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ABSTRACT

On The Memory Scalability of Spectral Clustering Algorithms

by Ran Li

Spectral clustering has lots of advantages compared to previous more traditional

clustering methods, such as k-means and Gaussian Mixture Models (GMM), and is

popular since it was introduced. However, there are two major challenges, speed

scalability and memory scalability, that impede the wide applications of spectral

clustering. The first challenge has been addressed recently by Chen [1] [2] in the

special setting of sparse or low dimensional data sets. In this work, we will first

review the recent study by Chen that speeds up spectral clustering. Then we will

propose three new computational methods for the same special setting of sparse or

low dimensional data to address the memory challenge when the data sets are too

large to be fully loaded into computer memory and when the data sets are collected

sequentially. Numerical experiment results will be presented to demonstrate the

improvements from these methods. Based on the experiments, the proposed methods

show effective results on both simulated and real-world data.
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CHAPTER 1

Background
1.1 Introduction

Clustering is an important technique to help explore the underlying patterns and

relationships among data. It has been widely used in many fields, such as computer

science and social science, that involve data processing [3]. Traditionally, k-means

and Gaussian Mixtures have been the standard methods to perform clustering tasks.

But they have their limitations. For example, Gaussian Mixtures need to assume a

specific distribution for the data points in each cluster. Also, it can converge to a local

minimum even with multiple restarts. And the k-means method imposes spherical

shapes in clusters. Spectral clustering is a good alternative without these problems

[3]. It was introduced in early 2000 by Shi and Malik [4], Meila and Shi [5], and

Ng, Jordan, and Weiss [6]. Since then, it has become a popular method in many

applications, such as image segmentation [4] and document clustering [2]. Although

there are different variants, spectral clustering normally includes the following basic

steps: forming a weight matrix, finding the eigenvectors, and clustering the data based

on the eigenvectors [3].

Two practical challenges impede the wide applications of spectral clustering. The

first one is computational cost, as it requires decomposing an n×n weight matrix,

where n is the number of data points. When n is large, this will be a very expensive

computation. Recently, many researchers have come up with different methods to

reduce computational costs. Chen’s research proposed a computational framework

in spectral clustering with cosine similarity to speed up the computation by using

low-rank SVD and avoiding the computation of the weight matrix [2] [7]. Later, he

extended his work to other similarity functions by converting the raw data into sparse

vectors using landmark points [1] [8] [9]. Thus, this challenge has been adequately
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addressed.

The second challenge is memory access, which will be the focus of this project.

The current spectral clustering research assumes that the full data can be read into

the computer memory all at once to use the algorithm. However, with the fast

development of the internet, today’s data scientists face massive data sets. Oftentimes,

we do not have enough computer memory to store the whole data set. And even when

we do, reading and writing from computer memory can be computationally expensive.

Additionally, these large data are usually collected and distributed in the on-the-fly

format. Thus, handling the streaming data is another important issue we need to

address.

Our research goal is to reduce the memory requirement of spectral clustering

algorithms in special settings where the dataset is either sparse or with low dimensions.

In this report, I will first briefly introduce the implementation of the original spectral

clustering algorithms. After that, I will introduce a scalable spectral clustering method

that speeds up the original algorithm under the special setting of sparse or low-

dimensional data. Last but not least, we will introduce three computational methods

for the same special setting to address the memory challenge when the data sets

are too large to be fully loaded into computer memory. Experiments with real and

simulated data are performed to validate the new approaches.

1.2 Spectral Clustering

In a clustering problem, provided a dataset X ∈ R𝑛×𝑑 and a similarity function,

we would divide the dataset into disjoint subsets (called clusters) such that points

are "similar" (at least to their near neighbors) within every cluster, and points are

"dissimilar" between clusters. In spectral clustering, we can reformulate the clustering

problem into a graph-cut problem by representing the dataset by an (undirected)
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similarity graph 𝐺 = (𝑉,𝐸). Each vertex 𝑣𝑖 ∈ 𝑉 represents a data point 𝑥𝑖. Adjacent

("similar") vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 are connected by an edge, denoted as 𝑒𝑖,𝑗 ∈ 𝐸. The goal

is to find a way to partition the graph into disjoint components so that within each

component the sub-graph is dense and between the components the connections are

sparse.

Spectral clustering normally includes the following basic steps, forming a weight

matrix by a similarity graph, finding the graph Laplacian and embedded eigenvectors,

and clustering based on the embedding.

1.2.1 Similarity Graph

Given a dataset X ∈ R𝑛×𝑑, we can construct an undirected similarity graph

𝐺 = (𝑉,𝐸) by a defined similarity function. The weight matrix W represents the

weights of the edges between each vertex in the graph

W = (𝑤𝑖𝑗) ∈ R𝑛×𝑛, where 𝑤𝑖𝑗 = 𝑤𝑗𝑖 ≥ 0.

The degree of a vertex 𝑥𝑖 is denoted by 𝑑𝑖. The degrees of all vertices are represented

by a degree matrix that has W1 in its diagonal:

D = 𝑑𝑖𝑎𝑔(W1) ∈ R𝑛×𝑛, where 1 = (1...1)𝑇 ∈ R𝑛.

There are different ways to define the weight matrix 𝑊 ∈ R𝑛×𝑛 of the similarity

graph, e.g. the 𝜀-neighborhood graph, the k-nearest neighbor graphs, and the fully

connected graph with similarity functions such as Gaussian radial basis or Cosine

similarity. And there are different choices of similarity functions 𝐾 : R𝑑 × R𝑑 ↦→

R+ ∪ {0} that can be used to measure the similarity 𝑤𝑖,𝑗 between two data points

𝑥𝑖, 𝑥𝑗.

1.2.2 Graph Laplacian and Embedding

After forming the similarity graph in spectral clustering, we will use the eigen-

decomposition of the graph Laplacian to embed the data points. An unnormalized

3



graph Laplacian matrix is defined by:

L = D−W.

There are two normalized graph Laplacian matrices:

Lrm = D−1L = I−D−1W

and
Lsym = D−1

2LD−1
2 = I−D−1

2WD−1
2

The first k eigenvectors corresponding to the L, Lsym and Lrm represent a low

dimensional embedding of the original data points.

The spectral embeddings from the un-normalized and normalized graph Laplacian

matrices can be derived from the relaxed solutions of RatioCut and NCut problems

[3]. In the RatioCut problem, when partitioning the vertices 𝑉 in the graph into k

groups, the goal is to optimize the function of:

min
𝐴1..,𝐴𝑘∈𝑉

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴1, ...𝐴𝑘) =
𝑘∑︁

𝑖=1

𝑐𝑢𝑡(𝐴𝑖, 𝐴𝑖)

|𝐴𝑖|

By defining a matrix 𝐻 ∈ R𝑛×𝑘 where each column ℎ𝑗 has the following value:

ℎ𝑖,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1/
√︀

|𝐴𝑗| if 𝑣𝑖 ∈ 𝐴𝑗

0 otherwise
, where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑘

, it becomes:

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴1, ...𝐴𝑘) =
𝑘∑︁

𝑖=1

𝑐𝑢𝑡(𝐴𝑖, 𝐴𝑖)

|𝐴𝑖|
=

𝑘∑︁
𝑖=1

ℎ′
𝑖Lℎ𝑖 = 𝑇𝑟(𝐻 ′L𝐻)

Then we can reconstruct this problem into:

min
𝐴1..,𝐴𝑘∈𝑉

𝑇𝑟(𝐻 ′L𝐻) subject to 𝐻 ′𝐻 = 𝐼,𝐻 as defined above
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But this discrete problem is an NP-hard problem. By relaxing the requirement to

enable the 𝐻 to take any real value, the problem becomes solvable: Based on the

Rayleigh-Ritz theorem, the optimization was obtained at the first k eigenvectors of L,

which leads us to the spectral embedding of the unnormalized graph Laplacian matrix.

Similarly, the NCut problem can be reformulated and relaxed as the following:

min
𝐴1..,𝐴𝑘∈𝑉

𝑇𝑟(𝐻 ′L𝐻) subject to 𝐻 ′D𝐻 = 𝐼

Based on the Rayleigh-Ritz theorem, the optimization was obtained at the first k

eigenvectors of Lrw. If we substitute the 𝑇 = D
1
2𝐻, then the optimization was

obtained when 𝑇 equals the first k eigenvectors of Lsym, which leads to the normalized

spectral embedding.

The matrix P = D−1W shares the same eigenvectors with Lrm. And W̃ =

D−1
2WD−1

2 shares the same eigenvectors with Lsym. Their eigenvalues are 1 minus

the eigenvalues of Lrm and Lsym, repectively. It is also equivalent to using the top k

eigenvectors of P, denoted by U ∈ R𝑛×𝑘, or the top k eigenvectors of W̃, denoted by

Ũ ∈ R𝑛×𝑘 as the embedding. It should be noted that U = D−1
2 Ũ.

