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Abstract: Unmanned aerial vehicle (UAV)-based snow depth is mapped as the difference between
snow-on and snow-off digital surface models (DSMs), which are derived using the structure from
motion (SfM) technique with ground control points (GCPs). In this study, we evaluated the impacts
of the quality and deployment of GCPs on the accuracy of snow depth estimates. For 15 GCPs in our
study area, we surveyed each of their coordinates using an ordinary global positioning system (GPS)
and a differential GPS, producing two sets of GCP measurements (hereinafter, the low-accuracy and
high-accuracy sets). The two sets of GCP measurements were then incorporated into SfM processing
of UAV images by following two deployment strategies to create snow-off and snow-on DSMs and
then to retrieve snow depth. In Strategy A, the same GCP measurements in each set were used
to create both the snow-on and snow-off DSMs. In Strategy B, each set of GCP measurements
was divided into two sub-groups, one sub-group for creating snow-on DSMs and the other sub-
group for snow-off DSMs. The accuracy of snow depth estimates was evaluated in comparison to
concurrent in-situ snow depth measurements. The results showed that Strategy A, using both the
low-accuracy and high-accuracy sets, generated accurate snow depth estimates, while in Strategy B,
only the high-accuracy set could generate reliable snow depth estimates. The results demonstrated
that the deployment of GCPs had a significant influence on UAV-based SfM snow depth retrieval.
When accurate GCP measurements cannot be guaranteed (e.g., in mountainous regions), Strategy
A is the optimal option for producing reliable snow depth estimates. When highly accurate GCP
measurements are available (e.g., collected by differential GPS in open space), both deployment
strategies can produce accurate snow depth estimates.

Keywords: UAV; structure from motion (SfM); snow depth; ground control points (GCP)

1. Introduction

Over one billion of people around the world rely on snowmelt water for domestic,
agricultural, and industrial activities [1]. Snow accumulation in the winter season shows a
rapidly decreasing trend in recent decades for North America in terms of snow depth [2],
snow cover extent [3], and snow mass [4]. In particular, the continental-scale snowmelt
water originating from mountainous regions is in steep decline [5]. To better understand
its impact on the environment and human activities, it is necessary to accurately monitor
winter snow accumulation and its dynamics in mountain ranges.

The amount of water contained in snowpack (snow water equivalent, or SWE) is jointly
determined by snow density and snow depth. It has been documented in previous studies
that snow depth has much stronger spatial variation than snow density [6–8]. The accurate
mapping of snow depth is therefore critical for the estimation of SWE. Traditionally, snow
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depth is monitored by automated sensors at weather stations or measured manually using
a snow probe in field surveys. These methods are typically limited to point-based locations
or cover very sparse areas. Remote sensing technologies have also been used to derive
snow depth information, such as satellite laser altimetry [9], passive microwave remote
sensing systems [10–13], and snow radar systems [14–16]. Although these technologies
have made positive contributions to snow depth mapping in relatively open space with
gentle topography, their performances are mostly unsatisfactory in mountain ranges where
snow accumulation varies drastically along with rapid changes in topography and vegeta-
tion within a short distance [17–19]. It has been proven that accurate estimation of snow
accumulation in mountain ranges is hampered by the complex topography and varying
vegetation cover [20–22]. The airborne LiDAR system has also been used to retrieve snow
depth [23] and is a promising technique for mapping snow accumulation in mountainous
regions. This technique, because of its high cost, is inapplicable for monitoring snow
accumulation dynamics since this requires frequent and repeated observations. A more
nuanced, efficient, flexible, and economic method that can accommodate the mountain envi-
ronment and simultaneously provide accurate snow depth mapping is needed, particularly
for a relatively small area and for ephemeral snowpack.

In recent years, the possibility of retrieving snow depth with unmanned aerial vehicle
(UAV)-based structure from motion (SfM) photogrammetry has been discussed in a number
of studies [24–34] due to the advancement of UAV technology, the development of low-cost
lightweight cameras, and the availability of open-source and commercial SfM software
packages. Compared to airborne and spaceborne remote sensing platforms, the prominent
advantages of UAV-based SfM photogrammetry are its lower demand of personnel training,
lower cost for purchasing and maintaining the equipment, and much higher flexibility for
inaccessible areas (e.g., cliffs and valleys) and undesirable weather conditions (e.g., rain,
strong wind, and heavy cloud). The basic idea of this method is to collect overlapping
photos of a study area (e.g., open or vegetated, flat or rugged) with a UAV-based optical
camera on snow-on and snow-off dates. Then, digital surface models (DSMs) of the study
area are generated for each of the two dates by stitching the overlapping photos with an
SfM workflow that has been implemented in many software packages [35]. The surface
elevation increase due to snow accumulation over the study area is then calculated by
differencing the two DSMs and treated as snow depth estimates. In general, the snow
depth accuracy varies from several centimeters to several decimeters depending on the
surface roughness, ground topography, and underlying vegetation [26,28,32,34].

