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Abstract 

Model-based Imputation of Below Detection Limit Missing Data and Group Selection in Bayesian Group Index 

Regression 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Biostatistics at Virginia Commonwealth University 

Matthew Carli, Virginia Commonwealth University, July 2023 

Major Director: David C. Wheeler, Ph.D., M.P.H., Associate Professor, Department of Biostatistics 

 

Investigations into the association between chemical exposure and health outcomes are increasingly focused on the 

role of chemical mixtures, as opposed to individual chemicals. The analysis of chemical mixture data required the 

development of novel statistical methods, one of these being Bayesian group index regression. A statistical challenge 

common to all chemical mixture analyses is the ubiquitous presence of below detection limit (BDL) data. We propose 

an extension of Bayesian group index regression that treats both regression effects and missing BDL observations as 

parameters in a model estimated through a Markov Chain Monte Carlo algorithm that we refer to as Pseudo-Gibbs 

imputation. The Pseudo-Gibbs approach enables the estimated parameters of the health effects model to inform the 

missing data imputations and vice versa, as well as accounting for the true variance of the BDL imputations. We 

conduct a simulation study showing greater power to detect chemical indices significantly associated with an 

outcome and sensitivity for identifying important chemicals within indices at high levels of BDL missing data. We 

apply our model to a case-control study on the effects of chemical exposure on childhood leukemia. We next address 

a problem specific to group index models: how to partition a given set of chemicals into groups to form the requisite 

indices. We first proposed a novel variable clustering algorithm using a variant on the traditional PCA algorithm 

called Robust PCA. We compared this clustering method with other variable clustering methods from the literature 

using a simulation study. Finally, we extended the variable clustering method identified previously to incorporate 

information from an outcome variable. This semi-supervised clustering extension incorporates the ability to 

constrain clusters based on the direction of association of individual chemicals with the outcome of interest. We 

apply both unsupervised variable clustering and semi-supervised clustering methods identified to a case-control 

study on the effects of chemical exposure on non-Hodkin’s lymphoma. 
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Introduction 

A facet of modern life that is of increasing interest to both researchers and the general public is the unavoidable 

reality of exposure to chemicals. Whether introduced through agriculture 1, industry 2, or household items 3, the 

ubiquity of chemicals that are not fully understood has become a widespread cause for concern. Such concerns are 

not without merit, as commercial chemicals have been found in human tissues and in household air and dust 

samples in varying concentrations 4-5, motivating questions as to their impact on human health. Epidemiologic 

studies have identified environmental chemical exposure as a risk factor in a number of human diseases, including 

cancer, type 2 diabetes, cardiovascular disease, thyroid disease, and developmental disorders 6-10. While the inquiry 

into potential environmental risk factors for disease has been valuable, historically studies have taken a simplifying 

approach in their investigations. Single-chemical regression studies that evaluate the association of individual 

chemicals with a health outcome have predominated. Some consider the total (i.e. summed) exposure for a chemical 

class, such as polychlorinated biphenyls (PCBs) 11. Another such approach is the environment-wide association study 

(EWAS), where multiple chemical exposures from a single chemical family 12 or from many chemical families 13 are 

evaluated for association with the outcome independently, which are finally adjusted for multiple comparisons. A 

drawback of these approaches is that effects for simultaneous exposures cannot be estimated. 

Increasingly, investigations into the health impact of chemical exposures highlight the fact that they exist as mixtures 

or combinations of many simultaneous exposures 14. Therefore, epidemiologists and biostatisticians have sought to 

assess the joint impact of chemical mixtures on health outcomes, as opposed to estimating chemicals as 

independent risk factors 15-17. A difficulty posed in the analysis of chemical mixtures is the lack of statistical 

independence among exposures. Correlations between chemicals of interest can range from close to zero to near 

perfect positive correlation, resulting in the poor performance of standard regression techniques 18. Specifically, 

malperformance due to collinearity includes sign reversal and inflated standard errors of estimated regression 

coefficients. These problems can lead to erroneous conclusions about the health effects of particular chemicals and 

must be accounted for in any joint chemical analysis. 

As interest in the problem has grown, various methods to jointly analyze chemical mixture data have been 

developed. Bayesian kernel machine regression (BKMR) utilizes a kernel function to handle highly correlated 
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chemical variables and relate them to a health outcome. An advantage of BKMR is the ability to investigate non-

linear relationships and interaction effects of chemical predictors within mixtures 19. Limitations of the BKMR 

method include heavy computational burden when analyzing large datasets 20-21 and the necessity of fixing most 

chemical exposure values when investigating the association of one or two chemicals within the mixture with the 

outcome 22-23. Quantile g-computation is a method which draws from g-computation ideas found in causal effect 

estimation literature in order to jointly estimate the effect of chemicals and accommodate scenarios where 

chemicals have opposing effect directions or nonlinear effects 24. A drawback of this quantile g-computation is that 

models are restricted to a single index, which in the presence of both positively and negatively correlated chemical 

variables could result in either an effect estimate dominated by one direction or attenuated to the null.  Additionally, 

the method relies on multiple imputation procedures to deal with below detection limit missing data, which may be 

cumbersome to apply for many users 25. 

Another method of interest, weighted quantile sum (WQS) regression, constructs a weighted index where important 

chemicals contribute relatively more to an overall score, which can then be used as an estimation of the mixture’s 

effect 26-27. Individual component chemicals are each given a weight to identify the most important components 

within the group. These weights are constrained to be between 0 and 1 and sum to 1. This method was later 

extended by the addition of a bootstrapping step for the estimation of the weights 18. The advantage of WQS 

regression over traditional regression methods is that it allows for the highly correlated data commonly found in 

chemical mixtures to be analyzed while avoiding collinearity issues, and has been shown to have good sensitivity and 

specificity when identifying important exposures 18,28. One limitation of WQS regression is that the index effect is 

constrained to one direction, positive or negative. This constraint does not reflect the reality of all chemical 

mixtures, which can have certain chemicals positively associated and others negatively associated with the same 

outcome. A second limitation is that estimates are made in a two-step, data-splitting process, where weights are 

empirically estimated and weighted indices formed from training data and index effect parameters subsequently 

estimated from validation data. This reliance on data-splitting reduces power in smaller studies. 

To address the limitations of WQS regression, various extensions were made that we will refer to generally as group 

index regression methods. The first of these, grouped weighted quantile sum (GWQS) regression, extends the WQS 

model to allow for multiple chemical indices, each of which can have different magnitudes and direction of 
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association with the outcome 29-30. This method is distinct from fitting a positive and negative WQS regression model 

separately to the same data, which requires two models in comparison to a single GWQS model. GWQS regression 

was shown in simulations to outperform WQS and other traditional regression methods when the chemicals 

analyzed contained more than one group of exposures with different health effects 31. 

A further extension to index regression methods was the formulation of WQS regression in the Bayesian framework 

32-33. The Bayesian index model eliminates the need for data-splitting, as index effect estimates and their weights are 

estimated together as parameters in the Markov chain Monte Carlo (MCMC) algorithm. A second advantage of 

Bayesian index regression is that Bayesian models are generally more flexible than their frequentist counterparts. 

For example, spatial random effects and exchangeable random effects are readily incorporated into the Bayesian 

framework, and have been applied to investigate neighborhood deprivation and risk of elevated blood lead levels 

33,34 and tobacco retail outlet rates 35. GWQS regression was then also implemented in the Bayesian framework, 

which we will refer to as Bayesian group index regression. In simulations comparing Bayesian group index regression 

and GWQS regression, Bayesian group index regression was found to have slightly improved sensitivity, specificity, 

and power for finding significant effects 36.  

A challenge common to nearly all chemical exposure analyses is the presence of below detection limit (BDL) missing 

observations. BDL missing data are an artifact of laboratory analysis, where any level of chemical analyte below a 

certain detection limit (DL) cannot be reliably measured 37. Many solutions have been proposed to deal with this 

problem, and can be sorted into the following categories. The simplest fall under ad hoc substitution methods, 

where the BDL is replaced by 0, the DL, or some function of the DL (DL/2 being a common example). While such 

substitutions are easily implemented, they have been shown to result in biased parameter estimates and variances 

38-40. Another category of methods, single imputation (SI), encompasses a wide variety of imputation methods 

ranging from nonparametric Kaplan-Meier 41 to parametric maximum likelihood estimate methods 42, and have been 

shown to generate superior imputations than substitution methods. What these methods all share is that the 

imputations generated from them are afterwards treated as true observations, and as such fail to account for the 

variability of the imputation process 39. An approach that was developed to remedy this limitation of SI methods is 

multiple imputation (MI). Where SI methods will impute all missing observations once to achieve a complete dataset 
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that can then be analyzed, MI calls for many of these complete datasets to be generated. Each dataset is then 

analyzed individually, generating a set of repeat parameter estimates. These repeat estimates are then pooled, 

giving a final set of estimates that reflect the between-imputation variability of the missing BDL observations 39.  

Alternatively, imputation of BDLs can be done in a Bayesian framework. The MCMC algorithm allows for the 

treatment of missing observations as parameters to be estimated, allowing for the uncertainty of imputed values 

similar to that of MI 43. Further, imputation models can be combined with analysis models, allowing for integration 

with Bayesian group index models. The most straightforward method of imputing missing covariate data is by 

drawing imputations jointly from a multivariate distribution 44, often a multivariate normal or t distribution. A joint 

distribution can be hard to define, however, when covariates containing missing data are diverse (a combination of 

continuous and binary variables, for example) or when non-normal models are required. The imputation of BDLs is 

an instance of the latter, as these bounded variables are best modelled by truncated distributions. One method 

developed to deal with these difficult covariate groupings is Fully Conditional Specification (FCS), which imputes 

missing observations one covariate at a time by a univariate conditional distribution, conditioned on all other 

variables in the model 45. A common criticism of FCS is the potential for the various univariate conditional 

distributions to be incompatible, that is to fail to converge to any joint distribution 46-47. Incompatibility can result in 

unsound imputations and biased estimates 48. An alternative imputation method which addresses the issue of 

potential incompatibility is what we will refer to as Sequential Full Bayes (SFB) imputation. Similar to FCS, univariate 

conditional distributions for each covariate containing missing observations are used, but in this instance in order to 

factorize the joint distribution as a product of all the conditional distributions 49. In this manner, the joint distribution 

of the imputation model is specified, avoiding any issues of incompatibility.  

While BDL imputation is a problem common to all mixture analyses, there are also challenges inherent to group 

index models. One such challenge is determining the chemical groups that will form indices. When fitting a multi-

group index regression model, either GWQS or Bayesian group index regression, the number and chemical 

composition of indices must be chosen. Past applications of such models have organized exposure variables into 

chemicals which share a structural similarity (e.g., PCBs, PAHs, metals) or usage (e.g., herbicides, insecticides) 31,36. 

This grouping strategy could be viewed as one reliant on domain-specific knowledge, and has several advantages. 

Chemicals that are similar in either structure or use have a greater chance of being highly correlated with each other, 
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and if not grouped could give rise to multicollinearity effects. Indices grouped in this way also have ready 

interpretations as the joint effect of a recognizable class of chemicals on a health outcome. There are, however, 

some limitations to groups formed in this manner. It is not always the case the chemicals within the same structure 

or usage class belong in the same group. Pesticides, for example, are a relatively heterogenous group of chemicals 

that may ideally be split into more than one group or combined with other groups. Groups that mix chemicals with 

positive and negative associations with an outcome of interest are particularly problematic in the context of group 

index models, as the opposing direction of association will artificially bias such an index to the null. Additionally, 

there may be patterns in a chemical mixture beyond that of chemical structure or usage that an empirical measure 

of similarity would be able to ascertain. In these situations empirically derived groupings could not only provide 

better fitting models, but also identify and characterize previously unknown predictor relationships. It is therefore of 

interest to develop a method of grouping chemicals into indices based on some empirically-driven methodology. 

The problem of selecting group composition in a Bayesian group index regression model can be viewed as a cluster 

analysis problem. Cluster analysis encompasses a wide variety of methods employed for different reasons, but all 

share the common aim of grouping similar items together 50. The goal is to capture some underlying mechanism at 

work in the data that causes some observations to have greater resemblance to each other than to other 

observations 51. Various categories of clustering methods have been developed, including partitional, hierarchical, 

density-based, grid-based, model-based, and discriminative algorithms 52-53. A distinction between clustering 

methods relevant to preparation for group index regression is hard versus soft (or fuzzy) clustering algorithms. Hard 

clustering groups objects with strictly defined boundaries, forcing membership of each object into a single group. 

Soft clustering allows objects to potentially belong to many groups 54. This flexibility is advantageous in situations 

where an object’s cluster membership is unclear or where clusters overlap 55. In application to a chemical mixture 

before group index regression, however, this potential for multiple group membership is undesirable, as Bayesian 

group index regression requires chemicals be assigned to only one group. Another important distinction between 

clustering methods we must consider is subject clustering algorithms as opposed to variable clustering algorithms. 

The majority of clustering algorithms are subject clustering algorithms, where samples are partitioned into similar 

groups. Variable clustering algorithms, on the other hand, partition a dataset into groups of features. Subject 

clustering algorithms can of course be used to cluster variables by transposing the data matrix in question, with 
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some examples including k-means 56, hierarchical clustering 57-58, self-organizing maps 59, and model-based 

approaches 60-61. However, subject clustering methods generally use some sort of measure of distance (such as 

Euclidean distance) to quantify similarity, as opposed to a measure such as correlation that is more suitable for 

variables 62. 

The task of grouping variables is closely related to dimension reduction, where a complex set of large numbers of 

variables are assumed to be governed by a much simpler system of a few hidden or latent variables 63. Motivated by 

the analytical challenge of extremely high variable numbers seen in such fields as genomics 64, researchers have 

developed methods specifically designed for variable clustering. One example of this is Dirichlet Process Variable 

Clustering (DPVC), a model-based clustering method that partitions a set of variables according to the Chinese 

restaurant process (CRP). The CRP defines a distribution over a number of partitions that does not need to be 

specified by the user, but is estimated during the model-fitting process. The partitioning restricts each variable to 

membership in a single cluster, which are represented as a normally-distributed latent factor 62. Principal component 

analysis (PCA) is a widely used dimension reduction technique that has inspired variable clustering methods. PCA is 

used to reduce the number of predictor variables and avoid modelling problems due to multicollinearity. PCA does 

this by creating new latent variables that are linear combinations of the original features of the data, which can then 

be subsequently used in regression, commonly referred to as PCA regression. While these latent variables are 

formed in such a way as to capture the maximum variation of the constituent data, interpreting the results of PCA 

regression can be difficult, as a single variable may account for some portion of the variance captured in multiple 

latent variables. Some variable clustering algorithms found in the literature seek to use PCA’s ability to summarize 

multiple variables into latent variables while at the same time establishing hard partitions between variable clusters. 

Clustering of Variables around Latent Components (CLV) achieves this by maximizing the covariance between 

variables and the first principal component derived from iteratively shifting subsets of the dataset’s variables 65. A 

critique of CLV is that it only uses the first principal component as a latent variable, a potential underutilization of 

variance explained by the inclusion of further components that may better characterize the group’s underlying 

structure. To address this limitation, the VARCLUST algorithm extended CLV to allow for cluster latent variable 

dimensions greater than one and the estimation of the dimensionality of each cluster 66. Other researchers have 

used the ability to represent the PCA algorithm as a matrix decomposition to formulate novel methods. One such 
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method is robust PCA (RPCA), where the matrix decomposition seen in standard PCA is subject to further constraints, 

generating a denoised data matrix that can be used to cluster variables 67. An extension to RPCA has extended the 

algorithm to specifically accommodate the characteristics of chemical mixture data, such as the common occurrence 

of BDL missingness 68. These variable clustering methods and the potential for new method development offered by 

such algorithms as RPCA present opportunities for improved, empirically justified chemical groupings for use in 

Bayesian group index regression. 

A final consideration in clustering methods of interest for Bayesian group index regression is the ability of an 

algorithm to incorporate information from the outcome variable into the generated clusters, as the end goal of 

analysis will always be to estimate the associations between the groups modelled and an outcome. Clustering 

algorithms have historically been unsupervised 69, meaning there is no label or information outside the objects 

themselves that would inform “true” clustering assignments 70-71. Opposite unsupervised learning methods are 

supervised methods, defined as methods that generate a function to map input variables to a desired output 

variable 72. Some examples include regression, random forest, and support vector machines 73. An intermediate 

category, referred to as semi-supervised learning, aims at some combination of unsupervised and supervised 

methods 74, where information other than the labels normally seen in a supervised setting can be used to extend 

unsupervised methods 75. This additional information can take many forms, such as previous partial classification of a 

subset of inputs or, of particular interest in our context, the relationship between inputs and an outcome variable 76. 

An example is the “supervised clustering” algorithm of Bair and Tibshirani 2004, where clustering of variables is only 

performed on variables with a univariate association test statistic with the outcome that exceeds some cutoff value. 

This focus on the magnitude of association with the outcome is meant to prevent highly identifiable clusters that are 

nonetheless relatively unrelated to the outcome from interfering with the discovery of more relevant clusters 77. 

Another semi-supervised method is known as constrained clustering, clustering where partial data in the form of 

user-provided labels or pairwise constraints are used to guide the algorithm towards a more appropriate data 

partitioning. These constraints are commonly in the form of must-link or cannot-link pairs 78. A constraint that is 

crucial for the clustering of variables in Bayesian group index modelling is that variables with opposite direction of 

association with an outcome are not grouped together. Each of these semi-supervised clustering methods could 

easily be adapted to a previously unsupervised algorithm. Another way in which outcome information can be 
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included in the clustering process is through the combination of clustering and regression models, as seen 

implemented in Clusterwise Effect Regression (CLERE). The CLERE model redefines the beta parameter of traditional 

regression models as an unobserved random variable following a mixture of Gaussian distributions containing some 

number of input variables 79. While the CLERE algorithm estimates its own regression coefficients for variables, we 

are primarily interested in the its cluster assignments that are informed by the regression’s supervision by the 

outcome variable. Adapting unsupervised clustering methods and identifying those that perform best on chemical 

mixture data could allow for superior Bayesian group index regression models. 

Our description above of the current state of mixture analysis and the challenges facing these analyses reveal 

opportunities to provide important contributions to statistical practice. Our overview of some relevant literature also 

points to potential solutions to these problems. We have identified three ways in which Bayesian group index 

regression can be extended or complemented to improve its performance and usability: the imputation of BDL 

missing data in combination with group index regression, the development and identification of variable clustering 

algorithms well-suited to chemical mixture data, and the extension of unsupervised clustering methods to 

incorporate information from outcome variables of interest. These aims are enumerated in more detail below. 
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Dissertation Specific Aims 

This dissertation will address the following research aims. 

Specific Aim 1: Extend Bayesian group index regression to the imputation of BDLs. 

Specific Aim 2: Develop and identify the variable clustering method best suited for use in chemical mixture analysis 
with Bayesian group index regression. 

Specific Aim 3: Develop semi-supervised extension to previously identified variable clustering method and identify 
method best suited for use in chemical mixture analysis with Bayesian group index regression. 

 

Specific Aim 1: Extend Bayesian group index regression to the imputation of BDLs. 

In the analysis of chemical mixture data, BDL missing observations are a commonly encountered problem. Although 

a variety of methods have been employed to impute these missing observations 38,40-42,80-81, MI methods are regarded 

as the best practice, as they incorporate the variance of the truly unknown status of BDL missing observations into 

subsequent parameter estimates 39. MI methods accomplish this by generating multiple copies of a dataset, which 

are then imputed and analyzed in parallel, resulting in a set of parameter estimates for each imputed dataset. These 

sets of estimates are then pooled to arrive at the final parameter estimates. MI methods following this algorithm of 

parallel multiple imputation and pooling have been implemented in both the frequentist 39 and Bayesian frameworks 

82-83. Alternatively, the Bayesian framework allows for the specification of an imputation model in combination with 

the analysis model, so that missing BDL data is imputed and analysis model parameters are estimated 

simultaneously in the MCMC algorithm 84. As BDL imputations are drawn from a specified prior distribution at each 

iteration of the MCMC algorithm, the uncertainty of these repeated imputations is reflected in the posterior 

distribution found at convergence 85. The most straightforward way to implement these imputation models is by 

drawing imputations from a multivariate distribution such as a normal or t distribution 44. Unfortunately, not all 

missing data are amenable to imputation through such relatively simple joint distributions. The specification of a 

joint distribution is difficult when missing data covariates are composed of diverse data types, such as a combination 

of continuous and binary variables, or when non-normal models are required. BDL missing data is an example of the 

latter, as the imputations bound between zero and the DL are best modelled by truncated lognormal distributions. 

Sampling from such multivariate truncated distributions is difficult and computationally expensive 86. 
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An alternative to joint multivariate imputation distributions that avoids these difficulties is the expression of a joint 

multivariate distribution through conditional univariate distributions. One such method, Fully Conditional 

Specification (FCS), imputes missing observations one covariate at a time by a univariate conditional distribution, 

conditioned on all other variables in the model. Each variable in the model is cycled through in this fashion until 

convergence to an assumed but unspecified joint posterior distribution is reached 45. This assumption has been 

criticized, with the concern that failure to converge to a joint distribution may result in poor imputations and biased 

parameter estimates 47-48. This theoretical concern is not considered serious by some authors 46,87, who point out that 

FCS has performed well in simulations and has shown to be robust to incompatibility in some scenarios 45. Another 

method that seeks to specify a joint multivariate distribution using conditional univariate distributions is Sequential 

Full Bayes (SFB) imputation 49. SFB differs from FCS in that the univariate conditional distributions are used in order 

to factorize the joint distribution as a product of all the conditional distributions 88. In this manner, the joint 

distribution of the imputation model is specified, avoiding any issues of incompatibility.  

In Aim 1, I propose to extend Bayesian group index regression to include FCS or SFB as imputation models to model 

BDL missing data. These imputation methods will be compared to the Multiple Imputation by Chained Equations 

(MICE) algorithm and to a SI imputation method in a simulated case-control study. We will evaluate their relative 

performance in terms of mean squared error (MSE), bias, and power in estimating group exposure effects, their 

sensitivity and specificity in identifying important chemicals within indices, and by comparing the deviance 

information criterion (DIC) and computation times of each model. I will also apply the imputation method identified 

by the simulation study to the California Childhood Leukemia Study (CCLS) in order to investigate the link between 

chemical mixtures found in house dust and childhood leukemia.  

Specific Aim 2: Develop and identify the variable clustering method best suited for use in chemical mixture 
analysis with Bayesian group index regression. 

The extension of single index weighted quantile sum regression to group index regression methods requires that a 

chemical mixture be partitioned into groups. Historically this has been done along the lines of shared chemical 

structure or usage 31,36,89. In order to avoid undesirable chemical groupings and to justify the similarity of chemicals 

grouped with some objective measure, we consider the problem of group composition from the point of view of 

data clustering. Clustering is a broad field that encompasses many different approaches and methods. The 



18 
 
requirement of Bayesian group index regression that all chemicals be a member of only a single group excludes soft 

clustering methods from consideration in favor of hard clustering methods. Further, as we are grouping variables, 

not subjects, we focus on clustering methods developed for this purpose. The measure of similarity used in variable 

clustering methods, usually some measure of covariance or correlation, is more apt to the clustering of variables 

than the measures of distance normally employed in subject clustering algorithms 62. Additionally, recent 

developments in data preprocessing for chemical mixture data offer the opportunity to develop variable clustering 

methods suited particularly for chemical mixture variables 68. 

In Aim 2, I propose a novel variable clustering method that utilizes a variant of the RPCA algorithm optimized for use 

with chemical mixture data. I hypothesize that such a clustering algorithm will have superior performance over other 

variable clustering algorithms not designed with the characteristics of chemical mixture data in mind. To evaluate 

the proposed method, I will design a simulation study that will encompass a range of true group numbers and levels 

of background or noise correlations. The proposed method and a number of variable clustering algorithms taken 

from my literature review will be used to cluster the simulated data, after which Bayesian group index regression will 

be run with the previously derived groupings. The accuracy of generated clusters, as well as the quality of group 

index parameter estimates, will be the criteria of comparison. Additionally, I will apply the variable clustering 

method with the strongest performance along with Bayesian group index regression to the NCI-SEER NHL study in 

order to estimate the association between the chemical mixture found is study participants’ house dust and NHL. 

Specific Aim 3: Develop semi-supervised extension to previously identified variable clustering method and identify 
method best suited for use in chemical mixture analysis with Bayesian group index regression. 

Clustering methods are generally known as unsupervised algorithms 69, due to their exploratory nature and the 

common lack of any set of labels for what would constitute “true” cluster assignments 71. Nonetheless, there are in 

certain situations information available that, while it does not constitute the set of labels required for a supervised 

algorithm, when incorporated into the clustering process can improve the cluster assignments generated. This 

application of partial information to the clustering process is referred to as semi-supervised clustering 76. In the case 

of clustering in preparation for Bayesian group index regression, where the association between chemical groups 

and a target outcome of interest will be estimated, it follows that information from the outcome variable will 

improve the clustering of chemical exposure variables. Of particular interest is the ability of a semi-supervised 



19 
 
clustering algorithm to prevent chemicals with opposite directions of association with the outcome from being 

grouped together. One method of semi-supervised clustering that used outcome variable information is referred to 

in the literature as “supervised clustering” 77. This method works by defining a test statistic cutoff value, whereby 

any variable with an association strength less than the cutoff is not considered for clustering. If clustering in 

performed only on highly associated variables, it may improve the ability of clustering algorithm to separate those 

with opposite directions of association, while also generating clustering most relevant to the target outcome 

variable. A criticism of this method of semi-supervision is that it discards the variables that do not exceed the cutoff, 

however, in a group index application these usually discarded variables can be placed into a “null” index. Another 

semi-supervised clustering method that can incorporate information from an outcome variable is constrained 

clustering 78. Constrained clustering methods allow for the user to define pairs of variables that should or should not 

be clustered. These pairs are sometimes referred to as must-link and cannot-link pairings. When these pre-defined 

restrictions are violated, a penalty is imposed, disincentivizing these pairings from occurring. In the case of clustering 

in preparation for group index regression, we can use cannot-link pairings to discourage the grouping of chemicals 

oppositely associated with an outcome variable.  