1.2.3 Clustering

After embedding the data into the eigenspace of Lrm or Lsym, we can use k-means

clustering to cluster the embedded data into k clusters. After projecting the data

into eigenspace, the clustering pattern becomes more clear and the data are easy to

be separated. Algorithm 1 is a common spectral algorithm based on the normalized

graph laplacian Lsym.

We used four simulated toy datasets to demonstrate the process of the spectral

clustering algorithm and how the algorithm embeds the data into eigenspace to

enhance the cluster patterns. The four datasets are generated from two moons, three

Gaussian distributions, two circles, and three circles patterns respectively. The first

5



Algorithm 1 Normalized spectral clustering according to Ng, Jordan, and Weiss [6]
Input: Similarity function, data X ∈ R𝑛×𝑑, number of clusters 𝑘
Output: Partition of k clusters, 𝐶1, ..., 𝐶𝑘

1: Construct a similarity graph by the similarity function. Let W be its weighted
adjacency matrix and D = 𝑑𝑖𝑎𝑔(W1) the degree matrix.

2: Compute the normalized Laplacian Lsym = I−D−1
2WD−1

2 .
3: Compute the first k eigenvectors Ũ ∈ Rn×k of Lsym

4: Normalize the rows of Ũ with the norm equals to 1
5: Partition the rows of the normalized Ũ into k clusters by k-means

Figure 1: Samples to demonstrate the spectral clustering where the simulated datasets
were generated from four different distributions and patterns. First column: scatter
plots of the simulated data colored by the true labels. Second column: the heatmap
of the weight matrix. Third column: eigenvalues of the 𝐿𝑠𝑦𝑚. Fourth column: the
embedding of the original data by the first k eigenvectors. Fifth column: the scatter
plot of the original data colored by the cluster labels.

column in Figure 1 shows the distribution of the original data with their true labels.

The second column shows the heatmap of the weight matrices for these four datasets

6



constructed from the fully connected similarity graph and the Gaussian similarity

function: 𝑠(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−|𝑥𝑖 − 𝑥𝑗|2/(2𝜎2)), where 𝜎 = 4. The clusters are shown

in the heatmap of the weight matrices by the light color blocks on the diagonals.

The third column shows the first 10 eigenvalues of the normalized graph Laplacian

matrices. The fourth column shows the embedded data in the k-dimensional eigenspace.

For the datasets with 2 clusters, the first two eigenvalues are 0 or close to 0. The

2nd eigenvector functions as an indicator vector to separate the two clusters with a

threshold. For the datasets with 3 clusters, the first three eigenvalues are 0 or close

to 0. The 2nd and 3rd eigenvectors comprehend the information about the clustering

patterns. It is easy to see that in the embedding space, the data points from the same

clusters are grouped. Simple k-means can cluster them correctly.

Spectral clustering is easy to implement and can handle non-linear clusters. There

are no assumptions about the underlying distributions of the datasets. And it was

backed by rich mathematical theories: random walk, graph cut, and perturbation

theory. However, the computational cost and the memory requirement of spectral

clustering are high. It requires 𝑂(𝑛2𝑑) time to construct the weight matrix from a

similarity graph and 𝑂(𝑛3) to perform the eigendecomposition of the graph Laplacian.

The total time complexity is 𝑂(𝑛2𝑑+ 𝑛3). During the spectral clustering process, it

requires storing the weight matrix or the graph Laplacian matrix, which leads to at

least 𝑂(𝑛2) space complexity.

1.3 Scalable Spectral Clustering

As we mentioned, spectral clustering has a high computational cost. It requires

the decomposition of an n×n weight matrix. When n is large, this is a very expensive

computation. Chen’s research proposed a landmark-based computation framework

in spectral clustering with cosine similarity to speed up the computation by using
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low-rank SVD and avoiding the computation on the weight matrix. We called this

method the documents model or the scalable cosine similarity model because it refers

to the similarity matrix A as a "document" dataset with sparse rows and clusters

them based on the cosine similarity [9][2].

This method assumes the setting of cosine similarity and sparse data. Two

kinds of data can be considered sparse. One is that n(number of data points) and

d(dimensions) are both large but X =

⎡⎣𝑥1

...
𝑥𝑛

⎤⎦ ∈ R𝑛×𝑑 are row sparse, such as documents

under the bag-of-words model. The other is that the data is low dimensional where

𝑛 ≫ 𝑑, such as image data. If X has unit 𝑙2 norms, i.e ||𝑥𝑖|| = 1. XX𝑇 is equivalent

to the similarity matrix based on the cosine similarity function. The weight matrix

W can be expressed as:
W = XX𝑇 − I, where

In this way, as we shall see, the weight matrix can be avoided. First, the degree

matrix can be calculated as

D = W1 = 𝑑𝑖𝑎𝑔((XX𝑇 − I)1) = 𝑑𝑖𝑎𝑔(X(X𝑇1)− 1)

The computational cost of the degree matrix becomes 𝑂(𝑛𝑑). The normalized weight

matrix becomes

W̃ = D− 1
2XX𝑇D− 1

2 −D−1 = X̃X̃𝑇 −D−1, where X̃ = D− 1
2X.

If the degrees are constant, D−1 = 1
𝛽
I where 𝛽 > 0, the eigenvectors of W̃ are equal

to the left singular vectors of X̃. Instead of embedding the data points by finding

the eigenvectors of the normalized weight matrix, this method embeds the data by

finding the left singular vectors of X̃. Since the dataset is sparse, the SVD of X̃ is

very fast and has a much lower time complexity than the eigendecomposition of W̃.

The algorithm is shown at Algorithm 2.
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Algorithm 2 Scalable spectral clustering with cosine similarity [9]
Input: Similarity function, data X ∈ R𝑛×𝑑, number of clusters 𝑘, fraction of outliers
𝛼
Output: Partition of k clusters, 𝐶1, ..., 𝐶𝑘, and a set of outliers 𝐶0

1: Compute the degree matrix D
2: Find the data corresponding to the smallest degrees and remove them as outliers
3: Construct X̃ = D− 1

2X
4: Use SVD to find the first k left singular vectors of X̃, Ũ (can convert Ũ to U for

Ncut [9])
5: Normalized the rows of Ũ with norm equal to 1
6: Partition the rows of the normalized Ũ into k clusters, 𝐶1, ..., 𝐶𝑘, by k-means

Algorithm 2 can be generalized to other similarity functions. We first selected a

set of 𝑙 landmark points randomly from the dataset X. A similarity matrix A ∈ R𝑛×𝑙

is constructed between the whole dataset and the selected landmark points. The

matrix A is very sparse with a small number of non-zero terms on the rows. We can

consider A as a document-term matrix and perform Inverse Document Frequency

(IDF) weights on it, and then we can apply the spectral clustering with the cosine

similarity algorithm to this "document" dataset and cluster the rows of A.

During the steps of the generalized Algorithm 2, a matrix A ∈ R𝑛×𝑑 should

be stored, so the space complexity of this algorithm is 𝑂(𝑛𝑑) or 𝑂(𝑛𝑠) where s is

the number of non-zero entry in the rows, depending on the relative size of s and n.

The steps in the algorithm include the matrix entrywise manipulation, matrix and

vector publication, and low rank SVD of a sparse matrix A, so the time complexity is

𝑂(𝑛𝑠𝑘) or 𝑂(𝑛𝑑𝑘). Since this algorithm avoids the computation on the matrix W̃,

the computation cost was largely reduced from 𝑂(𝑛2𝑑 + 𝑛3) to 𝑂(𝑛𝑠𝑘) or 𝑂(𝑛𝑑𝑘).

However, since it still requires the storage of X̃, the space complexity is still large if

the dataset is large with a very large n, 𝑂(𝑛𝑑) or 𝑂(𝑛𝑠).
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1.4 Software, Data and Evaluation Criteria

In the following sections, we will introduce our new scalable spectral clustering

methods along with experiments testing their performance. Here we briefly introduce

the software, simulated and real data, and evaluation criteria used in our experiments.

1.4.1 Software

All experiments were conducted in MATLAB R2021b on a desktop computer

with 32 GB of RAM and a CPU with 4 cores.

1.4.2 Data

The first data set we used is a simulated data set. The cosine similarity performs

best when the underlying clusters are at different angles. The simulated dataset was

generated from three different angles with three dimensions representing three clusters

each with 1000 data points, a total of 3000 data points. Each data point was added a

noise 𝜀 generated from a Gaussian with a mean of 3 and a standard deviation of 0.5,

illustrated by Figure 2.