In addition to the environmental characteristics of the snow accumulation field (i.e.,
topography, vegetation, surface roughness, etc.), the quality of snow-on and snow-off DSMs
generated by SfM is a more dominant factor that determines the accuracy of UAV-based
snow depth estimates. Two options are mostly adopted in existing studies to constrain
the errors in DSMs and to improve snow depth accuracy. The first one uses an expensive
real-time kinematic (RTK) UAV to collect optical photos of which the coordinates can be
georeferenced to an accuracy of 2–4 cm by on-board RTK correction [26,27,33]. The accurate
photo locations are then used directly to constrain the DSM uncertainties. In the second
option, a regular customer-grade UAV is used to collect photos. Then, ground control
points (GCP) evenly distributed across the study area are incorporated in SfM processing
to reduce DSM errors [24,25,28,29,32,34]. The GCPs are often accurately surveyed with
an RTK or post-processing kinematic (PPK) differential global positioning system (DGPS).
Vander Jagt, Lucieer and Wallace et al. [27] compared the two options and reported that
incorporating GCPs in the generation of DSM can produce a lower root mean square
error (RMSE) between UAV-based snow depth estimates and in-situ measurements than
simply using RTK UAV. Additionally, if a minimal number of GCPs is jointly used with
RTK UAV, the RMSE can be further reduced. Harder, Schirmer and Pomeroy et al. [26]
also suggested that inclusion of GCPs for RTK UAV would result in a great reduction of
DSM bias, thus increasing the accuracy of snow depth estimates. Both studies indicated
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the necessity of incorporating GCPs for accurate snow depth retrieval with UAV-based
SfM photogrammetry.

RTK UAV is a promising solution for snow depth mapping over inaccessible areas
(e.g., areas susceptible to snow avalanche) [33]. The much higher cost of an RTK UAV
than a regular customer-grade UAV limits its wide application in snow depth mapping.
Most existing studies used a regular UAV to collect photos and incorporated GCPs to
constrain DSM errors [24,28,31,32,34] and then retrieve snow depth. Lee, Park, Choi and
Kim et al. [24] evaluated the influence of the number of GCPs on the accuracy of UAV-
based snow depth and concluded that areas with higher densities of GCPs tended to
have more accurate snow depth estimates. In other words, the more GCPs included, the
better the snow depth accuracy. In these studies, GCPs over the study area were surveyed
twice, one for snow-on date and one for snow-off date. The snow-on GCPs were usually
differently from the snow-off GCPs. The two different sets of GCPs were used to produce
the snow-on and snow-off DSMs, respectively. With this strategy, the errors in snow-on
GCP coordinates (x, y, z) were completely independent from the errors in snow-off GCP
coordinates. These errors could be propagated independently into the corresponding
snow-on and snow-off DSMs, thus affecting the retrieved snow depth accuracy. However,
no study has investigated how the errors in GCP coordinates influence UAV-based snow
depth retrieval and how to improve the accuracy of snow depth estimates when DGPS
performance is hampered by the surrounding environment.

The overall objective of this paper was to assess in detail the influence of GCP errors on
the accuracy of snow depth measurements estimated by UAV-based SfM photogrammetry.
Specifically, this paper (1) assesses how the errors in GCP horizontal coordinates (x, y) and
vertical height (z) influence the accuracy of snow depth estimates; and (2) discusses the
optimal GCP deployment strategy that can accommodate the errors in GCP coordinates (x,
y, z) to help produce better snow depth estimates. The remainder of this paper is organized
as follows: Section 2 describes the study area and the collection of UAV-based photos and
in-situ snow depth data. Section 3 introduces SfM concepts and GCP deployment strategies.
Section 4 presents the performance of UAV-based snow depth retrieval using different
GCP deployment strategies. Section 5 analyzes the results and discusses the strategy of
improving snow depth estimates.

2. Study Area and Data Collection

Our study area was located in the southern Appalachian Mountains at 36.215◦N
and 81.693◦W, close to the Blue Ridge Parkway, which is the longest linear national park
way in the U.S. The elevation was about 1070 m above mean sea level. The study area
was beside a wind turbine near the campus of Appalachian State University in Boone,
western North Carolina. It was a small open space surrounded by trees and shrubs with
different heights. As shown in Figure 1, the extent of the study area was approximately
120 m × 150 m. The surface elevation decreased gradually from the west to the east (as
shown in Figure 2a,b), while the middle part of the study area was relatively flat with a
slope less than 3◦. This study area was chosen as an ideal place for experimenting UAV-
based SfM snow depth retrieval for the following reason. In the winter, mountainous
areas often experience frequent wind gusts, which have a strong redistributing effect on
snow accumulation. Our study area was close to a wind turbine. It represented a typical
small open space in the Appalachian Mountains for snow accumulation that is heavily
influenced by winter wind. In this mountainous region, the mean annual snowfall can
vary from several decimeters to two meters [36–38]. On 8 January 2021, a snow storm
struck Boone and yielded an average snow accumulation of 10.16 cm (4 inches) on that
day and another 5.08 cm (2 inches) in the morning of January 9 (National Weather Service,
https://www.weather.gov/wrh/Climate?wfo=rnk, accessed on 23 April 2023).

https://www.weather.gov/wrh/Climate?wfo=rnk
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ary 2021. The DJI Phantom 4 is a customer-grade UAV that carries a low-cost CMOS cam-
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Figure 1. SfM-based orthophoto of the study area: (a) with snow cover on 9 January 2021, and
(b) without snow cover on 24 February 2021. The ID number of each GCP is displayed in red color.
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Figure 2. (a) DSM for snow-on date (9 January 2021); (b) DSM for snow-off date (24 February 2021);
and (c) snow depth based on the difference between the two DSMs.

