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ABSTRACT

Real Time Panoramic Image Processing

by Matthew Gerlits

Image stitching algorithms are able to join sets of images together and provide a

wider field of a vision when compared with an image from a single standard camera.

Traditional techniques for accomplishing this are able to adequately produce a stitch

for a static set of images, but suffer when differing lighting conditions exist between

the two images. Additionally, traditional techniques suffer from processing times

that are too slow for real time use cases. We propose a solution which resolves the

issues encountered by traditional image stitching techniques. To resolve the issues

with lighting difference, two blending schemes have been implemented, a standard

approach and a superpixel approach. To verify the integrity of the cached solution, a

validation scheme has been implemented. Using this scheme, invalid solutions can

be detected, and the cache regenerated. Finally, these components are packaged

together in a parallel processing architecture to ensure that frame processing is never

interrupted.
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CHAPTER 1

Introduction

The average human has a field of view of approximately 170°-180°, while standard

cameras only have a field of view ranging from 6°-94°. Humans can achieve this

wide field of view by having access to two adjacent optical sensors, their eyes. The

combined image, provided by their eyes, allows humans to collect a large amount of

information. By mimicking human biology, the field of view of standard cameras can

be extended so that a single image that contains all the information from each camera

can be produced. The information contained in this image allows humans to more

easily digest the information collected by the cameras.

Currently, a procedure know as image stitching can accomplish the feat of joining

images together. This is accomplished by collected a set of matching features between

a pair of images, and using those matching features to align the images so that their

overlapping areas match. This procedure is usually adequate for stitching together a

static pair of images, but suffers from a few limitations. The first limitation is that the

processing speed which, while not cumbersome for casual use cases, is insufficient for

use in a real time application. Next, the stitched images produced by this approach

do not factor in differences in lighting. This can cause a very obvious seam to appear,

even if the image are well aligned. The seam can be hidden by utilizing image blending,

but many of the currently available blending schemes have processing times which

are too slow for use in a real time application and perform inconsistently. Finally, the

alignment of the images are dependant on the matched features, which are susceptible

to inaccurate matches. Each inaccurate match reduces that accuracy of the alignment

operation.

To resolve these limitations, we propose a system which assumes that the camera

positions do not change relative to each other and that the cameras are horizontally
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aligned. Using these assumptions, a wide range of operations, including the most costly

portions, can be cached. By caching the results of these operations, the processing of

each frame can be drastically simplified. Next, we propose a technique for detecting

the occasional misalignment of the cameras, at which point the cached information

will be recalculated. Finally, we detail a parallel pipeline that allows for continuous

stitching, alongside the detection and correction of camera misalignment.

2



CHAPTER 2

Existing Solutions

To understand the need for a robust real time solution to extending a cameras

field of view, we must first explore the limitations of existing camera systems. Feature

detection is the first step in extending a set of images field of vision, and this paper

reviews the inner working of feature detection, specifically for the SIFT algorithm.

Image stitches are provided to show the results of using SIFT, along with benchmarks

of other feature detectors.

2.1 Background

Figure 1: Representation of standard cameras vs panoramic camera [4]

The limited field of view of standard cameras limits the amount of information

that can be collected by an individual camera, while the distortions create by using

a fisheye lens mitigates their usefulness, despite the larger field of view that they
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Figure 2: Array of standard cameras [4]

provide. The first scenario in Figure 1 depicts a situation in which a standard camera

is able to view a pedestrian on the road, but does not see the pedestrian about to

cross the road, due to the cameras limited field of view. To circumvent this issue, one

might be tempted to utilize a wide angle lens, such as a panoramic lens. However,

objects which appear in the edges of images collected by this lens have their distances

distorted, which can also be seen in Figure 1. Alternatively, using an array of standard

cameras can provide a wide field of view, capturing more information, while avoiding

the image distortions caused by a panoramic lens. By joining the images produced by

this camera array together in arrangement like Figure 2, we can increase the amount

of information available to images processing systems.
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2.2 Feature Detection

In order join images together, features from each image must identified and

matched. This provides the required reference points for aligning the images together.

A number of feature detection algorithms have been developed, and this paper explores

several of them in order to determine the ideal feature detector for this solution.

Figure 3: Illustration of gradients from [2]

We can generate a histogram of gradient descents, which serves as a baseline for

distinguishing different features in an images. The major advantage of this process

is that the magnitude and direction of the gradients in a given neighborhood are

reduced into a 9 bin area, with each bin representing a rotational area, which allows

for simpler processing when attempting to find matching features between images [2].

SIFT is a scale invariant feature detection algorithm proposed by D. Lowe, which

utilizes Laplacian of Guassians to normalize the scale between features. Figure 6

depicts a high level overview of the stages required by SIFT to determine keypoints.

Extrema detection utilizes the difference of gaussian function depicted in Figure 8

to determine keypoint candidates. To make this scale invariant, feature candidates

are scaled down over a number of octaves, till they have a normalized scale. The

keypoints stage removes the keypoints that are determined to be less useful. First,

it removes keypoint which have low contrast with their surrounding areas. Next, it

removes keypoints whose values fall below the threshold determined by the equation

5



in Figure 9. Finally it removes keypoints which are sensitive to noise, which are

defined as those that have a large principal curvature along an edge, and a small

one in the perpendicular direction [1]. Finally, orientation is determined for each

surviving keypoint. An orientation histogram is generated by sampling neighborhoods

within the image, and keypoints are assigned the orientation of the nearest peak that

is within 80% of the highest local peak. This assignment has been proven to be 95%

accurate [6], and makes the keypoints orientation invariant.

In addition to generating keypoints, descriptors are generated to make the

keypoints more useful. These descriptors allow for comparison with other keypoints,

and allow for to the detection of matching keypoints. This utilizes a process similar

to the generation of a histogram of gradient descent described earlier. In this process,

a neighborhood in the image is sampled, and its magnitude and direction are shrunk

down into a 2x2 area. This process has the added benefit of making the descriptors to

be orientation invariant. Additionally, the descriptors are modified by a constant to

mitigate the effect of differences in lighting.

2.3 SIFT Results

In order to test SIFT’s ability to generate image stitches, parameter sweeps

were performed on the edgeThreshold, contrastThreshold, and distance in order to

find the best combination. The end result of this testing showed that the default

parameters proposed by Lowe [1] performed the best. SIFT produced good quality

images most of the time. In Figure 11, we can see that SIFT finds a very large number

of matching features, and these can be filtered to only include the n best features, as

can be seen in Figure 12. Features are filtered out if they fall below a set threshold,

determined by multiplying their distance with a threshold constant. By increasing

the threshold value, lower quality features can be filtered out. Figure 13 is the result
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of this operation, and while there is a visible seam in the resulting image, the overall

stitch is good quality. Figure 14 shows a better stitch, which is likely attributed to

a much more simple, but still feature rich environment. Further tests revealed that

SIFT struggled to find many features on sections of images, an example of which

can be seen in Figure 15. In this image, while plenty of features can be found on

the building behind the truck, the truck itself is a low contrast area, so no matching

features were found on the truck itself.