Figure 2: Scatter plots of simulated datasets

Some image data sets are large in quantity but only have moderate dimensions,

and cosine similarity is a reasonable choice for quantifying image similarity. Thus,

10



performing clustering on image data is an appropriate way for testing our algorithms.

We used three image data sets, usps, mnist, and pendigits, downloaded from the

LIBSVM website1, They all contained images of the handwriting of numbers 0 to

9, illustrated by Figure 3. The data sets are originally partitioned into training and

test parts for classification purposes, but we merged the two parts together for our

unsupervised setting.

Figure 3: Sample images from the usps data

Another type of real-world data that we used is document data. The document-

term matrix from document data is often large both in size and in dimension, each of

which could range from thousands to millions. However, this matrix is typically very

sparse, which satisfies our first assumption on the data matrix. Furthermore, cosine

similarity is a natural choice for quantifying document similarity. Thus, document

clustering is an ideal application for testing our algorithms. The document dataset

we considered is the 20 Newsgroups data2, consisting of 18,774 newsgroup documents

that are partitioned nearly evenly across 20 different newsgroups. There are a total

of 61,118 unique words (including stopwords) present in the corpus. To preprocess

the data, we first converted each text into word counts, and then converted the word

counts into binary arrays. We then remove stop words, the words appear in only one

document or too many documents (939, the average cluster size). Then we applied the

IDF weights to the remaining columns. After these preprocessing steps, the document

data can be directly used in the experiment. We also use SVD to project the document
1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2Available at http://qwone.com/~jason/20Newsgroups/.
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into the first 100 SVD subspaces. In the experiments, we used both non-projected

and SVD-projected data. The information of the data sets is summarized in Table 1.

Table 1: Summary information of the real-world data sets used in our study.

datasets #instances #dimensions #classes
usps 9,298 256 10
pendigit 10,992 16 10
mnist 70,000 184 10
20news 18,768 55,570 20
20news(SVD100) 18,768 100 20

1.4.3 Evaluation

One evaluation metric to compare different clustering solutions is classification

rate (accuracy rate), which is given by the total number of agreements divided by

the total number of observations. One minus the classification rate is called the

misclassification rate (error rate). Since our data all come with true labels, accuracy

or error is a reliable and objective measure of the clustering results. Another reason

is that our methods are extended from Chen’s cosine similarity scalable method

and in Chen’s paper, they used accuracy and error rates to quantify their method’s

performance. We continue to use the same metrics to have a fair comparison between

the proposed and baseline methods. Last but not least, since the goal of our method

is to study new scalable methods, another important measurement is CPU time. We

use it to measure the computational time cost in the experiment.
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CHAPTER 2

New Approaches
2.1 Approach 1. Subsample

The original spectral clustering and the scalable spectral clustering algorithms

mentioned previously assumed that the whole dataset is known and stored in the

database. However, real-life data is usually at a large scale which makes it impossible

to store at once. Moreover, in a lot of scenarios, the data that needs to be clustered

are online data and come in a sequential manner. In that case, it is not possible to

see the whole dataset and store them in memory. In our research, we proposed three

different approaches to address the memory challenge. The first approach uses a small

subset X𝑠 ∈ R𝑠×𝑑 randomly selected from the whole dataset X ∈ R𝑛×𝑑 to approximate

the spectral embedding of the whole dataset. We named it the Subsample method.

2.1.1 Methodology

Figure 4: Illustration of subsample method

In this approach, we continue using the setting from the scalable cosine similarity

model mentioned in Section 1.3 in which the dataset X is sparse with few non-zero

entries in its rows or is low dimensional data where 𝑛 ≫ 𝑑 and the similarity function

is cosine similarity. We also assume that initially, we only know a random subset
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X𝑠 =

⎡⎢⎣x
𝑇
1
...
x𝑇
𝑠

⎤⎥⎦ ∈ R𝑠×𝑑 with size s from the whole dataset. And the remaining data points

from X ∈ R𝑛×𝑑 come in an online fashion.

The first step of this approach is to randomly sample s data points from the

dataset, X =

⎡⎢⎣x
𝑇
1
...
x𝑇
𝑛

⎤⎥⎦ ∈ R𝑛×𝑑 . In Section 1.3, we showed that the normalized weight

matrix W̃ = X̃X̃𝑇 −D−1, where X̃ = D− 1
2X. If the degrees are constant, D−1 = 1

𝛽
I

where 𝛽 > 0, the top k eigenvectors of W̃ are equal to the top k left singular vectors

of X̃. The key step is to use top singular vectors of X̃ to approximate the eigenvectors

of W̃. Since the full dataset is unknown, we want to use sampled data to approximate

the full dataset X̃X̃𝑇 ∈ R𝑛×𝑛, which is hard to be approximated due to the dimension.

But it is possible to use sample data to approximate X̃𝑇 X̃ ∈ R𝑑×𝑑:

X̃𝑇 X̃ =
𝑛∑︁

𝑖=1

x̃𝑖x̃
𝑇
𝑖

≈ 𝑛

𝑠

𝑠∑︁
𝑖=1

x̃𝑖x̃
𝑇
𝑖

=
𝑛

𝑠
X̃𝑠X̃

𝑇
𝑠 , where �̃�𝑖 = 𝑑−1

𝑖 𝑥𝑖

(1)

This shows that the full degree normalized dataset X̃ can be approximated by X̃𝑠.

And if the full SVD of X̃ is ŨΣ̃Ṽ𝑇 = X̃, where Ũ ∈ R𝑛×𝑛 is the matrix of left singular

vectors and Ṽ ∈ R𝑑×𝑑 is the matrix of right singular vectors. And the diagonal entries

in Σ̃ ∈ R𝑑×𝑑 are the singular values. If Λ̃ = Σ̃2 =

⎡⎢⎣𝜎
2
1

. . .
𝜎2
𝑑

⎤⎥⎦ ∈ R𝑑×𝑑, then:
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X̃𝑇 X̃ = ṼΛ̃Ṽ𝑇

=
𝑑∑︁

𝑖=1

𝜎2
𝑖 ṽ𝑖ṽ

𝑇
𝑖

≈ 𝑛

𝑠
X̃𝑠X̃

𝑇
𝑠

=
𝑛

𝑠
Ṽ𝑠Λ̃𝑠Ṽ

𝑇
𝑠 , where X̃𝑠 = D

− 1
2

𝑠 X𝑠 and Ṽ𝑠Σ̃𝑠Ṽ
𝑇
𝑠 = X̃𝑠

=
𝑑∑︁

𝑖=1

𝜎2
𝑠,𝑖ṽ𝑠,𝑖ṽ

𝑇
𝑠,𝑖, where Ṽ𝑠 =

[︀
ṽ𝑠,1...ṽ𝑠,𝑑

]︀
∈ R𝑑×𝑑 and Σ̃𝑠 =

⎡⎢⎣𝜎𝑠,1

. . .
𝜎𝑠,𝑑

⎤⎥⎦ ∈ R𝑑×𝑑

(2)

This shows that the right singular vectors of X̃𝑠 can be used to approximate the

left singular vectors of X̃. Instead of performing the SVD on X̃ to find the eigen

embedding of the full dataset, we can perform SVD on X̃𝑠 to first embed the sample

dataset using the first k right singular vectors of X̃𝑠, denoted by Ṽ𝑠,𝑘, then project the

rest of the data into the SVD space by the right singular vectors. Withouth knowing

the entire dataset, we can approximate the degree matrix of the sample data D𝑠 by:

D𝑠 = X𝑠(X
𝑇1)− 1 ≈ 𝑛

𝑠
(X𝑠(X

𝑇
𝑠 1)− 1) (3)

After finding the degree matrix of the sample data by the above equation, we removed

the data points corresponding to the bottom 𝛼 percent smallest degree among the s

data points. Then we perform low-rank SVD of X̃𝑠 to find the approximated spectral

embeddings of the sample data.

