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Abstract

Everything that humanity creates has its vulnerabilities, and software is no exception. As technol-
ogy progresses, software usage and complexity increase, and so do software vulnerabilities (and
the damage they cause). The software industry is aware of this problem, and concerns regarding
detecting software vulnerabilities play a fundamental role since the start of projects’ development
to reduce the risks of attacks.

Nonetheless, due to the nature of this issue, it has yet to be solved. Companies implement
several security measures in the Software Development Life Cycle (SDLC), such as security audits
and static/dynamic code analysis. However, these are usually performed by security experts and
only later in the SDLC when the software has already been developed. This approach is not
practical since it is not possible to detect and fix vulnerabilities as soon as they are created, and
only people with security expertise can perform those tasks.

Deep Learning (DL) has interesting applications for vulnerability detection, and exciting progress
regarding this topic has been made. Transformers, a DL model type, can be used to detect vulner-
abilities in high-level programming languages, such as Java. Code vulnerability scanners based
on DL remove the need for expertise in the security area and allow developers to integrate these
kinds of tools into the early stages of the SDLC.

Most software is hosted in online repositories, as developers and companies need better ways
to store and manage their source code. GitHub, the world’s largest open-source community, pro-
vides a platform for developers to share their code, which inherently leads to being home to various
vulnerabilities.

In this thesis, we implemented a novel tool that leverages Deep Learning models to detect
vulnerabilities in Java source code. The tool, J-TAS, implemented as a GitHub Action, is designed
to be used early in the SDLC, marking a significant shift-left in vulnerability detection. This
approach allows developers to identify and rectify vulnerabilities as soon as they emerge, and
reduces the reliance on specialized security expertise.

However, our study found that the synthetic nature of the datasets used limited the tool’s
efficacy, leading to suboptimal results. Despite this, the work developed is marked as a proof-of-
concept, standing as a testament to the innovation of Deep Learning in the DevOps scenario.
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Resumo

Tudo o que a humanidade cria tem as suas vulnerabilidades, e o software não é excepção. À
medida que a tecnologia avança, a utilização e a complexidade do software aumentam, assim como
as vulnerabilidades do software (e os danos que causam). A indústria de software está ciente deste
problema, e as preocupações relativas à deteção de vulnerabilidades de software desempenham
um papel fundamental desde o início do desenvolvimento de projectos para reduzir os riscos de
ataques.

No entanto, devido à natureza deste problema, ainda há muito a fazer para o resolver. As
empresas implementam várias medidas de segurança no Ciclo de Vida do Desenvolvimento de
Software (SDLC), tais como auditorias de segurança e análise de código estática/dinâmica. Con-
tudo, estas são geralmente realizadas por peritos em segurança e só mais tarde no SDLC quando o
software já tiver sido desenvolvido. Esta abordagem não é prática, uma vez que impossibilita de-
tetar e corrigir vulnerabilidades assim que estas são criadas, e apenas pessoas com conhecimentos
de segurança podem executar essas tarefas.

O Deep Learning (DL) tem aplicações interessantes para a deteção de vulnerabilidades, e
foram feitos progressos entusiasmantes em relação a este tópico. Transformer, um tipo de modelo
DL, pode ser utilizados para detetar vulnerabilidades em linguagens de programação de alto nível,
tais como Java. Os scanners de vulnerabilidade de código baseados em DL eliminam a necessidade
de perícia na área da segurança e permitem aos programadores integrar este tipo de ferramentas
nas fases iniciais do SDLC.

A maioria do software está alojada em repositórios online, uma vez que os programadores e as
empresas precisam de melhores formas de armazenar e gerir o seu código fonte. GitHub, a maior
comunidade de código aberto do mundo, fornece uma plataforma para os programadores partil-
harem o seu código, o que conduz intrinsecamente a um aglomerado de várias vulnerabilidades.

Nesta tese, implementámos uma nova ferramenta que utiliza modelos de aprendizagem pro-
funda para detetar vulnerabilidades no código-fonte Java. A ferramenta, J-TAS, implementada
como uma GitHub Action, foi concebida para ser utilizada no início do SDLC, marcando uma mu-
dança significativa na deteção de vulnerabilidades. Esta abordagem permite que os programadores
identifiquem e rectifiquem as vulnerabilidades assim que estas surgem, e reduz a dependência de
conhecimentos especializados em segurança.

No entanto, o nosso estudo constatou que a natureza sintética dos dados utilizados limitou a
eficácia da ferramenta, levando a resultados abaixo do ideal. Apesar disso, o trabalho desenvolvido
é marcado como uma prova de conceito, sendo um testemunho da inovação do Deep Learning no
cenário de DevOps.

Palavras-chave: Deteção de vulnerabilidades, Segurança de software, Transformer

Classificação ACM:
• Security and privacy → Software and application security → Software security engineering
• Computing methodologies → Artificial intelligence → Natural language processing
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Chapter 1

Introduction

1.1 Context

As technology advances, the use of software has become increasingly prevalent in every aspect

of our lives. However, as software usage increases, so do the number of vulnerabilities. Software

vulnerabilities are weaknesses in a piece of software that attackers can exploit to compromise the

system [24]. These vulnerabilities can come in the form of security bugs or design flaws and can

lead to a wide range of consequences, such as data breaches, identity theft, financial loss, and even

the loss of life in the case of critical systems.

In order to mitigate the risks associated with software vulnerabilities, companies implement

various security measures throughout the Software Development Life Cycle (SDLC). Nonetheless,

most of these measures, such as security audits and static code analysis, are performed by security

experts and only later in the SDLC when the software has already been developed. This way,

developers, who are responsible for introducing vulnerabilities while creating software, are not

heavily involved in the security process [72].

The shift-left principle refers to the idea of incorporating security into the early stages of the

SDLC rather than waiting until the end of the process to perform testing [21]. Integrating security

into the development process is essential since the earlier security is addressed, the less effort and

cost will be required [67]. Adopting the shift-left principle can be challenging, as it requires a

change in the way software is developed. Organizations may struggle to incorporate security into

the development process, as it requires a shift in culture and the integration of new processes and

tools.

Deep Learning (DL) has interesting applications for vulnerability detection, and research in

this area has seen exciting progress. DL-based tools smooth security integration into the software

development process, as they do not require security expertise to configure conventional tech-

niques. Additionally, they do not suffer from high false-positive/false-negative rates [6]. Current

state-of-the-art (SOTA) DL-based models have achieved a 90% F1-score, with some reporting as

high as 99% accuracy in detecting vulnerabilities in source code, outperforming static analysers

[69]. Despite these outstanding results, some problems still need to be addressed, such as a lack

1
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of real-world scenarios datasets, data imbalance, the semantic dependency between code, and lack

of support for multiple programming languages [6, 60].

1.2 Motivation

Regardless of the progress made towards vulnerability detection, the number of software vulnera-

bilities reported is still rising at an alarming rate [5]. Thus it is essential to continue the research on

this topic and to explore new approaches to improve the current state-of-the-art. The transformer

model is a novel DL architecture, introduced in 2017 [75], that has been used in various Natural

Language Processing (NLP) tasks, such as machine translation, text summarisation, and question

answering. The architecture has rapidly become the dominant architecture for NLP, outperforming

alternative neural models in tasks related to natural language understanding and natural language

generation [77]. As for vulnerability detection, since common vulnerabilities often have defined

structures and patterns [88], as do natural language texts, it is trivial to think of the use of trans-

formers for this task.

GitHub’s popularity as a software repository is undeniable. It is home to millions of projects

and the most prominent open-source community in the world. Nonetheless, its popularity leads

to many vulnerabilities created by open-source developers being hosted and shared within the

community. This calls for the development of tools that can detect vulnerabilities in GitHub’s

repositories, which can be provided on GitHub’s marketplace as GitHub Actions. GitHub Actions

are small pieces of code that can be integrated into the development environment of the millions

of GitHub users, thus enabling the integration of security into the development process.

Currently, GitHub has some vulnerability detection analysis already integrated into open-

source repositories by default, and some Actions are available to further improve the security

and quality of the code. However, there are no Actions based on the Transformer architecture.

Taking into account the work carried out by Mamede et al.[46] for a proof-of-concept for a

Transformer-based IDE extension for vulnerability detection, we have the opportunity to develop

the first Transformer-based GitHub Action for vulnerability detection.

1.3 Objectives

Considering the promising advances in DL vulnerability detection, alongside the work carried out

previously, and the popularity of GitHub as a software repository, we propose:

The first Transformer-based GitHub Action for vulnerability detection.
The tool developed must be able to identify potential vulnerabilities in Java files and provide

meaningful feedback to developers, promoting a safe code development environment, with

the strength of the Transformer model.
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The creation of a curated vulnerability detection dataset, which can be used to train and
evaluate the developed model.

Data quantity and quality are essential for developing a robust model, and the dataset must

be representative of real-world scenarios to ensure the model’s generalization.

To deepen current research on the use of Transformers for vulnerability detection.
Since it is a novel architecture and few studies have been conducted on this topic, we in-

tend to contribute to the research on this problem by exploring different approaches and

architectures, comparing them with state-of-the-art results.

1.4 Document Structure

The rest of this document is structured as follows:

• Chapter 2 provides the background of vulnerability detection, including key concepts, tech-

niques and models used for this task.

• Chapter 3 conducts a thorough examination of the current state-of-the-art in Deep Learning-

based vulnerability detection. This chapter analyses the most relevant works in the field,

exploring their methodologies, techniques, and presenting the results achieved.

• Chapter 4 formalises the problem statement and outlines this dissertation’s proposed so-

lution. In this chapter, the specific objectives and work plan of the research are defined,

providing a clear and concise overview of the proposed approach.

• Chapter 5 outlines the detailed methodology employed to implement the proposed solution.

This chapter elaborates on the dataset utilized, the models developed, and the integration of

the solution into a GitHub Action.

• Chapter 6 presents the results obtained from the conducted experiments. This chapter metic-

ulously showcases and examines the outcomes, providing critical insights and analysis of

the experimental findings.

• Chapter 7 summarizes the work conducted in this dissertation, highlighting our main con-

tributions. Additionally, this chapter proposes future directions for further research and

improvements to the proposed solution.



Chapter 2

Background

This chapter provides a comprehensive overview of the background information related to vulnera-

bility detection. Section 2.1 discusses the current state of software vulnerabilities, their underlying

causes, and methodologies for classifying and prioritizing. Section 2.2 focuses on SDLC models

and security practices that organizations adopt, emphasizing the importance of addressing secu-

rity issues early in the SDLC. Section 2.3 covers the traditional code analysis techniques and the

application of Deep Learning for vulnerability detection. Section 2.4 provides an overview of the

most commonly used Deep Learning models in vulnerability detection, including their architec-

tural design and key features. Section 2.8 focuses on the evaluation metrics used to measure the

performance of Deep Learning models.

2.1 Software vulnerabilities reports and causes

Society has undergone a rapid digitisation process in which technology has become an integral part

of our daily life. During the COVID-19 epidemic, people were compelled to work from home and

use internet services for education, entertainment, and communication, which raised technology

usage even further [74]. With this digitisation comes the need to ensure the security and stability

of the digital systems on which we rely.

As more software is developed and deployed, the risk of vulnerabilities has become a critical

issue for both organizations and individuals. The steadily increasing number of software vulnera-

bilities reported in recent years is concerning, as it shows that software security is not improving.

The National Vulnerability Database (NVD) reported a record of 25106 vulnerabilities in 2022, a

24.5% increase compared to 2021 [51].

Open-source software is publicly available software that anyone can modify and redistribute.

It is a popular choice among developers as it allows them to build upon existing code and share

their work with the community. However, the reuse of code, collaborative development and use of

third-party libraries are the main causes of vulnerabilities [48]. Additionally, the use of AI code

assistants, such as GitHub Copilot, has been shown to produce significantly less secure code [57].

4
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2.1.1 Vulnerabilities classification

Several classification methods have been established to define and describe the various sorts of

vulnerabilities in order to help understand and manage software vulnerabilities. These taxonomies

play a crucial role in not only understanding the vulnerabilities’ nature but also in preparing ade-

quate countermeasures. They allow organizations to prioritize their efforts and resources in a more

organized and efficient manner.

One of the widely recognized classification methods is the Common Vulnerabilities and Ex-

posure (CVE) 1. It is a dictionary of publicly known information about specific vulnerability in-

stances within a product or system. Each record contains an identification number, a description,

and at least one public reference for publicly known vulnerabilities [49].

Another important system is the Common Weakness Enumeration (CWE) 2. It is a community-

developed list of software weaknesses types, providing a common vocabulary for the community

to develop tools for identifying these vulnerabilities and improving system security [11]. The

NVD uses the CWE to score CVEs.

The Common Vulnerability Scoring System (CVSS) 3 is a standard for quantifying the severity

of software vulnerabilities. It provides a numerical score based on the impact of the vulnerability

and the likelihood of it being exploited. The CVSS score ranges from 0 to 10, with 10 being the

most critical [52].

2.2 Shift-left principle and security in the SDLC

In the current digital landscape, software development plays a crucial role in the success of busi-

nesses. The SDLC is a methodology used to manage the development and maintenance of soft-

ware products. Several models have been proposed to describe the SDLC, including the waterfall,

spiral, agile, and DevOps models. Security has traditionally been regarded as a non-functional

requirement, only considered at the end of the process, when the software is already developed

[59]. However, the increasing concerns regarding software security lead to the creation of models

that bring more awareness to this requirement and integrate it into the early stages of the SDLC,

such as the DevSecOps model 4.

Shifting-left security is a practice that aims to incorporate security considerations into the

SDLC as early as possible rather than as an afterthought. By addressing security issues early

in the SDLC, organisations can reduce the effort and cost required to achieve the same level of

security. Additionally, shifting-left security minimises technical debt by addressing security flaws

earlier during development, rather than after the software is in production [67].

1https://www.cve.org/
2https://cwe.mitre.org/
3https://www.first.org/cvss/
4https://www.devsecops.org/

https://www.cve.org/
https://cwe.mitre.org/
https://www.first.org/cvss/
https://www.devsecops.org/
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Manual code reviews, static code analysis, and penetration testing are commonly employed

security practices within the SDLC. However, these practices can be labour-intensive and time-

consuming [59], and require specialised tools typically operated by security experts, separately

from software development teams. This results in additional overhead and can lead to a lack of

ownership of security among the development team [72]. Furthermore, integrating these security

practices may negatively impact the development process if not implemented effectively, posing

a challenge for organisations prioritising speed and efficiency in the development process. Addi-

tionally, development teams may be resistant to incorporating these practices early on as they may

view them as an added burden or a delay to the software delivery. Thus current security practices

integrated into the SDLC are unsuitable for the shift-left principle.

2.3 Code analysis techniques

As a crucial part of software development, code analysis helps identify potential security vulner-

abilities, allowing organisations to take appropriate measures to mitigate the risks that arise from

them. However, code complexity and the sheer volume of code that needs to be analysed make this

a daunting task. Code analysis tools provide a solution to this problem, but they are not without

their own issues. It is critical to consider false positives and false negatives when evaluating the

effectiveness of a code analysis tool. When a tool reports a vulnerability that does not exist, this

is referred to as a false positive. In contrast, false negatives arise when a tool fails to identify a

vulnerability that actually exists. False positives are a significant issue, as they can lead to unnec-

essary work and cause developers to lose trust in the tool. False negatives, on the other hand, can

lead to security vulnerabilities going unnoticed, creating a false sense of security, which can have

serious consequences.

2.3.1 Manual code review

Manual code review involves a human analyst carefully reviewing the code by hand to identify po-

tential security weaknesses [19]. It can include looking for common vulnerabilities, such as SQL

injection, cross-site scripting, and buffer overflows, as well as reviewing the code for compliance

with security standards.

Manual code review is an effective method for identifying vulnerabilities, as it allows a thor-

ough examination of the code in its full context. However, it is the most time-consuming and

labour-intensive method of code analysis and does not scalable to large codebases. Furthermore,

it is susceptible to human error, as it requires the analyst to deeply understand the code and the

vulnerabilities it is sensitive to [7].

2.3.2 Static code analysis

Static analysis involves examining the source code without executing it. It is a rule-based method,

meaning analysis is performed against manually predefined vulnerability rules.
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Static code analysis tools have 100% code coverage, can detect multiple vulnerabilities, and

do not require high-security knowledge as manual code review. Additionally, due to the absence

of the need for code execution, these techniques offer quick analysis times and are well-suited for

integration into the SDLC at an early stage. Nonetheless, these tools report every vulnerability,

even with the slightest probability, and are susceptible to many false positives since they are un-

able to extract the full context of the code [36]. This can lead to a loss of trust in the tool and

unnecessary work to confirm every potential vulnerability [7]. Furthermore, it cannot detect all

vulnerabilities, such as those dependent on runtime conditions.

2.3.3 Dynamic code analysis

Dynamic analysis involves analysing the behaviour of code in runtime. As such, these techniques

require the code to be valid to execute, which is not always the case, especially earlier in develop-

ment.

Dynamic analysis tools are known for their high accuracy in detecting vulnerabilities, as they

test the program with a range of extreme inputs. Nevertheless, this approach also has several

limitations, such as limited code coverage as they only test the executed code, the difficulty and

time-consuming process of creating appropriate test sets, and the potential for long runtime times

[36]. Additionally, they are susceptible to false negatives since they cannot detect vulnerabilities

that are not triggered by the defined test inputs.

2.3.4 Hybrid code analysis

Hybrid code analysis combines the advantages of static and dynamic analysis, providing a more

comprehensive view of the code. This approach is capable of identifying vulnerabilities that are

not triggered by the defined test inputs, and detect vulnerabilities that are dependent on runtime

conditions. Thus can identify a broader range of vulnerabilities and provide more accurate results

than the previously mentioned techniques alone. However, this approach naturally inherits the

drawbacks of both static and dynamic analysis, such as the need for manually defined rules, a

large test set, and the susceptibility to false positives and false negatives [79].

2.3.5 Deep Learning-based analysis

In order to overcome the limitations of the previously mentioned techniques, Deep Learning-based

code analysis has been proposed. Deep Learning is a subfield of machine learning that utilizes

artificial neural networks to learn from complex data. It has been applied in a variety of domains,

including computer vision, natural language processing, and cybersecurity. In the context of code

analysis, deep learning has been used for malware identification, prediction of methods names and

types, semantic code search, and classification of vulnerable code [66].

Unlike traditional code analysis techniques, deep learning-based code analysis does not require

manually defined rules and can learn features from the vulnerable code itself [40]. When trained

on an adequate amount of data, DL models can learn general patterns and features of the code,
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allowing them to perform well on new and unseen code. The use of DL for vulnerability detection,

which aims to learn vulnerable code patterns in the training data, has achieved promising results.

However, the effectiveness of DL-based code analysis significantly relies on the quality of the

training data. Furthermore, the collection of a sufficient amount of data necessary to train the

models properly requires much effort. These issues lead to data being the main barrier to adopting

these techniques in practice [10].

2.4 Deep Learning models overview

Several deep learning models have been proposed to detect vulnerabilities in software. The appro-

priate model selection for a given task depends on the type of information one wishes to extract

from the source code. Token-based and graph-based models are the popular choices for vulnera-

bility detection [6]. This section provides an overview of some of the most employed DL models

for vulnerability detection, including their architecture and key features.

2.4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN), first proposed by Hopfield [35], are a type of artificial neural

networks designed to handle sequential data. They are particularly well-suited for tasks such as

natural language processing, speech recognition, and time series analysis, where the goal is to

predict the next value in a sequence based on the previous values [18].

RNNs are composed of interconnected layers: the input layer, the hidden layer, and the output

layer. The input layer receives the input data, the hidden layer is responsible to processes that data,

and the output layer outputs the result. The hidden layer is composed of a series of neurons, each

of which is connected to the neurons in the previous layer, as well as to itself through a feedback

loop. This loop allows the network to remember the previous states and use them to predict the

next output [64], effectively creating a working memory. An illustration of RNN architecture is

presented in Figure 2.1.

Working
Memory

Input Layer

Hidden Layer

Output Layer

Unfold ...

Figure 2.1: RNN architecture

The training of RNNs is typically done using Backpropagation through Time (BPTT), a vari-

ant of Backpropagation that allows the network to learn from data sequences. The gradients are

computed by propagating the error back through the network, considering the dependencies be-

tween the different time steps. However, as the dependencies increase, the gradient calculation
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becomes increasingly unstable, resulting in either an explosion or decay of the gradients [70].

This is known as the vanishing/exploding gradient problem, which poses a significant challenge

in training RNNs on long sequences. The exploding gradient problem can be addressed by im-

plementing techniques such as gradient clipping, which limits the gradient values to a fixed range,

or by specifying some maximum number of time steps along which the error is propagated. On

the other hand, the vanishing gradients problem is more complex and requires modifications to

the basic RNN architecture. To address this issue, Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU) network architectures have been proposed [83].

2.4.2 Long Short-Term Memory Neural Networks

The Long Short-Term Memory (LSTM) neural network is a type of RNN that is able to learn

long-term dependencies in sequences, overcoming the exploding and vanishing gradients problem

by using gates. Hochreiter and Schmidhuber [34] first proposed it, and it has since become one of

the most popular RNN architectures.

The LSTM network is composed of memory cells that store information over time. Each cell

has an input gate, an output gate, and a forget gate, which control what is stored, read and written

on the cell [64]. The input and output gates control the flow of information, preventing irrelevant

information from entering or leaving the memory block. The forget gate weights the information

inside the cells, allowing the network to forget irrelevant information, which can be helpful to

prevent biases [68]. This way, besides integrating the standard working memory of vanilla RNNs,

LSTM also have long-term memory mechanisms, excelling on tasks that require the network to

remember a limited amount of data over long periods of time [23].

Conventional RNNs analyse only the sequence’s direction, making predictions on past data.

Bidirectional Long Short-Term Memory (BLSTM) networks are a variant of LSTM in which the

output of a particular time step is computed based on both the past and future data [83]. They

are created by stacking forward and backward LSTMs, as shown in Figure 2.2. This allows the

network to learn from both directions of the sequence, making it more robust to noise and errors,

therefore improving the accuracy of the predictions [65]. However, their increased complexity

makes BLSTM networks more computationally expensive than their standard counterparts.

Input Layer

Output Layer

...

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Forward Layer

Backward Layer

...

Figure 2.2: Unfolded BLSTM architecture
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2.4.3 Gated Recurrent Unit Neural Networks

The Gated Recurrent Unit (GRU) is a simpler variant of LSTM proposed by Cho et al. [8]. It

comprises two gates: the reset gate and the update gate. The update gate is responsible for the

flow of information from the previous state to the current state. The reset gate controls the flow of

information from the current input to the current state, deciding how much of the past information

to forget.

Since GRU networks are simpler than LSTM, they are more computationally efficient. They

are faster to train and can even outperform LSTMs in the long text and small dataset scenario,

achieving a higher performance-cost ratio [82]. GRUs can also be employed in a bidirectional

manner, like LSTMs, resulting in Bidirectional Gated Recurrent Unit (BGRU) networks.

2.4.4 Gated Graph Neural Networks

Gated Graph Neural Networks (GGNNs) are a type of neural network designed to handle graph-

structured data. They were first proposed by Li et al. [39], as a variation of the more general Graph

Neural Networks (GNNs) with gating mechanisms similar to GRUs, and use BPTT to compute

the gradients.

Vectors and the edges by adjacency matrices represent the nodes. In order to update the nodes,

a series of operations are performed on the vectors of the current node, the vector of the previous

node, and the adjacency matrix. The operations are carried out by a series of gates, which control

the flow of information between nodes. This allows the network to focus on essential information

while handling noisy or irrelevant data more effectively.

GGNNs are well-suited for various applications, including natural language processing and

code analysis, due to their ability to handle graphs of varying sizes and shapes. However, one

downside of this type of network is that it represents edge information as label-wise parameters,

which may pose issues even for small-sized label vocabularies [2].

2.4.5 Transformer

The Transformer is a sequence-to-sequence model first proposed in 2017 [75] and has since be-

come the de facto standard for many NLP tasks, surpassing RNN models in results while being

faster [26]. Transformers discard the recurrent nature of RNNs and instead use attention mecha-

nisms to model the dependencies between elements in a sequence.

The Transformer’s architecture, represented in Figure 2.3, consists of an encoder and a de-

coder, which are stacks of identical layers composed of a multi-head self-attention, position-wise

feed-forward network and normalization mechanisms. The encoder is responsible for mapping

the input sequence to a vector representation, whereas the decoder generates the output sequence

of symbols, one at a time. An attention mechanism connects the encoder and decoder, allowing

the decoder to focus on specific parts of the input sequence. Since this model does not use any

recurrence or convolution, positional encoding must be added to the input sequence to provide the

model with information about the relative or absolute position of the tokens in the sequence.
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Figure 2.3: Transformer model architecture

This architecture can be used in three different ways [43]:

• Encoder-decoder: Uses the complete architecture, as described above, for sequence-to-

sequence tasks, such as machine translation.