In Aim 3, I propose to extend the unsupervised clustering algorithm identified in Aim 2 to incorporate information 

from the outcome variable during clustering. I propose two semi-supervised clustering methods: one using the 

“supervised clustering” method of semi-supervision to focus the clustering algorithm on highly associated chemicals, 

and the other using constrained clustering to discourage the clustering of oppositely associated chemicals. I will 

evaluate the proposed extensions using a simulation study, where they will be compared to the unsupervised 

algorithm they are based on and two other semi-supervised clustering methods: Clusterwise Effect Regression 

(CLERE) and Conclust. The simulated data will generally be structured so that little distinguishes distinct chemical 

groups besides their association with the outcome variable. The number of true groups and level of correlation noise 

between distinct groups will be varied between simulated scenarios. The groups generated by the clustering 

algorithms will subsequently be used in Bayes group index regression models. The performance of the clustering 

methods will be compared by their accuracy and by the quality of group index parameter estimates. The semi-

supervised method with the best performance will then be applied to the NCI-SEER NHL study in order to estimate 

the association between the chemical mixture found is study participants’ house dust and NHL. 
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Specific Aim 1: Extend Bayesian group index regression to the imputation of BDLs. 

Paper: “Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index 
Regression” 

Authors: Matthew Carli, Mary H. Ward, Catherine Metayer, David C. Wheeler 

 

Abstract 

There is growing scientific interest in identifying the multitude of chemical exposures related to human diseases 

through mixture analysis. In this paper, we address the issue of below detection limit (BDL) missing data in mixture 

analysis using Bayesian group index regression by treating both regression effects and missing BDL observations as 

parameters in a model estimated through a Markov Chain Monte Carlo algorithm that we refer to as Pseudo-Gibbs 

imputation. We compare this with other Bayesian imputation methods found in the literature (Multiple Imputation 

by Chained Equations and Sequential Full Bayes imputation), as well as with a non-Bayesian single imputation 

method. To evaluate our proposed method, we conduct simulation studies with varying percentages of BDL 

missingness and strengths of association. We apply our method to the California Childhood Leukemia Study (CCLS) to 

estimate concentrations of chemicals in house dust in a mixture analysis of potential environmental risk factors for 

childhood leukemia. Our results indicate that Pseudo-Gibbs imputation has superior power for exposure effects and 

sensitivity for identifying individual chemicals at high percentages of BDL missing data. In the CCLS, we found a 

significant positive association between concentrations of PAHs in homes and childhood leukemia, as well as 

significant positive associations for PCBs and herbicides among children from the highest quartile of household 

income. In conclusion, Pseudo-Gibbs imputation addresses a commonly encountered problem in environmental 

epidemiology, providing practitioners the ability to jointly estimate the effects of multiple chemical exposures with 

high levels of BDL missingness. 

Introduction 

There are more than 350,000 chemicals and chemical mixtures registered for production and use globally 1. 

Chemicals used for commercial purposes have been found in human tissues and in household air and dust samples in 

varying concentrations 2-4, motivating questions as to their impact on human health. Epidemiologic studies have 

identified environmental chemical exposure as a risk factor in a number of human diseases, including cancer, type 2 

diabetes, cardiovascular disease, thyroid disease, and developmental disorders 5-10. Increasingly, investigations into 
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the health impact of chemical exposures highlight the fact that they exist as mixtures of many simultaneous 

exposures 11-12. Therefore, epidemiologists have sought to assess the joint impact of chemical mixtures on health 

outcomes as opposed to estimating chemicals as independent risk factors 13-15. 

Several statistical methods have been developed for analyzing chemical mixtures that handle the highly correlated 

data commonly found in chemical mixtures 16, including weighted quantile sum (WQS) regression 17, quantile g-

computation 18, and Bayesian kernel machine regression (BKMR) 19. WQS regression is a two-step process that 

estimates a single exposure index from part of the data and then estimates the health effect for the exposure index 

from the remainder of the data. More recently, group index models were developed to allow for multiple chemical 

groups, where each of the groups can have different magnitudes and direction of association with the outcome 20-21. 

There are both frequentist and Bayesian versions of group index models, with Bayesian models being able to 

estimate all model parameters simultaneously in one step 21-24. 

One of the challenges of mixture analysis not fully accounted for in these methods is the commonly encountered 

problem of below detection limit (BDL) missing observations. A detection limit (DL) is defined as the lowest chemical 

concentration that can be distinguished from a concentration of zero with reasonable confidence 25. These detection 

limits can vary between chemicals, assay methods, different laboratories, and with laboratory time 26-27. 

Concentrations below this limit are not reported, leading to interval-censored distributions. Traditionally, analysts 

presented with this missing data problem have resorted to ad-hoc substitution methods for imputation, where the 

BDL is replaced by 0, the DL, or some function of the DL (DL/2 being a common example). Such simple substitution 

has subsequently been criticized for leading to biased parameter estimates and variances 28-30 and for introducing 

artificial patterns into the original data 31 and therefore is not recommended practice. Various alternative imputation 

methods that have been developed, such as maximum likelihood estimate (MLE), restricted MLE 32-33, reverse 

Kaplan–Meier 34, and empirical “robust fill-in” methods 28. A criticism of these “fill-in” or single-imputation (SI) 

methods is that imputations are treated as truly observed data without accounting for their variance; however, 

there is also some evidence that suggests such methods are suitable at lower percentages of BDL missingness 29. To 

address this criticism, multiple-imputation (MI) methods, which account for the variance of imputations, have also 

been developed 29. 
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Moving to the Bayesian framework, the most straightforward method of imputing missing covariate data is by 

drawing imputations jointly from a multivariate distribution 35, often a multivariate normal or t distribution. A joint 

distribution can be hard to define, however, when covariates containing missing data are diverse (a combination of 

continuous and binary variables, for example) or when non-normal models are required. The imputation of BDLs is 

an instance of the latter, as these bounded variables are best modelled by truncated distributions. One method 

developed to deal with these difficult covariate groupings is Fully Conditional Specification (FCS), which imputes 

missing observations one covariate at a time by a univariate conditional distribution conditioned on all other 

variables in the model. Each variable in the model is cycled through in this fashion until convergence to an assumed 

but unspecified joint posterior distribution is reached 36. 

A common criticism of FCS is the potential for the various univariate conditional distributions to be incompatible, 

that is, to fail to converge to any joint distribution 37-38. Incompatibility can result in unsound imputations and biased 

estimates 39. Despite these theoretical concerns, FCS has performed well in simulations and has shown to be robust 

to incompatibility in some scenarios 40. An alternative imputation method that addresses the issue of potential 

incompatibility is what we will refer to as Sequential Full Bayes (SFB) imputation 41. Similar to FCS, univariate 

conditional distributions for each covariate containing missing observations are used but, in this instance, in order to 

factorize the joint distribution as a product of all the conditional distributions 42. In this manner, the joint distribution 

of the imputation model is specified, avoiding any issues of incompatibility. 

The non-Bayesian imputation methods described above have all been applied in the context of mixture analysis. 

While not recommended, naïve substitutions are still performed 43, likely due to the convenience of these methods. 

SI methods, which are more theoretically justified than substitution methods but are also relatively easy to 

implement, are also commonly employed 44-45. MI procedures are increasingly used in chemical mixture analysis. 

Single imputation was performed for 10 datasets in a study of non-Hodgkin lymphoma that utilized WQS regression; 

however, the resulting estimates were not pooled 46. A Bayesian MI method was later developed specifically for the 

imputation of BDLs encountered when performing WQS regression 47. MI procedures have also been developed for 

BKMR 48 and quantile g-computation 49. Bayesian imputation methods, by contrast, are not as commonly employed 

in mixture analysis. One example is found in a 2010 paper by Herring, where BDLs were imputed by a joint 

distribution specified as a product of marginal and conditional truncated normal distributions in the larger context of 



30 
 
regression analyses of chemical mixtures using a nonparametric Bayesian shrinkage prior 50. Such simultaneous 

estimation of missing BDL observations along with the main parameters of interest (index effects and their 

component weights in the case of Bayesian group index regression) is an attractive solution to the BDL problem. 

In this paper, the aim was to extend Bayesian group index regression to handle BDL missing data. To accomplish this 

aim, we implemented four imputation methods in combination with the Bayesian group index model. The first two 

are statistical methods that utilize FCS: the well-known Multiple Imputation by Chained Equations (MICE) 51, and 

what we will refer to as pseudo-Gibbs imputation. As its name implies, MICE involves multiple imputation, where 

many completely observed datasets are generated by FCS, estimates are calculated for each, and they are then 

finally pooled into a final result. Pseudo-Gibbs imputation, on the other hand, combines the imputation model (FCS) 

with the health effects model (Bayesian group index regression) in one Gibbs sampler algorithm from which 

parameter estimates of interest are derived. A third method utilizes SFB imputation. As with pseudo-Gibbs 

imputation, this imputation model is combined with the Bayesian group index health effects model in the same 

Gibbs sampler. Finally, in addition to these Bayesian methods, we consider a type of “fill-in” method where missing 

BDL observations are singly imputed from a truncated log-normal distribution, which we refer to as Prior imputation. 

To evaluate the four imputation techniques mentioned above (MICE, pseudo-Gibbs, Prior, and SFB) in combination 

with Bayesian group index regression, we conducted a simulation study with varying percentages of BDL 

observations and compared the model performance. We then applied the best performing method to an 

investigation of the link between the household exposures and childhood leukemia in the California Childhood 

Leukemia Study (CCLS). The CCLS data are well-suited for such an analysis, as some of the chemical concentrations 

gathered in this study exhibit high degrees of BDL missingness. The results from this paper will provide practitioners 

with a method of analysis that can simultaneously impute BDL observations in a reasonable fashion while estimating 

the association of chemical mixtures to health outcomes. 

Methods 

Bayesian Grouped Index Regression 

The Bayesian grouped index model in general form for a binary health outcome 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) is specified 

through the log-odds of disease of the ith subject as  
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𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = β0 + ∑ βk (∑𝑤𝑗𝑘

𝐶𝑘

𝑗=1

𝑞𝑖𝑗𝑘) + 𝑧𝑖
𝑇𝜑.    

K

k=1

(1) 

On the left of the equation is the logit of the disease probability 𝑝𝑖 , and on the right are the effects for the intercept 

𝛽0, chemical indices β𝑘, which estimate the health effects for exposure to the kth group of exposures, and a vector 

of covariates 𝑧𝑖
𝑇 with corresponding effects in vector 𝜑. The number of exposures in each of the K indices can vary 

and is denoted by 𝐶𝑘.  For each index, 𝑤𝑗𝑘 is the weight for the jth exposure in the kth index and denotes the relative 

importance of that exposure within the index. The value of each 𝑤𝑗𝑘 is constrained to be between 0 and 1, and when 

summed across an individual index must equal 1. For each index, 𝑞𝑖𝑗𝑘 is the quantile score for the jth exposure in the 

kth index for the ith subject. Quantiles are used instead of raw chemical concentration data in order to limit the 

influence of outliers and to standardize the varying concentration scaling of different exposures. The definition of 

quantiles adopted (e.g. quartiles, deciles) is at the discretion of the user. 

Finally, the model is completely specified by the assignment of prior distributions to the model parameters. For any 

given index, the weights 𝑤1𝑘 , … , 𝑤𝐶𝑘𝑘 are assigned a Dirichlet prior with parameters α𝑗𝑘 = (α1𝑘 , … , α𝐶𝑘𝑘). This 

choice of prior ensures that the weights 𝑤𝑗𝑘 ∈ (0,1) and ∑ 𝑤𝑗𝑘
𝐶𝑘
𝑗=1 = 1. Each index effect is given a vague normal 

prior 𝛽𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏𝑘)
 with precision τ𝑘 = 1/σ𝑘

2  and σ𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100). Any covariate effects also receive 

vague normal priors. 

Inference on health effects and relative importance of chemical exposures is done through the joint posterior 

distribution. Markov chain Monte Carlo (MCMC) is used for model parameter estimation and convergence to the 

posterior is established using the Gelman-Rubin diagnostic statistic using two chains. Researchers who wish to use 

the Bayesian grouped index regression model as detailed in this paper may do so using the R package BayesGWQS 22, 

which implements Bayesian grouped index models using Just Another Gibbs Sampler (JAGS) 52. 

Imputation Methods 

As discussed above, missing data imputation is any method by which incomplete data are made complete by 

substitution with artificial or imputed data. The Bayesian methods implemented were chosen because they each 

take into account the additional variability of imputed observations. MICE does this through pooling multiple 
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imputations, while SFB and Pseudo-Gibbs imputation do so by drawing estimates from converged posterior 

distributions. The final imputation method, Prior imputation, is a single imputation method that was chosen to 

highlight circumstances where simpler imputation methods perform just as well as more complex ones, and 

circumstances where they are contraindicated.  

Multiple Imputation by Chained Equations (MICE) 

MICE imputes missing data through a series of what are referred to as “chained equations”. Given a partially 

observed dataset, it is assumed the outcome and predictors have a multivariate distribution that is completely 

specified by some unknown vector of parameters. MICE seeks to obtain a posterior distribution for these unknown 

parameters without explicitly defining the joint distribution of the data. Imputation models are specified in a 

univariate fashion for each variable in the dataset, where missing values in any given variable are imputed by a 

conditional distribution conditioned upon all other variables. These are then linked by means of a Gibbs sampler, 

which iterates through imputations variable by variable until convergence is attained.  

In our application to BDL imputation, our data is composed of a binary outcome y and all chemical exposures of 

interest 𝑥𝑗, where 𝑗 =  1, … , 𝐶. We assume a multivariate distribution of these variables is completely specified by θ, 

a 𝑝 = 𝐶 + 1 length vector of unknown parameters. We obtain the posterior distribution of θ by iteratively sampling 

from the following conditional distributions: 

𝑃(𝑦|𝑥1, … , 𝑥𝐶 , θ1) 

𝑃(𝑥1|𝑦, 𝑥2, … , 𝑥𝐶 , θ2) 

⋮ 

                                                                                    𝑃(𝑥𝐶|𝑦, 𝑥1, … , 𝑥𝐶−1, θ𝑝).                                                        (2) 

The chained equations compose the following Gibbs sampler to impute BDLs which at the tth iteration draws 

                                                                            θ1
∗(t)~ 𝑃(θ1|𝑦

𝑜𝑏𝑠, 𝑥1
(𝑡−1)

, … , 𝑥𝐶
(𝑡−1)

) 

              𝑦∗(𝑡) ~   𝑃 (𝑦|𝑦𝑜𝑏𝑠, 𝑥1
(𝑡−1)

, … , 𝑥𝐶
(𝑡−1)

, θ1
∗(t)) 

⋮ 
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        θ𝑝
∗(𝑡)

 ~   𝑃 (θ𝑝|𝑥𝐶
𝑜𝑏𝑠, 𝑦(𝑡), 𝑥1

(𝑡)
, … , 𝑥𝐶−1

(𝑡)
) 

                                                                         𝑥𝐶
∗(𝑡)

 ~  𝑃 (𝑥𝐶|𝑥𝐶
𝑜𝑏𝑠, 𝑦(𝑡), 𝑥1

(𝑡)
, … , 𝑥𝐶−1

(𝑡)
, θ𝑝

∗(𝑡)
)                             (3) 

 where 𝑥𝑗
(𝑡) = (𝑥𝑗

𝑜𝑏𝑠, 𝑥𝑗
∗(𝑡)) 51. One challenge specific to applying this method to the imputation of BDLs is that 

imputations from these conditional distributions could result in imputed values above the LOD of any particular 

chemical, contradicting knowledge we already have about that particular observation’s value. For these cases, 

erroneous imputations are “post-processed”, taking imputations above the LOD and re-imputing them by drawing 

from a uniform distribution 𝑥𝑗
∗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝐿𝑂𝐷𝑗).  

Prior Imputation 

The Prior imputation method utilizes the so called “data block” in JAGS, where variables can be assigned 

distributions from which single imputations are drawn. These imputed values are subsequently treated as observed 

data in the MCMC estimation. This is a type of single imputation or “fill-in” method, which avoids the negative 

characteristics of ad hoc imputation methods but, because imputation happens only once, does not reflect the 

variability in the imputation process. There is some evidence, however, that this underestimation of variance is not 

reflected in parameter estimates when BDL percentage is below 30% 29. Specific to our application of this method, 

BDLs were imputed to follow a truncated log-normal prior 𝐵𝐷𝐿𝑖𝑗~𝐿𝑜𝑔𝑛𝑜𝑟𝑚(μ𝑗 , τ𝑗) restricted to values within the 

range of [0, 𝐿𝑂𝐷𝑗]. Uniform and gamma distributions were assigned for the mean and precision hyperpriors, with 

mean μ𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝐿𝑂𝐷𝑗) and precision τ𝑗~𝐺𝑎𝑚𝑚𝑎(0.01,0.01).  

Pseudo-Gibbs Imputation 

The Pseudo-Gibbs method imputes missing BDL observations by including them as model parameters in the MCMC 

along with the health-effects model parameters. This pseudo-Gibbs sampling process is similar to that of MICE, 

where variables are imputed one at a time and the variable being imputed at a particular moment is conditioned on 

all other variables in the model, current to their most recently updated value. However, the Pseudo-Gibbs method is 

a combination of imputation and health effects models and therefore the estimated parameters of the health effects 

model inform the missing data imputations and vice versa. While each BDL observation is estimated as an individual 
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parameter, BDLs from the same chemical share the same chemical-specific prior and hyperprior distributions. These 

distributions are the same as those detailed for the Prior imputation method, however, the values drawn from them 

are not single imputations, but estimations sampled repeatedly though MCMC. A distribution is estimated, giving full 

posterior inference. Convergence of the MCMC algorithm is evaluated using the Gelman-Rubin diagnostic statistic.  

Sequential Full Bayes Imputation (SFB) 

Similar to the FCS imputation model used in MICE and Pseudo-Gibbs imputation, the SFB imputation method relies 

on a sequence of multiplied univariate conditional distributions to express a joint distribution. Again we take 

chemical exposures of interest 𝑥𝑗, where 𝑗 =  1, … , 𝐶. Their joint distribution can be written as follows, 

𝑃(𝑥1, … , 𝑥𝐶|θ) = 𝑃(𝑥𝐶|𝑥1, … , 𝑥𝐶−1, θ𝐶) 

                                         × 𝑃(𝑥𝐶−1|𝑥1, … , 𝑥𝐶−2, θ𝐶−1) × …× 𝑃(𝑥2|𝑥1, θ2) × 𝑃(𝑥1|θ1)                (4) 

where θ𝑗 is a distinct vector of parameters indexing the jth conditional distribution, with the set of θ1, … , θ𝐶  vectors 

parameterizing the joint distribution 42. In our application to BDL imputation, these conditional distributions follow a 

truncated log-normal prior restricted to values within the range of 0 and that chemical’s LOD. Like the Pseudo-Gibbs 

method, the above imputation model is combined with the Bayesian group index regression model to give full 

posterior inference on all model parameters including the index effects and weights. 

Simulation Study Design 

To evaluate the performance of the four imputation methods, we generated chemical concentration data consisting 

of three groups (with five chemicals in the first group, four in the second, and five in the third) with a binary 

outcome. Each group contained a single important chemical which was set by assigning a true chemical weight of 1 

to the important chemicals and 0 to nonimportant chemicals, thereby making the total weight for each group sum to 

1. The chemical concentrations were given an across group correlation of 0.3 and a within group correlation of 0.7. 

The correlation structure was specified through a matrix and then converted into a covariance matrix. A mean vector 

and standard deviation vector were selected to generate the covariance matrix and hence allow construction of the 

data that was distributed as multivariate normal.  
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These predictor groupings and outcome were then used in two different signal-strength scenarios. These scenarios 

differed in the magnitude their index associations, measured in odds ratios (OR) . In Scenario 1, the first group had 

no association with the outcome (OR=1.0), while the second and third were associated with OR=0.80 and OR=1.25, 

respectively. Scenario 2 was generated in a similar fashion, except the second and third groups were associated with 

the outcome with OR=0.67 and OR=1.50, respectively. The sample size generated for both Scenarios 1 and 2 was 500 

observations. BDLs were introduced to the data by eliminating the lowest observation values up to a certain DL, 

depending on the percentage of BDLs desired. For each scenario, BDLs were introduced at the 10, 30, 50, and 70 

percentage levels.  

After defining the true exposure effects, we created binary outcomes for case or control status to replicate a case-

control study by having a relatively balanced number of cases and controls (50% ± 10% cases) in each iteration of 

data generation. The binary outcome y was distributed as 𝑦~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) where 𝑝 =  
1

1+𝑒𝜂 and 𝜂 =  𝛽0
∗  +

 ∑ 𝛽𝑘
∗[∑ 𝑤𝑗𝑘

∗𝐶𝑘
𝑗=1 𝑞𝑖𝑗𝑘

3
𝑘=1 ], and the star notation indicates true parameter values. As no covariates were used in 

generation of the data, the term 𝑧𝑇𝜙 =  0.  The number of quantiles used in all simulations was set at four when 

computing the weighted index for each group (i.e. 𝑞𝑖𝑗 = 0,1,2,3). Each simulation was done with 100 data sets.  

To assess the relative performance of the three imputation methods, we calculated the mean squared error (MSE), 

bias, and power on each of the group exposure effects, as well as the sensitivity and specificity of identifying 

chemicals as important or not. We assessed model fit by comparing the deviance information criterion (DIC) of each 

method, and also compared the computation times. When calculating power, we examined the proportion of 95% 

credible intervals (CIs) of the odds ratios of chemical group associations that did not contain 1.00. We measured 

sensitivity by determining the proportion of important chemicals that were identified by the models as being 

important. This was done by determining if the estimated weight of the important chemicals produced by the 

models was greater than or equal to the threshold 
1

𝐶𝑘
. Likewise, we defined specificity as the proportion of the 

unimportant chemicals that were correctly deemed unimportant by the models. This was determined by checking if 

the estimated weights of the unimportant chemicals were less than the same threshold of 
1

𝐶𝑘
. DIC was defined 

a𝑠 𝐷𝐼𝐶 = �̅� + 𝑝𝐷, where �̅� is the posterior mean deviance 53 and 𝑝𝐷 is the effective number of parameters 54, a 

measure of model complexity. 
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Data Analysis 

We next applied our chosen imputation method along with Bayesian grouped index regression to an investigation of 

childhood leukemia in the California Childhood Leukemia Study (CCLS). The CCLS is a population-based case-control 

study carried out in 35 counties in California, 17 counties in the San Francisco Bay area and 18 in the Central Valley 55-

56. Between 1995 and 2012, cases ≤14 years old were ascertained within 72 hours of diagnosis from nine major 

pediatric clinical centers in the study area. Using California birth certificate information, controls were matched to 

cases on the basis of date of birth, sex, Hispanic ethnicity, and maternal race.  

The parents of both case and control participants were initially interviewed to gather information about their child’s 

exposure to suspected leukemia risk factors. Families who had not moved since the child’s diagnosis date (reference 

date for controls) were interviewed a second time (Tier 2), during which carpet dust samples were collected.  The 

second interview and dust sampling was limited to cases and controls <8 years old at diagnosis to ensure the 

samples reflected early-life chemical exposure of the child. Case-control matching was not maintained due to 

residential eligibility criteria and voluntary participation. There were 731 eligible participants (324 cases and 407 

controls). Of these, 296 cases (91%) and 333 controls (82%) agreed to participate. Due to insufficient dust or 

interferences in the chemical analyses, some chemical concentrations were lost, leading to a final 277 cases and 306 

controls (n=583) 57. 

Dust samples were collected using either a high-volume small surface sampler (HVS3) or a household vacuum 

cleaner. As previously described in Colt et al. (2008), concentrations of 64 organic chemicals (ng/g dust) were 

measured using gas chromatography/mass spectrometry (GC/MS) in multiple ion monitoring mode after extraction 

with three different extraction methods. Nine metals were measured using microwave-assisted acid digestion 

combined with inductively coupled plasma/mass spectrometry (ICP/MS). 

As discussed in Wheeler et al. (2021b), strong correlations (r > 0.6) between many chemicals in the CCLS data do not 

allow for the use of traditional regression methods. Bayesian group index regression, on the other hand, is well-

suited for mixture analyses of such data. Our analysis investigated the association of 67 chemicals (Table S1 in the 

supplemental material) with risk of childhood leukemia. Out of the entire CCLS dataset, only chemical exposure 



37 
 
variables with at least 20% non-missing observations were included, as past experience has shown that higher levels 

of missingness contribute negligible information on potential relations with an outcome.  

We organized exposures into seven chemical class indices: PCBs, PAHs, insecticides, herbicides, metals, the tobacco 

exposure markers of nicotine and cotinine, and PBDEs. The logic of these groupings was that the chemicals share a 

structural similarity (e.g., PCBs, PAHs, metals) or usage (e.g., herbicides, insecticides). In addition to these chemical 

exposure indices, we included child’s age, sex, ethnicity, annual household income, mother’s education level, 

mother’s age at birth of child, and whether the child lived at the sampling residence since birth as controlling 

covariates in the model.  

We first fit the 7-group exposure model and then evaluated high family income as a potential effect modifier 

because it was a consistently significant covariate in previous analyses 23-24. To investigate potential effect 

moderation, we extended the 7-group model to include seven interaction terms between each index and the highest 

income level. We then conducted a stratified analysis, dichotomized into the highest income bracket ($75,000+) as 

one level and the lower five brackets ($0 - $74,999) as the second.  

We chose the method of BDL imputation suggested by the results of the simulation study described above. There 

were additional, non-BDL missing data in the PBDE chemicals as they were measured a few years later than other 

chemicals on a subset of cases (n=181) and controls (n=214) due to insufficient amounts of dust; in total, PBDEs were 

not measured on 32.2% of Tier 2 participants 58. These missing observations were imputed in a similar fashion as 

BDLs, but their log-normal distributions are not truncated. Continuous chemical concentrations (ng/g) were 

categorized into quartiles for regression. Convergence of all parameters of interest in models were checked via a 

Gelman-Rubin diagnostic statistic upper CI less than 1.10. We summarized the results using ORs for each chemical 

index along with 95% credible intervals and forest plots. Within each index significantly associated with the outcome, 

we assess the important chemical exposures using the estimated weights. 

Results 

Simulation Study 
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The estimated odds ratios and power for the Prior imputation, SFB, Pseudo-Gibbs, and MICE imputation methods for 

all scenarios are in Table 1. All imputation methods in each BDL scenario performed similarly for null effect 

parameters, with the exception of SFB and MICE imputation at 70% BDL, where Type I error rates were noticeably 

lower. For Scenario 1 (lower signal scenario), power was similar for all imputation methods, with Pseudo-Gibbs 

imputation resulting in slightly higher power in the 70% BDL case. This pattern was repeated in Scenario 2 (higher 

signal scenario), where the difference in power at 70% BDL in favor of the Pseudo-Gibbs method was much more 

apparent. Power was predictably higher in the more strongly associated Scenario 2, with values more than doubling 

for all imputation methods. In both scenarios power tended to decrease as BDL percentage increased, with the drop 

in power most apparent after the 30% BDL case. While the Pseudo-Gibbs method was best able to preserve power 

from decreasing as BDL percentage increased, absolute power in Scenario 1 at 70% BDL reached extremely low levels 

for all imputation methods. 

