PLC platform,

17

Download Request

Upload Request

Modbus
Function
Code

Transaction
ID

Transaction
ID

Length

Length

Session
ID

Session
ID

Modbus
Function
Code

Write
FNC

Read
FNC

Address
Address

Type

Byte
size

Fig. 4. Comparison of download and upload requests for the same address.

VPP, capable of accurately emulating the behavior of a real PLC. I sought to leverage

the deterministic communication patterns, the different types of message structures,

and the segmented nature of control logic transfers to create an effective and efficient

virtual counterpart of a PLC. These objectives informed the primary design goals of

VPP, which are as follows:

1. Scalable Emulation: The foremost aim was to create a scalable tool capable

of emulating the behavior of a real PLC. This emulation extends to supporting

the various operations a control engineer may perform, including observing the

PLC state, and uploading or downloading control logic. VPPis designed to mimic

these behaviors to create an authentic PLC experience.

18

2. Protocol Agnostic: An essential goal was to ensure VPP remained agnostic

to the PLC protocol. This necessitated the tool to have the capacity to mimic

PLCs from various vendors, even those utilizing distinct PLC protocols. In

this way, VPP would transcend vendor-specific limitations, making it a more

universally applicable tool.

3. PLC Template Generation from Network Dumps: I intended for VPP to

have the ability to leverage network dumps from a real PLC, learn the message

structure, location, and semantics of various fields in the ICS protocol, and con-

sequently generate a PLC template. This function would harness the valuable

information contained within network dumps to facilitate the generation of an

accurate PLC template.

4. Packet Replay Capability: To ensure interactive networking, the design goal

was to have VPP capable of interacting with any network entity using packet

replay technique. This capability would allow for dynamic communication using

previously captured network traffic, enhancing the virtual emulation’s authen-

ticity.

The design and development of VPP focused on accomplishing these goals, effec-

tively translating the observations from real-world PLC communication into a virtual

platform that can mimic a physical PLC with a high degree of accuracy.

3.3 Virtual PLC Platform

3.3.1 Overview

The VPPcan consist of one or more virtual PLCs. Given the network dump of

a real PLC’s communication, the objective of the virtual PLCs is to replay this net-

19

work dump, replicating the same network abstraction as a real PLC, and providing

the application-level functionalities of a real PLC. This process necessitates three

functions: (1) Data Processing: Using the network dump, the VPPshould be capable

of organizing the packets to facilitate packet replay and template extraction; (2) Tem-

plate Generation: The VPPshould learn message structure, various session-dependent

fields, and their semantics to update them for new sessions (replay); and (3) Com-

munication Server: In a manner similar to a physical PLC, the virtual PLC should

include a communication server and be capable of responding to various request mes-

sages.

Figure 5 provides an overview of the virtual PLC platform. In the data man-

agement phase, the VPPextracts different sessions from the network dump, identifies

request and response messages, and subsequently stores them in a database for further

analysis. During the template generation block, the VPPperforms various analytical

operations on the communication data stored in the database. This analysis aims

to extract the message structure, location, and semantics of different fields in the

messages to generate a PLC template. Finally, in the communication interface, the

VPPuses the PLC template and the network dumps to instantiate various instances of

virtual PLCs, thereby mimicking a real PLC.

3.4 Virtual PLC Platform Design

3.4.1 Data Processing

The initial step for the vPLC entails processing the network dumps, which are

collected by monitoring the communication of a real PLC. PLCs utilize various pro-

prietary ICS protocols, such as Modbus, S7comm, and ENIP, for communication. Ad-

ditionally, they often incorporate other proprietary protocols like PCCC and UMAS,

20

Template GenerationData Processing Communication Interface

Virtual PLC

Request

Response

PLC
Server

Message
Processor

Session
Dependent

Fields

Static
Fields

Dynamic
Fields

Data
Field

PLC Template

Network
Dumps

Message
Tagging

Database Client

Fig. 5. An overview of virtual PLC platform

which are embedded within these primary protocols (ENIP, Modbus, S7comm, etc.).

Given their binary nature, these protocols present an analytical challenge without

prior understanding or specialized tools. Therefore, to extract actionable seman-

tic information from network packet captures, a structured methodology is required.

This process involves extracting different communication sessions, identifying request

and response messages, and organizing them in a database to expedite the analysis

process.

Message Tagging: The process of message tagging begins with identifying distinct

communication sessions and recognizing the application-level request and response

messages. Considering the IP address and port of the PLC, the vPLC can extract

these separate communication sessions from the network dumps. The subsequent step

involves identifying the request and response messages within these dumps. Since the

maximum size of messages in ICS protocols, such as Modbus, is smaller than the

maximum TCP/UDP payload size (for instance, Modbus messages are a maximum

of 256 bits) add ref, we assume that each TCP/UDP packet contains one application-

level request or response message. Given the nature of PLC operations, which act

as servers (only responding upon receiving a request), packets whose destination IP

21

and port match the PLC’s are tagged as request messages. Simultaneously, messages

whose source IP and port align with the PLC’s are tagged as response messages.

Database After messages have been tagged as requests and responses, the ensuing

step is to organize them into an efficient and speedy database. Considering the

proprietary nature of ICS protocols utilized by PLCs, we treat the application message

as a complex binary structure, whose content and structure are not immediately

decipherable to us. This approach enables us to remain agnostic of the ICS protocol

as we store the messages as hex strings, assuming we have no information about their

content.

To learn any semantic information and understand the message structure, it

is crucial to pair the request and response messages together. However, during a

communication session, network congestion could prevent the client from receiving

a response from the PLC. This could lead the client to send another request before

getting a response, which means the order of messages in the network dump cannot

be relied upon to pair request and response messages.

To navigate this issue, we’ve developed a queue system for request messages.

Each request message enters a queue and, when the vPLC identifies a response mes-

sage, it retrieves the first message in the queue. It pairs this message with the re-

sponse and stores this as a key-value pair in the database. This methodology ensures

we maintain an organized and effective system for interpreting and learning from the

communication data. Algorithm 1 outlines the process of creating databases.

3.4.2 PLC Template Generation

The VPPutilizes a packet replay technique to simulate a real PLC’s behavior

but replaying network traffic poses numerous challenges. Firstly, several session-

dependent fields may exist within a message. The VPP needs to identify these and

22

Algorithm 1 Data Processing: Storing the request-response pairs

Require: filename, src ip, plc ip, p port

1: pcap ← rdpcap(filename)

2: table ← empty dictionary

3: req ← empty string

4: stack ← empty stack

5: for each pkt in pcap do

6: if pkt contains TCP then

7: hex payload ← hexlify(payload of pkt)

8: if source of pkt == src ip and destination of pkt == plc ip and length of

payload ≥ 10 then

9: push hex payload to stack

10: else if source of pkt == plc ip and destination of pkt == src ip then

11: req ← pop first element from stack

12: table[req] ← hex payload

13: end if

14: end if

15: end for

23

establish their relationships in request-response messages. Secondly, according to [21],

the message structure changes based on the operation performed, e.g., writing to the

PLC memory yields a different request-response structure than reading data from it.

Therefore, if the network dump provided to the VPP was captured during a control

logic upload, it could reuse the message after updating the session-dependent fields.

However, if captured during a download, the VPP needs to ascertain the upload mes-

sage structure and use the downloaded traffic to populate and transmit the upload

message. So VPP solves these challenges by and creates a template for each PLC it

is mimicking.

3.4.2.1 Identifying Session Dependent Fields

A fundamental step in the development of VPPwas the identification of session-

dependent fields within PLC communications. To achieve this, I implemented a

heuristic-based approach, comparing two benign Packet Capture (PCAP) files that

contained the same control logic and were going in the same transfer direction, specif-

ically “upload“. Given the control logic in both PCAP files was identical, a compar-

ison of the same message from both files would reveal almost identical data, barring

session-dependent fields such as the session ID.

For instance, Figure 3 illustrates an example of the same message present in two

separate PCAP files, derived from different sessions between a Modicon M221 PLC

and its respective engineering software. The similarity between the two messages is

striking, with only the Transaction ID varying between the two. This stark contrast

highlights the session-dependent nature of the Transaction ID.

To identify these session-dependent fields, VPPingests multiple sets of benign

network captures in the form of PCAP files. Importantly, the learning process only

24

Database
Message
Pairing

Grouping &
Analysis

Rule
Extraction

Session
Dependent

Fields

Fig. 6. An overview of identifying session-dependent fields in PLCs protocol

utilizes benign PCAP files, ensuring VPPlearns the correct message format, devoid

of any potential anomalies or corruptions present in malicious files. The methodol-

ogy employed for identifying session-dependent fields is visualized in Figure 6. The

pseudo-code is summarized in Algorithm 2.

Pairing: In the initial phase, VPP processes multiple sets of benign PCAP files

from different sessions, each of which containing identical control logic and transfer

direction (either upload or download). For each request message K1 in the first

PCAP file, a corresponding request message K2 in the second PCAP file is identified.

This identification process relies on two parameters: the size of the message and the

similarity of the message strings. VPP systematically compares every request message

in the first PCAP file with all the request messages in the second file, and for each

message, the framework autonomously detects the most similar message in the second

PCAP file. Once these similar messages are identified, they are paired together as

(K1,K2) for subsequent analysis.

Grouping And Analysis: Having obtained the message pairs, VPP undertakes a

differential analysis of each pair, contrasting the two messages character by character.

25

Algorithm 2 Session Dependent Fields Identification

1: Let D1, D2 be two databases of network dumps

2: Let Tuples be an empty list

3: Let Indices be an empty dictionary

4: for each req1i in D1 do

5: Find matchreq using findMaxMatch(req1i, D2)

6: Tuples.append([req1i,matchreq,res1i,resmatchreq])

7: end for

8: for each T in Tuples do

9: for index = 0 to length(T [0]) do

10: if T [0][index] ̸= T [1][index] then

11: if index in Indices then

12: Indices[index]+ = 1

13: else

14: Indices[index] = 1

15: end if

16: end if

17: end for

18: end for

19: threshold = tn * length(Tuples)

20: Indices = {index: count for index, count in Indices.items() if count ¿ threshold}

return Indices

26

For each pair, the indices where the messages differ are recorded, indicating the

location of session-dependent fields. It’s crucial to note that messages between the

PLC and the engineering software can vary in length, and thus the location of session-

dependent fields may also differ. As a result, VPP forms groups based on the length

of the messages present in each pair to ensure that all messages within a group share

the same format. This procedure is performed for all sets of PCAP files.

Rule Extraction: The final stage of the first learning phase involves examining

each group to identify any noise or false positives, following the differential analysis on

multiple sets of PCAP files and grouping the potential session-dependent fields. We

hypothesize that for each message group, the location or index of session-dependent

fields remains consistent. Therefore, at this stage, VPP only considers potential

session-dependent fields that are consistently present in the majority of messages and

discards all other fields that lack consistency. This process is repeated across all PCAP

file sets, and the results are aggregated to generate a single set of session-dependent

fields for each message group. Despite this method effectively removing noise, two

challenges persist: firstly, there are no defined boundaries between fields. This means

that if two fields in the protocol are adjacent, they will be considered as one. Secondly,

if a session-dependent field is not entirely different across two PCAP files, VPP will not

be able to extract the complete session-dependent field. For instance, in the message

shown in Figure 3, the Transaction ID spans two bytes, from index 0 to 3. However,

as the character “3” at index 0 is common in both messages, the differential analysis

will identify an incomplete field comprising of three characters, i.e., from index 1 to

3.

Since protocol reverse engineering is not the primary objective of VPP , we can

afford to overlook the first challenge, as our main goal is to identify and update

27

session-dependent fields so we can reuse the previously captured network traffic. Even

if two session-dependent fields are treated as one, VPP will label this as a combined

session-dependent field that needs updating during communication with the engineer-

ing software. The second challenge is addressed by the virtual PLC when it begins

communication with the engineering software. Upon receiving a request message from

the engineering software, the virtual PLC will compare the new request with a similar

request in the database. This comparison could potentially generate some false posi-

tives. However, the virtual PLC can combine the results of this comparison with the

information gathered by VPP to yield the final session-dependent fields. The virtual

PLC takes the session-dependent fields learned by VPP as a baseline and only selects

those fields from the comparison that are adjacent to, overlapping with, or confined

within any of the baseline fields, effectively disregarding the rest.

3.4.2.2 Extracting the Message Structure

Depending on the operation, the structure of the request and response messages

changes. When writing data to memory, the client sends a request message containing

the write function code, memory address to write to, size of data to write, and the

data or control logic itself. In response, the PLC sends a success message if the

operation was successful, or an error message otherwise. To read data from the PLC

memory, the client sends a request message containing the read function code, the

memory address to read from, and the size of the data to read. The PLC then

responds with a success message containing the requested data or an error message.

Therefore, if the network dump the VPP is replaying contains read operations, the

VPP can send the response after updating the session-dependant fields. However,

if the replaying dump only contains write operations and the VPP is requested to

read, the VPP must extract the structure of the read response message, fill it using

28

the messages in the dump, and then send it as a response to the read request. To

extract the read response structure, the VPP processes two network dumps captured

while reading and writing the same control logic. This allows the VPP to identify the

different fields present in a read response message. Generally, there are four types of

fields: static fields, dynamic fields, session-dependent fields, and control logic or data

fields present in the upload response, which are also shown in Figure 7.

1. Session-Dependent Fields: These fields vary across different sessions (e.g.,

Transaction ID). Notably, the value of these fields does not depend on the

content of the message but is rather dictated by the unique session they are

part of.

2. Static Fields: These are the fields that remain consistent across all the upload

response messages. Examples include constants such as the Modbus function

code or success function code. Their value is independent of the session or the

content of the message.

3. Dynamic Fields: These fields depend on the content of the message and,

therefore, vary across different messages. An example of a dynamic field is the

length of the message, which is dependent on the size of the control logic being

transferred.

4. Control Logic: This part of the message consists of the actual control logic.

Its size may vary across different messages, but based on our observations, it

consistently follows the aforementioned fields in the message structure.

Identifying Static Fields: Algorithm 3 explains the process of identifying the

locations of static fields, the VPPcompares all the request messages in a network dump

and labels all the fields that remain constant throughout the session (i.e., fields that

29

are identical in all request messages) as static in the request. This is repeated for

the response messages, and the locations of static fields in both request and response

messages are compared to identify their relationships

Algorithm 3 Static Fields Identification

1: Let D be the database of network dumps

2: Let StaticF ieldsReq, StaticF ieldsRes be empty lists

3: Initiate index = 0

4: while index < length(D[0]) do

5: Let value be the value at index in the first request in D

6: if all request messages in D have the same value at index then

7: Append index to StaticF ieldsReq

8: end if

9: Increment index

10: end while

11: Repeat the same process for response messages and update StaticF ieldsRes

return StaticF ieldsReq, StaticF ieldsRes

Identifying Dynamic fields: To locate dynamic fields such as the length of the

request message, a heuristic-based approach is employed. A window of two bytes (a

common size of length fields in ICS protocols) is rolled on a message and the value

inside the window is compared with the length of the message outside the window.

If they match, the location of the window is marked as the potential location of the

length field. This process is carried out on each read response message in the database,

and the location that appears in all request messages is labeled as the length field.

Algorithm 4 gives the overview of the dynamic field identification process.

30

Algorithm 4 Dynamic Fields Identification

1: Let D be a database of network dump

2: Let PotentialLocations be an empty list

3: Let LengthF ieldLocations be an empty list

4: for each msg in D do

5: msgLength = length(msg)

6: for index = 0 to msgLength− 2 do

7: windowV alue = convertToInteger(msg[index : index+ 2])

8: if windowV alue = msgLength− index− 2 then

9: PotentialLocations.append([index,index+2)

10: end if

11: end for

12: end for

13: for L in PotentialLocations do

14: if PotentialLocations.count(L) = length(D) then

15: LengthF ieldLocations.append(L)

16: end if

17: end for

return LengthF ieldLocations

31

Session Dependent fields

Static fields

Dynamic fields

Control logic

XXXX 00 00 00 XX Control logic01 5a 00 fe

Upload Response structure extracted by Virtual PLC Platform

Upload Response by real PLC

Fig. 7. Comparison of the upload response template generated by VPP and the upload

response from a real PLC.

Identifying Control Logic fields: This process consists of two primary steps: pairing

request-response messages from upload and download network dumps and identifying

control logic.

Step 1:Pairing - In the pairing step, VPP pairs the request and response messages

present in the upload traffic with the corresponding messages in the download. How-

ever, as shown in Figure 4, the length and format of the upload and download request

messages differ. In the download request message, the engineering software sends a

chunk of control logic to the PLC, accompanied by its size and memory address where

the PLC should write the logic. In contrast, the upload request is much shorter, and

32

the engineering software only requests the PLC to send the control logic chunk present

at the address specified in the message.

To pair the messages that read and write on the same physical address, we

assume that the control logic will be in the latter part of the download request.

Therefore, we use the similarity of the upload request and download request, equal to

the length of the upload request, as a heuristic. VPP then calculates the similarity of

an upload request message with all of the request messages in the download PCAP

file, forming a four-element tuple of upload and download requests and responses

where the similarity is highest among the messages.

Step 2:Identifying Control Logic - The control logic is the most vital field for gen-

erating the upload template. As mentioned in section 3.1, the engineering software

always divides the control logic into the same chunks for both download and upload.

This implies that similar messages in the upload and download streams will contain

the same control logic piece. The challenge then is to identify the location of control

logic in the upload response and download request, enabling its use to create the

upload template.

To tackle this, we utilize a heuristic-based approach grounded on the longest

common sub-sequence (LCS) present in the download request and upload response.

For each message tuple, VPP computes the LCS between the download request and

upload response and notes the starting and ending index in both messages.

However, in some instances, the control logic part might be smaller than the

message header. In such cases, VPP might learn an incorrect location for the control

logic. To rectify this, after finding the location of the LCS in all download request and

upload response message pairs, VPP identifies the starting and ending LCS indices that

are common in most of the message pairs, using these indices for the final template.

33

Download Request

Upload Response

Modbus
Function
Code

Transaction
ID

Transaction
ID

Length

Length

Session
ID

Session
ID

Modbus
Function
Code

Write
FNC

Success
Status

Address

Address
Type

Byte
size

Byte
size

Control
logic

Fig. 8. Comparison of Modicon M221 download request and upload response for the

same address.

Figure 8 shows the same control logic in upload response and download request from

SoMachineBasic and Modicon M221 PLC.

After identifying the different types of fields, the VPPcompiles them to determine

the structure of the read response message. In the end, all this information, includ-

ing the message structure, the location of different fields in the message, and their

relationships in request and response messages, is stored in the PLC template. This

template can then be utilized by the VPPto accurately replay the network dump.

34

3.4.3 Communication Interface - Virtual PLC

Having organized the network dump in the database and generated the PLC

template, the next and final component of the VPP is the communication interface.

The user can instantiate hundreds of virtual PLC instances, providing them with

the network dumps to replay (database) and the PLC template. Each virtual PLC

mimics the behavior of a real PLC, offering a network abstraction of a real PLC.

PLC server: The virtual PLC consists of two main components: the PLC Server

and the Message Processor. The virtual PLC operates a server (running on the same

port as a real PLC), enabling communication with clients who can send different re-

quest messages to it. Upon receiving a request message, the PLC Server forwards it

to the Message Processor, which is tasked with generating an appropriate response

message.

Message Processor: Generating Response Messages: For each request mes-

sage, the Message Processor searches the database for a similar request message,

using the message size and string similarity as search parameters. In the first cycle,

the Message Processor looks for all request messages in the database with the same

length as the current request and finds the message with the highest string similarity.

It retrieves the associated response, updates the session-dependent fields for the new

session, and sends it to the PLC Server to respond to the client.

If the network dump populates the database and the current operation aligns, the

Message Processor will likely find a similar, same-length request in the database. If

not, the Message Processor won’t find any requests of similar length in the database.

In such cases, during the second round, the Message Processor calculates the similarity

between the current request message and stored request messages up to the size of

the current message.

35

Start Create Response
with PLC Template

Get old request
& response Send

Response

Yes

No

Get most similar
old request &

response

Receive
Request

Is the request
in the dump?

Fig. 9. Flowchart of virtual PLC communication

The Message Processor then selects the message with the highest similarity from

the database, retrieves the associated response, and uses it to generate a new response

message in line with the PLC template. This response is then sent to the PLC

Server, which replies to the client. In this way, by responding to all incoming request

messages, the virtual PLC effectively mimics the behavior and operations of a real

PLC.

3.5 Evaluation

Upon completion of the Virtual PLC Platform (VPP) development, it’s crucial to

assess its functionalities and the assumptions made during the development process.

The VPP’s main objective is to ingest network dumps, generate a PLC template, and

replay the network dump via a virtual PLC, effectively mimicking a real PLC’s behav-

ior. Importantly, VPPis designed to replay both upload and download network dumps,

so our evaluation considers both aspects. Accordingly, we gauge the performance of

the virtual PLC against a variety of metrics.

3.5.1 Evaluation With Upload Network Dump

Lab Setup Our evaluation of the Virtual PLC Platform was conducted on three

different PLCs: the Allen-Bradley MicroLogix 1400 Series B, the Allen Bradley Mi-

croLogix 1100 Series B, and the Schneider Electric Modicon M221. For programming

36

the first two PLCs, we used the RSLogix 500 V9.2.01 software. The Modicon M221

was evaluated using SoMachine Basic v1.6 and v1.4. All the programming software

were installed on a Windows 7 virtual machine (VM), while the virtual PLC was

running on an Ubuntu v16.04 VM. To ensure a realistic networking environment, the

engineering software, PLCs, and virtual PLC were all interconnected via an Ethernet

network.

Experiment Methodology In a standard experiment, we first capture the net-

work traffic when engineering software uploads a control logic from a real PLC. Next,

the Virtual PLC Platform utilizes the generated pcap files to communicate with the

engineering software in an attempt to recover the same control logic. Upon comple-

tion, the original and recovered control logic programs are compared manually within

the engineering software to evaluate the accuracy and efficacy of the Virtual PLC

Platform.

Dataset In order to evaluate the PLCs, we used a varied set of programs to mimic

a diverse range of practical scenarios. For the Allen-Bradley MicroLogix 1400 and

MicroLogix 1100, 39 and 22 different Ladder logic programs were used respectively.

On the other hand, we utilized 52 Instruction List programs for the Modicon M221.

These programs were crafted to represent different physical processes, including but

not limited to traffic light control, hot water tank management, elevator control,

gas pipeline regulation, and vending machines, demonstrating a broad spectrum of

complexity and sizes. The details and features of the datasets for MicroLogix 1400

and 1100, and Modicon M221 are illustrated in Tables 1, 2 and 3 respectively.

37

Table 1. Dataset summary of Ladder logic programs for MicroLogix 1100

File Information Rung Instruction

File

size (KB)
of Files Min Max Total Avg. Min Max Total Avg

0-40 16 2 17 90 5.62 3 48 240 15

41-60 1 4 4 4 4 12 12 12 12

61-80 4 8 63 145 36.25 25 245 543 135.75

81-100 1 13 13 13 13 37 37 37 37

Total 22 - - 252 - - - 832 -

3.5.1.1 Virtual PLC as a Device

The virtual PLC in the VPP platform successfully establishes and maintains a

connection with engineering software, mimicking the functionality of a real PLC. We

conducted evaluations with two different engineering software, RSLogix and SoMa-

chine Basic, concluding that both of these software recognized the virtual PLC as a

genuine device, failing to distinguish it from a real PLC.

Figure 10 illustrates the results of the experiments where the virtual PLC is

identified as a genuine MicroLogix 1100, MicroLogix 1400, and Modicon M221 PLC.

The experiments were carried out in the following manner:

For connecting Allen-Bradley MicroLogix 1100 and 1400 PLCs to the engineering

workstation, the user has to manually configure a driver within the RSLogix Classic.

For Ethernet communication, the user can select either EtherNet/IP driver or Eth-

ernet devices driver. When opting for the Ethernet devices driver, the user needs to

input the IP address of the PLC device, while the EtherNet/IP driver automatically

searches the subnet to discover the PLC devices. In our experiments, we configured

38

Table 2. Dataset summary of Ladder logic programs for MicroLogix 1400

File Information Rung Instruction

File

size (KB)

of

Files
Min Max Total Avg. Min Max Total Avg

20-40 21 1 17 99 4.71 1 48 276 13.14

41-60 8 4 48 93 10.33 4 53 344 38.88

61-80 7 8 63 149 22.57 28 245 577 96.166

81-100 2 13 15 28 14 15 37 52 26

101-120 1 10 10 10 10 23 23 23 23

Total 39 - - 379 - - - 1272 -

the Ethernet devices driver (AB ETH-1), providing it with the IP address of the vir-

tual PLC as shown in red circles in Figure 10(a) and 10(b). As a result, RSLinx

Classic identified the virtual PLC as genuine MicroLogix 1100 and MicroLogix 1400

PLCs.

Similarly, with SoMachine Basic, the user can either input the IP address of

the PLC or browse the subnet using the ’refresh devices’ function (marked in the

figure). In our experiment, we provided SoMachine Basic with the IP address of the

virtual PLC. As seen in Figure 10(c), SoMachine Basic recognized the virtual PLC

as a genuine PLC (TM221CE16R).