• Encoder-only: Uses only the encoder, usually applied to natural language understanding

tasks, such as text classification and sequence labelling.

• Decoder-only: Uses only the decoder, also removing the encoder-decoder attention compo-

nent. This is employed for language modelling tasks, such as sequence generation.

Self-attention mechanism
The attention mechanism is the crucial component of the Transformer model. It allows the

model to focus on specific elements of the input sequence during processing and generate

output dependent on the input. Multihead attention (comprising multiple attention heads)

is used to implement this mechanism, which allows the model to simultaneously attend to

information from different representation subspaces at different positions [75].
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The Transformer uses three matrices to calculate attention: Query, Key, and Values. These

are previously calculated by multiplying the input embeddings with three weight matrices,

WQ, WK , and WV . Each self-attention head calculates the scaled dot-product attention, which

is the dot product of the query and key vectors, divided by the square root of the dimension-

ality of the key vectors. This dot product is then passed through a softmax function to obtain

the attention weights, which are then multiplied by the values matrix, finally obtaining the

output. Then, the outputs of all the different heads are concatenated and passed through a

linear transformation, proceeding to the normalization and feed-forward layers.

As benefits of the self-attention layers, Vaswani et al. [75] state the reduction of the com-

putational complexity when compared to recurrent layers, the ability to model long-range

dependencies, and the parallelization of the computation. Additionally, the authors empha-

size that self-attention can result in more interpretable models, as it is easier to understand

what parts of the input sequence the model is focusing on.

2.4.5.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) [13] is a Transformer-based

model that uses only the encoder blocks, developed By Google Research and released in 2018.

Due to its bidirectional nature, BERT can learn the context of a word based on the words that

come before and after it in a text.

The model is pre-trained on a large corpus of English text, using two unsupervised tasks:

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). MLM is a task where

the model is trained to predict the masked words in a sentence, obtaining a bidirectional pre-trained

model. NSP is used to train the model to understand the relationship between sentences. These

pre-training techniques allow the model to learn general language understanding, which can then

be adapted to downstream NLP tasks.

BERT can be fine-tuned for various NLP tasks without requiring significant architecture changes:

the input and output layers for the specific task are added, and the parameters are fine-tuned on

the new dataset. Compared to pre-training, fine-tuning is relatively inexpensive [13] and enables

BERT to achieve state-of-the-art results on many NLP tasks, such as question answering, senti-

ment analysis, and text classification.

There are several sizes of BERT models, which differ in the number of encoder layers, the

hidden size, and the number of attention heads. Devlin et al. [13] present two BERT models:

BERT-base and BERT-large. BERT-base has 12 encoder layers, 768 hidden units, 12 attention

heads, and 110 million parameters, while BERT-large has 24 encoder layers, 1024 hidden units,

16 attention heads, and a total of 340 million parameters. The model choice will depend on the

downstream task and the available computational resources.

For the input representation, BERT uses WordPiece embeddings [80] with a 30000 token

vocabulary. The WordPiece tokenization uses a vocabulary of subword units to tokenize words,

allowing the representation of rare words or out-of-vocabulary words as a sequence of subwords.
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BERT vocabulary also contains special tokens, such as the ’[CLS]’ token, which represents the

beginning of a sentence, and the ’[SEP]’ token, which is used to separate two sentences. Once

the input text has been tokenized, each token is then represented as an integer, between 0 and the

vocabulary size (in this case, 30522). Afterwards, the input is truncated or padded to a maximum

length of 512 tokens.

2.4.5.2 BERT variants

BERT has undoubtedly been one of the most remarkable models in the NLP field, and many

variants have been proposed to improve its performance or tailor it to specific tasks. DistilBERT

[62] is a smaller version of BERT that has 40% fewer parameters than BERT, while being 60%

faster. These improvements were achieved by distilling the knowledge from a larger pre-trained

model into a smaller one. RoBERTa (Robustly optimized BERT approach) [44] improved BERT

by training the model longer, with more data and bigger batches. Additionally, the NSP task was

removed, and a dynamic masking strategy was adopted.

There are also BERT variants designed to handle code and programming-related text better,

which are more relevant for this thesis. CodeBERT [20] is the first bimodal model, pre-trained

on both natural language and six programming languages (Python, Java, JavaScript, PHP, Ruby,

and Go). It outperformed other state-of-the-art models on several code-related downstream tasks,

such as natural language code search and code-to-documentation generation. JavaBERT [12] is

a BERT variant pre-trained on Java code for MLM task. It outperformed CodeBERT in the said

task, indicating that CodeBERT cannot predict Java tokens as accurately as JavaBERT.

2.5 Intermediate code representations

Before exploring the state-of-the-art DL-based vulnerability systems, it is essential to understand

the most common intermediate code representations used and their importance. Instead of feeding

raw source code to the models, current systems use intermediate representations to extract features

and incorporate syntactic and semantic information.

Abstract Syntax Tree (AST) is commonly used as the initial intermediate representation gener-

ated by compilers to examine syntactic errors in the code [78]. It is an ordered tree-like

representation of the source code, where each node represents a statement, expression or

operand. This representation is considered abstract because it captures the structure of the

programming language rather than its concrete syntax [71]. Despite ASTs being easy to

parse and providing a good represenation of the code structure, proving useful for simi-

lar code detection, they are not suitable for more complex code, as they fail to incorporate

control flow and data dependencies [81].

Control Flow Graph (CFG) is a representation of the flow of control in a piece of code, repre-

sented as a directed graph. Each node in the graph corresponds to a basic block of code
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(statement and predicates), and the edges represent the flow of control in the code [71].

CFGs can be constructed from ASTs by first considering sstructured control statements,

such as if, while, and for statements, to form a preliminary CFG. This preliminary CFG is

then augmented with control flow information from unstructured control statements, such

as goto, break, and continue statements, to create a complete CFG representation of the

code. From a security perspective, CFGs have become a standard code representation for

understanding programs through reverse engineering, as they reveal the control flow of an

application. They also prove valuable in detecting variations of known malicious applica-

tions and guiding fuzz testing tools. However, CFGs do not capture data flow within the

code, thus failing to detect statements that process information that an attacker has manipu-

lated. [81].

Program Dependence Graph (PDG) explicitly represents data dependencies within code. It is

also a directed graph where the nodes represent a predicate or statement, like CFG, but

the edges connecting the nodes represent control dependencies and data dependencies [71].

PDG is a joint data structure combining the Data Dependence Graph (DDG) and the Control

Dependence Graph (CDG). The DDG component is composed of data dependency edges

that illustrate the dependence or effect of one variable on another. The CDG component, in

contrast, consists of control dependency edges that demonstrate the impact of a predicate on

the values of variables. [55].

Each of these representations alone is insufficient to characterize a vulnerability type. In order

to capture both syntactic and semantic features of the code, Yamagushi et al. [81] proposed Code
Property Graph (CPG), a joint data structure that combines the advantages of AST, CFG and

PDG. To construct the CPG, the AST, CFG and PDG representations of the code are modelled as

property graphs and merged afterwards into a single graph representation. It enables modelling

patterns for common vulnerabilities in graph traversals that can be refined to control FPR and

FNR. With this novel representation, they could cover considerably more vulnerability types.

2.6 Transfer learning and Domain adaptation

Transfer learning and domain adaption are two interrelated strategies in machine learning that deal

with the idea of applying knowledge learned in one situation to another. The key difference lies in

what is being transferred. In domain adaptation, the focus is on adapting to new data distribution,

while in transfer learning, the focus is on leveraging knowledge from a task to a related one.

Transfer Learning is the process of using a pre-trained model as the starting point for a new

related task. The idea is to leverage the knowledge gained from the initial task (source

task) to improve learning in a new, related task (target task). This way, we can leverage

the knowledge gained from a large dataset to solve a different problem. This approach is

particularly useful when the target task has limited labelled data, as the pre-trained model

provides a strong foundation and learned representations that can benefit the new task [54].
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One popular transfer learning method is fine-tuning, where the pre-trained model’s weights

are used as an initialization for the new model and then further trained using the target task

data. This allows the model to adapt its learned representations to the specifics of the target

task, leading to improved performance.

Domain Adaptation is a form of transfer learning used when the training data (source domain)

differs from the data we want to make predictions on (target domain) while the task remains

the same. The goal is to bridge the gap between the source and target domains, enabling the

model to generalize well to the target domain [3].

In the case of deep learning models, we can reduce this domain shift by fine-tuning the

model that was trained on the source domain on the target domain [1].

Both of these techniques are fundamental to the success of deep learning models, as they can

enhance performance and promote generalization. They allow models to leverage the knowledge

gained from pre-training on large-scale datasets, reducing the need for extensive labelled data and

accelerating training time.

2.7 Classification tasks in ML

Classification problems are categorised based on how labels are associated with input samples,

resulting in two main types: single-label and multi-label classification [14]. Single-label classifi-

cation refers to the process of learning from a collection of samples, each linked to a single label

l from a set of disjoint labels L. This problem can be further divided into two categories: binary
and multiclass classification. On the other hand, in multi-label classification, each sample in the

dataset is associated with a set of labels Y, where Y is a subset of the label set L (Y ⊆ L) [85].

The most basic type of classification is binary classification, in which instances fall into two

mutually exclusive classes. It is employed when a true/false decision is required. In vulnerability

detection, for example, binary classification can be used to identify whether a method is vulner-

able. Because binary classification models just involve discriminating between two classes, they

are often easy to develop and interpret.

Multiclass classification extends binary classification by allowing instances to be assigned to

one of several classes. In this approach, each instance is assigned a single label from a predefined

set of classes. For example, multiclass classification can be used in vulnerability detection to

categorise methods into multiple vulnerabilities, such as injection, authentication, or authorisation.

Multiclass classification models are capable of dealing with more complex problems involving

multiple classes.

Multi-label classification takes the classification process a step further by allowing instances

to be assigned multiple class labels simultaneously. This approach acknowledges that methods

might belong to more than one class simultaneously. For example, a single method can be vulner-

able to various attacks in vulnerability detection. These complicated relationships can be captured
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by multi-label classification models, which yield more nuanced predictions. Multi-label clas-

sification, on the other hand, can be more challenging to implement than binary or multiclass

classification.

When deciding which type of classification to use, it is essential to consider the specific re-

quirements and characteristics of the problem at hand. Moreover, the choice of classification

type can also depend on the available dataset and the desired specificity of the predictions. Each

classification type has advantages and limitations, and selecting the right strategy is crucial for

constructing a successful classification model.

2.8 Evaluation metrics

Evaluating the performance of a vulnerability detection model is a crucial step to ensure the re-

liability and accuracy of the results. In the literature review [40, 86, 60, 69], when comparing

the performance of different models, the authors use several standard metrics such as accuracy,

precision, recall, f1-score, false positive rate, and false negative rate.

A confusion matrix is a tabular representation of the performance of a classification model.

It compares the predicted values of the model with the actual values, and presents the results

in a format that allows easy identification of instances where the model may be misclassifying

(confusing one class for another). The matrix is typically composed of four elements: number of

True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).

TP: positive sample correctly predicted as positive.

TN: negative sample correctly predicted as negative.

FP: negative sample incorrectly predicted as positive.

FN: positive sample incorrectly predicted as negative.

We can use these values to calculate the False Positive Rate (FPR) and False Negative Rate
(FNR). The measures the proportion of negative samples that are misclassified as positive. In the

context of vulnerability detection, that means the proportion of non-vulnerable samples incorrectly

classified as vulnerable. It can be calculated according to the formula:

FPR =
FP

FP+T N
(2.1)

The FNR measures the proportion of positive samples incorrectly classified as negative. In

the context of vulnerability detection, that means the proportion of vulnerable samples incorrectly

classified as non-vulnerable. The formula is as follows:

FNR =
FN

FN +T P
(2.2)

Confusion matrices are also helpful to derive other complex metrics that provide a more de-

tailed insight into the model’s performance:
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Accuracy is the proportion of samples that are correctly classified. It is a typical metric used

to judge model performance. However, it is only suitable when the classes are balanced. For

example, if we have a dataset where 90% of the samples are non-vulnerable, and the rest 10% are

vulnerable, a model that always predicts non-vulnerable will have an accuracy of 90%. In this

case, the model is biased, but it still has a high accuracy of 90%.

Accuracy =
T P+T N

T P+FN +T N +FP
(2.3)

Precision is the proportion of positive samples that are correctly classified. It is focused on

controlling the number of False Positives.

Precision =
T P

T P+FP
(2.4)

Recall is the proportion of positive samples that are correctly classified. An emphasis is

placed on controlling the number of False Negatives.

Recall =
T P

T P+FN
(2.5)

F1-score is a metric that measures the balance between precision and recall, and is calculated

as the harmonic mean of these two values. The harmonic mean is preferred over the arithmetic

mean due to its ability to penalize extreme values. For example, if the precision is 1 and the recall

is 0, the f1-score will be 0. However, if the precision is 0.5 and the recall is 0.5, the f1-score will

be 0.5. Therefore, f1-score is particularly helpful when dealing with imbalanced datasets, where

precision and recall are often in conflict. Maximizing the this metric limits both false positives

and false negatives as much as possible.

F1 =
2∗Precision∗Recall

Precision+Recall
(2.6)

To evaluate the performance of language models, we can use perplexity. It measures how

well a probability model predicts a sample. A lower perplexity score indicates that the model is

better at predicting the sample. We can define perplexity as the exponentiation of the entropy of

the model with the following formula:

Perplexity = eLCE (2.7)

where LCE is the cross-entropy loss of the model. The "loss" in machine learning, also referred

to as the cost function, is a measure of how well a machine learning model can predict the correct

output. It quantifies the disparity between the predicted and actual values for an instance in the

dataset. Cross-entropy is a popular loss function used in ML classification tasks. It is defined, for

N classes, as follows:
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LCE =−
N

∑
i=1

ti log(pi) (2.8)

where ti and pi are the true label and the predicted probability of the sample belonging to the

i-th class, respectively [38].

2.9 Learning curves in Machine Learning

A learning curve is a graphical representation of the generalisation error of a model as a function

of the number of training samples [56]. In the context of classification problems, these curves

typically include both training and validation errors. By analysing the shape of the learning curve,

we can determine whether the model suffers from high bias (underfitting) or high variance (over-

fitting) or whether the model is well suited for the data (good fit) [76].

In the case of underfitting, the model is too simple to learn the underlying structure of the data

or the data has no inherent pattern for the task at hand. This scenario is characterised by a high

error on both training and validation sets, and both values hit a plateau, with a small gap between

them, as the number of training samples increases.

On the other hand, overfitting occurs when the model is too complex and starts to learn the

noise in the training data, or the dataset is too small, and the training data does not represent the

underlying distribution of the data. In this case, the training error decreases over time, while the

validation error rises after a certain point as the model memorises the training data and fails to

generalise to unseen data. A large gap between the training and validation errors characterises this

scenario.

Diagnosing the shape of the learning curve is a crucial step in building a machine learning

model. It helps determine the model’s suitability for the data or whether we need to collect more

data or use a more complex model. Additionally, it allows us to determine the best epoch to stop

the training process to avoid overfitting.

2.10 GitHub Actions fundamentals

GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform provided

by GitHub, designed to automate software development workflows directly within a repository.

It is designed to help developers streamline their workflow by automating tasks such as testing

code, deploying software, and much more. Detailed information about creating, managing and

publishing Actions can be found in the official documentation5.

One can configure a GitHub Action workflow to be automatically triggered when an event
occurs in the repository. This workflow can have one or more jobs, each executed inside a virtual

5https://docs.github.com/en/actions

 https://docs.github.com/en/actions
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machine runner. Jobs contain one or more steps that either run a script or an action. These

GitHub Actions components are described in more detail below [29]:

Events are specific activities in a GitHub repository that can trigger a workflow run. These can

be pushing code to a branch, opening a new issue, creating a pull request, etc.6. Workflows

can also be triggered on a schedule.

A workflow is a configurable automated process made up of one or more jobs. Workflows are

defined using YAML files and stored inside the .gitgub/workflows directory in a repository.

A repository can have several workflows, each for a different purpose, and workflows can

be referenced within other workflows to reuse common steps.

Jobs are a set of steps in a workflow. Each job runs in a separate virtual machine and can be con-

figured to run in parallel or sequentially. By default, a workflow with multiple jobs will run

those jobs in parallel and only finish when all jobs have been completed successfully. How-

ever, jobs can be configured to run sequentially by defining dependencies between them.

Actions are custom applications that perform a specific task in a workflow. They are the small-

est portable building block of a workflow and can be used to encapsulate common tasks

in reusable ways. Developers can build their own actions or reuse actions created by the

GitHub community available in the GitHub Marketplace7.

Runners are servers responsible for running the jobs inside a workflow. GitHub provides hosted

runners for Linux, Windows and MacOS, but users can also host their own runners on their

own infrastructure. GitHub runners are free for public repositories, and free-tier GitHub

accounts have a limit of 2000 minutes per month for private repositories. This limit can be

increased by upgrading to a paid plan.

Listing 2.1 shows a simple workflow example that is triggered when a change is pushed to the

main branch. This workflow, named example-workflow, has a single job named example-job that

runs on a Linux virtual machine. This job has two steps: the first one uses an action to checkout

the repository code to the machine, and the second one echoes a messaage.

6https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
7https://github.com/marketplace

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://github.com/marketplace
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1 # Name of the workflow (optional).
2 name: example-workflow
3

4 # Specify the trigger for this workflow.
5 on:
6 push:
7 branches:
8 - main
9

10 # Define the list of jobs that make the workflow.
11 jobs:
12 # Name of the first and only job.
13 example-job:
14

15 # Specify the runner to use.
16 runs-on: ubuntu-latest
17

18 # Define the list of steps to run.
19 steps:
20 # The uses keyword indicates that this step runs an action.
21 - name: Checkout code
22 uses: actions/checkout@v3
23

24 # The run keyword tells the job to execute a command on the runner.
25 - name: Echo a success message
26 run: echo "Repository code was successfully checked out"

Listing 2.1: GitHub workflow example.



Chapter 3

State of the Art

This chapter reviews the current state of Deep Learning-based vulnerability detection. Section 3.1

analyses the contributions of the most relevant systems in the field, including their architecture,

datasets, and results. Section 3.2 discusses the different types of datasets available and highlights

the lack of a publicly available Java dataset suitable for vulnerability detection. Section 3.3 pro-

vides an overview of the security tools available on the GitHub Marketplace.

3.1 Deep Learning-based vulnerability detection systems

DL-based vulnerability detection systems have emerged as a powerful tools in the field of software

security. These systems leverage the power of DL models, such as the ones presented in Section

2.4, to automatically identify vulnerabilities in software systems, allowing for more efficient and

effective detection and mitigation of security threats. This section provides a high-level overview

of current DL-based vulnerability detection systems, emphasising key contributions, data sources,

and techniques employed.

3.1.1 VulDeePecker

In 2018, Li et al. [42] introduced the first deep learning-based vulnerability detection system,

VulDeePecker, which demonstrated the potential of deep learning models to detect vulnerabilities.

This system operates as a binary classifier, classifying source code related to library/API function

calls as either vulnerable or non-vulnerable. The authors also created the first dataset specifically

designed for deep learning approaches, focusing on buffer error and resource management vulner-

abilities in the C/C++ programming languages, and is derived from both the National Vulnerability

Database (NVD)1 and the Software Assurance Reference Dataset (SARD)2.

The VulDeePecker system comprises two phases: the learning phase and the detection phase.

For the intermediate source code representation, the authors introduced the concept of code gad-

gets. Code gadgets are lines of code that are semantically related to one another regarding data

1https://nvd.nist.gov/
2https://samate.nist.gov/SARD/

21

https://nvd.nist.gov/
https://samate.nist.gov/SARD/


State of the Art 22

dependency. During the learning phase, code gadgets are generated, transformed into a vector rep-

resentation using word2vec 3, and then fed along with their labels to a BLSTM neural network for

training. In the detection phase, code gadgets are generated from the source code of the targeted

programs, transformed into a vector representation, and then fed to the trained BLSTM neural net-

work for classification as vulnerable or non-vulnerable. In both phases, when converting the code

gadgets to vectors, they are submitted to a normalization step to remove irrelevant information.

Non-ASCII characters and comments are removed, and then user-defined variables and function

names are replaced with generic names (e.g. "VAR1" and "FUNC1").

VulDeePecker outperformed the state-of-the-art vulnerability detection systems, achieving an

F1 score of 90.5%, FPR of 5.7% and FNR of 7%.

3.1.2 µVulDeePecker

Zou et al. [89] presented µVulDeePecker, an extension of VulDeePecker, the first deep learning-

based system for multiclass vulnerability detection. This system can identify the type of vulner-

ability present in source code by refining code gadgets through the integration of control depen-

dency and introducing the concept of code attention. This mechanism captures more information

about a statement and is the main contributor to the system’s multiclass capability. In both the

learning and detection phases, code attentions are generated from normalized code gadgets.

A new dataset was created, from SARD and NVD, as the original VulDeePecker dataset was

unsuitable. It lacked information about vulnerability types, did not contain data control depen-

dency, and lost some statements in the code gadgets that contribute to identifying the vulnerability

type. The experiments on the testing set of the new dataset yielded impressive results, with a

multiclass F1 score of 94.22%, a multiclass False Positive Rate of 0.02%, and a multiclass False

Negative Rate of 5.73%.

3.1.3 SySeVR

SySeVR [41] is another successor to the VulDeePecker system, developed to address its limita-

tions. This system is designed to classify source code as vulnerable or not at a slice level. In

contrast to the previous system, SySeVR discards the use of code gadgets and code attention,

instead utilizing the concepts of Syntax-based Vulnerability Candidates (SyVCs) and Semantics-

based Vulnerability Candidates (SeVCs). SyVCs reflect the syntax characteristics of vulnerabil-

ities, while SeVCs extend this to include the semantic information induced by data and control

dependencies. A new dataset was created to support this system, comprising 126 types of vulner-

abilities sourced from SARD and NVD. Several machine learning and deep learning models were

tested, with the best-performing model being the BGRU, achieving an F1 score of 92.6%, a False

Positive Rate of 1.4%, and a False Negative Rate of 5.6%.

3https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html


3.1 Deep Learning-based vulnerability detection systems 23

3.1.4 Devign

Devign [87] uses a novel graph neural network model to classify a function as vulnerable or not.

It comprises three components: a graph embedding layer, a gated graph recurrent layer, and a

Conv layer. The graph embedding layer is used to generate a graph representation of the source

code, which is composed of various subgraphs: Abstract Syntax Tree (AST), Control Flow Graph

(CFG), Data Flow Graph (DFG), and Natural Code Sequence (NCS). This joint representation en-

ables the model to capture the source code’s syntactic and semantic information. The gated graph

recurrent layer employs GGNN to learn node features by aggregating and passing information

about neighbouring nodes in graphs. Finally, the Conv module is used to extract the features of

the graph representation and classify the source code as vulnerable or not. The Devign dataset was

created using code from 4 large open-source C projects (Linux Kernel, QEMU, Wireshark, and

FFmpeg) and manually labelled by four security experts.

3.1.5 ReVeal

In their study, Chakraborty et al. [6] explored the generalizability of state-of-the-art vulnerabil-

ity detection models, including VulDeePecker, SySeVr, and Devign. The results indicated that

none of these models performed well in real-world settings, with an average drop of 73% in per-

formance. The leading causes for this decline were the use of simple token-based models, data

duplication between training and testing datasets, and data imbalance. To address these issues, the

authors proposed the ReVeal system. This system employs CPG to extract syntactic and semantic

information from the source code and a Gated Graph Neural Network (GGNN) model to learn

node features. The authors created a robust and comprehensive real-world dataset from the Linux

Debian Kernel and Chromium open-source projects. They filtered out non-security commits and

then, for each patch, labelled the previous versions of all changed functions as vulnerable. The

Synthetic Minority Over-sampling Technique (SMOTE) was employed during the model’s train-

ing phase to address the imbalance in the number of vulnerable and non-vulnerable functions.

3.1.6 First Transformer-based vulnerability detection system

Ziems and Wu [88] were the first to propose a Transformer-based vulnerability detection system.

They use the base BERT model, fine-tuning it to create a model that identifies the type of vulnera-

bility present in source code, with file-level granularity. A custom dataset focused on C/C++ was

built from the SARD, containing over 100,000 files and 100 CWEs. Some preprocessing was ap-

plied, including removing all comments and replacing function names with generic names, similar

to the approach taken by VulDeePecker [42].

The authors tested traditional LSTM, BLSTM, and BERT models. The inputs to these models

were the entire code files that were tokenized into words and sub-words. However, the BERT

model proposed had a limit of 256 tokens, so the token sequence was split into several chunks.

Three different experiments were performed to address this limitation. In the first experiment,

each chunk was fed separately into the model, and a vanilla RNN took the output of each BERT
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segment. A softmax classifier was applied to the final output, calculating the probability of each

CWE. The second and third experiments were similar, but a LSTM and a BLSTM network re-

placed the RNN, respectively. In the second experiment, contextual information was kept between

each sequence of tokens. In the third experiment, due to the bidirectional nature of the BLSTM,

the model could learn the context from both directions.