Table 1: Estimated odds ratio (OR) and power values for Bayesian group index regression using four different 
imputation methods. 

Parameter   Prior Imputation Sequential Full Bayes Pseudo-Gibbs MICE 

10% BDL Estimated OR Power Estimated OR Power Estimated OR Power Estimated OR Power 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

1.000 
0.818 
1.251 

0.070 
0.430 
0.430 

0.999 
0.818 
1.251 

0.060 
0.430 
0.420 

0.999 
0.818 
1.251 

0.050 
0.430 
0.440 

1.000 
0.818 
1.251 

0.060 
0.430 
0.430 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.994 
0.658 
1.553 

0.050 
0.900 
0.910 

0.9934 
0.658 
1.553 

0.040 
0.900 
0.920 

0.993 
0.658 
1.553 

0.040 
0.900 
0.920 

0.994 
0.658 
1.554 

0.050 
0.900 
0.920 

30% BDL Estimated OR Power Estimated OR Power Estimated OR Power Estimated OR Power 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

1.004 
0.816 
1.246 

0.080 
0.430 
0.400 

1.001 
0.814 
1.254 

0.080 
0.430 
0.430 

1.001 
0.814 
1.253 

0.080 
0.430 
0.430 

1.000 
0.819 
1.247 

0.060 
0.410 
0.420 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.996 
0.662 
1.539 

0.050 
0.920 
0.900 

0.999 
0.655 
1.552 

0.070 
0.920 
0.890 

0.996 
0.655 
1.556 

0.050 
0.930 
0.900 

0.994 
0.664 
1.535 

0.050 
0.930 
0.890 

50% BDL Estimated OR Power Estimated OR Power Estimated OR Power Estimated OR Power 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

1.002 
0.824 
1.241 

0.050 
0.370 
0.390 

1.004 
0.828 
1.236 

0.070 
0.340 
0.350 

1.003 
0.812 
1.253 

0.070 
0.400 
0.370 

1.002 
0.823 
1.234 

0.070 
0.380 
0.340 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.995 
0.667 
1.521 

0.040 
0.880 
0.870 

0.995 
0.664 
1.551 

0.030 
0.880 
0.880 

0.994 
0.651 
1.557 

0.050 
0.890 
0.870 

0.991 
0.681 
1.498 

0.060 
0.880 
0.860 

70% BDL Estimated OR Power Estimated OR Power Estimated OR Power Estimated OR Power 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.997 
0.857 
1.209 

0.060 
0.200 
0.260 

0.992 
0.843 
1.250 

0.010 
0.200 
0.280 

0.997 
0.810 
1.256 

0.060 
0.290 
0.260 

0.994 
0.857 
1.184 

0.030 
0.180 
0.220 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.993 
0.724 
1.425 

0.020 
0.680 
0.690 

0.979 
0.693 
1.530 

0.040 
0.660 
0.740 

0.987 
0.655 
1.542 

0.050 
0.810 
0.750 

0.984 
0.753 
1.356 

0.010 
0.600 
0.590 
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MSE and bias of the four imputation methods are compared in Table 2. Both MSE and bias remained relatively 

consistent as the percentage of BDLs grew. Other than a few exceptional instances, the MICE imputation method 

estimations had the lowest MSE. The differences in MSE were minimal for the 10% BDL case, and was one of the 

instances where another method (Pseudo-Gibbs) outperformed MICE. While differences in MSE were never 

extreme, they tended to be larger at higher levels of missingness. The Prior imputation method often had the next 

best MSE after MICE. The results for bias were less consistent. In Scenario 1, Pseudo-Gibbs imputation tended to 

have the lowest bias, and if not was a close second. In Scenario 2, however, Pseudo-Gibbs imputation was only the 

least biased for 10% BDL, and was at times the most biased imputation method. MICE and Prior imputation were 

least biased for 30% and 50% BDL, but had the highest bias of all simulations done at 70% BDL. SFB and Pseudo-

Gibbs had the lowest and second-lowest bias for 70% BDL, respectively. 

Table 2: MSE and bias of index effects from Bayesian group index regression using different imputation 
methods. 

Parameter   Prior Imputation Sequential Full Bayes Pseudo-Gibbs MICE 

10% BDL MSE Bias MSE Bias MSE Bias MSE Bias 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.012 
0.017 
0.014 

-0.006 
 0.014 
-0.007 

0.012 
0.017 
0.014 

-0.007 
0.014 
-0.007 

0.011 
0.017 
0.014 

-0.007 
 0.014 
-0.006 

0.012 
0.017 
0.014 

-0.006 
 0.014 
-0.006 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.012 
0.015 
0.017 

-0.012 
-0.026 
 0.027 

0.012 
0.015 
0.017 

-0.012 
-0.025 
0.027 

0.012 
0.015 
0.016 

-0.013 
-0.025 
 0.027 

0.012 
0.015 
0.017 

-0.012 
-0.026 
0.028 

30% BDL MSE Bias MSE Bias MSE Bias MSE Bias 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.012 
0.017 
0.014 

-0.002 
 0.012 
-0.010 

0.013 
0.018 
0.015 

-0.005 
0.009 
-0.004 

0.013 
0.017 
0.014 

-0.005 
 0.008 
-0.005 

0.012 
0.016 
0.014 

-0.006 
 0.015 
-0.009 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.012 
0.014 
0.017 

-0.010 
-0.019 
 0.018 

0.013 
0.015 
0.018 

-0.008 
-0.030 
0.025 

0.012 
0.015 
0.018 

-0.010 
-0.031 
 0.028 

0.012 
0.013 
0.016 

-0.012 
-0.015 
0.015 

50% BDL MSE Bias MSE Bias MSE Bias MSE Bias 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.014 
0.018 
0.014 

-0.005 
 0.021 
-0.014 

0.015 
0.021 
0.015 

-0.003 
0.024 
-0.019 

0.015 
0.020 
0.015 

-0.004 
 0.006 
-0.005 

0.013 
0.017 
0.013 

-0.004 
 0.021 
-0.020 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.013 
0.015 
0.018 

-0.012 
-0.011 
 0.005 

0.013 
0.015 
0.021 

-0.012 
-0.017 
0.024 

0.014 
0.017 
0.020 

-0.013 
-0.036 
0.028 

0.012 
0.013 
0.017 

-0.015 
0.009 
-0.010 

70% BDL MSE Bias MSE Bias MSE Bias MSE Bias 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.020 
0.024 
0.018 

-0.013 
0.058 
-0.042 

0.019 
0.024 
0.021 

-0.018 
0.041 
-0.011 

0.022 
0.026 
0.019 

-0.014 
0.0000 
-0.005 

0.012 
0.017 
0.016 

-0.012 
0.062 
-0.060 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.016 
0.024 
0.025 

-0.015 
0.069 
-0.062 

0.025 
0.023 
0.031 

-0.032 
0.023 
0.005 

0.022 
0.024 
0.028 

-0.024 
-0.034 
0.014 

0.014 
0.023 
0.028 

-0.023 
0.112 
-0.109 
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The sensitivity and specificity of important chemical identification calculated for the four imputation methods is 

presented in Table 3. Sensitivity for both signal strength scenarios was very similar for all imputation methods until 

the 70% BDL case, where Pseudo-Gibbs imputation had consistently larger sensitivity values. Specificity values were 

very similar across all imputation methods for each combination of signal strength and level of missingness. SFB and 

Pseudo-Gibbs generally performed best by this statistic. Differences in specificity values increased as the percentage 

of BDLs increased, most notably in Scenario 2. The odds ratios further from OR=1.00 predictably resulted in higher 

values for both sensitivity and specificity. In both scenarios sensitivity and specificity tended to decrease as BDL 

percentage rose, with the largest decreases occurring between 50% and 70% BDL. 

Table 3: Sensitivity and specificity for Bayesian group index regression using different imputation methods. 

Parameter   Prior Imputation Sequential Full Bayes Pseudo-Gibbs MICE 

10% BDL Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.340 
0.910 
0.820 

0.573 
0.797 
0.738 

0.330 
0.890 
0.850 

0.580 
0.803 
0.753 

0.310 
0.900 
0.820 

0.575 
0.800 
0.733 

0.310 
0.900 
0.840 

0.568 
0.800 
0.748 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.390 
0.980 
0.990 

0.615 
0.943 
0.918 

0.380 
0.980 
1.000 

0.600 
0.940 
0.918 

0.420 
0.980 
1.000 

0.623 
0.940 
0.918 

0.410 
0.980 
0.990 

0.615 
0.940 
0.920 

30% BDL Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.280 
0.870 
0.820 

0.573 
0.797 
0.705 

0.320 
0.890 
0.860 

0.560 
0.800 
0.723 

0.320 
0.900 
0.840 

0.550 
0.800 
0.713 

0.290 
0.890 
0.850 

0.568 
0.793 
0.703 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.380 
0.980 
0.990 

0.580 
0.920 
0.893 

0.360 
0.970 
0.990 

0.593 
0.920 
0.903 

0.360 
0.980 
0.990 

0.600 
0.927 
0.900 

0.400 
0.980 
0.990 

0.613 
0.920 
0.903 

50% BDL Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.380 
0.850 
0.830 

0.593 
0.760 
0.705 

0.330 
0.810 
0.860 

0.593 
0.787 
0.700 

0.350 
0.830 
0.830 

0.585 
0.800 
0.715 

0.370 
0.810 
0.810 

0.603 
0.783 
0.703 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.380 
0.960 
0.980 

0.578 
0.890 
0.870 

0.410 
0.980 
0.980 

0.605 
0.903 
0.875 

0.400 
0.980 
0.990 

0.598 
0.903 
0.885 

0.410 
0.980 
0.990 

0.603 
0.890 
0.873 

70% BDL Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

exp(β1)= 1.00 
exp(β2)= 0.80 
exp(β3)= 1.25 

0.320 
0.640 
0.630 

0.605 
0.670 
0.675 

0.410 
0.720 
0.680 

0.620 
0.690 
0.675 

0.370 
0.750 
0.740 

0.595 
0.693 
0.670 

0.370 
0.710 
0.620 

0.573 
0.673 
0.660 

exp(β1)= 1.00 
exp(β2)= 0.67 
exp(β3)= 1.50 

0.390 
0.880 
0.890 

0.625 
0.767 
0.775 

0.410 
0.870 
0.880 

0.620 
0.817 
0.778 

0.380 
0.950 
0.890 

0.585 
0.790 
0.800 

0.400 
0.920 
0.870 

0.580 
0.737 
0.743 

 

The model fit tended to decrease (lower DIC is better) for all imputation methods as the percentage of BDLs rose 

(Table 4). There were very slight differences in DIC at low levels of missingness. For Scenario 1, Prior imputation 

resulted in the best fit, whereas for Scenario 2 Pseudo-Gibbs and SFB performed best. For both signal levels SFB and 
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Pseudo-Gibbs had the lowest DIC as BDL percentage increased, and of the two SFB was slightly better in Scenario 1, 

while Pseudo-Gibbs was better in Scenario 2. These two methods also saw increases in pD as BDL percentages rose, 

indicating greater model complexity. Of the four methods, MICE saw the largest increase in DIC as BDL percentage 

rose. Considering runtime, the Prior imputation method was always the fastest running analysis at around 7 minutes 

(Table 4). MICE was the next best, with similar but slightly slower runtime (accomplished with parallel computing). 

The Pseudo-Gibbs and SFB methods were the slowest by far, taking nearly nine hours or more to complete at 10% 

BDL and nearly two days or more at 70% BDL, averaged over 100 datasets. 

 

Table 4: Model fit statistics and computation time for Bayesian group index regression using different imputation 
methods. 

Scenario 1 Prior Imputation Sequential Full Bayes Pseudo-Gibbs MICE 

10% BDL     

DIC 
pD 

Runtime (min) 

585.04 
5.04 
7.32 

585.51 
5.03 

679.71 

585.53 
5.25 

538.20 

585.64 
5.21 
7.78 

30% BDL     

DIC 
pD 

Runtime (min) 

585.49 
5.39 
7.31 

585.58 
5.68 

1567.51 

585.77 
5.46 

1333.01 

585.52 
5.10 
7.93 

50% BDL     

DIC 
pD 

Runtime (min) 

585.58 
5.15 
7.03 

585.56 
5.83 

2375.42 

585.77 
6.21 

2108.65 

586.32 
5.52 
8.31 

70% BDL     

DIC 
pD 

Runtime (min) 

587.56 
5.05 
6.33 

586.25 
8.69 

3557.38 

586.57 
9.30 

2686.91 

588.56 
5.59 
9.67 

Scenario 2 Prior Imputation Sequential Full Bayes Pseudo-Gibbs MICE 

10% BDL     

DIC 
pD 

Runtime (min) 

577.71 
5.98 
7.19 

577.66 
6.05 

683.38 

577.33 
5.70 

565.97 

577.57 
5.79 
7.89 

30% BDL     

DIC 
pD 

Runtime (min) 

578.83 
6.07 
7.22 

578.36 
7.08 

1573.61 

579.46 
7.26 

1304.99 

578.89 
5.86 
7.97 

50% BDL     

DIC 
pD 

Runtime (min) 

581.55 
6.53 
6.90 

580.27 
8.01 

2407.21 

579.18 
8.06 

2067.70 

582.49 
6.35 
8.16 

70% BDL     

DIC 
pD 

Runtime (min) 

589.33 
5.53 
6.29 

586.20 
13.42 

3487.45 

586.11 
15.91 

2711.79 

591.42 
6.40 
8.51 

 

Application of Pseudo-Gibbs imputation to house dust chemicals in the CCLS 
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The results of our simulation study indicate that for data with relatively high percentages of BDL observations the 

most suitable imputation method is Pseudo-Gibbs imputation. As the CCLS data have 23.9% of 67 chemical exposure 

variables with greater than 50% BDLs (n = 16), and 10.4% with 70% or more BDLs (n = 7), we applied this method of 

imputation when performing the following analysis. We first consider the non-stratified analysis. The odds ratios 

estimated for index effects and covariates are in Table 5. PAHs were the only index found to have a significant 

association with childhood leukemia (OR = 1.27, 95% CI: 1.01, 1.60). The PCB index was also positively associated 

with the outcome, although this effect was marginally significant (OR = 1.19, 95% CI: 0.96, 1.51). The two most 

heavily weighted chemicals in the PAHs index were benzo(k)fluoranthene and indeno(1,2,3 -c,d)pyrene, with 

posterior mean weights of 0.164 and 0.149, respectively. Looking at the forest plot of estimated index means and 

95% CIs (Figure S1), we can see PBDEs was the most variable index estimate. Among the controlling covariates, the 

highest income category and residence since birth were significant and protective. 

Table 5: Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group index 
model (n = 583). 

Variable Odds Ratio 2.5% CI 97.5% CI 

PCBs 1.19 0.96 1.51 

Insecticides 0.64 0.39 1.00 

Herbicides 1.17 0.82 1.69 

Metals 0.79 0.59 1.06 

PAHs 1.27 1.01 1.60 

Tobacco 0.82 0.66 1.01 

PBDEs 1.21 0.79 1.83 

Child’s age 1.01 0.92 1.12 

Female 0.98 0.70 1.37 

Child’s Ethnicity:    

  Hispanic 1.25 0.81 2.00 

  Non-Hispanic 1.42 0.91 2.27 

Household Income:    

  $15,000 - $29,999 1.02 0.47 2.15 

  $30,000 - $44,999 0.79 0.36 1.61 

  $45,000 - $59,999 0.78 0.34 1.66 

  $60,000 - $74,999 0.45 0.18 1.06 

  $75,000 or more 0.38 0.17 0.79 

  Income Missing 0.56 0.17 1.61 

Mother’s education:    

  High school 1.25 0.63 2.81 

  Some college 1.22 0.60 2.84 

  Bachelor’s or higher 1.21 0.57 2.89 

Mother’s age 1.01 0.98 1.05 

Residence Since Birth 0.66 0.44 0.96 
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Our Bayesian group index regression of interaction effects between the chemical indices and the highest income 

bracket ($75,000 or more) resulted in a significant interaction between income and the metals index (OR = 0.45, 95% 

CI: 0.24, 0.82). In the subsequent analysis stratified on household income, three chemical indices were found to have 

significant associations with childhood leukemia risk in the highest income strata (>=$75,000, 107 cases, 159 

controls) (Table 6). PCBs (OR = 1.55, 95% CI: 1.04, 2.36) and herbicides (OR = 2.02, 95% CI: 1.005, 3.99) had 

significant positive associations with childhood leukemia. The herbicide index had the strongest association, but was 

the most variable. The metals index (OR = 0.42, 95% CI: 0.25, 0.69) was inversely associated with childhood 

leukemia. Of the covariates, residence since birth was significantly inversely associated with risk. The forest plot of 

the index association estimates and their 95% CIs are presented in Figure S2. Of the four PCB chemicals, PCB 138 had 

the highest mean posterior weight of 0.31, followed by PCB 180 with a weight of 0.28. Among the herbicides, dacthal 

had the largest weight (0.51). In the metals index, arsenic was the most highly weighted chemical (inverse 

association), with a mean posterior weight of 0.37. The specific estimates for the lower income stratum and its forest 

plot are presented in Table S2 and Figure S3.  There were no significant findings in the lower income stratum 

(<$75,000).  

Table 6: Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group index 
model for subjects in highest income bracket (n = 266). 

Variable Odds Ratio 2.5% CI 97.5% CI 

PCBs 1.55 1.04 2.36 

Insecticides 0.51 0.19 1.12 

Herbicides 2.02 1.00 3.99 

Metals 0.42 0.25 0.69 

PAHs 1.19 0.83 1.75 

Tobacco 0.77 0.52 1.09 

PBDEs 1.12 0.63 2.23 

Child’s age 0.98 0.83 1.15 

Female 0.70 0.38 1.22 

Child’s Ethnicity:    

  Hispanic 1.14 0.47 2.83 

  Non-Hispanic 1.62 0.87 3.18 

Mother’s education:    

  High school 0.49 0.00 1930.56 

  Some college 0.20 0.00 730.17 

  Bachelor’s or higher 0.36 0.00 1375.01 

Mother’s age 0.99 0.93 1.05 

Residence since birth 0.40 0.21 0.76 
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Discussion 

In this paper, we implemented four methods for the imputation of BDL missing data in the context of Bayesian group 

index regression and conducted a simulation study to evaluate the performance of these methods at two different 

association strengths (OR = 1.25 and 1.50) as well as at four different levels of BDL missingness (10%, 30%, 50%, and 

70%). We found that the relative performance of the methods was similar across the two association strengths and 

across the 10% - 50% BDL levels, with some methods slightly outperforming others in certain scenarios judged by 

some metrics. Notably, the Prior imputation method performed consistently well across metrics in this BDL range. It 

was at times the best performing method, was rarely the worst, and when not the best performer was usually 

competitive. 

Clear differences in performance were seen, however, in the 70% BDL range.  At such high levels of missingness, 

Pseudo-Gibbs imputation was found to be the preferred method of imputation. A clear advantage of Pseudo-Gibbs 

imputation was that it consistently had more power to detect significant associations than other methods (with 

power differences of 10% or more in many instances). This superior performance was also apparent in sensitivity. 

Results were not so clear for specificity, bias, and DIC, where SFB imputation performed slightly better in some 

instances. While all imputation methods had approximately the same performance as judged by MSE, Pseudo-Gibbs 

imputation was often the weakest method by a slight margin. The greatest weakness of the Pseudo-Gibbs method is 

its runtime. While faster than SFB imputation, it proved to be much slower than either MICE or Prior imputation. 

Additionally, while Pseudo-Gibbs imputation had the highest power in Scenario 1 at 70% BDL, in absolute terms 

power was quite low. Detecting lower signal differences at such high levels of BDL missingness would likely require 

an increase in sample size even when using the Pseudo-Gibbs method. 

Based on the findings described above, we recommend Pseudo-Gibbs imputation for data where the percentage of 

BDLs approaches 70% and the Prior imputation method for lower percentages. While 70% BDL missing data is an 

extreme level of missingness to simulate, such percentages are at times encountered in chemical exposure 

investigations (CCLS being an example), and previous statistical research has been done for BDL missingness at such 

levels 29,59. It should be noted that while our simulated datasets had uniform levels of missingness across all chemical 
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exposure variables, this would be highly unlikely to occur in actual practice. While this represents a simplification 

from real conditions, we believe our results nonetheless offer useful guidelines for determining the most suitable 

method of BDL imputation. A further limitation of our results is that they are restricted to the particular scenarios 

simulated. At higher BDL levels the slow runtime of the Pseudo-Gibbs imputation can be justified most clearly by its 

improved performance in power and in sensitivity. While second to SFB in some metrics, the difference in their 

performance was negligible. Importantly, although Pseudo-Gibbs was relatively slow, the slowest method was SFB, 

an increase in runtime which is hard to justify by its performance. At lower percentages, Prior imputation offers a 

computationally efficient and convenient method that produces estimates competitive with the other methods 

presented.  

Our decision to apply Pseudo-Gibbs imputation in our analysis of the CCLS data reflects the above observations. 

While BDL missingness is not uniform across all chemical predictors in the CCLS observational data, many exhibit BDL 

levels of 50% or more, with some of these extending to 70% or more (chemicals with 80% or more were excluded). 

In our application of Pseudo-Gibbs imputation to the CCLS observational data, we fit a seven-index model and found 

a positive and significant association between PAHs (OR = 1.27) and leukemia, with benzo(k)fluoranthene (weight = 

0.164) and indeno(1,2,3 -c,d)pyrene (weight = 0.149) having the highest mean posterior weights. Previous research 

of this study population employing single-chemical models have found either significant or borderline significant 

associations between these two PAHs and childhood leukemia 60. In stratified analysis, of the highest income 

category and all others., the chemical indices estimated for the high-income strata tended to be larger and have 

lower variance. Among children from high-income households, PCBs (OR = 1.55) and herbicides (OR = 2.02) were 

significantly and positively associated with childhood leukemia, while the metals index (OR = 0.42) was significantly 

inversely associated with risk.  

The association of PCBs with leukemia reflects the findings of earlier work. In a previous study of the CCLS cohort, 

group index regression methods found a marginally significant association between PCBs and childhood leukemia, 

with PCB 138 contributing the most to the index effect 24. Single-chemical logistic regression analyses have also 

found significant positive associations between leukemia and PCB138, as well as between leukemia and summed 

total PCB concentrations 56. Similarly, the significant positive association found for herbicides (and the dominance of 

dacthal within the index) closely mirrors prior analyses of these data done using Bayesian group index regression 



46 
 
analysis with a different imputation approach 23 and GWQS regression 24. Besides these mixture analyses, univariable 

logistic regression analyses have found similar associations between dacthal and childhood acute lymphocytic 

leukemia (ALL) risk 57. The significant negative association observed for the metals index, and for arsenic in 

particular, have less support from previous research. While arsenic is a well-known risk factor in adult bladder cancer 

61, there is little to no evidence of any link between arsenic and childhood cancer, including childhood leukemia 62. 

While selection bias cannot be ruled out to explain the negative association in the current paper, further 

investigation is necessary to understand this association.  

In summary, through our comparison of BDL imputation methods in the context of Bayesian group index regression, 

the Pseudo-Gibbs method of imputation performed best under conditions of high BDL missingness, whereas Prior 

imputation offers a suitable method of imputation at relatively low levels of BDL missingness. These methods and 

the guidance for their appropriate use allows researchers assessing environmental exposures to more rigorously 

handle the common problem of BDL missing data. While our application was to chemical exposure missing data, 

other fields (such as genomics) that frequently encounter such missing observations could also benefit from these 

methods.  
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Abstract 

Recent scientific interest in the relationship between chemical exposures and human health has led to the 

development of new methods for mixture analysis. One of these new methods, Bayesian group index regression, 

allows for the modelling of chemical exposure variables in multiple groups that can vary in direction and magnitude 

of association with an outcome. A question this presents is how a set of variables should be partitioned into their 

respective groups. To address this aspect of Bayesian group index modeling, we compare five variable clustering 

methods to assess their ability to empirically cluster chemical exposure variables. To evaluate these clustering 

methods, we conduct simulation studies with varying numbers of true chemical clusters and between-cluster noise. 

We apply the best performing method to the National Cancer Institute (NCI) Surveillance, Epidemiology, and End 

Results (SEER) non-Hodgkin Lymphoma (NHL) case-control study. Of the methods assessed, Clustering of Variables 

around Latent Variables (CLV) most accurately identified the correct clusters, resulting in better fitting Bayesian 

group index regression models. Our analysis of the NCI-SEER dataset found significant associations, one positive and 

one inverse, between two different indices of residential pesticide concentrations and NHL in subjects living in Iowa. 

In conclusion, CLV is a clustering method that is robust to noise and able to separate variables of opposite direction 

of association with the outcome, making it suitable for clustering in preparation for fitting a Bayesian group index 

regression model, providing practitioners a ready way to pre-process and analyze chemical mixture data.  

Introduction 

Synthetic chemicals are essential to modern economic life, with applications ranging from agriculture 1 to 

commercial products 2. The number of chemicals on the market is believed to be around 75,000 to 140,000, 

however, data on important characteristics of these compounds such as environmental persistence, 

bioconcentration levels, and toxicity is minimal 3. With historical examples of deleterious side effects of chemicals 

abounding 4-5, it is of increasing interest to understand the full impact of industrial chemicals, especially as it relates 

to human health. A particular area of growing scholarly interest is the study of chemical mixtures’ impact on human 
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health, as researchers wish to evaluate the joint effect of the many chemicals that individuals are exposed to in their 

environments.  

The study of chemical mixtures poses a set of statistical challenges, but the primary hindrance is that chemical 

mixtures tend to be highly correlated, which frustrates attempts at normal regression methods. To address this 

problem, a number of novel statistical methods have been developed. Bayesian kernel machine regression (BKMR) 

utilizes a kernel link function to test the association of a chemical mixture with an outcome, and has the advantage 

of effectively modelling nonlinear, nonadditive relationships and simplifying models through a hierarchical variable 

selection routine 6. Quantile g-computation applies the framework of causal inference to modeling chemical 

mixtures, which allows for complex models including nonlinear and interaction effects 7. Lastly, the index regression 

family of models groups the chemicals which compose a mixture into indices, allowing for both the total effect of the 

mixture on an outcome and the individual contribution of particular chemicals to the overall mixture effect to be 

estimated 8. Originally developed for a single index, Bayesian group index regression is an extension that allows for 

multiple groups to be modeled in a Bayesian framework, eliminating the need for data splitting and preventing 

chemicals with associations in opposite direction from biasing index effect estimates towards the null 9.  