This resulted in a good stitch on the building in the region containing the building,

but a poor stitch on the truck, which can be seen in Figure 16. Further experimentation

revealed that the cause of this poor stitch was due to a misalignment between the top

half of the image and the bottom half, which is evident in the manually alignment

image shown in Figure 17. This issue likely also stems from the lack of keypoints in

the bottom half of the image, since those additional keypoints may have helped find a

stitch which correctly combined the images. This finding also revealed an issue with

the dataset, as there is no guarantee that objects are in the same position relative to

the camera between images. These stitches were performed without blending, which

attributes to some of the visibles seams. OpenCV includes a stitcher class, which

performs all the required stitching operations, including feature detection, matching,

alignment, and blending. Using the stitcher class, Figure 18 was generated, which

looks better than the normal stitch, but the lack of feature points still causes clearly

visible distortions. Additionally, the stitcher class is very high level, taking in only

the images, feature detector, and feature matcher, making it a poor resource for this

project.
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Table 1: Tool benchmarks

Feature Benchmark Timings
Detectors Detection Time(s) Merge Time(s) Total Times
AKAZE 0.47 0.008 0.48
KAZE 2.54 0.009 2.55
ORB 0.48 0.007 0.49
SIFT 1.011 0.008 1.02

2.4 Benchmarks and Performance

Since this project’s intention is to create a real time image stitching solution,

it was imperative that processing time benchmarks of current feature detection and

image stitching algorithms be determined, in order to choose the optimal feature

detector for this project. The benchmarks from Table 1 were computed from generating

batches of stitched images using each feature detector, followed by the use of a nearest

neighbor algorithm to find feature points, generation of the homography matrix, and

application of that matrix to stitch the images together. The average processing time

for detection, merging, and total time were then computed and used to determine the

processing time for these algorithms. These results show a few things. The first is

that detection time takes the vast bulk of the processing time, with merge time being

nearly negligible in comparison. Of these, AKAZE appears to be the fastest followed

by ORB. In addition to processing time, quality of the stitch is vitally important to

this application, as poor stitches can cause loss of the information provided by the

stitches images.
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Figure 4: Visualization of image gradients
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Figure 5: Visualization of histogram of gradient descents [2]
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Figure 6: High level overview of SIFT [1]

Figure 7: Difference of Gaussian function [6]
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Figure 8: Threshold equation for keypoints [1]

Figure 9: Sub-equation for Figure 8 [1]
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Figure 10: Illustration of descriptor generation [6]

Figure 11: Unfiltered matching features
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Figure 12: Filtered matching features

Figure 13: Stitched image
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Figure 14: Stitched image
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Figure 15: Matching feature pairs
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Figure 16: Stitch on image of the truck
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Figure 17: A manually stitched image
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Figure 18: Image Stitch performed with stitcher class

19



CHAPTER 3

Related Works

Suk et al. [4] have proposed an architecture for real time image stitching, which

utilizes both a software and hardware component in order to reduce the computational

complexity required to match, stitch, and blend images together. Their approach

has several improvements over traditional image stitching pipelines. The first of

these improvements is the need to only generate the homography matrix one time, as

generating the homography matrix is time consuming and computationally expensive.

Additionally, Suk et al. found that generating the homography matrix for every

frame created inconsistent results, as it relies on the RANSAC algorithm, which has a

degree of randomness, and resulted in visible seams on some iterations of the same

image pair. They purport 3 advantages to a fixed homography matrix: decreased

computation complexity, seamless image viewing without blurring, and preventing

mismatch errors in the pixel position between frames [4]. As can be seen in Figure

Figure 19: Software/Hardware architecture [4]

19, Suk et al’s solution involves processing the homography matrix(H-Matrix) from

20



within the software component of their architecture.This follows a standard pipeline

for producing the homography matrix. They then introduce a hardware component

which utilizes the homography matrix to perform the blending and warping operation,

and produce a seamless stitched image. In order to determine the features in the

images, Suk et al. used SIFT as the feature detector because SIFT is good at finding

a high number of robust features, with the trade-off of a long processing time. For

this application, this processing time is acceptable since the homography matrix is

only produced once, and therefore will have limited impact on the real time processing

requirement. Taking the features generated by SIFT, they then utilize a nearest

neighbor matching schema in order to find the corresponding features between the 2

images, generating matching pairs. To reduce the number of errors in the transformed

image, RANSAC is applied to estimate the best homography matrix. RANSAC

accomplishes this by removing outliers from the corresponding features through an

iterative process which checks for consistency between those corresponding features

Figure 20: Benchmarks using a 32 bit processor for SIFT [4]

Figure 22 illustrates the necessity of pre-computing the homography matrix.

Without doing so, a real time solution is infeasible. Through the use of their hardware

component, Suk et al. have been able to reduce the computation complexity of the

21



warping and blending portion of their application by 90% [4]. In order to blend the

images, they utilize a cut graph, followed by alpha blending, which normalizes the

pixel values on each side of the graph cut line, in order to smooth any existing seams.

Figure 21: Redundant state machine for failure detection [4]

Figure 22: Experiment results from [4]

Looking at the experimental results in Figure 22, we can see that Suk et al’s

algorithm produces seamless stitches, while Figure 23 shows us that they were able to

achieve real time results, at fps, using a low powered system. These results are useful

since it allows for real time image stitching for such systems. The trade off here is

that the input camera resolution is very low, and specialized hardware is required in

order to achieve this real time solution While Suk et al. were able to achieve real time

22



Figure 23: Experiment results from [4]

image processing, the low resolution could potentially lead to a loss of information, as

details within the image are more difficult to distinguish. Additionally, the hardware

component of their architecture makes usage of their solution more restrictive. Due to

this, their solution is incompatible with this thesis project. Fortunately, some ideas

can be gleaned from Suk et al’s project, which may prove useful for the development

of a purely software approach to real time panoramic image stitching. The first and

foremost inspiration is the need to only produce the homography matrix once. As will

be discussed later in this paper, feature detection is the main bottleneck which limits

image stitching for use in real time applications. This project is also currently not

focused on a low computational cost solution, simply one that be perform in real time

23



CHAPTER 4

Proposed Solution

Figure 24: High level proposed architecture

In order to generate high quality image stitches in real time, a homography

matrix must be generated from a set of keypoints. Then, image blending is applied to

the resulting images to achieve a seamless result. The resulting aligned images are

validated to ensure that the image stitch is high quality. Each of these components is

packaged into a parallel processing pipeline, which utilizes a background processing

stage to improve processing time. The proposed solution was tested and validated on

the newly collected datasets.