3.5.1.2 Function-Level Accuracy

Successfully mimicking a real PLC requires the virtual PLC to perform three

tasks:

• i) Establish a connection with the engineering software

39

(a) Virtual PLC identified as real MicroLogix 1100

(b) Virtual PLC identified as real MicroLogix 1400

(c) Virtual PLC identified as real Modicon M221

Fig. 10. Virtual PLC identified as real PLC

40

Table 3. Dataset summary of Instruction List programs for Modicon M221

File Information Rung Instruction

File

size (KB)

of

Files
Min Max Total Avg. Min Max Total Avg

60-80 30 1 3 72 2.4 2 23 793 26.4

80-100 14 2 27 107 7.64 7 112 463 33

100-130 4 8 14 43 10.75 20 72 153 38.2

130+ 4 12 26 63 16 36 118 269 67.2

Total 52 - - 286 - - - 1678 -

• ii) Handle non-control logic messages, such as echo

• iii) Upon receiving an ’upload’ request from the engineering software, correctly

upload the control logic (as found in the pcap file)

In this section, we assess the capability of the virtual PLC to establish and

maintain a steady connection with the engineering software and upload the correct

control logic to the engineering software, given the upload network dump.

Session Establishment and Maintenance Aside from transferring control logic,

the engineering software also sends ping (echo) messages and other functional com-

mands to the PLC. To test the robustness of the virtual PLC in establishing and

maintaining the connection, we carried out the following experiment: Both RSLogix

500 and SoMachine Basic initiated a connection with the virtual PLC, keeping it

open for several minutes without requesting an upload. During these experiments,

the virtual PLC successfully maintained the connection in 113 cases.

41

Transfer Accuracy After successfully establishing and maintaining the session,

the next task of the virtual PLC is to correctly upload a given control logic from the

provided network dump. As outlined in Section 2.2, the ’upload’ function of the engi-

neering software sends a series of read requests to the PLC. Initially, the engineering

software retrieves the control logic program’s storage information or metadata from

the PLC, and then it starts reading the control logic binary from the PLC mem-

ory. During the upload process, upon receiving a request message, the virtual PLC

searches for a corresponding response message in its database and sends the reply

after editing the dynamic or session-dependent fields.

At this stage, any changes other than the dynamic fields can disrupt the con-

nection between the engineering software and PLC or compromise the integrity of

the control logic. Our experiments show that the virtual PLC successfully identified

and edited the dynamic fields while preserving the integrity of the control logic being

uploaded. Furthermore, we analyzed the virtual PLC’s ability to reverse-engineer the

ICS proprietary protocols.

To evaluate the virtual PLC’s accuracy, we manually calculated the number of

rungs and instructions in each of the 113 control logic files and transferred them

one by one to the engineering software using the virtual PLC. After each upload,

we compared the uploaded program with the original files to verify if the number of

rungs and instructions were the same.

To further verify the integrity of the control logic transferred by the virtual

PLC, we manually compared the order of the instructions in the original control logic

and the control logic transferred by the virtual PLC on the rung. Additionally, we

compared the values of other variables, such as timer presets and timer bases, with

those in the original program.

MicroLogix 1400: For the Allen-Bradley MicroLogix 1400 PLC, we uploaded

42

Table 4. Transfer accuracy of the virtual PLC

PLC
of control logic files

uploaded

Original

Program

Virtual PLC

output

Accuracy

%

Rungs Instructions Rungs Instructions

MircoLogix

1100
22 252 832 252 832 100%

MicroLogix

1400
39 379 1272 379 1272 100%

Modicon

M221
52 286 1678 286 1678 100%

39 ladder-logic programs consisting of 379 rungs and 1,272 instructions. The virtual

PLC demonstrated 100% accuracy in establishing a connection, basic communication,

and control logic upload. Furthermore, in all instances, the original programs and

those uploaded by the virtual PLC were identical. The transfer accuracy of the virtual

PLC is detailed in Table 4.

MicroLogix 1100: For the accurate evaluation of the virtual PLC with Mi-

croLogix 1100, we utilized 22 ladder-logic programs of varying complexity containing

252 rungs and 832 instructions. The virtual PLC was able to upload all the programs

with 100% transfer accuracy.

Modicon M221: For the Modicon M221, we used 52 different programs in

Instruction-list format, comprising 286 rungs and 1,678 instructions. These programs

varied in terms of complexity, with some as simple as one rung and two instructions

per program, to more complex ones with over 20 rungs and 100+ instructions per

program. During our experiments, the virtual PLC demonstrated a 100% accuracy

rate in uploading the control logic from the pcap files.

43

3.5.1.3 Packet-Level Accuracy

A primary heuristic in developing the virtual PLC is the deterministic behavior

of engineering software. The engineering software employs the same set of messages

to initiate a connection or request an upload. Hence, considering the deterministic

behavior of the engineering software, if the virtual PLC possesses a complete net-

work traffic log from a previous session, it can utilize this to communicate with the

engineering software, with a high probability that all request-messages from the en-

gineering software can be found in the network traffic log. Our experimental results

corroborate this theory.

This section evaluates the virtual PLC’s ability to identify a given request-

message within the database (i.e., the target pcap file). Table 5 presents the packet-

level accuracy results of the virtual PLC. During the upload of 52 control logic pro-

grams as Modicon M221, the virtual PLC received 8800 request messages from the

engineering software. Out of these, 8776 messages, matching in length and with an

average similarity of 99.99%, were present in the database. For the remaining 24 mes-

sages, the virtual PLC selected the request message with the closest length. Although

the average similarity of the messages selected by the virtual PLC, in this case, is

0.58%, it’s worth noting that the engineering software accepted the response message

from the virtual PLC without causing crashes or errors, and the overall communica-

tion behavior remained unchanged. Similarly, for MicroLogix 1400, while uploading

39 control logic files, the virtual PLC received 4219 messages, all of which were present

in the database with an average similarity of 100%. For MicroLogix 1100, during the

upload process, the virtual PLC received 1639 messages, all of which were present in

the database (i.e., target pcap files) with 100% accuracy.

44

Table 5. Packet-level accuracy of the virtual PLC

PLC
No. of

files

Request

messages received

Request messages

present in DB

Request messages

not present in DB

No. Avg. Similarity % No. Avg. Similarity %

MicroLogix

1100
22 1639 1639 100% 0 -

MicroLogix

1400
39 4219 4219 100% 0 -

Modicon

M221
52 8800 8776 99.99% 24 56.39%

3.5.2 Evaluation With Download Network Dump

3.5.2.1 Experimental Setting

Lab Setup: We evaluated the capability of the virtual PLC to handle a download

network dump using a Schneider Electric Modicon M221 PLC and SoMachineBasic

V1.6 SP2. The engineering software was installed on a Windows 7 virtual machine,

while the virtual PLC was operating on an Ubuntu 18.04.3 LTS machine. All three

devices were connected and on the same network subnet.

Dataset: The dataset used for the evaluation consisted of 40 control logic programs

of varying complexity and sizes, both in terms of the number of rungs and the number

of instructions. Table 6 shows the summary of our dataset.

Experiment Methodology: A typical experiment includes capturing the net-

work traffic when an engineering software downloads a control logic to a real PLC

in the form of PCAP file. This file is then provided to the virtual PLC, and then a

connection is established from the engineering software to the virtual PLC and the

45

Table 6. Summary of our Dataset for M221 PLC

File

Size (kb)

#of

Files

Rungs Instructions

Min Max Avg Total Min Max Avg Total

60-80 24 1 5 2.75 66 2 23 10.75 258

81-90 5 2 5 3.8 19 8 16 10.2 51

91-100 4 5 16 9 36 19 112 50 200

101-120 4 8 14 10 40 20 72 36.5 146

120+ 3 12 26 17.3 52 36 118 77.66 233

Total 40 - - - 213 - - - 888

upload function of the engineering software is used to acquire the high-level control

logic present in the PCAP file. Finally, the control logic uploaded by the virtual PLC

is manually compared with the original control logic file to find the transfer accuracy

of the virtual PLC.

3.5.2.2 Functional-level Accuracy

In this section, we evaluate the functionality of the virtual PLC. The two most

critical requirements for the virtual PLC when handling a download dump are:

• The virtual PLC should be able to match the download request messages from

one PCAP with the corresponding upload request message in the other PCAP

file, and

• The virtual PLC should be capable of generating an upload to produce the

upload response message using download network traffic.

Matching Accuracy: When the virtual PLC receives any upload request mes-

sage, it must find the matching download request from the database, edit the cor-

46

Table 7. Summary of database look-ups

File

Size

(kb)

of

Files

Read

Messages

Received

Successful

lookups

Match

Accuracy

%

60-80 24 1105 1105 100%

81-90 5 265 265 100%

91-100 4 192 192 100%

101-120 4 198 198 100%

120+ 3 169 169 100%

Total 40 1929 1929 -

responding response message, and send this response to the engineering software.

If the response message differs from what the engineering software anticipates, the

engineering software will terminate the communication with an error. As shown in

Figure 4, the upload and download request messages have different formats, making

it a non-trivial task to find the exact match. In our experiments, we found that the

similarity and length-based matching approach used by the virtual PLC to match the

upload request message with the download request message present in the database

works with 100% accuracy across our entire dataset for a real PLC.

Table 7 summarizes the database look-ups during our experiments. While up-

loading the 40 control logic files, the virtual PLC received 1,929 read request (upload)

messages from the engineering software and was able to successfully find all corre-

sponding write request (download) messages. For evaluation purposes, we compared

the address, address type, and control logic size field of the two messages.

47

Upload Response Structure Accuracy: The second most crucial function of

the virtual PLC is to learn the structure of the upload response from the sample

PCAP files and use it to generate upload response messages from the target PCAP

file. To evaluate the accuracy of the upload template, we manually compared the

template with the upload response message from a real PLC to verify if:

• Our template includes all four types of fields (Session-Dependent, Static, Dy-

namic, and Control Logic).

• The location in the upload template for each field precisely matches the corre-

sponding location in the upload response message from the real PLC.

During our experiments, we found that the virtual PLC was once again able to

generate the correct upload template with 100% accuracy across the entire dataset.

Figure 7 and Table 8 demonstrate that the upload template generated by the virtual

PLC contains all the required fields and their locations/indices are identical to those

found in a response message from the real PLC.

3.5.2.3 Packet-Level Accuracy

One of the main assumptions underpinning the development of the virtual PLC

is that during upload and download processes, the engineering software reads and

writes control logic on the PLC. If the virtual PLC only has access to download

network traffic, it can still locate all the control logic that was written on the PLC

and relay it to the engineering software using an upload template. Specifically, for

every read request message from the engineering software, there is a corresponding

write request message in the target PCAP.

Table 9 provides a summary of the control logic read and write messages re-

ceived during our experiments. During the transfer of 40 different control logic files,

48

Table 8. Comparison of the location of different fields in an actual PLC response and

a template generated by the virtual PLC

Field

type

Indices in upload

response from PLC

Indices identified by

Reditus in template

Template

Accuracy

Session

dependant
0,1,2,3 0,1,2,3 100%

Static
4,5,6,7,12,13,14,15

,16,17,18,19

4,5,6,7,12,13,14,15

,16,17,18,19
100%

Dynamic 8,9,10,11 8,9,10,11 100%

Control

Logic
20-end of message 20-end of message 100%

VPP received 1,852 unique read request messages, of which 1,812 had correspond-

ing messages in the database. Upon examining the missing messages, we found that

every download PCAP file was missing the same message, which was related to the

functional-level.

While our assumption was not 100% accurate, only one out of over 1,800 messages

was missing. This issue can be resolved by maintaining a separate database of missing

messages and integrating it with the virtual PLC. If a message is not present in the

target PCAP (download) file, the virtual PLC can look for the missing message in

the second database.

3.5.2.4 Transfer Accuracy

The most crucial metric for evaluating the virtual PLC is the integrity of the

control logic transferred by it. If the virtual PLC introduces any changes in the

control logic during the upload process, it cannot serve as an effective forensic tool.

49

Table 9. Summary of control logic read and write messages during the experiments

File

Size

(kb)

of

Files

Unique

Read

Messages

in Upload

Unique

Write

Messages

in Download

Messages

missing

in Download

Message

Missing

per

File

60-80 24 1060 1036 24 1

81-90 5 255 250 5 1

91-100 4 184 180 4 1

101-120 4 191 187 4 1

120+ 3 162 159 3 1

Total 40 1852 1812 40 -

To determine the transfer accuracy, we uploaded 40 different control logic programs

of varying complexities and sizes using the virtual PLC. We then manually compared

each program with its original counterpart. Our comparison was comprehensive,

encompassing not only the number of rungs and instructions, but also ensuring that

each rung and instruction was identical in both versions.

Table 10 provides a summary of the control logic programs uploaded by the

virtual PLC. Notably, the virtual PLC was able to successfully upload 40 control logic

programs containing 213 rungs and 888 instructions, achieving a transfer accuracy of

100%.

3.6 Conclusion

In this study, we have presented the design and development of a scalable and au-

tomated platform for virtual Programmable Logic Controllers (PLCs). The developed

system, which effectively mimics the behavior of real PLCs, was extensively tested

50

on a variety of PLCs from multiple vendors, including Allen-Bradley and Schneider

Electric, among others.

The comprehensive evaluations and functional tests performed on our virtual

PLC have demonstrated its robustness and capability to accurately mirror real PLCs

in critical aspects such as session establishment and maintenance, control logic upload,

and packet-level communication accuracy. Moreover, the platform demonstrated an

impressive control logic transfer accuracy, maintaining the integrity of the control

logic being uploaded.

One of the significant advantages of our system is its scalability. The current de-

sign is not limited to the tested PLCs but provides a framework that can be effectively

applied to other PLCs, facilitating their representation in a virtual environment. This

broadens the scope for testing, evaluation, and optimization efforts, and allows for

large-scale and automated PLC interaction scenarios that are typically challenging in

physical setups.

This work is a significant step forward in the field of industrial control system

security. The developed virtual PLC provides an effective solution for forensic anal-

ysis, mimicking the behavior of real PLCs without the requirement of proprietary

knowledge about vendor-specific protocols. It holds potential to be a valuable tool

for security practitioners and researchers, offering a practical and accessible means to

experiment, study, and enhance the security of PLC-based control systems.

As we continue to build upon this work, we aim to further refine our system

to increase the range of PLCs it can emulate and enhance its capabilities to handle

more complex interaction scenarios, thus contributing to advancements in the cyber-

physical system security landscape.

51

Table 10. Comparison of control logic uploaded by the virtual PLC & real M221 PLC

File

Size (kb)

of

Files

M221

PLC

Virtual

PLC
Upload

Accuracy
Rungs Instructions Rungs Instructions

60-80 24 66 258 66 258 100%

81-90 5 19 51 19 51 100%

91-100 4 36 200 36 200 100%

101-120 4 40 146 40 146 100%

120+ 3 52 233 52 233 100%

Total 40 213 888 213 888 -

52

CHAPTER 4

FORENSIC ANALYSIS OF ICS ATTACKS USING VIRTUAL PLC

In this chapter, we present our second contribution, which is the application of our

developed virtual PLC platform for forensic analysis of cyber attacks on Industrial

Control Systems (ICS). We focus specifically on network-based attacks on PLCs,

under the assumption that if the network traffic between the control center and field

sites is captured, this traffic would contain evidence of the transfer of the malicious

control logic.

As explained earlier, the engineering software can remotely read a control logic

binary from a PLC, referred to as the upload function. Additionally, it has a built-in

decompiler that can further transform the binary control logic into a human-readable

high-level representation. Our core idea is to integrate this decompiler with the

previously-captured network traffic of a control logic using the upload function to

recover the source code of the binary control logic automatically.

Therefore, for forensic analysis of any network-based attacks, the user can utilize

the virtual PLC platform and provide the forensic artifact (network dump) to the

virtual PLC. Then, using the engineering software, the user can request the virtual

PLC to upload the control logic present in the network dump. This approach lever-

ages the strengths of our virtual PLC system and the inherent capabilities of the

engineering software, offering a practical and efficient method for forensic analysis of

cyber attacks on ICS.

53

4.1 Introduction

Industrial control systems (ICS) oversee and manage industrial physical pro-

cesses, such as nuclear plants, electrical power grids, and gas pipelines [22]. An ICS

is composed of a control center and several field sites. The control center operates

ICS services like the human-machine interface (HMI) and engineering workstation.

Meanwhile, the field sites utilize programmable logic controllers (PLCs), sensors, and

actuators to manage the physical processes.

PLCs are the principal targets of cyberattacks designed to sabotage physical

processes [2, 23, 4, 5, 6, 7]. They run on a control logic that dictates how a physical

process should be managed. Attackers can manipulate this control logic over the

network, changing the behavior of the physical process, a method referred to as a

control-logic injection attack [24, 25, 26, 27]. For example, the infamous Stuxnet worm

infects the control logic of a Siemens S7-300 PLC to periodically modify the motor

speed of centrifuges, ranging from 1,410 Hz to 2 Hz to 1,064 Hz [9, 8]. Stuxnet can

compromise the Siemens SIMATIC STEP 7 engineering software at the control center

and inject malicious control logic into the PLC at the field sites over the network. If

the network traffic between the control center and the field sites is captured during

such an attack, the traffic data will contain evidence of the malicious control logic

transfer. However, the current state of research lacks robust forensic techniques that

can extract the control logic from the network traffic dump and further transform it

back into high-level source code for forensic analysis.

Some partial solutions exist, such as Laddis, a state-of-the-art forensic solution

that recovers control logic from an ICS network traffic dump [4]. Laddis is essentially

a binary control-logic decompiler for Allen-Bradley’s RSLogix engineering software

and MicroLogix 1400 PLC [11]. It utilizes a complete understanding of the PCCC

54

proprietary protocol to extract the control logic from the network traffic and uses a

low-level comprehension of binary control-logic semantics for decompilation. Unfor-

tunately, Laddis requires extensive manual reverse engineering efforts, making it a

tedious and time-consuming process.

Similo is another forensic solution that addresses some of the shortcomings of

Laddis, including the need for manual reverse engineering [28]. However, Similo is

designed to investigate control logic theft attacks where the attacker reads the control

logic from a PLC over the network. It does not support the forensic investigation of

control logic injection attacks where the attacker transfers a malicious control logic

from the engineering software to a target PLC. To address these limitations, we pro-

pose the use of a virtual PLC platform VPPfor forensic analysis of network-based cyber

attacks on PLCs. VPPis capable of replaying network traffic and extracting control

logic information, making it an ideal tool for this purpose. Given that the engineering

software possesses a built-in decompiler for transforming the control logic binary into

a human-readable form, we seek to harness this functionality in conjunction with our

virtual PLC. Specifically, we aim to use VPPto replay the network dump captured

during a cyber attack and subsequently utilize the upload functionality of the en-

gineering software to decompile the control logic from the binary. This integrated

approach promises a comprehensive, automated, and efficient solution for forensic

analysis of cyber attacks on ICS, particularly focusing on control logic injection at-

tacks.

55

Fig. 11. DEO Attack I: Hiding infected ladder logic from the engineering software

Fig. 12. DEO Attack II: Crashing the decompiler running on Engineering software.

4.2 Network Based Attack on PLCs

4.2.1 Denial of Engineering Operations (DEO) Attack

Recently, Senthivel et al. [4] presented denial of engineering operation (DEO) at-

tacks that jeopardize an engineering software’s capabilities to perform remote mainte-

nance on a PLC. They demonstrate the attacks on Allen-Bradley MicroLogix 1400-B

and RSlogix 500 (engineering software).

DEO Attack I: In DEO I (Figure 11), an attacker performs a man-in-the-middle

attack between a target PLC and an engineering workstation (the computer running

an engineering software). When the control engineer downloads a control logic pro-

gram to a compromised PLC, the attacker intercepts the communications and infects

this control logic by replacing some part of the code with malicious logic before for-

warding it to the PLC. Similarly, when the control engineer tries to upload the control

56

logic from the PLC, the attacker intercepts the traffic and replaces the infected logic

with the original code. In this way, the control engineer remains unaware of the

malicious control logic running on the PLC.

Consider the ladder logic program in Figure 2(a), where the timer controls the

yellow light in a traffic light signal. The attacker modifies the preset value from

6 seconds to 80 seconds when the program is downloaded to the PLC of the signal.

When a control engineer attempts to retrieve the program from the PLC, the attacker

intercepts the traffic and changes the preset back to its original value, i.e., 6.

DEO Attack II DEO II is similar to DEO I in that the attacker performs a

man-in-the-middle attack between the engineering workstation and PLC, intercepts

the communication, and manipulates the traffic as it passes through the attacker’s

machine. However, in DEO II (Figure 12), the attacker replaces the original code

with random (noise) data such as 0xFFFF. When an engineering software receives

the malformed logic, it fails to decompile.

4.2.2 Control-Logic Injection Attacks

Control-logic injection attacks represent another critical category of threats to

industrial control systems. In these assaults, the attacker downloads malicious control

logic to the PLC, potentially disrupting the PLC operation or causing system damage.

Stuxnet [9] is a notorious example of control logic injection attacks. In Stuxnet, the

attacker first compromises the Siemens SIMATIC STEP 7 software and then targets

the S7-300 PLC. The attacker downloads a malicious control logic to the PLC that

periodically alters the motor speed of centrifuges from 1410 Hz to 1064 Hz, causing

physical damage to the centrifuge. Other examples of control logic injection attacks

are as follows.

57

Kalle et al. [29] present CLIK, a control logic infection attack, consisting of four

phases. First, it compromises PLC security measures and pilfers the control logic from

it. Then, it decompiles the stolen binary of the control logic to inject malicious logic,

followed by transferring the infected binary back to the PLC. Finally, it obscures the

malicious logic written into the PLC from the engineering software by employing a

virtual PLC. This virtual PLC initially captures the network traffic of the original

logic, then sends this network traffic to the engineering software when it attempts to

read the control logic written inside the PLC.

Yoo et al. [24] present two control logic injection attacks, namely 1) data exe-

cution and 2) fragmentation and noise padding. In the data execution attack, the

attacker exploits the PLC’s lack of data execution prevention (DEP) enforcement,

transferring the attacker’s control logic to the data blocks of the PLC. The attacker

then alters the PLC’s system control flow to execute the logic located in data blocks.

The fragmentation and noise padding attack bypasses deep packet inspection by send-

ing write requests containing the attacker’s control logic. Each write request contains

one byte of the control logic, while the rest of the packet contains noise. For every

subsequent write request, the attacker tries to overwrite the PLC memory region

previously filled with noise due to the prior request.

Govil et al. [26] introduced a malware written in ladder logic called “ladder logic

bomb“ that an attacker can insert into the existing control logic of a PLC. These

logic bombs are challenging to detect by a control engineer manually verifying the

control logic running on the PLC. These bombs can be activated via trigger signals

to cause disruption or can persistently damage physical operations over time.

58

4.3 Problem Statement and Challenges

4.3.1 Problem Statement

Given a network traffic dump of malicious control logic transferred over the

network to a target PLC, our aim is to devise a fully-automated forensic solution

that can recover the binary control logic from the network dump and convert it into

a human-readable form for forensic analysis.

4.3.2 Challenges in Control-logic Forensics

There are several challenges in achieving our stated goal of control logic forensics

due to the proprietary nature of control logic formats and ICS protocols.

• Binary control-logic does not have a standard open format, like Linux ELF, and

exists in a vendor-specific proprietary format.

• Engineering software typically supports one or multiple languages defined by the

IEC 61131-3 standard. For instance, RsLogix only supports ladder logic, while

SoMachine-Basic supports both ladder logic and instruction list. The binary

control-logic must be transformed into its respective high-level language.

• Proprietary ICS protocols are employed to transfer a control-logic to a PLC from

engineering software. Their specifications are not publicly available. If an open

protocol is used, it encapsulates a proprietary layer. For instance, the Modicon-

M221 PLC and SoMachine-Basic use the open Modbus protocol. However, its

data field further contains proprietary fields such as the control-logic address in

the PLC memory, function code, and control logic content.

59

4.4 Forensic Analysis of Attacks Using Virtual PLC Platform

In order to forensically analyze network-based cyber attacks on PLCs, we propose

a solution leveraging a virtual PLC platform. The aim is to replay the captured

communication between the attacker and the target PLC during the attack, extract

the binary control logic, and convert it into a human-readable format. As engineering

software typically has a built-in decompiler for converting binary control logic into a

readable form, it forms a crucial part of this solution. Our proposed process begins

by initializing a virtual PLC on the virtual PLC platform (VPP), followed by feeding

it with the network traffic dump captured during the attack. Once this setup is

ready, we connect this virtual PLC with the engineering software. Using the upload

function of the engineering software, we retrieve the control logic that was run on the

PLC. This extracted control logic can then be forensically analyzed to understand

the specifics of the attack and devise countermeasures.

4.4.1 Forensic Analysis of Denial of Engineering Operations Attacks

4.4.1.1 DEO I

Attack Execution: The man-in-the-middle attack was executed using ARP

poisoning through Ettercap. The targeted program for this attack was designed to

control a traffic light system, comprising of three timers, each assigned to a different

signal light: red, orange, and green. The main aim of the attack was to modify the

green light timing. The timer instruction is made up of three parameters, namely,

base, preset, and accumulated, with the preset value determining the duration. There-

fore, to accomplish this goal, we altered the preset value from 20 to 80 during the

program’s download to the PLC (MicroLogix 1400) by the Control engineer using a

custom-built Ettercap filter. Consequently, the green light now remains ON for 80

60

Fig. 13. Control logic from PLC to Attacker

seconds instead of 20. Similarly, when the control engineer uploads the ladder logic

program from the PLC, we revert the preset value back to 20, leaving the control engi-

neer to see only the original program on the engineering software. Thus, unbeknownst

to the Control engineer, the PLC executes the infected ladder logic.