While the ability to model multiple groups is a clear advantage over single index regression models, there still 

remains the question of how to partition a set of chemicals into their respective groups. In previous applications of 

group index regression models, chemicals were sorted into clusters with other compounds of similar chemical 

structure or usage 10. For example, polychlorinated biphenyls (PCBs) would be grouped with other PCBs, or 

herbicides would be grouped with other herbicides. While this grouping strategy is logical, as highly correlated 

chemicals tend to be related to each other in one of these two ways, there are instances where this is not ideal. 

Pesticides, for example, are a relatively heterogenous group of chemicals that do not necessarily belong in the same 

group. Such groups can contain chemicals with both positive and negative associations to an outcome of interest, 

and might artificially bias such an index to the null. Additionally, there may be patterns in a chemical mixture beyond 

that of chemical structure or usage that an empirical measure of similarity would be able to ascertain.   

The goal of empirically grouped chemical indices is related to the wider field of data clustering, where we seek to 

cluster features into groups most similar to one another. While the majority of work in the field of data clustering 
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has been devoted to the clustering of subjects, there has also been interest in the clustering of variables, particularly 

in the study of gene expression data 11-12. Many well-known clustering algorithms have been employed to cluster 

variables, including K-means 13, hierarchical clustering 14-15, self-organizing maps 16, and model-based approaches 17-

18. Principal component analysis is also of interest for clustering, although interpretation of cluster membership and 

defining exact cluster boundaries is difficult with this technique 19. Other methods have been developed specifically 

to suit the task of clustering variables, some of which will be discussed in detail below. 

Our aim in this paper was to identify the variable clustering method most suited for identifying chemical groups in 

Bayesian group index regression models. To this end we chose five variable clustering methods for comparison. 

Three of these methods, Clustering of Variables around Latent Variables (CLV), Clustering Variables using 

Dimensionality Reduction (VARCLUST), and Robust principal component analysis (RPCA) clustering, involve the 

widely known PCA algorithm. CLV seeks to cluster variables around latent components, which are defined as the first 

principal component of a group of variables. VARCLUST expands on CLV by allowing these latent components to be 

defined by more than just the first principal component. RPCA clustering employs a variant of PCA robust to noise 

and corrupt observations to generate a denoised data matrix from which grouping labels for variables are derived. In 

addition to these methods, we investigated an agglomerative hierarchical clustering (AHC) algorithm that 

successively groups individual variables until a single group is formed out of smaller merged groups. Finally, we 

implemented a Dirichlet Process Variable Clustering (DPVC) model, where one of its primary attractive features is the 

ability to estimate group number as well as group composition. 

To evaluate the performance of these five clustering techniques in tandem with Bayesian group index regression, we 

conducted a simulation study with varying levels of noise and true number of groups. Model performance was then 

compared along a number of metrics. We then applied the best performing clustering method and the Bayesian 

group index model to the National Cancer Institute (NCI) Surveillance, Epidemiology, and End results (SEER) non-

Hodgkin Lymphoma (NHL) case-control study, an investigation of the link between environmental chemical 

exposures and NHL. The NHL study dataset includes highly correlated chemical exposure variables, which could be 

grouped based on chemical structure and usage, but may benefit from an empirical grouping rationale. This is 

especially true for the pesticides, which consist of heterogeneous chemical classes from which multiple groups could 



55 
 
be formed or combined with other groups. The results from this paper will provide a ready way to group chemicals 

when performing a Bayesian group index regression analysis. 

Methods 

Bayesian Group Index Regression 

The Bayesian grouped index model in general form for a binary health outcome 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) is specified 

through the log-odds of disease of the ith subject as  

logit(𝑝𝑖) = β0 + ∑ βk (∑𝑤𝑗𝑘

𝐶𝑘

𝑗=1

𝑞𝑖𝑗𝑘) + 𝑧𝑖
𝑇φ.     

K

k=1

 

On the left of the equation is the logit of the disease probability 𝑝𝑖 , and on the right are the effects for the intercept 

𝛽0, chemical indices 𝛽𝑘, which estimate the health effects for exposure to the kth group of exposures, and a vector 

of covariates 𝑧𝑖
𝑇 with corresponding effects in vector 𝜑. The number of exposures in each of the K indices can vary 

and is denoted by 𝐶𝑘.  For each index, 𝑤𝑗𝑘 is the weight for the jth exposure in the kth index and denotes the relative 

importance of that exposure within the index. The value of each 𝑤𝑗𝑘 is constrained to be between 0 and 1, and when 

summed across an individual index must equal 1. For each index, 𝑞𝑖𝑗𝑘 is the quantile score for the jth exposure in the 

kth index for the ith subject. Quantiles are used instead of raw chemical concentration data in order to limit the 

influence of outliers and to standardize the varying concentration scaling of different exposures. Further details on 

prior specification and inference have been discussed previously 9.  

Grouping Methods 

Clustering of Variables around Latent Variables 

CLV is a variable clustering method that seeks to group variables by finding a cluster arrangement that maximizes the 

covariance of individual clusters with an associated latent variable. A fixed number of clusters and latent variables K 

are sought for a set of  p variables 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑 measured on n subjects. We denote the K clusters as 𝐺1, 𝐺2, … , 𝐺𝐾 

and the K latent variables as 𝒄𝟏, 𝒄𝟐, … , 𝒄𝑲. The CLV algorithm seeks to maximize  

T = n∑ ∑ δ𝑘𝑗𝐶𝑜𝑣2(𝒙𝒋, 𝒄𝒌)
𝑝
𝑗=1

𝐾
𝑘=1 , 
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under the constraint 𝒄𝒌
𝑻𝒄𝒌 = 1 where δ𝑘𝑗 = 1 if the jth variable belongs to cluster 𝐺𝐾 and 𝛿𝑘𝑗 = 0 otherwise. The 

quantity T can also be written as T =
1

𝑛
∑ 𝒄𝒌

𝑻𝑿𝒌𝑿𝒌
𝑻𝐾

𝑘=1 𝒄𝒌, where 𝑿𝒌 is the matrix whose columns are formed with the 

variables belonging to 𝐺𝑘. 𝒄𝒌 is defined as the first principal component of 𝑿𝒌. 

The optimal clustering is found through an iterative algorithm where variables move between clusters in order to 

achieve an increase in the criterion value T. The algorithm is as follows: 

1. An initial K groups are formed through an agglomerative hierarchical clustering process that also utilizes the 

criterion T.  

2. For each cluster 𝐺𝑘 the latent component 𝒄𝒌 is found by deriving the standardized principal component. 

3. New clusters are formed by reassigning variables to a new group if its squared covariance with another 

latent variable is higher than its current group’s.  

4. Steps 2-3 repeat until stability is reached 20. 

Clustering Variables Using Dimensionality Reduction (VARCLUST) 

The VARCLUST algorithm is an extension of the CLV clustering method, which allows for more than one principal 

component to be used when modelling clusters. A dataset is partitioned into 𝑿𝒊 clusters 𝑖 ∈ {1,… , 𝐾}. Each 

individual cluster VARCLUST specifies is modelled as follows: 

𝑿𝒊  =  𝑴𝒊  +  𝛍𝐢 +  𝑬𝒊, 

Where 𝑴𝒊 is a matrix of rank k, the dimensionality or number of principal components used for this cluster,  𝛍𝐢 is a 

vector of means, and 𝑬𝒊 a matrix of centered normal noise distributed 𝑁(0, σ𝑖
2𝐼). The denoised matrix 𝑴𝒊  is 

decomposed as a product 

     𝐌𝐢 = 𝑭𝒏×𝒌𝒊

𝒊 𝑪𝒌𝒊×𝒑𝒊

𝒊 , 

where the matrix 𝑭𝒊 contains the k principal components and 𝑪𝒊 the PCA coefficients. The VARCLUST algorithm seeks 

to find the optimal number of K clusters, the variable membership of the clusters, and the dimensionality k of each 

cluster. The algorithm is as follows: 
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1. One to a maximum value of �⃗�  dimensions are considered for each cluster by maximizing the semi-integrated 

likelihood (PESEL) criterion, a metric developed to estimate the number of principal components in PCA that 

is similar to BIC 21.  

2. PCA with principle components k is performed on columns of 𝑿𝒊 partitioned to maximize the BIC distance 

from 𝑭𝒊. 

3. The number of clusters K is finally determined by choosing the model with the highest mBIC, a BIC metric 

modified to account for datasets with many variables 22. 

Robust Principal Component Analysis 

RPCA is an alternative to the widely used PCA that seeks to reduce dimensionality without being subject to PCA’s 

brittleness to corrupted observations. It does this by decomposing any given data set into a low-rank matrix L 

containing the predominant pattern of the data and a sparse matrix S containing outliers and noise outside of the 

main pattern 23. The original RPCA algorithm has since been extended to make it more suitable for environmental 

mixture analysis, including distinct penalties for BDL missing data, a nonnegativity constraint on the L matrix, and the 

replacement of the minimization of the nuclear norm  of L for a rank-r projection of the L matrix. The following 

optimization problem is minimized:  

min
𝐋,𝐒

 𝟏rank(𝐋)≤r + λ||𝐒||
1
+ μ||𝐋 + 𝐒 − 𝐗||

F
, 

where X is the original data matrix, λ and μ are tuning parameters, 𝟏rank(L)≤r is an indicator function constraining L 

to be of rank ≤ 𝑟, and ||𝑺||
1

is the L1 norm of the sparse matrix S. The final term is the error between predicted and 

observed values 24. We apply the matrix decomposition of RPCA to cluster variables as follows: 

1. We take the L matrix, as this contains the dominant patterns of the original data. 

2. We perform traditional PCA on the denoised L matrix. 

3. For a predetermined number of clusters K, we take only the first K principal components. 

4. We assign each variable’s group label as the principal component with the maximum absolute loading 

weight.  
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Agglomerative Hierarchical Clustering 

AHC methods begin with each variable assigned to its own cluster, after which the two most similar clusters are 

joined. This process continues until only a single cluster remains 25. There is no overlapping cluster membership, and 

clustering is done sequentially based on some measure of similarity of group pairs 26. Graphically this process is 

represented as a tree diagram, and cluster assignments can be determined for any number of clusters by cutting the 

tree at varying heights. There are many similarity or distance measures that quantify how closely related clusters are 

to each other. We chose the Hoeffding D statistic as it is sensitive to many types of dependence 27. For our 

assessment of AHC, we used the `varclus` function of the Hmisc R package, an agglomerative hierarchical clustering 

method for clustering variables 28. 

Dirichlet Process Variable Clustering  

DPVC is a Bayesian nonparametric model that partitions variables into highly correlated groups while simultaneously 

estimating the appropriate number of groups. The variables in a given dataset are partitioned using the Chinese 

Restaurant Process (CRP), which defines a distribution over clusters without necessitating the assignment of a 

maximum possible cluster number 29. We once again take X, a data matrix of N observations and P variables. The CRP 

partitioning is expressed as  

(𝑐1, … , 𝑐𝑃)~𝐶𝑅𝑃(α) 

where 𝑐𝑝 = 𝑘 denotes variable p belongs to cluster k and α is the concentration parameter. An attribute of the CRP 

is that each variable is restricted to belong to only one cluster. Each cluster is assigned a single latent factor 

zkn ~ N(0, σ𝑧
2) to model correlations between its variables. The observed data is modelled as 𝑥𝑝𝑛 = 𝑔𝑝𝑧𝑐𝑝n + ϵ𝑝𝑛 

where 𝑔𝑝 is a factor loading for variable p and 𝜖𝑝𝑛 ~ 𝑁(0, σ𝑝
2) is Gaussian noise. A Gaussian prior 𝑁(0, σ𝑔

2) is placed 

on every element 𝑔𝑑 independently. Finally, the concentration parameter and variances (σ𝑔
2 , σ𝑝

2) are respectively 

assigned gamma and inverse gamma priors 30. 

Simulation Study Design 

To evaluate the performance of these five variable grouping methods in the context of Bayesian group index 

regression, we simulated chemical concentration data in three scenarios with different numbers of true groups. All 
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scenarios were generated with a binary outcome and each group in every scenario contained a single important 

chemical that was set by assigning a true chemical weight of 1 to the important chemical and 0 to nonimportant 

chemicals. Chemical predictors were given between-group and within-group correlations that varied by scenario and 

are detailed below. For each set of simulated datasets, the correlation structures were specified through a matrix 

and subsequently converted into a covariance matrix. A mean vector and standard deviation vector were chosen to 

form the covariance matrix. This allowed the construction of the data distributed as multivariate normal. 

Scenario 1 datasets were generated to have 14 chemical predictor variables clustered into 3 true groups. These 

groups were associated with the outcome with odds ratios (ORs) of 0.67, 1.00, and 1.50, with the positive and 

negatively associated groups containing 5 predictors and the null group containing 4 predictors. All three groups 

were given a within-group correlation of 0.5. Scenario 2 datasets had 22 predictors clustered into 5 groups. Three of 

these groups are the same as Scenario 1 with the two additional groups associated with the outcome with odds 

ratios of 0.50 and 2.00. These two highly associated groups each contained 4 predictors and were given a within-

group correlation of 0.9. For both Scenarios 1 and 2 between-group correlation was set to be 0.0 (no noise), 0.1 (low 

noise), and 0.3 (moderate noise).  

Scenario 3 datasets contained 31 predictors split into 7 true groups.  These groups were associated with the 

outcome with odds ratios of 0.40, 0.50, 0.67, 1.00, 1.50, 2.00, and 2.50, each group containing 5, 3, 3, 5, 5, 5, and 5 

predictors, respectively. The 0.50 and 2.00 groups were modelled to be highly correlated, each having a 0.7 within-

group correlation and a slightly smaller 0.5 between-group correlation. Another such pair was formed with the 0.67 

and 1.50 groups, each having a 0.7 within-group correlation and a 0.3 between-group correlation. These two pairs 

simulated the challenge of properly clustering a group of highly correlated chemicals that would ideally be split into 

separate groups due to their opposite association with the outcome. The remaining groups simulated were more 

distinct, with the 0.40 and 2.50 groups set to have a 0.9 between-group correlation and the null group having a 0.5 

between-group correlation. Besides the variables in the two high-noise pairings, all other between-group correlation 

was set to 0.1.  

Once true exposure effects and correlation structures had been defined for all scenarios, we created binary 

outcomes that replicated a case-control study by having a relatively balanced number of cases and controls (50% ± 
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10% cases) in each iteration of data generation. The binary outcome y was distributed as 𝑦~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) where 

𝑝 =  
1

1+𝑒𝜂 and 𝜂 =  𝛽0
∗  +  ∑ 𝛽𝑘

∗[∑ 𝑤𝑗𝑘
∗𝐶𝑘

𝑗=1 𝑞𝑖𝑗𝑘
3
𝑘=1 ], and the star notation indicates true parameter values. No 

covariates were used in generation of the data, so the term 𝑧𝑇𝜙 =  0.  The number of quantiles used in all 

simulations was set at four when computing the weighted index for each group (i.e. 𝑞𝑖𝑗 = 0,1,2,3). Each simulation 

group number and correlation structure combination used 100 data realizations.  

We assessed the relative performance of our chosen grouping methods by determining the accuracy with which they 

assigned variables to their proper groups. Additionally, as some methods that we compared do not deterministically 

return a pre-assigned number of groupings, we reported the distribution of group numbers found across the 100 

data realizations. For the groups formed, we calculated the bias, mean squared error (MSE), and power of the group 

exposure effects. We also calculated the sensitivity and specificity of identifying chemicals as important or not. We 

compared model fit with the deviance information criteria (DIC). To calculate power, we determined the proportion 

of 95% credible intervals (CIs) for ORs that did not include 1.00. We measured sensitivity by determining the 

proportion of important chemicals that were identified by the models as being important. This was done by 

determining if the estimated weight of the important chemicals produced by the models was greater than or equal 

to the threshold 
1

𝐶𝑘
. Important chemicals assigned to the wrong group were counted as errors. Likewise, we defined 

specificity as the proportion of the unimportant chemicals that were correctly deemed unimportant by the models. 

This was determined by checking if the estimated weights of the unimportant chemicals were less than the same 

threshold of 
1

𝐶𝑘
. DIC was defined a𝑠 𝐷𝐼𝐶 = �̅� + 𝑝𝐷, where �̅� is the posterior mean deviance 31 and 𝑝𝐷 is the effective 

number of parameters 32, a quantification of model complexity. 

Data Analysis 

Applying the grouping method indicated by the results of the simulation study, we performed a Bayesian group 

index regression analysis of the NCI-SEER NHL case-control study to assess if there exists any association between 

our chemical exposure indices and NHL. The NCI-SEER NHL study is a population-based case control study of NHL 

with participants drawn from four study centers: the Detroit metropolitan region, Los Angeles County, the Seattle 

metropolitan region, and the state of Iowa. Patients diagnosed with NHL without a history of HIV at one of the above 
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four SEER registries between July 1, 1998 and June 30, 2000, and age 20 to 74 years old were included as cases. 

Controls were selected from the same four geographic regions using random-digit dialing for controls younger than 

65 years old and Medicare eligibility files for controls 65 years and older. Controls were frequency matched to cases 

by age, sex, race, and SEER registry, and excluded if a history of either NHL or HIV was reported. In total, the study 

enrolled 2,378 eligible participants (1,321 cases and 1,057 controls). Further characterization of the study design and 

study population can be found in past publications 33-34. 

To assess study participants’ exposure to environmental chemicals, dust samples were taken from participants’ 

homes from their vacuum cleaner bags or bagless vacuums if participants had their  carpets and rugs for a minimum 

of five years. Further information on the dust collection eligibility, sampling, and laboratory methods can be found in 

previous publications 35-36.  Dust was analyzed for 27 chemicals and complete covariate data were available for 1,180 

subjects (672 cases and 508 controls). Our analysis investigated the association of these 27 chemicals with the risk of 

NHL. Previous analyses of the NHL-SEER dataset that sought to group chemical exposure variables have largely done 

so on the basis of similar chemical structure or use, identifying three categories: polychlorinated biphenyls (PCBs) 

(congeners 105, 138, 153, 170, 180), polycyclic aromatic hydrocarbons (PAHs) (benz(a)anthracene, benzo(a)pyrene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(ah)anthracene, indeno(1,2,3-cd)pyrene), and 

pesticides (α-Chlordane, γ-Chlordane, carbaryl, dichlorodiphenyldichloroethylene (DDE), 

dichlorodiphenyltrichloroethane (DDT), o-phenylphenol, pentachlorophenol, propoxur, chlorpyrifos, cis-

permethrin, trans-permethrin, 2,4-D, diazinon, dicamba, methoxychlor). In some analyses, pesticides  were further 

split into two groups based on individual pesticide’s direction of association with the outcome 37-39. We determined 

the number and composition of groups in the Bayesian group index model using the grouping method indicated 

from our simulation studies. In addition to these chemical exposure indices, we adjusted for age, gender, race, and 

level of education. Age was treated as continuous, gender as binary (male vs. reference female), race as binary 

(white vs. reference black or other), and education as ordinal (grouped as <12 years, 12–15 years, and  ≥16 years). 

Due to the substantial differences between the chemical exposure profiles of the four study centers, we performed 

four separate analyses. Continuous chemical concentrations were categorized in quartiles for the regression. 

Convergence of all parameters of interest in models were checked via a Gelman-Rubin diagnostic statistic upper CI 

less than 1.10. We summarized the results using ORs for each chemical index along with 95% credible intervals. 
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Within each index that was significantly associated with the outcome, we assess the important chemical exposures 

using the estimated weights. 

Results 

Simulation Study 

The results for the three between-group correlation variants of Scenario 1 are presented below in Tables 1-3. In the 

no noise variant, all grouping methods except DPVC formed three groups 100 percent of the time. Group numbers 

for the 100 data realizations are given in Tables 1-7 under each method name, with the group number designated by 

a “G” and the number of realizations following an equal sign (e.g. 3G = 100 meaning 3 groups found 100 times). This 

is not surprising, as DPVC is the only method that provides an estimated group number, while all other methods 

compared must have a group number designated. Despite under- or over-estimating the group number 38% of the 

time, DPVC still outperformed VARCLUST in terms of accuracy and DIC. While DPVC also outperformed VARCLUST in 

terms of power, sensitivity, and specificity, these figures only reflect the averages of instances where DPVC correctly 

specified the true group number. The best performing methods were CLV and AHC, which both returned the true 

group chemical composition with 100% accuracy. As a result, there is almost no difference in their performance 

metrics and these two methods performed best in terms of MSE, power, sensitivity, specificity, and DIC. Close 

second to these two methods was RPCA, which had only slightly lower accuracy, power, sensitivity, specificity, and 

DIC while matching their performance measured by bias and MSE.  
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Table 1: Scenario 1 (no noise) performance metrics of Bayesian group index regression using five different grouping 
methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(3G=100) 

β1 = 0.62 (0.49, 0.79) 
β2 = 0.99 (0.79, 1.25) 
β3 = 1.54 (1.22, 1.95) 

-0.07       
-0.01        
0.03 

0.02       
0.01       
0.02 

0.95         
0.03         
0.93 

1.00        
0.36        
0.98 

0.94        
0.61        
0.95 

1.00 568.57  (5.69) 

AHC 
(3G=100) 

β1 = 0.62 (0.49, 0.79) 
β2 = 1.00 (0.80, 1.25) 
β3 = 1.54 (1.22, 1.95) 

-0.07        
0.00        
0.03 

0.02       
0.01       
0.02 

0.95         
0.03         
0.93 

1.00        
0.39        
0.98 

0.94        
0.62        
0.95 

1.00 569.08  (5.94) 

RPCA 
(3G=100) 

 

β1 = 0.63 (0.49, 0.80) 
β2 = 0.99 (0.79, 1.25) 
β3 = 1.54 (1.20, 1.97) 

-0.06       
-0.01        
0.03 

0.02       
0.01       
0.02 

0.94         
0.03         
0.87 

0.97        
0.35        
0.96 

0.93        
0.61        
0.95 

0.97 570.09  (6.30) 

VARCLUST 
(3G=100) 

β1 = 0.64 (0.48, 0.86) 
β2 = 1.00 (0.79, 1.27) 
β3 = 1.50 (1.11, 1.98) 

-0.04        
0.00        
0.00 

0.04       
0.01       
0.04 

0.79         
0.03         
0.69 

0.87        
0.16        
0.80 

0.90        
0.52        
0.90 

0.70 574.22  (7.18) 

DPVC* 
(1G=5, 2G=31, 
3G=62, 4G=2) 

β1 = 0.65 (0.51, 0.85) 
β2 = 1.00 (0.80, 1.25) 
β3 = 1.41 (1.09, 1.81) 

-0.02        
0.00       
-0.06 

0.04       
0.01       
0.08 

0.83         
0.03         
0.76 

0.90        
0.37        
0.83 

0.93        
0.64        
0.91 

0.86 572.84  (5.84) 

* Performance metrics only averaged for instances of correct group number specification 

These relative performances were largely replicated in the low noise variant, with the notable exception of DPVC. 