We used a DJI Phantom 4 quadcopter UAV to collect photos of the study area right
after snowfall at 3:30 p.m. on 9 January 2021 and after snowmelt at 3:40 p.m. on 24
February 2021. The DJI Phantom 4 is a customer-grade UAV that carries a low-cost CMOS
camera, which well-suited the purpose of this study. The camera has a field of view (FOV)
of 84◦ and focal length of 8.8 mm (comparable to 24 mm focal length on a 35 mm film
camera). The dimension of each photo is 5472 × 3648. The photos were acquired at an
above-ground height of 45.72 m (150 feet). The front and side overlapping rates are 70%



Remote Sens. 2023, 15, 2297 5 of 18

and 80%, respectively. The ground sampling distance (spatial resolution) of the generated
orthophoto and DSM is about 1.5 cm.

Concurrent in-situ snow depths accurate to one tenth of a centimeter were measured
using a snow probe at 27 sampling points in the study area, as shown by the green points in
Figure 1. These in-situ snow depths ranged from 5.0 to 29.3 cm. Compared to the 12 points
on the left side, the 15 points on the right side had relatively higher depths (ranging from
15.0 to 29.3 cm) due to the blocking effect of the fence on the east of the 15 sampling
points. We also surveyed 15 ground control points (red diamonds in Figure 1) across the
entire study area using two GPS instruments, including the handheld Trimble GeoXH
and the Trimble DA2 GNSS receiver. All 15 GCPs were free from snow cover on the two
dates. The Trimble DA2 uses the real-time kinetic (RTK) technique and is able to achieve
horizontal and vertical accuracies of 1 and 2 cm, respectively, under optimal conditions.
The coordinates (x, y, z) measured by the Trimble GeoXH were not processed with any
differential correction. The survey generated two sets of GCP measurements, one set
with highly accurate coordinates and the other with low accuracy coordinates (hereinafter
referred to as the high-accuracy and low-accuracy sets). To verify the accuracies of the two
sets of GCPs, we also measured the coordinates of the 15 GCPs using a Nikon NPL-322
Series Total Stations, which provides measurements of the GCP coordinates at a millimeter-
level accuracy for the spatial scale of our study area. Compared to the coordinates (x, y,
z) measured by the total stations, the root mean square error (RMSE) values of the high-
accuracy set coordinates were 3.08, 3.02, and 7.0 cm, respectively, and the RMSE values of
the low-accuracy set coordinates were 30.25, 40.84, and 78.34 cm, respectively.

3. Methodology

In this study, the optical photos collected on the snow-on and snow-off dates were
separately processed using ERSI Drone2Map software, which implemented the general
SfM workflow described in Section 3.1 to generate orthophotos and DSMs for the two dates.
The high-accuracy and low-accuracy sets of GCP measurements were incorporated into the
SfM workflow following the strategies described in Section 3.2 in order to reduce the errors
in DSMs and orthophotos and to georeference them to a real-world coordinate system.
Figure 1a,b shows the orthophotos of the two dates. The SfM-based snow depth over the
study area were then derived by subtracting snow-off DSM from snow-on DSM. Figure 2a,b
shows the DSMs on the two dates and Figure 2c shows the derived elevation change. The
accuracy of SfM-based snow depth (elevation change) was evaluated in comparison to the
concurrent in-situ snow depths at the sampling points in Figure 2c (green points) with the
metrics described in Section 3.3.

3.1. Generation of DSM and Orthophoto with SfM

The structure from motion (SfM) technique originated from the field of computer vi-
sion and has been implemented by many software packages, for example, ESRI Drone2Map
used in this study. In general, the SfM workflow consists of the following five steps [39,40]:
(1) identifying keypoints (e.g., corners, line ends, intersections, etc.) from each photo using
the scale invariant feature transform (SIFT) algorithm [41,42]; (2) matching the correspon-
dence keypoints in the overlapping areas of two adjacent photos using the approximate
nearest neighbor k-dimensional trees approach [43]; (3) removing the outlier keypoints
using the random sample consensus (RANSAC) approach [44]; (4) determining the extrin-
sic camera parameters (referred to as “motion”) for each photo, such as camera location
and orientation, and simultaneously estimating the 3D position of each keypoint (referred
to as “structure” or sparse point cloud) by solving and optimizing a set of collinearity
equations [27]; (5) generating a dense 3D point cloud for each pixel on each photo based
on the sparse point cloud and the camera parameters obtained in Step 4 by applying a
patch-based multi-view stereo image matching [45].

In Step 4, initial values of the extrinsic camera parameters are first obtained from
the EXIF tags of UAV-collected photos, and they are used to estimate the 3D positions
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of keypoints through collinearity equations [39]. The camera parameters and keypoint
positions are then further refined by optimizing a non-linear cost function that represents
the errors between the observed and estimated keypoint positions on UAV-collected photos.
The optimization process is called bundle adjustment and is the step at which GCPs are
incorporated. The objectives of incorporating GCPs are twofold. First, it can help constrain
the non-linear cost function and refine the camera parameters and keypoint positions.
Second, it helps georeference the original sparse point cloud from the arbitrary coordinate
system to a real-world geographic or projected coordinate system. A seven-parameter
linear similarity transformation (i.e., three global translation parameters, three rotation
parameters, and one scaling parameter) is performed to achieve the georeferencing [39].
The coordinate system used for this study was NAD 1983 StatePlane North Carolina (2011).
DSMs and orthophotos are then generated based on the refined camera parameters and
dense 3D point cloud.