Forensic Analysis: In order to investigate the DEO attack, we employ a

virtual PLC to restore both the original and manipulated instances of the control logic

obtained from a network traffic capture, i.e., one instance between the engineering

software and the attacker, and the other between the attacker and the PLC. We

separate the network traffic based on MAC addresses and subsequently provide these

network dumps to the virtual PLC in the form of discrete pcap files. Next, we

establish a connection with the virtual PLC using RSLogix software and utilize the

upload function to retrieve the control logic. Figures 13 and 14 exhibit the recovered

instances of the control logic, where one reflects the original logic and the other reveals

the logic manipulated by the attacker, showcasing the alteration of the timer’s preset

value from 20 to 80.

4.4.1.2 DEO II

Attack Execution: In a manner consistent with the first attack, the assailant

employs ARP poisoning (via Ettercap) to instigate a man-in-the-middle attack. The

assault takes place when a control engineer attempts to upload the code from a

61

Fig. 14. Control logic from Attacker to Engineering Workstation

target PLC, the attacker intercepts this communication, and substitutes an authentic

instruction with a dysfunctional one. Figure 15(b) and Figure 15(c) delineate the

original and distorted messages respectively.

Forensic Analysis: Our examination of the DEO attack incorporates the use

of MAC addresses to differentiate the two instances of the control logic, followed

by the employment of the virtual PLC to endeavour a recovery of the control logic.

To discern the deformed control logic packet within the communication between the

engineering software and the attacker, we initiate the upload function. However,

the altered packet interferes with the engineering software, incapacitating it from

further communication with the virtual PLC. The virtual PLC identifies the packet

that triggered the disruption, since no subsequent communication is feasible after the

transmission of this packet. Figure 15 illustrates the response message from both

benign and manipulated control logic. The virtual PLC identifies Figure 15(c).

To recover the second (malicious) instance of the control logic between the at-

tacker and the compromised PLC, the virtual PLC invokes the upload function once

more and successfully transmits the control logic to the engineering software. This

results in the recovery of the logic back into high-level source code.

62

(a) Request message from the engineering software

(b) Response message from PLC to attacker

(c) Distorted response from attacker to Engineering software

Fig. 15. Request and response packets that cause the decompiler to crash

63

4.4.2 Forensic Analysis of Control-Logic Injection Attacks

Attack Execution: In control-logic injection attacks, the attacker’s objective is

to inject malicious control logic into the PLC. This can be accomplished in two ways.

First, if the attacker has access to the target PLC’s IP address and port number, and

possesses the capability to generate a malicious control logic binary (as demonstrated

in [29, 24, 26]), they can directly connect with the target PLC and overwrite its

memory with the malicious control-logic binary. Secondly, the attacker could com-

promise an engineering workstation (a computer running engineering software), then

utilize the present engineering software to author the malicious control-logic, locate

the target PLC, and download the harmful control-logic onto it.

Forensic Analysis: Regardless of the method employed by the attacker to ex-

ecute the control logic injection attack, if the network traffic between the targeted

PLC and the attacker has been captured, it will contain evidence of the malicious

control logic transfer. Therefore, to retrieve the malicious control-logic from the net-

work traffic dump, a forensic analyst can utilize the virtual PLC platform. Similar to

DEO forensics, the analyst can present the forensic artifact (pcap file) to the virtual

PLC and then connect with the virtual PLC using the engineering software. The ana-

lyst can then leverage the upload functionality of the engineering software to retrieve

the control-logic from the network dump. Section 3.5.2.4 confirms that the virtual

PLC can upload the control-logic present in the download network stream with 100%

transfer accuracy.

4.4.3 Conclusion

In this chapter, we have provided an insight into the persistent threats that

Programmable Logic Controllers (PLCs) are subjected to, in the form of DEO and

64

control-logic injection attacks. As part of this exploration, we discussed the execution

of these attacks and underscored the difficulties that researchers and forensic analysts

face in performing forensic analyses of these network-based attacks.

To help overcome these challenges, we proposed the use of a Virtual PLC Plat-

form (VPP) as a potential solution. The VPPenables an analyst to analyze network

traffic dumps, which often contain vital information about the attacks, and thereby

aids in the investigation of PLC attacks. The VPPoffers the ability to replicate the

targeted PLC’s behavior, hence allowing for the recreation and study of the attacks.

Furthermore, we demonstrated the application of VPPin the forensic analysis of

DEO and control-logic injection attacks, by delineating its role in extracting and

reconstructing the manipulated control logic from network traffic captures.

The analysis showcased in this chapter confirms that the Virtual PLC Plat-

form can be instrumental in conducting forensic analyses of network-based attacks

on PLCs. As such, the VPPemerges as a powerful and promising tool in the realm

of cybersecurity, providing an effective way to dissect, understand, and ultimately

mitigate threats to PLCs in an industrial control system environment.

65

CHAPTER 5

PREE: HEURISTIC BUILDER FOR REVERSE ENGINEERING OF

NETWORK PROTOCOLS IN INDUSTRIAL CONTROL SYSTEMS

This chapter introduces the third pillar of my research, focusing on the reverse en-

gineering of proprietary protocols used in Industrial Control Systems (ICS). These

protocols are instrumental in remote operations of ICS, such as monitoring, control-

ling, and configuring communication with the control center.

The ability to reverse engineer these protocols paves the way for improved digital

forensics techniques in investigating ICS attacks. However, existing methods often

fall short due to the complexity and specificities of these protocols.

In response to this challenge, I developed PREE (Protocol Reverse Engineering

Engine), a heuristic builder. PREE leverages knowledge of one ICS protocol to aid

in reverse engineering other proprietary ICS protocols. This hypothesis was tested

across six ICS protocols using five PLCs from four vendors.

The results demonstrate PREE’s efficacy in identifying shared fields across vari-

ous protocols, surpassing existing reverse engineering tools in terms of accuracy and

consistency. Furthermore, PREE proves its potential in vulnerability analysis and in

investigating various attacks, which will be elaborated further in this chapter.

5.1 Introduction

A Programmable Logic Controller (PLC) is a critical component of Industrial

Control Systems (ICS) [30, 22]. These devices are placed at field sites to control

physical processes and send their current state to the control center using proprietary

66

protocols. However, their critical nature makes them a target for attackers over

networks to disrupt physical processes [31, 32, 14, 10]. Investigating such attacks

is challenging due to the need for an appropriate forensic method to analyze the

proprietary protocols used in PLC communication [33, 34, 35].

Protocol knowledge is valuable for security applications such as fuzzing [36, 37,

38], intrusion detection [39, 40, 41], malware injection [31, 42, 29, 43, 44], vulnerability

discover [14, 10] and forensics [45, 46, 28, 21]. Since protocols are proprietary, network

protocol reverse engineering is typically used to uncover the format and semantics of

protocol messages. Existing methods include tedious manual analysis, complex binary

analysis [47, 48, 49], or pre-installed capabilities for network traffic analysis [50, 51,

52, 53, 54].

In manual network traffic forensics, the user can compare messages within or

across sessions to identify protocol field positions and guess their meanings. Although

this is a common approach in security, it faces challenges such as large data volumes,

changing control logic message fields, unreadable binary messages, context-specific

fields affecting meaning, extracting client-server sessions from network dumps [47],

etc. With Industry 4.0, manual semantic forensics is no longer feasible due to the

growing connectivity of heterogeneous PLC networks from different vendors, making

it difficult for experts to learn all protocols.

These challenges have driven the forensic community to develop automated pro-

tocol reverse engineering tools in two directions: Binary (taint) Analysis and Network

Trace Analysis. In Binary Analysis, the reverse engineering tool inputs a message to

an available executable file of the program or protocol and monitors control flow,

called instructions, and memory usage to learn the protocol format and field seman-

tics. In Network Trace Analysis, network traffic between communicating entities is

captured and protocol fields and boundaries are identified through machine learning

67

and data analytics techniques like clustering and differential analysis [54].

ICS protocols support communication between PLCs and enable remote moni-

toring, control, and configuration by a control center. They inherently overlap and

share many standard fields such as function code and PLC memory address. ICS

protocols have a consistent usage pattern due to their repetitive control logic oper-

ations on PLCs. A pattern recognition tool called Ratcliff/Obershelp was used for

fuzzing in a study [38], demonstrating that ICS protocols’ consistency makes them

suitable for primitive protocol reverse engineering. Therefore, it is hypothesized that

knowledge of one ICS protocol can aid in identifying standard fields in others.

This chapter proposes a heuristic builder, the Protocol Reverse Engineering En-

gine (PREE)[55], to allow control engineers to use their ICS protocol knowledge to

create heuristics for protocol message fields. PREE applies these heuristics to net-

work traffic from an unknown ICS protocol to automatically discover the locations

and semantics of similar fields in the protocol messages. It analyzes network dumps

at message and session levels and provides data analysis functions to assist heuris-

tic building, such as analyzing message sections and comparing messages within and

across sessions.

We evaluated PREE on six ICS protocols (Modbus TCP, M221, ENIP, Omron-

FINS, CLICK, and PCCC) using five PLCs from four ICS vendors (Modicon M221,

Allen Bradley 1400 and 1100, Omron CP1L, and AutomationDirect CLICK Koyo).

We used three different techniques (rolling window, vertical window, and frequency

table) and created seven heuristics to discover similar fields in multiple protocols. The

heuristics effectively identified eight protocol fields, including function code, message

type, transmission length, PLC memory address and data size, and session ID.

Our contributions are summarized as follows:

68

• We present PREE, a heuristic builder for control engineers to use their domain

knowledge to reverse engineer ICS protocols.

• We develop eight heuristic algorithms to find eight distinct fields in ICS proto-

cols using three techniques

• We evaluate PREE on six real-world ICS protocols in five PLCs and demonstrate

its effectiveness in finding similar fields in different protocols.

• We compare PREE with the existing binary protocol reverse engineering tools

like NetPlier, Netzob, and Discoverer.

• We conduct a vulnerability study on CLICK Koyo PLC and develop SNORT

rules to investigate and discover several attacks on CLICK PLC to show the

application of PREE knowledge.

The remaining chapter is organized as follows: Section 5.2 discusses the back-

ground and related work. Section 5.3 presents the PREE architecture and the heuristic

algorithms. Section 5.4 and 5.5 presents the PREE implementation and evaluation.

Section 5.6 compares PREE with existing reverse engineering tools. Section 5.7 shows

offensive and defensive applications of PREE. Section 5.8 concludes the chapter and

presents future work.

5.2 Background and Related Work

There are many tools available for reverse engineering protocols to discover proto-

col message format or the state machine. Most of these tools fall under two techniques;

the first is the program analysis technique where protocol binaries are analyzed to

reverse engineer the protocol. The second is network trace analysis where differ-

ent network dumps are analyzed to extract protocol details. Our focus is on tools

69

developed using network trace analysis and is close to PREE.

Ladi et al. [50] presented a four-phase approach to reverse engineer binary pro-

tocols. They captured network traffic, constructed and optimized an acyclic graph

of the messages exchanged, and assigned pointers at the first byte of each packet to

monitor processing. The algorithm starts with a root node and adds nodes for differ-

ent fields as it moves the pointers of all packets. They developed some heuristics to

identify constant bytes, length fields, counters, enumerated types, and highly variable

bytes. The approach was evaluated on Modbus and MQTT protocols.

Kim et al. [51] proposed a 4-step method for reverse engineering the Mod-

bus/TCP protocol and creating an intrusion detection system. They used 9 tu-

ples to group similar messages, then applied multiple sequence alignment to catego-

rize bytes into constant, categorical, and variable categories. Next, they identified

header/payload boundaries through local sequence alignment and inferred payload

fields by categorizing bytes and analyzing their behavior. The result was a successful

reverse engineering of the Modbus/TCP protocol and an intrusion detection system.

Wang et al. [52] proposed an approach to find feature words in unknown protocols

using V-grams and XGBoost. Binary messages were converted to hexadecimal data,

grouped by length, and aligned using PMSA. V-grams were generated and feature

words were extracted and ranked using XGBoost. They evaluated their approach

based on the S7 protocol.

Shim et al. [53] proposed a six-stage model for identifying message formats in

ICS protocols. They captured communication between PLC and engineering software,

then grouped messages based on size and refined groups with K-Means, UPGMA, and

mean shift clustering. Then they used a contiguous sequence pattern (CSP) algorithm

to extract static/dynamic fields and generated message formats. The approach was

evaluated on Modbus/TCP, ENIP, and FTP protocols.

70

Wu et al. [54] presented an HMM-based approach for identifying ICS message

formats. They tokenized application layer data into two categories: text (printable

bytes) and binary (non-printable) using ASCII encoding. Consecutive printable bytes

form one text token and non-printable bytes as a binary token. They then grouped

messages with similar token patterns into clusters and inferred different message for-

mats using an HMM-based sequence alignment algorithm. Their approach was eval-

uated on Modbus/TCP and IEC 61850 protocols.

5.3 Overview of PREE Architecture

PLC Ethernet

Data Pre-processing
Session Extraction
Message Pairing
Message Grouping

Data Analytics
Message level

Heuristics Builder

∙ Common
∙ Fixed
∙ Variable

Session level

Fields &
Semantics

∙ Offset
∙ Size

∙ Meaning

Fig. 16. Protocol Reverse Engineering Engine (PREE) model

PREE helps users develop and implement heuristics by using network dumps. Fig-

ure 16 illustrates the bottom-up overview of PREE. It has a three-layer model: a data

pre-processing layer, where network dumps are organized into data structures; a data

analytics layer, offering analytics functions for the session and message-level analysis;

and a heuristic builder where the user can develop and execute their heuristics for

71

protocol reverse engineering. PREE works similarly to MySQL. To reverse engineer

a protocol, the user provides network dumps with targeted protocol and metadata

(e.g. PLC and engineering workstation IPs and ports) to PREE. After processing

the dump, the user can use PREE’s analytics functions to write heuristics, similar to

MySQL queries.

5.3.1 Data Pre-Processing

PREE starts with data pre-processing. This involves extracting client-server ses-

sions, making request-response message pairs, and grouping messages.

Session Extraction: In a network dump, multiple client-server sessions may exist.

To analyze them, we must first separate these sessions. PLCs in ICS environments

have fixed ports, such as Allen-Bradley MicroLogix 1100 and 1400 using port 44818

and Modicon M221 using port 502. However, the client-side port, used by the en-

gineering software, is often machine-dependent and changes. PREE identifies and

separates different sessions by using a four-tuple: source IP, source port, destination

IP, and destination port.

Message Pairing: After separating messages from different sessions, the next step

is to pair request and response messages and arrange them in order of exchange. This

pairing and maintaining the sequence helps identify common fields in request and

response messages and fields that show a consistent change along the session.

Message Grouping: Grouping similar messages together is important in ICS proto-

cols that have more than one message format. This helps the user develop heuristics

for different groups and discover different message formats in network dumps. Group-

ing can be based on message payload length or total size.

72

Table 11. Summary of PREE data analytics functionalities

Function Description Type

sim msg Find similarity between two messages Message-Level

find msg
Search the given sequence of bytes in

messages
Message-Level

diff msg Find difference between tow messages Message-Level

h move
Give all possible substrings and their

indices in a message
Message-Level

window gen
Generates substrings inside a window

given message, window size and increment
Message-level

longestSubstringFinder
Find the longest common subsequence

of two messages
Session-Level

v move
Gives array of substring inside the given

window for all messages
Session-Level

find feq
Makes frequency table containing frequency

of each byte at each index in the pcap file
Session-Level

freq match
Find Messages that have bytes with

frequency >given threshold
Session-Level

freq change
Find indices in messages with frequency

change lower than given threshold
Session-Level

73

5.3.2 Data Analytics

PREE’s data analytics layer offers useful functions for analyzing network dumps

and discovering protocol fields. Table 11 lists the available functions, split into two

categories: message-level and session-level analysis.

Message-Level Analysis: During our research, we found that certain protocol

fields, such as the “Length field“ and “Checksum field“, can be identified using the

information within the message. The values in the Length and Checksum fields

represent the actual length and checksum of a specific section of the message. To aid

users in discovering these protocol fields, PREE offers several message-level functions,

such as “h move” and “window gen” that can be used to identify correlations between

different sections of a message.

Session-Level Analysis: The second category focuses on protocol fields that change

or show a pattern throughout a session, e.g., the “Transaction ID” present in many

ICS protocols increases with every new message in the session. PREE provides the user

with several functionalities, such as comparing bytes at the same index in different

messages, finding all the values seen at a fixed location in all the messages, etc to

perform the session-level analysis.

5.3.3 Heuristic Building

We observe that the common fields in ICS protocols can be divided into three

categories based on their behavior during communication. Figure 20 illustrates the

classification of different fields in the Modicon M221 message into one of these cate-

gories.

Configuration Fields: The fields depend on the ICS environment and can be config-

ured by using engineering software. Their values typically remain constant throughout

74

the communication session. An example of a configuration field is “PLC ID“.

Fixed Fields: The second category consists of fields with constant values across

all messages and sessions. Though it’s challenging to gather semantic information

from these fields through differential analysis, their patterns can aid in identifying

proprietary protocols. Thus, we label them “Protocol Identifiers”.

Variable Fields: The third category includes fields with values in different messages

across sessions. For instance, the length, checksum, function code, etc. change per

message, while the session ID changes between sessions.

Finding Configuration Fields: No heuristics are required as the values of “Con-

figuration Fields“ are known to the user. They can be located in messages using the

“find msg“ function of PREE, which takes the target sequence of bytes (configuration

field value) and returns its location or index in all messages of a session if found.

Finding Fixed Fields: Like “Configuration Fields“, no heuristics are required to

locate “Fixed Fields“. Users can use the “find feq“ function to generate a frequency

table showing the frequency of values at each index in all messages of the session.

Fixed fields can be found where the frequency is 100%, meaning the value stays the

same.

5.3.4 Heuristics for Variable Fields

Finding the location and meaning of “Variable fields” is difficult because the

variance depends on the field’s nature. For example, the “Transaction ID” in a

message increases over time, the “Length” and “CRC” fields depend on the payload,

and the “Session ID” is initiated by the PLC or engineering software. To handle these

variations, we used three techniques and created eight heuristics in total.

Rolling window: In the Rolling Window heuristic, PREE employs a sliding window

of varying sizes (1,2,...,n bytes) over the message and applies the user-defined function

75

(which could be designed to find the length, checksum, etc) to all substrings of the

messages. If the output of the function matches the value within the window, the

location is labeled as a potential field. To minimize false positives, only potential

fields that consistently appear across similar messages are selected. Figure 17 shows

the implementation of this technique in PREE. Using this technique we developed and

executed two heuristics to find the length and checksum fields.

• Length field: If the user provides the function f(x) that calculates the length

of the payload, the value inside any window that matches the output of f(x),

the current location of the window can be marked as a length field.

• Checksum field: Similarly, if the user has developed a potential checksum

function, he can use the rolling window technique to identify the the location

of checksum field.

Vertical Window: The value of some fields changes in a fixed pattern throughout a

session. This can be detected using the vertical window approach (Figure 18). Using

a user-defined function “f(x)”, PREE moves a window of varying sizes overall messages

in a session. For each consecutive message pair, i.e y and y+1, it checks if f(y) =

y+1. If this condition is true for all message pairs, the current window location can

be labeled a potential protocol field based on f(x). Using this technique we developed

two heuristics to find the Transaction ID and PLC Memory Address fields.

• Transaction ID: Transaction ID in a protocol increases constantly with each

new message. If a user defines f(x) to add a fixed number to x, the sliding

window can represent a potential “Transaction ID”.

• PLC Memory Address: Uploading/downloading control logic involves send-

ing a series of messages with PLCmemory address and data size to be read/written

76

i.e in consecutive messages, the address changes by the size of data written/read.

To identify the “PLC Memory Address”, the vertical window can use f(x) to

add the current memory address and data size.

Frequency table: The frequency table is useful in identifying variable fields in

messages that don’t have a specific pattern and depend on software or PLC, such

as “Function Codes” and “Session ID”. The frequency table feature of PREE can be

used to locate these fields in message headers by creating a table of all messages and

storing the frequency and values of each byte at each index in a session. This enables

the development of various heuristics to find protocol fields.

• Session ID: The Session ID is established in the initial messages between PLC

and software and stays constant. To find it, the frequency table can be queried

for indices with limited changes and these bytes can be searched in the initial

messages. If found, these indices may indicate the “Session ID” in the protocol.

• Function Code: The function code is a field with a limited set of codes used

by software to send requests to the PLC. If the request is accepted, the PLC

replies with a success code. If not, a failure code is sent. In a session with

no failures, the function code can be found by querying the frequency table

for indices with limited variance in request messages and constant values in

response messages. These indices may indicate the location of the “function

code” in the ICS protocol. .

• Message Type ID: The message type ID is a field that identifies the message

as a request or response. It has unique values in request messages and different

unique values in response messages. To find this field, separate frequency tables

for request and response messages can be created, then compare bytes with

100% frequency in each table.

77

5.4 Implementation

We developed PREE using Python and Scapy [56]. It is designed as a simple

and portable Python library, consisting of four main modules: data processing, data

analytics, storage, and query builder. To use PREE, network dumps in the form of

pcap files and metadata such as client and server machine IP addresses and port

numbers are required.

Data Processing: PREE receives pcap files and metadata (IP & port no.), extracts

sessions from the network dump, and identifies request and response messages. It

stores them as an ordered dictionary, where requests are keys and responses are

values. Multiple pcap files can be processed, creating dictionaries for each. Messages

with varying lengths are grouped by length for analysis.

Data Analytics: The data analytics module provides the user with different func-

tionalities to analyze the network dumps and find various relations, patterns, and

trends across different messages. The details of functions provided by the data ana-

lytics module are in Table 11.

Heuristics Builder: The Heuristics Builder allows for interaction between the user

and the PREE. The user can download the PREE and use it either within their pro-

grams or through a Python shell. With the help of various functions, the user can

process pcap files and make queries to gather information necessary for creating and

implementing heuristics.

Storage: The storage module offers various functions to store intermediate results

and final protocol message formats, as one protocol field may lead to others.

78

5.5 Evaluation

5.5.1 Data Collection

For evaluating PREE and our heuristic algorithms, we analyzed six widely-used

ICS protocols such as Modbus, EtherNet/IP, etc [57, 58]. We generated network

dumps by connecting to different PLCs using their engineering software and capturing

network communication using Wireshark. To ensure diversity and comprehensive

coverage of message formats, we performed various actions such as transferring control

logic between PLC and engineering software, changing PLC mode, etc.

0e 54 00 00 00 1a 01 ...

0e 54 00 00 00 1a 01 ...

0e 54 00 00 00 1a 01 ...

All
substrings
(𝑥) in Msg

If (𝑓(𝑥)==𝑤)

Verifier

(𝑤, 𝑥)

Possible
Protocol

fields

Window
Values (𝑤)

0e 54
54 00
00 00

…
Messages

Fig. 17. Rolling window approach to find message-level fields

0e 4d 00 00 00 05 01 ...

0e 4e 00 00 00 04 01 ...

0e 4f 00 00 00 28 01 ...

All
substrings
(𝑥) in Msg

∀ ∗∈ 𝑤
If (𝑥 + 1 − 𝑥 == ∆)

Verifier

(𝑤)

Possible
Protocol

fields

Window
Values (𝑤)

0e 4d
0e 4e
0e 4f

…

Messages

Fig. 18. Vertical window approach to find session-level fields

79

5.5.2 Evaluation Metrics

Several studies have manually reverse-engineered some of the protocols evaluated

in this paper, identifying the location and meaning of certain protocol fields for use in

offensive or defensive applications. For the purposes of this paper, we consider the es-

tablished location and meaning information for each protocol’s fields as the ground

truth. With the ground truth defined, we evaluated PREE using three metrics as

shown in Figure 19.

Coverage evaluates the percentage of messages covered by PREE as protocol fields

and is calculated as the ratio of bytes labeled by PREE to the total bytes in the mes-

sage.

Conciseness measures the stability of how PREE identified the protocol fields com-

pared to the ground truth and is calculated as the ratio of fields extracted by PREE

to the total number of fields in the ground truth.

Perfection evaluates the quality of how we perfectly extracted out of the existing

ground truth fields. It is the same as having true-positive as a numerator but divided

by the total number of ground truth fields.

True-positive
Extracted (covered)

Fields

Perfection Conciseness

Coverage

Covered Payload
in Bytes

Ground
Truth Fields

Extracted
Fields

Fig. 19. Three metrics used for evaluating PREE

80

Table 12. Common fields in different ICS protocols

Semantic Modbus
Modbus

M221
ENIP PCCC CLICK

Omron

FINS
Field Type

PLC ID ✓ Configuration

Transaction ✓ ✓ ✓ ✓ ✓ Variable

Session ID ✓ ✓ Variable

Message Type ID ✓ ✓ ✓ ✓ Variable

Message Length ✓ ✓ ✓ ✓ ✓ ✓ Variable

Function Code ✓ ✓ ✓ ✓ ✓ Variable

PLC Memory Data

Size

✓ ✓ ✓ ✓ ✓ Variable

PLC Memory Ad-

dress

✓ ✓ ✓ ✓ ✓ Variable

Protocol Identifiers ✓ ✓ ✓ ✓ ✓ ✓ Fixed

Conciseness = # of extracted ground truth fields
of extracted fields

Coverage = # of labeled bytes
of extracted bytes

Perfection = # of extracted ground truth fields
of total ground truth fields

5.5.3 Evaluation Methodology

Table 12 shows that some fields are common across ICS protocols. After collect-

ing network dumps from multiple protocols, we applied various heuristic algorithms

created with PREE to each protocol, to determine the location and meaning of these

fields. To assess conciseness, perfection, and coverage, We compared our results with

ground truth from previous ICS protocol reverse engineering studies.