The ability of DPVC to correctly specify group number fell dramatically, and as a consequence average DIC rose 

substantially and accuracy fell. As three groups were only estimated for a single data realization, the ORs, CIs, bias, 

MSE, power, sensitivity, and specificity numbers are not averages but the results for that single instance of correct 

group number, which saw the worst performance among the clustering methods. While VARCLUST underperformed 

all clustering methods but DPVC, it proved more robust to noise than DPVC, with only a slight increase in bias and 

DIC, a slight decrease in accuracy, and small improvements in power and specificity. RPCA proved less robust to 

noise, as it failed to estimate three groups on one occasion and performed slightly worse across all performance 

metrics. As in the no noise variant, CLV and AHC performed best and retrieved the cluster membership of chemical 

variables with 100% accuracy. Compared to the no noise variant, there was a slight increase in bias and DIC for each 

method, as well as a small increase in specificity.  
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Table 2: Scenario 1 (low noise) performance metrics of Bayesian group index regression using five different grouping 
methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(3G=100) 

β1 = 0.62 (0.49, 0.79) 
 β2 = 1.00 (0.80, 1.26) 
β3 = 1.56 (1.23, 1.98) 

-0.07        
0.00        
0.04 

0.02       
0.01       
0.02 

0.99         
0.03         
0.90 

1.00        
0.39        
0.98 

0.95        
0.59        
0.95 

1.00 572.22  (6.87) 

AHC 
(3G=100) 

β1 = 0.62 (0.49, 0.79) 
β2 = 1.00 (0.80, 1.26) 
β3 = 1.56 (1.23, 1.98) 

-0.07        
0.00        
0.04 

0.02       
0.01       
0.02 

0.99         
0.03         
0.90 

1.00        
0.39        
0.98 

0.95        
0.60        
0.95 

1.00 571.10  (5.89) 

RPCA* 
(2G=1, 3G=99) 

 

β1 = 0.61 (0.47, 0.80) 
β2 = 1.00 (0.78, 1.29) 
β3 = 1.57 (1.20, 2.04) 

-0.08        
0.00        
0.04 

0.02       
0.01       
0.03 

0.95         
0.02         
0.80 

0.95        
0.29        
0.94 

0.93        
0.59        
0.94 

0.90 572.36  (6.33) 

VARCLUST 
(3G=100) 

β1 = 0.64 (0.49, 0.85) 
β2 = 0.99 (0.79, 1.24) 
β3 = 1.52 (1.15, 1.99) 

-0.04       
-0.01        
0.01 

0.04       
0.01       
0.04 

0.79         
0.03         
0.72 

0.85        
0.13        
0.84 

0.92        
0.36        
0.91 

0.67 574.59  (5.76) 

DPVC* 
(1G=93, 2G=6, 

3G=1) 

β1 = 0.95 (0.63, 1.45) 
β2 = 0.98 (0.77, 1.24) 
β3 = 0.99 (0.65, 1.50) 

0.35       
-0.02       
-0.42 

0.30       
0.00       
0.34 

0.48         
0.00         
0.46 

0.72        
0.00        
0.64 

0.92        
0.50        
0.91 

0.38 586.99  (5.98) 

* Performance metrics only averaged for instances of correct group number specification 

In the moderate noise variant, the previously noted trends continued. CLV and AHC continued to perfectly return the 

true chemical composition of the three groups. The increase in noise did, however, lead to an increase in bias, MSE, 

and DIC and to a decrease in power and specificity upon subsequent Bayesian group index regression. DPVC was 

unable to distinguish any partitions in the simulations under this level of noise, resulting in a lack of estimates for 

two of the groups. This led to an extreme bias towards the null for the single group estimated, as well as a large 

increase in DIC and poor performance across all metrics. The performance of VARCLUST, while still inferior to other 

methods, did not see a marked deterioration in performance, with only slight decreases in power and specificity and 

slight increases in bias, MSE, and DIC. RPCA, on the other hand, saw a significant drop in accuracy, power, and 

sensitivity, as well as a substantial increase in DIC. Bias, MSE and specificity were also slightly worse.  
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Table 3: Scenario 1 (moderate noise) performance metrics of Bayesian group index regression using five different 
grouping methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(3G=100) 

β1 = 0.61 (0.46, 0.79) 
β2 = 1.01 (0.78, 1.31) 
β3 = 1.59 (1.21, 2.08) 

-0.10        
0.01        
0.06 

0.02       
0.01       
0.03 

0.95         
0.00         
0.83 

0.99        
0.36        
0.99 

0.92        
0.58        
0.95 

1.00 575.23  (6.44) 

AHC 
(3G=100) 

β1 = 0.61 (0.46, 0.79) 
β2 = 1.01 (0.78, 1.31) 
β3 = 1.59 (1.21, 2.08) 

-0.10        
0.01        
0.06 

0.02       
0.01       
0.03 

0.95         
0.01         
0.81 

0.99        
0.37        
0.99 

0.92        
0.58        
0.95 

1.00 575.65  (6.85) 

RPCA 
(3G=100) 

 

β1 = 0.61 (0.44, 0.87) 
β2 = 1.01 (0.76, 1.36) 
β3 = 1.57 (1.11, 2.18) 

  -0.09        
0.01        
0.05 

0.04       
0.02       
0.04 

0.75         
0.02         
0.69 

0.86        
0.16        
0.80 

0.90        
0.60        
0.88 

0.69 578.02  (7.43) 

VARCLUST 
(3G=100) 

β1 = 0.63 (0.47, 0.87) 
β2 = 1.01 (0.80, 1.27) 
β3 = 1.50 (1.12, 2.00) 

-0.05        
0.01        
0.00 

0.04       
0.01       
0.05 

0.73         
0.02         
0.62 

0.91        
0.19        
0.78 

0.90        
0.34        
0.88 

0.68 578.90  (6.37) 

DPVC1 
(1G=100) 

β1 = 0.97 (0.67, 1.39) 
β2 = NA 
β3 = NA 

0.37 0.23 0.28 0.73 0.90 0.36 590.42  (3.53) 

1 Failure to estimate correct number of groups resulted in NA values 

The trends seen in Scenario 1 were largely followed in Scenario 2, with the three correlation variants presented 

below in Tables 4-6. In the no noise variant, the CLV and AHC methods once again were 100% accurate, and 

therefore had nearly identical results for all other performance metrics. RPCA was only slightly less accurate by 

comparison, due to the fact that in four instances it failed to assign chemicals to a fifth group. This resulted in a small 

increase in DIC and MSE compared to AHC and CLV, as well as a slightly worse performance in power, sensitivity, and 

specificity for the weaker signal strength 𝛽2 and  𝛽4. VARCLUST was the least accurate method, and in particular had 

poor performance measured by bias, MSE, power, sensitivity, and specificity for the less associated 𝛽2 and  𝛽4. It also 

had a markedly higher DIC than the three previously discussed methods. The increase in group number in this 

scenario impacted the performance of DPVC the most, as its rate of correctly specifying group number dropped to 

39%. This resulted in the worst performance as measured by DIC. When the correct number of groups were 

modelled, however, DPVC’s power, sensitivity, and specificity for 𝛽2 and  𝛽4 were second only to AHC and CLV. This 

was not the case for the more highly associated groups, where these metrics were worse in comparison to all other 

methods. Bias and MSE were also generally higher for DPVC. 
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Table 4: Scenario 2 (no noise) performance metrics of Bayesian group index regression using five different grouping 
methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(5G=100) 

β1 = 0.49 (0.39, 0.61) 
 β2 = 0.62 (0.48, 0.80) 
β3 = 1.00 (0.78, 1.28) 
β4 = 1.56 (1.21, 2.01) 
β5 = 2.04 (1.64, 2.55) 

-0.03       
-0.07        
0.00        
0.04        
0.02 

0.01       
0.02       
0.01       
0.02       
0.01 

1.00         
0.96         
0.05         
0.90         
1.00 

0.94        
0.94        
0.48        
0.92        
0.92 

0.94        
0.94        
0.59        
0.92        
0.91 

1.00 521.68 (10.07) 

AHC 
(5G=100) 

β1 = 0.49 (0.39, 0.61) 
 β2 = 0.62 (0.48, 0.80) 
β3 = 1.00 (0.78, 1.28) 
β4 = 1.56 (1.21, 2.01) 
β5 = 2.04 (1.64, 2.55) 

-0.03       
-0.07        
0.00        
0.04        
0.02 

0.01       
0.02       
0.01       
0.02       
0.01 

1.00         
0.96         
0.05         
0.90         
1.00 

0.94        
0.94        
0.46        
0.92        
0.92 

0.94        
0.94        
0.61        
0.92        
0.91 

1.00 520.49  (9.88) 

RPCA* 
(4G=4, 5G=96) 

 

β1 = 0.48 (0.38, 0.61) 
β2 = 0.63 (0.48, 0.82) 
β3 = 1.01 (0.78, 1.30) 
β4 = 1.55 (1.20, 2.00) 
β5 = 2.06 (1.64, 2.61) 

-0.03       
-0.06        
0.01        
0.03        
0.03 

0.02       
0.02       
0.02       
0.02       
0.02 

 1.00         
0.92         
0.03         
0.89         
1.00 

0.93        
0.90        
0.43        
0.84        
0.91 

0.93        
0.92        
0.58        
0.89        
0.91 

0.95 522.24 (10.08) 

VARCLUST 
(5G=100) 

β1 = 0.48 (0.36, 0.63) 
β2 = 0.73 (0.55, 0.98) 
β3 = 1.00 (0.78, 1.27) 
β4 = 1.39 (1.01, 1.87) 
β5 = 2.04 (1.55, 2.70) 

-0.04        
0.09        
0.00       
-0.08        
0.02 

0.06       
0.06       
0.01       
0.05       
0.05 

0.96         
0.53         
0.01         
0.54         
0.96 

0.74        
0.47        
0.15        
0.52        
0.73 

0.87        
0.75        
0.32        
0.79        
0.84 

0.72 539.66 (14.13) 

DPVC* 
(5G=39, 4G=37,  
3G=21, 2G=3) 

β1 = 0.52 (0.41, 0.69) 
β2 = 0.62 (0.47, 0.80) 
β3 = 0.99 (0.77, 1.26) 
β4 = 1.54 (1.19, 1.98) 
β5 = 1.86 (1.44, 2.42) 

0.05       
-0.08       
-0.01        
0.02       
-0.07 

0.07       
0.03       
0.01       
0.02       
0.08 

0.91         
0.95         
0.00         
0.90         
0.87 

0.72        
0.92        
0.46        
0.90        
0.73 

0.88        
0.93        
0.58        
0.90        
0.86 

0.83 546.38 (16.94) 

* Performance metrics only averaged for instances of correct group number specification 

 

The low noise variant continued the trend seen previously, with DPVC almost unable to partition chemicals into 

groups in the presence of noise, at maximum identifying two groups 12% of the time. DIC and accuracy were quite 

poor as a result, and other metrics suffered from the bias to the null that occurs when variables from oppositely 

associated groups were mixed. As in Scenario 1, the number of instances where RPCA under-specified the group 

number increased slightly in the presence of noise, and as a result its accuracy and DIC suffered. Bias and MSE were 

largely the same, while power, sensitivity, and specificity saw small decreases. VARCLUST’s performance in terms of 

bias and MSE was stable compared to the no noise variant, yet was the weakest performing method besides DPVC. 

Accuracy saw a slight decrease along with power and sensitivity, while specificity was marginally better. 
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Table 5: Scenario 2 (low noise) performance metrics of Bayesian group index regression using five different grouping 
methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(5G=100) 

β1 = 0.49 (0.39, 0.61) 
 β2 = 0.62 (0.48, 0.80) 
β3 = 1.00 (0.78, 1.29) 
β4 = 1.58 (1.22, 2.04) 
β5 = 2.07 (1.65, 2.61) 

-0.03       
-0.08        
0.00        
0.05        
0.03 

0.01       
0.02       
0.01       
0.02       
0.02 

1.00         
0.93         
0.01         
0.88         
1.00 

0.92        
0.94        
0.47        
0.84        
0.87 

0.93        
0.93        
0.61        
0.90        
0.90 

1.00 525.72 (10.20) 

AHC 
(5G=100) 

β1 = 0.49 (0.39, 0.61) 
 β2 = 0.62 (0.48, 0.80) 
β3 = 1.00 (0.78, 1.29) 
β4 = 1.58 (1.22, 2.04) 
β5 = 2.07 (1.65, 2.61) 

-0.03       
-0.08        
0.00        
0.05        
0.03 

0.01       
0.02       
0.01       
0.02       
0.02 

1.00         
0.93         
0.01         
0.89         
1.00 

0.92        
0.94        
0.48        
0.86        
0.88 

0.92        
0.92        
0.61        
0.90        
0.91 

1.00 525.66 (10.46) 

RPCA* 
(4G=7, 5G=93) 

 

β1 = 0.48 (0.37, 0.61) 
β2 = 0.64 (0.49, 0.87) 
β3 = 1.01 (0.78, 1.33) 
β4 = 1.55 (1.17, 2.03) 
β5 = 2.08 (1.60, 2.73) 

-0.04 
-0.04 
0.01 
0.03 
0.04 

0.02 
0.02 
0.02 
0.02 
0.02 

1.00 
0.81 
0.04 
0.88 
0.99 

0.87 
0.86 
0.37 
0.80 
0.89 

0.89 
0.88 
0.54 
0.87 
0.90 

0.87 528.72 (9.15) 

VARCLUST 
(5G=100) 

β1 = 0.49 (0.37, 0.64) 
β2 = 0.73 (0.55, 0.97) 
β3 = 0.99 (0.77, 1.28) 
β4 = 1.37 (1.02, 1.81) 
β5 = 2.07 (1.59, 2.72) 

-0.03        
0.08       
-0.01       
-0.09        
0.03 

0.05       
0.06       
0.01       
0.05       
0.05 

0.95         
0.48         
0.03         
0.52         
0.96 

0.80        
0.53        
0.15        
0.51        
0.76 

0.90        
0.79        
0.37        
0.79        
0.88 

0.70 545.02 (13.43) 

DPVC1 
(1G=88, 2G=12) 

β1 = 0.88 (0.49, 1.52) 
β2 = NA 
β3 = NA 
β4 = NA 

β5 = 0.97 (0.55, 1.67) 

0.57 
 
 
 

-0.73 

0.75 
 
 
 

0.95 

0.61 
 
 
 

0.58 

0.71 
 
 
 

0.62 

0.88 
 
 
 

0.88 

0.25 600.13 (19.76) 

* Performance metrics only averaged for instances of correct group number specification 

1 Failure to estimate correct number of groups resulted in NA values 

 

In the moderate noise variant, DPVC once again failed to partition the variables 100% of the time, leading to high 

DIC, low accuracy, and estimates biased to the null. RPCA’s rate of group number under-specification increased to 

10%, with an attendant increase in DIC and decrease in accuracy. Bias increased for some groups and decreased for 

others, however, MSE was consistently higher than previous variants. Power, sensitivity, and specificity suffered, 

especially for 𝛽2 and  𝛽4. VARCLUST saw a significant increase in DIC, with only DPVC registering a worse model fit. 

While still underperforming other methods, the increase to moderate noise levels did not have any large impact on 

bias, MSE, or power, while accuracy slightly increased. Sensitivity and specificity both saw weaker performance. 

Once again CLV and AHC proved most robust to increased noise, each achieving 100% accuracy. The moderate noise, 

however, did lead to worse results in all performance metrics compared to low and no noise variants.  
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Table 6: Scenario 2 (moderate noise) performance metrics of Bayesian group index regression using five different 
grouping methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(5G=100) 

β1 = 0.48 (0.38, 0.62) 
 β2 = 0.61 (0.45, 0.81) 
β3 = 1.00 (0.75, 1.33) 
β4 = 1.60 (1.20, 2.14) 
β5 = 2.07 (1.62, 2.67) 

-0.03       
-0.09        
0.00        
0.07        
0.03 

0.01       
0.03       
0.02       
0.02       
0.02 

1.00         
0.90         
0.03         
0.86         
1.00 

0.85        
0.84        
0.50        
0.82        
0.85 

0.93        
0.91        
0.61        
0.88        
0.90 

1.00 538.65 (10.13) 

AHC 
(5G=100) 

β1 = 0.48 (0.38, 0.62) 
 β2 = 0.61 (0.45, 0.81) 
β3 = 1.00 (0.75, 1.33) 
β4 = 1.60 (1.20, 2.14) 
β5 = 2.07 (1.62, 2.67) 

-0.03       
-0.09        
0.00        
0.07        
0.03 

0.01       
0.03       
0.02       
0.02       
0.02 

1.00         
0.90         
0.03         
0.86         
1.00 

0.87        
0.86        
0.50        
0.82        
0.85 

0.93        
0.92        
0.62        
0.88        
0.89 

1.00 538.84  (9.94) 

RPCA* 
(4G=10, 
5G=90) 

β1 = 0.46 (0.34, 0.62) 
β2 = 0.66 (0.48, 0.94) 
β3 = 1.01 (0.74, 1.37) 
β4 = 1.49 (1.09, 2.04) 
β5 = 2.15 (1.60, 2.92) 

-0.08 
-0.01 
0.01 
-0.01 
0.07 

0.04 
0.03 
0.02 
0.04 
0.03 

0.99 
0.61 
0.01 
0.61 
0.98 

0.80 
0.69 
0.27 
0.64 
0.79 

0.90 
0.84 
0.57 
0.80 
0.85 

0.77 547.40 (10.53) 

VARCLUST 
(5G=100) 

 

β1 = 0.49 (0.37, 0.65) 
β2 = 0.72 (0.53, 1.00) 
β3 = 0.98 (0.75, 1.28) 
β4 = 1.39 (1.02, 1.88) 
β5 = 2.02 (1.49, 2.74) 

-0.01        
0.08       
-0.02       
-0.07        
0.01 

0.05       
0.05       
0.01       
0.05       
0.04 

0.97         
0.48         
0.03         
0.53         
0.93 

0.68        
0.50        
0.15        
0.54        
0.66 

0.85        
0.78        
0.40        
0.76        
0.86 

0.72 558.18 (13.16) 

DPVC1 
(1G=100) 

β1 = 0.95 (0.64, 1.48) 
β2 = NA 
β3 = NA 
β4 = NA 
β5 = NA 

0.65 0.65 0.53 0.69 0.90 0.23 602.52  (8.28) 

* Performance metrics only averaged for instances of correct group number specification 

1 Failure to estimate correct number of groups resulted in NA values 

 

Scenario 3 (Table 7) presents the first instance where AHC failed to maintain perfect accuracy. Compared to CLV, the 

AHC method had higher bias and MSE for the most weakly associated groups, and had markedly lower power, 

sensitivity, and specificity for these groups as well. AHC’s DIC was also higher than both the CLV and RPCA methods. 

RPCA had the third highest accuracy, but suffered from a significant under-specification of group number, finding all 

seven groups only 79% of the time. For instances in which RPCA specified the correct number of groups, bias, MSE, 

sensitivity, and specificity were comparable to AHC, higher in some instances and lower in others. RPCA’s power was 

generally better than AHC, but underperformed CLV. VARCLUST was once again the second least accurate method 

after DPVC, and had the second highest DIC. With seven groups VARCLUST’s weakness in estimating groups besides 

the most highly associated are highlighted, with extreme bias and MSE for 𝛽2, 𝛽3, 𝛽5, and 𝛽6. Power, sensitivity and 

specificity was also poor for these groups. Unsurprising given the high levels of noise, DPVC generally failed to 

partition the data, with 84% rate of finding a single group, and never estimated the correct group number. The 
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effects of this on performance metrics were similar to previous instances. CLV once again had an accuracy of 100%, 

and the lowest DIC. Predictably, power suffered the most for the weakest associated groups. On the other hand, 

sensitivity was highest for these groups. CLV’s bias was generally the lowest, with some exceptions for certain 

groups, while MSE was consistently the lowest. 

Table 7: Scenario 3 performance metrics of Bayesian group index regression using five different grouping methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(7G=100) 

β1 = 0.37 (0.28, 0.48) 
β2 = 0.45 (0.34, 0.59) 
β3 = 0.66 (0.51, 0.85) 
β4 = 0.99 (0.75, 1.30) 
β5 = 1.55 (1.18, 2.02) 
β6 = 2.21 (1.67, 2.95) 
β7 = 2.66 (2.05, 3.50) 

-0.07       
-0.10       
-0.01       
-0.01        
0.03        
0.10        
0.06 

0.02       
0.03       
0.02       
0.02       
0.01       
0.03       
0.02 

1.00         
1.00         
0.86         
0.05         
0.89         
1.00         
1.00 

0.73        
0.72        
0.93        
0.33        
0.90        
0.71        
0.74 

  0.91        
0.87        
0.90        
0.62        
0.84        
0.91        
0.91 

1.00 482.10 (13.51) 
 

 

AHC 
(7G=100) 

β1 = 0.39 (0.30, 0.51) 
β2 = 0.55 (0.42, 0.72) 
β3 = 0.74 (0.57, 0.99) 
β4 = 0.99 (0.74, 1.31) 
β5 = 1.35 (1.00, 1.79) 
β6 = 1.82 (1.38, 2.40) 
β7 = 2.52 (1.98, 3.25) 

-0.01        
0.10        
0.11       
-0.01       
-0.11       
-0.09        
0.01 

0.02       
0.06       
0.04       
0.01       
0.04       
0.05       
0.02 

1.00         
0.91         
0.54         
0.02         
0.51         
0.93         
1.00 

0.84        
0.41        
0.57        
0.29        
0.48        
0.43        
0.91 

0.92        
0.80        
0.79        
0.63        
0.77        
0.83        
0.94 

0.92 501.08 (13.64) 

RPCA* 
(5G=1, 
6G=20, 
7G=79) 

β1 = 0.38 (0.28, 0.51) 
β2 = 0.48 (0.35, 0.65) 
β3 = 0.70 (0.52, 0.97) 
β4 = 0.97 (0.70, 1.35) 
β5 = 1.41 (1.00, 1.94) 
β6 = 2.08 (1.52, 2.87) 
β7 = 2.80 (2.05, 3.91) 

-0.04       
-0.05        
0.05       
-0.03       
-0.06        
0.04        
0.11 

0.03       
0.04       
0.03       
0.02       
0.04       
0.05       
0.09 

0.99         
0.96         
0.71         
0.03         
0.58         
0.91         
0.99 

0.68        
0.58        
0.78        
0.24        
0.58        
0.44        
0.68 

0.90        
0.84        
0.83        
0.62        
0.76        
0.82        
0.88 

0.86 499.03 (16.68) 

VARCLUST 
(7G=100) 

 

β1 = 0.40 (0.29, 0.53) 
β2 = 0.62 (0.46, 0.86) 
β3 = 0.86 (0.62, 1.18) 
β4 = 1.02 (0.75, 1.38) 
β5 = 1.20 (0.87, 1.62) 
β6 = 1.61 (1.13, 2.17) 
β7 = 2.47 (1.81, 3.34) 

0.00        
0.21        
0.25        
0.02       
-0.23       
-0.22       
-0.01 

0.07       
0.11       
0.09       
0.01       
0.08       
0.11       
0.07 

0.97         
0.62         
0.15         
0.01         
0.20         
0.63         
0.94 

0.82        
0.48        
0.22        
0.09        
0.25        
0.39        
0.80 

  0.91        
0.80        
0.64        
0.52        
0.66        
0.80        
0.90 

0.71 522.99 (16.46) 

DPVC1 
(1G=84, 2G=14, 

3G=1, 4G=1) 

β1 = 0.84 (0.45, 1.58) 
β2 = NA 
β3 = NA 
β4 = NA 
β5 = NA 
β6 = NA 

β7 = 0.99 (0.53, 1.87) 

0.74 
 
 
 
 
 

-0.92 

0.93 
 
 
 
 
 

1.21 

0.53 
 
 
 
 
 

0.48 

0.78 
 
 
 
 
 

0.63 

0.93 
 
 
 
 
 

0.92 

0.19 619.66 (29.13) 

* Performance metrics only averaged for instances of correct group number specification 

1 Failure to estimate correct number of groups resulted in NA values 

 

Application of CLV grouping and Bayesian group index regression to NCI-SEER NHL case-control study data 

The results of our simulation study indicate that the CLV grouping method is best suited for grouping environmental 

chemical exposure variables before performing Bayesian group index regression. We applied the two-step process to 
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the NHL dataset. This was done for each study center separately;  however, we will only present the Iowa results in 

the main tables as no significant associations were found in other study centers. The results for the other three study 

centers can be found in the supplemental materials. First, as suggested by the authors Vigneau and Qannari 2003, 

we assessed the proper group number for the data graphically (Figure 1).  

Figure 1: Iowa Subset Group Number Plot 

 

In the above plot we have the variation of the clustering criterion between a partition into K clusters and a partition 

into K-1 clusters. Generally, this variation tends to increase as cluster sizes decrease; however, we want to identify at 

what grouping number change the first instance of a large change in delta occurs. We identified this as the point 

between 5 and 4 groups, so we fixed the CLV clustering algorithm to 5 clusters. We characterized the five clusters 

and list their chemicals as follows: a group of pesticides named Group 1 (2,4-D, chlorpyrifos, cis-permethrin, and 

trans-permethrin), a second group of pesticides called Group 2 (dicamba, DDE, DDT, and propoxur), a group 

containing all PAHs named Group 3 (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(a)pyrene, chrysene, dibenz(ah)anthracene, and indeno(1,2,3-cd)pyrene),  a group containing all PCBs and four 

pesticides named Group 4 (PCB 105, PCB 138, PCB 153, PCB 170, PCB 180, carbaryl, methoxychlor, o-phenylphenol, 

pentachlorophenol), and a group containing the remaining pesticides called Group 5 (α-chlordane, γ-chlordane, 

diazinon). The odds ratios and 95% CIs estimated for our 5 index effects and covariates are in Table 8. Two indices 



71 
 
were significantly associated with NHL: Group 1 had an inverse association (OR = 0.58, 95% CI: 0.41, 0.78) and Group 

2 had a positive association (OR = 1.50, 95% CI: 1.00, 2.11). None of the covariates were found to be significantly 

associated with NHL risk. The Group 1 index was dominated by 2,4-D, with a weight of 0.69. Propoxur and DDE were 

the most heavily weighted chemicals in the Group 2 index, with weights of 0.58 and 0.23 respectively.  

Table 8: Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group index 
model for subjects in Iowa  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 0.58 0.41 0.78 

Group 2 1.50 1.00 2.11 

Group 3 0.96 0.77 1.19 

Group 4 0.99 0.70 1.41 

Group 5 1.20 0.89 1.60 

Male 1.07 0.70 1.66 

White 1.39 0.16 9.47 

Education 1.13 0.77 1.74 

  Age 0.99 0.97 1.01 

 

Discussion 

In this paper, we compared the performance of five variable clustering methods as a data pre-processing step before 

Bayesian group index regression. In our simulation study we evaluated these clustering methods at three levels of 

noise (none, low, and moderate) and varying numbers of true groups (3, 5, and 7). Additionally, we sought to 

determine if the clustering methods could successfully separate correlated but oppositely associated chemical 

variables that, if grouped together, lead to index estimates biased towards the null. We found that the performance 

of the DPVC and RPCA methods were particularly susceptible to higher levels of noise, and that the CLV and AHC 

methods were quite robust to even moderate levels of noise. The VARCLUST method uniformly underperformed the 

other methods. The CLV and AHC methods were nearly indistinguishable in terms of performance until the 7-group 

scenario, where CLV was slightly superior in retrieving true group status and separating oppositely associated 

variables. Notably, RPCA consistently failed to separate the correct number of groups at high group numbers.  
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Based on the findings described above, we recommend the CLV method for clustering of variables prior to Bayesian 

group index regression. Based on these results we used CLV to cluster the chemical exposures in the NHL study 

dataset and identified distinct chemical clusters for Detroit, Iowa, Los Angeles, and Seattle. We then fit four Bayesian 

group index regressions based on these empirical groupings. For Iowa, our empirical clusters partially  reflected 

clustering by chemical structure, as there were two groups that contained all the PCBs and PAHs. The pesticides, 

however, were separated into three clusters and four were grouped with PCBs, characterizing the heterogeneity of 

these chemicals. This resulted in a five-index model, where we found a positive and significant association between 

what was labelled Group 2 (OR =1.50) and NHL, with propoxur (weight = 0.58) and DDE (weight = 0.23) having the 

highest mean posterior weights. A negative and significant association was also found between what was labelled 

Group 1 (OR = 0.58) and NHL, with the highest mean posterior weight attributed to 2,4-D (weight = 0.69). These 

significant associations between pesticides and NHL are supported by previous analyses of these data. Using group 

index regression methods, we previously found significant associations between two indices in the Iowa study 

center, one containing all pesticides with an univariate positive association with NHL status and the other containing 

all pesticides with an univariate inverse association. As in the analysis presented above, propoxur was the highest 

weighted chemical in the positively associated index, while 2,4-D was the highest in the inversely associated index 39. 

Another analysis of the NCI-SEER NHL dataset, employing a single index regression, found a significant, positive 

association between all 27 chemicals and NHL in the Iowa subset, with propoxur and DDE among the highest 

weighted chemicals 37. Interestingly, 2,4-D was assigned a marginal weight (0.005) in this positively associated index, 

effectively contributing no weight according to this method, but was found to have a significant inverse association 

with NHL in a single-chemical regression reported in the same analysis. This highlights the strength of the group 

index regression model to allow for multiple directions of associations among indices and the ability of the CLV 

clustering method to sort oppositely associated chemicals into their own groups.  The chemicals of interest found in 

our positively associated pesticide index are supported by past single-chemical analyses, where similar associations 

as those found here were estimated for DDE and propoxur 36-37. While 2,4-D is classed as a Group 2B, or possible 

carcinogenic to humans, by the International Agency for Research on Cancer working group 40, multiple 

investigations into its relationship with NHL have been conducted with inconclusive results 41-44. 
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In our analyses for the Los Angeles, Detroit, and Seattle centers we found no significant associations between any 

chemical index and NHL. This result is similar to our previous group index regression analysis that also looked at each 

study site individually 39. These results differ from another previous analysis of the same data, where a two-step, 

frequentist grouped index regression model was used. In addition to a positively associated pesticide index, that 

analysis  found a significant and positive association between dust concentrations of PCBs and NHL 38, which was 

consistent with analyses of individual and total PCBs 36 and with an analysis of some study participants’ blood plasma 

45. The discrepancy of findings may be explained by the two-step procedure used, as failure to split the data into 

estimation  and validation sets could lead to overfitting. 