3.2. Strategy of Incorporating GCPs in SfM

Two sets of GCP measurements, the high-accuracy and low-accuracy sets, were col-
lected for our study area. To assess the influences of GCP measurement accuracy and
GCP deployment strategy on snow depth retrieval, each set of GCP measurements was
incorporated into SfM by following two strategies to produce DSMs.

In Strategy A, the same GCP measurements in each set (hereinafter referred to as the
Same-GCP strategy) were used to generate both the snow-on and snow-off DSMs and then
to estimate snow depth, as shown in Figure 3. We incorporated all 15 GCP measurements
at the beginning (Step 1 in Table 1) to generate the two DSMs and estimate snow depth.
Then, we removed one GCP measurement at each of the following steps. For example, in
Step 2 in Table 1, GCP 4 was removed. The coordinate measurements of the other 14 GCPs
(1–3, 5–15) were used to produce the snow-on and snow-off DSMs.
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Table 1. GCPs incorporated at each step in Strategies A and B.

Step Number of GCPs
Incorporated

GCPs Incorporated in Strategy A GCPs Incorporated in Strategy B

Snow-On/Snow-Off Subgroup1: Snow-On Subgroup2: Snow-Off

1 15 1–15
2 14 1–3, 5–15
3 13 1–3, 6–15
4 12 1–3, 6–9, 11–15
5 11 1–3, 6, 8, 9, 11–15
6 10 1, 3, 6, 8, 9, 11–15
7 9 1, 3, 6, 8, 9, 12–15
8 8 3, 6, 8, 9, 12–15 1, 3, 4, 6, 7, 9, 13, 15 2, 5, 6, 8, 10, 11, 12, 14
9 7 3, 6, 8, 9, 12, 13, 15 1, 4, 6, 7, 9, 13, 15 2, 5, 6, 8, 11, 12, 14
10 6 3, 6, 8, 9, 12, 15 1, 4, 6, 9, 13, 15 2, 6, 8, 11, 12, 14
11 5 3, 6, 8, 9, 15 1, 6, 9, 13, 15 2, 6, 8, 11, 14
12 4 3, 6, 8, 9 1, 6, 9, 15 2, 6, 8, 11
13 3 3, 6, 8 1, 9, 15 2, 6, 8

In Strategy B, different GCP measurements in each set (hereinafter referred to as the
Different-GCP strategy) were used to generate the snow-on and snow-off DSMs. As shown
in Figure 3, the 15 GCP measurements in each set were divided into two subgroups, one
subgroup for generating the snow-on DSMs and the other subgroup for the snow-off DSMs.
At the beginning (Step 8 in Table 1), each subgroup had eight GCP measurements (with GCP
6 in Figure 1 shared by the two subgroups). Then, one GCP measurement was removed
from each of the two subgroups at each step to generate the two DSMs. For example, in
Step 9 in Table 1, GCP 3 was removed from subgroup 1 and GCP 10 was removed from
subgroup 2. The remaining GCP measurements in the two subgroups were then used to
produce the snow-on and snow-off DSMs, respectively. The GCPs in each sub-group were
evenly distributed across the study area to ensure that the in-situ snow depth sampling
points were encompassed by the GCPs.

Strategy B in this study, the Different-GCP strategy, replicated the approach used by
most previous studies to incorporate GCPs and estimate snow depth [24,31,32,34]. Strategy
A served as a reference for Strategy B. By comparing the results of the high-accuracy and
low-accuracy sets under the two strategies, we were able to assess how SfM-based snow
depth retrieval is influenced by the errors in GCP coordinate measurements and how GCP
deployment strategies can help to mitigate the influence of the errors.

To further separate and evaluate the influences of horizontal (x, y) and vertical (z)
coordinate errors on SfM-based snow depth retrieval, we replaced the GCP heights (z)
in the low-accuracy set with the GCP heights in the high-accuracy set. This created a
new set of GCPs with relatively inaccurate horizontal coordinates and accurate vertical
coordinates, which was referred to as the accurate-Z set. We also created an accurate-
XY set by replacing the GCP horizontal coordinates (x, y) in the low-accuracy set with
the horizontal coordinates in the high-accuracy set. These two sets of GCPs were then
incorporated into SfM following Strategy B in Table 1 to generate DSMs and estimate
snow depth.

3.3. Assessment of SfM-Based Snow Depth Accuracy

For surfaces not covered by snow (e.g., the road surface in Figure 1, which had been
cleared after snowfall), the elevation was supposed to remain the same in both snow-off
and snow-on DSMs and the derived snow depth (i.e., elevation change) should be close to
zero. When the snow depth estimates on the road surface have a systematic (positive or
negative) deviation from zero, a bias between the two DSMs is observed. This bias could be
wrongly interpreted as snow accumulation or depletion. This study used the road surface
to estimate and remove bias in the derived snow depth. The bias was estimated as the
mean value of snow depth within the black polygon on the road surface in Figure 1.
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The accuracy of SfM-based snow depth was assessed in comparison to the in-situ
snow depths measured at the 27 sampling points in Figure 1. At each sampling point, the
SfM-based snow depth was estimated by an inverse-distance interpolation of the elevation
changes in the surrounding 9 pixels (in a 3 × 3 neighborhood). The accuracy was measured
by the Pearson correlation coefficient r [46], the root mean square error (RMSE), and the
slope of regression between in-situ snow depth and SfM-based snow depth at the 27
sampling points. The RMSE represents the absolute accuracy of SfM-based snow depth.
The smaller the RMSE, the higher the accuracy. The correlation coefficient r represents
the capability of the SfM-based technique to capture the variation in snow depth across
the study area. The closer the r value is to one, the stronger the capability. The slope of
regression represents the tendency to over-estimate or under-estimate snow depth. Ideally,
the slope value should be equal to one. If the intercept of regression equals zero, a slope
of regression larger than one usually indicates a tendency to overestimate snow depth,
whereas a slope less than one means a tendency to underestimate snow depth.