Figure 24 depicts the high level architecture of the proposed solution. In this
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diagram, the entries highlighted in green show where the proposed solution has

deviated from the implementation of Suk et al. Their solution can be seen in Figure

19. The proposed solution further simplifies the processing by adding the generation

of blending matrices to the background processing stage, as well as introducing two

complimentary blending schemes. The proposed solution also eliminates the need for

specialized hardware by proposed software components in its place.

The proposed solution makes the following assumptions:

• The camera positions generally do not change

• At least 4 matching keypoints exist between images

• The cameras are horizontally adjacent

Figure 25: Sample from new dataset

The collected datasets were generated from dash mounted webcams, which

recorded at a 15fps at 1980x1080 resolution. OpenCV was leveraged in order to

synchronize and save the recording. This setup allows for a large amount of overlap,

and the cameras had a fixed position in relation to each other. One issue that impacted

this dataset collection was that the webcams were unable to record at a consistent

30fps, which is what they are rated for. This caused the videos to be very sped up,

as OpenCV would assume 30fps, regardless of what was actually recording. This
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limitation forced the FPS to be limited to 15 for consistency. One dataset was

recording during the day on a mountain road, while the other was recording on a road

in rainy conditions. An additional dataset as recorder with the same settings, but in

a different environment while it was raining.

4.1 Keypoint Selection for Homography Generation

A set of matching keypoints needs to be calculated to generate a homography

matrix, but not all of these matches are accurate. To reduce the number of inaccurate

matches, we propose a method of selecting only optimal keypoints through the use of

horizontal subsets.

Generating an accurate homography matrix is essential in order for a fixed

homography approach to provide a seamless image stitch. Traditionally, keypoints

are detected and matched for the entirety of both images, then each set of keypoints

is checked for matches with the keypoints from the other images. Of the matches

found, only a subset of the found matches are required in order to achieve an accurate

homography matrix. Additionally, for cameras that are horizontally aligned, it can

generally be assumed that the corresponding keypoint match for any keypoint lies

withing a similar location on the vertical axis. When comparing 2 images, only the

overlapping regions have valid matching keypoints, and as a result, keypoints which

lay outside of the overlapping region are not used, or can even introduce additional

noise. Figure 26 illustrates different possible sets of overlapping regions, and this idea

serves as the basis the region based approach to keypoint proposed by Qu et al. [10]

selection. There are a few benefits which may come from reducing the number of

keypoints. The first being processing time, as the a smaller set of keypoints will need

to be searched for matching elements. Another is reducing the amount of bad matches,

as it reduces that possibility of matches originate from non-overlapping areas.
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Figure 26: Examples of image overlap from [10]

Figure 27: Image blocking scheme [10]

Their proposed blocking scheme can be seen in Figure 27, in which each image

is divided into 5 equally sized blocks. Keypoints from each block are detected using

the FAST feature detector. The block from each image with the lowest number

of keypoints is dropped, in order to improve performance. Then feature matching

is performed between each block, and the blocks from the second image, with the

exception of blocks which share the same space, such as as Image Block 0 and Image

block 5 from Figure 27. Using these sets of matches, the best pair of regions are the
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ones with the most matching keypoints.

Figure 28: Experimental results from [10]

Qu et al.’s experimental results, shown in Figure 28, show that there is a significant

performance increase associated with this region based keypoint selection approach,

both in terms if processing speed, and in terms of correctness. Based on Figure 28,

improved FAST, Qu et al.’s approach provides the second fastest processing time,

with ORB being the fastest. Despite ORB being faster, improved FAST provides

many more correct keypoints, with minimal processing time impact, making it a much

more desirable approach.

Despite their excellent results, it is difficult to determine the effectiveness of

their approach due to a number of issues. The first is that they have provided no

experimental results for standard FAST. This leads to the question of whether or not

the performance increases are the result of FAST, or if they are a result of the region

based keypoint selection. Additionally, an approach like this is susceptible to pairs

of images with sparse keypoints, as this scenario could lead to a situation where not
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enough matching keypoints exist in a given region to produce a homography matrix.

Finally, despite the significant speed improvements, this approach is still too slow for

real time use.

While the technique proposed by Qu et al [10] still proves to be slow for the needs

of this project, the region based approach provides a way to gather correct keypoints

more effectively. Using the concept of paper [10] by Qu et al., a standard version

of their approach was first implemented in order to see if qualitative improvements

could be acquired.

Figure 29: Image stitch from a homogprahy matrix generated from all keypoint in a
pair of images

Figure 30: Image stitch from a homography matrix generated from regional keypoints

From figures 29 and 30, it can be seen that a slight qualitative improvement can

be obtained by using a region based approach. This indicates that the homography

being generated by the region based approach is more accurate than that of the

standard approach. Figure 31 indicates that this region based homography generation

is slower than the standard approach, due to the additional processing introduced
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Figure 31: Processing speed comparison between standard and region based homogra-
phy generation

by partitioning keypoints into regions. While this contradicts part of the result from

Qu et al, [10] this is likely due to inefficiencies in the region partitioning of this

implementation. Despite this slowdown, the qualitative improvements make this

approach better than the standard homography generation. Since this portion of the

processing is not needed to be run for every frame, the slower processing speeds is not

a major issue.

To further develop this idea, alternative region schemes were experimented with,

namely vertical and horizontal slices. Figure 32 depicts the new proposed schemes,

with there being 50% overlap between adjacent regions. This overlap was implemented

in order to improve the chances that an optimal region is selected, with a tradeoff of

processing time. Each vertical slice contains keypoints from 20% of the image, while

each horizontal slice contains keypoints from 25% of the image.

Experimenting with Vertical Slices, Horizontal Slices, and the Box regions from

Qu et al [10] reveal that horizontal slices provide the best qualitative results. This
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Figure 32: Vertical and horizontal regioning schemes

Figure 33: Matching keypoints for best horizontal slice regions

Figure 34: Matching keypoints for best vertical slice regions

makes sense since the cameras are arranged horizontally, so each horizontal slice is

guaranteed to contain part of the overlapping area and keypoints should match with
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Figure 35: Image stitch result from Vertical Slice Homopgraphy Matrix

Figure 36: Image stitch result from Horizontal Slice Homopgraphy Matrix

Figure 37: Image stitch result from horizontal slice, vertical slice, and boxes homogra-
phy matrix

another keypoint on a similar location on the vertical axis. This way, the densest

keypoint region of the overlapping are gets selected. This idea is illustrated in Figure

33 where the matching keypoints are densely packed and Figure 34 where the keypoints

are sparsely arranged. It is hypothesized that for a vertical camera arrangement, that

vertical slices would perform best, though further experimentation needs to done to

verify this hypothesis.