In conclusion, the two-step process of CLV clustering and Bayesian group index regression is a useful combination in 

the analysis of chemical mixture data. The ability to empirically determine group indices provides guidance when 

groupings are otherwise unclear and can be used to confirm groupings based on other rationales such as chemical 

structure. The CLV clustering algorithm showed a robustness to noisy, highly correlated data that is typical of 

chemical concentration data. Further, in application to both simulation and real data the method was able to 

separate oppositely associated variables into distinct clusters. These attributes allow practitioners to take full 

advantage of the Bayesian group index regression’s ability to model indices with varying magnitudes and direction of 

association. While this combination has several strengths, there are also limitations that future research can address. 

While CLV was able to separate oppositely-associated chemicals, an approach that directly takes the outcome of 

interest into account could improve clustering performance. Similarly, covariates could also be accounted for in the 

clustering process. 
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Abstract 

Bayesian group index regression is a recently developed mixture analysis model that allows for the modelling of 

chemical exposure variables in multiple groups that can vary in direction and magnitude of association with an 

outcome. Before group index regression, the chemical mixture of interest must be partitioned into these groups. We 

propose two semi-supervised extensions of the clustering algorithm Clustering of Variables around Latent Variables 

(CLV). Our semi-supervised clustering methods seek to incorporate information from the target outcome variable to 

improve clusters while also preventing chemicals with opposite direction of association with the outcome from 

inclusion in the same group, which biases index effect estimates towards the null. We compare our proposed 

extensions with two other semi-supervised clustering algorithms and the unsupervised CLV algorithm. To evaluate 

these clustering methods, we conduct simulation studies characterized by true clusters with little to differentiate 

themselves from one another except their opposing association with an outcome variable. We apply the best 

performing method to the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) non-

Hodgkin Lymphoma (NHL) case-control study to investigate associations between chemicals in house dust and risk of 

NHL. Our simulation study identified the constrained clustering algorithm Constrained Clustering by Tabu Search 

(Conclust) as the best performing clustering method. In our analysis of the NCI-SEER dataset we found three 

chemical indices with significant association with NHL, two in Iowa and one in Los Angeles. In conclusion, the semi-

supervision of clustering as implemented by Conclust allows for the empirical partitioning of a chemical mixture 

while discouraging chemical groupings that are biased towards the null. These qualities are advantageous for the 

preparation of data for Bayesian group index regression and provides a rational two-step process for the analysis of 

chemical mixture data. 

Introduction 

Concern over the widespread proliferation of chemicals resulting from human activity is a decades-old phenomenon 

1. Nonetheless, due to the essential nature of these chemicals to modern life, the spread of such chemicals continues 
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2. This situation has led to increasing epidemiological interest in quantifying the impact of chemical pollution, with a 

particular focus on its effect on human health. As scientific investigation into this problem has grown more 

sophisticated, researchers have begun to prioritize the study of chemical mixtures’ impact on human health, 

estimating the joint effect of the many chemicals one may encounter in day-to-day life as opposed to single 

chemicals in isolation. 

The principal statistical challenge in the study of chemical mixtures is the tendency of mixture components to be 

highly correlated. This frustrates normal regression and has necessitated the development of novel statistical 

methods. Among these methods are Bayesian kernel machine regression 3, quantile g-computation 4, and various 

implementations of generalized additive models 5-6. These methods have all been widely applied and described in 

detail. An additional family of methods, index regression models, have also been developed to deal with the problem 

of chemical mixture collinearity.  

Initially, index regression models such as weighted quantile sum regression sought to model the impact of a mixture 

on an outcome by estimating the effect of a single index composed of all chemicals of interest 7. Inside the index, 

chemical weights are estimated to model the contributions of individual chemicals to the overall mixture effect. A 

drawback of single-index modelling is that chemicals with opposite directions of association with the outcome could 

bias the index towards the null. To address this weakness, extensions such as group weighted quantile sum 

regression (GWQS) 8 and Bayesian group index regression 9 were developed, allowing for the modelling of multiple 

indices that could separately accommodate positively and negatively associated chemicals.  

The extension to multiple groups introduced a new problem to index regression modelling. When fitting a multi-

group index regression model, either GWQS or Bayesian group index regression, the number and chemical 

composition of indices must be chosen by the user. Past applications of such models have organized exposure 

variables into chemicals that share a structural similarity (e.g., PCBs, PAHs, metals) or usage (e.g., herbicides, 

insecticides) 8-10. This grouping strategy could be viewed as one reliant on domain-specific knowledge, and has 

several advantages. Chemicals that are similar in either structure or use have a greater chance of being highly 

correlated with each other, and if not grouped could give rise to multicollinearity effects. Indices grouped in this way 

also have ready interpretations as the joint effect of a recognizable class of chemicals on a health outcome. There 
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are two weaknesses to this approach. One, there are some chemical groups, such as pesticides, that tend to be 

heterogeneous and contain chemicals with both positive and negative associations with an outcome. An index 

formed without accounting for this heterogeneity will have an effect estimate biased towards the null. Second, a 

rigid adherence to chemicals groups as defined above precludes the discovery of empirical patterns of similarity, 

which may see chemicals across structure or usage groups combined in a single index. Such empirically derived 

indices may identify and characterize previously unknown predictor relationships and result in better fitting models.  

The task of selecting the number of groups and group composition in a Bayesian group index regression model can 

be viewed as a cluster analysis problem. Cluster analysis encompasses a wide variety of methods employed for 

different reasons, but all share the common aim of grouping similar items together 11. The goal is to capture some 

underlying mechanism at work in the data that causes some observations to have greater resemblance to each other 

than to other observations 12. Clustering algorithms have historically been categorized as “unsupervised learning” 13. 

The goal of unsupervised learning is to describe associations and patterns among a set of input measures, as 

opposed to supervised learning, where the goal is to predict the value of an outcome measure based on a set of 

input measures 14. An intermediate category, referred to as semi-supervised learning, aims at some combination of 

the two goals 15. Semi-supervised clustering algorithms, for example, seek to supplement standard cluster analysis 

with additional information. This additional information can take many forms, such as previous partial classification 

of a subset of inputs or the relationship between inputs and an outcome variable 16. In the case of clustering in 

preparation for group index regression, we hypothesize that clustering supplemented by information from the 

targeted outcome variable will result in improved models.  

Our aim in this paper was to incorporate information from the relationship between chemical exposure variables 

and the outcome variable of interest to improve clustering for Bayesian group index regression. Specifically, we 

sought to supervise clustering so as to discourage the grouping of chemicals with opposite directions of association 

with an outcome. In a previous paper we identified an unsupervised clustering method, Clustering of Variables 

around Latent Variables (CLV), as best suited to clustering chemical exposure variables when compared to other 

unsupervised variable clustering algorithms 17. While previous work has been done on incorporating outcome 

information with the CLV clustering algorithm 18-19, the focus of these methods has been on identifying superior 

predictive clusters of variables. These methods do not partition a collection of variables into mutually exclusive 
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clusters, and so are not applicable for use before group index regression. To improve the performance of this 

clustering method for Bayesian group index regression purposes, we developed two extensions that incorporate 

information from a target outcome variable. The first, Constrained Clustering of Variables around Latent Variables 

(cCLV), extends CLV to allow users to define pairwise constraints to potential cluster membership. In the context of 

Bayesian group index regression, these constraints are used to penalize proposed clusters that contain chemicals 

with opposite directions of association with an outcome. The second, Outcome-adjusted Clustering of Variables 

around Latent Variables (oCLV), determines a cutoff value for chemical variables’ univariate association with the 

outcome below which they are not considered for CLV clustering. This focuses the CLV clustering on chemical 

exposure variables most relevant to the subsequent regression. We compared CLV and the two extensions above 

with two other clustering methods: Constrained Clustering by Tabu Search (Conclust), a pairwise constrained 

clustering algorithm similar to cCLV, and Clusterwise Effect Regression (CLERE), a combination of clustering and 

regression models.  

We evaluated the performance of these five clustering algorithms with simulated data designed to model 

heterogeneous chemical mixtures containing variables with opposing directions of association with a target 

outcome. Three scenarios were generated to investigate the effect of varying levels of correlation and group 

number. We compared the performance of both the clustering itself and the subsequent performance of these 

group assignments in Bayesian group index regression estimates. After identifying the best performing clustering 

algorithm, we applied it and Bayesian group index regression to the National Cancer Institute (NCI) Surveillance, 

Epidemiology, and End results (SEER) non-Hodgkin Lymphoma (NHL) case-control study, an investigation of the link 

between environmental chemical exposures and NHL. This dataset contains many pesticides, a chemical category 

that consists of heterogeneous chemical classes that often have completely opposite directions of association with a 

given outcome. Our findings improve upon previous work done on clustering before group index regression, and will 

offer a rationale for forming indices in Bayesian group index regression that take the final aim of regressing upon an 

outcome into account from the beginning of the model building process. 

Methods 

Bayesian Group Index Regression 
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The Bayesian grouped index model in general form for a binary health outcome 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) is specified 

through the log-odds of disease of the ith subject as  

logit(𝑝𝑖) = β0 + ∑ βk (∑𝑤𝑗𝑘

𝐶𝑘

𝑗=1

𝑞𝑖𝑗𝑘) + 𝑧𝑖
𝑇φ.     

K

k=1

 

On the left of the equation is the logit of the disease probability 𝑝𝑖 , and on the right are the effects for the intercept 

𝛽0, chemical indices 𝛽𝑘, which estimate the health effects for exposure to the kth group of exposures, and a vector 

of covariates 𝑧𝑖
𝑇 with corresponding effects in vector 𝜑. The number of exposures in each of the K indices can vary 

and is denoted by 𝐶𝑘.  For each index, 𝑤𝑗𝑘 is the weight for the jth exposure in the kth index and denotes the relative 

importance of that exposure within the index. The value of each 𝑤𝑗𝑘 is constrained to be between 0 and 1, and when 

summed across an individual index must equal 1. For each index, 𝑞𝑖𝑗𝑘 is the quantile score for the jth exposure in the 

kth index for the ith subject. Quantiles are used instead of raw chemical concentration data in order to limit the 

influence of outliers and to standardize the varying concentration scaling of different exposures. Further details on 

prior specification and inference have been discussed previously 9. 

Proposed Semi-supervised Clustering Methods 

Constrained Clustering of Variables around Latent Variables 

cCLV is an extension to the CLV algorithm that incorporates known limitations on which chemicals can be grouped 

together into the clustering process. The original CLV algorithm seeks to group variables by finding a cluster 

arrangement that maximizes the covariance of individual clusters with an associated latent variable 20 (see CLV 

section below). cCLV works by imposing a penalty on this covariance score when pre-defined user constraints are 

violated. cCLV is part of a wider family of constrained clustering algorithms, a form of semi-supervised clustering 

where partial data in the form of user-provided labels or pairwise constraints are used to guide the algorithm 

towards a more appropriate data partitioning. These constraints are commonly in the form of must-link or cannot-

link pairs 21. In our application to Bayesian group index regression, our focus was to discourage the clustering of 

chemicals with opposing direction of association with the target outcome variable, which took the form of cannot-

link constraint pairs.  
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Let 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑 be a set of p variables measured on n subjects. Our goal is to partition these variables in to a fixed 

number of clusters K. We denote the K clusters as 𝐺1, 𝐺2, … , 𝐺𝐾 and the corresponding K latent variables as 

𝒎𝟏,𝒎𝟐, … ,𝒎𝑲. We seek to maximize the following cost function:   

U = ∑ ∑r𝑗𝑘𝐶𝑜𝑣2(𝒙𝒋,𝒎𝒌)

𝑝

𝑗=1

𝐾

𝑘=1

− ∑ 𝑤𝑗,𝑗′𝐼[𝐺𝑘 = 𝐺𝑘′]

(𝒙𝒋,𝒙𝒋′)∈𝑄

 

where r𝑗𝑘 ∈ 0,1 denotes whether or not the jth variable belongs to cluster 𝐺𝑘, Q is the set of (𝒙𝒋, 𝒙𝒋′) pairwise 

constraints, 𝑤𝑗,𝑗′  is the weight of the penalty imposed on constrained pairings, and 𝐼[𝐺𝑘 = 𝐺𝑘′] is an indicator 

function that applies the penalty when said pairings occur. The cost function for the criterion quantity U is composed 

of two terms. The first is the cost from the original CLV directional clustering algorithm 20,  the sum of squared 

covariances between chemical variables and their current cluster’s latent variable. The second is the cost 

representing violations of cannot-link constraints. Imposed when two cannot-link variables are grouped together, 

the constraint penalty 𝑤𝑗,𝑗′  is determined by the confidence in the constraint, with high confidence in constraints 

resulting in a relatively large weight. All constraints are given equal weight.   

The optimal clustering is found through an iterative algorithm where first the latent variable of each cluster is 

defined, after which cluster membership of all variables is reassigned in accordance with the maximum covariance 

with the new latent variables. These two steps repeat to maximize U. In detail the algorithm is as follows: 

1. An initial K groups are formed through either an agglomerative hierarchical clustering process or random 
assignment, as determined by the user.  

2. For each cluster 𝐺𝑘 the latent component 𝒄𝒌 is found by deriving the first standardized principal component. 
3. New clusters are formed by reassigning variables to a new group if its squared covariance with another 

latent variable is higher than its current group’s. Expressed more formally, r𝑗𝑘 = 1 if 

maxk′{Cov2(𝒙𝒋,𝒎𝒌′)} = Cov2(𝒙𝒋,𝒎𝒌). 

4. Steps 2-3 repeat until stability is reached, or until the maximum number of iterations have been performed 
18. 
 

Outcome-adjusted Clustering of Variables around Latent Variables 

Similar to cCLV, oCLV extends the CLV algorithm to incorporate information from the outcome variable of interest 

during clustering. It is an adaption of a semi-supervised clustering method originally called “supervised clustering”, 

where the univariate associations of dataset features with an outcome variable are ranked and then all but the most 
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highly associated features are discarded before clustering 22. oCLV adapts this method, so that CLV clustering is 

performed solely on to the variables most highly associated with the outcome. This is accomplished as follows: 

1. For each variable in the dataset, a test statistic Aj  is calculated for the univariate association between the jth 
variable and the outcome.  

2. A cut-off value M is chosen, so that only variables with |Aj|> M will have the CLV clustering algorithm 
applied to them 16. 

It has been previously noted that a downside of this method is that the variables that fall under the cutoff value are 

not analyzed and are discarded. This is not the case for use in a group index regression, where the usually discarded 

variables may be placed into a “null” index and still included in the analysis. The cutoff value M is determined by 

cross validation. 

Comparison Grouping Methods 

Clustering of Variables around Latent Variables 

CLV is an unsupervised variable clustering method where the measure of similarity determining cluster membership 

is the covariance of variables with a latent variable. In previous work, we determined that the CLV algorithm was 

best suited to the clustering of chemical exposure variables in preparation for group index regression 17. Therefore, 

we wish to compare CLV to semi-supervised methods to better characterize the utility of clustering with regard to 

information from an outcome variable.  

As with cCLV, a fixed number of clusters and latent variables K are sought for a set of  p variables 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑 

measured on n subjects. We denote the K clusters as 𝐺1, 𝐺2, … , 𝐺𝐾 and the K latent variables as 𝒄𝟏, 𝒄𝟐, … , 𝒄𝑲. 

Vigneau et al. 20 proposed two variants of the CLV algorithm, a local mode informed by covariances and a directional 

mode informed by squared covariances. We opt for the directional mode, as the chemical mixture datasets we seek 

to cluster exhibit relatively few and weak negative correlations. The CLV algorithm seeks to maximize  

T = ∑ ∑ r𝑗𝑘𝐶𝑜𝑣2(𝒙𝒋,𝒎𝒌)
𝑝
𝑗=1

𝐾
𝑘=1 ,  

under the constraint 𝒎𝒌
𝑻𝒎𝒌 = 1 where r𝑗𝑘 = 1 if the jth variable belongs to cluster 𝐺𝐾 and r𝑗𝑘 = 0 otherwise. The 

quantity T, or the total squared covariance of chemical variables 𝒙𝒋 with current latent variables 𝒎𝒌, is the same as 

the first term of the cCLV cost function without the penalty cost term. 𝒎𝒌 is defined as the first principal component 
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of the variables comprising 𝐺𝐾. The optimization of T is accomplished with the same iterative algorithm as detailed in 

the cCLV section above. 

Conclust 

The Conclust method is another constrained clustering algorithm. As with cCLV, in our application of this method to 

grouping chemical variables for group index regression we sought to constrain clustering so as to discourage the 

grouping of chemicals with opposite associations with the outcome variable of interest. Conclust seeks to minimize 

the following cost function: 

𝐽 = ∑ ∑ ||𝒙𝒊 − μℎ||
2

𝑥𝑖∈𝑋ℎ

𝑘

ℎ=1

+ ∑ 𝑤𝑖𝑗

(𝑥𝑖,𝑥𝑗)∈𝑀

𝐼[𝑙𝑖 ≠ 𝑙𝑗]  + ∑ 𝑤𝑖𝑗̅̅ ̅̅  𝐼[𝑙𝑖 = 𝑙𝑗]

(𝑥𝑖,𝑥𝑗)∈𝐶

 

The first term is the squared distance between ith variable 𝒙𝒊 and 𝜇ℎ, the center of cluster h. The second term 

penalizes clusterings from the set of must-link constraints M that are not grouped together. In our application of 

Conclust must-link constraints were not specified. The third term penalizes violations of the cannot-link constraints 

found in set C with the weight 𝑤𝑖𝑗̅̅ ̅̅ .  

The cost function above is minimized through a local search algorithm called tabu search. This algorithm compares 

the cost of an initial solution to those in that solution’s neighborhood (in our example the set of potential clusters 

that differ by a single chemical from the current solution). The neighbor found to have the lowest cost is then 

updated to be the best solution. To prevent the algorithm from getting stuck a local optima, previous solutions are 

added to the tabu list, a list of solutions that the algorithm is forbidden from choosing for some number of iterations 

23. Conclust’s tabu search algorithm is as follows: 

1. Data are scaled and clustering initialized using the weighted farthest-first scheme. 
2. An empty tabu list is initialized. 
3. Scan the neighborhood of the current clustering. 
4. Select the best neighbor in the neighborhood. 
5. Update the current best solution and tabu list. 
6. Repeat steps 3 – 5 until iteration of time limit is reached, then return the best solution 24. 

 

Clusterwise Effect Regression (CLERE) 
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CLERE is a model that simultaneously clusters covariates and performs regression on a target outcome variable. This 

is accomplished by taking the fixed β parameters of the standard regression model and instead considering them as 

unobserved random variables following a mixture of Gaussian distributions containing some number of components. 

These composite effect parameters can be expressed as β𝑗~∑ π𝑘𝑁(𝑏𝑘 , γ
2)𝑔

𝑘=1 , where for each β𝑗 a multinomial 

distributed random variable 𝒛 = (𝑧𝑗1, … , 𝑧𝑗𝑔) of parameter 𝛑 = (π1, … , π𝑔)
𝑇

 is assumed. The full model can be 

written as 

𝑦𝑖 = β0 + ∑ β𝑗
𝑝
𝑗=1 𝑥𝑖𝑗 + ϵ𝑖  

ϵ𝑖~𝑁(0, σ2)  

β𝑗|𝒛𝑗 ~ 𝑁(∑ 𝑏𝑘
𝑔
𝑘=1 𝑧𝑗𝑘 , γ

2)  

𝒛𝑗 = (𝑧𝑗1, … , 𝑧𝑗𝑔) ~ 𝑀(π1, … , π𝑔). 

Where 𝑧𝑗𝑘 indicates that variable j is a member of cluster k and 𝑀(π1, … , π𝑔) is the multinomial distribution. Further 

details on the CLERE method have been published, both for continuous 25 and binary 26 outcomes. For use in 

combination with group index regression, variables were assigned to the cluster having the largest posterior 

probability. These cluster assignments were the used in the subsequent index regression. 

Simulation Study Design 

We compared the performance of these five clustering methods in tandem with Bayesian group index regression by 

simulating chemical concentration data where there was little to distinguish groups other than their relationship 

with the target outcome variable. Three simulation scenarios were generated that varied in strength of between 

group correlation and group number. Each scenario was generated with a binary outcome variable, as the NHL 

dataset we apply our chosen clustering method to has a binary outcome. True groups were each assigned a single 

important chemical that would dominate the group’s overall effect, with important chemicals assigned a true 

chemical weight of 1 and unimportant chemicals assigned a weight of 0.  

Scenario 1 was generated to have 15 chemical predictor variables clustered into 3 true groups. These groups were 

associated with the outcome variable with odds ratios (ORs) of 0.67, 1.00 and 1.50, with each group comprised of 

five predictors. The variables of the null group were correlated with each other at a strength of 0.5 and with the 

variables of all other groups at 0.1. The variables of the two remaining groups were given within-group and between-
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group correlations of 0.3. Scenario 2 shared the same predictor number, true group number, and outcome 

associations as Scenario 1. It differed in that the within-group and between-group correlations of the groups with 

significant associations with the outcome were increased to 0.5.  

Scenario 3 datasets were generated to have 25 chemical predictor variables clustered into 5 true groups with 5 

chemical predictors each. These groups were associated with the outcome variable with ORs of 0.50, 0.67, 1.00, 

1.50, and 2.00. The groups with lesser strength associations of 0.67 and 1.50 were modelled as highly correlated with 

between and within-group correlations of 0.5. The more highly associated groups and the null association group 

were modelled as being relatively distinct, with within-group correlations of 0.7 and between group correlations 

with all other groups of 0.1.  

With true exposure effects and correlation structures determined, we generated binary outcomes that would model 

a case-control study, with cases and controls having a rough balance (50% ± 10% cases) in each iteration of data 

generation. The binary outcome y was distributed as 𝑦~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) where 𝑝 =  
1

1+𝑒𝜂 and 𝜂 =  𝛽0
∗  +

 ∑ 𝛽𝑘
∗[∑ 𝑤𝑗𝑘

∗𝐶𝑘
𝑗=1 𝑞𝑖𝑗𝑘

3
𝑘=1 ], and the star notation indicates true parameter values. No covariates were used in 

generation of the data, making the term 𝑧𝑇𝜙 =  0. The number of quantiles used in all simulations was set at four 

when computing the weighted index for each group (i.e. 𝑞𝑖𝑗 = 0,1,2,3). 100 data realizations were generated for 

each scenario. 

We assessed the relative performance of our clustering methods with a number of metrics. Most directly related to 

the clustering process, we measured the accuracy with which our methods assigned chemicals to their true groups, 

as well as the distribution of group numbers found across the 100 data realizations. These were recorded with the 

group number designated by a “G” and the number of realizations following an equal sign (e.g. 3G = 100 meaning 3 

groups found 100 times). The other performance metrics reflect the impact of clusterings on the subsequent group 

index regression. Overall model fit was compared with the deviance information criteria (DIC). For estimated index 

effects, we calculated the bias, mean squared error (MSE), and power. For the chemical weights within indices, we 

calculated the sensitivity and specificity of properly identifying important and unimportant chemicals. We define 

power as the proportion of 95% credible intervals (CIs) for ORs that did not include 1.00. We measured sensitivity by 

determining the proportion of important chemicals that were identified by the models as being important. This was 
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done by determining if the estimated weight of the important chemicals produced by the models was greater than 

or equal to the threshold 
1

𝐶𝑘
. Important chemicals assigned to the wrong group were counted as errors. Likewise, we 

defined specificity as the proportion of the unimportant chemicals that were correctly deemed unimportant by the 

models. This was determined by checking if the estimated weights of the unimportant chemicals were less than the 

same threshold of 
1

𝐶𝑘
. DIC was defined a𝑠 𝐷𝐼𝐶 = �̅� + 𝑝𝐷, where �̅� is the posterior mean deviance 27 and 𝑝𝐷 is the 

effective number of parameters 28, a quantification of model complexity. Bayesian grouped index regression was 

performed using the R package BayesGWQS 29, which implements Bayesian grouped index models using Just Another 

Gibbs Sampler (JAGS) 30. 

Data Analysis 

Using the grouping methods identified by our simulation study, we performed a Bayesian group index regression 

analysis of the NCI-SEER NHL case-control study. We investigated the potential association between the chemical 

exposure groups identified by our clustering method and NHL. The NCI-SEER NHL study is a population-based case 

control study of NHL with subjects taken from four study centers: the Detroit metropolitan region, Los Angeles 

County, the Seattle metropolitan region, and the state of Iowa. Patients diagnosed with NHL without a history of HIV 

at one of the above four SEER registries between July 1, 1998 and June 30, 2000, and age 20 to 74 years old were 

included as cases. Controls were selected from the same four study centers using random-digit dialing for controls 

younger than 65 years old and Medicare eligibility files for controls 65 years and older. Controls were frequency 

matched to cases by age, sex, race, and SEER registry, and excluded if a history of either NHL or HIV was reported. In 

total, the study enrolled 2,378 eligible participants (1,321 cases and 1,057 controls). Further details on study design 

and study population can be found in past publications 31-32. 

To quantify exposure to environmental chemicals, dust samples were taken from study participants’ homes. Details 

on dust collection eligibility, sampling, and laboratory methods can be found in previous publications 33-34. Dust 

sampled during the collection process was analyzed for the presence of 27 chemicals. Covariates of interest were 

also collected from study participants, and complete covariate data were available for 1,180 subjects (672 cases and 

508 controls). Our analysis explored the association between the 27 chemicals and NHL. These chemicals, considered 

from the standpoint of similar chemical structure or usage, fall into three categories: polychlorinated biphenyls 
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(PCBs) (congeners 105, 138, 153, 170, 180), polycyclic aromatic hydrocarbons (PAHs) (benz(a)anthracene, 

benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(ah)anthracene, indeno(1,2,3-

cd)pyrene), and pesticides (α-Chlordane, γ-Chlordane, carbaryl, dichlorodiphenyldichloroethylene (DDE), 

dichlorodiphenyltrichloroethane (DDT), o-phenylphenol, pentachlorophenol, propoxur, chlorpyrifos, cis-

permethrin, trans-permethrin, 2,4-D, diazinon, dicamba, methoxychlor). The number of indices and the chemical 

variables that each contain were determined by the best performing grouping method identified in our simulation 

study. We included the controlling covariates of age, gender, race, and level of education in our Bayesian group 

index models. Age was treated as continuous, gender as binary (male vs. reference female), race as binary (white vs. 

reference black or other), and education as ordinal (grouped as <12 years, 12–15 years, and  ≥16 years). 