4. Results
4.1. Strategy A: High-Accuracy Set Verses Low-Accuracy Set

The high-accuracy set of GCP measurements was first incorporated into SfM following
Strategy A (the Same-GCP strategy) to generate DSMs and orthophotos for the two dates
and then to derive snow depth estimates. The low-accuracy set was also incorporated in
the same way to derive snow depth estimates. Figure 4 shows the scatterplots of SfM-based
snow depth estimates against in-situ snow depths for the two sets of GCP measurements.
Figure 5 shows the variations in RMSE, correlation coefficient r and linear regression slope
along with the number of incorporated GCPs.
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As expected, the high-accuracy set of GCP measurements produced better results than
the low-accuracy set in terms of the three metrics. The RMSE values of the high-accuracy
set ranged from 2.3 to 4.3 cm, slightly better than the RMSE values of the low-accuracy
set that ranged from 2.6 to 6.5 cm. The correlation coefficient r and regression slope of the
high-accuracy set remained quite stable along with the number of incorporated GCPs, as
shown in Figure 5, whereas clear variations were observed for the low-accuracy set. The
correlation coefficients were mostly higher than 0.9 for both sets.

The regression slope of the high-accuracy set was less than one (around 0.85) all the
time, indicating an underestimation of snow depth. For the low-accuracy set, the regression
slope was less than one when all GCPs were incorporated at the beginning. It increased
with the removal of GCPs and remained mostly larger than one (around 1.1) when the
number of GCPs was less than and equal to 10. This suggested that when using the low-
accuracy set of GCPs, the snow depth was underestimated at the beginning, then became
slightly overestimated as the number of GCP decreased. This trend can be clearly observed
in Figure 4 when the number of GCPs decreased from 14 to 4.

Another interesting observation is that as shown in Figure 5a for both sets, the RMSE
values gradually decreased as GCPs were removed at each step and then increased when
GCPs were further removed. The highest accuracies occurred when the number of GCPs
was 12 for the low-accuracy set and 10 for the high-accuracy set. This suggested that when
using the Same-GCP strategy, more GCPs did not necessarily produce more accurate snow
depth estimates. In general, the Same-GCP strategy helped generate highly accurate snow
depth estimates. With this strategy, the low-accuracy set of GCPs could generate snow
depth estimates with an accuracy comparable to that of the high-accuracy set. One thing to
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note is that in Figure 5 there was a relatively big jump in RMSE, r, and regression slope
when the number of GCPs decreased to 13. This was possibly caused by the large errors in
coordinate measurements of GCP 5 in Figure 1. After the removal of this GCP, the three
indicators became more stable.

4.2. Strategy B: High-Accuracy Set Verses Low-Accuracy Set

The high-accuracy and low-accuracy sets of GCP measurements were also incorpo-
rated following Strategy B (the Different-GCP strategy) to estimate snow depth for our
study area. Figure 6 shows the scatterplots of SfM-based snow depth estimates against
in-situ snow depths. For the high-accuracy set of GCP measurements, the accuracy of
SfM-based snow depth estimates was still quite high, even though its performance in terms
of the three metrics was slightly inferior to that of Strategy A (the Same-GCP strategy).
The correlation between snow depth estimates and in-situ snow depths was strong, with
r varying from 0.87 to 0.92. The regression slopes remained stably less than one (around
0.85), which was consistent with Strategy A and indicated an underestimation of snow
depth. The RMSE values were slightly higher than those in Strategy A and increased from
4.0 to 5.4 cm when the number of GCPs decreased from 8 to 3, indicating a degradation in
accuracy when fewer GCPs were incorporated. This echoed the results observed by Lee,
Park, Choi and Kim [24] that more GCPs produced better accuracy. In general, when using
the high-accuracy set of GCP measurements, the influence of Strategy B on the accuracy
of SfM-based snow depth estimates was limited. The snow depth accuracy was slightly
inferior, but still comparable to that of Strategy A.
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In contrast, when the low-accuracy set of GCP measurements was incorporated follow-
ing Strategy B to retrieve snow depth, the accuracy was much lower than that of Strategy
A. As shown in Figure 6, the RMSE values were high all the time and varied from 22.3 to
38 cm. Even though a correlation between SfM-based and in-situ snow depths could still
be observed, the regression slopes were mostly much higher than one. The SfM technique
heavily underestimated the snow depths for thin snow cover and produced negative snow
depths, while it largely overestimated the snow depth for relatively thick snow. The fewer
GCPs incorporated, the higher the slope. When the number of GCPs decreased to 3, a
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negative correlation between SfM-based and in-situ snow depths was observed, which was
not reasonable for accurate snow depth mapping. By comparing the performances of the
two sets of GCP measurements in Strategies A and B, it was reasonable to deduce that the
errors in GCP horizontal and vertical coordinates (x, y, z) were propagated into SfM-based
snow depths when using Strategy B to incorporate GCP measurements. It was also clear
that Strategy A could effectively prevent the propagation of GCP coordinate errors and
produce reliable SfM-based snow depths.