81

5.5.4 Modbus

In our experiments, we applied different heuristic algorithms developed with PREE

to identify fields listed in Table 12 in the Modbus protocol. Using the rolling window

heuristic, we found the “Length field” is 2 bytes located at bytes 5-6th, representing

the length of the region from byte 6 to the end of the message (payload). The “Trans-

action ID” was identified using the vertical window heuristic and was found to be two

bytes, represented by the first two bytes of the message, and incrementing by one

with each new message. Finally, using a frequency table with 100% frequency (bytes

that had the same value in all the messages), we identified the Protocol Identifiers.

As shown in Figure 20, PREE was able to achieve 100% coverage and identified 4 fields

in the Modbus message. Table 13 compares the location and semantics of fields iden-

tified by PREE and the ground truth. PREE was able to achieve 100% conciseness and

perfection. Our results align with the results of previous manual reverse engineering

studies on Modbus protocol (ground truth) [21, 29].

Table 13. Comparison of PREE and ground truth in Modbus

Field
PREE

Location

Ground

Truth

Location

PREE

Semantic

Ground

Truth

Semantic

#PREE

types

Ground

Truth

types

1 1-2 1-2
Transaction

ID

Transaction

ID
1 1

2 5-6 5-6 Length Length 1 1

3 3-4 3-4 Protocol ID Protocol ID 1 1

4 7 7 Protocol ID Protocol ID 1 1

82

5.5.5 UMAS

We used the frequency table heuristic to identify the first byte as a “Protocol

Identifier” in the Modbus payload. We found a 2-byte “Length field” at bytes 7-8 that

represents the remaining message length. We identified the M221 function code as the

3rd byte, which changed in request messages and was constant in response messages.

The “PLC Memory Address” was found at bytes 4-5. Figure 21 shows that PREE was

able to achieve 100 % coverage in request and 98% coverage in response messages. We

found 5 fields in the UMAS message. Furthermore, as shown in Table 14, the fields

and semantics identified by PREE also matched with the manual forensic studies [42,

28, 29] and achieved 100% conciseness and 80% perfection.

5.5.6 ENIP

ENIP is widely used by Allen-Bradley PLCs, such as the MicroLogix 1400 and

MicroLogix 1100, for communication with RSLogix engineering software. For evalua-

tion, we captured the communication between a MicroLogix 1400 PLC and RSLogix

during different engineering operations. Using the rolling window technique we found

three 2-byte “length fields” at offsets 3-4, 35-36, and 54-55, indicating multiple data

Protocol
Identifier

Protocol
Identifier LengthTransaction ID

PayloadConfiguration Fields

Variable Fields

Fixed Fields

Fig. 20. Fields identified in the Modbus message

83

Table 14. Comparison of PREE and ground truth in UMAS

Field
PREE

Location

Ground

Truth

Location

PREE

Semantic

Ground

Truth

Semantic

#PREE

types

Ground

Truth

types

1 1 1 Protocol ID Protocol ID 1 1

2 3 3
Function

Code

Function

Code
1 1

3 4-5 4-5
PLC Memory

Address

PLC Memory

Address
1 1

4 8-9 8-9 Length
PLC Memory

Data Size
1 1

Protocol
Identifier

Variable
Field

M221
FNC

Length

Length
Region

PLC
Memory
Address

Modbus
Header

Fig. 21. Fields identified in UMAS request messages

84

layers. A 100% frequency threshold in the frequency table identified multiple proto-

col IDs, and a 90% frequency revealed a 4-byte session ID at bytes 5-8. The vertical

window approach showed a constant 2-byte “Transaction ID” at bytes 13-14, incre-

menting by 2 in each message. A 6-byte session field was also found but varied in

different sessions. Furthermore, frequency table heuristics identified an additional

field: “Message Type ID” at bytes 29-30 with values “0500” in requests and “0004”

in responses. Finally, we found the location of IP address of the PLC at 37-50th byte

by directly searching it in the message as Field 12 in Table 15. As shown in Figure 22

we could identify 14 fields in the ENIP message and achieve a 98% coverage. Table 15

shows that not only the location and semantics discovered by PREE matched with the

existing manual reverse engineering efforts [42, 28, 29], it was also able to identify

an extra field PLC IP Address (configuration field) that was not discovered (hence

marked NA, not applicable) in the previous works. PREE achieved 100% conciseness

and perfection.

Protocol
Identifier

Protocol
Identifier LengthTransaction

ID

Session
ID

Session
Field

Protocol
Identifier

Message
Type ID

Protocol
Identifier

Length Length

Protocol
Identifier

PLC IP
Address

Fig. 22. Fields identified in ENIP request Message

85

Table 15. Comparison of PREE and ground truth in ENIP

Field
PREE

Location

Ground

Truth

Location

PREE

Semantic

Ground

Truth

Semantic

#PREE

types

Ground

Truth

types

1 1-2 1 Protocol ID Protocol ID 1 1

2 3-4 3 Length NA 1 1

3 5-8 4-5
Session

ID
NA 1 1

4 9-12 8-9 Protocol ID
PLC Memory

Data Size
1 1

5 13-14 13-14
Transaction

ID

Transaction

ID
1 1

6 15-20 15-20
Session

Field
Session Field 1 1

7 21-28 21-28 Protocol ID Protocol ID 1 1

8 29-30 29-30
Message

Type

Message

Type
2 2

9 31-32 31-32 Protocol ID Protocol ID 1 1

10 34 34 Protocol ID Protocol ID 1 1

11 35-36 35-36 Length Length 1 1

12 37-50 NA PLC IP NA 1 1

13 52-53 52-53 Protocol ID Protocol ID 1 1

14 54-55 54-55 Length Length 1 1

86

5.5.7 PCCC

PCCC is a proprietary protocol used by many Allen-Bradley PLCs. For Mi-

croLogix 1400 and 1100, PCCC messages are embedded in ENIP payloads. After

analyzing the ENIP protocol, we applied heuristic algorithms to find PCCC protocol

fields. Using the frequency table technique, we found the “Message Type ID” at

first and a protocol identifier at the 2nd byte. The “Message Type ID” remained

“0f” for all request messages and “4f“ for all response messages. We identified the

“Transaction ID” at the 3-4th byte in the PCCC message, which increments by 4

with each new message. Using rolling window heuristics, we identified the “Function

Code” at the 5th byte and the “PLC Memory Data Size“ at the 6th byte. As shown

in figure 23, we were able to identify 5 fields in the PCCC protocol and achieve 60%

coverage. Table 16 shows that the location and semantics of different fields match

with previous works works [46, 43] done on PCCC. Furthermore, we identified a one-

byte Protocol Id at 2nd byte that was not labeled in the previous work (NA). PREE

achieved 100% conciseness and 62.5% perfection for PCCC protocol.

Transaction
ID

ENIP Header

Protocol
Identifier

Message Type
IDFunction

Code

PLC Memory
Data Size

Fig. 23. Fields Identified in PCCC request Message

5.5.8 CLICK

AutomationDirect has developed its own application layer proprietary protocol

for communication between CLICK PLC and its engineering software. Using the

87

frequency table technique with 100% frequency, we were able to identify “Protocol

Identifiers”. We also found a variable field at the 12th byte that was the same in

all the request-response messages except one. We also detected a one-byte “length”

field at the 9th byte and the “PLC Memory Data Size” field using the rolling window

technique. The “Transaction ID”, a two-byte field, was found at the 5-6th byte using

the vertical window heuristic. Additionally, the Memory Address heuristic helped

us identify the “PLC Memory Address” field’s location (16-19th byte) and the read

and write function codes at the 13th and 14th bytes. As shown in Figure 24, we

identified 8 fields in the CLICK protocol, achieving 85% coverage in request messages.

PREE’s results matched the existing study on the CLICK protocol [14], achieving 100%

conciseness and perfection.

Table 16. Comparison of PREE and ground truth in PCCC

Field
PREE

Location

Ground

Truth

Location

PREE

Semantic

Ground

Truth

Semantic

#PREE

types

Ground

Truth

types

1 1 1
Message

ID

Message

ID
2 2

2 2 NA Protocol ID NA 1 NA

3 3-4 3-4
Transaction

ID

Transaction

ID
1 1

4 5 5
Function

code

Function

code
1 1

5 6 6 Length
PLC Memory

Data Size
1 1

88

Table 17. Comparison of PREE and ground truth in CLICK

Field
PREE

Location

Ground

Truth

Location

PREE

Semantic

Ground

Truth

Semantic

#PREE

types

Ground

Truth

types

1 1-4 1-4
Protocol

ID

Protocol

ID
1 1

2 5-6 5-6
Transaction

ID

Transaction

ID
1 1

3 9 9 Length Length 1 1

4 10-11 10-11
Protocol

ID

Protocol

ID
1 1

5 15 15
PLC Memory

Data Size

PLC Memory

Data Size
1 1

6 16-19 16-19
PLC Memory

Address

PLC Memory

Address
1 1

7 20 20 Length
PLC Memory

Data Size
1 1

Variable
Field

Protocol
IdentifierProtocol

Identifier

Length Transaction
ID

PLC Memory
Address

PLC Memory
Data Size

Read Function
Code

Fig. 24. Fields identified in CLICK PLC request message

89

5.5.9 OMRON FINS Protocol

The Omron FINS protocol is a proprietary protocol used by OMRON PLCs for

communication with engineering software. We used the OMRON CP1L PLC and

CX-Programmer in our experiments. Using the frequency table technique with a

100% threshold, we identified the “Protocol Identifier” and “Message Type ID” fields

in OMRON FINS network dumps. The two-byte “length field” was found at 7-8th

bytes using the rolling window technique. It indicates the number of bytes after it in

the message. The one-byte “Transaction ID” was discovered at the 26th byte with the

vertical window heuristic. It increases by one in new command messages and stays

constant in command-response messages. As shown in Figure 25 we identified 12 fields

and achieved 23% coverage. Table 18 show the details of the location and semantics

of different fields identified using PREE. As we did not find any ground truth for the

OMRON FINS protocol, the ground truth location and semantic columns show NA.

Similarly, we were not able to compute the conciseness and perfection as shown in

Table 19.

Protocol
Identifier

Length
Protocol
IdentifierProtocol

Identifier

Message
Type ID

Transaction
ID

Protocol
Identifier

Protocol
Identifier Message

Type ID
Protocol
Identifier

Message
Type ID

Fig. 25. Fields identified in OMRON FINS command message

90

Table 18. Comparison of PREE and ground truth in OMRON FINS

Field
PREE

Location

Ground

Truth

Location

PREE

Semantic

Ground

Truth

Semantic

#PREE

types

Ground

Truth

types

1 1-6 NA
Protocol

ID
NA 1 1

2 7-8 NA Length NA 1 1

3 9-16 NA Length NA 1 1

4 17 NA
Message

Type ID
NA 1 1

5 18 NA
Protocol

ID
NA 1 1

6 19 NA
Message

Type ID
NA 1 1

7 20 NA
Protocol

ID
NA 1 1

8 21 NA
Message

Type ID
NA 1 1

9 22-23 NA
Protocol

ID
NA 1 1

10 24 NA
Message Type

ID
NA 1 1

11 25 NA Protocol ID NA 1 1

12 26 NA Transaction ID NA 1 1

91

Table 19. Summary of fields identified by PREE

Results
Modbus

TCP

Modbus

M221
CLICK ENIP PCCC Omron FINS

Ground Truth Fields 4 5 6 13 8 15

PREE

Identified
4 4 6 14 5 13

Conciseness 100% 100% 100% 100% 100% -

Perfection 100% 80% 100% 100% 62.5% -

5.6 Comparison with Existing Tools

5.6.1 Comparison Metrics

In this section, we will compare the proposed PREE with other protocol reverse

engineering tools. There are five evaluation metrics: V-measure, homogeneity,

completeness, conciseness, and perfection [59]. The score of the V-measure v

can be computed from homogeneity h and completeness c as:

v = 2 · h · c
h+ c

(5.1)

h =
∑k

i # of elements in clusteri from single class∑k
i # of elements in cluster

c =
∑c

i # of elements in classi assigned to single class∑c
i # of elements in class

where k represents the number of clusters, and c represents the number of classes

(keywords).

Evaluation metrics such as h and c for probabilistic approaches indicate how

well the clustering results are classified into classes. Since PREE is not based on

probabilistic methods, it is considered that clustering has been successfully performed

if the semantics of the key fields are correctly identified. If the ground truth keyword,

92

in this case, function code (service code) is inferred, it has h and c score of 100%.

For instance, assuming a network using only two function codes, h decreases if the

network is classified as one without being able to distinguish between the two, and c

decreases if more than two are excessively classified.

5.6.2 Existing/comparison tools

NetPlier proposed by [60] is the most recent state-of-the-art automatic protocol

reverse engineering study and provides protocol reverse engineering with probabilistic

approaches based on Netzob [61] and MAFFT [62]. The main probabilistic approaches

based on NetPlier can be evaluated with homogeneity and completeness scores, which

indicate how well clustering contains one class (keyword) [59]. They also performed

a comparative analysis with the other protocol reverse engineering tools Netzob and

Discoverer [63].

5.6.3 Experiment methodology

For fairness, we compared the results of PREE and other tools with a Modbus

dataset known to have been used by NetPlier [64] as shown in Table 20. According

to [65], NetPlier collected this dataset through a network security monitoring tool

called Bro [66]and used this dataset for anomaly detection. Even though NetPlier ex-

tracted and evaluated 1000 messages from the dataset, the exact purification method

was not disclosed. We evaluate all of the Modbus packets in the dataset.

5.6.4 Comparison Results

As shown in Fig. 26, the proprietary protocols UMAS (embedded in Modbus)

and PCCC (embedded in ENIP) were compared using PREE and NetPlier. To compare

the two, additional development was done for NetPlier. A total of 64,525 Modbus

93

Table 20. Comparison of PREE with existing tools in Modbus

PREE NetPlier Netzob Discoverer

Homogeneity 100% 100% 73% 100%

Completeness 100% 100% 70% 55%

Conciseness 100% 70% 59% 4%

Perfection 100% 5% 8% 5%

(UMAS) packets were used for the evaluation and 16,601 for ENIP (PCCC). PREE

extracted function codes flawlessly in all four protocols. However, due to the embed-

ded proprietary protocols in Modbus and ENIP, packet lengths became more variable,

leading to a drop in NetPlier’s performance of over 30%. Nonetheless, NetPlier showed

better performance in ENIP (PCCC) than in Modbus (UMAS), and the completeness

and homogeneity varied depending on the protocol’s propensity.

NetPlier infers keyword candidates to cluster classes accurately. Function codes

are typically used as the key field to indicate the class, as is the case in most other

situations. However, in instances where a proprietary protocol is embedded in a

known protocol (e.g., UMAS in Modbus), there are two kinds of function code fields,

one in the known protocol and one in the proprietary protocol. As a result, even

if NetPlier correctly infers the function code in the known protocol (Modbus) as a

keyword, maintaining a homogeneity of 1.0, the completeness remains low because the

proprietary function code is the true classification. NetPlier, Netzob, and Discoverer

were unable to infer proprietary function fields such as Modbus (UMAS) and ENIP

(PCCC). This trend occurred due to two main reasons. Firstly, the probabilistic

approach is not appropriate for analyzing proprietary protocols with dual structures.

94

Secondly, entropy-based alignment performed by MAFFT does not handle proprietary

fields located within the payload effectively.

The performance of proprietary protocols, such as Modbus (UMAS) and ENIP

(PCCC), was inversely proportional to the number of internal function types. Al-

though performance tended to increase on a large scale as the number of packets

increased, it never exceeded a certain value. This is due to the proprietary function

field not being recognized as a possible keyword candidate based on entropy. It’s

worth noting that poor metrics were not solely caused by proprietary protocols. The

example packets’ usage patterns differed somewhat from the actual behavior of PLCs.

Fig. 26. Comparison of PREE with NetPlier on proprietary protocols (UMAS embed-

ded in Modbus and PCCC embedded in ENIP)

95

5.7 PREE Applications for Vulnerability Study and Forensic Analysis of

Different Attacks

5.7.1 PREE Application 1: Vulnerability Study on CLICK PLC

Network-based attacks on PLCs often require knowledge of proprietary proto-

cols. For example, reverse engineering was used to exploit PLC authentication in

Adeen et al.[14]. Kalle et al.[29] leveraged knowledge of the Modbus protocol for a

control logic injection attack on Schneider Electric’s Modicon M221. Syed et al.[10]

demonstrated a new type of attack that disrupts the physical process by targeting the

control engine (responsible for executing control logic). They identified messages for

starting/stopping the control engine of a PLC by analyzing network communication

between the PLC and software, then modified fields and replayed the messages to

stop the engine. We extended their work by conducting a control engine attack on

the CLICK PLC using protocol knowledge obtained through PREE.

Adversary Model: We assume the adversary is inside the ICS network and can

communicate with the target PLC, sniff its communication with engineering software,

initiate connections, and send malicious messages.

Experimental Setup: We used AutomationDirect’s CLICK Koyo PLC model C0-

10DD2E-D with firmware version 2.60. The engineering software was running on

Windows 10 in a virtual machine, and the attacker scripts ran on an Ubuntu 18.04

virtual machine, both in the same network.

Attack Implementation: We started by changing the mode of a PLC using the

engineering software, captured the network traffic, and analyzed the differences to

identify the messages responsible for switching the PLC from start to stop. Once

identified (Figure 27), we created a python script that modifies the message using the

protocol knowledge from PREE and sends it to the target PLC to change its operation

96

Variable
Field

PLC Mode Change Message

Protocol
Identifier

Protocol
Identifier

Length Transaction
ID

Mode Change
Function Code

Fig. 27. Message of a control engine attack on CLICK PLC, showing the function code

used to change the PLC mode

mode.

5.7.2 PREE Application II: Forensic Analysis of Different Attacks on

CLICK PLC Using SNORT

The communication between a PLC and the attacker, if captured during an

attack, can serve as a forensic artifact. A forensic investigator with knowledge of the

PLC protocol can use SNORT to analyze network dumps (pcap files) for evidence

of an attack. SNORT is a widely used IPS/IDS tool, and it is used in projects such

as [67]. It analyzes messages using user-defined rules and generates alerts for matching

packets.

Snort Rule for Detecting Control Engine Attack: To investigate if control

logic engine attacks happened on a CLICK PLC, we used PREE to analyze attack

messages and find fields in the CLICK protocol. Figure 28 shows the SNORT rules

we developed. While analyzing a network dump a SNORT rule raises an alert if it

finds a message containing the signature of a PLC mode change i.e“4b 4f 50 00” at

offset 0 and “07 00 4d 01 43 00” starting from offset 8. Our evaluation shows that

97

this rule effectively detects control engine attacks on a CLICK PLC.

Snort Rule for Control Logic Injection Attack: To detect control logic injection

attacks on the CLICK PLC, where an attacker tries to download malicious control

logic to the PLC, we need to identify the request message used for writing data

and its signature. We captured network communication while downloading a benign

control logic on the PLC and identified write request messages (those with the largest

size and larger than the corresponding response message). Using PREE, we extracted

protocol identifiers, length, and function code and developed a SNORT rule as shown

in Figure 28. The SNORT rule raises an alert when it detects a message with the

signature “4b 4f 50 00” at offset 0 and “0a 00 4d 01 65 05” starting from offset 8. In

this way, the forensic investigator can analyze the network dump to find evidence of

a control logic injection attack on the targeted PLC.

Snort Rule for Control Logic Theft Attack To detect control logic theft

attacks, where an attacker tries to read the logic on a PLC, we need to identify the

unique signature of read request messages. We captured the communication between

the PLC and engineering software during a control logic upload and found the read

request messages by looking for smaller requests compared to other requests and

smaller than their corresponding response. Then we used PREE to discover different

fields in these messages and developed the snort rule that raises an alert whenever it

detects a message in the network dump with the following signature; bytes “4b 4f 50

00” at offset 0, and “0a 00 4d 01 65 04” starting from offset 8. In this way, a forensic

investigator can discover if a control logic theft attack happened on the targeted PLC.

98

Snort Rule Template for Detecting Control Engine Attack

alert udp any any -> PLCIP 25425 (content:"|4b 4f 50 00|";offset:0;
depth:4; content:"|07 00 4d 01 43 00|"; offset:8;
depth:6; msg:“PLC Mode change attempted“)

Snort Rule Template for Detecting Control Logic Theft Attack

alert udp any any -> PLCIP 25425 (content:"|4b 4f 50 00|";offset:0;
depth:4; content:"|0a 00 4d 01 65 04|"; offset:8;
depth:6; msg:“Control Logic Read attempt“)

Snort Rule Template for Detecting Control Logic Injection Attack

alert udp any any -> PLCIP 25425 (content:"|4b 4f 50 00|";offset:0;
depth:4; content:"|0a 00 4d 01 65 05|"; offset:8;
depth:6; msg:“Control Logic write attempt“)

Fig. 28. Snort rules to detect different attacks on CLICK PLC

5.8 Conclusion

In industrial control systems, proprietary protocols are commonly used to estab-

lish communication between PLCs and their engineering software. The knowledge of

the location and meaning of various fields in these protocols can enhance the effective-

ness of existing security solutions, support the development of new tools, and aid the

forensic community in investigating network-based attacks on PLCs. Consequently,

we introduce a novel tool for reversing proprietary ICS protocols: the protocol reverse

engineering engine PREE.

Our observations revealed that many ICS protocols have similar characteristics

and share common fields due to operational requirements. This led us to propose

the hypothesis that knowledge of one ICS protocol can aid in reverse engineering

other proprietary protocols. In this chapter, we present PREE, a tool that helps users

develop heuristics for identifying fields in proprietary ICS protocols. To test our

99

hypothesis, we employed three techniques to develop seven heuristics, which were

applied to six different protocols (Modbus, UMAS, ENIP, PCCC, CLICK, OMRON

FINS). Our evaluation results indicate that PREE is able to identify several common

fields in these protocols, such as “Length”, “Transaction ID”, “Message Type ID”, etc.

Furthermore, we showed the practical application of protocol knowledge to investigate

3 different network-based attacks on CLICK PLC.

100

CHAPTER 6

ATTACKING IEC-61131 LOGIC ENGINE IN PROGRAMMABLE

LOGIC CONTROLLERS IN INDUSTRIAL CONTROL SYSTEMS

This chapter explores the fourth contribution of my research, introducing a new di-

mension to cyber-attacks on Programmable Logic Controllers (PLCs) in industrial

control systems (ICS) - the Control Engine Attack. Traditionally, most cyberattacks

have centered on injecting malicious control logic into a PLC, with the aim of sab-

otaging a physical process. However, we now shift focus to the control logic engine

of a PLC, the very core that runs the control logic, revealing its vulnerability to

cyberattacks.

This research demonstrates how a cyberattack can effectively disable a PLC’s

control logic engine by exploiting inherent features, such as program mode and en-

gine start/stop operations. Two novel case studies on Control Engine Attacks are

presented, utilizing real-world industrial PLCs. These include a sophisticated PLC

with security features and traditional PLCs devoid of security measures.

The insights gleaned from these case studies aim to enhance understanding within

the ICS research community and industry on attack vectors targeting the control logic

engine. By evaluating these attacks in the context of a power substation, a multi-floor

elevator, and a conveyor belt, this chapter underscores the real-world implications of

these cyberattacks, which can bring physical processes to a halt.

101

6.1 Introduction

Industrial control systems (ICS) monitor and control industrial physical and in-

frastructure processes such as power grids, nuclear plants, water treatment facilities,

and gas pipelines [68, 69, 2]. An ICS environment consists of a control center and

a field site. The control center includes ICS services such as the human-machine

interface (HMI) and engineering workstation, while the field sites contain the actual

physical processes monitored and controlled via sensors, actuators, and programmable

logic controllers (PLCs). PLCs are embedded devices that directly automate indus-

trial processes [14]. They run control logic programs written in IEC 61131 languages

such as instruction list, ladder diagram, and structured text, which define how a

physical process is controlled.

A PLC’s control logic is a common target of cyberattacks aimed at sabotaging

a physical process [70]. However, in existing literature, the focus of control logic

attacks is predominantly on injecting malicious control logic into a target PLC over

the network to disrupt or cause damage to the underlying physical process [71, 10,

21, 72, 29, 4, 8, 73, 22]. For instance, Stuxnet, a piece of ICS malware, targets

Siemens Step 7 engineering software and S7-300 PLCs in a nuclear plant facility to

inject malicious control logic [74].

This chapter introduces a new dimension of control logic attacks by targeting the

control engine (which runs the control logic) in a PLC. We demonstrate that a cy-

berattack can successfully disable an IEC-61131 control-logic engine, thereby halting

a physical process controlled by a target PLC by exploiting the PLC design features

such as program mode and starting/stopping engine. We develop two novel case stud-

ies on control logic engine attacks by utilizing the attacks from the MITRE ATT&CK

knowledge base such as denial of control (T0813), loss of availability (T0826), ma-

102

nipulation of control (T0831), unauthorized command message (T0855), and man

in the middle (T0830) [75]. We apply the MITRE ATT&CK to the logic engine

in four real-world PLCs used in industrial settings. The first case study covers the

Schweitzer Engineering Laboratory (SEL) Real-Time Automation Controller (SEL

RTAC 3505), which is equipped with security features such as device access control

and encrypted traffic. The second case study involves three traditional PLCs with no

security features: Schneider Electric’s Modicon M221, and Allen-Bradley’s Micrologix

1400 and 1100 PLCs. The case studies discuss the internals of the control logic en-

gine attacks, including proprietary PLC communication protocols, and aid the ICS

research community and industry in understanding the attack vectors on the control

logic engine.