Ũ𝑠Σ̃𝑠Ṽ
𝑇
𝑠 ≈ X̃𝑠, where Ũ𝑠 ∈ R𝑛×𝑘, Ṽ𝑠 ∈ R𝑑×𝑘, and Σ̃ ∈ R𝑘×𝑘 (4)

We then employed the k-means algorithm to cluster the embedded sample data Ũ𝑠,𝑘

in R𝑘 into different clusters, 𝐶𝑗, and recorded the centroid of each cluster, c𝑗, where
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𝑗 = 1, ..., 𝑘.
c𝑗 =

1

𝑛𝑗

𝑛𝑗∑︁
𝑖=1

y𝑖 (5)

where y𝑖 is the 𝑖th row vector of Ũ𝑠,𝑘 and 𝑛𝑗 is the number of the data in the 𝑗th

cluster. We assume that the remaining data is online data and processed one by one

and the new data point is x0 ∈ R𝑑×1. We can approximate the degree of the new data

point by:
𝑑0 ≈

𝑛

𝑠
(x𝑇

0 (X
𝑇
𝑠 1)− 1 (6)

Then we can find the spectral embedding of the new data point x0 by project x̃0 into

the sample SVD space:

ũ0 = x̃0Ṽ𝑠Σ̃
−1
𝑠 , where x̃0 = 𝑑

− 1
2

0 x0 (7)

Finally, the cluster label j of the new data point was assigned based on the nearest

centroid of ũ0:
argmax

𝑗
||c𝑗 − ũ0|| (8)

Algorithm 3 Subsample spectral clustering with cosine similarity
Input: data X ∈ R𝑛×𝑑, number of clusters 𝑘, number of samples s, fraction of outliers
𝛼
Output: Partition of k clusters, 𝐶1, ..., 𝐶𝑘

1: Randomly samples s data points from the given data
2: Approximate the degrees D𝑠 of the samples and find the outliers
3: Calculate the X̃𝑠 for the sample dataset and find its top k left singular vectors by

rank-k SVD: Ũ𝑠,𝑘Σ̃𝑠,𝑘Ṽ
𝑇
𝑠,𝑘 ≈ X̃𝑠.

4: Normalize each row of left singular vectors with a norm equal to 1, and apply
k-means clustering to cluster the samples.

5: For each of the new data points that come from the rest of the dataset, approximate
the degree of the new data point.

6: Project the data into the sample SVD space by equation (7)
7: Cluster the new data point by finding its nearest centroid.

During the process of clustering the sample dataset, approximating the degree of

the sample dataset and calculating the X̃𝑠 requires 𝑂(𝑠𝑑) time and the rank-k SVD of

the X̃𝑠 requires 𝑂(𝑘𝑠𝑑). During the process of clustering the rest of the incoming data
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points, approximating the degrees requires 𝑂((𝑛− 𝑠)𝑑+ 𝑠𝑑) = 𝑂(𝑛𝑑) and projecting

the data point into the approximate SVD space requires 𝑂((𝑛− 𝑠)𝑑𝑘). So the total

time complexity is 𝑂(𝑛𝑑𝑘). During the clustering of the sample dataset, X̃𝑠 was used

while during the clustering of the rest of the data points, the k left singular vectors

X̃𝑠,𝑘 was kept. So the space complexity was 𝑂(𝑠𝑑+ 𝑘𝑑). Compared to the document

model, the subsample method has the same time complexity but has a lower space

complexity, since instead of the full dataset X, the subsmaple method only needs to

work on the sample dataset X𝑠. And more importantly, the subsampling method

was able to handle the sequential data which is very common in modern-day web

applications.

2.1.2 Experiment

We applied the Subsample method to the simulated dataset. The goal is to test

the performance of the proposed method and to find the smallest sample size for the

model to perform well.

Figure 5 shows a sample output from the algorithm when the fraction of outlier

𝛼 is 0.01 and the fraction of sample size is 0.1. Figure 3(a) shows the embedding of

the sample dataset by the first two left singular vectors of X̃𝑠. The data were color

labeled by their true cluster labels and the centroids of each cluster were outlined.

From the figure, we can see the data that embedded into the SVD space was much

easier to be separated by k-means than the original data. The cluster results of the

sample data were shown in figure 3(b) with different color labels. Figure 3(c) shows

how the remaining data were projected into the SVD space of the sample data. It is

clear that they were projected into their original clusters. The centroids of the clusters

of the sample dataset were still near the centers of the clusters of the remaining data

points. From Figures 5(b) and 3(d), the three groups can be easily separated from
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this algorithm.

Figure 5: Visualization the embedding and clustering result by the Subsample method
in the toy dataset, 𝛼 = 0.01 and 𝑠 = 0.1. (a) Spectral embeddings of the sample data.
(b) Clustering result of the sample data. (c) Spectral embeddings of the remaining
data. (d) Clustering result of the remaining data

During the process of our algorithm, there is randomness in the step of random

sampling and the step of k-means. To have a fair comparison, we repeat the same

experiment 5 times under different sample sizes and record the accuracy rate and

the CPU time. The rate of outliers 𝛼 was set to 0.01. From Figure 6, the accuracy

rate of the algorithm is around 97.2% when s increase from 0.1 to 0.9. The optimal

accuracy was obtained when 𝑠 = 0.2. Overall, the accuracy rates under all s are very
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Figure 6: The accuracy rate of the toy dataset with different sample size

Figure 7: The CPU time in seconds of the toy dataset with different sample size

high. This shows that changing the percentage of the sampling does not make a large

difference in the accuracy rate when the sample size is larger than 0.1. Even with a

very small sample size, s, the accuracy rate is already very high. From Figure 7, the

CPU time decreases with the increase of s. When s = 0.4 the CPU time reaches its

minimum of 0.4362 s. Overall the CPU times are all lower than 1 s.

In addition to the simulated dataset, we also applied the algorithm to real-world
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Figure 8: Embeddings of sample data and remaining data points in the USPS dataset
by Subsample method with 𝛼 = 0.01 and 𝑠 = 0.3.

datasets to test the effectiveness of the algorithm. We repeated the experiments 5

times with each sample size and recorded the average of the error rates and the CPU

times. The fraction of outliers 𝛼 was set to 0.01. Figure 6 shows the embedding of

the sample data and the remaining data of USPS data by the first 2 left singular

vectors and colored by the true labels from 0 to 9. Since the USPS dataset has 16× 16

dimensions and 10 clusters, the plots of the embedding in 2 dimensions are not very

informative.

To study the relationship between sample size and the method performance, we

plot the average accuracy rate of the three digits data sets under the Subsample model

with different sample sizes (proportion of the total dataset). The sample size, s, was

chosen in (0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6). Figure 9a plots the average

accuracy rates and the CPU time in seconds with the experiment in the USPS data.

The average accuracy rate starts from 0.56 when s = 0.01 and increases with the

sample size. It converges to the accuracy rate of the scalable cosine similarity model

(scalable) introduced in Section 1.3. The accuracy rate stabilized at 0.65 when s is

equal to 0.1. The best error rate, 0.66, was obtained when s equals 0.2. This shows
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(a) The accuracy rate of the USPS dataset with
different sample size

(b) The CPU time in seconds of the USPS
dataset with different sample size

Figure 9: Accuracy & CPU time (s) for USPS Data with Subsample method

(a) The accuracy rate of the Pendigits data
with different sample size

(b) The CPU time in seconds of the Pendigits
data with different sample size

Figure 10: Accuracy& CPU time (s) for Pendigits Data with Subsample method, 𝛼 =
0.1

that under a sample size as small as 0.1, the accuracy rate is already very close to the

optimum.

A similar pattern was revealed in the accuracy plots and the cpu plots of the

other two data sets, Pendigits, and mnist. From Figure 10a, the accuracy rate of

Pendigtits data with the subsample method increases with the increase of the sample
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(a) The accuracy rate of the mnist data with
different sample size

(b) The CPU time in seconds of the mnist data
with different sample sizes

Figure 11: Accuracy& CPU time (s) for mnist Data with Subsample method, 𝛼 = 0.1

(a) The accuracy rate of the 20news data with
different sample size

(b) The CPU time in seconds of the 20news
data with different sample sizes

Figure 12: Accuracy& CPU time (s) for 20news Data with Subsample method, 𝛼 =
0.1

size and appeared slightly lower than the accuracy rate line from the scalable method.

When sample size = 0.1, it has an accuracy rate of 0.72 which is close to the accuracy

rate from the scalable method, 0.73. From Figure 11a, the accuracy rate of the mnist

data with the subsample method first increases and then decreases with the increase

of the sample size. We noticed that mnist has a much larger data size compared to
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the other two digit data sets and its sample size = 0.01 (1%) results in 700 sample

data points. Because of the large size of the sample data, when the sample size = 0.02,

the scalable method already achieved the same accuracy as the scalable method. The

CPU time for usps, mnist, and pendigits all increase with the increase of the sample

size. We found that the increasing cpu time was caused by the outlier removal steps.

For removing the outlier, we need to use the mink() function in Matlab which has

𝑂(𝑛) time complexity. The number of iterations is proportional to the number of

outliers and the sample size, 𝑠.

The same experiments are applied to the document data, shown in Figure 12.

We can see that compared to the digit data with 10 classes (0-9 digits), the 20 news

document data with 20 classes need more than double the number of sample data

points to converge. We suspected that the number of sample data points needed

to have a good performance has some relationship with the number of classes. The

document data projected to the SVD subspace has a better accuracy rate compared

to the original document data. And in the CPU plot, the original document data

without projection has a runtime cost with the increase in the sample size. This is

due to the large dimension of the original data and the cost of outlier removal steps.