Through the use of this region based approach to keypoint selection, the number

of inaccurate keypoint matches is reduces, which in turn improves the accuracy of
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the resulting homography matrix. The process ultimately generates a higher accuracy

image alignment than previous approach, and supplies the high quality needed for use

in a real time application

4.2 Edge Weighted Blending

Even with the improved homography matrices created by the regional based

approach to keypoint selection, a visible seam still occurs within the resulting images.

To remove this seam, we propose a new blending scheme, Edge Weighted Blending,

that can remove this seam in real time through the use of a blending mask.

Figure 38: Equation used for Edge Weighted Blending

Figure 39: Result of Edge Weighted Blending

Edge Weighted Blending is inspired by the addWeighted function, but instead

weighs the pixels based on which edge they are closest to. This helps eliminate the

visible seam on the side of the image that was not favored, as it supplies a gradual

transition between each image the stitch. By only blending the area directly around

the seam, processing time is reduced and the output image is of higher quality. It was

found that approximately 50 columns are needed in order to hide the seams around

the blended area. An additional benefit of this approach is that it make the seams on

the top and bottom of the blended region smaller, and thus less visible. From Figure
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Figure 40: Performance of Edge Weighted Blending

Figure 41: Stitch result from subset Edge Weighted Blending

41, we can see that the subset provides a good quality stitch, while Figure 42 shows

that drastic performance increase provided by blending only a subset. Looking at

Figure 43, it can be seen that this performance increase bring the blending operation

almost perfectly in line with the rest of the pipeline.

By using this Edge Weighted Blending scheme, a nearly seamless result can

be produced for any set of well aligned images. This can be done in real time by

generating a mask of the Edge Weighted Blending result, providing a real time solution
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Figure 42: Performance comparison for Subset Edge Weighted Blending

that can provide seamless image stitches.

4.3 Superpixel Seam Detection and Blending

Edge Weighted Blending is able to smooth out the seam so that is is nearly

nonexistent, but ghosting can occur if the blended area is not aligned well. To reduce

the possibility of ghosting, we propose a method utilizing superpixels to determine

the optimal position and shape for the seam.

In order to find this best path, we must use superpixels, using a technique

proposed by Miao et al. [13]. In their paper, Mial et al. [13] describe the use of

superpixels, a collection of similar neighboring pixels, in order to generate a less

notable seam when stitching images together. This is accomplished by finding the a

path of connected superpixels that are most similar.

In order to generate superpixels, openCV’s Superpixel library was leveraged.
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Figure 43: Pipeline benchmarks with optimized blending

Figure 44: Superpixel example

Figure 45: Superpixel weight equation

Using the SLIC superpixel generation method, superpixels for one of the overlapping

images are generated. These superpixels are then applied to the other overlapping

image, with the idea that the superpixels should be identical for an image generated
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from a perfect homography. From here, the weight of each superpixel can be generated.

The weight is defined as the differences between the summation of the pixels values

of a superpixel on an image, subtracted the summation of of the pixel values of the

same superpixel on the corresponding image, depicted in Figure 45.

Figure 46: Runtimes for different iterations of the superpixel lowest cost path genera-
tion

The next step in the procedure is to generate the connections between superpixels.

This is required to ensure that only viable paths are explored when searching for

the lowest cost solution, and serves as the base framework for the search algorithm.

Initially, valid candidates for the next step of a superpixel’s path were any other

superpixel below it. This allowed for the lowest cost algorithm to consistently calculate

the best path, but it would occasionally cause the lowest cost algorithm to update for

upwards of 50 seconds, with an average runtime of 25 seconds. In order to reduce

the runtime, different approaches were attempted. The first successful approach was
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to reduce the number of iterations when generating superpixels, which causes each

superpixel to become less accurate. For the purposes of this application, that was

determined to be an acceptable tradeoff, and resulted in a reduction in preocessing

time of 11.5 seconds. Taking it further, it was hypothosized that superpixels that

were mostly horizontally adjacent to another could be detected as a viable candidate

for the next step on the path if part of the adjacent superpixel was below the one

being evaluated. To remedy this situation, a horizontal buffer was introduced, which

would remove any candidates that were only within the buffer region. The result of

this was a processing time of 7.6 seconds.

Figure 47: Equation of cost of path to each superpixel

To generate the lowest cost path, the cost of the path to each superpixel is

calculated based on the sum of the weights of all superpixels on the path leading to

it. The path starts at a superpixel at the top of the image. Additionally, only the

lowest cost path to each superpixel is kept. Any path to a superpixel that is greater

than the current lowest cost path for that superpixel stops processing and is discarded.

The final result of this is a graph of superpixels with their lowest cost path and its

associated cost. Finally, by finding the best seam can be found be selecting the

lowest cost superpixel in the last row of the image. Using this path, a mask can be

generated, show in Figure 48. This mask has the same blending described previously

to smooth any remaining lightning differences from the stitch operation. The final

result can be seen in Figure 49, and is nearly seamless. While the previously discussed

Edge Weighted Blending is able to provide seamless stitches most of the time, the
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Figure 48: Image masks for superpixel lowest cost path

Figure 49: Result of stitching using the superpixel mask

superpixel blending mask is able to ensure that a seamless result is found, and the

result can be applied in real time.

4.4 Stitch Validation

We need to be able to determine that the condition that the cameras positions

generally do not change holds true. To accomplish this, the proposed method generates

a difference score by comparing the gradients of the aligned images.

If two images are aligned perfectly, the sum of their absolute difference would be

close to 0. Differing lighting causes a greater difference score, regardless of how well

aligned the images are. To remove the increased noise caused by lighting differences,

gradients for each aligned image are calculated. These gradients contain only the

strong edges that exist within the images, an example of which can be seen in Figure

50. We can then determine how well aligned the images are by comparing the edges in

each image. This is done by calculating the sum of absolute differences of the aligned

images. The score represents how different the images are, with scores closer to 0

39



Figure 50: Gradient of image pair

being more similar. This score is then compared against a set threshold. The camera

position condition is considered to be invalid if this threshold is exceeded, and action

is taken to reestablish the condition.

This technique proved to be the most effective at detecting camera shifts, and

was the only one sensitive enough to detect small differences in the overlapping area.