The LSTM and BLSTM models achieved only 72% and 79% accuracy, respectively, while

the BERT model achieved 85% accuracy. Employing BERT with the LSTM (second experiment)

improved the results substantially, achieving 93.19% accuracy. BERT+BLSTM (third experiment)

achieved the best accuracy, 93.49%. These results demonstrate that BERT performs better than

RNN-based models and that it is crucial to keep contextual information across the sequence of

tokens for optimal performance.

3.1.7 ISVSF

The intelligent sentence-level vulnerability self-detection framework (ISVSF) [84] was designed

to address the limitations of the representation scheme and pattern mining of previous approaches.

Unlike token-level approaches, the sentence-level approach divides the input sequence into desig-

nated sub-blocks.. Control flow Abstract Syntax Tree (CFAST) is used as an intermediate repre-

sentation.

The authors obtained samples from NVD, SARD and GitHub to create a representative dataset

focused on Java programming language. These samples were then labelled as vulnerable if they

contained CWE or CVE tags, while the remaining samples were labelled as non-vulnerable. The

dataset includes a total of 118 types of CWEs. According to the authors, synthetic and semi-

synthetic data from SARD and NVD can improve the model’s ability to extract vulnerability pat-

terns, whereas real data from GitHub is more representative of real-world scenarios. This data

composition enables the model to generalize more effectively.

BLSTM was the chosen classifier for ISVSF, which predicts whether a Java method is vulner-

able. Additional models were created to compare the performance of ISVSF with other state-of-

the-art models. The baseline model was inspired in VulDeePecker, using AST to express source

code (instead of code gadgets), word2vec to embed the AST and a BLSTM as the classifier. An-

other model, ITVSF (Intelligent Token-level Vulnerability Self-detect Framework), is similar to

ISVSF but uses BERT instead of word2vec to embed the words. The results showed that ISVSF

outperformed both models, achieving an F1 score of 96.58%, with a 1.35% FNR and 4.73% FPR.

3.1.8 LineVul

LineVul [22] is a Transformer-based approach for line-level vulnerability prediction. This sys-

tem has a two-step approach: function-level vulnerability and live-level vulnerability prediction.

The first step performs Byte Pair Encoding (BPE) tokenization on the source code. Then a cus-

tomized Transformer model, fine-tuned on the CodeBERT model, performs binary classification

on the function level. In the second step, for predicted vulnerable functions, the system utilises the
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Transformer’s self-attention mechanisms to identify the vulnerable lines. The authors posit that

tokens that contribute the most to the classification of the vulnerable function are likely to cause

the vulnerability.

The dataset created by Fan et al. [17] was used, since it was the only one that provided the

ground truth for the line-level vulnerability, unlike Devign [87] and ReVeal [6] datasets which

only provide the function-level vulnerability. This dataset comprises C/C++ code from 348 open-

source Github projects and contains 91 different CWEs. LineVul achieved an F1 score of 91%

for function-level vulnerability detection. When utilising the same dataset in other state-of-the-art

models, their results dropped significantly. VulDeePecker achieved an F1 score of 19%, Devign

achieved 26%, and ReVeal achieved 30%. Regarding live-level vulnerability prediction, LineVul

achieved a top-10 accuracy of 65%.

3.1.9 VDET for Java

VDET for Java [46], which stands for Java Code, is a Transformer-based IDE extension that

detects vulnerabilities in Java code. In this system the source code is used as input, and fine-

tuning is performed on the JavaBERT model to create a model capable of performing multi-label

classification with method-level granularity. Thus, the model can predict the presence of multiple

vulnerabilities in a single method.

The dataset generated derives from the Juliet Test Suite for Java. Preprocessing was performed

to remove comments and to replace function names with neutral names. In order to address the

issue of imbalanced classes, the least significant vulnerabilities were removed, leaving 21 CWEs

and a total of 134645 samples. Additionally, long code sequences were removed due to BERT

architecture limitations, resulting in a final dataset of 115600 samples, each with a maximum size

of 512 tokens.

The model achieves 99% accuracy in the conducted experiments, 94% weighted F1 score, 7%

mean FNR and 10% mean FPR. Mamede [46] argues that the results are satisfactory but highlights

the need to evaluate the model in a real-world scenario and to train it on a larger dataset.
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3.1.10 Summary

This section analysed the current state-of-the-art of DL-based vulnerability detection. Each ap-

proach has its characteristics, summarised in Table 3.1 for a better overview.

Table 3.1: Fundamental characteristics of the reviewed systems

System Classification
Programming

Language
Detection

Granularity
Features

Representation
Dataset

Type
DL Model

VulDeePecker [42] Binary C/C++ Slice-level Code gadgets Synthetic and semi-synthetic BLSTM

µVulDeePecker [89] Multiclass C/C++ Slice-level Code gadgets Synthetic and semi-synthetic BLSTM

SySeVR [41] Binary C/C++ Slice-level
SyVC, SeVC

and vector representations
Synthetic and semi-synthetic BGRU

Devign [87] Binary C Function-level CPG Real-world GGNN

ReVeal [6] Binary C/C++ Function-level CPG Real-world GGNN

First Transformer-based [88] Multiclass C/C++ File-level Source code Synthetic and semi-synthetic BERT

ISVSF [84] Binary Java Sentence-level AST
Synthetic, semi-synthetic

and real-world
BLSTM

LineVul [22] Binary C/C++ Function and line-level Source code Real-world CodeBERT

VDET for Java [46] Multi-label Java Method-level Source code Synthetic JavaBERT

3.2 Available datasets

Deep-learning software vulnerability detection is a data-driven task. Large-scale datasets with

high-quality labelled samples are essential to ensure the quality of the predictions [66]. Datasets

can be classified into three categories, based on the type of samples and the way they are labelled:

• Synthetic datasets comprise code and labels artificially created. Many code patterns can be

synthesized, and a potential benefit is the generation of vulnerable patterns that rarely occur

in real-world code [66]. However, the quality of the labels highly depends on the annotation

techniques, and the code patterns are unrealistic. Juliet test suits 4 fall into this category.

• Semi-synthetic datasets contain data that is either artificially generated samples or anno-

tated. For instance, the SARD and NVD datasets modify actual production code to identify

vulnerable patterns. While these datasets offer a more realistic representation than purely

synthetic datasets, they still fall short of capturing the full intricacies of real-world vulnera-

bilities due to the inherent simplifications and abstractions applied [6].

• Real-world datasets are collected from real-world sources such as GitHub open-source

projects. The samples are actual production code, and the labels are manually annotated

or directly obtained from vulnerability-related commits. However, the reliability of the la-

bels is not guaranteed, and these datasets usually present issues with data imbalance, as the

number of vulnerable samples is much smaller than the number of non-vulnerable samples

[10].

Most of the research conducted in the field of software vulnerability detection focus on de-

tecting vulnerabilities in C/C++ code, as shown in Section 3.1, so most publicly available datasets

4https://samate.nist.gov/SARD/test-suites

https://samate.nist.gov/SARD/test-suites
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are related to this language. Zhang et al. [84] and Mamede [46] mention the lack of a real-world

dataset for vulnerability detection in Java. Even though Zhang et al. [84] created a fine-grained

dataset for Java, they did not make it publicly available. Currently, the only available resource

at our disposal is the Juliet Test Suit for Java from the National Institute of Standards and Tech-

nology (NIST) 5 . This synthetic dataset alone is not desirable for our purposes, as it limits the

generalizability of the models trained on it.

3.3 Security tools available on GitHub Marketplace

GitHub Marketplace is a platform that allows developers to discover, install, and publish GitHub

Apps, OAuth Apps, and GitHub Actions [31]. The automation provided is the key benefit of the

Actions, as it allows developers to schedule security tasks on their repositories, alleviating the

effort of running the tools manually. This can improve the development process’s efficiency and

speed while reducing the risk of security vulnerabilities.

GitHub Marketplace currently has over 900 security-related Actions [28]. These tools can be

used to analyse code, search repositories for sensitive data leaks, and find vulnerabilities in various

programming languages’ source code. However, most tools undertake static analysis, and not all

are free. To the best of our knowledge, there is currently no GitHub Action that employs deep

learning models for vulnerability detection.

5https://samate.nist.gov/SARD/test-suites/111



Chapter 4

Problem and proposed solution

This chapter outlines the problem statement and the proposed solution. In section 4.1, we highlight

the unsolved issues drawn from a comprehensive review of the existing literature. Section 4.2

presents the latent opportunities that we have identified, revealing the potential for innovation and

progress. Section 4.3 specifies the proposed solution, including the research questions that will

guide our work. Finally, section 4.4 outlines the system requirements and the evaluation criteria

for measuring the proposed solution’s performance and usability.

4.1 Research Gap

Chapter 3 delves into the current state-of-the-art of DL-based vulnerability detection, providing

an overview of the existing systems and frameworks. While the field of Deep Learning-based

vulnerability detection has made substantial progress, several research gaps still exist that present

opportunities for future work.

Although several DL-based vulnerability detection systems have been developed and refined

over recent years, most of these have been designed with a focus on C/C++ code. Despite the

widespread use of Java in software development, there is a marked lack of equivalent tools
for detecting vulnerabilities in Java code. Moreover, while Transformer-based systems utilise

BERT variants like CodeBERT [20] and JavaBERT [12], which are pre-trained on general-purpose

code, no existing studies have investigated the impact of utilising models pre-trained on
vulnerability-related code for vulnerability detection.

This scarcity of research in DL-based Java vulnerability detection might be attributable to

another significant issue: the lack of publicly available datasets for Java code, especially com-
prehensive real-world datasets. These datasets are instrumental for researchers in developing

and evaluating vulnerability detection systems. Zhang et al. [84] have created a dataset for their

ISVSF system, but it is not publicly available, limiting its utility for the broader research commu-

nity. The current standard, the Juliet Test Suite for Java, is synthetic and has limited utility for

training models that can generalise effectively to real-world situations [60].

28
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Finally, as of the time of writing, no DL-based GitHub Action for vulnerability detection
exists. This gap presents a significant opportunity for innovation and development in this space.

Developing the first Deep Learning-based GitHub Action for Java vulnerability detection could

have a substantial impact, allowing developers to shift left security, more effectively automate

the vulnerability detection process, and further enhance the security of their Java-based software

systems.

4.2 Existing opportunities

Given the aforementioned issues, the following opportunities can be identified:

1. Creation of a curated vulnerability dataset from the Juliet Test Suite for Java. This

dataset must contain a reasonable number of samples and be representative of various vul-

nerabilities. Proper labelling and data preprocessing are required to ensure the dataset’s

quality and results’ validity. Analysing VDET’s data preprocessing pipeline is a good start-

ing point to foresee possible improvements.

2. Creation of a Java real-world evaluation test set To assess the practical applicability of

our models, it is crucial to create a test set that mirrors real-world conditions. This test set

should be composed of Java projects from repositories like GitHub, with the corresponding

buggy and fixed code, and representative of the vulnerabilities present in the training dataset.

3. Development of a Transformer model capable of detecting vulnerabilities in Java source
code. Multi-label and multiclass classification configurations should be used to compare the

results to the state-of-the-art models. Fine-tuning should be employed on a model contain-

ing knowledge about Java vulnerability-related code.

4. Proposal of the first GitHub Action that leverages Deep Learning for vulnerability
detection. This tool must be user-friendly and provide meaningful vulnerability reports that

can be understood by developers, even those without security expertise. Fast execution time

is also required so developers’ workflow is not hampered.

4.3 Proposed solution and research questions

Given the opportunities presented in the section, this dissertation aims to design and implement

a robust, practical, and efficient Transformer-based GitHub action. This tool, named the Java

Transformer-based Automated Scanner (J-TAS), is aimed at detecting vulnerabilities in Java source

code and providing developers with clear insights into the vulnerabilities’ root causes. The previ-

ous work on VDET’s [46] development will serve as a starting point for developing the proposed

solution.

The following research questions will guide the work developed in this dissertation:
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• RQ1 How do different dataset normalisation techniques influence the performance of the

vulnerability detection models?

Data pre-processing is a crucial step in developing accurate deep-learning models. First,

we aim to investigate the impact of different normalisations of the Juliet dataset on the

performance of a JavaBERT-based multi-label classification model. Additionally, we want

to understand how the performance of the models varies when evaluated on each other’s test

set, identifying potential bias in the datasets.

• RQ2 How does a multiclass architecture compare to a multi-label architecture in terms of

performance?

The problem of vulnerability detection can be framed as binary, multiclass, or multi-label

classification, depending on goals and data available. We aim to investigate the impact of

the multiclass and multi-label architectures on the performance of the vulnerability detection

models and identify the most suitable approach in our context.

• RQ3 How does the performance of a model pre-trained on Java buggy-related code compare

to JavaBERT when applied to the same vulnerability detection task?

We aim to investigate the impact of domain-specific pre-training on the performance of the

vulnerability detection models. This involves comparing a model pre-trained on Java buggy

code with JavaBERT regarding their effectiveness in detecting vulnerabilities.

• RQ4 How can a DL model be integrated into a GitHub Action for real-time vulnerability

analysis?

Finally, we aim to explore the challenges of integrating the best-performing model into a

GitHub Action and analyse the behaviour of our solution.

4.4 System requirements and evaluation

To be considered successful, the proposed solution must meet certain criteria. Table 4.1 lists the

defined functional requirements in order of priority. These requirements describe the functionality

of the tool.

Table 4.1: Functional requirements of the proposed solution

FR1 The tool must be able to detect various types of vulnerabilities in Java source code.
FR2 The tool must be able to scan multiple Java files in a repository.
FR3 The tool must be able to present the vulnerabilities reported in a clear and concise manner.
FR4 The tool should be able to give an explanation of the vulnerabilities detected.
FR5 The tool should be able to give feedback regarding errors.

The non-functional requirements identified are listed in Table 4.2. These requirements specify

the tool’s performance and usability.
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Table 4.2: Non functional requirements of the proposed solution

NFR1 The tool must be able to execute in a reasonable amount of time.
NFR2 The tool must provide accurate results (accuracy > 80%, FNR < 10%, FPR < 10%).
NFR3 The tool should be easy to adapt to other programming languages.

The tool will be evaluated using the aforementioned requirements, and the results will be

analyzed and compared to other existing deep learning-based vulnerability detection tools. Unmet

requirements will be considered tool limitations and serve as the foundation for future work.



Chapter 5

J-TAS implementation

This chapter presents the development and implementation of J-TAS, our Deep-Learning-based

tool for vulnerability detection in Java code. Section 5.1.1 starts by describing the steps taken

to build the dataset used to train and evaluate our vulnerability detection models. This section

details the creation of a synthetic dataset and elaborates on constructing a real-world test set con-

sisting of vulnerable Java code. Moreover, it addresses our data-gathering procedure to train our

masked language models (MLMs). Section 5.2 dives into the architecture and training process of

both the MLMs and the vulnerability detection models, discussing the best approaches and hy-

perparameters used. Finally, Section 5.3 describes the development and implementation of J-TAS

GitHub Action. This tool, developed as a practical application of our trained vulnerability detec-

tion model, is designed to automate the analysis of Java code repositories on GitHub, flagging

potential vulnerabilities in the codebase.

5.1 Dataset creation

5.1.1 Dataset for vulnerability detection

A robust and high-quality dataset plays a pivotal role in the success of vulnerability detection

methodologies, as it is a data-driven problem [10]. A well-curated dataset not only forms the

foundation for training and evaluating detection models but also enables researchers and prac-

titioners to gain a deeper understanding of the nature of vulnerabilities and devise appropriate

countermeasures. Therefore, the process of gathering high-quality data and conducting meticu-

lous preprocessing is paramount in the development of accurate and reliable vulnerability detec-

tion systems.

The Data Quality model defined in the standard ISO/IEC 25012 [33] describes the main data

quality aspects that should be considered when evaluating a dataset. One of the main categories

is Inherent Data Quality, which refers to the data’s intrinsic characteristics that contribute to its

overall quality. These characteristics include accuracy, completeness, consistency, credibility and

32
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currentness. Table 5.1 presents the definitions of these characteristics, as established in the stan-

dard. By adhering to these principles, we strive to create a dataset that can serve as a reliable

foundation for training and evaluating our vulnerability detection models.

Table 5.1: ISO/IEC 25012 inherent data quality characteristics.

Characteristic Definition

Accuracy The degree to which the data has attributes that correctly represent the true value of
the intended attribute of a concept or event in a specific context of use.

Completeness The degree to which subject data associated with an entity has values for all expected
attributes and related entity instances in a specific context of use.

Consistency The degree to which data has attributes that are free from contradiction and are
coherent with other data in a specific context of use.

Credibility The degree to which data has attributes that are regarded as true and believable by
users in a specific context of use.

Currentness The degree to which data has attributes that are of the right age in a specific context
of use.

In the context of Java vulnerability detection, it is worth noting that the availability of suitable

datasets is limited, as mentioned in Section 3.2. We have selected the Juliet Test Suite for Java

version 1.31 as the starting point to construct our dataset for the vulnerability detection models,

describing each step in the following sections. This test suite comprises a vast collection of Java

test cases, containing 28,882 files encompassing vulnerable and non-vulnerable examples across

112 different CWEs. While this dataset has certain limitations due to its synthetic nature, it re-

mains the only publicly available Java test suite designed explicitly for accessing the capabilities

of vulnerability detection tools.

5.1.1.1 VDET’s dataset analysis

Initially, we analysed VDET’s data processing pipeline and final dataset to investigate which find-

ings are helpful and which improvements could be made.

VDET’s dataset is constructed from the Juliet Test Suite for Java, and offers method-level

granularity, with each method labelled as vulnerable or not, and also which CWE identifier is

associated. It consists of 115600 total samples, with 34115 vulnerable methods and 81485 non-

vulnerable. It is worth noting that the dataset is highly imbalanced, which can lead to biased

results. In total, there are 21 different CWEs present. The dataset is split into three subsets:

training, validation and test, with 80%, 10% and 10% of the samples, respectively.

The following issues were identified in VDET’s dataset:

I.1. Insufficient normalisation: In the data normalisation process, only the method names were

modified. Methods that contained the prefixes/suffixes "bad" and "good" were replaced

with a neutral expression ("method"), while the remaining code was left unchanged. This

approach was deemed insufficient as it failed to fully address potential biases in the dataset.

1https://samate.nist.gov/SARD/test-suites/111

https://samate.nist.gov/SARD/test-suites/111
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In subsequent research, the authors investigated the presence of bias by calculating Point-

wise Mutual Information (PMI) [61] scores to evaluate bias in the dataset. The analysis

revealed that "bad" and "good" tokens still present in the code exhibited strong correlations

with vulnerable and non-vulnerable methods, respectively. Additionally, tokens that contain

the id of the CWE were found to be highly correlated with the CWE labels. These findings

suggest that the model may rely on these tokens to classify the methods rather than effec-

tively learning the underlying vulnerabilities. Unfortunately, the normalised dataset was not

made available, preventing a more in-depth analysis.

I.2. Presence of duplicates: The dataset contains 47131 duplicated samples - rows with identical

code, CWE-ID and vulnerability values. This represents a significant portion of the dataset,

accounting for 40.8% of the total samples. Such a high percentage of duplicated data raises

concerns regarding data uniqueness and can potentially lead to biased results.

Croft et al. [9] found that some software vulnerability datasets contain high data duplication

rates, leading to data leakage, where models achieve inflated performance when evaluated

using standard test setups. Removing these duplicates decreased the evaluation performance

by up to 82%. Therefore, it is crucial to address data duplication issues to ensure accurate

and reliable performance evaluations of vulnerability detection models.

I.3. Contradicting vulnerability labels: Upon removing the duplicated samples, our analysis

revealed that 4988 methods with identical code and CWE-ID labels were assigned contra-

dicting vulnerability labels. This means the same method was labelled as vulnerable in some

instances and non-vulnerable in others.

Inconsistencies in data labelling can significantly impact the learning process, as the model

may encounter conflicting information during training. Consequently, the model’s ability

to accurately distinguish between vulnerable and non-vulnerable methods may be compro-

mised. Moreover, contradicting vulnerability labels can lead to challenges when evaluating

the model’s performance. Without a clear and consistent ground truth, it becomes difficult

to ascertain the model’s effectiveness in correctly identifying vulnerabilities.

I.4. Random train/validation/test split: The traditional split method randomly selects samples

for each subset according to the desired split ratio. However, this random selection can lead

to an imbalanced distribution of the target variable across the subsets. In the context of

vulnerability detection, this can result in a disproportionate number of vulnerable methods

and the corresponding CWE-ID in each subset. A stratified split, on the other hand, would

ensure equal proportions of the target variable in all splits, which means that the model is

trained and evaluated on the same distribution of labels.

In conclusion, this analysis highlighted several issues that need to be addressed in order to

create a robust and reliable dataset for vulnerability detection from the Juliet Test Suite for Java.

As our research progresses, these findings will serve as valuable guidelines in the following data

preprocessing stage, described in detail in the following sections. By incorporating the necessary
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adjustments and improvements based on the lessons learned from VDET’s dataset, we aim to

create a dataset that overcomes these challenges and produces more reliable and meaningful results

in our vulnerability detection model.

5.1.1.2 Data parsing and code labelling

The labelling process involves assigning appropriate class labels to instances within the dataset,

and the granularity of the labels is a crucial factor in the success of the detection model. Section

3.1 presented several systems with different granularity levels for vulnerability detection, and we

decided to use method-level granularity, as done in VDET’s work [46]. Assigning labels at the

method level offers a reasonable trade-off between granularity and manageability. It allows us

to capture the presence of vulnerabilities within individual methods, which are crucial units of

code in software development, and offer a much more granular approach than file-level labelling.

Moreover, method-level labelling simplifies the annotation process by reducing the complexity

and time required for manual annotation compared to more granular approaches like line-level

labelling.

To process the Juliet Test Suite for Java and achieve the desired granularity level, we have

developed a script in Python that uses the javalang library2 to parse and extract all the methods

from the test cases. The Juliet Test Suite is organised into different packages, each containing test

cases for a specific CWE. For example, test cases for the CWE-15 are located inside the package

CWE15_External_Control_of_System_or_Configuration_Setting, in several java files which start

with the CWE id and its shortened CWE entry name (e.g.

CWE15_External_Control_of_System_or_Configuration_Setting__Environment_01.java).

The test cases contain "bad" (vulnerable) and "good" (non-vulnerable) methods, which are named

accordingly.

By leveraging the information provided in the Juliet Test Suite documentation, including the

tests’ naming convention, test design, and regex pattern for method names, our script automatically

labels the extracted methods as vulnerable or non-vulnerable and with the corresponding CWE-ID

based on the method’s name and the package it is located, respectively. All the data is stored in

a CSV file, which ends up with 207892 samples. The file contains the following columns: id

(an incremental identifier for each row), code (the methods code text), CWE (CWE-ID associated

to that method), isVulnerable (a boolean, indicating whether the method is vulnerable or not),

filename (the full file path, including package), method_name (the method’s name), startline and

endline (method’s start and end line, respectively).

5.1.1.3 Data cleaning and normalisation

The data cleaning process is a crucial step in the data preprocessing pipeline, as it ensures that the

data is in a suitable format for the model to learn from. The cleaning process involves removing

any unnecessary information and normalising the data to ensure consistency.

2https://github.com/c2nes/javalang

https://github.com/c2nes/javalang
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First, an initial filtering process is executed to retain only methods that are relevant to vulner-

ability analysis, adhering to the guidelines provided in the Juliet documentation. Consequently,

only methods whose names contain the words "bad" or "good" were preserved for further analysis.

The primary good methods, named strictly "good", were removed from the dataset as they do not

contribute to the learning process of vulnerability detection models. These methods are only used

to call secondary good methods, which are the ones that contain the actual code to be learned. This

filtering process resulted in the removal of 61484 samples from the dataset. Figure 5.1 illustrates

the distribution of methods post this filtering stage.

Figure 5.1: Juliet Test Suite methods’ distribution. Column ’Others’ groups 26 methods with less
than 1000 samples.

Upon completing the initial filtering step, we conducted a thorough examination of data in-

tegrity and consistency. Specifically, we checked for missing values and duplicates within the

dataset. The dataset has no missing values, so we guarantee completeness. It is also free from con-

tradicting labels, ensuring consistency. However, we identified 52309 duplicate samples - entries

that shared the same values in the columns code, CWE, and isVulnerable. In order to ensure data

accuracy and address issue I.2., these duplicate entries were removed from the dataset.

The data normalisation process began by removing all the comments from the code, given they

neither influence code execution nor contribute to vulnerabilities. Additionally, all whitespace

characters were replaced with a single space, reducing the overall length of the code. Afterwards,

two different normalisation pipelines were executed, to address the I.1. issue. This resulted in the

creation of two normalised datasets, ND1 and ND2. The specific techniques utilised during the

code normalisation process are detailed in Table 5.2.
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Table 5.2: ND1 and ND2 normalisation steps per code entity.