In Table 2, we compared the average accuracy rate and average CPU time of our

proposed subsample method with the scalable method, with five replications. The 𝛼

was set to 0.1. For the digits data, the sample size was set to 0.1, while for the 20

news data, the sample size was set to 0.6. The proposed subsample model achieved a

similar accuracy rate and a much smaller run time but with only a small fraction of

the data.

23



dataset scalable subsample
usps 67.34% (3.7) 67.52% (1.4)
pendigits 73.48% (2.6) 72.32% (1.0)
mnist 52.60% (33.8) 53.19% (9.3)
20news 62.91% (17.74) 59.22% (13.2)
20news(SVD100) 73.41% (7.5) 70.93% (1.3)

Table 2: Clustering accuracy percentages (and CPU time in seconds) obtained by the
scalable and subsample model on the real-world data.

2.2 Approach 2: Sequential Update

In the subsample approach, we use a sample dataset from the full dataset to

approximate the spectral embedding of the full dataset and cluster the remaining

dataset by projecting them into the approximated embedding space. However, in

this way, the information in the remaining dataset was ignored. In our 2nd proposed

approach, instead of simply projecting the remaining data into the sample SVD space,

we found a way to sequentially update and improve the approximated embedding by

the rest of the data.

2.2.1 Methodology

In this approach, we have the same assumptions as the previous approach that

the dataset X is sparse with few non-zero entries on its rows or is low dimensional

data where 𝑛 ≫ 𝑑 and that the similarity function is cosine similarity. Initially, we

only know a random subset X𝑠 =

⎡⎢⎣x
𝑇
1
...
x𝑇
𝑠

⎤⎥⎦ ∈ R𝑠×𝑑 with size s from the whole dataset.

Additionally, the remaining data points from dataset X ∈ R𝑛×𝑑 come in an online

fashion.

The first stage of the sequential update algorithm is to find the approximated

spectral embedding of the sample data and cluster them by k-means. The process

in this stage is the same as the subsample method. We first approximate the D𝑠

and calculate the X̃𝑠. By applying SVD of X̃s, ŨsΣ̃sṼT
s = X̃s, we embedded the
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sample data points into the spectral embedding space by Ũs. Then we apply K-means

clustering to Ũs to cluster the sample data into k clusters. The difference between

the sequential method and the subsample method is in how we handle the incoming

sequential data in the rest of the dataset.

With each incoming new data point, we can have a better approximation of

the full dataset. In the first stage, we used left singular vectors Ṽ𝑠 from X̃𝑠 to

approximate the Ṽ from X̃. With the incoming new datapoint, x̃𝑠+1, the existing Ṽ𝑠

can be updated to Ṽ𝑠+1, which will be closer to Ṽ. However, to perform rank-k SVD

for X̃𝑠+1 ∈ R(𝑛+1)×𝑑 to recalculate the Ṽ𝑠+1 for each incoming data point is costly.

We want to find a way to update the embedding in constant time for each data point.

X̃𝑇 X̃ ≈ 𝑛

𝑠+ 1
X̃𝑇

𝑠+1X̃𝑠+1

=
𝑛

𝑠+ 1

(︃
[

𝑠∑︁
𝑖=1

1

𝑑𝑖
x𝑖x

𝑇
𝑖 +

1

𝑑𝑠+1

xs+1xs+1
𝑇 ]

)︃
, where

𝑠∑︁
𝑖=1

1

𝑑𝑖
x𝑖x

𝑇
𝑖 = X̃𝑇

𝑠 X̃𝑠

≈ 𝑛

𝑠+ 1
[Ṽ𝑠,𝑘Λ̃𝑠,𝑘Ṽ

𝑇
𝑠,𝑘 +

1

𝑑𝑠+1

xs+1x
𝑇
𝑠+1]

=
𝑛

𝑠+ 1
Ṽ𝑠,𝑘Λ̃𝑠,𝑘Ṽ

𝑇
𝑠,𝑘 +

𝑛

𝑠+ 1

1

𝑑𝑠+1

xs+1x
𝑇
𝑠+1

=
[︀
Ṽ𝑠,𝑘 xs+1

]︀ ⎡⎣
√︁

𝑛
𝑠+1

Λ̃
𝑠,𝑘 √︁

𝑛
(𝑠+1)𝑑𝑠+1

⎤⎦2 [︂
Ṽ𝑇

𝑠,𝑘

x𝑇
𝑠+1

]︂

= B𝑇B, where B𝑇 =
[︀
Ṽ𝑠,𝑘 xs+1

]︀ [︃√︀ 𝑛
𝑠+1

Σ̃𝑠,𝑘 √︁
𝑛

(𝑠+1)𝑑𝑠+1

]︃

(9)

From equation (9), we can see that B ∈ R(𝑘+1)×𝑑 can be used to approximate the

right singular vectors of X̃ and
√︁

𝑠+1
𝑛
B can be used to approximate X̃𝑠+1. Since d

and k are both constant and small, we can perform a low-rank SVD of B and find the

updated approximate singular values, Σ̃(𝑠+1),𝑘, and right singular vectors, Ṽ(𝑠+1),𝑘, of

X̃𝑠+1 in constant time. Low rank SVD of B is:

YΣ̃(𝑠+1),𝑘Ṽ
𝑇
(𝑠+1),𝑘 = B, where Σ̃(𝑠+1),𝑘 ∈ R𝑘×𝑘, Ṽ(𝑠+1),𝑘 ∈ R𝑑×𝑘
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After we updated the singular vectors and values, we can project the new data

point x𝑠+1 into the approximated embedding space and update the embedding of the

existing sample points X𝑠 by:

Ũ𝑠+1,𝑘 = X̃𝑠+1Ṽ𝑠+1,𝑘Σ̃(𝑠+1),𝑘, where X̃𝑠+1 = D
− 1

2
𝑠+1X𝑠+1 and X𝑠+1 =

[︂
X𝑠

x𝑠+1

]︂
∈ R(𝑠+1)×𝑑

(10)

The degree matrix of X𝑠+1, D𝑠+1, can be approximated by:

D𝑠+1 ≈ 𝑑𝑖𝑎𝑔(
𝑛

𝑠+ 1
(X𝑠+1X

𝑇
𝑠+1 − I)1)

= 𝑑𝑖𝑎𝑔(
𝑛

𝑠+ 1

[︂
X𝑠

x𝑇
𝑠+1

]︂ [︀
X𝑇

𝑠 x𝑠+1

]︀
1− 1)

= 𝑑𝑖𝑎𝑔(
𝑛

𝑠+ 1

[︂
X𝑠

x𝑇
𝑠+1

]︂ [︀
X𝑇

𝑠 1+ x𝑠+1

]︀
− 1)

= 𝑑𝑖𝑎𝑔(
𝑛

𝑠+ 1

[︂
X𝑠X

𝑇
𝑠 1+X𝑠x𝑠+1

x𝑇
𝑠+1X

𝑇
𝑠 1+ x𝑇

𝑠+1x𝑠+1

]︂
− 1)

= 𝑑𝑖𝑎𝑔(

[︂
𝑠

𝑠+1
d𝑠 +

𝑛
𝑠+1

1+ 𝑛
𝑠+1

X𝑠x𝑠+1 − 1
𝑛

𝑠+1
x𝑇
𝑠+1X

𝑇
𝑠 1+ 𝑛

𝑠+1
x𝑇
𝑠+1x𝑠+1 − 1

]︂
)

= 𝑑𝑖𝑎𝑔(

[︂
𝑠

𝑠+1
d𝑠 +

𝑛
𝑠+1

X𝑠x𝑠+1 − 𝑛−𝑠−1
𝑠+1

𝑛
𝑠+1

x𝑇
𝑠+1X

𝑇
𝑠 1− 𝑛−𝑠−1

𝑠+1

]︂
)

(11)

Finally, we cluster Ũ𝑠+1,𝑘 into k clusters through k-means clustering initialized by

the centroids, denoted by C𝑠, that are found in the last iteration. Since the centroids

found from the s data points in the last iteration should be very close to the updated

centroids found from the 𝑠+ 1 data points, the initialized k-mean should be very fast

with a constant time. And we recorded the centroids(C𝑠+1), singular vectors(Ṽ𝑠,𝑘)

and values(Σ̃𝑠,𝑘) found in this iteration and increment 𝑠 by 1. We then repeat the

whole process for the next new data point, until the whole dataset is processed.

The analysis of this algorithm is more complex than the first approach one.