Due to his increased sensitivity, this gradient based comparison proved to be the

most reliable way to validate the image alignment. Through the use of this software

component for validating image stitches, the need for the redundant state machine

used in the solution of Suk et al. is completely eliminated. This makes it so that the

stitch validation component is usable on a much wider variety of systems, as it is not

reliant on specialized hardware.

4.5 Background Processing

Certain steps of the image processing procedure are too slow for use in a real

time application. To reduce the impact of these steps, we propose a method which

reuses the results of these steps.
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Figure 51: Comparison of processing times for image stitching

The background processing procedure, depicted in in Figure 53, consists of any

processing which performs work that only need to be completed once per solution.

This solution was inspired by the fixed homography approach used by Suk Et Al. [4].

In most situations, this procedure will not need to be run. On startup, the previous

valid homography and blending matrices can be read from a stored location in order

to ensure there is no delay in operation at startup.

For background processing, a set of frames from the input stream is taken and

used to generate a homography matrix. If the homography matrix generation fails,

the Validate Homography step triggers for the procedure to restart with a new set

of frames. If the homography matrix is successfully generated, a blending matrix is

created based on a supplied seam size. The homography and blending matrix are

saved so that they can be accessed by the the blend and stitch operation. This is

considered the Primary Processing step, as it is required for the stitching operation

and provides a solution that is often good enough. The Secondary Processing step is
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separated due to its longer processing time. These steps take on average 7.56 seconds

to complete, though will occasionally take up to 20 seconds to complete. To avoid a

deadlock in case the background processing needs to be restarted while this step is

being performed, checks have been implemented which will end Secondary Processing

so that Primary Processing can be rerun. The Secondary Processing consists of the

procedure to generate the superpixel blending mask.

4.6 Parallel Pipeline

Figure 52: Finalized parallel pipeline

To allow for the proposed application to work in real time, the previously discussed

components are run in parallel. This parallel processing pipeline is able to generates
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the homography and blending matrices in the background processing step, and is

able to apply them in real time. Alongside these processes, the realigned images are

validated to ensure stitch quality.

In order to produce real time, high quality image stitches, the architecture in

Figure 52 is proposed. This architecture is able to process multiple video streams, and

stitch them together in real time. In order to accomplish this, certain tasks must be

relegated to dedicated thread, and must be run only when needed. These are tasks

which had too long of a processing time for use in a real time application, but whose

function was not needed for every frame, allowing for this real time application to be

feasible. Additionally, another separate thread is dedicated to validating the stitch

result, in order to ensure that the current homography solution remains valid.

Using the results from the background processing stage, images from the input

stream are stitched and blended together to achieve a single larger image. This is

accomplished by applying the generated homography matrix to the adjacent image

from the input stream, modifying it so that it its perspective matches that of the

first image. After, the blending matrices are applied to each corresponding image to

smooth the seam and create a higher quality stitch. This result is tagged with a frame

number and sent to the buffer’s ordered queue. The buffer checks to see if the image

of the image at the top of the queue is the next expected image. If it is, then it is

output to the output stream, otherwise it waits for the correct images. If the expected

image does not appear after a timeout duration, the tag of the image at the top of the

queue becomes the the next expected tag and processing continues as normal.

Our background processing procedure is inspired by the work of Suk et al. [4],

specifically the software component of their architecture from Figure 19. Our solution

deviates from the software implementation of Qu et al. in two key areas. The first of

these areas is Keypoint matching. While Qu et al. obtains features from the entirety
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Figure 53: Background processing procedure

of both images, our approach narrows the search down to the horizontal regions with

the most matching key points. through this process, we are able to improve the

quality for the resulting homography matrix. The second area is through the addition

of the generation of the blending matrix within the background processing stage. By

including the creation of the blending matrix in the background processing stage,

the processing time of the image stitching operation for each frame is significantly

reduced.

In order for a real time system to be considered reliable, it must be able to handle

failure scenarios accurately and quickly. For the system presented by this paper, this

means that the system must be able to detect when the current homography and

44



blending solution is not longer valid, and generate a new solution in a timely manner.

Its impossible to ensure that the cameras never shift during operation, though

it isn’t expected to happen often. To validate the integrity of the stitch, a gradient

based comparison is proposed. By calculating the sum of the absolute difference of the

matrices, a difference score can be obtained. Through experimentation, it was found

that a difference score of 0.1 serves as a good threshold for consistently detecting

mismatch homography, while avoiding false positives. If a mismatch it detected, a

flag it set to re-trigger reprocessing.

Qu et al. accomplishes fault detection via the use of a redundant state machine,

which can be seen in Figure 21. By creating a software based fault detection system,

we have eliminated the need to specialized hardware for fault detection. Since image

stitching is also achieved at a software level, the need for specialized hardware is

completely eliminated. This allows for this architecture to be usable on a wider variety

of systems.
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CHAPTER 5

Experiments

In the process of creating the proposed solution, a number of experiments were

performed to determine the optimal techniques for generating high quality image

stitches in real time. Each of these experiments led to the creation of the components

of the proposed solution, but had disadvantages that made them poor candidates for

the solution.

5.1 Randomized Subset Key point Selection

Not all keypoint matches detected are correct, and incorrect matching reduce the

quality of the homography matrix. Due to the high number of keypoints generated, a

randomly selected region should have enough keypoints to generate a homography,

and should contain more valid matches.

Table 2: Randomized approach benchmarks

Benchmark Data
𝛼 1 0.5 0.3

Img1 detect(seconds) 0.29 0.32 0.26
Img1 compute(seconds) 0.26 0.26 0.25

Img1 keypoints 14880 14880 14880
Img2 detect 0.32 0.11 0.02

Img2 compute 0.004 0.002 0
Img2 keypoints 13207 5568 385

Keypoint shift(seconds) 0.04 0.02 0
Match time (seconds) 0.47 0.21 0.02
Number of Matches 507 360 7

Filter Time 0.005 0.004 0.002
Stitch Time 0.007 0.007 0.007
Total Time 1.63 1.12 0.76

Image stitching algorithms require a minimum of 4 matching keypoints and

feature detection algorithms, such as SIFT, often find far more matching features
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than needed. This can be seen in the 𝛼 = 1 results in Table 2, which represents a

standard stitching operation, where 507 matching features were found. Since only 4

matching features are needed, a valid stitching solution can be generated using only

a subset of the matching features from a set of images. By selecting a subset of the

input images, the number of bad matches can be reduced, improving the resulting

homography matrix.