Entity ND1 ND2

Strings Entire String contents were replaced with the word "string".

Methods Vulnerability-related method names in
declarations and calls were replaced by

a neutral expression, method_X.

Vulnerabilty-related method names
were mapped and replaced by random

strings.

Classes Not normalised. Test cases’ classes were mapped and
replaced by random strings.

Variables and Objects Variable and Object names that contained the tokens "bad", "good" or "CWE"
were replaced with var_X and Obj_X, respectively.

ND1 analysis
The ND1 normalisation pipeline begins by addressing text within strings since we observed

that certain test cases’ strings contained the id or name of the CWE being tested. The sec-

ond step focus on the normalisation of vulnerability-related method names. Unlike VDET,

which only replaced the method names in the method declaration, we also replaced the

method names in the method calls that occur within the code. Finally, we normalised vari-

able and object names that contain any vulnerability-related tokens. The normalisation tech-

nique for these names is similar to that for method names.

The numbering schema used to create neutral names assigns a number to each unique vul-

nerable method name encountered within a sample. This numbering scheme is reset when

processing another sample to mitigate bias. If a direct mapping of method names to their

neutral counterparts, such as assigning bad to method_1 and good to method_2 were em-

ployed, the inherent bias would persist.

While these normalisation steps eliminate the presence of "CWE", "bad" and "good" tokens

in the code and thereby remove possible bias, they inadvertently lead to duplicate rows and

contradicting labels within the dataset. Upon closer analysis of these samples, we sought to

uncover the root causes of these issues.

The duplication of rows can be attributed to the presence of methods with similar code but

different object names and method calls, as depicted in Figure 5.2. Both goodG2B methods

possess identical code structures but call goodG2BSource methods from distinct classes.

After normalising the methods and variable names, both rows are identical.
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Figure 5.2: Example of two methods which have the same normalised code. The two figures on
the left show two goodG2B methods from different classes, and the figure on the right shows the
normalised code of both.

The contradicting labels arise due to the normalisation of scenarios involving good-source/bad-

sink and bad-source/good-sink methods. In the example illustrated in Figure 5.3, the nor-

malisation process renders the code of the badSource method identical to that of goodB2GSource,

and the same applies to bad and goodG2B methods.

We eliminated the duplicated samples by retaining only the first occurrence, which removed

37213 extra samples from our dataset. However, the contradicting labels were not recti-

fied during the ND1 normalisation process. These findings underscore the need for further

enhancements to the normalisation procedure.

ND2 analysis
In this second normalisation pipeline, we sought to address the issues identified in the pre-

vious pipeline. The string, variable and object names normalisation steps are identical to

those of ND1. The key difference lies in normalising method names and introducing a new

normalisation step for class names.

As evidenced in Figure 5.1, the Juliet Test Suite for Java is mainly composed of

good-source/bad-sink and bad-source/good-sink scenarios. The ND1 method normalisation

step failed to capture the semantic relationships between the methods and classes involved

in these scenarios, as different methods were frequently mapped to the same neutral name.

ND2 pipeline introduces a mapping process that assigns vulnerability-related method names

and test class names to random neutral counterparts. Given the dataset size, these counter-

parts are unique strings of lengths 3 and 4, respectively, the minimum length required to

generate unique names. It is important to note that the normalisation of method names de-

pends on the test class, resulting in the same method name being mapped to different random

strings based on the test class to which it belongs. For example, the goodG2B method from

the
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Figure 5.3: Example of contradicting normalised methods.

CWE190_Integer_Overflow__byte_console_readLine_preinc_61a class is mapped to hapv

whereas the goodG2B method from the CWE190_Integer_Overflow__byte_max_preinc_61a

class is mapped to hHVU.

The described mapping process allowed us to replace susceptible method and class names

with fixed neutral names. This is done in their declarations and when they are referenced

within other methods, whether they are from the same or a different class. As a result, both

the structural and semantic relationships intrinsic to the code are preserved.

All the normalisation steps of the ND2 pipeline effectively eliminate the presence of "CWE",

"bad" and "good" tokens in the code. Unlike ND1 normalisation, no duplicate rows or

contradicting labels were introduced. Thus ND2 contains more samples than ND1 and

captures the dependency between methods in data flow tests. Figure 5.4 presents the new

normalisation of the same methods illustrated in Figure 5.2
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Figure 5.4: Example of two methods which have the same normalised code in ND1 but not in
ND2. Figures on the right show the normalised code of the respective method on the left figure.

5.1.1.4 Data filtering

After applying the normalisation pipelines ND1 and ND2, we proceed to address two significant

challenges in our dataset: the presence of long sequences and the issue of class imbalance. Despite

the already reduced dataset size, these issues must be addressed to ensure the model’s learning pro-

cess is not compromised. Both Long Sequence Removal (LSR) and Non-significant data removal

(NSDR) steps followed VDET’s approach.

Long Sequence Removal
In order to mitigate the impact of long sequences, the LSR stage involved removing methods

that exceed the maximum token limit of 512 imposed by the BERT models. By eliminating

these lengthy sequences, we ensure compatibility with the chosen model architecture and

prevent any potential loss of information due to token truncation. This step is crucial to

ensure that the models can learn from the data without limitations. Figure 5.5 illustrates

each datasets’ code tokens count distribution before and after the LSR step.
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Figure 5.5: ND1 and ND2 code tokens count distribution before and after LSR step.

Non-significant data removal
Succeeding the LSR step, the NSDR stage was performed. Figure 5.6 illustrates the im-

balance problem in the datasets before NSDR. To determine the significance of each CWE

label, we calculated the mean number of samples per CWE. This allowed us to establish

a threshold value representing the minimum number of required examples per CWE (400

for ND1, and 750 for ND2). Any CWEs with fewer samples than this stipulated threshold

are deemed non-significant and subsequently removed from the dataset. By performing this

step, we aim to achieve a more balanced distribution of samples across the different CWE

labels. This ensures that each CWE category has sufficient examples for effective model

training and evaluation. Despite the remaining CWE samples still presenting imbalance

issues, it is less severe than the original datasets.

Figure 5.6: Distribution of samples per CWE in ND1 and ND2 before NSDR. Column "Other"
aggregates 90 CWEs.
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Table 5.3 presents a comprehensive summary of our datasets after completing all preprocessing

stages. For comparison, we have also included VDET’s publicly available dataset. It is important

to note that VDET’s distribution of vulnerable samples differs from the one presented by Mamede

et al. [46] in their work.

Table 5.3: Overview of VDET and our preprocessed datasets.

Dataset Total samples Vulnerable samples Non-vulnerable samples Vulnerability ratio Total CWEs

VDET 115600 34115 81485 0.42 21a

ND1 41216 17567 23649 0.43 24b

ND2 74426 27176 47250 0.37 21c

a VDET supported CWEs: 15, 23, 36, 78, 80, 89, 90, 113, 129, 134, 190, 191, 197, 319, 369, 400, 470, 606, 643, 690, 789
b ND1 supported CWEs: 15, 36, 78, 80, 81, 83, 89, 90, 113, 129, 134, 190, 191, 197, 319, 369, 400, 470, 476, 563, 606, 643, 690, 789
c ND2 supported CWEs: 15, 36, 78, 80, 89, 90, 113, 129, 134, 190, 191, 197, 319, 369, 400, 470, 476, 606, 643, 690, 789

5.1.1.5 Data partitioning

In the final stage of the dataset creation pipeline, we split the datasets into distinct training, val-

idation, and test sets. This step allows us to train our models, fine-tune their hyperparameters,

and evaluate their performance on unseen data. Before splitting, we created the columns with the

target labels for our models.

In the multi-label context, we create a single label column named one-hot. This column is the

result of applying one-hot encoding to the combined CWE and isVulnerable columns (for instance,

a value pair like [89, ’True’]), transforming the categorical variables into a format that could be

provided to machine learning. Consequently, we obtain a one-hot vector, whose length is dictated

by the total count of CWEs in the dataset, incremented by two, accounting for the ’True’ and

’False’ values in the isVulnerable column.

For the multiclass models, we introduced the encoded_CWE column, which contains the value

0 if the method is not vulnerable, and the encoded CWE-ID otherwise. The output layer of the

model contains as many neurons as there are classes, with each neuron representing the probability

of the instance belonging to that particular class. Therefore, it is essential to encode the labels in

a format that the model can process. This encoding is achieved by mapping each CWE-ID to a

unique integer value within the [1,NC] range, where NC denotes the number of unique CWE-IDs

in the dataset.

Initially, we apply an 80/20 train/test split to each dataset. This ratio strikes a balance between

providing substantial data for training our models while reserving a reasonable portion for evalua-

tion, and is empirically the best division [25]. We further split the test sets into two equal subsets,

resulting in a 50/50 validation/test split. This additional split is essential as it allows us to have a

dedicated validation set for fine-tuning our models and selecting the best-performing ones.

We employ the StratifiedShuffleSplit3 class from the scikit-learn library to perform these splits

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedShuffleSplit.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html
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and address VDET’s I.4. issue. This class enables us to split our data while preserving the strati-

fication of the target variable, one-hot, ensuring that the proportions of different labels are main-

tained in each subset. In the case of the ND1 dataset, we straightforwardly perform the splits based

on the one-hot column. However, in the ND2 dataset, we take an additional step to accommodate

the splitting of data flow tests. For this purpose, we introduce a new column called pair_hash,

which assigns a unique identifier to all the methods belonging to the same test case. The split is

then performed based on these unique pair_hash values, while stratification is ensured using the

encoded_CWE column as the target variable. Methods from the same test case are grouped within

the same split, enabling a more coherent evaluation process.

5.1.2 Creating a real-world evaluation dataset

The datasets produced in the preceding section are designed to train and evaluate our models.

However, they do not represent real-world vulnerability scenarios, as they were built from syn-

thetic test cases. In order to assess the real-world capabilities of our models, it is crucial to test

them on non-synthetic data. To this end, we have created a real-world evaluation set: a collection

of vulnerable real-world methods and their patched counterparts. This set was constructed using

the CVEfixes tool [4], whose source code is available on their GitHub repository4.

The CVEfixes tool is a resource designed to automate the collection of vulnerabilities and

their corresponding fixes from open-source software. It operates by scanning all published JSON

vulnerability feeds from the National Vulnerability Database5, from 2002 up to the most recent

one on the date of collection, and retrieving pertinent information such as CVE-ID, CWE-ID and

associated reference links. All open-source projects that were reported in CVE records in the

NVD within this timeframe and had publicly available git repositories are fetched and used to

build the vulnerability dataset. The most recent CVEfixes vulnerability dataset dump covers all

published CVEs up to 27 August 2022, with a total of 7637 CVEs in 209 different CWEs types,

and containing the source code before and after the fix of 29309 files and 98250 functions [50].

We adapted the CVEfixes source code to scrape only Java-related repositories. This resulted

in a real-world Java vulnerability dataset with 5170 total methods, covering published CVEs up

to 15 April 2023, totalling 315 CVEs across 73 CWEs types. In order to maintain consistency

with previous works and to enable an effective comparison of real-world model performance, we

curated our dataset further. Our filtering criteria focused on retaining only those CWE-IDs present

in VDET, ND1, and ND2 datasets. To reduce noise and improve the relevance of our data, we

excluded methods associated with tests, as they do not directly encapsulate the vulnerability and

its corresponding fix. Table 5.4 shows the final dataset statistics.

It is important to note that this dataset is not ideal as it contains few samples and does not cover

all the CWEs supported by our models’ training datasets. While VDET, ND1, and ND2 covered

more than 20 CWEs, this test set only shares 5 CWEs with them. This presents a limitation

regarding the range of vulnerabilities that can be tested.

4https://github.com/secureIT-project/CVEfixes
5https://nvd.nist.gov/vuln/data-feeds

https://github.com/secureIT-project/CVEfixes
https://nvd.nist.gov/vuln/data-feeds
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Table 5.4: Distribution of samples per CWE in the real-world test set

CWE-ID Total samples Vulnerable samples
78 20 9

89 515 222

90 4 1

113 6 2

400 64 23

Despite these limitations, our dataset remains a significant resource. Given the existing tools

and resources, it is the most comprehensive dataset of real-world Java vulnerabilities we could

create, offering an opportunity to assess and compare our models’ real-world capabilities.

5.1.3 Java buggy code corpus for domain adaptation

To train our custom MLM model, which can subsequently be fine-tuned to generate vulnerability

detection models, we required a dataset encompassing both vulnerable and non-vulnerable meth-

ods. To this end, we curated two distinct datasets from the Learning-Fixes [73] data, available

on their website6. This data contain pairs of buggy Java methods and their respective fixes, ex-

tracted from 787178 bug-fixing commits mined from the GitHub Archive [32]. The selection of

this data source was motivated by its rich collection of real-world Java code with buggy methods

and corresponding fixes, which provides a valuable foundation for training a model to recognize

and understand the nuances of vulnerable code structure and its fixes.

The first dataset was created by merging Learning-Fixes’ BFPsmall and BFPmedium datasets,

which we named BFPcombined , and contains 123805 bug-fix method pairs (BFPs). Instead of using

the pre-defined splits provided, which contain the abstracted version of the code, a custom 80/20

train/validation split of the pairs was created using the original source code of the methods. This

decision was driven by the desire to train the model on the raw, unabstracted code, thereby enabling

it to learn the vocabulary of both vulnerable and fixed Java code.

For the second dataset, we used the Extracted Bug-Fix Pairs data, which contains all the BFPs

extracted from the bug-fixing commits. Out of the 2.3 million BFPs, we retained only those

associated with single file and single method commits, with a maximum of 512 tokens. This

was done to manage the substantial size of the original dataset, making it more manageable and

efficient for training purposes. The resulting dataset, named BFPsingle comprises 149227 BFPs,

and was subjected to the same 80/20 train/validation split as the previous dataset.

5.2 Model development and training

This section explains the development of our model’s custom architecture and the training pro-

cess. Initially, we leveraged the architecture of VDET’s model as a baseline, creating two new

6https://sites.google.com/view/learning-fixes/data

https://sites.google.com/view/learning-fixes/data
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multi-label models trained on the ND1 and ND2 datasets. Afterwards, we opted for a multiclass

approach, a strategy widely used in other DL vulnerability detection, as highlighted in section 3.1.

In the final phase of our experiments, we fine-tuned two masked language models, from BERT,

on Java vulnerable code. These pre-trained models were used for transfer learning on the ND1 and

ND2 datasets, fine-tuning both multi-label and multiclass models for vulnerability detection.

All fine-tuning experiments were conducted using the free version of Google Colab, which

provides access to GPUs, depending on availability. By leveraging CUDA-enabled GPUs in the

training process, we accelerated the fine-tuning phase, reducing the overall training time and in-

creasing the efficiency of our experiments.

5.2.1 Model architecture

The notebook containing the code for VDET’s model architecture, training and evaluation is

promptly available in VDET’s GitHub repository7. We used this code as the starting point to de-

velop our models, making the necessary changes to adapt it to our datasets and experiments. Our

notebook, containing the code for the models’ architecture, training and evaluation, is presented

in Listing A.1 in the Appendix.

5.2.1.1 Baseline multi-label model

The multi-label vulnerability classifier model was developed using the same architecture as VDET’s

model, except for the output layer, which has to be modified to accommodate the number of labels

in each of our new datasets. The model’s architecture, implemented using PyTorch, is presented

in Listing 5.1.

To define our customized architecture, we first created a new class, VulnerabilityClassifier,

which inherits from the torch.nn.Module8 class. In the constructor (__init__ method), the Jav-

aBERT model checkpoint is loaded, as it is the model we will finetune. A Dropout layer is added

to the model, with a probability of 0.1, to prevent overfitting. Finally, the output Linear layer is

defined, with the number of labels corresponding to the number of labels in the dataset. This layer

is also four times the size of a single BERT’s hidden layer (768), as we will use the concatenation

of the last four hidden layers to obtain the final output. We chose to use the concatenation of the

last four hidden layers as it was the best-performing strategy in BERT’s and VDET’s experiments.

� �
1 N_CLASSES = 21 # Number of labels in the dataset

2 model_checkpoint = ’CAUKiel/JavaBERT’ # Model checkpoint from Hugging Face

3

4 class VulnerabilityClassifier(torch.nn.Module):

5 DROPOUT_PROB = 0.1

6

7 def __init__(self):

7https://github.com/TQRG/VDET-for-Java
8https://pytorch.org/docs/stable/generated/torch.nn.Module.html

https://github.com/TQRG/VDET-for-Java
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
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8 super(VulnerabilityClassifier, self).__init__()

9 self.model = transformers.AutoModel.from_pretrained(model_checkpoint)

10 self.dropout = torch.nn.Dropout(self.DROPOUT_PROB)

11 self.linear = torch.nn.Linear(768 * 4, N_CLASSES)

12 self.step_scheduler_after = ’batch’

13

14

15 def forward(self, ids, mask):

16 cls_hs = torch.stack(self.model(ids, attention_mask=mask)["hidden_states"])

17

18 cls_4hs = torch.cat((cls_hs[-1],

19 cls_hs[-2],

20 cls_hs[-3],

21 cls_hs[-4]), -1)[:, 0]

22

23 output_dropout = self.dropout(cls_4hs)

24 return self.linear(output_dropout)� �
Listing 5.1: Baseline model architecture.

In the forward method, we define the model’s logic. It accepts the input ids and attentions

masks of the code samples and processes them through the model. Afterwards, the output of the

last four hidden layers is concatenated and passed through the Dropout layer. Finally, the output

of the Dropout layer is passed through the Linear layer, obtaining the final output of the model.

In order to obtain the final predictions, we have to apply an activation function to the model

output. We picked the Sigmoid function since we are dealing with a multi-label classification

issue. It returns a number between 0 and 1 for each label, representing the likelihood of the

sample belonging to that label. The final predictions are obtained using a 0.5 threshold to the

Sigmoid function output, meaning that if a label’s probability is greater than 50%, the sample is

classified as belonging to that label.

5.2.1.2 Transitioning to a multiclass architecture

In multi-label classification, each instance can be assigned to one or more classes, meaning the

classes are not mutually exclusive. Mamede et al. [46] reasoning for adopting a multi-label

approach was that it enables the model to predict multiple CWEs for a single method. However,

our datasets do not reflect this scenario, as each method is exclusively linked to a single CWE-

ID. Furthermore, the inherent structure of the labels in the multi-label datasets allows the model

to generate incompatible or contradictory predictions. For instance, the model may concurrently

predict both "True" (vulnerable) and "False" (not vulnerable) for the same method, or it may

predict only a CWE label without the associated vulnerability status label, or vice-versa. These

are all scenarios we end up confirming in our experiments.
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Given these issues associated with the employed multi-label approach, we decided to switch

to a multiclass architecture. This approach suits our datasets better and provides more precise and

unambiguous predictions, as the model is forced to predict a single label for each method.

The architecture of the multiclass model is identical to the multi-label model, with the only

necessary change being the adjustment of the output layer to accommodate the number of classes

in our dataset. Specifically, the output layer has to be a Linear layer with the number of classes

corresponding to the number of unique values in the encoded_CWE column, as it is the target

variable.

To generate the final predictions, we simply extract the index of the maximum value in the

model output list, which corresponds to the predicted class. While a Softmax function could be

applied to the model output to obtain the probabilities of each class, this step is unnecessary,

particularly during the training phase. The training process focuses on identifying the correct

classes rather than analyzing the probabilities associated with each one.

5.2.2 Loss functions

Loss functions, also known as cost functions, play a key role in neural network training. They

measure the error between the predicted and the actual values, providing a metric to optimise

during training. The goal of the training process is to minimise the value of the loss function to

achieve the best results possible.

Cross-Entropy loss, a popular loss function in neural network training, has a unique charac-

teristic that makes it particularly effective: it penalises models that are overconfident about their

predictions. The greater the difference between the predicted and the actual value, the greater the

loss [58]. This is useful in our vulnerability detection context, as it is critical to minimise the

number of false positives and false negatives.

In the multi-label scenario, we chose the Binary Cross-Entropy (BCE) loss function, follow-

ing the same approach as VDET. The Binary Cross-Entropy (BCE) with Logits Loss function, as

implemented in PyTorch9, combines a Sigmoid layer and the BCE loss in one single class, making

it more numerically stable. Regarding the multiclass model, we opted for the Cross-Entropy loss

function, which combines a LogSoftmax layer and the NLLLoss (Negative Log Likelihood Loss)

in one single class10. The LogSoftmax activation is used to normalise the output of the model, ob-

taining a probability distribution over the classes. The NLLLoss function is then used to calculate

the loss between the predicted and the actual class.

5.2.3 Optimizers

In the training of deep learning models, the optimizer is responsible for updating the model’s

parameters based on the gradients of the loss function. The optimizer aims to minimize the loss

function, thereby improving the model’s performance.

9https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
10https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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The Hugging Face library provides support for the AdaFactor [63] and AdamW [45] optimiz-

ers, both of which are extensions of the original Adam optimizer [37]. Despite Adafactor being

more memory-efficient, we opted for AdamW, as its weight decay regularization can lead to better

generalization and faster convergence.

The learning rate (LR) is a hyperparameter that controls the step size of the optimizer during

training. A higher LR can speed up the training process but can also lead to the model overshooting

the optimal solution. On the other hand, a lower LR makes smaller updates to the model’s weights,

meaning that it will take more iterations to converge, but often leads to a more accurate and reliable

model, as it reduces the risk of overshooting and allows the model to fine-tune its parameters for

optimal performance. In our experiments, we used a learning rate of 5e−5 (the same provided in

VDET’s notebook), lower than the default value of 1e−3.

Additionally, a linear LR scheduler was employed to adjust the learning rate during training.

This scheduler increases the LR linearly from 0 to the provided value over a warmup period and

then decreases it linearly to 0 over the remaining training steps. The warmup period allows the

model to start learning slowly, reducing the risk of significant errors early in the training process,

and the gradual decay allows the model to fine-tune its parameters for optimal performance.

5.2.4 Training the vulnerability classifier models

Before feeding the data to the model, we have to tokenize it, converting the code samples into a

format the model can understand, and group it into batches so data can be processed in parallel.

The tokenizer, provided by the model checkpoint we are using, is responsible for tokenizing the

code samples and ensuring they have the desired length by either padding or truncating them. In

the case of BERT models, the maximum length of the input is 512 tokens, so [PAD] tokens are

added to the end of the code samples that are shorter than 512 tokens, and the longer ones are

truncated. Since we preprocessed the datasets to ensure that all code samples have a maximum of

512 tokens, no truncation should be necessary.

Afterwards, the data is grouped into batches of size 12, the maximum we could fit into the

GPU memory. In order to reduce the number of tokens and subsequentially increase training

speed, a smart batching strategy from Chris McCormick tutorial [47] is applied. The code samples

are sorted by length and then grouped into batches with similar lengths, reducing the number of

[PAD] tokens and, thus, reducing the total number of tokens the model has to process.

With the training and validation data ready, we can start the training cycle, which is carried

out for 10 epochs. This process is divided into two phases per epoch, training and validation,

which are implemented with train_fn and eval_fn functions present in Listing A.1 in the Appendix.

The training phase involves settings the model to train mode, loading the inputs onto the GPU

from acceleration, and passing the inputs through the model. The loss is then calculated, and the

gradients are computed and back-propagated through the model. Finally, the optimizer is used

to update the model’s parameters. The validation phase is similar, except that the model is set to

evaluation mode, the gradients are not computed and back-propagated, and the optimizer is not

updated. Each epoch can take up to an hour to complete depending on the dataset used.
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A checkpoint strategy is used to ensure efficient model development. At the end of each epoch,

we serialize and store the current states of the model, optimizer and scheduler. This serialized

object contains all the necessary information to load the model and continue the training from

that epoch onwards. Additionally, we save the training and validation loss and accuracy for each

epoch. This strategy not only guarantees that we have a record of the model’s progress but also

provides flexibility in terms of experiment management. It allows us to stop the training process

at any time, resume it later, and compare the performance of different models by loading their

best-performing checkpoints.

5.2.5 Custom masked language modelling with Java buggy code

Masked Language Modelling (MLM) is a training technique used NLP where a model is trained

to predict certain masked tokens in a the given input. This approach, popularized by models such

as BERT, allows the model to learn a rich understanding of the language structure and seman-

tics, as it needs to understand the context around the masked token to make accurate predictions.

Vulnerabilities also revolve around the context of the code, as the presence of certain tokens in a

method can be a strong indicator of the presence of a vulnerability. Therefore, we hypothesize that

a model trained to predict masked tokens in buggy code will be able to learn a rich representation

of the context around vulnerabilities, and thus be able to detect them.

Inspired by the work of JavaBERT [12], we decided to develop our own MLM model for Java,

fine-tuning BERT on domain-specific data, in our case, Java code with vulnerabilities.