We evaluate the effectiveness of the control engine attacks on a power substation,

a conveyor belt, and a 4-floor elevator to demonstrate their real-world impact. For

instance, a PLC controls the sorting of different types of objects on the conveyor belt

using sensors and an air solenoid. In the substation, a PLC opens a circuit breaker

when the voltmeter reports a voltage level higher than a given threshold. The control

engine attacks halt the conveyor belt and prevent the substation from controlling

high voltage. In the elevator, a user can select a floor both from inside and outside

the elevator as an input to a PLC. In response, the PLC moves the elevator to the

selected floor.

Our contributions are threefold:

• We introduce a new attack vector that targets an IEC-61131 control-logic engine

in a PLC to halt a physical process.

• We successfully utilize the MITRE ATT&CK knowledge base to develop and

demonstrate control engine attacks on four real-world PLCs.

103

S
en
th
iv
al

et
al
.

Y
o
o
et

al
.

G
ov
il
et

al
.

S
tu
x
n
et

K
al
le

et
al
.

M
cL

au
gh

li
n
et

al
.

G
ar
ci
a
et

al
.

S
ch
u
et
t
et

al
.

T
h
is
w
or
k

Firmware

Modification
x x

Malicious

Control Logic
x x x x x x

Control Engine

State
x

Table 21. The comparison of different attacks on PLCs.

• We evaluate the effectiveness of the control engine attacks on connected physical

processes, namely a power substation, a 4-floor elevator, and a conveyor belt to

demonstrate their real-world impact of halting a physical process.

6.2 Related Work

Existing control logic attacks in the literature either target a control logic code

running on a PLC (also referred to as control logic injection attacks [76, 77, 78]), or

compromise the PLC firmware to manipulate control logic execution [5].

Senthival et al. [4] present three types of denial of engineering operations (DEO)

attacks. In the first DEO attack, the attacker intercepts the network traffic between

the engineering workstation and a target PLC, replacing the original ladder diagram

104

program with an infected one and vice versa when a control-logic program is down-

loaded and uploaded, respectively. In the second DEO attack, a man-in-the-middle

attacker replaces part of the original ladder diagram program with noise when a

control logic program is uploaded, causing the engineering software to crash. The

third DEO attack also crashes the implementing software, but in this case, the at-

tacker remotely downloads an infected control logic to a PLC instead of performing

a man-in-the-middle attack.

Kalle et al. [29] present CLIK, a control logic infection attack, comprising four

phases. First, it compromises PLC security measures and steals the control logic from

it. Then, it decompiles the stolen binary of the control logic to inject the malicious

logic, followed by transferring the infected binary back to the PLC. Finally, it hides

the malicious logic written into the PLC from the engineering software by employing

a virtual PLC that captures the original logic’s network traffic and sends this network

traffic to the engineering software when it attempts to read the control logic written

inside the PLC.

Similar to CLIK, McLaughlin et al. present SABOT [79], a tool that first uploads

the targeted PLCs’ control logic bytecode and decompiles it into a logical model to

find a mapping between the devices connected to the PLC and variables within the

control logic. The attacker can then change this mapping arbitrarily and download

the control logic back to the PLC to cause damage to the plant. SABOT assumes

that the attacker has knowledge of ICS operations.

Yoo et al. [72] present two control logic injection attacks, namely 1) data exe-

cution and 2) fragmentation and noise padding. In the data execution attack, the

attacker exploits the fact that the PLCs do not enforce data execution prevention

(DEP) and transfers the attacker’s control logic to the data blocks of the PLC. The

attacker then changes the PLC’s system control flow to execute the logic located

105

in data blocks. The fragmentation and noise padding attack subverts deep packet

inspection by sending write requests with the attacker’s control logic. Each write

request contains one byte of the control logic while the rest of the packet includes

noise. For every subsequent write request, the attacker attempts to overwrite the

PLC memory region previously written with noise due to the previous request.

Govil et al. [26] presented malware written in ladder logic called ladder logic

bomb that an attacker can insert into the existing control logic of a PLC. These logic

bombs are hard to detect by a control engineer manually validating the control logic

running on the PLC. These bombs can either be activated via trigger signals to cause

disruption or can persistently damage the physical operations over time.

Garcia et al.[5] presented Harvey, a model-aware rootkit that sits in a PLC

firmware using JTAG (Joint Test Action Group)[33]. From the legitimate input data,

Harvey generates fake, real-looking input. The PLC processes this input according

to the control logic and generates output commands to actuators. Harvey blocks

this output at the firmware level and sends the malicious output generated by the

attacker’s code to the sensors. This abstraction helps Harvey deceive the control

engineer monitoring the HMI.

Schuett et al. [80] evaluated the possibility of modifying the PLC firmware to

execute remotely-triggered attacks. They first reverse-engineered the PLC framework

and added modifications. This modified firmware is repackaged and installed on

the PLC. Using this compromised firmware, the attacker can perform time-based or

remotely-triggered denial of service attacks on the PLC.

106

6.3 Attacking the Control Logic Engine

6.3.1 Adversary Model

We assume the adversary has access to the ICS network and can communicate

with the target controller to launch a control logic engine attack. The attacker could

use a real-world IT attack method (such as an infected USB stick or a vulnerable web

server) to infiltrate the ICS network and disable the controller from running the con-

trol logic. However, discussing IT attacks falls beyond the scope of this paper. While

within the ICS network, we also assume that the attacker possesses the following

capabilities:

• The ability to read the communication between a PLC and an engineering

workstation.

• The capability to drop or modify any message in the communication by posi-

tioning themselves as a man-in-the-middle.

• The ability to initiate a connection with a PLC to send malicious messages

remotely.

6.3.2 Overview of the Case Studies

We introduce two innovative case studies that explore IEC-61131 control logic

engine attacks on real-world PLCs used in industrial settings. A control logic engine

attack is defined as “an attack that disrupts or impairs the normal functioning of a

control logic engine.” The case studies examine cyberattacks that can halt a control-

logic engine from executing control logic. Our approach to conduct these studies

involves utilizing the MITRE ATT&CK [75] knowledge base on real-world PLCs to

target the control-logic engine. In particular, the studies deploy a subset of the

107

Table 22. Subsets of MITRE ATT&CK utilized on four PLCs in the case studies

PLC

Manipulation

of

Control

Loss

of

Availability

Denial

of

View

Denial

of

Control

Man

in the

Middle

Network

Sniffing

Unauthorized

Command

Message

SEL RTAC

3505
✓ ✓ ✓

Modicon

M221
✓ ✓ ✓ ✓ ✓

MicroLogix

1100
✓ ✓ ✓ ✓ ✓ ✓

MicroLogix

1400
✓ ✓ ✓ ✓ ✓ ✓

following attacks (along with their IDs) from the knowledge base to demonstrate the

control-logic engine attacks. Table 22 summarizes the attack subsets used from the

MITRE ATT&CK knowledge base to illustrate control logic engine attacks on the

PLCs.

• Manipulation of Control (T0831). The attacker manipulates physical process

control within the industrial environment.

• Loss of Availability (T0826). The attacker disrupts a component to prevent the

operator from delivering products or services.

• Denial of View (T0815). The attacker disrupts or prevents the operator from

viewing the status of an ICS environment.

• Denial of Control (T0813). The attacker temporarily prevents the operator

from interacting with process controls.

108

• Man in the Middle (T0830). An attacker within the ICS network can intercept,

modify, or drop the packets exchanged between the engineering workstation and

the PLC.

• Network Sniffing (T0842). An attacker within the ICS network can attempt to

sniff the network traffic to gain information about its target.

• Unauthorized Command Message (T0855). Attackers may send unauthorized

command messages to industrial control systems devices to cause them to func-

tion improperly.

The first case study focuses on an SEL RTAC device, equipped with security

features such as encrypted traffic and device-level access control. The RTAC has a

component known as the ’Logic engine,’ which is responsible for running the con-

troller’s control logic. With this component as the attacker’s primary target, she

positions herself as a man-in-the-middle between the engineering software and the

PLC to prevent the controller from executing the control logic in two ways: 1) by

modifying the packet responsible for starting the logic engine, and 2) by dropping

this packet entirely. Note that initial communication with the controller is encrypted

using transport layer security (TLS). Unencrypted communication begins once a le-

gitimate user has logged in, thereby enabling the man-in-the-middle attack. For more

details, see Section 6.4.

The second case study focuses on traditional PLCs that lack built-in security

features. It involves three PLCs: Modicon M221, MicroLogix 1100, and MicroLogix

1400. These PLCs differ from the RTAC in two ways: First, these PLCs do not

have a separate logic engine, and the processor assumes this role. Depending on

the controller type, the PLC either needs to be in ’run’ mode or must receive a

’start controller’ command to run the control logic. Second, unlike the case with

109

SEL-RTAC, most communications with these PLCs are unencrypted. To attack the

control logic engine, the attacker can craft a specific message and then send it to the

PLC to remotely change its state. For more details, see Section 6.5

6.4 Case Study I: SEL-3505 RTAC

6.4.1 Controller Details

The SEL-3505 Real-Time Automation Controller, developed by Schweitzer En-

gineering Laboratories, comes equipped with an IEC 61131 control logic engine. It

provides a web interface that allows monitoring and configuration of the network

interface, system logs, user accounts, and security settings. Control engineers can

utilize the AcSELerator RTAC SEL-5033 software [81] to write control logic, config-

ure protocol communication, read/write projects, and start or stop the logic engine.

Concerning device-level security, the RTAC employs ex-GUARD [82], a whitelist-

based system that controls the execution of different tasks. Any tasks not approved

by the whitelist are blocked from operation [81].

The RTAC 3505 communicates with the AcSELerator software via port 5432.

The majority of this communication—including session establishment, user authen-

tication, and reading and writing of projects on RTAC—is encrypted using TLS

encryption. However, after a user successfully logs in, the controller opens another

port (1217) and begins a second communication channel to share the state of the

RTAC in real-time. Intriguingly, the communication on port 1217 is not encrypted.

110

Session IDFunction
Code: Start

Message to stop the logic engine on SEL RTAC 3505

Session IDFunction
Code: Stop

Unknown Static Field: Remains same over different sessions
Unknown Dynamic Field : varies over different sessions

Message to start the logic engine on SEL RTAC 3505

Fig. 29. Messages sent by AcSELerator software to SEL RTAC 3505 to start and stop

logic engine

6.4.2 Vulnerability

In examining the internal communication of the RTAC, we discovered that the

RTAC sends unencrypted commands on port 1217 to start or stop the logic engine.

Furthermore, we were able to identify the packets that carry these commands. We

proceeded to reverse-engineer the commands to better understand the function codes

and other fields such as the session ID. Figure 29 illustrates the two request packets

that the AcSELerator sends to the RTAC to start and stop the logic engine. We

found that the session ID increments by three in every new session, and the function

codes for starting and stopping the logic engine are 0x10 and 0x11, respectively.

Additionally, we observed that the remaining parts of the messages stay the same

111

across different sessions (referred to as unknown static fields), indicating that a deep

understanding of their semantics isn’t necessary to perform the attacks.

6.4.3 MITRE ATT&CK

In this case study, we utilize the following strategies from the MITRE ATT&CK

knowledge base.

Network Sniffing (T0842): Network Sniffing serves as the initial step for discov-

ering vulnerabilities and launching the final attack. Given that the attacker’s machine

is on the same network as the legitimate engineering workstation and the controller,

she can conveniently sniff the network traffic between the legitimate parties to find

potential vulnerabilities. Through this process, we can identify the port where the

communication is unencrypted and the necessary fields required for designing our

Ettercap filters [83].

Man in the Middle (T0830): Upon sniffing the network traffic and identifying

the packets responsible for starting or stopping the logic engine, the attacker can

develop Ettercap filters, poison the ARP cache of the target machines, and place

herself as a man-in-the-middle between the AcSELerator software and the SEL RTAC

device. This position allows her to modify the content of the packets being sent from

the engineering software to the device or drop these packets altogether.

Manipulation of Control (T0831): This strategy serves as an extension of the

aforementioned man-in-the-middle attack. Through the steps taken to establish a

man-in-the-middle attack, the attacker can prevent the control logic engine from

running the control logic on the PLC, consequently halting the execution of the

underlying physical process.

112

Pseudocode for RTAC filters

Input: TCP packet
1: if (packet_src == AcSELerator & packet_dst == RTAC & packet_port ==1217)

2: if (packet_payload_contains (static_fields))
3: Modify/Drop

Fig. 30. Illustration of the Ettercap filter implementation.

6.4.4 Attack Implementation

Leveraging the information obtained, we developed two Ettercap filters, namely

the DropFilter and Start-StopFilter. These filters can successfully identify the mes-

sages that contain the start’ and stop’ commands for the logic engine, modify them

(i.e., convert start’ to stop’ and vice versa), or altogether drop them. This action re-

sults in the logic engine halting its operations or obstructs the control engineer from

accessing the logic engine.

Initially, the filters identify the messages from the AcSELerator to the RTAC

using their respective IP addresses and port 1217. As shown in Figure 29, a large

portion of the messages containing the start’ and stop’ commands remains the same

across different sessions; we refer to this as the unknown static field. The filters

search for these static bytes in the TCP payload of the message to identify the correct

one. Once the message is correctly identified, the DropFilter can utilize the “drop()“

command to drop the message. Similarly, the Start-StopFilter can change the function

code located at the 15th index in the TCP payload from start (0x10) to stop (0x11)

and vice versa.

113

6.4.4.1 Evaluation

6.4.4.2 Experimental Settings

We evaluate the control logic engine attack within a simulated power substation

environment. This environment consists of an SEL-3505 RTAC connected to an en-

gineering workstation, a circuit breaker, and a simulated voltage measurement device

designed to behave as a voltmeter. The RTAC is programmed to open the circuit

breaker whenever the voltmeter reports a voltage level higher than a pre-configured

threshold. This threshold is typically set by operators in the control center. In case

the circuit breaker does not open promptly after the voltage rises beyond the safe

limit, expensive power equipment could be potentially damaged or destroyed. The

system is monitored via a Human-Machine Interface (HMI), as depicted in Figure 31.

Note that in our evaluation setup, the “vRTAC“ displays the system’s ground truth

state, even if the SEL RTAC fails. This feature allows us to identify real-time discrep-

ancies between the actual system state and the state reported by the RTAC during

the attack.

6.4.4.3 Attack Execution and Evaluation

At system startup, the SEL RTAC 3505 automatically activates its logic engine.

Therefore, our first step involves stopping the logic engine. This process emulates typ-

ical maintenance or reprogramming operations. Subsequently, we initiate Ettercap’s

ARP spoofing attack against the RTAC and the engineering workstation, armed with

our custom packet filters. Whenever an operator attempts to start the logic engine,

the attacker intercepts the command, modifies the function code or drops the packet

before it reaches the RTAC. As a result, the logic engine never restarts.

Following the failure of the logic engine to restart due to our attack (even after

114

Fig. 31. HMI showing ground truth (left) and SEL RTAC state (right) for a circuit

breaker (red means closed) and voltmeter with a given over-voltage protection

threshold

Fig. 32. HMI showing SEL RTAC is no longer reporting new values while voltage has

surpassed the threshold

115

Fig. 33. HMI showing updated SEL RTAC after the logic engine is enabled and the

circuit breaker is now open (green means open)

repeated start command attempts), the RTAC can no longer monitor or control the

power system devices. If a short circuit occurs in the system, leading to a high

voltage detection by the voltmeter, the controller needed to open the circuit breaker

no longer functions. Consequently, power continues to flow unchecked, potentially

reaching critical equipment such as transformers. This can result in severe equipment

damage or destruction, necessitating costly repairs or replacements and potentially

leading to a power outage. Our evaluation state is depicted in Figure 32. As observed,

the SEL RTAC no longer reports current voltage values, and the breaker fails to open

when the voltage exceeds the threshold.

Once the Ettercap attack is stopped, an operator can finally restart the RTAC’s

logic engine. The RTAC would then be able to detect the high voltage from the

voltmeter and open the circuit breaker. However, in an operational power system

with real-time demands, such delayed action is too late to prevent system damage.

Figure 33 illustrates the state after re-enabling the RTAC logic engine. Although the

116

breaker eventually opens, it fails to prevent the significant damage already incurred

in an operational power system.

6.5 Case Study II: Traditional PLCs

The case study involves the PLCs of two vendors: Schneider Electric’s Modicon

M221, and Allen-Bradley’s MicroLogix 1400 & 1100. Unlike SEL RTAC (refer to

Section 6.4), the PLCs do not have the security features to protect the communication

and PLC device such as encryption and access-control.

6.5.1 Case Study II (a): Schneider Electric’s Modicon M221

6.5.1.1 Controller Details

The Schneider Electric Modicon M221 is a nano Programmable Logic Controller

(PLC) designed to control manufacturing processes. Control engineers can utilize

the vendor-provided engineering software, SoMachine Basic, to write control logic,

monitor the physical process, and manage the state of the M221. SoMachine Basic

supports two IEC-61131 languages, namely, the Ladder Diagram (LD) and Instruction

List (IL), for writing control logic. Engineers can download a control logic program

to the PLC, effectively writing to the PLC’s memory. Furthermore, engineers can

start or stop the execution of the control logic, i.e., the logic engine on the M221,

via SoMachine Basic. The communication between the M221 and SoMachine Basic

is unencrypted, and it utilizes a proprietary protocol on port 502, encapsulated in

Modbus/TCP. Notably, the M221 allows only one connection at a time.

6.5.1.2 Vulnerability

In addition to the fact that the network communication between the M221 PLC

and its engineering software is unencrypted, we exploit two additional features of the

117

PLC. Firstly, the PLC’s state, which enables or disables it from running the control

logic program, can be changed remotely via the engineering software. Secondly, the

PLC only permits one engineering software to connect to it at any given time.

6.5.1.3 MITRE ATT&CK

The case study utilizes the following attacks from the MITRE ATT&CK knowl-

edge base:

Network Sniffing (T0842): As the initial step in launching the attack, network

sniffing enables the attacker to monitor the network traffic between the engineering

software, SoMachine Basic, and the PLC. This provides the attacker with critical

information about protocol details that could assist in reaching her target.

Unauthorized Command Message (T0855): Given that communication with

the PLC is unencrypted, the attacker can remotely send crafted messages to the PLC.

By using the protocol information obtained from network sniffing, the attacker can

construct a message that instructs the PLC to stop running the control logic program.

Loss of Availability (T0826): As M221 only allows a connection from one ma-

chine at a time, the attacker can render it unavailable for control engineers by main-

taining the established session as part of her previous attack, thus not allowing any

other connections.

Denial of Control (T0813): This attack is similar to the loss of availability. In

this scenario, the attacker maintains the open session with the PLC, which prevents

the control engineer from interacting with the process control.

118

Manipulation of Control (T0831): This attack represents the ultimate goal of

the attacker. She employs network sniffing and unauthorized command messaging

to stop the controller from running the control logic program, thus manipulating the

PLC’s control process.

6.5.1.4 Attack Implementation

Through differential analysis and manual efforts, we managed to reverse engineer

the proprietary protocol of the M221 and identified the packets that the SoMachine-

Basic software sends to start and stop the PLC’s logic engine. The packets can be

seen in Figures 35 and 36. Function codes 0x40 and 0x41 are used to start and

stop the controller, respectively. If the request message from the engineering software

is successful and accepted by the PLC, the PLC sends back a success message to

acknowledge the change, as shown in Figure 37. Using this information, we wrote a

Python script that first establishes a session with the Modicon M221 PLC, and then

sends crafted messages to start or stop the execution of the control logic running on

the PLC.

6.5.1.5 Experimental Settings

We evaluated the attack on a lab-functional model of a real conveyor belt used

in an industrial environment. The details of the model can be seen in Figure 34. The

conveyor belt sorts different types of objects with the help of sensors and manipulates

them using an air solenoid. The system is controlled by the Modicon M221 PLC.

The SoMachine Basic software runs on a Windows 7 Virtual Machine, while the

attack scripts run on an Ubuntu 16.04 Virtual Machine. In our scenario, we assume

that the attacker has infiltrated the ICS network, meaning the PLC, the engineering

workstation, and the attacker’s machine are all on the same network.

119

Air
Solenoid

Valves

Conveyor
belt

DC
Motor

Inductive
sensor

Capacitive
sensor

Photoelectric
sensorCylinder

Air
Pressure

Meter

Cylinder

Fig. 34. Top-view of the fully-functional conveyor belt model

6.5.1.6 Attack Execution and Evaluation

Initiating with a network scan, the attacker identifies the IP address of the PLC,

then proceeds to launch the attack program. The attacker first establishes a Modbus

protocol session with the Modicon M221 PLC, then sends the ‘Stop controller’ request

to the PLC. On receipt of this request, the PLC ceases to execute the control logic,

leading to a halt in the physical process. As the PLC only allows one connection at a

time, the control engineer is barred from communicating with the PLC and executing

the ‘Start controller’ command, as long as the attacker maintains the Modbus session

active.

120

Start
Controller
Request

Modbus
Function
Code

Address

Session
ID

Fig. 35. Request message to “START“ the Modicon M221 PLC

Stop
Controller
Request

Modbus
Function
Code

Address

Session
ID

Fig. 36. Request message to “STOP“ the Modicon M221 PLC

Success
Modbus
Function
Code

Session
ID

Fig. 37. Response from the Modicon M221 PLC with success function code

121

6.5.2 Case Study II (b): Allen-Bradley’s MicroLogix 1400 & 1100

6.5.2.1 Controller Details.

Allen-Bradley MicroLogix 1400 and 1100 belong to the MicroLogix family and

share several similarities. Both PLCs can be monitored and controlled using the

RSLogix 500 engineering software, and they communicate with RSLogix using an

unencrypted PCCC protocol encapsulated in EtherNet/IP [46]. RSLogix supports

ladder diagram (LD) for writing the control logic. After establishing a connection

with the PLC, the control engineer can upload the control logic (i.e., read the control

logic running on the PLC) or download newly created logic to the PLC (i.e., write to

the PLC’s memory).

Both PLCs have three modes of operation: Run, Program, and Remote. In the

‘Run’ mode, the PLC executes the control logic and oversees the physical process.

For maintenance or control logic changes, the PLC must be put into ‘Program’ mode,

which allows for modifications. In ‘Program’ mode, the PLC’s logic engine is paused

and it does not execute any control logic as long as it remains in this mode.

The PLC’s mode can be physically changed from the command line interface pro-

vided on both these PLCs. However, typically for operational convenience, it is set to

‘Remote’ mode, which allows the control engineer to remotely change the mode from

‘Run’ to ‘Program’, and vice versa, from the engineering software. Both PLCs uti-

lize an unencrypted PCCC protocol encapsulated in EtherNet/IP for communication

with the engineering software.

6.5.2.2 Vulnerability

We exploit an inherent functionality in MicroLogix PLCs to change operational

modes to ‘Run’, ‘Program’, and ‘Remote’, where the PLCs in ‘Program’ do not

122

Request
CommandFNC: Change

Mode

PCCC
Transaction
ID

Remote
Run Mode

Fig. 38. Request message to set the MicroLogix 1400 PLC to Remote-Run Mode

Request
CommandFNC: Change

Mode

PCCC
Transaction
ID

Remote
Program
Mode

Fig. 39. Request message to set the MicroLogix 1400 PLC to Remote-Program Mode

execute control logic and wait for an operator to update their control logic and con-

figurations.

6.5.2.3 MITRE ATT&CK

The following attacks from the MITRE ATT&CK knowledge base are utilized

for the case study on MicroLogix PLCs.

Network Sniffing (T0842): The attacker employs network sniffing to identify the

communication protocol between the PLC and its engineering software. Through

this, she discerns the packets that are instrumental in changing the PLC state, which

can potentially disrupt the running physical process.

Unauthorised Command Message (T0855): Using the information obtained,

123

she composes a well-crafted message capable of remotely altering the PLC state from

‘run’ to ‘program’, effectively halting the control logic program’s execution.

Manipulation of Control (T0831): Resulting from the above attack, the attacker

is successful in disrupting the control logic program’s execution on the PLC, thereby

halting the physical process it was controlling.

Denial of Control (T0813): As the attacker modifies the state of the PLC from

‘run’ to ‘program’, she temporarily obstructs the control engineers from interacting

with the process controls.

Man in the Middle (T0830): In addition to changing the state of the PLC and

halting the physical process, the attacker also aims to conceal this state alteration

from the control engineer. Consequently, she employs ARP cache poisoning on the

engineering software and the PLC and positions herself as a man-in-the-middle be-

tween her targets. This enables her to alter the PLC state from ‘program’ to ‘run’

when the engineering software requests to read the state.

Denial of View (T0815) Through the above man-in-the-middle attack, the attacker

deceives the control engineer, who remains under the impression that the PLC is still

in ‘Run’ mode and controlling the physical process. In reality, however, the process

has been halted.

6.5.2.4 Attack Implementation

We successfully reverse-engineered the request messages that RSLogix sends to

alter the PLC mode to Remote-Run or Remote-Program through manual processes.

Figures 38 and 39 display the messages transmitted to set the PLC into Remote-Run

and Remote-Program modes, respectively. As depicted in the figures, the function

code 0x80 is employed to modify the mode. This function code is followed by either

0x01 for Remote-Run mode or 0x06 for Remote-Program mode.

124

Request
Command

FNC: Status

PCCC
Transaction
ID

Fig. 40. Request message to sent the MicroLogix 1400 PLC to inquire current status

We also discovered that RSLogix software periodically queries the PLC’s status.