Therefore, we use a table to list the major steps’ costs to better illustrate the total

cost.

Based on Table 2, the total time complexity of the algorithms is 𝑂(𝑛𝑑𝑘+ 𝑛2𝑑𝑘−
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Algorithm 4 Sequential update spectral clustering with cosine similarity
Input:data X ∈ R𝑛×𝑑, number of clusters 𝑘, number of subsamples s, fraction of
outliers 𝛼
Output: Partition of k clusters, 𝐶1, ..., 𝐶𝑘

1: Randomly sample s data points from the given data
2: Approximate the degrees D𝑠 of the samples and find the outliers
3: Calculate the X̃𝑠 for the sample dataset and find its top k left singular vectors by

rank-k SVD: Ũ𝑠,𝑘Σ̃𝑠,𝑘Ṽ
𝑇
𝑠,𝑘 ≈ X̃𝑠.

4: Normalized the rows of Ũ𝑠,𝑘 with a norm equal to 1, and apply k-means clustering
to cluster the samples.

5: For each of the new data points coming in the rest of the dataset, construct B by
equation (4) and apply low-rank SVD on it.

6: Approximate the degree of the new data point and update the degree matrix D𝑠+1

by equation (6).
7: Project the data into the updated approximate SVD space by equation (5) and

find Ũ𝑠+1,𝑘

8: Clustering the new data point by k-means initialized by the centorids found in
the last iteration C𝑠 based on 𝑠 datapoints and record the new centorids C𝑠+1

9: Repeat the same process for the next incoming data point.

Stage each iteration cost total cost
Cluster sample data N/A 𝑂(𝑠𝑑+ 𝑘𝑠𝑑)

Construct B 𝑂(𝑑𝑘) 𝑂((𝑛− 𝑠)𝑑𝑘)

Approximate D𝑠+1 𝑂(𝑠𝑑) 𝑂(1/2(𝑛− 𝑠)𝑛𝑑)

SVD of B 𝑂(𝑘(𝑘 + 1)𝑑) 𝑂((𝑛− 𝑠)𝑘(𝑘 + 1)𝑑)

Compute Ũ𝑠+1,𝑘 𝑂((𝑠+ 1)𝑘𝑑) 𝑂(1/2(𝑛+ 1− 𝑠)(𝑛+ 𝑠)𝑘𝑑)

Initialized k-means 𝑂(𝑘) 𝑂((𝑛− 𝑠)𝑘)

Table 3: Break-down of the time complexity for each step in Sequential Update. The
second column represents the cost of clustering sequential data points. The third
column represents the total cost of clustering the whole dataset

𝑠2𝑑𝑘). If s is very large and close to n, the time complexity is 𝑂(𝑛𝑑𝑘). If s is very

small and close to 1, the time complexity is 𝑂(𝑛2𝑘𝑑).

Same with the subsample method, this approach solved the problem in the

original spectral clustering model and the scalable cosine similarity model which is

the clustering algorithm works only when the full dataset is available in memory. It

allows us to apply spectral clustering algorithm on the online data elegantly. Unlike
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the subsample method that only relies on the approximation quality from the sample

data, with more and more data added, this approach updates the approximation and

the results will be closer to the embedding of the full dataset. However, we use X𝑠

when updating the degree matrix for the new datapoint, so we need to keep X𝑠 in the

storage. When s increases and approaches n, the storage needs increase. And since

we update the singular vectors for each new coming data, when sample size is small,

the time complexity becomes 𝑂(𝑛2𝑑𝑘).

2.2.2 Experiment

Figure 13: Visualization of the embeddings and clustering result using approach 2 with
the toy dataset, 𝛼 = 0.01 and 𝑠 = 0.3. (a) Spectral embeddings of the sample data.
(b) Clustering result of the sample data. (c) Spectral embedding of the remaining
data. (d) Clustering result of the remaining data
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We applied approach 2 to the simulated dataset with 3 clusters. Figure 13 shows

the scatter plots of the simulated data with cluster labels generated from approach 2.

It also shows the embeddings of the simulated data in the approximated eigenspace.

Figure 14: The error rate of the toy dataset with different sample sizes for approach 2

We apply the approach 2 algorithms on the simulated dataset and recorded the

error rates of the sample dataset as well as the remaining data points under different

sample sizes(𝛼) of 0.01, 0.02, 0.05, 0.1,...0.9. To account for the randomness, the

experiments were replicated 5 times. In Figure 10, the blue line represents the average

error rates of the total data. The orange line represents the average error rates of

the sample set data, and the grey line represents the remaining data. The error rates

of the total data, sample data, and remaining data all drop dramatically when the

sample size increase from 0.01 to 0.1. And they converge to near 0.0254 when the

sample size equals 0.1. The trends of the three lines coincide with each other. There is

no obvious difference in the error rates between the sample and the remaining dataset.
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Figure 15: The CPU time of the toy dataset with different sample sizes for approach 2

Based on Figure 15, there is a clear decreasing trend in the CPU time with

increasing sample size. The trend coincided with our calculation of time complexity in

the big O notation which indicates that the sample size s has a direct linear relationship

with the computational time.

To test the algorithm in a real-world dataset, we apply the same experiments to

the USPS dataset. The USPS dataset has pictures of handwritten numbers from 0 to

1, which indicates 10 natural clusters. We recorded the error rates of the sample and

the remaining data under different sample sizes. In Figure 16, the blue line represents

the error rates of the whole dataset. The orange line represents the error rates of the

sample data while the gray one represents the remaining sequential data. Overall, the

error rates decrease with the increase of the sample size until the sample size reaches

0.1. At the sample size of 0.1, the total error rate, sample error rate, and remaining

error rate all reach minimums of 0.031804, 0.024712, and 0.031022, respectively.

From Figure 17, similar to what happened on the simulated dataset, the CPU

time of applying the approach 2 algorithms to the USPS dataset decreases with the
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Figure 16: The error rate of the USPS dataset with different sample sizes for approach
2

Figure 17: The CPU time of the USPS dataset with different sample sizes for approach
2

increase of the sample size. The computational cost ranges from about 449 s to about

68 s, which is much higher than that of approach 1 which is about 3 seconds.
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dataset scalable sequential
usps 67.34% (3.7) 68.98% (449.28)
pendigits 73.48% (2.6) 73.58% (352)
mnist 52.60% (33.8) 53.1% (2433)
20news 62.91% (17.74) 61.3% (1256)
20news(SVD100) 73.41% (7.5) 72.9 % (598)

Table 4: Clustering accuracy percentages (and CPU time in seconds) obtained by the
scalable and sequential model on the real-world data.

2.3 Approach 3. Batch update

The Sequential Update method solved the problem that spectral clustering cannot

handle the online data format. In the batch updates, we propose another method

assuming that the incoming data are in a small batch manner. The methodology is

similar to the sequential update method except that instead of handling one incoming

data point at a time, it handles a small batch with size 𝑡 at a time.

2.3.1 Methodology

In this approach, we have a similar assumption as the previous approach that the

dataset X is sparse with few non-zero entries on its rows or is low dimensional data

where 𝑛 ≫ 𝑑 and its similarity function is cosine similarity. Initially, we only know a

random subset X𝑠 =

⎡⎢⎣x
𝑇
1
...
x𝑇
𝑠

⎤⎥⎦ ∈ R𝑠×𝑑 with size s from the whole dataset. Different from

approach 2, we assume that the remaining data points from dataset X ∈ R𝑛×𝑑 come

in as a small batch with size t at a time, 1 ≤ 𝑡 ≤ 𝑠.

The method for handling the sample data X𝑠 is the same as the Sequential Update

method, but the method for handling the rest of the dataset is slightly different. For

a new batch 𝑡, the dataset become X𝑠+𝑡 =

[︂
X𝑠

X𝑡

]︂
∈ R(𝑠+𝑡)×𝑑. Similar to the Sequential

Update, in each new batch, we use a matrix B to approximate the full dataset by

equation 7.
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X̃𝑇 X̃ ≈ 𝑛

𝑠+ 𝑡
X̃𝑇

𝑠+𝑡X̃𝑠+𝑡

=
𝑛

𝑠+ 𝑡

[︀
X̃𝑇

𝑠 X̃𝑇
𝑡

]︀ [︂X̃𝑠

X̃𝑡

]︂
=

𝑛

𝑠+ 𝑡
[X̃𝑇

𝑠 X̃𝑠 + X̃𝑇
𝑡 X̃𝑡]

≈ 𝑛

𝑠+ 𝑡
[Ṽ𝑠,𝑘Λ̃𝑠,𝑘Ṽ

𝑇
𝑠,𝑘 +

1

𝑑𝑠+𝑡

(X𝑇
𝑡 D

− 1
2

𝑡 )(D
− 1

2
𝑡 X𝑡)]

=
[︀
Ṽ𝑠,𝑘 X̃𝑇

𝑡

]︀ [︃√︁ 𝑛
𝑠+𝑡

Λ̃
𝑠,𝑘 √︀

𝑛
𝑠+𝑡

I

]︃2 [︂
Ṽ𝑇

𝑠,𝑘

X̃𝑡

]︂

= B𝑇B, where B𝑇 =
[︀
Ṽ𝑠,𝑘 X̃𝑇

𝑡

]︀ [︂√︀ 𝑛
𝑠+1

Σ̃𝑠,𝑘 √︀
𝑛

𝑠+𝑡
I

]︂
∈ R𝑑×(𝑘+𝑡)

(12)

After constructing the matrix B, we update the left singular vectors from Ṽ𝑠,𝑘 to

Ṽ(𝑠+𝑡),𝑘 using the SVD of the B by equation 8.