The fine-tuning process was performed using the Hugging Face Transformers library, follow-

ing the steps described in the "Fine-tuning a masked language model" guide[15]. We chose to

fine-tune the bert-base-cased model since Java is a case-sensitive language, and it was the best

performing model in JavaBERT experiments [12].

We trained two distinct instances, each corresponding to one of the datasets described in sec-

tion 5.1.3, resulting in the creation of the BFPcombined and BFPsingle masked language models.

Prior to the training phase, the data underwent tokenization, converting the code into tokens the

model can interpret and learn from. These tokens were then exposed to random masking, where

selected tokens were replaced with a [MASK] token. Using the DataCollatorForLanguageMod-

elling class11, this was executed with a probability of 15% (default value). The masking technique

is a fundamental aspect of MLM, as it compels the model to predict the masked tokens based on

their context, thereby promoting a deeper understanding of the language structure and semantics.

The training procedure was executed over five epochs using HF’s Trainer API, and the note-

book containing the code for this process and the training logs are presented in Appendix A.2.

The most pertinent training arguments and hyperparameters are summarised in Table 5.5. It is

noteworthy to mention that we employed mixed precision training, denoted by the fp16 flag, a

technique that leverages half-precision floating point numbers (16-bit) as opposed to the conven-

tional 32-bit ones for the representation of the model’s weights and activations. This technique

11https://huggingface.co/docs/transformers/main_classes/data_collator#
transformers.DataCollatorForLanguageModeling

https://huggingface.co/docs/transformers/main_classes/data_collator#transformers.DataCollatorForLanguageModeling
https://huggingface.co/docs/transformers/main_classes/data_collator#transformers.DataCollatorForLanguageModeling
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reduces the memory requirements of the model, allowing for larger batch sizes, and significantly

reduces the training time [16].

Table 5.5: Training arguments used for the fine-tuning of the MLM models.

Paramter Value

FP16 True

Training batch size 32

Evaluation batch size 32

Optimizer AdamW

Learning rate 2e−5

Weight decay 0.01

Finally, to use these fine-tuned models for transfer learning and create new vulnerability detec-

tion models, we simply have to replace the model checkpoint (line 2 in Listing 5.1) with the check-

point of the desired fine-tuned model. These models are available in the following repositories on

the Hugging Face model hub: up201806461/bert-java-bfp_combined12 and up201806461/bert-

java-bfp_single13.

5.2.6 Overview of the trained models

To comprehensively understand the vulnerability detection models’ capabilities, we fine-tuned

JavaBERT [12] and our MLMs on VDET, ND1 and ND2 datasets. The resulting models are named

following the format [Dataset]-[MLM]-[Task]. For example, the BFPcombined model fined-tuned

on the ND2 dataset for the multiclass task is denoted as ND2-BFPcombined-Multiclass.

The experimental process led to the creation of three multi-label models, specifically VDET-

JavaBERT-Multilabel, ND1-JavaBERT-Multilabel and ND2-JavaBERT-Multilabel. The VDET-

JavaBERT-Multilabel model corresponds to the one developed by Mamede et al. [46]. However,

considering the discrepancies between the publicly available dataset and the one presented in their

work, we decided to train a new model to showcase a fair comparison to the multiclass models.

For the multiclass task, we developed nine different models. These correspond to all MLMs,

including JavaBERT, BFPsingle and BFPcombined , each fine-tuned on the VDET, ND1, and ND2

datasets.

5.2.7 Evaluation procedure

After training the vulnerability detection models we chose the optimal checkpoint, based on their

learning curves, for evaluation. Since our goal is to minimize the loss function, the checkpoint with

the lowest loss value, positioned before any indication of overfitting, was selected. Section A.1.2

of the Appendix depicts the learning curves of all models, with the best checkpoints highlighted.

12https://huggingface.co/up201806461/bert-java-bfp_combined
13https://huggingface.co/up201806461/bert-java-bfp_single

https://huggingface.co/up201806461/bert-java-bfp_combined
https://huggingface.co/up201806461/bert-java-bfp_single
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To illustrate this process, consider Figure 5.7, which presents the learning curves of the ND2-

BFPcombined-Multiclass model. The optimal checkpoint, epoch 7, is highlighted by the dotted

vertical line. Between epoch 4 and 7, the validation loss stabilizes on its lowest value. Beyond

epoch 7, while the training loss continued to decrease and training accuracy kept improving, the

validation loss started increasing, and the validation accuracy plateaued, which indicates overfit-

ting.

Figure 5.7: ND2-BFPcombined-Multiclass model’s learning curve

All these models were then evaluated on the test set of their respective datasets, as well as

the real-world test set, to determine their practical applicability. To scrutinize potential bias in the

models, we performed cross-validation, evaluating each JavaBERT multi-label model on the test

sets of the other two datasets.

The models’ performance is assessed using the metrics described in Section 2.8, including

accuracy, precision, recall and F1-score, as well as FPR and FNR. Given the imbalance nature

of the datasets used in this research, accuracy is not a reliable metric to evaluate the models’

performance. Instead, we focus on the weighted average precision, recall and F1-score values. It

is important to note that function used to calculate the accuracy, accuracy_score14 from sklearn

computes the subset accuracy in multi-label classification contexts. This means that for a sample

to be considered correctly classified, the set of predicted labels must exactly correspond to the set

of actual labels in the ground truth.

The evaluation methodology adopted allows for a comparison of the performance of different

models when fine-tuned on the same dataset. This offers insights into the transfer learning capa-

bilities of the MLMs and their real-world effectiveness. It also allows us to compare the models’

14https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_
score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html


J-TAS implementation 52

performance and any biases across different datasets. In addition, by comparing models with dif-

ferent architectures, we obtain a more comprehensive understanding of which model architecture

is best suited for detecting vulnerabilities in Java code.

5.3 Developing J-TAS Action

In the process of developing our Java vulnerability detection Action, the initial requirement was

a script that could effectively utilise our vulnerability detection models and present the results in

a user-friendly and comprehensible format. To this end, we created a Python script that examines

Java files in a directory and then generates a SARIF file with the results. We use the ND2-BFPsingle-

Multiclass model for the analysis due to its superior performance compared to the other models,

as discussed later in Section 6.4.

The culmination of this process was the creation of a Action that utilizes the script. This

Action is designed to seamlessly integrate into any workflow, thereby facilitating the detection of

vulnerabilities in Java code. The J-TAS Action, along with the source code for the script, is readily

accessible for use via our public GitHub repository15.

5.3.1 Analysis script

Our Python script begins by parsing all Java files located within a specified directory and extracting

all methods within these files. This is accomplished by utilising the javalang library.

Following the parsing phase, the script then proceeds to load the pre-trained vulnerability de-

tection model and iterates over the methods for analysis. Each method is normalised, by removing

unnecessary elements like comments and extra whitespace, and then tokenised. Finally, the pre-

processed code is subjected to the analysis of the model, which outputs the most probable label.

If a given method is predicted as vulnerable (indicated by the label being a CWE-ID) and

the probability of the prediction surpasses 50%, the method is added to a list of results. After

analysing all methods, the script generates a SARIF file that encapsulates the results.

By default, this script analyses all Java files of a repository. However, users can provide spe-

cific files or directories as input for analysis to enhance versatility. This functionality is especially

beneficial in large repositories, where analysing the entire repository instead of only the modified

files could hamper the developer’s workflow due to the time consumed.

Moreover, the script is designed with a strong emphasis on modularity, facilitating the inte-

gration of new models. By replacing the model utilised and adjusting the dictionary that maps the

model’s output to the corresponding label, the script can be updated with new models that cover

more vulnerabilities or target different programming languages with minimal effort.

15https://github.com/andrenasx/CVE-2015-10034

https://github.com/andrenasx/CVE-2015-10034
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5.3.2 SARIF support

The Static Analysis Results Interchange Format (SARIF) is an open standard, managed by the

OASIS SARIF Technical Commitee16, that defines a standard output format for static analysis

tools. Its primary purpose is to facilitate the interchange of static analysis results among various

tools and services, reducing the complexity of integrating the results of various tools into common

workflows [53].

SARIF employs a JSON schema to outline the structure of the output file. It includes informa-

tion about the tool that generated the results, the analysis run, and the vulnerabilities identified, and

it can even pinpoint the location of the vulnerability within the source code. Despite its original

design for static analysis tools, we can conveniently adapt the results of our deep-learning classifi-

cation model to the SARIF format, as it outputs the vulnerabilities detected for each method. This

facilitates the integration of our tool into existing workflows that support SARIF.

GitHub supports a subset of the SARIF 2.1.0 schema for code scanning. Developers can

upload SARIF files to a GitHub repository, and GitHub parses the file and displays the results as

part of the code scanning interface, in the Security tab of the repository. To utilise GitHub Actions

for uploading a third-party SARIF file to a repository, we simply need to define a workflow that

employs the upload-sarif action from GitHub’s CodeQL [30]. This aligns perfectly with our

desired Action workflow, as we can use the upload-sarif action to upload the SARIF file generated

by our script to the repository.

Listing 5.2 presents an example of a SARIF file generated by our script. The tool object

contains information about J-TAS and a rules list, which catalogues the identified vulnerabilities.

Each entry contains information about the vulnerability, such as the CWE-ID, name, description,

and a link to the respective CWE page on the MITRE website so that developers can learn more

about the vulnerability.

Further down the file, we encounter the results list, which enumerates the specific vulnera-

bilities detected in the Java code for each file analysed by our tool. Each result is mapped to a

rule to identify the CWE present and includes the prediction probability calculated by our model.

Additionally, the locations list details the location of the vulnerability within the source code,

specifying the file path and the lines of code where the vulnerability is located (identifying the

method).

1 {

2 "version": "2.1.0",

3 "$schema": "https://raw.githubusercontent.com/oasis-tcs/sarif-spec/master/

↪→ Schemata/sarif-schema-2.1.0.json",

4 "runs": [

5 {

6 "tool": {

7 "driver": {

8 "name": "J-TAS",

16https://www.oasis-open.org/committees/sarif/

https://www.oasis-open.org/committees/sarif/
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9 "version": "0.1.0",

10 "informationUri": "https://github.com/andrenasx/J-TAS",

11 "rules": [

12 {

13 "id": "J-TAS/CWE-89",

14 "name": "Improper Neutralization of Special Elements used in an SQL

↪→ Command (’SQL Injection’)",

15 "shortDescription": {

16 "text": "The product constructs all or part of an SQL command using

↪→ externally-influenced input from an upstream component, but it

↪→ does not neutralize or incorrectly neutralizes special elements

↪→ that could modify the intended SQL command when it is sent to a

↪→ downstream component."

17 },

18 "fullDescription": {

19 "text": "Without sufficient removal or quoting of SQL syntax in user-

↪→ controllable inputs, the generated SQL query can cause those

↪→ inputs to be interpreted as SQL instead of ordinary user data.

↪→ This can be used to alter query logic to bypass security checks,

↪→ or to insert additional statements that modify the back-end

↪→ database, possibly including execution of system commands. SQL

↪→ injection has become a common issue with database-driven web

↪→ sites. The flaw is easily detected, and easily exploited, and as

↪→ such, any site or product package with even a minimal user base

↪→ is likely to be subject to an attempted attack of this kind.

↪→ This flaw depends on the fact that SQL makes no real distinction

↪→ between the control and data planes."

20 },

21 "helpUri": "https://cwe.mitre.org/data/definitions/89.html",

22 "help": {

23 "text": "For additional information on this weakness, visit the CWE-89

↪→ page on the MITRE website: https://cwe.mitre.org/data/

↪→ definitions/89.html",

24 "markdown": "For additional information on this weakness, visit the [

↪→ CWE-89 page](https://cwe.mitre.org/data/definitions/89.html) on

↪→ the MITRE website."

25 },

26 "defaultConfiguration": {

27 "level": "warning"

28 },

29 "properties": {

30 "tags": [

31 "security",

32 "CWE-89"

33 ]

34 }

35 },

36 {

37 "id": "J-TAS/CWE-789",
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38 "name": "Memory Allocation with Excessive Size Value",

39 "shortDescription": {

40 "text": "The product allocates memory based on an untrusted, large size

↪→ value, but it does not ensure that the size is within expected

↪→ limits, allowing arbitrary amounts of memory to be allocated."

41 },

42 "helpUri": "https://cwe.mitre.org/data/definitions/789.html",

43 "help": {

44 "text": "For additional information on this weakness, visit the CWE-789

↪→ page on the MITRE website: https://cwe.mitre.org/data/

↪→ definitions/789.html",

45 "markdown": "For additional information on this weakness, visit the [

↪→ CWE-789 page](https://cwe.mitre.org/data/definitions/789.html)

↪→ on the MITRE website."

46 },

47 "defaultConfiguration": {

48 "level": "warning"

49 },

50 "properties": {

51 "tags": [

52 "security",

53 "CWE-789"

54 ]

55 }

56 }

57 ]

58 }

59 },

60 "results": [

61 {

62 "ruleId": "J-TAS/CWE-89",

63 "message": {

64 "text": "CWE-89 predicted with 71.84% probability."

65 },

66 "locations": [

67 {

68 "physicalLocation": {

69 "artifactLocation": {

70 "uri": "src/app/database/UsersDao.java",

71 "uriBaseId": "%SRCROOT%"

72 },

73 "region": {

74 "startLine": 224,

75 "endLine": 254

76 }

77 }

78 }

79 ]

80 },
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81 {

82 "ruleId": "J-TAS/CWE-789",

83 "message": {

84 "text": "CWE-789 predicted with 54.18% probability."

85 },

86 "locations": [

87 {

88 "physicalLocation": {

89 "artifactLocation": {

90 "uri": "src/app/controllers/UsersController.java",

91 "uriBaseId": "%SRCROOT%"

92 },

93 "region": {

94 "startLine": 31,

95 "endLine": 41

96 }

97 }

98 }

99 ]

100 }

101 ]

102 }

103 ]

104 }

Listing 5.2: J-TAS SARIF file example

5.3.3 Creating a Docker container Action

GitHub has three types of Actions: JavaScript, Docker container, and composite actions. JavaScript

actions, as the name suggests, are designed to run JavaScript code. Since our models were im-

plemented using Python libraries, this type of Action is unsuitable for our use case. Composite

actions are a collection of workflow run steps and primarily execute shell scripts. While it would

be possible to run a Python script using a composite action, all the necessary files would need to

be included in the repository, which is not possible in our case, as the size of our binarized model

file (1.2GB) exceeds GitHub’s Large File Storage limit of 1GB per account.

Consequently, we opted for a Docker container Action. This type of Action allows us to

construct a custom environment with all the necessary pre-installed dependencies and include the

model within the image. We followed GitHub’s comprehensive "Creating a Docker container

Action" guide [27] to develop our Action.

To create a Docker container Action, we need to create a Dockerfile that defines the container’s

environment. Listing 5.3 presents the Dockerfile for our Action. The first line specifies the base

image for the container, which, in our case, is an official Python image. We utilize the 3.9-slim tag,

a lightweight version of the image that includes only the essential packages required for Python to

run. Subsequent lines install the dependencies required for the script and copy all the necessary



5.3 Developing J-TAS Action 57

action files (scripts and model) into the container. Line 7 defines a command to remove all cache

to help reduce the image size. Lastly, we define the entrypoint for the container. This bash script

executes the Python script and copies the resulting SARIF file to the GitHub workspace inside the

container, so it can later be uploaded to the repository.

1 FROM python:3.9-slim
2

3 COPY requirements.txt /gaction/requirements.txt
4

5 RUN cd /gaction && \
6 pip install -r requirements.txt && \
7 rm -rf /var/lib/apt/lists/*
8

9 COPY . /gaction
10

11 ENTRYPOINT ["/gaction/entrypoint.sh"]

Listing 5.3: J-TAS Dockerfile.

Building an image as lightweight as possible is crucial, as it will be downloaded every time the

Action is run, affecting workflow times. This is why we use the slim version of the Python image,

group the installation of dependencies in a single instruction, remove installation cache, and only

copy the necessary files to the container image.

After creating the Dockerfile, we must build the image and push it to a container registry. Our

image is hosted on our repository17 on Docker Hub, a cloud-based registry service that allows us

to store and distribute Docker images. We can then reference the image in our Action workflow

file, as shown in Listing 5.4. All the information regarding usage and suggestions to integrate this

Action into your workflow is included in the Action’s README file presented in Listing B.1 in

Appendix, which is displayed in the Action’s page on the GitHub Marketplace.

5.3.4 J-TAS Action practical demonstration

To demonstrate J-TAS’ usage in practice, we decided to create a dedicated test repository con-

taining known vulnerabilities. First, we examined the outputs generated by the ND2-BFPsingle-

Multiclass model. The goal was to select a specific CVE from the set of vulnerabilities that our

model had correctly predicted and that we could easily analyse. This scrutiny led us to the selec-

tion of CVE-2015-1003418.

Subsequently, we forked the parent commit of the fix commit associated with this specific

CVE, creating a demo repository with vulnerable code. Our Action was configured to analyse the

files modified in the fix commit exclusively, so we could later compare the results with the actual

vulnerabilities present in the code.

17https://hub.docker.com/repository/docker/up201806461/j-tas/general
18https://nvd.nist.gov/vuln/detail/CVE-2015-10034

https://hub.docker.com/repository/docker/up201806461/j-tas/general
https://nvd.nist.gov/vuln/detail/CVE-2015-10034
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1 name: ’J-TAS’
2 description: ’Analyses Java files for vulnerabilities’
3

4 inputs:
5 paths:
6 description: ’Paths to analyse (relative to the repository root, separated by

↪→ spaces)’
7 required: false
8 default: ’’
9 files:

10 description: ’Files to analyse (paths relative to the repository root, separated
↪→ by spaces)’

11 required: false
12 default: ’’
13

14 runs:
15 using: ’docker’
16 image: ’docker://up201806461/j-tas:latest’
17 args:
18 - ${{ inputs.paths }}
19 - ${{ inputs.files }}

Listing 5.4: J-TAS Action yaml file.

The workflow file used to configure the analysis is presented in Listing 5.5. The first step uses

GitHub’s checkout Action19 to clone the repository onto the virtual machine. The second step runs

the J-TAS Action, with the files designated for analysis specified using the files parameter. The

final step involves uploading the SARIF file, generated by the Action, to the repository using the

upload-sarif Action20 from GitHub’s CodeQL.

The code scanning tab of the repository displays a list of the SARIF file’s parsed vulnerabili-

ties, as shown in Figure 5.8. The title of each result is a short description of the CWE to provide

a quick insight into the vulnerability. Developers are able to filter the results by several criteria in

order to show the vulnerabilities that are most relevant to them.
19https://github.com/actions/checkout
20https://github.com/github/codeql-action/tree/main/upload-sarif

https://github.com/actions/checkout
https://github.com/github/codeql-action/tree/main/upload-sarif
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1 on: [push]
2 name: J-TAS Action Demo
3

4 jobs:
5 analysis:
6 runs-on: ubuntu-latest
7

8 permissions:
9 actions: read

10 contents: read
11 security-events: write
12

13 steps:
14 - name: Checkout this repo code
15 uses: actions/checkout@v3
16

17 - name: Run J-TAS
18 uses: andrenasx/J-TAS@main
19 with:
20 files: ’workout-organizer-2aaedb7f69ea398a0217493fefe8f19b31ee0775/src/app/

↪→ controllers/AccountController.java workout-organizer-2
↪→ aaedb7f69ea398a0217493fefe8f19b31ee0775/src/app/controllers/
↪→ Application.java workout-organizer-2
↪→ aaedb7f69ea398a0217493fefe8f19b31ee0775/src/app/controllers/
↪→ UsersController.java workout-organizer-2
↪→ aaedb7f69ea398a0217493fefe8f19b31ee0775/src/app/database/ExerciseDao.
↪→ java workout-organizer-2aaedb7f69ea398a0217493fefe8f19b31ee0775/src/
↪→ app/database/GymsDao.java workout-organizer-2
↪→ aaedb7f69ea398a0217493fefe8f19b31ee0775/src/app/database/UsersDao.
↪→ java workout-organizer-2aaedb7f69ea398a0217493fefe8f19b31ee0775/src/
↪→ app/database/WorkoutDao.java’

21

22 - name: Upload J-TAS results
23 uses: github/codeql-action/upload-sarif@v2
24 with:
25 sarif_file: results.sarif
26 category: j-tas

Listing 5.5: Test repository’s workflow file.

Figure 5.8: J-TAS analysis results displayed in the code scanning tab.
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Upon selecting a specific vulnerability to examine, the complete details of the analysis become

accessible. Figure 5.9 shows the details of the second alert in our test repository. On the right-

hand side of the page, developers can dismiss the code alert or create an issue to rectify it. It

also shows the alert’s severity, tags and CWE, all properties we defined in the SARIF file, and

the branch where the vulnerability was detected. The centre of the page displays the code viewer

with the vulnerable method highlighted and the probability of the predicted CWE as calculated by

our model. Finally, on the bottom section of the page, we find information regarding the tool that

generated the results, the matched rule, and the help text, which contains a link to the respective

CWE page.

This example demonstrates our successful exploitation of GitHub’s code scanning interface

to display the results derived from our deep learning vulnerability detection model, effectively

bridging the gap between DL techniques and practical software security auditing.

5.3.5 J-TAS evaluation procedure

To assess J-TAS’s performance, we designed a process that takes into account both the model’s

prediction capabilities and the efficiency of the GitHub Action, using the test repository described

in the previous section.

The first part of the evaluation process involves comparing the vulnerabilities detected with

the actual vulnerabilities present in the code. Our Action analysed all methods in the files that

were changed in the CVE-2015-10034 fix commit. However, it’s worth noting that our real-world

test set comprises only those methods that were explicitly modified in the fix commit. This led to

the analysis of additional methods which were not part of our test set. To account for these extra

methods, we carried out a manual review and labeled them as not vulnerable. With the complete

ground truth, we compared the results of the Action with the actual vulnerabilities present in the

code, allowing us to determine the tool’s ability to correctly identify vulnerabilities in real-world

code.

The second stage of the evaluation process involves assessing the Action’s efficiency. The

Actions tab of the repository displays the time taken by the Action to run, even detailed by each

step. In order to generate a robust measurement of the Action’s efficiency, we executed the work-

flow three times and registered the time consumed by each step. From this data, we were able to

calculate the average time taken for each step and the overall time taken by the Action to run.
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Figure 5.9: J-TAS specific result details.



Chapter 6

Results and Discussion

This chapter provides a comprehensive presentation and insightful discussion of the results ob-

tained from the experiments conducted in this dissertation. The outcomes of these experiments,

designed to address our research questions, are presented in Sections 6.1 through 6.4. Section 6.5

delves into in-depth analysis and discussion of the findings regarding the several datasets, models,

and the final tool developed. In order to provide a comprehensive assessment, Section 6.6 exam-

ines the potential threats to the validity of our findings. Finally, Section 6.7 focuses on evaluating

the tool developed in this dissertation, considering the functional and non-functional requirements

defined in Section 4.4.

6.1 RQ1: How do different dataset normalisation techniques influ-
ence the performance of the vulnerability detection models?

To answer this research question, we compared the results of ND1-JavaBERT-Multilabel and ND2-

JavaBERT-Multilabel with the results of the model developed by Mamede et al. [46] which we

named VDET-JavaBERT-Multilabel.

The performance results of our models, as illustrated in Table 6.1, reveal noteworthy findings.

The VDET-JavaBERT-Multilabel model demonstrates superior performance across most metrics,

with an impressive weighted F1-score of 94%, precision of 95%, and recall of 93%, suggesting

an effective balance between precision and recall. Further, it achieves the lowest mean FNR at

6.84%, the only model below 10%.

The models trained on our normalised datasets, ND1-JavaBERT-Multilabel and ND2-JavaBERT-

Multilabel, show fairly comparable performances. Both models achieve similar recall rates of

88%, with the ND1 model slightly outperforming the ND2 model in terms of the F1-score and

precision, while the ND2 model excels in having a lower mean FNR. These models do not fall

short of the VDET-JavaBERT-Multilabel in all metrics, except for the mean FNR which shows a

significant difference.
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Table 6.1: JavaBERT-based multi-label models’ evaluation results on the test set.

Model Subset Accuracy (W) F1-score (W) Precision (W) Recall Mean FNR Mean FPR

VDET-JavaBERT-Multilabel 85.75% 94% 95% 93% 6.84% 0.90%

ND1-JavaBERT-Multilabel 76.30% 92% 96% 88% 24.61% 0.50%

ND2-JavaBERT-Multilabel 77.95% 89% 91% 88% 17.41% 1.15%

To assess the real-world capabilities of the models, we also evaluate them on our real-world

test set. The results are presented in Table 6.2. In this scenario all models show very similar

performance between them, but is is evident that these models do not perform as well as they do

on their respective test sets.

The Subset Accuracy for all models is extremely low, ranging from 2.63% to 3.45%, which

indicates that the models have a hard time correctly predicting the complete set of labels for a given

instance. The recall rates are roughly 60% lower than those obtained on the test sets, resulting in

a significant impact on the F1-score, which now stands at around 30%. This indicates that the

models cannot correctly predict the labels for most instances in the real-world test set.