We conducted four separate analyses for each of the study centers, as the chemical exposure profiles of these 

different geographic regions varied significantly. We categorized the continuous chemical concentration data into 

quartiles in preparation for regression. Convergence of all parameters of interest in models were checked via a 

Gelman-Rubin diagnostic statistic upper CI less than 1.10. We summarized the results using ORs for each chemical 

index along with 95% credible intervals. When indices were found to be significantly associated with the outcome, 

we investigated the most important chemical contributors to the association using estimated weights. 

Results 

Simulation Study 

The results for Scenario 1 are presented below in Table 1. Of our two proposed semi-supervised clustering methods, 

only cCLV improved on the results of CLV. While the accuracy of cCLV was lower than that of CLV, cCLV was markedly 

superior in terms of bias, power, and sensitivity. cCLV also exhibited a slight decrease in DIC, while MSE and 

specificity were roughly equivalent. oCLV performed worse than CLV on all performance metrics except MSE. 

Conclust performed best among all the clustering methods as measured by DIC, power, sensitivity, and specificity. 

On the other hand, it had the second-lowest accuracy, and had the highest MSE and bias, showing a tendency to 

overestimate index effect sizes. The clustering generated by CLERE performed similarly to Conclust in some respects, 

with the second lowest DIC, the lowest accuracy, and comparable power and sensitivity. CLERE differed in that it had 

relatively low bias, the lowest MSE, and the lowest specificity of any clustering method. Importantly, CLERE was the 
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only clustering method that failed to consistently find the true number of groups, underestimating true group 

number 10% of the time. 

Table 1: Scenario 1 performance metrics of Bayesian group index regression using five different grouping methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(3=100) 

β1 = 0.72 (0.53, 1.03) 
β2 = 0.99 (0.74, 1.33) 
β3 = 1.38 (0.99, 1.86) 

0.08       
-0.01       
-0.08 

0.04       
0.01       
0.05 

0.44         
0.01         
0.45 

0.60        
0.29        
0.64 

0.82        
0.62        
0.84 

0.73 585.33 (7.16) 

Conclust 
(3=100) 

β1 = 0.52 (0.36, 0.72) 
β2 = 0.98 (0.76, 1.26) 
 β3 = 1.95 (1.40, 2.80) 

-0.26       
-0.02        
0.26 

0.08       
0.03       
0.09 

1.00         
0.11         
1.00 

0.99        
0.24        
0.99 

0.93        
0.53        
0.93 

0.59 571.86 (7.96) 

CLERE* 
(1=1, 2=9, 

3=90) 

β1 = 0.63 (0.49, 0.80) 
β2 = 0.99 (0.68, 1.45) 
β3 = 1.58 (1.24, 2.02) 

-0.06       
-0.01        
0.05 

0.03       
0.04       
0.02 

0.96         
0.07         
0.96 

1.00        
0.28        
0.97 

0.60        
0.65        
0.51 

0.46 572.35 (5.77) 

oCLV 
(3=100) 

β1 = 0.75 (0.55, 1.09) 
β2 = 0.99 (0.72, 1.36) 
β3 = 1.33 (0.92, 1.83) 

0.12       
-0.01       
-0.12 

0.04       
0.01       
0.05 

0.35         
0.00         
0.29 

0.50        
0.14        
0.54 

0.77        
0.55        
0.75 

0.61 587.32 (7.59) 

cCLV 
(3G=100) 

β1 = 0.68 (0.50, 0.96) 
β2 = 0.96 (0.72, 1.29) 
β3 = 1.52 (1.03, 2.15) 

0.03       
-0.04        
0.01 

0.05       
0.02       
0.05 

0.54         
0.05         
0.59 

0.58        
0.23        
0.77 

0.80        
0.60        
0.87 

0.65 582.94 (7.73) 

* Performance metrics only averaged for instances of correct group number specification 

 

The relative performance of the five clustering methods in Scenario 1 were quite similar in Scenario 2, although in 

absolute terms there was generally a decrease in performance due to Scenario 2’s increased level of noise. The 

results for this scenario are presented below in Table 2. Once again, cCLV saw an increase in performance relative to 

CLV, while oCLV did not. cCLV’s power, sensitivity, and bias were superior to CLV’s by a significant margin. cCLV’s DIC 

and accuracy were also slightly lower than CLV’s. MSE and specificity were nearly the same for the two methods. 

oCLV’s relative performance was closer to CLV’s in Scenario 2 as opposed to Scenario 1, however, it still 

underperformed in terms of power, sensitivity, specificity, accuracy, and DIC. Bias and MSE were nearly the same for 

the two methods. Conclust once again performed best among all methods in power, sensitivity, and specificity. Its 

bias was still highest among the clustering methods, although it was less than seen in Scenario 1. In a reversal of the 

previous scenario, its DIC was slightly higher than that of CLERE, which had the lowest DIC of all methods compared. 

CLERE saw a significant drop in power in this scenario, as well as a slight drop in sensitivity. CLERE’s specificity 

remained the lowest of all methods. Finally, the tendency of CLERE to underestimate true group number increased in 

this higher noise scenario, failing to find three groups 17% of the time. 
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Table 2: Scenario 2 performance metrics of Bayesian group index regression using five different grouping methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Accuracy DIC (pD) 

CLV 
(3=100) 

β1 = 0.73 (0.53, 1.03) 
β2 = 1.00 (0.77, 1.29) 
β3 = 1.38 (0.97, 1.89) 

0.09        
0.00       
-0.09 

0.05       
0.01       
0.05 

0.39         
0.00         
0.38 

0.62        
0.24        
0.68 

0.80        
0.62        
0.85 

0.73 587.29 (6.54) 

Conclust 
(3=100) 

β1 = 0.54 (0.38, 0.76) 
β2 = 0.99 (0.77, 1.28) 
β3 = 1.87 (1.33, 2.70) 

-0.21       
-0.01        
0.22 

0.08       
0.03       
0.08 

0.96         
0.12         
0.96 

0.96        
0.24        
0.96 

0.87        
0.55        
0.89 

0.65 577.33 (7.96) 

CLERE* 
(2=17, 3=83) 

β1 = 0.62 (0.46, 0.83) 
β2 = 1.02 (0.71, 1.45) 
β3 = 1.59 (1.21, 2.10) 

-0.07        
0.02        
0.06 

0.04       
0.03       
0.02 

0.88         
0.05         
0.91 

0.95        
0.20        
0.94 

0.63        
0.62        
0.62 

0.45 575.95 (4.96) 

oCLV 
(3=100) 

β1 = 0.74 (0.52, 1.09) 
β2 = 0.98 (0.74, 1.31) 
β3 = 1.37 (0.94, 1.92) 

0.10       
-0.02       
-0.09 

0.05       
0.02       
0.05 

0.31         
0.08         
0.35 

0.59        
0.15        
0.60 

0.76        
0.51        
0.78 

0.60 589.17 (6.99) 

cCLV 
(3=100) 

β1 = 0.68 (0.48, 0.98) 
 β2 = 0.97 (0.73, 1.28)  
β3 = 1.52 (1.03, 2.20) 

0.02       
-0.03        
0.02 

0.05       
0.02       
0.05 

0.49         
0.02         
0.50 

0.61        
0.22        
0.78 

0.81        
0.58        
0.85 

0.67 585.39 (7.39) 

* Performance metrics only averaged for instances of correct group number specification 

 

Scenario 3 featured five total true groups, with outer groups β1 and β5 corresponding to the two high signal, distinct 

groups and inner groups β2 and β4 corresponding to the lower signal, high noise groups. Neither of our proposed CLV 

extensions outperformed CLV in this scenario. cCLV had a slightly better model fit and slightly lower accuracy than 

CLV. cCLV registered a slight increase in bias and MSE compared to CLV, and while both methods had equally 

excellent power for the high signal groups, CLV slightly outperformed cCLV for the lower signal inner groups. 

Sensitivity and specificity had mixed results, with cCLV slightly outperforming CLV in sensitivity and specificity for β2, 

but slightly underperforming for all other groups. Compared to CLV, oCLV has a slightly better model fit, comparable 

bias and MSE, and slightly better sensitivity for the outer groups. oCLV clearly unperformed CLV in terms of power 

for the inner groups and had worse scores across all groups for specificity. The larger number of true groups 

highlighted the tendency of CLERE to underestimate group number. CLERE was only able to correctly find five groups 

40% of the time, with a correspondingly low accuracy score. In the 40 instances of correct group specification, CLERE 

had the highest bias and MSE, second best power, and sensitivity that was competitive in both the more weakly and 

more highly associated groups. Once again CLERE had the worst specificity. CLERE’s model fit was the lowest of all 

compared methods, however the difference between its DIC and that of Conclust is mostly attributed to the savings 

in pD afforded by the high rate of mis-specifying group number. Conclust once again performed the strongest of all 

compared methods. This is most clearly seen in the power and DIC metrics. Conclust had the highest power for the 

two inner groups, where most other methods struggled. Its DIC was also markedly lower than all other methods 
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except CLERE. Conclust had the second highest bias and MSE after CLERE. The largest change in performance for 

Conclust between the other scenarios was its sensitivity, which was the lowest of all methods in Scenario 3.  

Conclust’s specificity, on the other hand, was competitive with the best performing methods for the inner groups, 

but was slightly lower for the high signal outer groups. 

Table 3: Scenario 3 performance metrics of Bayesian group index regression using five different grouping methods 

Method Beta OR (95% CI) Bias MSE Power Sensitivity Specificity Max Accuracy DIC (pD) 

CLV 
(5=100) 

β1 = 0.47 (0.37, 0.60) 
β2 = 0.67 (0.48, 0.95) 
β3 = 0.99 (0.77, 1.25) 
β4 = 1.50 (1.06, 2.08) 
β5 = 2.12 (1.67, 2.73) 

-0.06        
0.01       
-0.01        
0.00        
0.06 

0.02       
0.05       
0.01       
0.05       
0.02 

1.00         
0.56         
0.02         
0.59         
1.00 

0.89        
0.60        
0.30        
0.63        
0.87 

0.96        
0.80        
0.58        
0.83        
0.95 

0.85 534.49 (9.92) 

Conclust 
(5=100) 

β1 = 0.42 (0.31, 0.58) 
β2 = 0.57 (0.42, 0.77) 
β3 = 0.98 (0.74, 1.28) 
β4 = 1.78 (1.31, 2.45) 
β5 = 2.33 (1.72, 3.23) 

-0.16       
-0.16       
-0.02        
0.17        
0.15 

0.07       
0.08       
0.04       
0.07       
0.06 

1.00         
0.85         
0.11         
0.84         
1.00 

0.62        
0.51        
0.27        
0.55        
0.62 

0.87        
0.81        
0.57        
0.84        
0.87 

0.80 526.96 (11.60) 

CLERE* 
(2=1, 3=25, 
4=34, 5=40) 

β1 = 0.39 (0.28, 0.54) 
β2 = 0.58 (0.43, 0.79) 
β3 = 0.93 (0.62, 1.41) 
β4 = 1.64 (1.16, 2.35) 
β5 = 2.70 (1.90, 3.90) 

-0.25       
-0.13       
-0.07        
0.09        
0.30 

0.14       
0.05       
0.07       
0.06       
0.18 

1.00         
0.82         
0.25         
0.72         
1.00 

0.84        
0.68        
0.12        
0.50        
0.79 

0.65        
0.63        
0.60        
0.63        
0.67 

0.33 520.01 (7.66) 

oCLV 
(5=100) 

β1 = 0.48 (0.37, 0.63) 
β2 = 0.74 (0.52, 1.05) 
β3 = 1.00 (0.72, 1.38) 
β4 = 1.34 (0.96, 1.87) 
β5 = 2.06 (1.57, 2.74) 

-0.03        
0.11        
0.00       
-0.11        
0.03 

0.02       
0.06       
0.02       
0.06       
0.02 

1.00         
0.37         
0.07         
0.36         
0.99 

0.93        
0.55        
0.07        
0.48        
0.91 

0.82        
0.74        
0.61        
0.72        
0.82 

0.48 
 

533.85 (8.17) 

cCLV 
(5G=100) 

β1 = 0.46 (0.36, 0.59) 
β2 = 0.65 (0.45, 0.96) 
β3 = 0.97 (0.73, 1.26) 
β4 = 1.55 (1.07, 2.21) 
 β5 = 2.17 (1.68, 2.86) 

-0.07       
-0.03       
-0.03        
0.04        
0.08 

0.02       
0.05       
0.02       
0.06       
0.03 

1.00         
0.52         
0.09         
0.56         
1.00 

0.87        
0.64        
0.27        
0.53        
0.82 

0.96        
0.83        
0.59        
0.79        
0.93 

0.81 532.98 (9.86) 

* Performance metrics only averaged for instances of correct group number specification 

 

Application to NCI-SEER NHL case-control study data 

The results of our simulation study indicate that the Conclust grouping method is best suited for grouping 

environmental chemical exposure variables before Bayesian group index regression. We applied the two-step 

process of clustering followed by Bayesian group index regression to the NHL dataset, with a separate analysis 

performed for each study center subset.  

We limit our results presented to the Iowa and LA subsets, as these were the only two study centers where 

significant group index associations were found. The results for the remaining two subset analyses can be found in 
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the supplemental materials.  For the Iowa subset, among the varying group number models run, the models with the 

lowest DIC were the 2-group model (DIC = 454.5), the 3-group model (DIC = 452.4), and the 6-group model (DIC = 

455.4). With no model clearly superior measured by DIC, we chose the 6-group model as this clustering arrangement 

found more results of interest. We characterize these six clusters and list their chemicals as follows: a singleton 

group composed solely of 2,4-D called Group 1, a group of pesticides named Group 2 (cis-permethrin and trans-

permethrin), a singleton group composed solely of pentachlorophenol called Group 3, a group of pesticides named 

Group 4 (carbaryl, chlorpyrifos, DDT, methoxychlor, and o-phenylphenol), a group PAHs of called Group 5 

(benz(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, and indeno(1,2,3-cd)pyrene), and a group 

consisting of pesticides, PAHs, and PCBs named Group 6 (dicamba, benzo(k)fluoranthene, dibenz(ah)anthracene, PCB 

105, PCB 138, PCB 153, PCB 170, PCB 180, α-chlordane, γ-chlordane, DDE, diazinon, and propoxur). The odds ratios 

and 95% CIs estimated for our 6 index effects and covariates are in Table 4. Two indices were significantly associated 

with NHL: Group 1 had an inverse association (OR = 0.67, 95% CI: 0.54, 0.84) and Group 6 had a positive association 

(OR = 1.82, 95% CI: 1.04, 3.29). No covariates were found to be significantly associated with NHL risk. The index 

effect estimate of Group 1, being a singleton group, can be attributed entirely to 2,4-D. Propoxur (w = 0.28), DDE (w 

= .10), γ-chlordane (w = 0.10), and α-chlordane (w = 0.08) were the most heavily weighted chemicals in Group 6. 

Table 4: Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group index 
model for subjects in Iowa  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 0.67 0.54 0.84 

Group 2 0.95 0.76 1.16 

Group 3 1.05 0.85 1.30 

Group 4 0.96 0.64 1.40 

Group 5 0.87 0.61 1.11 

Group 6 1.82 1.04 3.29 

Male 1.06 0.69 1.64 

White 1.13 0.08 8.88 

Education 1.08 0.71 1.66 

  Age 0.98 0.96 1.01 
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For the LA subset, 6-group model had a DIC of 405.3, more than 5 points lower than any competing model. We 

characterize these six clusters and list their chemicals as follows: a group of pesticides and PAHs called Group 1 (2,4-

D, benzo(b)fluoranthene, chrysene, α-chlordane, γ-chlordane, DDT, o-phenylphenol, and pentachlorophenol), a 

singleton group composed solely of trans-permethrin called Group 2, a singleton group composed solely of cis-

permethrin called Group 3, a singleton group composed solely of carbaryl called Group 4, a group of pesticides 

named Group 5 (chlorpyrifos, diazinon, and propoxur), and a group of PCBs, pesticides, and PAHs called Group 6 

(dicamba, benz(a)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(ah)anthracene, indeno(1,2,3-

cd)pyrene, PCB 105, PCB 138, PCB 153, PCB 170, PCB 180, DDE, and methoxychlor). The odds ratios and 95% CIs 

estimated for our 6 index effects and covariates are in Table 5. Group 5 was found to have a significant and negative 

association with NHL (OR = 0.69, 95% CI: 0.49, 0.97). None of the covariates were found to be significantly associated 

with NHL risk. The Group 5 index was dominated by diazinon, with a weight of 0.45.  

Table 5: Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group index 
model for subjects in LA  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 1.02 0.65 1.62 

Group 2 0.71 0.33 1.36 

Group 3 1.46 0.77 3.15 

Group 4 1.05 0.84 1.33 

Group 5 0.69 0.49 0.97 

Group 6 1.17 0.71 1.91 

Male 0.90 0.56 1.41 

White 1.17 0.70 2.03 

Education 1.13 0.78 1.67 

  Age 1.00 0.98 1.02 

 

Discussion 

In this paper, we proposed two semi-supervised extensions to the unsupervised clustering algorithm CLV in order to 

improve groups defined for subsequent Bayesian group index regression and to discourage the grouping of 

chemicals with opposite directions of association with the target outcome variable. Our first extension, cCLV, 
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incorporates constraints that penalize chemical variable pairings deemed undesirable by the user. Our second 

extension, oCLV, determines the subset of chemical variables most associated with the outcome variable and 

focuses clustering on this group. We compared the performance of these two methods with two other semi-

supervised clustering methods and one unsupervised method in partitioning a set of chemicals into the groups 

required for Bayesian group index regression. We designed a simulation study consisting of three scenarios: three 

true groups with moderate noise, three true groups with high noise, and five true groups with high noise. In each of 

these scenarios two groups were simulated such that the chemicals comprising one group had equal correlations 

with the chemicals of another group. The distinguishing factor between these groups was their opposite association 

with the simulated outcome variable. We hypothesized that by incorporating information from the outcome variable 

during clustering, semi-supervised clustering methods would outperform unsupervised methods, particularly in the 

task of preventing chemicals with opposite directions of association with an outcome from being grouped together. 

Looking at the results of our simulation study, particularly the high noise pairs in each scenario, one notable 

difference between the clustering methods compared was the direction of the bias for index effects. Both the CLV 

and oCLV methods consistently estimated index effects that were biased towards the null, indicating that they 

regularly combined variables with opposing outcome associations into the same cluster. This is not surprising for the 

CLV method, as it is unsupervised. oCLV’s behavior in this regard can be attributed to the fact that this method of 

supervision is primarily focused on the magnitude, not the direction of association with the outcome. Conversely, 

Conclust and CLERE consistently estimated index effects that were biased away from the null. Our proposed method 

cCLV also generally estimated index effects biased away from the null, with two exceptions in the β1 group of 

Scenarios 1 and 2. Even in these two instances of bias towards the null, the bias was less than that of the CLV 

method.  

The direction of bias for these high noise pairs helps explain the overall performance of the compared clustering 

methods. CLV and oCLV consistently underperformed in terms of power and DIC, and were often the lowest 

performers in sensitivity and specificity due to their inability to separate oppositely attracted variables. The three 

remaining semi-supervised methods saw stronger performance, albeit with some variation between them. The 

constraints implemented in cCLV saw an improvement over CLV in Scenarios 1 and 2, especially in power and 

sensitivity, while in Scenario 3 the two were roughly equivalent. CLERE consistently had good power and sensitivity 
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with relatively moderate bias and MSE, although it also consistently performed worst as measured by specificity. 

These averages only applied to the instances where CLERE returned the desired number of clusters, however, a 

weakness that appeared to compound in the face of higher noise and group number. Finally, Conclust was 

consistently best as measured by power, and was often the best clustering method in terms of sensitivity, specificity, 

and DIC. An apparent weakness of the method was the tendency to overestimate index effects, as evidenced by its 

relatively high bias and MSE. This overestimation stems from taking variables belonging to the null index that have a 

weak positive association with the outcome and adding them to significantly associated positive groups. This 

tendency might in fact be a strength when applied to real data, as our desire is to group empirically similar chemicals 

that also share the same direction of association with an outcome. The high bias and MSE are artifacts of our 

simulation’s strict definition of “true” groups, whereas in real application such definitions do not exist. Based on 

these findings, we recommend the Conclust method for clustering variables prior to Bayesian group index 

regression. We applied Conclust to cluster chemical exposure variables in the NHL study dataset, individually for 

each of the study centers. In the Iowa subset of the Conclust analysis, we saw a significant departure from the 

traditional chemical structure and usage groupings. This largely entailed the breaking up of the heterogeneous 

pesticide category of chemicals, both into small one or two chemical groups or by folding pesticides into larger 

indices. The PAH category of chemical was also split, with most PAHs forming their own group (Group 5), and two 

PAHs added to the dominant positively associated index (Group 6). While a number of small or singleton groups 

were formed around chemicals with a negative association with the outcome, the majority of positively associated 

chemicals were clustered together in Group 6, which was found to have a positive and significant association with 

NHL (OR = 1.82), with propoxur (w = 0.28), DDE (w = .10), γ-chlordane (w = 0.10), and α-chlordane (w = 0.08) having 

mean posterior weights above an equal share in the index. A negative and significant association was also found 

between Group 1 (OR = 0.67) and NHL, with all the index weight attributed to the index’s sole chemical 2,4-D.  

In our previous work on unsupervised, empirical clustering of chemical variables before Bayesian group index 

regression, both positive and negative significant indices were found in the Iowa subset, dominated by propoxur and 

2,4-D, respectively. The positive index had fewer chemicals, with fewer pesticides and no PAHs or PCBs, and had a 

smaller effect estimate (OR = 1.50), while the negative index was comprised of more chemicals and had a larger 

effect estimate (OR = 0.58) 17. The differences in the two analyses’ positive indices is an example of Conclust’s 
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tendency to greedily aggregate variables of the same direction of association seen in the simulation study, resulting 

in larger effect estimates. In this instance we can see the benefit of this behavior, as Group 6 represents a sub-

mixture consistent enough to be empirically grouped that encompasses most of the positive signal found in the 

overall mixture, all while avoiding bias towards the null from the accidental inclusion of negatively associated 

variables. Additionally, two chemicals of interest, γ-chlordane and α-chlordane, were identified, whereas in our 

previous analysis they were grouped separately in a non-significant index and therefore overlooked. The differences 

in the negative indices, on the other hand, show that the tendency to aggregate chemicals with the same direction 

of association is not absolute, and that the empirical similarity of chemicals is also important to the assignment of 

cluster labels. That 2,4-D was assigned as a singleton group is not surprising, as it heavily dominated the index 

formed by CLV in our previous analysis, with a mean posterior weight of 0.69.  

The findings of this most recent analysis are also consistent with various other previous analyses of the NHL data. In 

a spatial Bayesian group index regression analysis of the NHL data, the indices were determined based on chemical 

structure and usage, with indices for PCBs, PAHs, and two pesticide indices to separate chemicals with opposing 

direction of association with the outcome. Both pesticide indices were found to be significant in the Iowa subset. The 

chemical found to be most important in the positively associated index was propoxur, follow by DDE, γ-chlordane, 

and α-chlordane. The most important chemical in the negatively associated index was 2,4-D 10. In a single-index 

analysis of the NCI-SEER NHL dataset, a significant, positive association was found between all 27 chemicals and NHL 

in the Iowa subset, with propoxur, DDE, and γ-chlordane the highest weighted chemicals 35. Single-chemical 

regression analyses between heavily-weighted chemicals in our significant indices and NHL also support our findings, 

where significant associations were found for propoxur, DDE, γ-chlordane, α-chlordane, and 2,4-D 33,35. 2,4-D, a 

chemical classed as possibly carcinogenic to humans by the International Agency for Research on Cancer working 

group 36, has a strong negative signal in the Iowa subset of this dataset, which fits into a history of inconclusive 

investigations into the relationship between 2,4-D and NHL 37-40. 

In the LA subset of our Conclust analysis we saw a similar breakdown of indices as with the Iowa subset, marked by a 

splitting of both pesticides and PAHs into separate indices, a number of singleton indices made of pesticides, and a 

large index composed of PCBs, PAHs, and pesticides. Group 5 was the only significant index, with a negative 

association with NHL (OR = 0.69). The index was dominated by diazinon, with a mean posterior weight of 0.45. This 
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result differs from our previous Bayesian group index analysis using CLV clustering, where no chemical exposure 

indices were found to be significant outside of the Iowa subset. While there was no significant index in the LA subset, 

the index that included diazinon (along with α-chlordane, γ-chlordane, and chlorpyrifos) had a nominally negative 

association with NHL and was dominated by diazinon with a weight of 0.43 17. In a previous spatial Bayesian group 

index analysis of the NHL data, diazinon was also the most highly weighted chemical in the LA subset negative 

association pesticide index, although the index effect itself was not found to be significant 10. In a single-index 

regression analysis of the NHL data, the index for the LA subset was positive, so negative signal chemicals such as 

diazinon were given near-zero weight. Single-chemical regression of diazinon on NHL in this same study resulted in a 

negative association that was not statistically significant 35. From these analyses we can see that there is a consistent 

signal of negative association between diazinon and NHL in the LA subset for this data. Our novel significant finding 

can be attributed to a previously untried combination of chemicals clustered in the same index. Diazinon has been 

classified as Group 2A, or probably carcinogenic to humans, by the International Agency for Research on Cancer 

working group 41.  

We found no significant associations between any chemical index and NHL in the Detroit and Seattle subsets. This is 

consistent with two previous group index regression analyses performed on this dataset 10,17. These results disagree 

with another group index analysis of the NHL data that used a two-step, frequentist approach and found a significant 

and positive association between PCBs and NHL 42. Evidence for a positive association between PCBs and NHL is 

further supported by analyses of individual and total PCBs 34 and by an analysis of study participant’s blood plasma 

43. This seeming discrepancy is attenuated by the fact that in our analysis of the Iowa subset the significant positive 

index included all PCB exposure variables in the study. While their inclusion in the index may have contributed to the 

larger index effect found compared to previous analyses, none of the PCBs were assigned weights indicating they 

were the largest contributors to the overall index effect.  

As demonstrated in simulation and real data application, the two-step combination of Conclust and Bayesian group 

index regression has several strengths. There are limitations, however, that may motivate future work towards 

improving various aspects of our approach. Our simulation study assumed that the true group number was known, 

whereas the number of indices that should be modelled would be unknown in a research application. Our solution 

was to compare the model fit of various models with different group numbers. This process requires fitting many 
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models at the cost of time and computational resources. Future work on the estimation of group number would be 

valuable for the group index modelling approach. A second weakness of our current approach is the recourse to a 

two-step process. As our eventual group index regression involves the outcome variable of interest, it would be ideal 

to combine clustering informed by the outcome and the subsequent group index regression into a single model. 