YΣ̃(𝑠+𝑡),𝑘Ṽ
𝑇
(𝑠+𝑡),𝑘 = B, where Σ̃(𝑠+𝑡),𝑘 ∈ R𝑘×𝑘, Ṽ(𝑠+𝑡),𝑘 ∈ R𝑑×𝑘 (13)

Then we projected the 𝑠 + 𝑡 data points into the new SVD space by the following

equation.
Ũ𝑠+𝑡,𝑘 = X̃𝑠+𝑡Ṽ𝑠+𝑡,𝑘Σ̃(𝑠+𝑡),𝑘, where X̃𝑠+𝑡 = D

− 1
2

𝑠+𝑡X𝑠+𝑡 (14)

In both steps of constructing the matrix B and projecting the 𝑠+ 𝑡 data points, the

degree matrix of the new small batch dataset D𝑡 and the existing dataset D𝑠 were

used. Since we have 𝑡 more data points than before, we can update the degree matrix
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of the existing dataset D𝑠 to have a more accurate approximation.

D𝑠+𝑡 ≈
𝑛

𝑠+ 𝑡
𝑑𝑖𝑎𝑔((X𝑠+𝑡X

𝑇
𝑠+𝑡 − I)1)

=
𝑛

𝑠+ 𝑡
𝑑𝑖𝑎𝑔(

[︂
X𝑠

X𝑡

]︂ [︀
X𝑇

𝑠 X𝑇
𝑡

]︀
1− 1)

=
𝑛

𝑠+ 𝑡
𝑑𝑖𝑎𝑔(

[︂
X𝑠

X𝑡

]︂ [︀
X𝑇

𝑠 1+X𝑇
𝑡 1
]︀
− 1)

=
𝑛

𝑠+ 𝑡
𝑑𝑖𝑎𝑔(

[︂
X𝑠X

𝑇
𝑠 1+X𝑠X

𝑇
𝑡 1− 1

X𝑡X
𝑇
𝑠 1+X𝑡X

𝑇
𝑡 − 1

]︂
)

=
𝑛

𝑠+ 𝑡
𝑑𝑖𝑎𝑔(

[︂
𝑠
𝑛
d𝑠 +X𝑠X

𝑇
𝑡 1

X𝑡X
𝑇
𝑠 1+X𝑡X

𝑇
𝑡 1− 1

]︂
)

(15)

During updating the approximation of the degrees, we recorded the updated X𝑇
𝑠 1

and d𝑠 in each iteration to save some computation time. The computational time cost

in this step is from X𝑡(X
𝑇
𝑠 1) = 𝑂(𝑠𝑑𝑡), X𝑡(X

𝑇
𝑡 1) = 𝑂(𝑡𝑑), and X𝑠(X

𝑇
𝑡 1) = 𝑂(𝑠𝑑+ 𝑡𝑑)

After the process of each small batch 𝑡 data points, 𝑠 increment with 𝑡, 𝑠 = 𝑠+ 𝑡

and the computational results, such as the new singular values, Σ̃(𝑠+𝑡),𝑘, singular

vectors Ṽ(𝑠+𝑡),𝑘 and the new approximated degrees D𝑠+𝑡 are recorded and carried

on to the calculation of the next small batch, 𝑡. The whole process will repeat and

continue until the whole data set has been processed.

Stage each iteration cost total cost
Cluster sample data N/A 𝑂(𝑠𝑑+ 𝑘𝑠𝑑)

Construct B 𝑂(𝑑𝑘) 𝑂(𝑛−𝑠
𝑡 𝑑𝑘)

Approximate D𝑠+𝑡 𝑂(𝑡𝑑+ 𝑠𝑑) 𝑂(𝑛𝑑− 𝑠𝑑+ 𝑛2

2𝑡 𝑑−
𝑠2

2𝑡𝑑)

SVD of B 𝑂(𝑘(𝑘 + 𝑡)𝑑) 𝑂(𝑛−𝑠
𝑡 𝑘(𝑘 + 𝑡)𝑑)

Compute Ũ𝑠+𝑡,𝑘 𝑂((𝑠+ 𝑡)𝑘𝑑) 𝑂(𝑛
2

2𝑡 𝑑𝑘 − 𝑠2

2𝑡𝑑𝑘)

Initialized k-means 𝑂(𝑘) 𝑂(𝑛−𝑠
𝑡 𝑘)

Table 5: Break-down of the computational time cost for each step in Batch Update.
The second column represents the cost of clustering sequential data points. The third
column represents the total cost of clustering the whole dataset

When 𝑡 = 1, the time complexity of Batch Update is the same as the Sequential

Update method. When 𝑡 or 𝑠 are very large, the time complexity decreases to 𝑂(𝑛𝑑𝑘).
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Algorithm 5 Small Batch Update spectral clustering with cosine similarity
Input:data X ∈ R𝑛×𝑑, number of clusters 𝑘, number of subsamples s, size of small
batch t, fraction of outliers 𝛼
Output: Partition of k clusters, 𝐶1, ..., 𝐶𝑘

1: Randomly samples s data points from the given data
2: Approximate the degrees D𝑠 of the samples and find the outliers
3: Calculate the X̃𝑠 for the sample dataset and find its top k left singular vectors by

rank-k SVD: Ũ𝑠,𝑘Σ̃𝑠,𝑘Ṽ
𝑇
𝑠,𝑘 ≈ X̃𝑠.

4: Normalized the row of left singular vectors with norm equals 1, and apply k-means
clustering to cluster the samples.

5: For each of the new small batches coming in the rest of the dataset, construct B
by equation 9 and apply low-rank SVD on it.

6: approximate the degree of the new data point and update the degree matrix D𝑠+𝑡

by equation 2.3.1.
7: Project the data into the updated approximate SVD space by equation 7 and find

Ũ𝑠+𝑡,𝑘

8: Clustering the new data point by k-means initialized by the centorids found in
the last iteration C𝑠 based on 𝑠 datapoints and record the new centroids C𝑠+𝑡

9: Increment s = s+t and repeat the same process to the next incoming data point.

When 𝑡 or 𝑠 are very small, the time complexity increase to 𝑂(𝑛2𝑑𝑘) because of the

computation of D𝑠+𝑡 and Ũ𝑠+𝑡,𝑘 during the process of each batches. This approach

enables us to apply spectral clustering on the dataset that is constituted by small

batches. It provides a reliable method to gradually approach the true optimal error by

processing and updating one batch of data at a time. But like the sequential update

method, it still requires storing 𝑋𝑠 in the memory to calculate the degree matrix for

each batch. With 𝑠 approaching 𝑛, the storage needs and the computational cost

increase. This will be a limitation of the application of this method.

2.3.2 Experiment

To test the effectiveness of approach 3, we first apply the algorithm to the

simulated toy dataset with three clusters. The scatter plots of this toy dataset and its

embedding by approach 3 was shown in figure 18.

To view the process of the batch updates, we recorded and plotted the accumulated
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Figure 18: Visualized the embedding and clustering result by Approach 3 in the
toy dataset, 𝛼 = 0.01 and 𝑠 = 0.3 and 𝑡 = 30. (a) Scatter plot of the sample with
cluster numbers. (b) Spectral embeddings of the sample data. (c) Scatter plot of the
remaining data with cluster numbers. (d)Spectral embeddings of the remaining data.

error rates of each added batch data, under the different settings of the batch size.

From Figure 19, when batch size equals 30, 50, and 100, the accumulated error rates

decrease gradually with the increase of the batches. This indicates that with each

added batch, the approximated embedding space was closer to the true embedding

space. When batch size equals 200 data points, in the first batch, the algorithm has

already been able to produce about 0.025 error rates which are close to the optimum,

so the error rates line does not have a decreasing trend.