Moreover, all models experience a significant increase in mean FPR compared to the test sets.

While the mean FNR shows a slight increase for the ND2-JavaBERT-Multilabel model, the ND1-

JavaBERT-Multilabel model manages to decrease it. However, the VDET-JavaBERT-Multilabel

model encounters a significant increase in FNR.

Table 6.2: JavaBERT-based multi-label models’ evaluation results on the real-world test set.

Model Subset Accuracy (W) F1-score (W) Precision (W) Recall Mean FNR Mean FPR

VDET-JavaBERT-Multilabel 2.63% 31% 68% 29% 25.56% 7.30%

ND1-JavaBERT-Multilabel 3.45% 30% 68% 29% 21.10% 6.27%

ND2-JavaBERT-Multilabel 3.45% 31% 62% 29% 23.64% 7.10%

Finding 1: All models achieve similar results in the real-world test set.

Finding 2: The models’ performance drops significantly when evaluated on the real-world

test set.

Furthermore, to examine the models’ generalisation capabilities, we cross-evaluated the Jav-

aBERT-based models, assessing their performance on the test sets derived from the other datasets.

This also allows us to identify potential bias in the models introduced by the dataset used, and

validate whether the results are inflated by that or not. The results of this analysis are summarised

in Table 6.3.
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Table 6.3: JavaBERT-based multi-label models’ cross-evaluation results.

Model Test set Subset Accuracy (W) F1-score (W) Precision (W) Recall Mean FNR Mean FPR

VDET-JavaBERT-Multilabel
ND1 47.85% 71% (-23%) 80% 68% 31.67% (+24.83%) 3.34% (+2.44%)

ND2 28.73% 55% (-39%) 70% 51% 49.07% (+42.23%) 4.77% (+3.87%)

VDET 60.18% 80% (-12%) 84% 78% 26.84% (+2.23%) 1.98% (+1.48%)
ND1-JavaBERT-Multilabel

ND2 49.03% 75% (-17%) 84% 70% 37.20% (+12.59%) 1.42% (+0.92%)

ND2-JavaBERT-Multilabel
VDET 65.52% 82% (-7%) 83% 81% 25.50% (+8.09%) 2.15% (+1%)

ND1 79.25% 91% (+2%) 93% 89% 21.48% (+4.07%) 0.79% (+0.36%)

Note: (W) F1-score, Mean FNR and Mean FPR columns also show the difference of the values compared to the evaluation of the models on their

own test set (values in Tables 6.1)

When the VDET-JavaBERT-Multilabel model is evaluated on the ND1 and ND2 test sets, we

observe a serious decrease in performance. The weighted F1-score falls to 71% and 55% on the

ND1 and ND2 test sets, respectively, which are substantially lower than the 94% achieved on the

VDET test set.

On the other hand, both ND1-JavaBERT-Multilabel and ND2-JavaBERT-Multilabel models

show promising generalization potential. The ND1-JavaBERT-Multilabel model exhibits consis-

tent performance on both the VDET and ND2 test sets, with weighted F1-scores of 80% and 75%,

respectively. Still, it represents a considerable drop in performance compared to the 92% achieved

on the ND1 test set.

The ND2-JavaBERT-Multilabel model shines in this evaluation with weighted F1-scores of

82% and 91% on the VDET and ND1 test sets, respectively. The results on the ND1 test set are

reasonably close to the ones achieved on its native ND2 test set.

Finding 3: The model trained on the ND2 dataset has the best generalisation capabilities.

6.2 RQ2: How does a multiclass architecture compare to a multi-
label architecture in terms of performance?

Before transitioning to a multiclass architecture, we analysed the multi-label models’ predictions

more profoundly to better understand their performance. This led to an interesting finding: the

models output conflicting predictions. In our multi-label context, we define a "conflicting pre-

diction" as one where the model predicts a sample as both "True" (vulnerable) and "False" (not

vulnerable). Additionally, a "conflicting prediction" can also arise when the model only predicts

the CWE label without the associated vulnerability status label or vice-versa. Table 6.4 presents

the number of conflicting predictions for each multi-label model on the test set and real-world test

set.

All multi-label models output a considerable number of conflicting predictions, mainly when

evaluated on the real-world test set. In this case, the number of conflicting predictions is more than
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Table 6.4: JavaBERT-based multi-label models’ number of conflicting predictions on the test set
and real-world evaluation set.

Model Number of test samples Number of conflicting predictions

Test set evaluation

VDET-JavaBERT-Multilabel 11527 692 (6.00%)

ND1-JavaBERT-Multilabel 4126 717 (17.37%)

ND2-JavaBERT-Multilabel 8064 587 (7.28%)

Real-world set evaluation

VDET-JavaBERT-Multilabel 609 206 (33.82%)

ND1-JavaBERT-Multilabel 609 252 (41.22%)

ND2-JavaBERT-Multilabel 609 224 (36.78%)

one-third of the total test samples for all models. The ND1-JavaBERT-Multilabel model produces

the highest number of conflicting predictions on both test sets.

Finding 4: The multi-label models produce a considerable number of conflicting predic-

tions, especially when evaluated on the real-world test set.

Adapting the models to a multiclass architecture led to interesting performance changes com-

pared to their multi-label counterparts. Table 6.5 illustrates the results of our JavaBERT-based

multiclass models on the test set and real-world evaluation set. Since multiclass models only

predict a single label per sample, they inherently do not produce conflicting predictions.

Table 6.5: JavaBERT-based multiclass models’ evaluation results on the test set and real-world
evaluation set.

Model Accuracy (W) F1-score (W) Precision (W) Recall Mean FNR Mean FPR

Test set evaluation

VDET-JavaBERT-Multiclass 90.61% 91% (-3%) 91% (-4%) 91% (-2%) 15.98% (+9.14%) 0.92% (+0.02%)

ND1-JavaBERT-Multiclass 86.17% 86% (-6%) 88% (-8%) 86% (-2%) 32.31% (+7.7%) 0.73% (+0.23%)

ND2-JavaBERT-Multiclass 87.14% 87% (-2%) 88% (-3%) 87% (-1%) 25.04% (+7.63%) 0.87% (-0.28%)

Real-world set evaluation

VDET-JavaBERT-Multiclass 55.34% 45% (+14%) 49% (-19%) 55% (+26%) 22.84% (-2.72%) 4.47% (-2.63%)

ND1-JavaBERT-Multiclass 55.67% 42% (+12%) 46% (-22%) 56% (+27%) 20.14% (-0.96%) 3.98% (-2.29%)

ND2-JavaBERT-Multiclass 54.19% 42% (+11%) 34% (-28%) 54% (+25%) 23.01% (-0.63%) 4.41% (-2.69%)

Note: (W) F1-score, (W) Precision, (W) Recall, Mean FNR and Mean FPR columns also show the difference of the values

compared to the multi-label counterparts of the models (values in Tables 6.1 and 6.2)

Upon evaluating the test set, all multiclass models exhibited a dip in F1-score and registered
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concerning increases in the mean FNR values. The variation of the mean FPR is negligible. Mir-

roring the patterns observed in the multi-label scenario, VDET’s multiclass model achieves better

results across all metrics.

On the other hand, the evaluation of the real-world test set shows a clear improvement across

the metrics. The F1-score values show increases in the 8%-11% range, but, unfortunately, they

are still below 50%. Furthermore, the mean FPR of all models drops below 5% for all models. A

significant change noticed in this scenario is the higher balance between precision and recall, due

to significant increases in recall coupled with decreases in precision.

The models trained on our normalised datasets have the same F1-score, but ND1-JavaBERT-

Multiclass has higher precision than ND2-JavaBERT-Multiclass (12% more). VDET’s multiclass

model achieves slightly better results than these models.

Finding 5: When evaluated on the real-world test set, the multiclass models show a sig-

nificant performance improvement compared to the multi-label models.

6.3 RQ3: How does the performance of a model pre-trained on Java
buggy-related code compare to JavaBERT when applied to the
same vulnerability detection task?

The BFPcombined and BFPsingle MLMs were developed to help us answer this question and analyse

the impact of transfer learning on the performance of the models. The results of the multi-label

vulnerability detection models pre-trained on these MLMs are presented in Table 6.6 for both the

test set and real-world evaluation set.

When evaluated on the test set, the multiclass BFPcombined and BFPsingle-based models exhibit

F1-scores that are on par with their JavaBERT-based counterparts. In terms of Mean FNR, all BFP

models see a noticeable improvement, with decreases ranging from 0.85% to 7.67%. The decrease

in mean FPR can be deemed negligible.

The performance dynamics shift after examining the results from the real-world test set. While

the variation of the mean FNR and FPR are also negligible, the F1-scores register a slight decrease,

with the BFPcombined-based models showing the most significant drop. This shift is characterized

by a decrease in recall, offset to some extent by the increase in precision, except for the ND1-

based models, which experience a decrease in both metrics. For example, the ND2-BFPsingle-

Multiclass model experiences a 4% decrease in recall compared to its JavaBERT-based counterpart

but compensates with an impressive 16% increase in precision.

Nonetheless, when analysing the per-class predictions on the real-world test set for the multi-

class models, presented in Tables C.15 to C.47, it becomes apparent that BFPcombined-based models

have a higher count of true positives regarding vulnerabilities, with the exception of models trained

on VDET’s dataset. Table 6.7 illustrates this observation.
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Table 6.6: BFPcombined and BFPsingle-based multiclass models’ evaluation results on the test set
and real-world evaluation set

Model Accuracy (W) F1-score (W) Precision (W) Recall Mean FNR Mean FPR

Test set evaluation

VDET-BFPcombined-Multiclass 90.63% 91% ( 0%) 92% (+1%) 91% ( 0%) 8.31% (-7.67%) 0.59% (-0.33%)

VDET-BFPsingle-Multiclass 90.56% 91% ( 0%) 92% (+1%) 91% ( 0%) 9.02% (-6.96%) 0.63% (-0.29%)

ND1-BFPcombined-Multiclass 85.44% 86% ( 0%) 88% ( 0%) 85% (-1%) 31.46% (-0.85%) 0.70% (-0.03%)

ND1-BFPsingle-Multiclass 86.17% 86% ( 0%) 88% ( 0%) 86% ( 0%) 29.85% (-2.46%) 0.70% (-0.03%)

ND2-BFPcombined-Multiclass 88.98% 89% (+2%) 89% (+1%) 89% (+2%) 20.71% (-4.33%) 0.80% (-0.07%)

ND2-BFPsingle-Multiclass 87.39% 88% (+1%) 88% ( 0%) 87% ( 0%) 24.12% (-0.92%) 0.84% (-0.03%)

Real-world set evaluation

VDET-BFPcombined-Multiclass 46.14% 41% (-4%) 59% (+10%) 46% (-9%) 22.63% (-0.21%) 4.43% (-0.04%)

VDET-BFPsingle-Multiclass 49.59% 43% (-2%) 54% (+5%) 50% (-5%) 22.33% (-0.51%) 4.32% (-0.15%)

ND1-BFPcombined-Multiclass 44.83% 38% (-4%) 43% (-3%) 45% (-11%) 20.45% (+0.31%) 4.16% (+0.18%)

ND1-BFPsingle-Multiclass 42.36% 38% (-4%) 37% (-9%) 42% (-14%) 15.77% (-4.37%) 3.99% (+0.01%)

ND2-BFPcombined-Multiclass 49.10% 41% (-1%) 45% (+11%) 49% (-5%) 22.90% (-0.11%) 4.49% (+0.08%)

ND2-BFPsingle-Multiclass 49.75% 42% ( 0%) 50% (+16%) 50% (-4%) 22.82% (-0.19%) 4.51% (+0.10%)

Note: (W) F1-score, (W) Precision, (W) Recall, Mean FNR and Mean FPR columns also show the difference of the values
compared to the JavaBERT-based multiclass counterparts of the models (values in Tables 6.5)

Table 6.7: Multiclass models’ number of correctly predicted vulnerabilities in the real-world test
set

Model Vulnerable samples TPs

VDET-JavaBERT-Multiclass 11

VDET-BFPcombined-Multiclass 6

VDET-BFPsingle-Multiclass 10

ND1-JavaBERT-Multiclass 1

ND1-BFPcombined-Multiclass 3

ND1-BFPsingle-Multiclass 5

ND2-JavaBERT-Multiclass 0

ND2-BFPcombined-Multiclass 2

ND2-BFPsingle-Multiclass 8

Among all models, those trained on the ND2 dataset benefit most from the transition to BFP-

based MLMs, with the ND2-BFPsingle-Multiclass model achieving the most commendable results.

However, it’s important to note that the count of detected vulnerabilities remains considerably low

in comparison to the total of 257 vulnerable samples present in the real-world test set.
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Finding 6: BFPcombined and BFPsingle-based model trained on our normalised datasets

detect more vulnerabilities than their JavaBERT-based counterparts.

6.4 RQ4: How can a DL model be integrated into a GitHub Action
for real-time vulnerability analysis?

Our study’s fourth research question (RQ4) was inherently technical, intending to explore the

feasibility of integrating a Deep Learning analysis tool into a GitHub action. This section presents

the practical results of this integration by evaluating the J-TAS Action on our test repository, as

explained in Section 5.3.5.

The files subjected to analysis contain 17 non-vulnerable methods and 18 methods proven

vulnerable to CWE-89. However, our Action could only classify one of the vulnerable methods

correctly. The remaining methods were misclassified as non-vulnerable, except for one method

incorrectly identified as vulnerable to CWE-789, although with a relatively low probability of just

54.18%. This translates into a substantial false negative rate (FNR) of 94% for the CWE-89 class,

coupled with a high false positive rate (FPR) of 89% for the ’Not vulnerable’ class.

Finding 7: In practice, J-TAS confuse the classes, presenting high false positive and neg-

ative rates.

Regarding the Action’s runtime, Table 6.8 presents the average duration of the crucial steps of

the Action’s workflow. The total runtime of the Action averages 1 minute and 24 seconds, with the

most time-consuming stage being pulling the Docker image to the runner, which takes an average

of 46 seconds (55% of the total runtime). The time taken by the J-TAS analysis step is the only

one that can vary between commits, as it is linearly proportional to the number of code tokens

requested for analysis. In this specific case, the analysis covered 35 methods and processed a total

of 8923 tokens, taking an average of 23 seconds (27% of the total runtime).

Table 6.8: Average duration of the J-TAS Action’s workflow steps

Workflow Step Average duration

Pull J-TAS Docker image 46s

Checkout repo code 1s

Run J-TAS analysis 23s

Upload SARIF 7s
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6.5 Analysis and Discussion

6.5.1 RQ1 Analysis

Through RQ1, we found out that the model trained on the VDET dataset achieves the best per-

formance on the test datasets, and that all models achieve similar results on our real-world test set

(Finding 1). The cross-evaluation of the multi-label models reveals that the models trained on the

ND2 dataset have the best generalisation capabilities in the test sets (Finding 3), and validates the

inflated performance of VDET’s model in the test set due to bias. However, VDET-JavaBERT-

Multilabel still surpasses them on the real-world test set. This performance benchmark is achieved

despite the dataset’s shortcomings, such as duplicate entries, conflicting labels, and the bias due

to insufficient code normalisation (confirmed by Mamede Mamede et al. [46]), VDET’s models’

slighty higher performance persists in the multiclass scenario, as seen in RQ2 and RQ3 results.

Our second fundamental discovery (Finding 2) highlights the performance drop of the multi-

label models when evaluated on the real-world test set. This behaviour is also consistently corrob-

orated in the multiclass scenarios, revealing a consistent challenge across different model configu-

rations. Additionally, the results per class of the several models shown in Appendix C allow for a

more in-depth analysis of the models’ real-world performance. All models struggle to predict the

CWEs, with the results heavily skewed towards the ’Not vulnerable’ class.

We primarily attribute this performance gap to the synthetic nature of the dataset used to train

the models, which does not recreate the complex and diverse patterns of real-world Java vulner-

abilities. This finding underscores the need for models trained on more representative datasets,

ideally constructed from real-world codebases, to enhance their performance and generalisation

capabilities in practical applications.

6.5.2 RQ2 Analysis

For RQ2, we present the results of the multiclass models, which are compared to their multi-label

counterparts. Despite the significant improvement of the multiclass models’ performance on the

real-world test set compared to the multi-label models (Finding 4), the models still struggle to

achieve a satisfactory F1-score.

However, we argue that a direct comparison between our multi-label and multiclass models

cannot be made. The multi-label datasets are labelled according to [CWE-ID, Vulnerability status],

while the multiclass datasets are labelled with the encoded CWE-ID in case of a vulnerability or

0 (Not vulnerable) otherwise. This difference in labelling leads to a different learning process for

the models, as the multi-label models are trained to predict both the vulnerability status and the

CWE-ID and, therefore, also learn the CWE fix-patterns in the non-vulnerable methods.

The reason that we considered multiclass the best approach for our vulnerability detection task

is the precise and unambiguous predictions that it provides. As demonstrated in Table 6.4, multi-

label models output a considerable number of conflicting predictions, especially when evaluated

on the real-world test set (Finding 5). If we were to implement a vulnerability detection tool based
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on these models, we would have been compelled to discard the conflicting predictions, leading to

a significant increase in false negatives.

6.5.3 RQ3 Analysis

This research question allowed us to analyse the impact of transfer learning on the performance

of the vulnerability detection models, by fine-tuning MLMs trained on vulnerability-related code.

While JavaBERT [12] was trained on a large corpus of general-purpose Java code, comprised

of almost 3 million files, we trained the BFPcombined and BFPsingle models on only 198088 and

236040 vulnerability related Java methods, respectively.

Remarkably, even with the significantly smaller MLM training datasets, the BFP-based models

still manage to demonstrate comparable performance to the JavaBERT-based models on the test

set and even exhibit a more balanced precision-recall trade-off when applied to the real-world

test set (Finding 6). This finding is particularly encouraging, as it demonstrates the potential

of transfer learning to enhance the performance of vulnerability detection models. Fine-tuning a

MLM trained on a smaller, domain-specific (vulnerability-related) dataset can yield a vulnerability

detection model as robust as one fine-tuned on a larger, more generic dataset.

This insight leads us to hypothesize that training MLMs on larger and vulnerability-specific

datasets can further enhance the vulnerability detection model’s performance. Therefore, while

our models have demonstrated promising results, there is potential for even more significant im-

provements in the future.

Given these final results and the insights gained from the analysis of the models’ performance,

we considered the ND2-BFPsingle-Multiclass model to be the best fit for our vulnerability detection

tool.

6.5.4 RQ4 Analysis

Analysing the results from RQ4, it is evident that the performance of the J-TAS Action regarding

vulnerability detection leaves much to be desired. This outcome aligns with the performance of

the underlying vulnerability detection model, as documented in our earlier findings. Given the

model’s poor detection performance, it was obvious that the GitHub Action would struggle to

identify vulnerabilities effectively.

Finding 7 reveals that our tool still has a long way to go before it can be considered a viable

vulnerability detection tool. As such, we position the current implementation of the J-TAS Action

as a proof-of-concept rather than a market-ready product. It demonstrates the technical feasibility

of integrating a Deep Learning model into a GitHub Action, laying the groundwork for future

improvements in the model performance.

In terms of runtime, the J-TAS Action exhibits good performance. The time taken by the J-

TAS analysis step is reasonably short, considering the number of methods processed. However,

the stage of pulling the J-TAS Docker image to the runner should be optimised to improve the
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Action’s total runtime. Specifically, efforts to reduce the Docker image size would likely yield a

substantial decrease in the time taken to pull the image, speeding up the overall process.

6.6 Threats to validity

The validity of the experiments and findings described in this thesis may be subject to the following

threats:

Reliance on synthetic data source: The dataset used for training and evaluating the models is

derived from the synthetic Juliet Test Suite for Java. While this suite provides a struc-

tured and controlled environment for vulnerability detection research, it does not emulate

real-world Java vulnerability patterns. Consequently, this could limit the applicability and

effectiveness of our models in real-world scenarios.

Reduced sample size and imbalanced data: The ND1 and ND2 datasets constructed suffer from

reduced sample size and skewed data distribution across the CWEs. A smaller sample can

limit the diversity of patterns the model can learn from, potentially hindering its ability to

generalize to unseen data. Furthermore, the class imbalance can bias the model towards the

over-represented classes, undermining its performance on under-represented vulnerability

types.

Real-world test set data quality Our real-world test set, used for model evaluation, consists of

merely 609 methods and covers a limited array of CWEs. With only 5 CWEs represented in

this test set, we encounter a significant constraint regarding the spectrum of vulnerabilities

that can be examined. This limited coverage may compromise the comprehensive evaluation

of the real-world performance of the models.

Furthermore, this dataset was automatically labelled CVE’s fix commit, which does not

guarantee the absolute reliability of the labels. There is the possibility of noise in the dataset

which could result in misclassification or misinterpretation of the vulnerabilities, thereby

affecting the accuracy of the model evaluation.

Absence of hyperparameter tuning: No specific hyperparameter tuning was conducted when

training the vulnerability detection models and MLMs. This might result in suboptimal

model configurations, potentially affecting the models’ performance. Without thoroughly

exploring the hyperparameter space, the models’ ability to achieve their best performance

may be compromised.

Evaluation strategy variability: Utilizing a more rigorous evaluation technique, such as k-fold

cross-validation, instead of just train/test split, would provide a more stable and reliable

estimate of each model’s capabilities.
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6.7 J-TAS requirements validation

Section 4.4 detailed a set of functional and non-functional requirements, outlining the critical

characteristics and capabilities that the vulnerability detection tool should possess to be considered

a viable solution. These requirements guided the development of the J-TAS Action, setting clear

objectives to achieve. This section evaluates the extent to which the J-TAS Action successfully

meets the requirements.

6.7.1 Functional Requirements

6.7.1.1 FR1: Detecting various types of vulnerabilities

The model incorporated into our tool can detect 21 distinct CWEs in Java source code. This re-

flects a wide variety of vulnerabilities and addresses the requirement for thorough vulnerability

detection. Thus, the tool successfully fulfils FR1 by offering broad-spectrum detection capabili-

ties.

6.7.1.2 FR2: Scanning multiple java files

By default, the J-TAS Action scans all Java files within a repository. This functionality thoroughly

assesses the entire codebase, thereby enhancing overall security. Additionally, the tool allows

developers to specify individual files or directories for focused analysis, offering flexibility in its

operation. Therefore, the tool meets FR2 effectively.

6.7.1.3 FR3: Presenting results clearly

Our tool presents the analysis results in an accessible and intuitive manner, as shown in Figures 5.8

and 5.9. The outcomes are displayed under the Security tab of the respective GitHub repository.

Users can effortlessly filter and navigate the vulnerabilities using the associated CWE-ID tag.

Upon selecting a specific code alert, users are provided with the vulnerable method highlighted

and the predicted percentage of the detected CWE, promoting transparency and understanding.

Therefore, the J-TAS Action meets the FR3 with a clear and concise result presentation.

6.7.1.4 FR4: Providing vulnerability explanations

Each code-scanning alert contains a description of the detected CWE. We also provide a link to

the respective CWE page on the MITRE website to facilitate a deeper understanding. This allows

developers to understand better the vulnerabilities found and how to address them. Therefore, our
tool successfully fulfils the FR4.

6.7.1.5 FR5: Providing error feedback

The J-TAS Action is designed to handle input errors and provide constructive feedback. If the

input files provided are either non-existent or are not Java files, or if the directories specified do
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not exist, the tool promptly issues an error message and aborts the analysis. Figure 6.1 shows

the warning message issued by the tool when the input file does not exist. Similar messages are

issued in the other cases as well. This feedback allows users to rectify their errors and helps in the

seamless functioning of the tool, thus successfully satisfying FR5.

Figure 6.1: J-TAS analysis results displayed in the code scanning tab.

6.7.2 Non-functional Requirements

6.7.2.1 NFR1: Fast execution time

Our tool, J-TAS Action, has been optimized for efficient execution. During our tests, the entire

analysis process for 35 methods was completed in under a minute and a half. Notably, the analysis

script’s actual runtime accounted for only 22 seconds of this total time. Thus, we consider that the
J-TAS Action meets the NFR1.
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6.7.2.2 NFR2: Accuracy of the results

Achieving high accuracy in vulnerability detection is crucial for the effectiveness of our tool.

Despite the ambitious target of over 80% accuracy, the current model employed in J-TAS Action

achieves a modest accuracy of roughly 50% in the real-world scenario. Regarding the FPR and

FNR metrics, we defined a 10% threshold for both. The tool performs well in the former, with

mantaining a low FPR of under 5%. However, the FNR is significantly higher, with a value of 50%.

The low FPR means the tool is cautious and minimizes the risk of false alarms. Unfortunately, the
tool fails to fulfil the NFR2 requirements of high accuracy and low FNR.