Figure 54: Illustration of subset area selection

Figure 55: Probability equation for a valid subset

To select the subset image, we randomly choose an area within the image with

a predefined shape. This sub area can be defined as having a size of N where is

a constant value less than or equal to 1. Additionally, we define the overlapping

region as oN, with o representing the percentage of overlap within the image. We can
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Figure 56: Expected number of runs before a solution is found

then calculate the probability that the selected sub area will reside entirely inside

of the overlapping area using the equation in Figure 55. Batches of 100 samples

were produced using this random approach, using values for 𝛼 of 0.7,0.5, and 0.3 and

with an estimated overlapping area of 90%. Each of these tests found that only 1

run was needed on average in order for enough keypoints for a stitch to be found.

Using the equation in Figure 56, we can find the expected number of runs to be:

1.16 for 𝛼 0.7, 1.35 for 𝛼 0.5, and 1.85 for 𝛼 0.3. While the expectations 𝛼 0.7 and

0.5 appear to be in lane with the experimental results, the expectation of 𝛼 0.3 is

exceeded by experimental results. This may indicate either an incorrect assumption

was made when determining the probability equation, or that the overlapping area

was incorrectly estimated.

The results in table 2 indicate that there is a processing time benefit as 𝛼 becomes

smaller. These results also highlight the fact that feature detection takes a significant

portion of the processing time, and by limiting the area being sampled for feature

detection, processing time can be significantly reduced. One interesting observation

that can be taken from the results in table 2 is that the descriptor generation is not

impacted, but matching time is improved. Matching time is likely improved due to

the reduced number of total matching features that are found. From Figure 59, we

can see that many matching features can be found, even when only selecting them
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Figure 57: Processing time analysis for 𝛼 = 1

Figure 58: Processing time analysis for 𝛼 = 1

from a subset from one of the images. In addition to this, Figure 60 shows a completed

stitch image, which has a similar result to that of a standard stitching operation seen

in Figure 61. One additional observation that was made is that the randomized

approach is more heavily impacted by a low overlapping area. In the dataset used,
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Figure 59: Matching feature points using a subset of the image

Figure 60: Stitched image using randomly sampled subset
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Figure 61: Stitch produced from a standard stitch operation

Figure 62: Standard stitch with a small overlap

images have less overlap, the further apart they are. Figures 38 and 39 represent

image stitches where 1 image of separation was used.Figures 40 and 41 have 3 images

of separation and this large separation leads to a smaller overlap, and creates a lower

quality stitch. This is likely a symptom of having enough keypoints to achieve a
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Figure 63: Randomized stitch with 𝛼 = 0.5 and low overlap

stitch, but not enough to compensate for mismatched keypoints

Unfortunately, despite the improvements to stitch quality seen in Figure 60, the

inconsistently experienced by the randomized approach make a poor candidate for a

real time system. Instead, the regional based approach used in the proposed solution

was able to obtain higher quality image stitches, without the incosistant performance

of the randomized approach.

5.2 Image Blending

When stitching images together, a visible seam is often still present. To eliminate

this seam, we experimented with openCV’s image blending functions.

Blending images helps reduce the visible seam in order to create one cohesive

image. This is accomplished by taking the average pixel value for each pixel in the

overlapping region. In Figure 64, it can be seen that the diagonal lines of the seam

cause very visible seams and tears where the images overlap, but the right side of

image has a smoothed over seam. To mitigate this issue and achieve a better blend,

straight lines needed to be enforced, and the resulting image can be seen in Figure 65.

This is a much better result then the one show in Figure 64, though some of the seam
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Figure 64: Blended image

Figure 65: Blended image with straight lines enforced

is still visible.

Figure 66: Multiband blended images

Other blending schemes are available in OpenCV, for example MultiBand blending.

The resulting image seen in Figure 66 has some artifacting and a visible seem on the
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left side of the overlap. Additionally, in Figure 67 we can see that multiband blending

Figure 67: Benchmarks for blending operations

is very slow, with the CPU approach actually yielding the fastest result.

Ultimately openCV’s native functions failed to be adequate for producing high

quality image stitches in real time. Multiband blending produced artifacts in the

output image. Using the add weighted functions was able to stitch the images together

quickly, but experienced heavily darkened regions where one of the input images

had black regions. These limitations made the creation of a custom blending scheme

necessary, and led to the creation of Edge Weighted blending. Edge weighted blending

was able to overcome these limitations to produce a seamless image stitch in real time.

5.3 Machine Learning Based Stitch Validation

To ensure that the condition that the cameras do not change position is valid,

we need to be able to detect when the condition has failed. In an attempt to find a

solution for this, experiments were performed using BRISQUE and machine learning.

Brisque is a technique which leverages SVC and SVR in order to provide a

quantitative score for input images. This approach aims to determine whether or
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Figure 68: ORB with score of 61.19, worst score

Figure 69: Score of 6.89, best score

not images contain “Natural scenes”, which are defined as any image taken with an

optical camera [9]. The theoretical basis for this approach comes from the idea that

the Mean Subtracted Contrast Normalized Coefficients have statistical properties that

are affected by distortions in the image [9]. Mital Et al. supplied a petrained SVC

and SVR model for us with their technique. The closer the score is to 0, the better

the score is. All generated stitched images were tested using this model,and returned
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Figure 70: Score of 24.65

with the scores for figures 69,70, and 71. A qualitative assessment shows that this

tool’s scoring is unreliable to determining the quality of the image stitches, as can be

seen when comparing Figure 70 with Figure 69.

Due to the inaccuracy of the stitch validation produced by BRISQUE, a SVM
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was created in order to determine the presence of bad stitches, via the detection of

seams. This SVM was trained on a manually labeled dataset consisting of stitched

images produced by these feature detection algorithms. Using 2000 samples and a

80:20 train/test split, an accuracy of 88% was achieved.There were 3000 samples in

total, but the full sample set was unable to be utilized due to hardware limitations.

Figure 71 shows the results of several feature detectors, with the score being the

percentage of images classified as “good”, and scored by the SVM.

Figure 71: Accuracy of feature detectors scored by an SVM

From Figure 71, we can see that SIFT outperforms the other algorithms by a

wide margin, but from table 1 we can see that it is also slow. ORB is significantly

accurate, while being much faster, potentially making it more applicable for use in a

real time application. If a fixed homography is decided upon for this project, SIFT is

the best candidate for a feature detector. If features must be generated for each frame,

then ORB provides much faster processing time than SIFT, while being comparatively
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accurate.

When testing the SVM on a new dataset, it as found that the SVM scored every

image as "good". This is likely due to the fact that the environment of the new

dataset was significantly different than the dataset the SVM was trained on. Due to

this issue, it was determine that a machine learning approach was not reliable enough

for stitch validation, as creating a reliable SVM for this purpose would likely require a

much larger and varied training dataset. Instead, the gradient comparison used in the

proposed soluton proved to be much more reliable method of validating the stitches

5.4 Direct Comparison

BRISQUE and the SVM failed to provide a reliable method of validating the

image stitch. To provide a way to validate image stitches, a direct comparison the

images is able to provide validtion, without the need for training data.