4.3. Strategy B: Accurate-Z Set Verses Accurate-XY Set

To further evaluate the individual influence of GCP horizontal coordinates (x, y) and
vertical height (z) on SfM-based snow depth retrieval, the accurate-Z and accurate-XY sets
of GCP measurements were incorporated separately following Strategy B to derive snow
depth for our study area. Figure 7 shows the scatterplots of SfM-based and in-situ snow
depths. Figure 8 summarizes and compares the results generated by incorporating the
high-accuracy, low-accuracy, accurate-Z, and accurate-XY sets following Strategy B. As
shown in Figure 7, the incorporation of the accurate-Z set produced evidently better snow
depth estimates than the incorporation of the accurate-XY set. For the accurate-Z set, the
RMSE values ranged from 6.6 to 12.5 cm, the correlation coefficient r varied from 0.85 to
0.92, and the regression slopes were in the range of 0.81–1.17. For the accurate-XY set, the
RMSE values were much higher, ranging from 17 to 39.6 cm, the r decreased from 0.83
to 0.48 along with the removal of GCPs, and the regression slope was higher than one
all the time. This comparison suggested that in this study the accuracy of GCP height (z)
was more crucial than that of GCP horizontal coordinates (x, y) for accurate snow depth
mapping using the SfM technique.
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On the other hand, compared to the high-accuracy set in Strategy B, the result produced
by incorporating the accurate-Z set was relatively inferior in terms of all three metrics,
as shown in Figure 8. In particular, the incorporation of the accurate-Z set produced
negative snow depth estimates for thin snow cover, as shown in Figure 7a,b,e,f. In addition,
it can be observed from Figure 8 that the results produced by the accurate-XY set were
generally better than the results produced by the low-accuracy set in Strategy B. These
two observations indicated that even though GCP height (z) was more important for SfM-
based snow depth retrieval, reducing the errors in GCP horizontal coordinates was still a
necessary step to further improve SfM-based mapping of snow depth. In particular, this
was more important for mountainous regions where acute topographic change can occur
within a short distance.

5. Discussion

As observed in Sections 4.1 and 4.2, the results generated by the high-accuracy and low-
accuracy sets of GCP measurements in Strategies A (Same-GCP strategy) and B (Different-
GCP strategy) were markedly different. The high-accuracy set produced reliable snow
depth estimates in both strategies, whereas for the low-accuracy set, reliable snow depth
estimates were only derived in Strategy A. The contrast highlights the effectiveness of
Strategy A in mitigating the influence of GCP coordinates errors on SfM-based snow depth
retrieval. It also entails a thorough discussion on how the errors in GCP coordinates are
propagated in SfM-based snow depth estimates and how we should survey and incorporate
GCPs in order to produce more accurate snow depth estimates.
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5.1. Influence of GCP Coordinate Errors under Different GCP Deployment Strategies

As mentioned in Section 3.1, the role of GCPs in SfM workflow is twofold. It helps to
optimize camera parameters and the 3D locations of keypoints (sparse point cloud) and
then georeference the sparse point cloud. The DSMs and orthophotos are then generated
based on the optimized camera parameters and the georeferenced sparse point cloud.
Therefore, the optimizing and georeferencing processes are the two ways though which the
errors in GCP coordinates (x, y, z) are propagated to the two DSMs and then to snow depth
estimates. The optimizing process determines the 3D position of each keypoint relative
to the surrounding keypoints. In other words, it determines the relative topographic
undulation of the surface in our study area, on both the snow-off and snow-on dates.
Georeferencing is achieved by using a linear similarity transformation [39]. It lines up the
sparse point cloud (therefore, DSMs and orthophotos) with a real-world coordinate system
through linear global translation, rotation, and scaling. These operations are applied in the
same way to all points in the cloud. They are not involved in the determination of keypoints’
relative locations nor change the surface’s relative topographic undulation. When GCP
measurements are incorporated, both the optimizing and georeferencing processes treat the
GCP measurements as ground truth and try to minimize the overall discrepancy between
the GCP measurements and the corresponding keypoints.

Figure 9 shows a schematic of the influence of GCP coordinate errors on snow depth
estimates. Figure 9a–c illustrates the influence of coordinate errors on the snow-on and
snow-off surface profiles when using Strategy A, while Figure 9d–f illustrates the influence
of coordinate errors when using Strategy B. Figure 9a,d shows the true snow-on and snow-
off surface profiles (snow and ground surfaces). As shown in the two figures, when the GCP
coordinates are accurate and have no errors, the snow depth estimates are accurate for both
strategies. These were the results observed in Sections 4.1 and 4.2 when the high-accuracy
set of GCP measurements was used.

Remote Sens. 2023, 15, x FOR PEER REVIEW  13  of  17 
 

 

Therefore, the optimizing and georeferencing processes are the two ways though which 

the errors in GCP coordinates (x, y, z) are propagated to the two DSMs and then to snow 

depth estimates. The optimizing process determines the 3D position of each keypoint rel-

ative to the surrounding keypoints. In other words, it determines the relative topographic 

undulation of  the surface  in our study area, on both  the snow-off and snow-on dates. 

Georeferencing is achieved by using a linear similarity transformation [39]. It lines up the 

sparse point cloud (therefore, DSMs and orthophotos) with a real-world coordinate sys-

tem through linear global translation, rotation, and scaling. These operations are applied 

in the same way to all points in the cloud. They are not involved in the determination of 

keypoints’  relative  locations nor  change  the  surface’s  relative  topographic undulation. 