6.7.2.3 NFR3: Adaptability to other programming languages

The J-TAS script was designed with a modular approach, which makes it highly adaptable to other

programming languages. While the current version is Java-specific, the tool’s design allows for

the straightforward integration of new multiclass models for other languages. This adaptability

enables a versatile and scalable solution, making the tool effectively meet NFR3.
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Conclusions and Future work

7.1 Conclusions

The expanding digital universe and the increasing sophistication of cyber threats have made soft-

ware vulnerabilities a growing concern. Among the escalating threat landscape, the shift-left ap-

proach in the Software Development Life Cycle has emerged as an effective strategy, promoting

proactive vulnerability detection in the early stages of software development. Simultaneously, the

introduction of Deep Learning has revolutionized cybersecurity, offering significant advantages

over traditional rule-based systems, such as enhanced pattern recognition capabilities, adaptabil-

ity, and the ability to learn from vast, complex datasets.

In response to these trends, this dissertation embarked on an ambitious multidisciplinary jour-

ney to construct a Deep Learning-based tool for detecting software vulnerabilities. This process

entailed constructing comprehensive datasets, training and evaluating Deep Learning models, and

ultimately integrating the most promising model into a GitHub Action.

Our work started by creating the ND1 and ND2 datasets, meticulously curated to facilitate

model training and evaluation. Afterwards, we created and trained two masked language mod-

elling models that, alongside JavaBERT, served as the foundation for our vulnerability detection

models, successfully exploring the impact of transfer learning. Finally, our efforts led to inte-

grating our best-performing model into the J-TAS Action, a GitHub Action designed to facilitate

vulnerability detection of Java code during development.

However, using synthetic datasets for training proved to be a substantial limitation. The syn-

thetic nature limits their ability to accurately mimic real-world Java vulnerability patterns, ul-

timately impairing our models’ performance and generalization capabilities. The shortcomings

were manifested in the real-world scenario performance of the models and the GitHub Action,

with a modest accuracy of roughly 50% and a significant false negative rate of 23%.

Despite these limitations, our work stands as a proof-of-concept for integrating a Deep Learn-

ing vulnerability detection model into a GitHub Action. It demonstrates that despite the com-

plexities and challenges involved, such a tool can be built and provide value to developers. This

dissertation, therefore, contributes a tangible artefact to the shift-left paradigm in SDLC and the

75
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broader effort to harness the power of Deep Learning for software security. It affirms that the

combination of Deep Learning and DevOps can yield innovative solutions, even as it reveals the

challenges and imperfections that must be addressed to fully realize the potential of such integra-

tions.

7.2 Contributions

This dissertation’s research results in the following contributions to the fields of software engi-

neering, software security, and deep learning:

A curated vulnerability detection dataset derived from the Juliet Test Suite for Java. This dataset

contains vulnerable and non-vulnerable Java methods and the corresponding CWE-ID, and

is labelled accordingly for multi-label or multiclass classification.

An unique real-world Java test set enriched with both vulnerable Java code snippets and their

corresponding fixes. This dataset, with CWE labeling, provides a valuable resource for

future research and model development in the field of software vulnerability detection.

Two masked language models pre-trained on Java vulnerability-related code that provide a ro-

bust foundation for transfer learning to downstream tasks, such as vulnerability detection

and bug-fixing patch generation.

Multi-label and multiclass Transformer-based vulnerability detection models trained on our

dataset, and capable of detecting more than 20 different CWEs in Java methods.

The first Deep Learning-based GitHub Action for vulnerability detection , named J-TAS, rep-

resenting a significant step towards automated and efficient software vulnerability detection.

7.3 Future work

The work undertaken in this dissertation has laid a strong foundation for creating a DL-based

Action. However, the limitations identified throughout the process have highlighted areas for

further investigation and improvement to make the tool viable for practical applications.

Given the synthetic character of the datasets used in this study, the first step in future research

includes the creation of a real-world dataset. Real-world vulnerabilities exhibit more diverse and

complicated patterns than synthetic data can capture, boosting the model’s generalisation capa-

bilities and performance improvements. This robust dataset could be created by mining GitHub

commits associated with Java vulnerabilities.

The second area for exploration concerns model development. A new masked language model

should be created, training it on more data from the Bug-Fix Pairs dataset, for a more rigorous

evaluation of the effects of domain adaptation to a vulnerability-related Java corpus.
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Following this, it would be necessary to develop new vulnerability detection models using the

newly trained MLMs and train them on the real-world dataset. The process of creating these new

models could also involve refining the model architecture and performing hyperparameter tuning

to ensure optimal performance.

Lastly, future work should aim to improve the GitHub Action. This includes efforts to com-

press the image size, thereby enhancing the efficiency and usability of the Action. Furthermore,

the Action might be improved by not just finding vulnerabilities but also suggesting possible fixes

for them. By providing developers with potential solutions, the Action would serve as a more

comprehensive vulnerability detection and resolution tool.
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Appendix A

Models’ implementation details

A.1 Vulnerability detection models

A.1.1 Implementation code

� �
1 # -*- coding: utf-8 -*-

2 """vd_model_template.ipynb

3

4 Automatically generated by Colaboratory.

5

6 # J-TAS

7

8 Notebook for training and evaluating the models used for J-TAS

9

10 **Instructions:** Update the paths (datasets, any existing checkpoints, etc)

11 """

12

13 !pip install transformers

14 !pip install sklearn

15 !pip install pandas

16 !pip install numpy

17

18 # Commented out IPython magic to ensure Python compatibility.

19 import numpy as np

20 import pandas as pd

21 import pickle

22 import transformers

23 import torch

24 import torch.nn as nn

25 import random

26 import time

27 from ast import literal_eval

28

85
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29 from sklearn.metrics import accuracy_score, multilabel_confusion_matrix,

↪→ confusion_matrix, classification_report, precision_recall_curve, roc_curve

30 from IPython.display import display

31 import matplotlib.pyplot as plt

32 # %matplotlib inline

33

34 from google.colab import drive

35 drive.mount(’/content/drive’)

36

37 DATA_PATH = ’/content/drive/My Drive/J-TAS/data’ #! Path with the train/val/test

↪→ splits

38 MODEL_PATH = ’/content/drive/My Drive/J-TAS/models’ #! Path to save and load model

↪→ checkpoints

39

40 model_checkpoint = ’up201806461/bert-java-bfp_single’ #! BFP_single

41 # up201806461/bert-java-bfp_combined #! BFP_combined

42 # ’CAUKiel/JavaBERT’ #! JavaBERT

43

44 suffix = #! Suffix for model name, e.g. ’-nd2-bfp_single-multiclass’

45

46 #! Example for Multiclass, load label dict

47 label_names = [

48 ’Not Vuln’,

49 ’15’,

50 ’36’,

51 ’78’,

52 ’80’,

53 ’89’,

54 ’90’,

55 ’113’,

56 ’129’,

57 ’134’,

58 ’190’,

59 ’191’,

60 ’197’,

61 ’319’,

62 ’369’,

63 ’400’,

64 ’470’,

65 ’476’,

66 ’606’,

67 ’643’,

68 ’690’,

69 ’789’

70 ]

71

72 labels=[*range(len(label_names))]

73

74



A.1 Vulnerability detection models 87

75 #! Example for Multilabel

76 # mlb = pickle.load(open(MODEL_PATH + ’mlb2_nodups.pkl’, ’rb’))

77 # label_names = (mlb.classes_).astype(str)

78 # labels=[*range(len(label_names))]

79

80 """# Utils functions

81 Mandatory to run

82 """

83

84 EPOCHS = 10

85 BATCH_SIZE = 12

86 N_CLASSES = 22 #! Update according to dataset

87

88 tokenizer = transformers.AutoTokenizer.from_pretrained(model_checkpoint)

89

90 class VulnerabilityClassifier(nn.Module):

91 DROPOUT_PROB = 0.1

92

93 def __init__(self):

94 super(VulnerabilityClassifier, self).__init__()

95 self.model = transformers.AutoModel.from_pretrained(model_checkpoint)

96 self.dropout = torch.nn.Dropout(self.DROPOUT_PROB)

97 self.linear = torch.nn.Linear(768 * 4, N_CLASSES)

98 self.step_scheduler_after = ’batch’

99

100

101 def forward(self, ids, mask):

102 cls_hs = torch.stack(self.model(ids, attention_mask=mask)["hidden_states"])

103

104 cls_4hs = torch.cat((cls_hs[-1],

105 cls_hs[-2],

106 cls_hs[-3],

107 cls_hs[-4]), -1)[:, 0]

108

109 output_dropout = self.dropout(cls_4hs)

110 return self.linear(output_dropout)

111

112

113 def get_model():

114 model = vulnerabilityClassifier()

115 return model

116

117 def get_optimizer(model):

118 opt = torch.optim.AdamW(model.parameters(),

119 lr = 5e-5,

120 eps = 1e-8

121 )

122

123 return opt
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124

125 def get_scheduler(optimizer, num_train_steps):

126 sch = transformers.get_linear_schedule_with_warmup(

127 optimizer, num_warmup_steps=0, num_training_steps=num_train_steps)

128 return sch

129

130 import datetime

131

132 def format_time(elapsed):

133 ’’’Takes a time in seconds and returns a string hh:mm:ss’’’

134 # Round to the nearest second.

135 elapsed_rounded = int(round((elapsed)))

136

137 # Format as hh:mm:ss

138 return str(datetime.timedelta(seconds=elapsed_rounded))

139

140 ## From: https://mccormickml.com/2020/07/29/smart-batching-tutorial/

141 def tokenize_truncate(tokenizer, text_samples, max_length):

142 full_input_ids = []

143

144 # For each training example...

145 for text in text_samples:

146 # Tokenize the sample.

147 input_ids = tokenizer.encode(text=text, # Text to encode.

148 add_special_tokens=True, # Do add specials.

149 max_length=max_length, # Do Truncate!

150 truncation=True, # Do Truncate!

151 padding=False) # DO NOT pad.

152

153 # Add the tokenized result to our list.

154 full_input_ids.append(input_ids)

155

156 print(’DONE. {:>10,} samples\n’.format(len(full_input_ids)))

157 return full_input_ids

158

159

160 def build_batches(samples, batch_size):

161 # List of batches that we’ll construct.

162 batch_ordered_text = []

163 batch_ordered_labels = []

164 batch_original_order = []

165

166 print(’Creating batches of size {:}...’.format(batch_size))

167

168 # Loop over all of the input samples...

169 while len(samples) > 0:

170 # ‘to_take‘ is our actual batch size. It will be ‘batch_size‘ until

171 # we get to the last batch, which may be smaller.

172 to_take = min(batch_size, len(samples))
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173

174 # Pick a random index in the list of remaining samples to start

175 # our batch at.

176 select = random.randint(0, len(samples) - to_take)

177

178 # Select a contiguous batch of samples starting at ‘select‘.

179 batch = samples[select:(select + to_take)]

180

181 #print("Batch length:", len(batch))

182

183 # Each sample is a tuple--split them apart to create a separate list of

184 # sequences and a list of labels for this batch.

185 batch_ordered_text.append([s[0] for s in batch])

186 batch_ordered_labels.append([s[1] for s in batch])

187 batch_original_order.append([s[2] for s in batch])

188

189 # Remove these samples from the list.

190 del samples[select:select + to_take]

191

192 print(’\t DONE - Selected {:,} batches.\n’.format(len(batch_ordered_text)))

193 return batch_ordered_text, batch_ordered_labels, batch_original_order

194

195

196 def add_padding_per_batch(tokenizer, batch_ordered_text, batch_ordered_labels):

197 print(’Padding out sequences within each batch...’)

198

199 final_input_ids = []

200 final_attention_masks = []

201 final_labels = []

202

203 # For each batch...

204 for (batch_inputs, batch_labels) in zip(batch_ordered_text,

↪→ batch_ordered_labels):

205

206 # New version of the batch, this time with padded sequences and now with

207 # attention masks defined.

208 batch_padded_inputs = []

209 batch_attn_masks = []

210

211 # First, find the longest sample in the batch.

212 # Note that the sequences do currently include the special tokens!

213 max_size = max([len(sen) for sen in batch_inputs])

214

215 # For each input in this batch...

216 for sen in batch_inputs:

217

218 # How many pad tokens do we need to add?

219 num_pads = max_size - len(sen)

220
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221 # Add ‘num_pads‘ padding tokens to the end of the sequence.

222 padded_input = sen + [tokenizer.pad_token_id]*num_pads

223

224 # Define the attention mask--it’s just a ‘1‘ for every real token

225 # and a ‘0‘ for every padding token.

226 attn_mask = [1] * len(sen) + [0] * num_pads

227

228 # Add the padded results to the batch.

229 batch_padded_inputs.append(padded_input)

230 batch_attn_masks.append(attn_mask)

231

232 # Our batch has been padded, so we need to save this updated batch.

233 # We also need the inputs to be PyTorch tensors, so we’ll do that here.

234 final_input_ids.append(torch.tensor(batch_padded_inputs))

235 final_attention_masks.append(torch.tensor(batch_attn_masks))

236 final_labels.append(torch.tensor(np.array(batch_labels))) # if there’s

↪→ problems, remove np.array()

237

238 print(’\t DONE. Returning final smart-batched data.’)

239 # Return the smart-batched dataset!

240 return (final_input_ids, final_attention_masks, final_labels)

241

242

243 def smart_batching(tokenizer, max_length, text_samples, labels, batch_size,

↪→ return_order=False):

244 # Tokenize and truncate text_samples; no padding

245 full_input_ids = tokenize_truncate(tokenizer, text_samples, max_length)

246 original_order = list(range(len(full_input_ids)))

247

248 # Sort the two lists together by the length of the input sequence.

249 samples = sorted(zip(full_input_ids, labels, original_order), key=lambda x: len

↪→ (x[0]))

250

251 # Build batches of contiguous data, starting at random points in samples

252 batch_size = batch_size

253 batch_ordered_text, batch_ordered_labels, batch_original_order = build_batches(

↪→ samples, batch_size)

254

255 # Add padding accordingly to batch size

256 final_input_ids, final_attention_masks, final_labels = add_padding_per_batch(

↪→ tokenizer, batch_ordered_text, batch_ordered_labels)

257

258 if return_order:

259 return final_input_ids, final_attention_masks, final_labels, [val for sublist

↪→ in batch_original_order for val in sublist]

260

261 return final_input_ids, final_attention_masks, final_labels

262

263 def loss_fn(outputs, labels):
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264 if labels is None:

265 return None

266 return nn.CrossEntropyLoss()(outputs, labels) #! Multiclass

267 # return nn.BCEWithLogitsLoss()(outputs, labels.float()) #! Multi-label

268

269 #! Multiclass

270 def getAccuracy(preds, labels):

271 y_pred = torch.stack(preds).cpu().detach().numpy()

272 y_true = torch.stack(labels).cpu().detach().numpy()

273

274 return accuracy_score(y_true, y_pred)

275

276 #! Multi-label

277 # def getAccuracy(preds, labels):

278 # prob_preds = torch.stack(preds)

279 # prob_preds = prob_preds.cpu().detach().numpy()

280 # flabels = torch.stack(labels)

281 # flabels = flabels.cpu().detach().numpy()

282

283 # label_predictions = np.zeros((len(preds), N_CLASSES))

284 # label_predictions = prob_preds >= 0.5

285 # label_predictions = label_predictions.astype(int)

286

287 # # accuracy_score from sklearn calculates subset accuracy

288 # return accuracy_score(flabels, label_predictions)

289

290 """Get Confusion Matrix and Classification Report"""

291

292 def get_cm_cr(y_true, y_pred):

293 cm = multilabel_confusion_matrix(y_true, y_pred, labels=labels)

294 cr = classification_report(y_true, y_pred, labels=labels, target_names=

↪→ label_names)

295

296 return cm, cr

297

298 """Get metrics"""

299

300 def get_metrics(cm, y_true, y_pred):

301 # accuracy_score from sklearn calculates subset accuracy

302 ACC_subset = accuracy_score(y_true, y_pred)

303

304 FNR_total = FPR_total = ACC_total = 0

305 classes_metrics = []

306

307 # Calculate metrics per class

308 for idx, cm_class in enumerate(cm):

309 TN, FP, FN, TP = cm_class.ravel()

310

311 # False positive rate
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312 FPR = FP/(FP+TN)

313 FPR_total += FPR

314

315 # False negative rate

316 FNR = 0

317 if FN != 0:

318 FNR = FN/(FN+TP)

319 FNR_total += FNR

320

321 # Accuracy

322 ACC = (TP+TN)/(TP+FP+FN+TN)

323 ACC_total += ACC

324

325 classes_metrics.append([label_names[idx], ACC, TP, TN, FP, FN, FPR, FNR])

326

327

328 # Dataframes to display results

329 df_classes = pd.DataFrame(classes_metrics, columns=[’Classes’, ’Accuracy’, ’TP’,

↪→ ’TN’, ’FP’, ’FN’, ’FPR’, ’FNR’])

330

331 df_global = pd.DataFrame(

332 [[ACC_total/N_CLASSES, ACC_subset, FNR_total/N_CLASSES, FPR_total/N_CLASSES

↪→ ]],

333 columns=[’Accuracy’, ’Subset Accuracy’, ’Mean FNR’, ’Mean FPR’]

334 )

335

336 return df_classes, df_global

337

338 def train_fn(train_input_ids, train_attn_masks, train_labels, model, optimizer,

↪→ scheduler):

339 print(’Starting training... ’)

340

341 update_interval = 500

342 t0 = time.time()

343

344 train_loss = 0.0

345 model.train()

346

347 final_targets = []

348 final_outputs = []

349

350 # for each batch

351 for step in range(0, len(train_input_ids)):

352 # Progress update every, e.g., 100 batches.

353 if step % update_interval == 0 and not step == 0:

354 # Calculate elapsed time in minutes.

355 elapsed = format_time(time.time() - t0)

356

357 # Calculate the time remaining based on our progress.
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358 steps_per_sec = (time.time() - t0) / step

359 remaining_sec = steps_per_sec * (len(train_input_ids) - step)

360 remaining = format_time(remaining_sec)

361

362 # Report progress.

363 print(’ Batch {:>7,} of {:>7,}. Elapsed: {:}. Remaining: {:}’.

↪→ format(step, len(train_input_ids), elapsed, remaining))

364

365 ids = train_input_ids[step].to(’cuda’, dtype = torch.long)

366 mask = train_attn_masks[step].to(’cuda’, dtype = torch.long)

367 targets = train_labels[step].to(’cuda’, dtype = torch.long)

368

369 optimizer.zero_grad()

370

371 outputs = model(ids=ids, mask=mask)

372

373 loss = loss_fn(outputs, targets)

374 loss.backward()

375 train_loss += loss.item()

376 optimizer.step()

377 scheduler.step()

378

379 final_targets.extend(targets)

380 final_outputs.extend(torch.argmax(outputs, dim=1)) #! Multiclass

381 # final_outputs.extend(torch.sigmoid(outputs)) #! Multi-label

382

383 return train_loss, final_outputs, final_targets

384

385 def eval_fn(test_input_ids, test_attn_masks, test_labels, model):

386 print(’\nStarting evaluation...’)

387

388 update_interval = 100

389 t0 = time.time()

390

391 eval_loss = 0.0

392

393 model.eval()

394

395 final_targets = []

396 final_outputs = []

397

398 with torch.no_grad():

399 for step in range(0, len(test_input_ids)):

400 if step % update_interval == 0 and not step == 0:

401 # Calculate elapsed time in minutes.

402 elapsed = format_time(time.time() - t0)

403

404 # Calculate the time remaining based on our progress.

405 steps_per_sec = (time.time() - t0) / step
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406 remaining_sec = steps_per_sec * (len(test_input_ids) - step)

407 remaining = format_time(remaining_sec)

408 # Report progress.

409 print(’ Batch {:>7,} of {:>7,}. Elapsed: {:}. Remaining: {:}’.

↪→ format(step, len(test_input_ids), elapsed, remaining))

410

411 ids = test_input_ids[step].to(’cuda’, dtype = torch.long)

412 mask = test_attn_masks[step].to(’cuda’, dtype = torch.long)

413 targets = test_labels[step].to(’cuda’, dtype = torch.long)

414

415 outputs = model(ids=ids, mask=mask)

416

417 loss = loss_fn(outputs, targets)

418

419 eval_loss += loss.item()

420 final_targets.extend(targets)

421 final_outputs.extend(torch.argmax(outputs, dim=1)) #! Multiclass

422 # final_outputs.extend(torch.sigmoid(outputs)) #! Multi-label

423

424 return eval_loss, final_outputs, final_targets

425

426 def save_checkpoint(epoch, optimizer, scheduler, model, train_loss, test_loss):

427 torch.save({

428 ’epoch’: epoch,

429 ’model_state_dict’: model.state_dict(),

430 ’optimizer_state_dict’: optimizer.state_dict(),

431 ’scheduler_state_dict’: scheduler.state_dict(),

432 ’train_loss’: train_loss,

433 ’test_loss’: test_loss

434 }, MODEL_PATH + f’model{suffix}.bin’)

435

436 print(’Saved hs_checkpoint_’ + str(epoch) + ’.bin’)

437

438 """# Training and Validation"""

439

440 #! Update splits files

441 train_dataset = pd.read_csv(DATA_PATH + ’train.csv’)

442 val_dataset = pd.read_csv(DATA_PATH + ’val.csv’)

443

444 train_input_ids, train_attn_masks, train_labels = smart_batching(tokenizer, 512,

↪→ train_dataset[’code’], train_dataset[’encoded_labels’], BATCH_SIZE)

445 val_input_ids, val_attn_masks, val_labels = smart_batching(tokenizer, 512,

↪→ val_dataset[’code’], val_dataset[’encoded_labels’], BATCH_SIZE)

446

447 n_train_steps = len(train_input_ids) * EPOCHS

448

449 model = get_model()

450 model.to(’cuda’)

451
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452 optimizer = get_optimizer(model)

453 scheduler = get_scheduler(optimizer, n_train_steps)

454

455 LOAD = False

456

457 # Load checkpoint from a previous model

458 if LOAD:

459 checkpoint = torch.load(MODEL_PATH + f’model{suffix}.bin’)

460 model.load_state_dict(checkpoint[’model_state_dict’])

461 optimizer.load_state_dict(checkpoint[’optimizer_state_dict’])

462 scheduler.load_state_dict(checkpoint[’scheduler_state_dict’])

463 best_eval_loss = checkpoint[’test_loss’]

464 epoch = checkpoint[’epoch’] + 1

465

466 del checkpoint

467

468 else:

469 epoch = 0

470

471 while epoch < EPOCHS:

472 print(’\t\t epoch: ’, epoch)

473

474 if epoch > 0: # This is not cross-validation!

475 train_input_ids, train_attn_masks, train_labels = smart_batching(tokenizer,

↪→ 512, train_dataset[’code’], train_dataset[’encoded_labels’], BATCH_SIZE)

476 val_input_ids, val_attn_masks, val_labels = smart_batching(tokenizer, 512,

↪→ val_dataset[’code’], val_dataset[’encoded_labels’], BATCH_SIZE)

477

478 train_loss, train_preds, train_true_labels = train_fn(train_input_ids,

↪→ train_attn_masks, train_labels, model, optimizer, scheduler)

479 eval_loss, eval_preds, eval_true_labels = eval_fn(val_input_ids, val_attn_masks,

↪→ val_labels, model)

480

481 avg_train_loss, avg_val_loss = train_loss / len(train_input_ids), eval_loss / len

↪→ (val_input_ids)

482 train_acc = getAccuracy(train_preds, train_true_labels)

483 eval_acc = getAccuracy(eval_preds, eval_true_labels)

484

485 train_info = ’Avg Train loss (loss/batch): ’ + str(avg_train_loss) + ’\t Train

↪→ accuracy: ’ + str(train_acc) + ’\n’

486 val_info = ’Avg Valid loss (loss/batch): ’ + str(avg_val_loss) + ’\t Validation

↪→ accuracy: ’ + str(eval_acc) + ’\n\n’

487

488 f = open(MODEL_PATH + f’loss{suffix}.txt’, ’a’)

489 f.write(’Epoch ’ + str(epoch) + ’\n’)

490 f.write(train_info)

491 f.write(val_info)

492 print(train_info)

493 print(val_info)
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494 f.close()

495

496 scheduler.step()

497 save_checkpoint(epoch, optimizer, scheduler, model, train_loss, eval_loss)

498 epoch = epoch + 1

499

500 # Free GPU memory

501 del train_loss, train_preds, train_true_labels, eval_loss, eval_preds,

↪→ eval_true_labels

502 torch.cuda.empty_cache()

503

504 """# Evaluation"""

505

506 model = get_model()

507 model.to(’cuda’)

508

509 # Load best model iteration for testing

510 epoch = 8 #! Update best epoch

511 checkpoint = torch.load(MODEL_PATH + f’model{suffix}-{epoch}.bin’)

512 model.load_state_dict(checkpoint[’model_state_dict’])

513

514 def evaluate(testfile):

515 test_dataset = pd.read_csv(DATA_PATH + testfile)

516

517 test_input_ids, test_attn_masks, test_labels = smart_batching(tokenizer, 512,

↪→ test_dataset[’code’], test_dataset[’encoded_labels’], BATCH_SIZE)

518 test_loss, test_preds, test_true_labels = eval_fn(test_input_ids, test_attn_masks

↪→ , test_labels, model)

519

520 y_true = torch.stack(test_true_labels).cpu().detach().numpy()

521 y_pred = torch.stack(test_preds).cpu().detach().numpy()

522

523 # Build confusion matrix and classification report

524 cm, cr = get_cm_cr(y_true, y_pred)

525 print("\n\n=== Confusion Matrix ===")

526 print(cm)

527

528 print("\n\n=== Classification report ===")

529 print(cr)

530

531 # Model metrics

532 metrics_classes, metrics_global = get_metrics(cm, y_true, y_pred)

533 print("\n\n=== Model metrics ===")

534 display(metrics_global)

535

536 print("\n\n=== Class metrics ===")

537 display(metrics_classes)

538

539 """## Test set"""
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540

541 evaluate(’test.csv’) #! Update test set file

542

543 """## Real-world evaluation set"""

544

545 evaluate(’test_real.csv’) #! Update file� �
Listing A.1: Baseline model architecture.