As demonstrated in Figure 40, the engineering software sends a request message fea-

turing the function code 0x03 to inquire about the PLC’s status. The differential

analysis of response messages during Remote-Run and Remote-Program modes re-

veals that a function code of 0x21 is used for Remote-Run mode (Figure 41), while

0x26 is used for Remote-Program mode (Figure 42).

Leveraging this information, we developed a program that begins an ENIP session

with the target PLC and dispatches the mode-change messages to place the PLC in

Remote-Program mode, thereby halting the control logic’s execution on the PLC.

Given that the RSLogix software periodically checks the status, the control engineer

can detect the mode change. Hence, to deceive the RSLogix software, we developed

an Ettercap filter capable of identifying the status response message and altering the

Remote-Program function code to Remote-Run.

6.5.2.5 Experimental Settings

Considering that both Micrologix 1400 and 1100 employ the same communi-

cation protocol and function codes, we conducted our logic engine attack test on a

Micrologix 1400 connected to a lab functional model of an elevator in our setting. The

125

Response
Command

PLC In-Remote Run Mode

PCCC
Transaction
ID

Fig. 41. Response message from the MicroLogix 1400 PLC when in Remote-Run mode

Response
Command

PLC In-Remote Program Mode

PCCC
Transaction
ID

Fig. 42. Response message from the MicroLogix 1400 PLC when in Remote-Program

mode

126

elevator model has four floors and operates identically to a real elevator, as depicted

in Figure 43. A user can select a floor from both inside and outside the elevator to

provide input to the PLC. In response, the PLC moves the elevator to the chosen

floor.

RSLogix 500 software, which can communicate with the PLC, operates on a

Windows 7 Virtual Machine (referred to as the engineering workstation). The attacker

employs a machine running Ubuntu 18.04.3 LTS. As with previous experiments, the

PLC, engineering workstation, and attacker machine are all on the same network.

6.5.2.6 Attack Execution and Evaluation

In carrying out the attack, the perpetrator first conducts a man-in-the-middle

attack using ARP poisoning, followed by establishing an ENIP session with the Mi-

crologix 1400 PLC that controls the elevator. The attacker then sends a request

message to the PLC, instructing it to switch to Remote-Program mode. As a conse-

quence, the PLC ceases to execute the control logic, leading to a halt in the operation

of the elevator.

To prevent the control engineer from being informed about the current status

of the PLC, the attacker deploys the Ettercap filters as described in the previous

section. These filters modify the function code for Remote-Program mode to that

of Remote-Run mode. Consequently, the control engineer remains oblivious to the

ongoing attack, and the elevator operation remains disrupted.

6.6 Mitigation

The major vulnerability with most of the PLCs lies in their unencrypted commu-

nication. Even though RTAC uses TLS for most of its communications, the exchanges

occurring on port 1217 are unencrypted. This unencrypted communication facilitates

127

Elevator

Main
Motor

Door
Motor

Door
Motor

Fig. 43. Front-view of the fully-functional elevator model

protocol reverse engineering and eases the launching of attacks.

PLCs such as Modicon M221 and Micrologix 1400 incorporate some security

layers, such as password protection, which safeguard the control logic from unautho-

rized reading and, in certain cases, writing. However, these security measures are

inadequate since attackers can change the PLCs’ operational state without requiring

authentication, effectively preventing the execution of control logic. As such, it is rec-

ommended that password protections should be extended to cover PLC state changes

as well.

128

Further, the M221 PLC exhibits a default feature that allows unauthorized users

to establish connections without any authentication requirements. Also, it only per-

mits one user to connect at a given time. This leaves room for attacks requiring

an established connection with the PLC, such as those demonstrated in our study.

An attacker can connect to the PLC, stop the controller from running the control

logic program, and maintain the session active, effectively blocking legitimate field

engineers from regaining control over the PLC. To prevent such attacks, a password

protection scheme should be implemented for PLC connections.

Man-in-the-middle attacks, another prevalent threat, can be mitigated by im-

plementing techniques such as DHCP snooping and ARP inspection [84]. These

measures can significantly enhance the security of industrial control systems.

6.7 Conclusion

In this chapter, we introduced a novel category of control-logic attacks targeting

Programmable Logic Controllers (PLCs). Our approach diverges from traditional

tactics that inject malicious control logic into a PLC. Instead, we target the IEC-

61131 control-logic engine, which is responsible for executing the PLC control logic.

We utilized attack methods from the MITRE ATT&CK knowledge base to illustrate

our control logic engine attacks through case studies involving four real PLCs, namely

the SEL-3505 RTAC, Modicon M221, and MicroLogix 1400 and 1100.

These case studies effectively halted the operations of three distinct physical pro-

cesses in real-world scenarios: a power substation, a conveyor belt, and an elevator.

By demonstrating these attacks, we aim to enlighten the industrial control systems

(ICS) research community and the broader industry about the potential attack vec-

tors related to the control logic engine. This knowledge can foster the development

of stronger security measures to protect these vital components of industrial infras-

129

tructure.

130

CHAPTER 7

USING VIRTUAL PLC PLATFORM AS A HONEYPOT FOR ICS

THREAT INTELLIGENCE

This chapter presents my fifth contribution, focusing on the utilization of a virtual

PLC platform as a honeypot for gathering threat intelligence. Programmable Logic

Controllers (PLCs) play a vital role in industrial control systems (ICS), managing

critical processes in manufacturing and power generation. To counter increasingly

sophisticated cyberattacks, the security community relies on PLC honeypots to gather

information about attackers’ tools and techniques.

Existing PLC honeypots have limitations in effectively engaging advanced at-

tackers or providing comprehensive functionalities. This chapter introduces the vir-

tual PLC platform (VPP) as a protocol-agnostic and scalable PLC honeypot that

accurately emulates real PLCs. In addition to the standard features of the virtual

PLC platform, I added additional functionalities such as identifying the location of

function codes used by actual PLCs and mapping them with application-level oper-

ations. These modifications enable advanced capabilities like control logic transfer,

PLC authentication, and different PLC modes, enhancing the VPP’s ability to engage

attackers effectively.

The chapter demonstrates the VPP’s capability to emulate various PLCs and

provides experimental evidence of its ability to replicate a wide range of functional

and operational features. Furthermore, a case study involving an elevator lab model

showcases the VPP’s effectiveness in engaging attackers and storing attack data for

subsequent analysis. This innovative honeypot framework significantly advances the

131

field of threat intelligence for ICS by facilitating more efficient engagement with at-

tackers and generating actionable insights to enhance system security and resilience.

7.1 Introduction

Programmable Logic Controllers (PLCs) are crucial to modern industrial control

systems (ICS), directly monitoring and controlling various processes such as man-

ufacturing, power generation, and chemical processing. They execute user-defined

control logic based on sensor input signals and send output to actuators. PLCs also

communicate with other systems like human-machine interfaces (HMIs) and supervi-

sory control and data acquisition (SCADA) systems. Due to their critical role, PLCs

have become prime targets for increasingly sophisticated cyberattacks[clinjection,

doe, 85, 86, 8, 87, 32], requiring the security community to develop effective threat

intelligence capabilities to stay ahead of attackers.

PLC honeypots are one such solution that can help security professionals in

gathering valuable threat intelligence by attracting and monitoring attackers target-

ing ICS. While physical honeypots offer effective intelligence gathering, they come

with high hardware and deployment costs. While physical honeypots are an effective

means of gathering threat intelligence, they can have a high hardware and deployment

cost[88]. Fortunately, many researchers have focused on developing virtual honeypots

[89, 90, 91, 92, 93, 94, 95] that can be used to simulate the behavior of a real PLC.

There are two types of virtual honeypots: low-interaction and high-interaction. Low-

interaction honeypots simulate only parts of a real system’s functionality, making

them easy to set up and resource-efficient but limited in functionality and easily de-

tectable by attackers. High-interaction honeypots aim to emulate the entire PLC

system, including hardware, software, and network environments, offering more com-

prehensive data on attacker behavior but requiring greater resources and expertise to

132

set up and maintain.

However, existing ICS honeypots have limitations that hinder effective engage-

ment with attackers and useful threat intelligence collection. Low-interaction honey-

pots are unable to engage and attract sophisticated attackers, while high-interaction

ones lack operational-level functionalities such as control logic transfer, PLC modes,

and support for different PLC functions. Due to the lack of operational-level sup-

port, most high-interaction honeypots can be easily identified and may not be able

to engage the attacker for longer sessions. To address this, more advanced honeypots

with operational-level capabilities are needed for effective engagement.

In this chapter, I demonstrate the use of a virtual PLC platform as a protocol-

agnostic, scalable PLC honeypot that can mimic a real PLC by replaying network

dumps. To achieve this goal, I have added new features to the PLC template, such

as function code identification and mapping. Furthermore, the virtual PLC includes

two additional components: “PLC state“ and “Data storage,“ which track the PLC’s

state and gather data for threat intelligence. With these enhancements, the virtual

PLC platform can effectively function as a honeypot and provide several application-

level features comparable to those of a real PLC. There are three main contributions

of this chapter:

• We introduce the application of the virtual PLC platform, as a scalable and

protocol-agnostic honeypot framework capable of providing application-level

features.

• We demonstrate VPP’s ability to mimic different PLCs and provide experimen-

tal evidence of its capabilities to replicate various functional and operational

features.

• We present a case study using a lab model of an elevator with VPP, performing

133

various ICS attacks on it, showcasing its capacity to engage the attacker and

store attack data.

7.2 BACKGROUND AND RELATED WORK

7.2.1 Operational and Functional Features of PLC

PLCs monitor and control the physical process. The user can use the engineering

software to configure and program a plc. Along with transferring the control logic,

the PLC also has some other operational and functional features:

• Authentication: PLCs offer password protection for login and state changes.

• Report I/O data: Connected to engineering software or HMI, PLCs reply to

I/O-related requests to show the ICS state.

• PLC modes: PLCs have modes like “Run“ and “Program.“ “Program“ mode

allows control logic writing, while “Run“ mode executes control logic and blocks

write memory operations.

• Session Establishment: PLCs accept remote connections and have session

establishment protocols in their firmware.

• Session Maintenance: PLCs respond to incoming requests for operations like

read, write memory, authentication, mode change, and reading I/O data.

7.2.2 Related Work on ICS Honeypots

Honeypots are decoy systems designed to replace real systems, attracting and

engaging attackers. They can be classified into low-interaction or high-interaction

honeypots based on the functionality and level of engagement they provide. Numer-

ous PLC honeypots have been developed for ICS [89, 92, 90, 91, 93, 95, 94]. Among

134

Table 23. Summary of existing PLC honeypots in literature and their features =

Complete Implementation G#= Partial Implementation #= No Implementa-

tion
Honeypot

ICS Protocols Required

ICS Protocol

Libraries

Standard Operational and Functional Features Device Discovery Additional IT Services

Modbus ENIP S7comm

Control

Logic

Upload

Control

Logic

Download

Authen-

tication

Exchange

I/O Data

PLC

mode

Session

Establisment

Session

Maintaince

Engineering

Software

Network

Scanning
HTTP FTP SNMP

Conpot G# G# G# YES # # # # # # # # G# #

HoneyNet G# # # YES # # # # # # # # G#

ICSpot G# # YES # # #

NeuPot G# # # YES # # # # # # # # # # #

HoneyPLC # # YES # # # #

CryPHL # # YES # # G# # # G# G# G# # #

s7CommTrace # # NO # # # # # G# # # #

the existing honeypots, HoneyPLC [91] and ICSpot [94] are closest to VPPin terms of

the functionalities they provide. HoneyPLC supports control logic upload and down-

load functionality for Siemens PLCs and can establish and maintain a session with

STEP7 engineering software. ICSpot, based on HoneyPLC, provides all the features

of HoneyPLC and includes dedicated modules for simulating I/O data from the phys-

ical process. Table 23 summarizes our assessment of various features and capabilities

of existing honeypots, such as protocol coverage (the number of different protocols

a honeypot supports), control logic transfer (whether the honeypot can upload and

download control logic), device discovery (if the honeypot is identified as a real PLC

by engineering software and other network scanning tools), and lastly, the operational

and functional features the honeypot provides (application-level interaction).

7.2.3 Limitations of State-of-the-art Honeypots

State-of-the-art honeypots have limitations that reduce their ability to engage

attackers and collect valuable threat intelligence data. Some of these limitations are:

Limited coverage (L1): Current honeypots, both low and high interaction, cover a

limited number of PLCs. They rely on libraries and frameworks for specific PLCs, de-

veloped through reverse engineering ICS protocols. HoneyPLC, CryPLH, and ICSpot

135

use the Snam7[96] framework for S7comm server simulation, while many Modbus-

based honeypots depend on open-source Modbus libraries such as libmodbus[97].

These dependencies restrict the supported PLC range.

PLC Memory Manipulation (L2): Major ICS attacks, like Stuxnet[9], aim to

manipulate PLC memory. Attackers seek to write malicious control logic or malware

to disrupt the physical process. However, only HoneyPLC and ICSpot offer control

logic download capability. The absence of control logic capture in most honeypots

limits their attack surface and threat intelligence generation, making them unable to

detect various attack types.

Lack of Operational and Functional features (L3): PLCs offer features like

authentication, modes, session establishment, and maintenance, which enhance the

attack surface and enable better attacker engagement. However, inaccurate emula-

tion of these features may reveal honeypot identities. ICSpot and HoneyPLC sup-

port application-level sessions, CryPLH and S7CommTrace partially support Siemens

PLCs, but none support PLC mode features. Only CryPLH offers authentication,

while ICSpot (S7comm-based) and NeuPot (Modbus-based) provide I/O data ex-

change.

In light of these limitations, current honeypots exhibit reduced efficiency in en-

gaging with attackers and gathering threat intelligence. Consequently, there is a

pressing need for a dynamic, scalable honeypot capable of replicating the diverse

operational and functional features characteristic of real PLCs.

136

A P

auth_req

Rb1

Rb2, Rb1*Rb2*H(pwd)

auth_res

E(pwd,Rb1)

b) MicroLogix 1400 Authentication Protocola) Modicon M221 Authentication Protocol

A P
auth_req

Rb1

auth_res

Fig. 44. Client Authentication Protocol used by different PLCs

7.3 Virtual PLC Platform - Enabling Application-level PLC Functional-

ities at Scale

7.3.1 Challenges in Developing a Scalable Honeypot

Developing a scalable and dynamic honeypot for different PLC operational fea-

tures presents various challenges.

Diverse Application logic/Implementation (C1):Heterogeneity in PLC applica-

tion logic complicates honeypot functionality at the application level. Without stan-

dardized formats or APIs, application logic differs among manufacturers, as seen in

the authentication protocols of Schneider Electric’s Modicon M221 and Allen-Bradley

MicroLogix 1400 (Figure 44). Variations in hashing algorithms and mechanisms [14]

pose challenges in replicating application logic.

Proprietary PLC protocols (C2): Honeypots face challenges in replicating application-

level functionalities due to proprietary ICS protocols used by PLCs for network com-

munication. For instance, M221 employs the UMAS protocol within Modbus, whereas

MicroLogix 1400 uses the PCCC protocol encapsulated by ENIP protocol. Honeypots

need knowledge of PLC protocol fields and semantics, posing a significant research

challenge.

137

Lack of PLC State Machine knowledge (C3):PLCs possess various program-

ming modes or states, like “Run“ and “Program“ modes, each having distinct state-

switching mechanisms. For instance, MicroLogix 1400 directly enters “Run“ mode

after control logic download completion and begins execution, while Modicon M221

requires a user command (‘Start’) in an intermediate state to initiate control logic

execution. Honeypots need to accurately implement PLC state machines to deceive

attackers, but the lack of public documentation requires extensive manual experimen-

tation.

7.3.2 Virtual PLC Platform Framework

To address the limitations and challenges, we introduce the application of a

virtual PLC platform as a honeypot. As demonstrated in 3.4.2.1, the virtual PLC

platform is capable of identifying session-dependent fields in various ICS protocols and

effectively replaying network traffic, addressing challenge C2. To overcome challenges

C1 and C3 and handle application-level PLC functionalities, a new module called

“Function Code Mapping“ is incorporated into the PLC template. Additionally, the

virtual PLC is enhanced with a PLC state module, which showcases changes in the

PLC’s state to the attacker. The modified framework of the Virtual PLC Platform

is illustrated in Figure 45.

7.3.2.1 Handling PLC Functionalities (C1 & C3)

The Virtual PLC Platform addresses heterogeneous application logic implemen-

tations across PLCs by providing an abstraction layer. This approach is based on

observations of numerous functional and operational features. For example, Figure

44 shows the authentication protocol of Modicon M221 and Micrologix 1400 PLCs.

In both instances, the PLC merely sends the initial random number (seed) and ver-

138

Template GenerationData Processing Communication Interface

Virtual PLCs

Request

Response

PLC
Server

Message
Processor

Session
Dependent

Fields

Static
Fields

Dynamic
Fields

Data
Field

PLC Template

Network
Dumps

Message
Tagging

Database

Client

Data
Storage

PLC
State

Function
Code

Mapping

Fig. 45. An overview of virtual PLC platform

ifies the received password hash. These operations can be managed by replaying

old network messages, negating the need for application implementation in the VPP.

Consequently, the VPPremains agnostic of application logic implementation and can

effortlessly mimic various operational and functional features by replaying suitable

response messages.

To achieve this, the VPPinitially identifies request and response messages cor-

responding to diverse operational features in the network dump and subsequently

replays them according to the live session. This is done by first identifying the func-

tion or command code present in most ICS protocols and then correlating these codes

with various operational features. The VPPleverages this information when interact-

ing with the client and responding to different requests based on their function code.

Figure 46 shows the process of identifying function code and mapping it to different

operational features.

Function Code: Function codes in ICS protocols are used to issue commands for

various tasks on PLCs. Manufacturers assign unique function codes to operations

like reading or writing data in memory, starting or stopping the PLC, and running

diagnostics.

139

Function Code
Identification

Function Code
Mapping

FC
location

Handling PLC Functionalities

FC(O),
Req(O),Res(O) PLC

Template

(Same PLC
Operation)

(IDLE PLC State, & PLC operation)

Database

Fig. 46. Process of identifying and mapping function codes with different operations

When the PLC receives a request message from engineering software, it processes

the message based on the function code value. A valid function code triggers the

associated code execution and a successful response. Otherwise, an error message is

sent. For example, Figure 47 shows the message exchange between an M221 PLC

and SoMachineBasic engineering software. To upload control logic or read data from

the PLC memory, the software sends a request message with a “28“ function code,

memory address, address type, and byte quantity to read. With the correct structure,

function code, and required information, the PLC performs a “Read“ operation and

sends the requested data to the engineering software using the function code “fe,“

indicating a successful operation.

Function Code Identification In a session between engineering software and a

PLC, the function code field can have multiple values. Unlike other dynamic fields in

ICS messages, such as “Transaction ID” that exhibit a fixed pattern with a unique

increment in each new message, the function code field lacks a consistent pattern.

This absence of a pattern makes it challenging to locate the function code field us-

ing pattern recognition techniques or simple differential analysis. To overcome this

challenge, we have developed our own heuristics based on our knowledge of the ICS

domain.

Observation: Through our observations, we have noticed that each PLC sup-

140

Download Request

Upload Request

Modbus
Function
Code

Transaction
ID

Transaction
ID

Length

Length

Session
ID

Session
ID

Modbus
Function
Code

Write
FNC

Read
FNC

Address
Address

Type

Byte
size

Fig. 47. Request-Response message to read and write a control logic on M221 memory

ports a limited number of function code values, some of which are used repeatedly

during a session. Additionally, when the engineering software sends a request to

the PLC, the PLC responds with a “success“ or “failure/error“ message to indicate

whether the request has been processed. For example, when downloading control

logic to the PLC memory, the engineering software sends multiple “READ“ requests

(FC:29) to the PLC, and the PLC responds to each request with either a success

(FC:fe) or a failure (FC:FF) message.

Heuristic: Based on our observations, we propose a heuristic for identifying

the location of the function code within an ICS message. We divide the request

and response messages into separate groups. Since the function code is typically

represented by one byte, we compare the messages within each group byte by byte

141

and determine the number of unique values at each location. The location of the

function code is identified by an index that shows a variation within a given threshold

in the request messages and has at most two unique values in the response messages.

Function Code in UMAS Protocol: To locate the function code field in the

UMAS protocol used by the M221 PLC, we established a session with the PLC using

the engineering software and performed an “Upload“ operation. By capturing the

network dump and dividing the request and response messages into two groups based

on IP address and Port numbers, we compared the messages byte by byte. Indices in

the request message group showing minimal changes below a specified threshold were

labeled. Similarly, in the response message group, we labeled indices with at most

two values (e.g., success and failure). Comparing the function code candidates from

both groups, we selected the common index as the function code location.

Function Code Mapping Once the location of the function code in a mes-

sage is identified, the next step is to map the function codes to their corresponding

application-level functionalities. To accomplish this, we conducted manual opera-

tions on the PLC, such as changing the PLC’s state from start to stop and vice

versa, enabling or disabling password protection, and performing successful and un-

successful authentication attempts. During each operation, we captured the network

communication between the PLC and the engineering software.

From each network capture, we extracted all the function codes used during

that session. By comparing the function codes extracted from the application-level

operations with those from a benign session (a simple connection to the PLC), we

eliminated the function codes common to both. The remaining function codes were

then associated with specific application-level PLC functionalities. This mapping

information was stored in the PLC template.

142

By following this process, we successfully identified the function codes linked to

various application-level PLC functionalities and incorporated this information into

the PLC template.

7.3.2.2 Handling the state of the PLC

Maintaining the state of the virtual PLC is crucial for emulating a real PLC

and providing realistic behavior. To achieve this, two components were added to

the virtual PLC platform: PLC State and Data Storage. Additionally, the Message

Processor was modified to update the PLC state upon receiving requests from users.

PLC State: The PLC State is a critical module in the VPP framework. It stores

the initial state of the virtual PLC, including parameters such as the PLC mode and

password. This component dynamically adjusts the state based on client requests,

allowing users to remotely modify PLC functionalities. This capability enhances the

deception aspect of VPP by providing a convincing environment for potential attackers.

By adapting the PLC state according to client interactions, VPP ensures flexibility

and realistic responses, thereby improving its effectiveness in threat detection and

prevention.

Data Storage: Data Storage is another essential component within the VPP ar-

chitecture. It is responsible for preserving all communication between the virtual PLC

and clients. This repository of interaction data serves as a valuable resource for gen-

erating threat intelligence and performing forensic analysis. The captured data can

be analyzed to identify patterns indicative of malicious activity, investigate security

incidents, or gain insights into the techniques and strategies employed by attackers.

By maintaining a comprehensive log of communications, the Data Storage component

supports both real-time threat response and post-incident investigations.

143

7.4 Evaluation

Existing PLC honeypots fail to provide application-level interaction and opera-

tional features like a real PLC. These features are essential for expanding the honey-

pot’s attack surface and gathering meaningful threat intelligence. In this section, we

evaluate VPP’s capability to support these features.

7.4.1 Experimental Setup and Methodology

Our experimental setup included Allen-Bradley Micrologix 1400, Micrologix 1100,

and Schneider Electric Modicon M221 PLCs. We used SoMachineBasic and RsLogix

500 engineering software, running on a Windows 10 VM (engineering workstation), to

configure and program the Schneider Electric and Allen-Bradley PLCs. The VPP ran

on an Ubuntu 18 VM, and all devices were on the same network. To evaluate VPP’s

various functions, we first executed a targeted function on the real PLC using the

engineering software and captured the network traffic. Then, we provided the net-

work dump to VPP and performed the same function on it. Finally, we assessed if

VPP could deliver the same features and functionalities as the real PLC.

7.4.2 Device Discovery

To establish communication with a PLC, the first step is discovering it on the

network. It is crucial for a honeypot to be scannable and identifiable as a PLC. The

PLC can be discovered on the network using engineering software such as RSLogix

and SoMachineBasic. We tested VPP’s discoverability using these softwares.

Methodology: In this experiment, first we discover the real PLC using the RSlogix

software and capture the network communication between the PLC and the engineer-

ing software. To connect these PLCs to the engineering software, we had to manually

144

Fig. 48. Virtual PLC Platform identified as a real Modicon M221 PLC in SoMa-

chineBasic

configure a driver in the RSlinx Classic using the IP address of the PLC. Then we

provide the captured network dump to the VPP along with the PLC template and

started the VPP server. In the end, we again used the discovery function available in

the engineering software to identify the IP address of the VPP.

Evaluation Criteria: For this experiment, we set the criteria that VPP should be

discovered by RsLogix as a real MicroLogix 1400 and 1100 PLC, and by SoMachineBa-

sic as a Modicon M221 PLC.

Results: The VPP was identified by the RsLogix as a real Mircologix 1400 and

MicroLogix 1100 PLC. Whereas SoMachineBasic identified it as a Modicon M221

PLC. As shown in figure 48.

7.4.3 Operational and Functional Features

7.4.3.1 Session Establishment and Maintenance

PLCs, acting like servers, must establish and maintain communication sessions.

After verifying that VPP is a genuine PLC, we tested its ability to establish and

145

maintain communication sessions. The VPP should also send appropriate responses

to various messages from engineering software during a session.

Methodology: We used network dumps captured from a real plc to initialize and

run VPP for each PLC, then used engineering software to discover and establish com-

munication sessions. We ran multiple experiments with varying session durations,

recording request-response messages.

Evaluation Criteria: We set these criteria: 1) VPP should handle various message

types; 2) VPP should send appropriate responses for each request; 3) VPP should

maintain sessions of different lengths (5, 15, 30 mins); 4) No timeouts or disconnects

should occur.