When GCP measurements are incorporated, both the optimizing and georeferencing pro-

cesses treat the GCP measurements as ground truth and try to minimize the overall dis-

crepancy between the GCP measurements and the corresponding keypoints. 

Figure 9 shows a schematic of the influence of GCP coordinate errors on snow depth 

estimates. Figure 9a–c illustrates the influence of coordinate errors on the snow-on and 

snow-off surface profiles when using Strategy A, while Figure 9d–f illustrates the influ-

ence of coordinate errors when using Strategy B. Figure 9a,d shows the true snow-on and 

snow-off surface profiles (snow and ground surfaces). As shown in the two figures, when 

the GCP coordinates are accurate and have no errors, the snow depth estimates are accu-

rate for both strategies. These were the results observed in Section 4.1 and 4.2 when the 

high-accuracy set of GCP measurements was used. 

 

Figure 9. Influence of Strategies A and B on SfM-based snow depth estimates. (a–c) Strategy A. (d–

f) Strategy B. 

If errors exist in GCP horizontal coordinates (x, y) and/or vertical height (z), when 

incorporating GCPs using the Same-GCP strategy (Strategy A), the snow-on and snow-off 

surface profiles will both be modified or transformed in the same way to best fit the GCPs. 

For example, as shown in Figure 9b, the snow-on and snow-off profiles were shifted to the 

right with the same distance. Similarly,  in Figure 9c, both profiles were changed  in the 

same way. Even though the errors in GCP (x, y) and (z) were propagated to the snow-on 

and snow-off profiles, they were canceled out when the two profiles were subtracted, thus 

generating quite reliable snow depth estimates. This was the result observed in Section 4.1 

when the low-accuracy set of GCP measurements was used. 

However, if the Different-GCP strategy (Strategy B) is used, the errors in GCP (x, y) 

and (z) are propagated separately and independently to the snow-off and snow-on pro-

files. As shown in Figure 9e, the snow-off profile was shifted to left whereas the snow-on 

Figure 9. Influence of Strategies A and B on SfM-based snow depth estimates. (a–c) Strategy A.
(d–f) Strategy B.

If errors exist in GCP horizontal coordinates (x, y) and/or vertical height (z), when
incorporating GCPs using the Same-GCP strategy (Strategy A), the snow-on and snow-off
surface profiles will both be modified or transformed in the same way to best fit the GCPs.
For example, as shown in Figure 9b, the snow-on and snow-off profiles were shifted to
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the right with the same distance. Similarly, in Figure 9c, both profiles were changed in the
same way. Even though the errors in GCP (x, y) and (z) were propagated to the snow-on
and snow-off profiles, they were canceled out when the two profiles were subtracted, thus
generating quite reliable snow depth estimates. This was the result observed in Section 4.1
when the low-accuracy set of GCP measurements was used.

However, if the Different-GCP strategy (Strategy B) is used, the errors in GCP (x, y)
and (z) are propagated separately and independently to the snow-off and snow-on profiles.
As shown in Figure 9e, the snow-off profile was shifted to left whereas the snow-on profile
was shifted to right due to the errors in GCP (x, y). In Figure 9f, the snow-off profile was
shifted to a lower location than the true snow-off surface profile whereas the snow-on
profile was dragged to a higher location than the true snow-on profile due to the errors in
GCP (z). These errors were largely amplified when the snow-off profile was subtracted
from snow-on profile, thus producing highly inaccurate snow depth estimates. This was the
result observed in Section 4.2 when the low-accuracy set of GCP measurements was used.

Note that for legibility, the errors in horizontal coordinates (x, y) and in vertical height
(z) are displayed separately in Figure 9b,e and Figure 9c,f. In addition, the snow-on and
the snow-off surface profiles in Figure 9b,c,e,f maintain the same shapes of the true snow-
on and snow-off surface profiles in Figure 9a,d, for the purpose of legibility. This may
deliver a false message that the accuracy of snow depth estimates could be improved by
manually co-registering the snow-on and snow-off DSMs, particularly for Figure 9e,f. In
real situations, however, the GCP horizontal and vertical errors are entangled and can
hardly be separated from each other. Therefore, simply reducing the horizontal or vertical
errors cannot significantly improve the accuracy of snow depth estimates. This was the
result observed in Section 4.3. Additionally, when inaccurate GCPs are incorporated into the
SfM optimizing process, the errors in GCP coordinates would result in inaccurate camera
parameters and sparse point clouds, which could largely change the relative locations of
surface features on either the snow-on or snow-off DSMs. In other words, the shape of
the snow-on and snow-off surface profiles in Figure 9b,c,e,f could be quite different from
the shape of the true snow-on and snow-off profiles in Figure 9a,d. The errors caused
by inaccurate camera parameters and sparse point clouds cannot be easily removed by
co-registering the snow-on and snow-off DSMs. In fact, we co-registered the snow-on and
snow-off DSMs generated by low-accuracy set in Section 4.2 and by the accurate-Z set in
Section 4.3 to derive snow depth estimates. The results showed no big improvement in the
accuracy of snow depth estimates.