In conclusion, the incorporation of outcome variable information through semi-supervised clustering improves the 

chemical groups defined for Bayesian group index models. More specifically, constrained clustering as implemented 

in the Conclust algorithm allows for the partitioning of a chemical mixture that simultaneously maximizes the 

similarity of chemicals grouped while discouraging clusters containing chemicals with opposite direction of 

association with a target outcome, thus avoiding index effect estimates that are biased towards the null. The 

Conclust algorithm demonstrated the ability to separate oppositely associated variables into distinct clusters in both 

simulation and real data applications. As defining group composition of a chemical mixture is an essential step 

before performing Bayesian group index regression, this work informs practitioners on how best to empirically 

partition chemical mixtures without relying on assumptions inferred from chemical structure or usage. 
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Chapter 5: Conclusion 

The work presented in the preceding chapters offers solutions to several problems encountered when working with 

Bayesian group index regression. We extended the model to simultaneously impute BDL missing data, provided 

novel methods for the grouping of chemicals before group index regression, and conducted simulation studies to 

identify the strongest performing candidates for these tasks. In this chapter, we summarize the findings of the 

previous chapters, discuss the implications of this research, and consider some remaining questions to motivate 

future research. 

Research Summary 

In Chapter 1, we began with a review of environmental chemical pollution, its potential for negatively impacting 

human health, and the desire of researchers to better quantify the risk these chemicals pose. We then discussed 

how human exposure to chemicals is better understood as the simultaneous exposure to a mixture of chemicals, as 

opposed to discrete exposures to individual chemicals, and the unique statistical challenges this model of exposure 

pose. The most immediate challenge is that traditional regression models are ill-suited to analyzing chemical 

mixtures due to the strong correlations between individual chemicals. We reviewed the work that has been done to 

overcome this aspect of chemical mixture analysis, focusing particularly on single and group index regression 

models. We then identified two problems commonly encountered when performing Bayesian group index 

regression: the presence of BDL missing data and how best to partition a chemical mixture into the groups required 

of the model. Reviewing the literature on BDL imputation, we noted the theoretical support for multiple imputation 

methods and their ability to be implemented in the Bayesian framework. We then discussed how partitioning 

chemical mixtures has traditionally been done on the basis of subject matter knowledge of chemicals, and 

hypothesized that an empirical basis for clustering chemicals could detect previously unknown patterns in the 

chemical mixture while avoiding the clustering of chemicals that would negatively impact model fit and index 

parameter estimates. In the wide field of clustering algorithms, we focused on hard variable clustering methods and 

semi-supervised clustering methods as being particularly well-suited to the chemical partitioning problem. In the 

following chapters we offered novel solutions to these analytical challenges.  
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In Chapter 2, we looked at the near ubiquitous presence of BDL missing data in chemical mixture data, and some of 

the various proposals for their imputation. Among these, Bayesian condition univariate imputation methods seemed 

promising, as they could be combined with Bayesian group index regression, would readily accommodate the 

truncated distributions needs to model BDL observations, and could account for the true variation of unknown 

imputed values. We hypothesized that the combination of an imputation model and the group index analysis model 

would result in superior parameter estimates. We incorporated two conditional univariate imputation methods with 

Bayesian group index regression: Pseudo-Gibbs and Sequential Full Bayes (SFB). We compared these extensions to 

Bayesian group index regression with a single imputation method and the well-known multiple imputation by 

chained equations (MICE) algorithm. We evaluated how these methods compared in terms of mean squared error 

(MSE), bias, power, sensitivity, specificity, DIC, and computation time in a simulation study. We found that the 

Pseudo-Gibbs imputation method outperformed the other methods at high levels of BDL missingness (70%), but that 

at lower percentages performance was similar for all methods compared. Based on this, we recommended the 

computationally efficient SI method for lower levels of BDL missing data, and the Pseudo-Gibbs method for higher 

levels. We applied Pseudo-Gibbs imputation to the California Childhood Leukemia Study (CCLS), as many of its 

chemical’s exhibit BDL missingness of up to 50%, with a few reaching beyond 70%. We found a positive, significant 

association between the polycyclic aromatic hydrocarbon (PAH) index and childhood leukemia, with 

benzo(k)fluoranthene and indeno(1,2,3 -c,d)pyrene identified as important chemicals within the index. We then 

identified the income covariate as a likely effect modifier, and ran an analysis stratified by income. In the high 

income strata, we found three significant indices: the PCB and herbicide indices with positive associations and the 

metals index with a negative association. The herbicide dacthal, PCB 138, PCB 180, and the metal arsenic were 

identified as important chemicals.  

In Chapter 3, we proposed a novel variable clustering algorithm that incorporated a variant of PCA, robust PCA 

(RPCA), that was modified for use with chemical mixture data. We compared this with three other variable clustering 

methods and a subject clustering method. We evaluated these five clustering methods in a simulation study, using 

the clustering algorithms to derive group assignments for chemicals that were then used in subsequent Bayesian 

group index regressions. The clustering assignments themselves were judged by their accuracy, while the quality of 

the following group index parameter estimates and model were measured by bias, MSE, power, sensitivity, 
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specificity, and DIC. We found that the Clustering of Variables around Latent Variables (CLV) and agglomerative 

hierarchical clustering (AHC) methods performed best, with CLV slightly outperforming AHC in the high group 

number scenario where there was moderate correlation overlap between two chemical groups with opposite 

direction of association with the outcome variable. We then applied CLV clustering in tandem with Bayesian group 

index regression to the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) non-

Hodgkin Lymphoma (NHL) case-control study, where we fit four separate models for the four study centers. In the 

Iowa subset, we fit a five-index model that included a PCB and pesticide index, a PAH index, and three pesticide 

indices. Two pesticide groups were found to be significantly associated with NHL: Group 1 (2,4-D, chlorpyrifos, cis-

permethrin, and trans-permethrin) and Group 2 (dicamba, DDE, DDT, and propoxur). Group 1 was negatively 

associated with NHL, with 2, 4-D identified as an important chemical. Group 2 was positively associated with NHL, 

with propoxur and DDE identified as important chemicals. The grouping arrangement determined by CLV highlighted 

the general reasonableness of grouping based on chemical structure and usage, while also demonstrating that such 

grouping assignments could be replicated with empirical methods while also providing a rationale for the 

partitioning of heterogeneous chemical classes such as pesticides. 

In Chapter 4, we proposed to extend the CLV clustering method identified in Chapter 3 to incorporate information 

from the outcome variable during clustering. We hypothesize that such a semi-supervised clustering algorithm would 

generate better chemical grouping assignments for subsequent Bayesian group index regression. Specifically, we 

sought to discourage clusters that combined chemicals with opposite directions of association with the outcome 

variable. Our first semi-supervised CLV method, constrained CLV (cCLV), extended CLV to allow for the definition of 

constraints by the user. In our application, the constraints took the form of cannot-link pairs that penalized any 

proposed groups that contained two chemicals with univariate associations of opposite direction with the outcome. 

Our second proposed extension, outcome-adjusted CLV (oCLV), adapted a “supervised clustering” algorithm that 

focuses clustering on only the most highly associated chemicals. We compared these two methods with the 

unsupervised CLV and two other semi-supervised methods: Constrained Clustering by Tabu Search (Conclust) and 

Clusterwise Effect Regression (CLERE). We evaluated how these methods compared in terms of mean squared error 

(MSE), bias, power, sensitivity, specificity, DIC, and computation time in a simulation study. We found that the 

Conclust method performed best, with consistently strong performance in terms of power, of sensitivity, specificity, 
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and DIC, and a tendency to greedily incorporate chemicals with the same direction of association with the outcome 

into the same group. We then applied the Conclust algorithm along with Bayesian group index regression to the NCI-

SEER NHL case-control study, again fitting four separate models for the four study centers. In the LA subset we found 

one significant index, called Group 5 (chlorpyrifos, diazinon, and propoxur). It was negatively associated with NHL, 

with diazinon identified as an important chemical. In the Iowa subset, we fit a six-index model. In a departure from 

the analysis of this subset in Chapter 3, patterns similar to grouping based on chemical structure and use were not 

replicated, with both the pesticide and PAH classes of chemicals split into multiple and overlapping groups. Two 

significant indices were found: Group 1 (a singleton group of 2, 4-D alone), and Group 6 (dicamba, 

benzo(k)fluoranthene, dibenz(ah)anthracene, PCB 105, PCB 138, PCB 153, PCB 170, PCB 180, α-chlordane, γ-

chlordane, DDE, diazinon, and propoxur). Group 1 had a negative association, with index estimate attributed solely 

to 2, 4-D. Group 6 had a positive association, with propoxur, DDE, γ-chlordane, and α-chlordane identified as 

important chemicals. The chemicals of Group 6, a majority of the positively associated chemicals in the mixture, 

showcased Conclust’s tendency to greedily combine chemicals of the same direction of association with the 

outcome. This was an improvement over our previous unsupervised clustering, as two additional chemicals of 

interest were identified. Overall, our findings demonstrate that supervision of chemical clustering with information 

from the outcome variable is an improvement over unsupervised methods in our application to group index models.  

Implications 

The results of our data applications to the CCLS and NCI-SEER NHL studies are supported by a number of previous 

analyses, and support further investigation of these associations. For instance, in Chapter 2 our non-stratified model 

found the PAH index positively associated with childhood leukemia, with benzo(k)fluoranthene and indeno(1,2,3 -

c,d)pyrene identified as important chemicals. These two PAHs had previously been found to be either significantly or 

borderline significantly associated with childhood leukemia in single-chemical analyses of the CCLS data 1. In the high 

income strata of our stratified model, the PCB index was found to be positively associated and significant, with PCB 

138 as the highest contributor to the overall index effect. PCB 138 and summed PCBs were previously found to have 

a positive association with childhood leukemia in a logistic regression analysis 2. Additionally, the significant and 

positively associated herbicide index, along with dacthal as the predominant chemical in the index, is very similar to 

previous group index analyses 3-4 that used different imputation methods, as well as to single-chemical logistic 



107 
 
regressions 5. Our analysis of CCLS provides additional support for these previous findings, and could motivate 

additional investigations into the relationship between the chemicals identified and childhood leukemia. 

In our data applications to the NCI-SEER NHL study in Chapters 3 and 4, we consistently found a significant positive 

index in the Iowa subset. The chemicals identified as important in the analyses, the pesticides propoxur, DDE, γ-

chlordane, and α-chlordane, have also been found significantly associated with NHL in past analyses. In a single-

index regression of the Iowa subset, the index was found to be significant and positively associated, with the 

chemicals propoxur, DDE, and γ-chlordane assigned the highest weights 6. Single-chemical regression analyses also 

found significant positive associations for propoxur, DDE, γ-chlordane, and α-chlordane 6-7. Once again our results 

support previous findings, and could motivate further investigations and discourage agricultural use of the pesticides 

identified. 

Future Work 

The research presented in the preceding chapters contributes and supports the use of several new tools for Bayesian 

group index regression. The methods introduced largely focused on the context of chemical mixture analysis, and in 

the case of our imputation extension attempted to make full use of the flexibility of Bayesian modelling. 

Improvements could be made, however, by widening the application of Bayesian group index regression to other 

types of data and by expanding the utilization of Bayesian methods. These improvements would require the 

development of new methods, which we detail below. 

First, the application of Bayesian group index regression models could be expanded from our focus on chemical 

mixture data to the wider exposome. The exposome is defined as the total of exposures to which an individual is 

subjected to from birth to death, including internal processes regulated by gene expression and metabolism, 

external exposure such as pollution, radiation, and diet, and the influence of larger forces that shape the individual’s 

place in the world such as social capital or economic status 8. Some of the data sources in this list, such as gene 

expression 9, proteomic 10, and metabolomic data 11, are extreme cases of the “curse of dimensionality”, where the 

number of variables greatly exceeds the number of subjects. Other data types, such as diet or measures of 

phycological well-being, are likely to be measured by some sort of ordinal scale. While this description of challenges 

encountered when trying to comprehensively model the variety of data types included in the exposome is not all-
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encompassing, it is illustrative of the work that could be done both to characterize Bayesian group index regression’s 

utility in such analyses and to contribute extensions to improve its performance.  

Second, in Chapters 3 and 4 we identified clustering algorithms that were well-suited as data preparation algorithms 

before Bayesian group index regression. This two-step process is limited in that it requires complete data with no 

missing observations, BDL or otherwise, before clustering can occur. In order to make full use of the imputation 

extension proposed in Chapter 2, it would be ideal to incorporate the empirical clustering step into the larger 

Bayesian estimation algorithm. A related problem, that of determining the number of groups to fit in a group index 

model, is one that we did not address in our work. Knowledge of true group number was assumed in our 

simulations, and in Chapters 3 and 4 group number in data applications was decided by recommendations from the 

authors of the clustering methods applied. In Chapter 3 we evaluated a variable clustering method, Dirichlet Process 

Variable Clustering (DPVC), that did estimate group number. It did not perform well in the context of background 

correlation normally found in chemical mixture data, however. A Bayesian variable clustering method that does not 

exhibit this limitation would be a good candidate for combination with Bayesian group index regression. 

Finally, an increase in the utilization of the flexibility of Bayesian modeling would likely require an improvement in 

the computational efficiency of our application of Bayesian group index regression. In Chapter 2, we found that our 

Pseudo-Gibbs imputation extension outperformed other imputation methods when BDL missingness was high, 

around 70%. Otherwise, it was much slower than single-imputation methods that performed similarly. This is not an 

ideal situation, as high levels of BDL missingness require the inclusion of a great number of parameters to the model, 

slowing time to convergence of the posterior distribution. Even in just this scenario, a faster algorithm would be of 

significant utility. The value of greater computational efficiency would only be compounded if further tasks, such as a 

great increase in the number of variables modeled, the estimation of clusters, and the estimation of group number, 

were considered.  

Conclusion 

We offer several solutions to problems commonly encountered when performing Bayesian group index regression. 

This was accomplished in the following ways. First, we extended Bayesian group index regression to simultaneously 

impute missing BDL observations in such a way that incorporates the variation of the unknown status of BDLs. 
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Second, we proposed a novel variable clustering algorithm and, from a selection of variable clustering algorithms, 

identified the one most suitable for use with Bayesian group index regression. This enables the definition of the 

chemical groups necessary for group index regression without relying on assumptions drawn from similarity of 

chemical’s structure or use. Third, we extended the variable clustering algorithm previously identified to incorporate 

information from the outcome variable of interest. We compared these extensions with other semi-supervised 

clustering methods and identified the one most suitable for use with Bayesian group index regression. This offers 

superior chemical clusters to unsupervised methods, and discourages the grouping of chemical that may artificially 

bias indices to the null.  

The methods we present share an emphasis on limiting analytical assumptions and focusing on the empirical realities 

of the data analyzed. Our proposed imputation method eschews simplistic and convenient replacements for the 

missing BDL observations that have been shown to lead to poor parameter estimates, and also does not assume the 

imputations are truly observed quantities. Our clustering methods avoid grouping assumptions based around 

chemical structure and usage. Public health practitioners can leverage these contributions to perform chemical 

mixture analyses while avoiding the uncertainty of questions related to improper imputations and chemical 

grouping. 

As the investigation into the influence of chemical exposure on human health continues and expands into the larger 

context of the exposome, Bayesian group index modelling has the potential to be adapted to a wide variety of data 

types while leveraging the flexibility of Bayesian modelling for the determination of group composition and number. 

This will only be aided by more computationally efficient estimation algorithms. Improvements in mixture analysis 

such as those presented above offer a significant contribution to the future improvement of human health and 

wellbeing. 
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Supplemental Material 

Chapter 2 Supplemental Materials 

Table S1: List of chemicals and their group used in the CCLS analyses 

Chemical Chemical Group 

PCB-118 PCB 

PCB-138 PCB 

PCB-153 PCB 

PCB-180 PCB 

DDE Insecticide 

DDT Insecticide 

Cyfluthrin(I) Insecticide 

Cyfluthrin(II) Insecticide 

Cyfluthrin(III) Insecticide 

Cyfluthrin(IV) Insecticide 

Carbaryl Insecticide 

Propoxur Insecticide 

Pentachlorophenol Insecticide 

gamma-Chlordane Insecticide 

alpha-Chlordane Insecticide 

Chlorpyrifos Insecticide 

Diazinon Insecticide 

Phosmet Insecticide 

cis-Permethrin Insecticide 

Methoxychlor Insecticide 

Cypermethrin(I) Insecticide 

Cypermethrin(II) Insecticide 

Cypermethrin(III) Insecticide 

Cypermethrin(IV) Insecticide 

trans-Permethrin Insecticide 

Piperonyl butoxide Insecticide 

o-Phenylphenol Herbicide 

Trifluralin Herbicide 

Simazine Herbicide 

mCPP Herbicide 

Dicamba Herbicide 

Dacthal Herbicide 

2,4-D Herbicide 

As Metals 

Cr Metals 

Cu Metals 

Pb Metals 

Sn Metals 

W Metals 

Zn Metals 

Indeno(1,2,3-c,d)pyrene PAH 

Dibenz(ah)anthracene PAH 

Dibenzo(ae)pyrene PAH 

Coronene PAH 
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Benzo(a)anthracene PAH 

Benzo(a)pyrene PAH 

Benzo(b)fluoranthene PAH 

Nicotine Tobacco 

Cotinine Tobacco 

PBDE-28 PBDE 

PBDE-47 PBDE 

PBDE-99 PBDE 

PBDE-100 PBDE 

PBDE-153 PBDE 

PBDE-154 PBDE 

PBDE-183 PBDE 

PBDE-196 PBDE 

PBDE-197 PBDE 

PBDE-203 PBDE 

PBDE-206 PBDE 

PBDE-207 PBDE 

PBDE-208 PBDE 

PBDE-209 PBDE 

 

Figure S1: Forest plot of chemical group effects for childhood leukemia  
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Figure S2: Forest plot of chemical group effects for childhood leukemia in children in the highest income bracket 

 

Table S2: Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group index 

model for subjects in lower income brackets 

Variable Odds Ratio 2.5% CI 97.5% CI 

PCBs 1.01 0.74 1.38 

Insecticides 0.65 0.35 1.10 

Herbicides 1.10 0.72 1.78 

Metals 1.19 0.80 1.93 

PAHs 1.17 0.87 1.62 

Tobacco 0.90 0.67 1.19 

PBDEs 1.12 0.67 1.89 

Child’s age 1.03 0.91 1.18 

Female 1.40 0.86 2.36 

Child’s Ethnicity:    

Hispanic 1.44 0.83 2.70 

Non-Hispanic 1.20 0.59 2.57 

Mother’s education:    

High school 1.32 0.61 3.10 

Some college 1.39 0.61 3.35 

Bachelor’s or higher 0.75 0.29 1.89 

Mother’s age 1.02 0.98 1.07 

Residence since birth 0.94 0.56 1.53 
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Figure S3: Forest plot of chemical group effects for childhood leukemia in children in the lower income brackets 

 

Chapter 3 Supplemental Materials 

For the Detroit subset, we fixed the CLV clustering algorithm to 5 clusters. We characterized the five clusters and list 

their chemicals as follows: a group of pesticides called Group 1 (2,4-D, dicamba, α-chlordane, γ-chlordane, diazinon, 

o-phenylphenol, pentachlorophenol), a group composed of all PAHs and one pesticide called Group 2 

(benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(ah)anthracene, 

indeno(1,2,3-cd)pyrene, methoxychlor), a group of all PCBs called Group 3 (PCB 105, PCB 138, PCB 153, PCB 170, PCB 

180), a group of pesticides called Group 4 (DDE, DDT), and a group of the remaining pesticides called Group 5 

(carbaryl, chlorpyrifos, cis-permethrin, trans-permethrin, propoxur). The odds ratios and 95% CIs estimated for our 5 

index effects and covariates are in Table S1. No index effects were found to be significant. The race and age 

covariates were found to be significant. 
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Table S1. Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group 
index model for subjects in Detroit  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group I 0.73 0.40 1.24 

Group 2 1.00 0.70 1.55 

Group 3 1.40 0.94 2.10 

Group 4 0.86 0.61 1.18 

Group 5 1.20 0.81 1.88 

Male 1.12 0.62 2.09 

White 2.52 1.01 6.44 

Education 0.95 0.57 1.51 

  Age 0.95 0.91 0.98 

 

For the LA subset, we fixed the CLV clustering algorithm to 6 clusters. We characterized the six clusters and list their 

chemicals as follows: a group of pesticides called Group 1 (2,4-D, dicamba), a group of all PAHs called Group 2 

(benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(ah)anthracene, 

indeno(1,2,3-cd)pyrene), a group of all PCBs called Group 3 (PCB 105, PCB 138, PCB 153, PCB 170, PCB 180), a group 

of pesticides called Group 4 (carbaryl, cis-permethrin, trans-permethrin, propoxur), a group of pesticides called 

Group 5 (α-chlordane, γ-chlordane, chlorpyrifos, diazinon), and a group of the remaining pesticides called Group 6 

(DDE, DDT, methoxychlor, o-phenylphenol, pentachlorophenol). The odds ratios and 95% CIs estimated for our 6 

index effects and covariates are in Table S2. No index effects or covariates were found to be significant. 
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Table S2. Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group 
index model for subjects in LA  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 1.03 0.81 1.32 

Group 2 1.24 0.94 1.67 

Group 3 1.20 0.91 1.61 

Group 4 1.01 0.74 1.37 

Group 5 0.81 0.54 1.25 

Group 6 0.73 0.47 1.13 

Male 0.90 0.55 1.41 

White 1.16 0.70 2.01 

Education 1.15 0.79 1.73 

  Age 1.00 0.98 1.03 

 

For the Seattle subset, we fixed the CLV clustering algorithm to 6 clusters. We characterized the six clusters and list 

their chemicals as follows: a group of pesticides called Group 1 (2,4-D, dicamba, diazinon), a group of all the PAHs 

called Group 2 (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, 

dibenz(ah)anthracene, indeno(1,2,3-cd)pyrene), a group of all PCBS and one pesticide called Group 3 (PCB 105, PCB 

138, PCB 153, PCB 170, PCB 180, pentachlorophenol), a group of pesticides called Group 4 (carbaryl, chlorpyrifos, cis-

permethrin, trans-permethrin, propoxur), a group of the two chlordane pesticides called Group 5 (α-chlordane, γ-

chlordane), and a group of the remaining pesticides called Group 6 (DDE, DDT, methoxychlor, o-phenylphenol). The 

odds ratios and 95% CIs estimated for our 5 index effects and covariates are in Table S3. No index effects were found 

to be significant. The education covariate was found to be significant. 
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Table S3. Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group 
index model for subjects in Seattle  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 0.76 0.55 1.01 

Group 2 1.02 0.83 1.25 

Group 3 1.19 0.88 1.67 

Group 4 1.05 0.78 1.45 

Group 5 0.92 0.72 1.15 

Group 6 0.99 0.67 1.45 

Male 1.13 0.75 1.75 

White 0.92 0.40 2.04 

Education 0.66 0.45 0.99 

  Age 0.99 0.97 1.01 

 

Chapter 4 Supplemental Materials 

 

For the Detroit subset, among the group number models ran, the 5-group model had the lowest DIC (DIC = 258). We 

characterize these five clusters and list their chemicals as follows: a singleton group composed solely of 2,4-D called 

Group 1, a group of PAHs called Group 2 (benzo(b)fluoranthene, benzo(a)pyrene, chrysene, and indeno(1,2,3-

cd)pyrene), a group of pesticides named Group 3 (cis-permethrin and trans-permethrin), a group of pesticides, PAHs, 

and PCBs named Group 4 (dicamba, dibenz(ah)anthracene, PCB 105, PCB 138, PCB 153, PCB 170, PCB 180, carbaryl, 

α-chlordane, γ-chlordane, chlorpyrifos, DDE, DDT, diazinon, methoxychlor, and propoxur), and a group of PAHs and 

pesticides called Group 5 (benz(a)anthracene, benzo(k)fluoranthene, o-phenylphenol, and pentachlorophenol). The 

odds ratios and 95% CIs estimated for our 5 index effects and covariates are in Table S1. No indices were found to 

have a significant association with NHL, however, the gender covariate had a significant and positive association (OR 

= 2.80, 95% CI: 1.10, 7.36) and the age covariate had a significant and negative association (OR = 0.95, 95% CI: 0.91, 

0.98). 
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Table S1. Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group 
index model for subjects in Detroit  

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 1.00 0.76 1.31 

Group 2 1.23 0.71 3.23 

Group 3 1.14 0.87 1.52 

Group 4 1.35 0.76 2.60 

Group 5 0.55 0.18 1.12 

Male 1.10 0.61 2.03 

White 2.80 1.10 7.36 

Education 0.99 0.60 1.65 

  Age 0.95 0.91 0.98 

 

 

For the Seattle subset, among the group number models ran, the 6-group model had the lowest DIC (DIC = 481.4). 

We characterize these five clusters and list their chemicals as follows: : a singleton group composed solely of 2,4-D 

named Group 1, a group of pesticides named Group 2 (cis-permethrin and trans-permethrin), a singleton group 

composed solely of pentachlorophenol called Group 3, a group of pesticides, PAHs, and PCBs named Group 4 

(dicamba, benzo(k)fluoranthene, dibenz(ah)anthracene, PCB 105, PCB 138, PCB 153, PCB 170, PCB 180, carbaryl, α-

chlordane, γ-chlordane, chlorpyrifos, DDE, DDT, diazinon, methoxychlor, and propoxur), a group of PAHs called 

Group 5 (benz(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, and indeno(1,2,3-cd)pyrene), and a 

singleton group composed solely of o-phenylphenol called Group 6. The odds ratios and 95% CIs estimated for our 6 

index effects and covariates are in Table S2. No indices were found to have a significant association with NHL, 

however, the education covariate had a significant and inverse association (OR = 0.65, 95% CI: 0.44, 0.99). 
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Table S2. Odds ratio estimates for chemical groups and demographic covariates from the Bayesian group 
index model for subjects in Seattle 

Variable Odds Ratio 2.5% CI 97.5% CI 

Group 1 0.86 0.70 1.04 

Group 2 1.07 0.89 1.30 

Group 3 1.13 0.92 1.42 

Group 4 0.89 0.52 1.34 

Group 5 1.02 0.81 1.33 

Group 6 1.06 0.87 1.31 

Male 1.18 0.78 1.84 

White 0.93 0.41 2.03 

Education 0.65 0.44 0.99 

  Age 0.99 0.97 1.01 
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