Results: VPP successfully established and maintained communication with engi-

neering software in all experiments. As shown in Table 24, VPP managed commu-

nication sessions for set durations. For all three PLCs, VPP successfully responded

to hundreds of requests in 5, 15, and 30-minute sessions, handling 9 unique function

codes for Modicon M221 and 2 unique function codes for both the Micrologix PLCs.

The number of unique function codes remained the same for all sessions because

engineering software sends the same request messages repeatedly in idle conditions,

inquiring about the PLC state and reading IO values.

7.4.3.2 Authentication:

Many PLCs provide an authentication feature where a user can set a password.

When the user tries to establish a communication session or perform any of the crit-

ical operations such as writing the control logic, the PLC asks for the password that

was set earlier. If the password is correct the PLC allows the operation otherwise it

denies it and sends an error message. Since the implementation of the authentica-

tion mechanism can be different in different PLCs, it is difficult to enable this in the

146

Table 24. Summary of messages exchanged between a VPP and the engineering soft-

ware for various sessions.

PLC

Session

Length

(min)

of

req

msg

of

res

msg

of

unique

FC

Session

Timeout/

Disconnects

MicroLogix

1100
5 8153 8153 2 0

15 24460 24460 2 0

30 48926 48926 2 0

MicroLogix

1400
5 10569 10569 2 0

15 31720 31720 2 0

30 63460 63460 2 0

Modicon

M221
5 2678 2678 9 0

15 8098 8098 9 0

30 16126 16126 9 0

147

VPP without manual reverse engineering which undermines its scalability. Therefore,

instead of developing the authentication mechanism, similar to CryPLH[92], VPP pro-

vides an abstraction to the attacker i.e for each authentication request the VPP can

accept or deny it without verifying the password. To implement this, the user can en-

able or disables the authentication and set number of the authentication attempts in

the PLC template. Whenever the VPP receives any authentication request it responds

with a success or failure response based on the template.

Methodology:Initially, we set password authentication on the real Modicon M221

PLC using engineering software and attempted authentications with correct and in-

correct passwords, capturing network communication. Next, we identified messages

and function codes for authentication using the method in 7.3.2, adding this infor-

mation to the PLC template. Finally, we ran VPP and made some authentication

attempts.

Evaluation Criteria: For this experiment, we set the criteria that VPP should re-

spond to authentication requests and approve or disapprove them according to the

PLC template.

Results: In our experiments, VPP successfully managed authentication requests ac-

cording to the PLC template. Additionally, it captured the attacker’s password hash,

which can be used for forensic analysis.

7.4.3.3 PLC Modes

PLC mode, an operational feature altered using engineering software, can be

exploited to disrupt physical processes, as noted by Syed et al. [10]. It is crucial for

VPP to replicate PLC modes to effectively engage attackers. We evaluated this on

Micrologix 1400, 1100, and Modicon M221 PLCs.

148

Methodology: We established sessions with real PLCs and changed their modes

using the engineering software i.e “Run” to “program” (for Micrologix 1400 and 1100)

or “start” to “stop” and vice versa for Modicon M221. We captured the network

communication, identified functions and messages for PLC modes, and updated the

PLC template. Finally, we tested mode changes on VPP multiple times.

Evaluation Criteria: 1) VPP should respond to mode change requests and support

all modes. 2) VPP should update and return its mode based on user requests.

Result: VPP successfully changed its mode in each cycle and maintained connection

without disruption, indicating its ability to engage attackers targeting PLC modes.

Additionally, VPP logged communication for potential threat

7.4.3.4 Control Logic Download

Control logic download is a prime target in PLC cyber attacks, where attackers

aim to disrupt physical processes by injecting malicious control logic. Thus, it is cru-

cial for VPP to allow users to download malicious control logic and store it for threat

intelligence gathering. We tested VPP’s capability to handle control logic downloads.

Methodology: We initiated VPP with the Modicon M221 PLC template and es-

tablished a communication session using SoMachineBasic software. We then down-

loaded control logic programs of varying sizes and complexities onto VPP using the

engineering software, capturing the network communication for evaluating the upload

functionality.

Evaluation Criteria: The evaluation criteria required VPP to handle all control

logic download messages without timeouts or session disconnects, ensuring the user

receives confirmation of control logic download from the engineering software.

Results: Our experiments demonstrated that VPP successfully handled all download

requests. As seen in Table 25, we downloaded 40 control logic programs to the VPP.

149

Table 25. Summary of control logic download operations on M221 PLC

File

Size

(Kb)

of

Programms

Avg no.

of Rungs

Avg no.of

Instructions

Total

Req

Msgs

No. of

Write

msg

No. of

Connection

Timeouts

60-80 24 2.75 10.75 9050 1126 0

81-90 5 3.8 10.2 1888 255 0

91-100 5 9 25.8 1996 245 0

101-120 3 10.66 26.66 1178 151 0

120+ 3 17.3 77.66 1176 173 0

Total 40 - - 15288 1950 0

During these operations, it received 15,288 request messages, including 1,950 messages

to write control logic on PLC memory. VPP effectively responded to all messages and

stored the communication, which can be used to extract the control logic binary

7.4.3.5 Control Logic Upload

Control logic upload is an essential feature for VPP to support, as it is often used

in cyber attacks [79, 29]. Attackers perform reconnaissance by uploading or reading

control logic from the PLC memory, gaining insights into the physical process’s in-

puts, outputs, and current state. This allows them to create efficient and impactful

malicious control logic. Additionally, after downloading malicious control logic to the

VPP, attackers may perform upload operations to verify that the desired malicious

control logic is running on the PLC.

Methodology: To evaluate VPP’s control logic upload functionality, we began by

running VPP with the M221 template and providing it with network dumps captured

during the control logic download experiments. We then used the engineering soft-

150

Table 26. Summary of control logic upload operations and the transfer accuracy on

M221 PLC

File

Size (Kb)

of

prog.

Total Rungs
Total

Instructions
Total

Req Msgs

No. of

Read Msgs

of Connection

Timeouts
Upload Download Upload Download

60-80 24 66 66 258 258 5124 1228 0

81-90 5 19 19 51 51 917 265 0

91-100 5 45 45 129 129 894 249 0

101-120 3 32 32 80 80 516 141 0

120+ 3 52 52 233 233 509 168 0

Total 40 214 214 751 751 7960 2051 0

ware’s upload functionality to read the control logic that was previously downloaded

to the PLC. Finally, we compared the downloaded and uploaded control logic to as-

sess the transfer accuracy. For each control logic, we manually compared individual

rungs and instructions.

Evaluation Criteria: The evaluation criteria for this experiment are: 1)VPP

must handle all read control logic requests, 2) engineering software must successfully

upload the entire control logic from VPP without errors or session disconnects, and

3) the uploaded control logic should match the one previously downloaded, with the

same rungs and instructions in order.

Results: As shown in table 26, our evaluation demonstrates that VPP successfully

uploaded all 40 control logic files using the network dump. Additionally, we compared

the uploaded control logic program with the original program, and they had identical

rungs and instructions in the same order.

151

7.5 Case Study: Virtual PLC Platform for Elevator

After evaluating various application-level functionalities of VPP, we conducted a

case study involving multiple cyberattacks found in the literature. This study assessed

the VPP’ ability to engage with attacks and collect attack artifacts. We also analyzed

the data gathered by the VPP to detect traces of executed cyberattacks.

Experimental Setting & Methodology:In this case study, we used a lab model el-

evator controlled by a Modicon M221 PLC. A Windows 10 VM (engineering worksta-

tion) with SoMachineBasic was employed for programming and monitoring the PLC,

and an Ubuntu 20 VM (attacker VM) executed various attacks. All devices shared the

same network. We collected network dumps by performing operations on the M221

PLC to create a PLC template. Then, the VPP was started using these dumps and

the M221 template. We conducted multiple ICS attacks on the VPPindividually, cap-

turing network communication. Finally, we analyzed the network dumps for attack

evidence and the attacker’s footprint.

7.5.1 Cyber Attacks On Virtual PLC Platform

We executed multiple ICS attacks on the VPP:

Control Logic Injection Attack The control logic injection attack [72] is a type

of cyber attack where an attacker attempts to download harmful control logic onto

the memory of a PLC in order to disrupt the physical process being controlled by

the PLC. This can be achieved through the use of engineering software specific to

the targeted PLC model or through the use of custom scripts that repeatedly send

“write” requests to the PLC with the malicious payload.

152

Control Logic Theft Attack (Reconnaissance) The Control Logic Theft At-

tack (Reconnaissance) [79, 25]is a type of cyber-attack that involves gathering in-

formation about a physical process through the analysis of the control logic written

on the Programmable Logic Controller (PLC) responsible for controlling the process.

The attacker’s aim is to gain a better understanding of the physical process, which

can then be used to develop customized attacks targeting the specific process. This

attack typically involves the reconnaissance phase, which is a standard initial step in

most cyber-attacks, where the attacker seeks to learn more about the target system.

The information obtained through the Control Logic Theft Attack can be used to

develop sophisticated attacks, which may result in significant damage to the physical

process.

Control Engine Attack A Control Engine Attack [10]is a type of cyber-attack

that differs from other attacks targeting the control logic running on a Programmable

Logic Controller (PLC). Instead of targeting the control logic itself, the attacker

targets the control engine responsible for executing the control logic on the PLC.

To download new control logic onto the PLC, the PLC must first halt the execution

of the current program and enter a “program” or “stop” state. The attacker can

exploit this feature of the PLC and send a command to change the state of the PLC,

disrupting the physical process.

Brute Force Authentication Lastly, the data collection capability was tested

by performing a brute force authentication attempt. This can be achieved by using

the engineering software of the PLC or by sending authentication request messages

to the PLC through a Python script. The objective of this attack was to determine

the effectiveness of VPP in detecting and logging authentication attempts made by

153

unauthorized users. By performing a brute force authentication attempt, the VPP was

tested for its ability to detect and respond to malicious access attempts.

subsectionAnalysing the Forensic ArtifactsAfter executing attacks on VPP and

capturing the communication, we analyzed the network dumps to identify the at-

tacker’s footprints. This analysis helped determine the attacker’s methods and ac-

tions during the attack. The information can be used to reconstruct the attack and

assess its impact on the system.

Identifying Control Logic Injection and Reconnaissance Attacks: We an-

alyzed network dumps from the control logic injection and reconnaissance attacks

using Eupheus, a control logic decompiler by Sushma et al. [29]. Eupheus converts

control logic binaries to Instruction List format. We identified write request messages

with function code ‘29’ to extract the control logic binary from the network dump. To

recognize control logic theft attacks, we looked for read function code ‘28’ messages.

Our analysis found 61 unique read messages, suggesting the attacker attempted to

access the PLC’s control logic.

Detecting Control Engine Attack: To detect control engine attacks, we developed

a Python script that searches the VPP network dump for request messages where the

attacker attempts to change the M221 PLC mode from start to stop. In the M221

PLC, function code ‘40’ is used to start the PLC and ‘41’ to stop the PLC. The script

filters request messages accordingly.

∀r ∈ Reqs,

PLC START, if r.tcppayload[9] = 40

PLC STOP, if r.tcppayload[9] = 41

Continue, otherwise

Detecting Authentication Attempts: We used a custom Python script using

154

algorithm 3 to detect and analyze password authentication attempts on the VPP .

During the function code extraction and mapping phase, we identified messages and

function codes used for M221 authentication. Authentication in M221 occurs in two

steps. First, the attacker sends an authentication initialization message with a func-

tion code ‘03’, requesting the PLC for the seed to compute the password hash. The

PLC responds with a hash seed. The attacker then sends the computed password

hash using the seed provided by the M221 PLC. The password hash message has a

unique function code ‘6d’. We programmed the VPP to engage the attacker, respond-

ing to the initial authentication request by repeating an old authentication message

and rejecting the authentication with an error function code ‘fd’ when the attacker

sends the password hash.

Algorithm 5 Algorithm to detect PLC Authentication Attempt
r ← Reqs

if r.tcppayload[9] == “03” then

Authentication Attempt

end if

if r.tcppayload[9] == “6D” then

Password Hash

end if

7.6 Conclusion

As attacks on ICS systems continue to grow in both frequency and sophistica-

tion, it is imperative for the security community to understand attacker behavior and

capabilities. In this paper, we introduce VPP, a scalable, protocol-agnostic honey-

pot. Our experimental results show that VPP outperforms existing state-of-the-art

honeypots in the literature by providing application-level functionalities. Moreover,

155

the PLC template generation feature of VPP highlights its scalability, allowing the

security community to configure it to operate as a variety of (out-of-the-box) PLCs.

To illustrate VPP’s effective engagement with attackers, we conducted a case study

using a lab model of an elevator. Throughout this case study, we launched several

attacks on the PLC, demonstrating that VPP not only successfully engages with the

attacker but also generates valuable data for forensic analysis and the production of

trustworthy threat intelligence.

156

CHAPTER 8

CONCLUSION

The increasing connectivity of industrial control systems (ICS) with enterprise net-

works and the internet has made them vulnerable to adversaries. Programmable

Logic Controllers (PLCs) in ICS are frequently targeted by attackers aiming to dis-

rupt physical processes. However, due to the proprietary nature of PLC communi-

cation protocols and engineering software, there is a limited availability of security

and forensic tools for these PLCs. Therefore, the objective of this dissertation was to

develop a virtual PLC platform capable of using captured ICS network traffic to com-

municate with engineering software. The platform’s applications include performing

forensic analysis of network-based ICS attacks, vulnerability analysis, and collecting

ICS threat intelligence.

The first contribution of this research was the development of a virtual PLC

platform that effectively emulates a real PLC. The platform utilizes captured ICS

network dumps to learn session-dependent fields and protocol templates. The tool is

fully automated and scalable for multiple PLCs. Extensive testing was conducted on

several PLCs, such as Schneider Electric Modicon M221, Allen-Bradley MicroLogix

1400, and MicroLogix 1100, demonstrating successful communication between the

virtual PLC platform and engineering software. Future work will involve testing the

virtual PLC platform with additional PLCs.

The second contribution focused on the forensic analysis of various network-based

attacks on ICS. Using the virtual PLC platform, we demonstrated forensic analysis of

”Denial of Engineering Operation” and ”Control Logic Injection” attacks, successfully

157

recovering control logic from network traffic with 100

The third contribution involved the design and implementation of a Protocol

Reverse Engineering Engine (PREE). PREE is capable of dissecting a wide range of

ICS protocols, empowering control engineers to formulate heuristics for identifying

fields across diverse ICS protocols. Through rigorous testing and evaluation across

six different ICS protocols and five PLCs from various vendors, PREE demonstrated

its versatility and effectiveness.

The fourth contribution introduced a new attack on PLCs called the Control

Logic Engine attack. This attack targets the control engine of a PLC responsible for

executing the control logic, effectively halting the physical process. The attack was

successfully conducted on five different PLCs, including CLICK, MicroLogix 1400,

MicroLogix 1100, Modicon M221, and SEL RTAC-3505.

Finally, the virtual PLC platform demonstrated its capability to act as a PLC

honeypot, mimicking various PLCs. A case study was presented using a lab model of

an elevator with the virtual PLC platform, showcasing its ability to engage with an

attacker and store attack data.

In conclusion, this dissertation has contributed to the development of a virtual

PLC platform, conducted forensic analysis of network-based attacks on ICS, designed

a Protocol Reverse Engineering Engine, demonstrated a new attack on PLCs, and

showcased the virtual PLC platform’s honeypot functionality. These contributions

enhance the understanding and security of industrial control systems, providing valu-

able insights for threat detection, prevention, and forensic analysis in the field of ICS

security.

158

Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

RVA Richmond Virginia

ICS Industrial Control System

DEO Denial of Engineering Operations

PLC Programmable Logic Controllers

VPP Virtual PLC Platform

PREE Protocol Reverse Engineering Engine

159

Appendix B

LIST OF PUBLICATIONS BY THE CANDIDATE, SYED ALI QASIM

• [WiNTECH 2023]. Syed Ali Qasim, Muhammad Taqi Raza, Irfan Ahmed,

“vPLC: A scalable PLC testbed for IIoT Research”, In the proceedings of the

17th ACM Workshop on Wireless Network Testbeds, Experimental evaluation

& Characterization, 2023. Submitted

• [HOST 2024]. Syed Ali Qasim, Muhammad Taqi Raza, Irfan Ahmed,

“PLCpot: Application Dialogue Replay based Scalable PLC Honeypot for In-

dustrial Control Systems”, In the proceedings of IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), 2024. Submitted

• [DFRWS USA]. Syed Ali Qasim, Wooyeon Jo, Irfan Ahmed, “PREE:

Heuristic Builder for Reverse Engineering of Network Protocols in Industrial

Control Systems”, In the 23rd Annual Digital Forensics Research Conference

(DFRWS USA’23), July 2023, Baltimore, Maryland, USA

• [IEEE Security and Privacy Journal]. Adeen Ayub, Wooyeon Jo, Syed

Ali Qasim, Irfan Ahmed, “How are industrial control systems insecure by

design? A deeper insight into real-world PLCs”, In IEEE Security and Privacy

journal, 2023

• [IEEE Access Journal]. Masrik Dahir, Syed Ali Qasim, Irfan Ahmed,

“Cronus: An Automated Feedback Tool for Concept Maps”, In IEEE Access

Journal, August 2021

160

• [ICCIP]. Syed Ali Qasim, Adeen Ayub, Jordan A Johnson, Irfan Ahmed,

“Attacking the IEC-61131 Logic Engine in Programmable Logic Controllers

in Industrial Control Systems”, In the 15th IFIP International Conference on

Critical Infrastructure Protection (ICCIP), March 2021, Arlington, Virginia.

• [DFRWS USA]. Syed Ali Qasim, Jared Smith, Irfan Ahmed, “ Control

Logic Forensics Framework using Built-in Decompiler of Engineering Software

in Industrial Control Systems”, In the 20th Annual Digital Forensics Research

Conference (DFRWS’20), July 2020, Memphis, TN. (held virtually)

(BEST STUDENT PAPER AWARD)

• [ISC]. Syed Ali Qasim, Juan Lopez Jr, Irfan Ahmed, “Automated Recon-

struction of Control Logic for Programmable Logic Controller Forensics”, In the

22nd Information Security Conference (ISC’19), September 2019, New York.

161

REFERENCES

[1] Irfan Ahmed et al. “A SCADA System Testbed for Cybersecurity and Forensic

Research and Pedagogy”. In: Proceedings of the 2nd Annual Industrial Control

System Security Workshop (ICSS). Los Angeles, CA, USA, 2016. isbn: 978-1-

4503-4788-4.

[2] I. Ahmed et al. “SCADA Systems: Challenges for Forensic Investigators”. In:

Computer 45.12 (Dec. 2012), pp. 44–51. issn: 0018-9162.

[3] I. Ahmed et al. “Programmable Logic Controller Forensics”. In: IEEE Security

Privacy 15.6 (Nov. 2017), pp. 18–24. issn: 1540-7993.

[4] Saranyan Senthivel et al. “Denial of Engineering Operations Attacks in In-

dustrial Control Systems”. In: Proceedings of the Eighth ACM Conference on

Data and Application Security and Privacy. CODASPY ’18. Tempe, AZ, USA:

ACM, 2018, pp. 319–329. isbn: 978-1-4503-5632-9.

[5] Luis Garcia et al. “Hey, My Malware Knows Physics! Attacking PLCs with

Physical Model Aware Rootkit”. In: Proceedings of the Eighth ACM Conference

on Data and Application Security and Privacy. NDSS,2017. San Diego, CA,

USA: Internet Society, 2017. isbn: 1-891562-46-0. url: http://dx.doi.org/

10.14722/ndss.2017.23313.

[6] S. Valentine and C. Farkas. “Software security: Application-level vulnerabilities

in SCADA systems”. In: 2011 IEEE International Conference on Information

Reuse Integration. Aug. 2011, pp. 498–499. doi: 10.1109/IRI.2011.6009603.

162

http://dx.doi.org/10.14722/ndss.2017.23313
http://dx.doi.org/10.14722/ndss.2017.23313
https://doi.org/10.1109/IRI.2011.6009603

[7] Nishchal Singh Kush et al. “Gap analysis of intrusion detection in smart grids”.

In: Proceedings of 2nd International Cyber Resilience Conference. Ed. by C

Valli. Australia: secau-Security Research Centre, 2011, pp. 38–46.

[8] T. M. Chen and S. Abu-Nimeh. “Lessons from Stuxnet”. In: Computer 44.4

(Apr. 2011), pp. 91–93. issn: 0018-9162. doi: 10.1109/MC.2011.115.

[9] Nicolas Falliere, Liam O Murchu, and Eric Chien. “W32.Stuxnet Dossier”. In:

(2011). url: https://www.symantec.com/content/en/us/enterprise/

media/%20security_response/whitepapers/w32_stuxnet_dossier.pdf.

[10] Syed Ali Qasim et al. “Attacking the IEC 61131 Logic Engine in Programmable

Logic Controllers”. In: Critical Infrastructure Protection XV. Ed. by Jason

Staggs and Sujeet Shenoi. Cham: Springer International Publishing, 2022,

pp. 73–95. isbn: 978-3-030-93511-5.

[11] AllenBradlry. Product specifications. url: https://ab.rockwellautomation.

com/Programmable-Controllers/MicroLogix-1400#overview.

[12] James Spiro. Cyberattacks on critical infrastructure jump by 41% in first half

of 2021. Aug. 2021. url: https:www.calcalistech.com/ctech/articles/

0,7340,L-3915536,00.html.

[13] url: https://security.claroty.com/1H-vulnerability-report-2021.

[14] Adeen Ayub, Hyunguk Yoo, and Irfan Ahmed. “Empirical Study of PLC Au-

thentication Protocols in Industrial Control Systems”. In: 15th IEEE Workshop

on Offensive Technologies (WOOT). IEEE, 2021.

[15] Adeen Ayub et al. “How Are Industrial Control Systems Insecure by Design?

A Deeper Insight Into Real-World Programmable Logic Controllers”. In: IEEE

Security Privacy 21.4 (2023), pp. 10–19. doi: 10.1109/MSEC.2023.3271273.

163

https://doi.org/10.1109/MC.2011.115
https://www.symantec.com/content/en/us/enterprise/media/%20security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/%20security_response/whitepapers/w32_stuxnet_dossier.pdf
https://ab.rockwellautomation.com/Programmable-Controllers/MicroLogix-1400#overview
https://ab.rockwellautomation.com/Programmable-Controllers/MicroLogix-1400#overview
https:www.calcalistech.com/ctech/articles/0,7340,L-3915536,00.html
https:www.calcalistech.com/ctech/articles/0,7340,L-3915536,00.html
https://security.claroty.com/1H-vulnerability-report-2021
https://doi.org/10.1109/MSEC.2023.3271273

[16] Daniele Antonioli, Anand Agrawal, and Nils Ole Tippenhauer. “Towards High-

Interaction Virtual ICS Honeypots-in-a-Box”. In: Proceedings of the 2nd ACM

Workshop on Cyber-Physical Systems Security and Privacy. CPS-SPC ’16. Vi-

enna, Austria: Association for Computing Machinery, 2016, pp. 13–22. isbn:

9781450345682. doi: 10.1145/2994487.2994493. url: https://doi.org/

10.1145/2994487.2994493.

[17] Emmanouil Vasilomanolakis et al. “Multi-stage attack detection and signature

generation with ICS honeypots”. In: NOMS 2016 - 2016 IEEE/IFIP Network

Operations and Management Symposium. 2016, pp. 1227–1232. doi: 10.1109/

NOMS.2016.7502992.

[18] Ramakrishnan Ramanathan. “The IEC 61131-3 programming languages fea-

tures for industrial control systems”. In: 2014 World Automation Congress

(WAC). 2014, pp. 598–603. doi: 10.1109/WAC.2014.6936062.

[19] AllenBradlry. User Manual. url: https://literature.rockwellautomation.

com/idc/groups/literature/documents/um/1763-um001_-en-p.pdf.

[20] Modicon. SoMachine Basic - Generic Functions Library Guide. https://www.

schneider-electric.com/en/download/document/EIO0000001474/.

[21] Syed Ali Qasim, Jared M. Smith, and Irfan Ahmed. “Control Logic Forensics

Framework using Built-in Decompiler of Engineering Software in Industrial

Control Systems”. In: Forensic Science International: Digital Investigation 33

(2020), p. 301013. issn: 2666-2817. doi: https://doi.org/10.1016/j.

fsidi.2020.301013. url: https://www.sciencedirect.com/science/

article/pii/S2666281720302626.

[22] Irfan Ahmed et al. “A SCADA System Testbed for Cybersecurity and Forensic

Research and Pedagogy”. In: Proceedings of the 2nd Annual Industrial Control

164

https://doi.org/10.1145/2994487.2994493
https://doi.org/10.1145/2994487.2994493
https://doi.org/10.1145/2994487.2994493
https://doi.org/10.1109/NOMS.2016.7502992
https://doi.org/10.1109/NOMS.2016.7502992
https://doi.org/10.1109/WAC.2014.6936062
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1763-um001_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1763-um001_-en-p.pdf
https://www.schneider-electric.com/en/download/document/EIO0000001474/
https://www.schneider-electric.com/en/download/document/EIO0000001474/
https://doi.org/https://doi.org/10.1016/j.fsidi.2020.301013
https://doi.org/https://doi.org/10.1016/j.fsidi.2020.301013
https://www.sciencedirect.com/science/article/pii/S2666281720302626
https://www.sciencedirect.com/science/article/pii/S2666281720302626

System Security Workshop (ICSS). Los Angeles, CA, USA, 2016. isbn: 978-1-

4503-4788-4.