5.2. Optimal GCP Deployment Strategy for UAV-Based SfM Snow Depth Retrieval

Existing studies have rarely investigated whether the GCP deployment strategy could
help improve snow depth retrieval using the UAV-based SfM technique. Rigorous com-
parisons of the results reported by previous studies were not possible due to the huge
differences in their study areas and snow cover conditions. However, such comparisons
could provide a general sense of how the GCP deployment strategy may influence UAV-
based SfM snow depth retrieval. For example, Harder et al. [26] used the same GCPs (the
Same-GCP strategy in this study) to generate snow-on and snow-off DSMs and reported
RMSE values of 8.5, 8.8, and 13.7 cm for areas with alpine, short, and tall vegetation, re-
spectively. Fernandes et al. [25] used the Same-GCP strategy and reported RMSE values
varying from 1.58 to 10.56 cm. Goetz et al. [32] and De Michele et al. [31] used different
GCPs (the Different-GCP strategy in this study) to produce snow-on and snow-off DSMs
and reported overall RMSE values of 15.2 and 14.3 cm, respectively. Lendzioch et al. [47]
used the Different-GCP strategy and reported RMSE values of 16, 32, and 31 cm for open
area (snow ablation), forest (snow accumulation), and forest (snow ablation), respectively.

In this study, we conducted a rigorous investigation of how different GCP deploy-
ment strategies could mitigate errors in GCP measurements and improve snow depth
estimates. It is reasonable to conclude that the Same-GCP strategy is a better option than
the Different-GCP strategy for accurately mapping snow depth with SfM-based photogram-
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metry technology. Even though DGPS (either PPK or RTK) is usually used to survey GCPs
for SfM-based snow depth mapping, incorporating GCPs using the Same-GCP strategy can
further improve the accuracy of snow depth estimates, as observed in Sections 4.1 and 4.2.
Furthermore, DGPS performs best in open space. In mountainous areas, its accuracy is
often heavily hampered by the surrounding topography and vegetation. For example,
the horizontal and vertical uncertainties of the DGPS used in this study were observed
to be two times larger in the valley than in open space. The Same-GCP strategy was less
susceptible to errors in GCP horizontal and vertical coordinates, as observed in Section 4. It
is a more suitable option for mapping snow depth in mountainous regions.

The Same-GCP strategy requires the same set of GCP measurements for both snow-on
and snow-off DSMs. In this study, the average snow depth was about 15 cm. We managed
to identify 15 GCPs that were not covered by snow in our study area. In some areas, the
snow can be thick enough to cover most of the surface features in a natural setting. In this
case, it would be hard to identify GCPs that are free from snow cover on both snow-on and
snow-off dates. A viable solution for those areas is to manually set up a series of GCPs that
are higher than the snowpack and are maintained during the whole period between the
snow-on and snow-off dates. For example, Fernandes et al. [25] used 30 cm square plywood
and 15 cm diameter plastic disks as GCPs, which were suspended 1 and 1.3 m above ground
surface. As observed in Section 4.1, when using the Same-GCP strategy, more GCPs did
not necessarily improve snow depth accuracy. Actually, three GCPs were sufficient to
produce snow depth estimates with quite high accuracy (4.3 cm for the high-accuracy and
low-accuracy sets). This does not require significant extra labor effort in the field and is
worthwhile for accurate snow depth mapping.

One thing to note is that the snow depth in our study area varied from 5 to 30 cm,
with an average of about 15 cm. According to the experiments in this study, Strategy
A performed best to retrieve snow depth in our study area. In the future, this strategy
will be further tested in areas with relatively thick snow using the method discussed
above and in areas with complex underlying surface conditions (e.g., grass, short shrubs),
different topographic undulations, and various surrounding environments. In addition,
when collecting drone optical photos for snow depth mapping, the drone should be flown
following several communication protocols to avoid potential security issues, as denoted
in [48,49].

6. Conclusions

This study investigated the influence of errors in GCP coordinates on the accuracy
of snow depth estimates. Two sets of GCP measurements with different accuracy levels
(high-accuracy and low-accuracy) were incorporated following two strategies (Same-GCP
and Different-GCP) into SfM processing to generate snow-on and snow-off DSMs and
derive snow depths for our study area. The results showed that the Different-GCP strategy
tended to amplify and propagate GCP coordinate errors into snow depth estimates, thus
heavily decreasing the accuracy. Conversely, if the Same-GCP strategy was applied, the
GCP coordinate errors were propagated in the same way to the snow-on and snow-off
DSMs and were canceled out when the two DSMs were subtracted to derive the snow depth
estimates. These results therefore demonstrated that the Same-GCP strategy effectively
mitigated the influence of GCP coordinate errors on SfM-based snow depth mapping and
increased the accuracy of derived snow depth estimates. When using the Different-GCP
strategy, increasing the number of GCPs improved the accuracy of snow depth estimates,
which was consistent with the observations in a previous study [24]. When using the
Same-GCP strategy, increasing the number of GCPs did not help produce better snow
depth accuracy. In fact, three GCPs that enclosed the area of interest helped to produce
highly accurate snow depth estimates.
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After comprehensively evaluating the effectiveness of different sets of GCP measure-
ments using the two strategies, the Same-GCP strategy—using the same GCP measurements
to generate snow-on and snow-off DSMs—is highly recommended for UAV-based SfM
snow depth retrieval. For areas in which thick snow covers most of the natural surface
features and identifying the same GCPs on the two dates is difficult, man-made targets
higher than the snow cover, e.g., the square plywood and plastic disks used by Fernan-
des et al. [25], are recommended to be set up and maintained for UAV flights collecting
data throughout the whole snow season.
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