In the batch update method, initially, we have a sample set. And with the new

batch becoming available one at a time, we update the projections by the new batch

36



Figure 19: Accumulated error rates of each batch in the toy dataset by approach 3 vs
number of batches, sample size s = batch size t

one at a time by modifying the projection matrices. This is equivalent to increasing the

sample pool. To study the influence of the size of the initial sample on the algorithm

performance, we recorded the total error rates of the toy data with different sizes of

the initial sample in Figure 20. The different color lines represent different batch sizes.

The yellow line represented batch size = 200 is very volatile. Overall, we found that

the initial sample size does not have a significant impact on the overall accuracy of

the model in the toy data.

In Figure 21, under the same sample size, a higher batch size leads to a higher
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Figure 20: The total error rate of the toy dataset with different sample sizes (s) and
different batch size (t) for approach 3

CPU time. Overall, the CPU time increased with the increase in the sample size.

However, unlike the CPU time plot in approach 2 which shows a very clear linear

relationship between the sample size and CPU time, the plot in figure 19 shows a

more complex relationship between the sample size and time. Overall the cost of

computational time is much lower in approach 3 compared to approach 2.

After applying the experiment on the simulated toy dataset, we performed the

same experiment on the USPS data. Figure 22 shows the accumulated error rates

with each batch under different settings of batch size, t. When t is equal to 30, 50,

100, and 200, overall the accumulated error rate decrease when more batches of data

points were added to update the embedding.

Figure 23 shows the error rates of the whole dataset corresponding to different

initial sample sizes, s, and different batch sizes, t. From the plot, we found that wen

batch size is equal to 30, 50, and 100, the initial sample size does not have a large

impact on the error rate. Overall, the lines corresponding to a larger batch size, such

as 200, are positioned above the lines corresponding to a smaller batch size, which
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Figure 21: The CPU time of the toy dataset with different sample sizes (s) and
different batch size (t) for approach 3

indicates that under the same initial sample size, a setting of a smaller batch size such

as 30 is better than a larger batch size, such as 200.

From Figure 24, overall when batch size, t, is equal to 30, 50, and 100, with the

increase of the sample size, the computational time decrease. However, this decreasing

trend was compensated by the increase of t. When t relative to n is small, such as 30,

the behavior of the computational time in approach 3 under different sample sizes,

s, is similar to that in approach 2. However, when t is very, the computational cost

from 𝑂(𝑛𝑑𝑘 + 𝑛2

2𝑡
𝑑𝑘 − 𝑠2

2𝑡
𝑑𝑘) reduces to 𝑂(𝑛𝑑𝑘). The yellow line representing t = 200

is flat indicating that computational cost does not change with the sample size.

2.3.3 Convergence Criteria

We mentioned that there is a computational limitation in the sequential and

batch update methods. One simple way to solve this issue is by monitoring the

convergence and stopping updates earlier. Updating the sample embedding by more

incoming batches is equivalent to increasing the sample set. With more batch of data
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Figure 22: Accumulated error rates of each batch in the USPS dataset by approach 3
vs number of batches, sample size s = batch size t

added, the approximation gets closer to the real embedding, and the error decrease.

When the sample size is large enough, the error rate converges and stops decreasing.

The principal angle is a good measurement of the distance between different

spaces. It is calculated by the following equation:

𝑑𝑖𝑠𝑡2(𝐸𝑘(Z), 𝐸𝑘(Z̃)) = 2×
𝐾∑︁
𝑘=1

𝑠𝑖𝑛2𝜃𝑘 (16)

We can record the updated maps, Ṽs, after each new batch and calculate the principal

angles between the current maps and the previous maps. When the principal angle
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Figure 23: The total error rate of the USPS dataset with different sample sizes (s)
and different batch size (t) for approach 3

Figure 24: The CPU time of the USPS dataset with different sample sizes (s) and
different batch size (t) for approach 3

becomes very small, such as 1 degree, the embedding converges and we stop the

update.

Since updating the sample embedding by each new batch is equivalent to increasing

the sample size, the batch update method can be compared with the Subsample method.

For example, we initially have the 1st batch, 30 sample points. Then with the 2nd
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batch of 30 data added, the batch update method can use equation (13) to efficiently

update the Ṽs, while the Subsample method needs to perform the SVD again on the

60 sample data points to find the new Ṽs. We performed experiments on the digit

data sets to monitor the convergence with respect to the increasing sample size (1 to

3000) and the number of batches (1 to 100), with a batch size equal to 30. 𝛼 is set to

0.01. Since there is randomness, we replicate the experiment 5 times and take the

average. From Figure 25a 26a and 27a, with the increase of the sample size, both

error rates in subsample method and batch update method decrease for all the three

data sets and approach the error rates of the scalable method when the sample size is

around 1000 to 1500. Overall, the Subsample method produces a smoother curve and

converges faster.

(a) The error rates (b) The CPU time

Figure 25: Error rates and CPU times of pendigit dataw ith different sample size

We recorded and monitored the principal angles produced by each batch from

the batch update method for the three data sets and found that the convergence in

the principal angle plots coincides with the error plots, shown in Figure 28. The red

horizontal line represents degree equals 2. This indicates that we can use the principal

angle as an indication of where to stop the updates.
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(a) The accuracy rate (b) The CPU time

Figure 26: Error rates and CPU times of mnist data with different sample size

(a) The accuracy rate (b) The CPU time

Figure 27: Error rates and CPU times of USPS data with different sample size

dataset scalable subsampling sequential
usps 67.34% (3.7) 67.52% (1.4) 68.98% (1.1)
pendigits 73.48% (2.6) 72.32% (1.0) 72.04% (0.6)
mnist 52.60% (33.8) 53.19% (9.3) 53.62% (4.3)
20news 62.91% (17.74) 59.22% (13.2) 61.02% (11.6)
20news(SVD100) 73.41% (7.5) 70.93% (1.3) 67.51% (0.6)

Table 6: Clustering accuracy percentages (and CPU time in seconds) obtained by the
scalable, subsample and batch update on the real-world data.
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Figure 28: Principal angles from the batch update method

In Table 6, we compared the scalable, subsample, and batch update methods

with the cosine similarity on all the real-wolrd datasets and report the performance

in terms of clustering accuracy and CPU time. The sample size is set to 1500 for

both methods. And for the batch update, batch size is set to 30. We see that for

the USPS data, the two proposed memory scalable methods obtained slightly higher

accuracy rates than the scalable algorithm while running faster. All the datasets had

a comparable or slightly better accuracy rate in subsample method when compared to

the scalable method. Among the three algorithms, the batch update has the fastest

computation time on all of the datasets. These results suggested that the proposed

memory scalable methods further reduce the computation time compared to the

scalable cosine similarity algorithm without sacrificing accuracy. Compared to the

subsample method, sequentially updating the spectral embedding with each available

batch leads to a more efficient procedure with faster computation and higher accuracy.
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After using the convergence criteria, the time and space complexity becomes:

• Time complexity: 𝑂(𝑡𝑘 + (𝑘 + 𝑡)𝑑+ 𝑠𝑘𝑑)

• Space complexity: 𝑂((𝑘 + 𝑡)𝑑)
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CHAPTER 3

Conclusion

In this report, we introduced the necessary background of our research, such as the

spectral clustering algorithm and the scalable spectral clustering with cosine similarity.

We then proposed three new approaches to reduce the space requirement in spectral

clustering and extend the application of spectral clustering to handle the sequential

data. Moreover, we applied the proposed algorithm on both a simulated dataset and

several real-world datasets to test the effectiveness of the proposed approaches. Based

on the experimental result, the new approaches achieved a performance as good as

the baseline approach with much less space needed to initiate the algorithm. From

the experiment, the approaches helped us successfully apply the spectral clustering

algorithm to the online data.

Our research goal is to propose scalable spectral clustering methods to handle

the situation that the data is too large to be fully loaded into the memory and the

data is distributed in an online format. To achieve this goal, we first introduced

approach 1, the subsample method, which is the fastest method with a well enough

performance. However, in this approach, the quality of the sample is crucial since it

only uses the sample set to approximate the full data set. To address this problem we

proposed approach 2, sequential, which performs better than approach 1 in accuracy

rate because it improves approach 1 by updating the embedding space with each

incoming new data point. However, since it is required to approximate the degree

and do low-rank SVD for each incoming data, it has a much higher computational

cost. The last method, approach 3, further extends the approach to enable us to

apply spectral clustering on data coming in batches. In this method, we also solve the

computational cost problem in approach 2 by introducing convergence measurement

criteria. Our approach 3, the batch update method only requires a small fraction
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of the data and achieves a very good performance in the experiments. Our current

assumption is that the similarity function is cosine similarity. In the future, we will

continue to work on generalizing this method to handle other similarity functions.
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