The first new solution attempted was a direct comparison of the pixel values

within the overlapping region. The theory behind this approach was that a good

overlapping area would have more identical pixel values. To calculate this score, the

sum of the absolute difference of each overlapping image matrix was taken, then

normalized by dividing by the area of the overlapping region. Using this score, an

threshold could be determined experimentally, with a higher score being an indicated

of a greater difference between the images in the overlapping region. Ideally, a high

score would serve as an indication of a homography mismatch. Unfortunately, while

this technique proved to be able to detect poor quality stitches, it did so inconsistently,

and failed to detect the manual camera shift from the rain dataset. Additionally, this

technique was unable to deter minor errors produced by the stitch.

The lack of sensitivity of the direct comparison approach was suspected to be

related to the additional information provided by the color values of each pixel. These
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values cause a number of issues which likely impacted the accuracy of the validation

technique. The first of these issues was the unnecessary information of the color values.

When checking for similarity, color provides little additional value, and can actually

introduce additional noise the the process. This is due to the fact the colors in the

images are very impacted by the brightness of the image.

Figure 72: Images taken from adjacent cameras

As can be seen in Figure 72, lighting differences can be substantial, even for image

takes simulaniously and in the same environment, This changes the color values on

the image, and could lead to false positives when determining the quality of the image

stitch. In order to circumvent this issue, grayscaling was introduced, as this should

reduce the impact of differing brightness, as well as simplify the processing. This has

the added benefit of improving the processing time of the validation operation.

By grayscalng the images, we can reduce the impact of differing brightness,

while preserving the necessary information required to determine whether or not the

overlapping area is being correctly generated. In Figure 73, the same images from

Figure 72 has been grayscaled. It is clear that these images appear much more similar

after being grayscaled, indicating that their pixel values are more similar. Using this,

a more accurate comparison using the sum of absolute difference technique previously

described can be calculated. Experimental testing revealed that while this technique
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Figure 73: Grayscaled images

was more sensitive to camera changes than the full color approach, it was unable

to detect smaller difference between the overlapping images, and as a result would

have false negatives on bad homography matrices. After normalizing each score, the

difference scores generated by Figure 72 was 0.131, while the score generated by the

gray scale image of Figure 73 had a score of 0.123, with a higher score indicating that

a greater difference. Based on this, it can be seen that the color image results in a

greater difference, despite the fact that the images in figures 72 and 73 are from the

same images. While grayscale images are able to perform a more accurate comparison

than when using a full color image, image where lots of non distinct features exists,

such as tree foliage, could result in false negatives. In order to mitigate this possibility,

the extraction of only the most prominent features is required. Image thresholding

can be used to accomplish this. Adaptive threshold techniques are able to identify

local means within regions of the image, which results in an image where only the

most prominent features appear features appear.

Adaptive threshold and Otsu’s Threshold techniques were experimented with in

order to determine their viability for stitch validation. A sample of their results can

be seen in figures 74 and 75. From these samples, a number of problematic areas

can be seen. For Adaptive threshold, the resulting image has many small black lines,
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Figure 74: Adaptive threshold Image

Figure 75: Otsu threshold Image

which vary widely between the two images shown in Figure 74. Additionally, the

visibility of certain features, such as the trunks of the trees vary. Both of these issues

cause a loss of accuracy when performing the validation operation.

For Otsu’s Threshold, there is an overall improvement with the threshold areas,

but there are a few regions which pol ute the final result. The most obvious problem
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area comes from the tree canopy, in which one photo has a large area that passed the

threshold, causing it to appear white. Additionally, the certain features in the center

of each image vary on whether or not they surpass the threshold. Both of these issues,

like with the adaptive threshold, cause the accuracy of validation using this technique

to be less accurate. Unfortunately, due do these issues, neither of these techniques are

good candidates for validating the image stitch. The gradient based approach used in

the proposed solution was able to circumvent the issues experiences by these methods,

as it is much less sensitive to lighting difference, and was able to better detect smaller

mistakes in the resulting stitch.

5.5 GPU Experiments

The parallel pipeline is able to achieve image stitches in real time, but utilizes

the CPU. This section explores the use of the GPU to improve the processing speed

of the solution. The OpenCV and CUDA GPU libraries were leveraged for these

experiments.

The first library researched was CUDA, a vastly populatar GPU pipeline for

image processing on the GPU. In Figure 76, it is evident that GPU processing can

vastly improve the processing time of the operations involved in the image stitching

pipeline, with performance gains of approximately 2.5x-13x [11]. The process of using

CUDA with the GPU involves uploading the Mat object into a GPU_mat, where

additional procedures can then be performed on the image matrix using the GPU.

The OpenCV library has a "transparent" way to implement GPU processing via

the use of openCL. OpenCL is a "hardware aware" library which is called automatically

when it the library determines that processing can be performed on the a given piece

of hardware. In the context of this project, this is accomplished by using the UMat

data structure.
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Figure 76: CUDA processing benchmarks [11]

Though both CUDA and OpenCL provide significant performance increases for

image processing, there are some important trade offs to consider. The first of these

trade offs is the loss of flexibility with the processing of the image matrix. Once an

object in upload to a GPU_Mat, it must be processed using CUDA functions, and

the same goes for UMAT objects, which must be processed using openCV functions.

This limitation makes debugging more difficult, and makes it so that not all image

processing problems can easily leverage the GPU. In this instance, since OpenCL

leverages OpenCV functions, it has more functions available when it comes to working

with the image matrix, and thus is a more attractive prospect.

In order to validate the viability of GPU processing for this project, benchmarks

were gathered for the processing of the relevant functions. Figure 56 illustrates

that GPU processing has the potential to significantly improve the image stitching
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Figure 77: OpenCL processing benchmarks [12]

operations of the application, with CUDA outperforming the standard approach, and

OpenCL performing the best, if overhead costs are ignored. Unfortunately, that

overhead cost is very significant. With the overhead cost, both CUDA and OpenCL

no longer outperform the standard CPU approach. These overhead cost come from

uploading the image to a GPU_mat and converting them to UMat.

In order to reduce the overhead cost associated with sending an image to the

GPU, the number of uploads and downloads to and from the GPU must be minimized.