[23] I. Ahmed et al. “Programmable Logic Controller Forensics”. In: IEEE Security

Privacy 15.6 (Nov. 2017), pp. 18–24. issn: 1540-7993.

[24] Hyunguk Yoo and Irfan Ahmed. “Control Logic Injection Attacks on Industrial

Control Systems”. In: ICT Systems Security and Privacy Protection. Ed. by

Gurpreet Dhillon et al. Cham: Springer International Publishing, 2019, pp. 33–

48. isbn: 978-3-030-22312-0.

[25] Sushma Kalle et al. “CLIK on PLCs! Attacking Control Logic with Decompila-

tion and Virtual PLC”. In: Proceeding of the 2019 NDSS Workshop on Binary

Analysis Research (BAR). 2019.

[26] Naman Govil, Anand Agrawal, and Nils Ole Tippenhauer. “On Ladder Logic

Bombs in Industrial Control Systems”. In: Computer Security. Ed. by Sokratis

K. Katsikas et al. Cham: Springer International Publishing, 2018, pp. 110–126.

[27] Hyunguk Yoo et al. “Overshadow PLC to Detect Remote Control-Logic In-

jection Attacks”. In: Detection of Intrusions and Malware, and Vulnerability

Assessment. Ed. by Roberto Perdisci et al. Cham: Springer International Pub-

lishing, 2019, pp. 109–132. isbn: 978-3-030-22038-9.

[28] Syed Ali Qasim, Juan Lopez, and Irfan Ahmed. “Automated Reconstruction of

Control Logic for Programmable Logic Controller Forensics”. In: Information

Security. Ed. by Zhiqiang Lin, Charalampos Papamanthou, and Michalis Poly-

chronakis. Cham: Springer International Publishing, 2019, pp. 402–422. isbn:

978-3-030-30215-3.

165

[29] Sushma Kalle et al. “CLIK on PLCs! Attacking control logic with decom-

pilation and virtual PLC”. In: Binary Analysis Research (BAR) Workshop,

Network and Distributed System Security Symposium (NDSS). 2019.

[30] Irfan Ahmed et al. “SCADA Systems: Challenges for Forensic Investigators”.

In: Computer 45 (2012), pp. 44–51.

[31] Adeen Ayub et al. “Gadgets of Gadgets in Industrial Control Systems: Re-

turn Oriented Programming Attacks on PLCs”. In: 2023 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST). IEEE. 2023.

[32] Nauman Zubair et al. “Control Logic Obfuscation Attack in Industrial Con-

trol Systems”. In: 2022 IEEE International Conference on Cyber Security and

Resilience (CSR). IEEE. 2022, pp. 227–232.

[33] Muhammad Haris Rais et al. “JTAG-based PLC memory acquisition frame-

work for industrial control systems”. In: Forensic Science International: Digital

Investigation 37 (2021), p. 301196.

[34] Muhammad Haris Rais et al. “Memory forensic analysis of a programmable

logic controller in industrial control systems”. In: Forensic Science Interna-

tional: Digital Investigation 40 (2022), p. 301339.

[35] Rima Asmar Awad et al. “Towards generic memory forensic framework for

programmable logic controllers”. In: Forensic Science International: Digital

Investigation 44 (2023). Selected papers of the Tenth Annual DFRWS EU

Conference, p. 301513. issn: 2666-2817. doi: https://doi.org/10.1016/

j.fsidi.2023.301513. url: https://www.sciencedirect.com/science/

article/pii/S2666281723000148.

166

https://doi.org/https://doi.org/10.1016/j.fsidi.2023.301513
https://doi.org/https://doi.org/10.1016/j.fsidi.2023.301513
https://www.sciencedirect.com/science/article/pii/S2666281723000148
https://www.sciencedirect.com/science/article/pii/S2666281723000148

[36] Zhengxiong Luo et al. “Polar: Function Code Aware Fuzz Testing of ICS Proto-

col”. In: ACM Trans. Embed. Comput. Syst. 18.5s (Oct. 2019). issn: 1539-9087.

[37] Zhengxiong Luo et al. “ICS Protocol Fuzzing: Coverage Guided Packet Crack

and Generation”. In: 2020 57th ACM/IEEE Design Automation Conference

(DAC). 2020, pp. 1–6.

[38] Matthias Niedermaier, Florian Fischer, and Alexander von Bodisco. “PropFuzz

— An IT-security fuzzing framework for proprietary ICS protocols”. In: 2017

International Conference on Applied Electronics (AE). 2017, pp. 1–4.

[39] Huan Yang, Liang Cheng, and Mooi Choo Chuah. “Deep-Learning-Based Net-

work Intrusion Detection for SCADA Systems”. In: 2019 IEEE Conference on

Communications and Network Security (CNS). 2019, pp. 1–7.

[40] Huiping Li, Bin Wang, and Xin Xie. “An Improved Content-Based Outlier

Detection Method for ICS Intrusion Detection”. In: EURASIP J. Wirel. Com-

mun. Netw. 2020.1 (May 2020). issn: 1687-1472.

[41] Hyunguk Yoo et al. “Overshadow PLC to Detect Remote Control-Logic In-

jection Attacks”. In: Detection of Intrusions and Malware, and Vulnerability

Assessment. Ed. by Roberto Perdisci et al. Cham: Springer International Pub-

lishing, 2019, pp. 109–132. isbn: 978-3-030-22038-9.

[42] Hyunguk Yoo and Irfan Ahmed. “Control Logic Injection Attacks on Industrial

Control Systems”. In: ICT Systems Security and Privacy Protection. Ed. by

Gurpreet Dhillon et al. Cham: Springer International Publishing, 2019, pp. 33–

48.

167

[43] Saranyan Senthivel et al. “Denial of engineering operations attacks in industrial

control systems”. In: Proceedings of the Eighth ACM Conference on Data and

Application Security and Privacy. 2018, pp. 319–329.

[44] Nauman Zubair et al. “PEM: Remote forensic acquisition of PLC memory in

industrial control systems”. In: Forensic Science International: Digital Inves-

tigation 40 (2022), p. 301336.

[45] Irfan Ahmed et al. “Programmable Logic Controller Forensics”. In: IEEE Se-

curity Privacy 15.6 (2017), pp. 18–24.

[46] Saranyan Senthivel, Irfan Ahmed, and Vassil Roussev. “SCADA network foren-

sics of the PCCC protocol”. In: Digital Investigation 22 (2017), S57–S65. issn:

1742-2876.

[47] John Narayan, Sandeep K. Shukla, and T. Charles Clancy. “A Survey of Au-

tomatic Protocol Reverse Engineering Tools”. In: ACM Comput. Surv. 48.3

(Dec. 2015). issn: 0360-0300. doi: 10.1145/2840724. url: https://doi.

org/10.1145/2840724.

[48] Zhiqiang Lin et al. “Automatic protocol format reverse engineering through

context-aware monitored execution.” In: NDSS. Vol. 8. 2008, pp. 1–15.

[49] Yeop Chang et al. “One Step More: Automatic ICS Protocol Field Analysis”.

In: Critical Information Infrastructures Security. Ed. by Gregorio D’Agostino

and Antonio Scala. Cham: Springer International Publishing, 2018, pp. 241–

252. isbn: 978-3-319-99843-5.

[50] Gergő Ládi, Levente Buttyán, and Tamás Holczer. “Message Format and Field

Semantics Inference for Binary Protocols Using Recorded Network Traffic”.

168

https://doi.org/10.1145/2840724
https://doi.org/10.1145/2840724
https://doi.org/10.1145/2840724

In: 2018 26th International Conference on Software, Telecommunications and

Computer Networks (SoftCOM). 2018, pp. 1–6.

[51] Hyunjin Kim et al. “Unknown Payload Anomaly Detection Based on Format

and Field Semantics Inference in Cyber-Physical Infrastructure Systems”. In:

IEEE Access 9 (2021), pp. 75542–75552.

[52] Rui Wang, Yijie Shi, and Jinkou Ding. “Reverse Engineering of Industrial

Control Protocol By XGBoost with V-gram”. In: 2020 IEEE 6th International

Conference on Computer and Communications (ICCC). IEEE. 2020, pp. 172–

176.

[53] Kyu-Seok Shim et al. “Clustering method in protocol reverse engineering for

industrial protocols”. In: International Journal of Network Management 30

(June 2020).

[54] Zewei Wu et al. “How to Reverse Engineer ICS Protocols Using Pair-HMM”.

In: Information and Communication Technology for Intelligent Systems. Ed.

by Suresh Chandra Satapathy and Amit Joshi. Singapore: Springer Singapore,

2019, pp. 115–125. isbn: 978-981-13-1747-7.

[55] Syed Ali Qasim, Wooyeon Jo, and Irfan Ahmed. “PREE: Heuristic builder

for reverse engineering of network protocols in industrial control systems”. In:

Forensic Science International: Digital Investigation 45 (2023), p. 301565. issn:

2666-2817. doi: https://doi.org/10.1016/j.fsidi.2023.301565. url:

https://www.sciencedirect.com/science/article/pii/S2666281723000744.

[56] Philippe Biondi and the Scapy community. https://scapy.net/. 2022.

169

https://doi.org/https://doi.org/10.1016/j.fsidi.2023.301565
https://www.sciencedirect.com/science/article/pii/S2666281723000744
https://scapy.net/

[57] Zhengxiong Luo et al. “Polar: Function Code Aware Fuzz Testing of ICS Proto-

col”. In: ACM Transactions on Embedded Computing Systems 18 (Oct. 2019),

pp. 1–22. doi: 10.1145/3358227.

[58] Wang Yusheng et al. “Intrusion Detection of Industrial Control System Based

on Modbus TCP Protocol”. In: 2017 IEEE 13th International Symposium on

Autonomous Decentralized System (ISADS). 2017, pp. 156–162. doi: 10.1109/

ISADS.2017.29.

[59] Andrew Rosenberg and Julia Hirschberg. “V-measure: A conditional entropy-

based external cluster evaluation measure”. In: Proceedings of the 2007 joint

conference on empirical methods in natural language processing and computa-

tional natural language learning (EMNLP-CoNLL). 2007, pp. 410–420.

[60] Yapeng Ye et al. “NetPlier: Probabilistic Network Protocol Reverse Engineer-

ing from Message Traces.” In: NDSS. 2021, pp. 1–18.

[61] Georges Bossert, Frédéric Guihéry, and Guillaume Hiet. “Towards automated

protocol reverse engineering using semantic information”. In: Proceedings of the

9th ACM symposium on Information, computer and communications security.

2014, pp. 51–62.

[62] Kazutaka Katoh et al. “MAFFT: a novel method for rapid multiple sequence

alignment based on fast Fourier transform”. In: Nucleic acids research 30.14

(2002), pp. 3059–3066.

[63] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. “Discoverer: Auto-

matic Protocol Reverse Engineering from Network Traces.” In: USENIX Secu-

rity Symposium. 2007, pp. 1–14.

170

https://doi.org/10.1145/3358227
https://doi.org/10.1109/ISADS.2017.29
https://doi.org/10.1109/ISADS.2017.29

[64] Yapeng Ye et al. Netplier Tool Data. https://github.com/netplier-tool/

NetPlier/tree/master/data. 2021.

[65] Wenyu Ren, Timothy Yardley, and Klara Nahrstedt. “Edmand: edge-based

multi-level anomaly detection for scada networks”. In: 2018 IEEE Interna-

tional Conference on Communications, Control, and Computing Technologies

for Smart Grids (SmartGridComm). IEEE. 2018, pp. 1–7.

[66] Vern Paxson. “Bro: a system for detecting network intruders in real-time”. In:

Computer networks 31.23-24 (1999), pp. 2435–2463.

[67] Quickdraw-Snort. https://github.com/digitalbond/Quickdraw- Snort.

2022.

[68] N. Kush et al. “Gap analysis of intrusion detection in smart grids”. In: 2nd

International Cyber Resilience Conference (ICRC 2011). 2011, pp. 38–46.

[69] I. Ahmed et al. “Programmable Logic Controller Forensics”. In: IEEE Security

Privacy 15.6 (Nov. 2017), pp. 18–24. issn: 1540-7993.

[70] S. Bhatia, S. Behal, and Irfan Ahmed. “Distributed Denial of Service Attacks

and Defense Mechanisms: Current Landscape and Future Directions”. In: Ver-

satile Cybersecurity. Vol. 72. Cham: Springer International Publishing, 2018.

[71] Hyunguk Yoo et al. “Overshadow PLC to detect remote control-logic injection

attacks”. In: International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer. 2019, pp. 109–132.

[72] Hyunguk Yoo and Irfan Ahmed. “Control logic injection attacks on industrial

control systems”. In: IFIP International Conference on ICT Systems Security

and Privacy Protection. Springer. 2019, pp. 33–48.

171

https://github.com/netplier-tool/NetPlier/tree/master/data
https://github.com/netplier-tool/NetPlier/tree/master/data
https://github.com/digitalbond/Quickdraw-Snort

[73] Muhammad Haris Rais, Ye Li, and Irfan Ahmed. “Spatiotemporal G-code

Modeling for Secure FDM-based 3D Printing”. In: Proceedings of the ACM/IEEE

twelfth International Conference on Cyber-Physical Systems. ICCPS ’21. Nashville,

TN: Association for Computing Machinery, 2021.

[74] Nicolas Falliere, Liam O Murchu, and Eric Chien. “W32.stuxnet dossier”. In:

White paper, Symantec Corp., Security Response 5.6 (2011), p. 29.

[75] ”MITRE”. MITRE ATT&CK. 2020. url: https://collaborate.mitre.

org/attackics/index.php/Main_Page.

[76] Ruimin Sun et al. SoK: Attacks on Industrial Control Logic and Formal Verification-

Based Defenses. 2020. arXiv: 2006.04806 [cs.CR].

[77] R. E. Johnson. “Survey of SCADA security challenges and potential attack vec-

tors”. In: 2010 International Conference for Internet Technology and Secured

Transactions. 2010, pp. 1–5.

[78] Stephen Dunlap Carl Schuett Jonathan Butts. “An evaluation of modifica-

tion attacks on programmable logic controllers”. In: International Journal of

Critical Infrastructure Protection 7 (1 2014), pp. 61–68. issn: 1874-5482. url:

https://doi.org/10.1016/j.ijcip.2014.01.004..

[79] Stephen McLaughlin and Patrick McDaniel. “SABOT: Specification-Based Pay-

load Generation for Programmable Logic Controllers”. In: Proceedings of the

2012 ACM Conference on Computer and Communications Security. CCS ’12.

Raleigh, North Carolina, USA: Association for Computing Machinery, 2012,

pp. 439–449. isbn: 9781450316514. doi: 10.1145/2382196.2382244. url:

https://doi.org/10.1145/2382196.2382244.

172

https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://arxiv.org/abs/2006.04806
https://doi.org/10.1016/j.ijcip.2014.01.004.
https://doi.org/10.1145/2382196.2382244
https://doi.org/10.1145/2382196.2382244

[80] Carl Schuett, Jonathan Butts, and Stephen Dunlap. “An evaluation of modi-

fication attacks on programmable logic controllers”. In: International Journal

of Critical Infrastructure Protection 7.1 (2014), pp. 61–68.

[81] ”Schweitzer Engineering Laboratories”. SEL-3505/SEL-3505-3 Real-Time Au-

tomation Controller Data sheet. url: https://cms-cdn.selinc.com/assets/

Literature/Product%20Literature/Data%20Sheets/3505_DS_20200224.

pdf?v=20200305-193459.

[82] Exe-GUARD. url: https://www.energy.gov/sites/prod/files/2017/04/

f34/SEL_Exe-guard_FactSheet.pdf.

[83] ”ETTERCAP”. THE ETTERCAP PROJECT. 2021. url: https://www.

ettercap-project.org/.

[84] H. A. S. Adjei et al. “SSL Stripping Technique (DHCP Snooping and ARP

Spoofing Inspection)”. In: 2021 23rd International Conference on Advanced

Communication Technology (ICACT). 2021, pp. 187–193. doi: 10 . 23919 /

ICACT51234.2021.9370460.

[85] Dragos and Dragos. CRASHOVERRIDE: Analyzing the malware that attacks

power grids. Apr. 2022. url: https://www.dragos.com/resource/crashoverride-

analyzing-the-malware-that-attacks-power-grids/.

[86] Yassine Mekdad et al. “A Threat Model Method for ICS Malware: The TRISIS

Case”. In: Proceedings of the 18th ACM International Conference on Comput-

ing Frontiers. CF ’21. Virtual Event, Italy: Association for Computing Machin-

ery, 2021, pp. 221–228. isbn: 9781450384049. doi: 10.1145/3457388.3458868.

url: https://doi.org/10.1145/3457388.3458868.

173

https://cms-cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3505_DS_20200224.pdf?v=20200305-193459
https://cms-cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3505_DS_20200224.pdf?v=20200305-193459
https://cms-cdn.selinc.com/assets/Literature/Product%20Literature/Data%20Sheets/3505_DS_20200224.pdf?v=20200305-193459
https://www.energy.gov/sites/prod/files/2017/04/f34/SEL_Exe-guard_FactSheet.pdf
https://www.energy.gov/sites/prod/files/2017/04/f34/SEL_Exe-guard_FactSheet.pdf
https://www.ettercap-project.org/
https://www.ettercap-project.org/
https://doi.org/10.23919/ICACT51234.2021.9370460
https://doi.org/10.23919/ICACT51234.2021.9370460
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://doi.org/10.1145/3457388.3458868
https://doi.org/10.1145/3457388.3458868

[87] Kevin E. Hemsley and Dr. Ronald E. Fisher. History of industrial control sys-

tem cyber incidents. Dec. 2018. url: https://www.osti.gov/servlets/

purl/1505628.

[88] Jianzhou You et al. “HoneyVP: A Cost-Effective Hybrid Honeypot Architec-

ture for Industrial Control Systems”. In: ICC 2021 - IEEE International Con-

ference on Communications. 2021, pp. 1–6. doi: 10.1109/ICC42927.2021.

9500567.

[89] Arthur Jicha, Mark Patton, and Hsinchun Chen. “SCADA honeypots: An in-

depth analysis of Conpot”. In: 2016 IEEE Conference on Intelligence and Se-

curity Informatics (ISI). 2016, pp. 196–198. doi: 10.1109/ISI.2016.7745468.

[90] Susan Wade. “SCADA Honeynets: The attractiveness of honeypots as critical

infrastructure security tools for the detection and analysis of advanced threats”.

PhD thesis. 2011.

[91] Efrén López-Morales et al. “HoneyPLC: A Next-Generation Honeypot for In-

dustrial Control Systems”. In: Proceedings of the 2020 ACM SIGSAC Con-

ference on Computer and Communications Security. CCS ’20. Virtual Event,

USA: Association for Computing Machinery, 2020, pp. 279–291. isbn: 9781450370899.

doi: 10.1145/3372297.3423356. url: https://doi.org/10.1145/3372297.

3423356.

[92] Daniela Buza et al. “CryPLH: Protecting Smart Energy Systems from Targeted

Attacks with a PLC Honeypot”. In: International Workshop on Smart Grid

Security. 2014.

[93] Feng Xiao, Enhong Chen, and Qiang Xu. “S7commTrace: A High Interactive

Honeypot for Industrial Control System Based on S7 Protocol”. In: Inter-

174

https://www.osti.gov/servlets/purl/1505628
https://www.osti.gov/servlets/purl/1505628
https://doi.org/10.1109/ICC42927.2021.9500567
https://doi.org/10.1109/ICC42927.2021.9500567
https://doi.org/10.1109/ISI.2016.7745468
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3372297.3423356

national Conference on Information, Communications and Signal Processing.

2017.

[94] Mauro Conti, Francesco Trolese, and Federico Turrin. “ICSpot: A High-Interaction

Honeypot for Industrial Control Systems”. In: 2022 International Symposium

on Networks, Computers and Communications (ISNCC). 2022, pp. 1–4. doi:

10.1109/ISNCC55209.2022.9851732.

[95] Yao Shan et al. “NeuPot: A Neural Network-Based Honeypot for Detecting

Cyber Threats in Industrial Control Systems”. In: IEEE Transactions on In-

dustrial Informatics (2023), pp. 1–10. doi: 10.1109/TII.2023.3240739.

[96] Stéphane Raimbault. Step7 Open Source Ethernet Communication Suite. url:

https://snap7.sourceforge.net/.

[97] Stéphane Raimbault. Libmodbus. url: https://libmodbus.org/.

175

https://doi.org/10.1109/ISNCC55209.2022.9851732
https://doi.org/10.1109/TII.2023.3240739
https://snap7.sourceforge.net/
https://libmodbus.org/

VITA

Syed Ali Qasim received his BS in Computer Science from Lahore University of Man-

agement Sciences, Pakistan in 2016. He joined the Doctor of Philosophy program

at Virginia Commonwealth University, Richmond, Virginia in 2017. He is currently

working as a research assistant under the supervision of Dr. Irfan Ahmed in Secu-

rity and Forensics Engineering lab at VCU. His research interests are in developing

automated tools for security and forensic analysis of industrial control systems and

internet of things.

176

	VIRTUAL PLC PLATFORM FOR SECURITY AND FORENSICS OF INDUSTRIAL CONTROL SYSTEMS
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Lack of Automated Forensic Tools
	Vulnerability Detection
	Threat Intelligence

	Objective
	Development of the Virtual PLC Platform
	Utilization of the Virtual PLC Platform for Forensic Analysis
	Application of the Virtual PLC Platform for Vulnerability Discovery
	Employment of the Virtual PLC Platform for Threat Intelligence

	Challenges in Developing Scalable Security and Forensic Tools
	Contributions
	Organization of the proposal

	 Background
	Introduction to Industrial Control Systems (ICS)
	PLC, Engineering Software and Control-Logic

	 Developing the Virtual PLC Platform
	PLC Communication Insights
	Virtual PLC Platform Design Goals
	Virtual PLC Platform
	Overview

	Virtual PLC Platform Design
	Data Processing
	PLC Template Generation
	Identifying Session Dependent Fields
	Extracting the Message Structure

	Communication Interface - Virtual PLC

	Evaluation
	Evaluation With Upload Network Dump
	Virtual PLC as a Device
	Function-Level Accuracy
	Packet-Level Accuracy

	Evaluation With Download Network Dump
	Experimental Setting
	Functional-level Accuracy
	Packet-Level Accuracy
	Transfer Accuracy

	Conclusion

	 Forensic Analysis of ICS Attacks Using Virtual PLC
	Introduction
	Network Based Attack on PLCs
	Denial of Engineering Operations (DEO) Attack
	Control-Logic Injection Attacks

	Problem Statement and Challenges
	Problem Statement
	Challenges in Control-logic Forensics

	Forensic Analysis of Attacks Using Virtual PLC Platform
	Forensic Analysis of Denial of Engineering Operations Attacks
	DEO I
	DEO II

	Forensic Analysis of Control-Logic Injection Attacks
	Conclusion

	 PREE: Heuristic Builder for Reverse Engineering of Network Protocols in Industrial Control Systems
	Introduction
	Background and Related Work
	Overview of PREE Architecture
	Data Pre-Processing
	Data Analytics
	Heuristic Building
	Heuristics for Variable Fields

	Implementation
	Evaluation
	Data Collection
	Evaluation Metrics
	Evaluation Methodology
	Modbus
	UMAS
	ENIP
	PCCC
	CLICK
	OMRON FINS Protocol

	Comparison with Existing Tools
	Comparison Metrics
	Existing/comparison tools
	Experiment methodology
	Comparison Results

	PREE Applications for Vulnerability Study and Forensic Analysis of Different Attacks
	PREE Application 1: Vulnerability Study on CLICK PLC
	PREE Application II: Forensic Analysis of Different Attacks on CLICK PLC Using SNORT

	Conclusion

	 Attacking IEC-61131 Logic Engine In Programmable Logic Controllers In Industrial Control Systems
	Introduction
	Related Work
	Attacking the Control Logic Engine
	Adversary Model
	Overview of the Case Studies

	Case Study I: SEL-3505 RTAC
	Controller Details
	Vulnerability
	MITRE ATT&CK
	Attack Implementation
	Evaluation
	Experimental Settings
	Attack Execution and Evaluation

	Case Study II: Traditional PLCs
	Case Study II (a): Schneider Electric's Modicon M221
	Controller Details
	Vulnerability
	MITRE ATT&CK
	Attack Implementation
	Experimental Settings
	Attack Execution and Evaluation

	Case Study II (b): Allen-Bradley's MicroLogix 1400 & 1100
	Controller Details.
	Vulnerability
	MITRE ATT&CK
	Attack Implementation
	Experimental Settings
	Attack Execution and Evaluation

	Mitigation
	Conclusion

	 Using Virtual PLC Platform as a Honeypot for ICS Threat Intelligence
	Introduction
	BACKGROUND AND RELATED WORK
	Operational and Functional Features of PLC
	Related Work on ICS Honeypots
	Limitations of State-of-the-art Honeypots

	Virtual PLC Platform - Enabling Application-level PLC Functionalities at Scale
	Challenges in Developing a Scalable Honeypot
	Virtual PLC Platform Framework
	Handling PLC Functionalities (C1 & C3)
	Handling the state of the PLC

	Evaluation
	Experimental Setup and Methodology
	Device Discovery
	Operational and Functional Features
	 Session Establishment and Maintenance
	Authentication:
	PLC Modes
	Control Logic Download
	Control Logic Upload

	Case Study: Virtual PLC Platform for Elevator
	Cyber Attacks On Virtual PLC Platform

	Conclusion

	 Conclusion
	Appendix Abbreviations
	Appendix List of Publications by the candidate, Syed Ali Qasim
	References
	Vita