As a result, the original CPU implementation was no longer viable and had to be

rewritten. Additionally, the limitation of only being able to use OpenCV or CUDA

functions for GPU objects increased the complexity of solving this problem. Since
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Figure 78: GPU benchmarks

openCL performed that best, ignoring overhead cost, and can be triggered for most

OpenCV functions, it was selected as the focus for this conversion. The approach

to this is as follows: Generate a homography matrix, perform the warpPerspective

operation on one of the images, and finally stitch and blend the the images. The

first 2 operations are trivial, since they are generated from OpenCV functions. The

complication arises when we can try to stitch and blend the images, since the original

implementation directly modifies the image matrix. UMat, the data type needed

to work on the GPU, is not directly accessible, so an alternative approach which

uses OpenCV functions was required. The following relevant matrix operations are

available in OpenCV: bitwise_or, bitwise_and, bitwise_not,bitwise_xor, add, and

addWeighted. The add function works by adding every element in one matrix to its

corresponding element in another. Doing so can join 2 images together, but results

in a highly brightened region, the overlapping area, since the pixel values at those
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Figure 79: Add operation on two images

Figure 80: addWeighted operation on two images

points getting added together. addWeighted alternatively preforms the add operation,

but takes in weight values to cause the operation to have a bias towards one of the

input matrices. This is potentially useful as it also performs a blending operation

simultaneously with the stitching. Unfortunately areas of black space cause the pixel

values in those regions to become darkened, as can be seen in the left side of Figure

80.

In order to get around the darkened region issue, the overlapping area needs to be
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Figure 81: Result of multiplying by the mask

Figure 82: Result of multiplying by the inverse mask

isolated so that only that region needs to have the addWeighted operation performed

on it. To accomplish that, the following procedure is followed: First a constant is

added to each pixel value to eliminate the possibility of any pixels with a value of

0 to exist in each image. Then the matrices are padded with black space to that
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Figure 83: addWeighted operation favoring the left image

Figure 84: addWeighted operation favoring the right image

they have the same size. Next the matrices are multiplied together, resulting in an

image where only the overlapping area is exposed. Using this output matrix, a binary

mask can be generated by using OpenCV’s findNonZero function, which returns the

location of all non zero pixel values in a matrix. This mask allows for the isolation the

overlapping area, and its inverse allows for the isolation of the non overlapping areas.
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Figure 85: addWeighted operation with alpha channel

Once the overlapping area in each image is isolated by using matrix multiplication

on the images and the overlap mask, the addWeigthed operation can be performed

to blend the images together, and the resulting blended image can be added to the

isolated non-overlapping areas of the image. Unfortunately, visible seams appear

in the resulting image, regardless of which image of favored, or if they are favored

equally, as can be see in figures 61 and 62. In an attempt to remediate this issue,

addWeighted with an alpha channel was attempted. The alpha channel determines

the opacity of a pixel, and by applying 0 to the alpha channel of the black pixel, ideally

the addWeighted function would produce an image which ignored the black space.

As shown in Figure 223, this approach produced a result identical to the 3 channel

addWeighted, most likely because addWeighted does not take the alpha channel into

account. While addWeighted does perform the blending operation, figures 83, 84,

and 85 show that blending is this way does not achieve good results. Additionally,

from Figure 86, it can be seen that the GPU approaches, segmented addWeighted

and addWeighted(alpha) take longer than the CPU approach to achieve the same
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Figure 86: Run time comparison between GPU and CPU addWeighted approaches

result. This is due to the large number of matrix multiplications required in order

to isolate the overlapping and non overlapping areas, and the additions to join them.

Ultimately, due to the limitations on customized code and overhead cost associated

with translating GPU objects to CPU objects, it was determined that using the GPU

was not a viable option for this solution.

5.6 Evaluating Feature Detectors

Table 3: Quality evaluation of feature detectors

SIFT ORB KAZE AKAZE
Quality score 0.05557 0.068 0.055517 0.05795
Failure Rate 0.005 0.98 0.005 0.024

To make this application for use in real time use cases, a reliable feature detector

that also produces a high quality features must be selected.To accomplish this, the
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stitch validation procedure described in the proposed solution was leveraged to provide

a quantitative score for the quality of the produced images. To generate these scores,

6800 image stitches were generated from the rain dataset. Each set of images from

the stitching procedure are then scored using the stitch validation technique. The

resulting scores are averaged to provide the quality score seen in Table 3. Failure rate

was calculated taking the number of frames that failed to produce a valid homography

matrix and dividing them by the total number of sets of images processed.

Based on the results seen in Table 3, SIFT is the best keypoint detector due to its

good images quality score and low failure rate. This result is followed closely KAZE,

which has a similar quality score and the same failure rate. Due to the close quality

scores, additional analysis was needed to determine whether SIFT or KAZE was a

better fit for this application.

To perform this analysis, videos from the rain dataset were generated from the

image stitches provided by the matches from SIFT and KAZE. Using these videos, a

qualitative assessment was performed.

Figure 87: KAZE Result

Figures 87 and 88 show the results of the stitching and blending operation using
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Figure 88: SIFT Result

KAZE and SIFT as feature detectors. The resulting images are similar in quality,

though SIFT provides a higher quality image, especially in the region on the dashboard

of the car. Based on this information and the results in Table 1, which shows that

SIFT is faster than KAZE, SIFT was chosen as the feature detector for the proposed

solution.
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CHAPTER 6

Conclusion

Table 4: Tasks processing average run times

Background processing Superpixel Mask Generation Blend and Stitch
1.3s 7.6s 0.0034s

Image stitching allows for the creating of a wider field of view, and can utilize

multiple cameras to provide more information on the surrounding information than

a single camera image could. In order to make this technology usable for real time

application, the processing for each frame must be completed fast enough so that

there is little to no perceptible delay. Due to the nature of the problem this paper is

trying address, it can be assumed that the position of the cameras generally do not

change, and therefore certain features such as the homography and blending matrices

would only need to be run as needed. The results shown in Table 4 were generated

by taking the average runtime of 6800 frames and they show that blend and stitch

operation needs to be performed on each frame, with a processing time of 0.0034s,

well within real time. Removing the Background processing and Superpixel Mask

Generation from the processing of each frame was essential to make this application

work in real time, as the processing time of each of them would be much to long

otherwise. Due to the an assumption is made that the cameras do not shift, validation

must be performed to detect if this assumption is no longer valid. If this occurs, then

the background processing and Superpixel Generation steps are rerun in order to make

the assumption valid again. These tasks are run in parallel with the Blend and Stitch

operation, so that the video output is never interrupted. The need for specialized

hardware required by the proposed solution of Suk et al. has been completely removed
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in this proposed solution. Instead, all functionality is able to be performed in real

time using purely software solutions. This greatly expands the numbers of systems

that this architure can be used in. Ultimately each of these tasks working in tandem

allow for a system that can perform high quality image stitches in real time, while

remaining robust towards camera misalignment and without the need for specialized

hardware.
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