A.1.2 Training reports and Learning curves

A.1.2.1 VDET-JavaBERT-Multilabel

1 Epoch 1
2 Avg Train loss (loss/batch): 0.029430265961264763 Train accuracy: 0.8174711301414299
3 Avg Valid loss (loss/batch): 0.01971153401943296 Validation accuracy: 0.8609888687548537
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.020358640481468234 Train accuracy: 0.8437567579256953
7 Avg Valid loss (loss/batch): 0.018336528869329273 Validation accuracy: 0.8605574251445336
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.019557983876922175 Train accuracy: 0.8427619912633537
11 Avg Valid loss (loss/batch): 0.018268467139974334 Validation accuracy: 0.8580550522046768
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.018698066150274063 Train accuracy: 0.8452272825569829
15 Avg Valid loss (loss/batch): 0.017498718805008917 Validation accuracy: 0.8653033048580551
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.018140183374031824 Train accuracy: 0.8437026945201332
19 Avg Valid loss (loss/batch): 0.01685358148146252 Validation accuracy: 0.8669427905772715
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.017805336116949604 Train accuracy: 0.8435296916223347
23 Avg Valid loss (loss/batch): 0.016827491186383402 Validation accuracy: 0.8594356717577013
24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.017407140307528796 Train accuracy: 0.8430647463345011
27 Avg Valid loss (loss/batch): 0.01716261771973343 Validation accuracy: 0.8653895935801191
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.017203546347089656 Train accuracy: 0.8396911898274296
31 Avg Valid loss (loss/batch): 0.01667831731882669 Validation accuracy: 0.865217016135991
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.016990605670517824 Train accuracy: 0.8377232818649712
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35 Avg Valid loss (loss/batch): 0.016650922603261707 Validation accuracy: 0.8565018552075244
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.01683182198186074 Train accuracy: 0.8290515116128195
39 Avg Valid loss (loss/batch): 0.0165344875146158 Validation accuracy: 0.8565881439295884

Listing A.2: VDET-JavaBERT-Multilabel Training report

Figure A.1: VDET-JavaBERT-Multilabel Learning curve

A.1.2.2 ND1-JavaBERT-Multilabel

1 Epoch 1
2 Avg Train loss (loss/batch): 0.05446443316691834 Train accuracy: 0.6518617263004817
3 Avg Valid loss (loss/batch): 0.037559579240244834 Validation accuracy: 0.7229762481822588
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.033300098304653955 Train accuracy: 0.7439331050989184
7 Avg Valid loss (loss/batch): 0.02953817758811225 Validation accuracy: 0.7605428986912264
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.030627705773458393 Train accuracy: 0.7496894598115551
11 Avg Valid loss (loss/batch): 0.028478466907197502 Validation accuracy: 0.7603005332040718
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.030220905628128077 Train accuracy: 0.748083739812767
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15 Avg Valid loss (loss/batch): 0.028187138230731403 Validation accuracy: 0.7569074163839069
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.028940753511017575 Train accuracy: 0.7496288666040537
19 Avg Valid loss (loss/batch): 0.02738313507018384 Validation accuracy: 0.7518177411536597
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.028157265993632087 Train accuracy: 0.749386493774048
23 Avg Valid loss (loss/batch): 0.027366053898805507 Validation accuracy: 0.7561803199224431
24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.027588330938406146 Train accuracy: 0.7495076801890508
27 Avg Valid loss (loss/batch): 0.026879367552959763 Validation accuracy: 0.760785264178381
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.02715958476802453 Train accuracy: 0.7497803496228073
31 Avg Valid loss (loss/batch): 0.02660384410280638 Validation accuracy: 0.7559379544352884
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.026628291594778596 Train accuracy: 0.7492653073590451
35 Avg Valid loss (loss/batch): 0.026171195883862734 Validation accuracy: 0.7544837615123606
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.026338824854787397 Train accuracy: 0.7462659435877238
39 Avg Valid loss (loss/batch): 0.026149388427595198 Validation accuracy: 0.7520601066408144

Listing A.3: ND1-JavaBERT-Multilabel Training report
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Figure A.2: ND1-JavaBERT-Multilabel Learning curve

A.1.2.3 ND2-JavaBERT-Multilabel

1 Epoch 1
2 Avg Train loss (loss/batch): 0.0870989736780973 Train accuracy: 0.47242119728592286
3 Avg Valid loss (loss/batch): 0.07399994556082636 Validation accuracy: 0.5158187800556822
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.0626118962689583 Train accuracy: 0.5776002748432535
7 Avg Valid loss (loss/batch): 0.06008086773880993 Validation accuracy: 0.5957985320172108
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.05393339112371233 Train accuracy: 0.6333075667783218
11 Avg Valid loss (loss/batch): 0.05341766482472246 Validation accuracy: 0.6511009870918755
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.04721169375676458 Train accuracy: 0.6754788284806321
15 Avg Valid loss (loss/batch): 0.05096292408812416 Validation accuracy: 0.687800556821058
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.040894855290828765 Train accuracy: 0.7163789401357038
19 Avg Valid loss (loss/batch): 0.0469009316022358 Validation accuracy: 0.6991900784611491
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.03504403924561207 Train accuracy: 0.7530876921755562
23 Avg Valid loss (loss/batch): 0.048269027594591056 Validation accuracy: 0.7248797772715768
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24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.02949740637633103 Train accuracy: 0.7893498239285408
27 Avg Valid loss (loss/batch): 0.04880702031440069 Validation accuracy: 0.7503163756011136
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.024120907499703036 Train accuracy: 0.8233788542471872
31 Avg Valid loss (loss/batch): 0.05383428973542814 Validation accuracy: 0.7637307010883321
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.018970805557908404 Train accuracy: 0.858335480546251
35 Avg Valid loss (loss/batch): 0.058679061239664314 Validation accuracy: 0.7749936724879777
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.015245732027187054 Train accuracy: 0.8809413381430903
39 Avg Valid loss (loss/batch): 0.0633686306441984 Validation accuracy: 0.7792963806631232
40

41 Epoch 11
42 Avg Train loss (loss/batch): 0.013637254231931741 Train accuracy: 0.8908528729708838
43 Avg Valid loss (loss/batch): 0.06338834745424782 Validation accuracy: 0.7792963806631232
44

45 Epoch 12
46 Avg Train loss (loss/batch): 0.013697190650242433 Train accuracy: 0.8898050330670789
47 Avg Valid loss (loss/batch): 0.06337681425098814 Validation accuracy: 0.7792963806631232
48

49 Epoch 13
50 Avg Train loss (loss/batch): 0.013661825912025726 Train accuracy: 0.8912136047410462
51 Avg Valid loss (loss/batch): 0.06336864499238129 Validation accuracy: 0.7792963806631232

Listing A.4: ND2-JavaBERT-Multilabel Training report
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Figure A.3: ND2-JavaBERT-Multilabel Learning curve

A.1.2.4 VDET-JavaBERT-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.3123069933095296 Train accuracy: 0.8811470092124043
3 Avg Valid loss (loss/batch): 0.2039515762071215 Validation accuracy: 0.9049098282854431
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.20634921077646395 Train accuracy: 0.901301846805934
7 Avg Valid loss (loss/batch): 0.17588120936455426 Validation accuracy: 0.9045646733971869
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.18930732808098633 Train accuracy: 0.9040482678084858
11 Avg Valid loss (loss/batch): 0.17019518054081442 Validation accuracy: 0.9066356027267236
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.17849130166608568 Train accuracy: 0.9038644522295749
15 Avg Valid loss (loss/batch): 0.1858502643273346 Validation accuracy: 0.9027526102338425
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.17113227820251453 Train accuracy: 0.9052052246875135
19 Avg Valid loss (loss/batch): 0.17731698737393947 Validation accuracy: 0.9056864267840193
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.16490468613377274 Train accuracy: 0.906913628303274
23 Avg Valid loss (loss/batch): 0.15429003691605145 Validation accuracy: 0.908016222279748
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24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.16138131466546152 Train accuracy: 0.906913628303274
27 Avg Valid loss (loss/batch): 0.15258931535820858 Validation accuracy: 0.907671067391492
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.1575116053471737 Train accuracy: 0.9071082565632974
31 Avg Valid loss (loss/batch): 0.15334729046663065 Validation accuracy: 0.9084476658900682
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.15447621293023994 Train accuracy: 0.9083300895289996
35 Avg Valid loss (loss/batch): 0.14920923599281788 Validation accuracy: 0.907929933557684
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.15168723022946248 Train accuracy: 0.9079948964145149
39 Avg Valid loss (loss/batch): 0.1500950094051693 Validation accuracy: 0.9039606523427388

Listing A.5: VDET-JavaBERT-Multiclass Training report

Figure A.4: VDET-JavaBERT-Multiclass Learning curve

A.1.2.5 VDET-BFPsingle-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.2729854350781467 Train accuracy: 0.8872345486786903
3 Avg Valid loss (loss/batch): 0.20460859996319744 Validation accuracy: 0.9004228147381137
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4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.1977043803229348 Train accuracy: 0.9013234721681588
7 Avg Valid loss (loss/batch): 0.1736100115877961 Validation accuracy: 0.9060315816722755
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.18055635620250504 Train accuracy: 0.9033886942606288
11 Avg Valid loss (loss/batch): 0.17875021581004782 Validation accuracy: 0.9042195185089309
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.170687185672083 Train accuracy: 0.9064054322909909
15 Avg Valid loss (loss/batch): 0.15792357670301435 Validation accuracy: 0.9101734403313487
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.1658523434763561 Train accuracy: 0.9057782967864711
19 Avg Valid loss (loss/batch): 0.16255246947288507 Validation accuracy: 0.9054275606178273
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.16423138921486305 Train accuracy: 0.9055944812075603
23 Avg Valid loss (loss/batch): 0.15548002163816632 Validation accuracy: 0.907671067391492
24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.15909966481508683 Train accuracy: 0.9062216167120799
27 Avg Valid loss (loss/batch): 0.15888718150386566 Validation accuracy: 0.9082750884459401
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.15690761842253909 Train accuracy: 0.9066541239565763
31 Avg Valid loss (loss/batch): 0.15520866681369666 Validation accuracy: 0.9061178703943394
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.154611916905393 Train accuracy: 0.906751438086588
35 Avg Valid loss (loss/batch): 0.1510558836881452 Validation accuracy: 0.904478384675123
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.1512562636269542 Train accuracy: 0.9075407638077938
39 Avg Valid loss (loss/batch): 0.15132980870895724 Validation accuracy: 0.9062904478384675

Listing A.6: VDET-BFPsingle-Multiclass Training report
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Figure A.5: VDET-BFPsingle-Multiclass Learning curve

A.1.2.6 VDET-BFPcombined-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.2703578482736096 Train accuracy: 0.886564162449721
3 Avg Valid loss (loss/batch): 0.19647134148727893 Validation accuracy: 0.904305807230995
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.19189731155761533 Train accuracy: 0.9024155529605121
7 Avg Valid loss (loss/batch): 0.1753127043767689 Validation accuracy: 0.9054275606178273
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.18073624866930996 Train accuracy: 0.9039185156351369
11 Avg Valid loss (loss/batch): 0.1783358096771583 Validation accuracy: 0.9030114764000345
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.17460743074234072 Train accuracy: 0.905140348600839
15 Avg Valid loss (loss/batch): 0.16578429741775363 Validation accuracy: 0.9057727155060834
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.16728705363145302 Train accuracy: 0.9066757493188011
19 Avg Valid loss (loss/batch): 0.16071427733764887 Validation accuracy: 0.9039606523427388
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.16362066284556345 Train accuracy: 0.905853985554258
23 Avg Valid loss (loss/batch): 0.16637158134296573 Validation accuracy: 0.9082750884459401
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24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.16055799607730853 Train accuracy: 0.9064054322909909
27 Avg Valid loss (loss/batch): 0.1551283580198456 Validation accuracy: 0.908016222279748
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.1567544139061857 Train accuracy: 0.9077894554733792
31 Avg Valid loss (loss/batch): 0.15605571859791617 Validation accuracy: 0.9073259125032358
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.15432809572261644 Train accuracy: 0.9074542623588945
35 Avg Valid loss (loss/batch): 0.15228946956037878 Validation accuracy: 0.9063767365605315
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.15187282368134258 Train accuracy: 0.907043380476623
39 Avg Valid loss (loss/batch): 0.15040146221990777 Validation accuracy: 0.9084476658900682

Listing A.7: VDET-BFPcombined-Multiclass Training report

Figure A.6: VDET-BFPcombined-Multiclass Learning curve

A.1.2.7 ND1-JavaBERT-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.6009252641779577 Train accuracy: 0.8071393909984229
3 Avg Valid loss (loss/batch): 0.41948664225327414 Validation accuracy: 0.8420669577874818
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4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.38273029723229085 Train accuracy: 0.8549981802741721
7 Avg Valid loss (loss/batch): 0.34188250264298065 Validation accuracy: 0.858806404657933
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.34712747038698644 Train accuracy: 0.859850782482106
11 Avg Valid loss (loss/batch): 0.3320333314410206 Validation accuracy: 0.8600194080543425
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.33414046845044787 Train accuracy: 0.862792672570666
15 Avg Valid loss (loss/batch): 0.32882766250368994 Validation accuracy: 0.8634158175642892
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.3136754732928878 Train accuracy: 0.8648246997452383
19 Avg Valid loss (loss/batch): 0.33050261943700987 Validation accuracy: 0.859049005337215
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.3041422872950228 Train accuracy: 0.8682215212907922
23 Avg Valid loss (loss/batch): 0.32428466596794814 Validation accuracy: 0.861232411450752
24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.2973475420429636 Train accuracy: 0.8659468640058231
27 Avg Valid loss (loss/batch): 0.3099052455055286 Validation accuracy: 0.8651140223192625
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.28734998501108594 Train accuracy: 0.8685854664563872
31 Avg Valid loss (loss/batch): 0.29713156852251943 Validation accuracy: 0.861475012130034
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.28183960390477336 Train accuracy: 0.8708601237413564
35 Avg Valid loss (loss/batch): 0.3049288120775737 Validation accuracy: 0.8537117903930131
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.27487471989612855 Train accuracy: 0.8730134659711271
39 Avg Valid loss (loss/batch): 0.30273606222345034 Validation accuracy: 0.8529839883551674

Listing A.8: ND1-JavaBERT-Multiclass Training report
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Figure A.7: ND1-JavaBERT-Multiclass Learning curve

A.1.2.8 ND1-BFPsingle-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.5362765566528698 Train accuracy: 0.8171478830522868
3 Avg Valid loss (loss/batch): 0.3916887114379638 Validation accuracy: 0.8493449781659389
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.35323072364047564 Train accuracy: 0.8572121800315419
7 Avg Valid loss (loss/batch): 0.3272997380284556 Validation accuracy: 0.8651140223192625
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.3280856308374681 Train accuracy: 0.8639148368312508
11 Avg Valid loss (loss/batch): 0.31406609076111636 Validation accuracy: 0.8600194080543425
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.3118358722728376 Train accuracy: 0.8647337134538396
15 Avg Valid loss (loss/batch): 0.3130720978302465 Validation accuracy: 0.8558951965065502
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.3045640728717383 Train accuracy: 0.8651279873832343
19 Avg Valid loss (loss/batch): 0.3137459318051147 Validation accuracy: 0.8580786026200873
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.2981256240962485 Train accuracy: 0.8646730559262404
23 Avg Valid loss (loss/batch): 0.3010933291020698 Validation accuracy: 0.863658418243571
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24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.2893383954586877 Train accuracy: 0.8673723159044038
27 Avg Valid loss (loss/batch): 0.30012660219322135 Validation accuracy: 0.8597768073750607
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.2831655682278247 Train accuracy: 0.8676149460148005
31 Avg Valid loss (loss/batch): 0.29858367292559856 Validation accuracy: 0.8622028141678797
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.2788880489034225 Train accuracy: 0.8707691374499575
35 Avg Valid loss (loss/batch): 0.29487424127418055 Validation accuracy: 0.8561377971858322
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.2732096202882505 Train accuracy: 0.8725282057503336
39 Avg Valid loss (loss/batch): 0.29629185195575264 Validation accuracy: 0.8537117903930131

Listing A.9: ND1-BFPsingle-Multiclass Training report

Figure A.8: ND1-BFPsingle-Multiclass Learning curve

A.1.2.9 ND1-BFPcombined-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.5862617118949979 Train accuracy: 0.7971915564721582
3 Avg Valid loss (loss/batch): 0.38478542829567275 Validation accuracy: 0.844007763221737
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4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.36241588276204234 Train accuracy: 0.8545432488171782
7 Avg Valid loss (loss/batch): 0.34506995125445616 Validation accuracy: 0.8495875788452207
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.3447440083311298 Train accuracy: 0.856757248574548
11 Avg Valid loss (loss/batch): 0.327173315972771 Validation accuracy: 0.8568655992236778
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.32068374769746955 Train accuracy: 0.8621254397670751
15 Avg Valid loss (loss/batch): 0.3217948670212113 Validation accuracy: 0.861232411450752
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.30980105082191184 Train accuracy: 0.8644607545796433
19 Avg Valid loss (loss/batch): 0.30835478658066273 Validation accuracy: 0.859049005337215
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.29728647891357407 Train accuracy: 0.8663714666990173
23 Avg Valid loss (loss/batch): 0.3121096250565431 Validation accuracy: 0.8558951965065502
24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.29410185023359686 Train accuracy: 0.8680395487079947
27 Avg Valid loss (loss/batch): 0.3042866687514698 Validation accuracy: 0.8634158175642892
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.28594717045299445 Train accuracy: 0.869192041732379
31 Avg Valid loss (loss/batch): 0.30943681369472964 Validation accuracy: 0.8578360019408054
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.28101176520155385 Train accuracy: 0.8681911925269926
35 Avg Valid loss (loss/batch): 0.29631546168804274 Validation accuracy: 0.861475012130034
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.27462038178403786 Train accuracy: 0.87352905495572
39 Avg Valid loss (loss/batch): 0.29573262786543847 Validation accuracy: 0.8556525958272683

Listing A.10: ND1-BFPcombined-Multiclass Training report
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Figure A.9: ND1-BFPcombined-Multiclass Learning curve

A.1.2.10 ND2-JavaBERT-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.7946329905918267 Train accuracy: 0.7489306879670188
3 Avg Valid loss (loss/batch): 0.5782086035682857 Validation accuracy: 0.7913186535054416
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.5475441269055332 Train accuracy: 0.8042428927252426
7 Avg Valid loss (loss/batch): 0.49983635830321266 Validation accuracy: 0.8163756011136422
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.44208388309511876 Train accuracy: 0.8363136648630078
11 Avg Valid loss (loss/batch): 0.43406256447274666 Validation accuracy: 0.8262465198683877
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.3978763055464155 Train accuracy: 0.8470153740444902
15 Avg Valid loss (loss/batch): 0.39406650067202253 Validation accuracy: 0.8385218931915971
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.3581396752650794 Train accuracy: 0.8587477454264365
19 Avg Valid loss (loss/batch): 0.3859381464481569 Validation accuracy: 0.8394077448747153
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.3207529559343015 Train accuracy: 0.8687623464742764
23 Avg Valid loss (loss/batch): 0.3628896326122541 Validation accuracy: 0.8523158694001519
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24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.27860357825908616 Train accuracy: 0.8810444043631367
27 Avg Valid loss (loss/batch): 0.34773788829336466 Validation accuracy: 0.8642115920020248
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.2370314433051666 Train accuracy: 0.8948896332560337
31 Avg Valid loss (loss/batch): 0.35009393240135417 Validation accuracy: 0.8705391040242977
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.19370144660178326 Train accuracy: 0.9108992527699047
35 Avg Valid loss (loss/batch): 0.36745709379854125 Validation accuracy: 0.8762338648443432
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.15875654877131073 Train accuracy: 0.9254144120931032
39 Avg Valid loss (loss/batch): 0.38236236577840593 Validation accuracy: 0.8807896735003796

Listing A.11: ND2-JavaBERT-Multiclass Training report

Figure A.10: ND2-JavaBERT-Multiclass Learning curve

A.1.2.11 ND2-BFPsingle-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.6561974398825591 Train accuracy: 0.7839216696727648
3 Avg Valid loss (loss/batch): 0.5699631231973882 Validation accuracy: 0.7980258162490509
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4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.4882194047822764 Train accuracy: 0.8213003521429185
7 Avg Valid loss (loss/batch): 0.47460269201637 Validation accuracy: 0.8061250316375601
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.4345469607315833 Train accuracy: 0.8338400755818947
11 Avg Valid loss (loss/batch): 0.4281318059213884 Validation accuracy: 0.8277651227537333
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.3943938320213236 Train accuracy: 0.8433908786395259
15 Avg Valid loss (loss/batch): 0.41197584305908913 Validation accuracy: 0.837129840546697
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.36744172136027886 Train accuracy: 0.8513441552864383
19 Avg Valid loss (loss/batch): 0.3907608342906073 Validation accuracy: 0.8351050366995697
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.33276953621076444 Train accuracy: 0.8622863523146955
23 Avg Valid loss (loss/batch): 0.35037708438077725 Validation accuracy: 0.8554796254112883
24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.2894577452339995 Train accuracy: 0.8762346474276389
27 Avg Valid loss (loss/batch): 0.33374046358749804 Validation accuracy: 0.865097443685143
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.24685923886449854 Train accuracy: 0.8915399811045264
31 Avg Valid loss (loss/batch): 0.3241609387683778 Validation accuracy: 0.8747152619589977
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.20613594923006756 Train accuracy: 0.9057287640642446
35 Avg Valid loss (loss/batch): 0.32704324322795764 Validation accuracy: 0.8773728170083523
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.1744251397371543 Train accuracy: 0.9192647942970025
39 Avg Valid loss (loss/batch): 0.33689859685686246 Validation accuracy: 0.880030372057707

Listing A.12: ND2-BFPsingle-Multiclass Training report
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Figure A.11: ND2-BFPsingle-Multiclass Learning curve

A.1.2.12 ND2-BFPcombined-Multiclass

1 Epoch 1
2 Avg Train loss (loss/batch): 0.6507730985571468 Train accuracy: 0.7827535858455724
3 Avg Valid loss (loss/batch): 0.4795037516346086 Validation accuracy: 0.8204252088078967
4

5 Epoch 2
6 Avg Train loss (loss/batch): 0.42777940802093745 Train accuracy: 0.8413810873486215
7 Avg Valid loss (loss/batch): 0.4179994826135146 Validation accuracy: 0.8399139458364971
8

9 Epoch 3
10 Avg Train loss (loss/batch): 0.3732959639928352 Train accuracy: 0.85589624667182
11 Avg Valid loss (loss/batch): 0.3699460963001254 Validation accuracy: 0.8539610225259427
12

13 Epoch 4
14 Avg Train loss (loss/batch): 0.32854976079662673 Train accuracy: 0.8675427295370609
15 Avg Valid loss (loss/batch): 0.3384247875091278 Validation accuracy: 0.8630726398380157
16

17 Epoch 5
18 Avg Train loss (loss/batch): 0.28372806848169435 Train accuracy: 0.8821953104869878
19 Avg Valid loss (loss/batch): 0.3393397659871833 Validation accuracy: 0.8716780561883067
20

21 Epoch 6
22 Avg Train loss (loss/batch): 0.23536991325803994 Train accuracy: 0.897157090097054
23 Avg Valid loss (loss/batch): 0.31447401119275364 Validation accuracy: 0.882814477347507



A.2 Masked Language Models 115

24

25 Epoch 7
26 Avg Train loss (loss/batch): 0.18211373201687517 Train accuracy: 0.9174267800395087
27 Avg Valid loss (loss/batch): 0.3382656138365341 Validation accuracy: 0.8867375348013161
28

29 Epoch 8
30 Avg Train loss (loss/batch): 0.1443257788685898 Train accuracy: 0.9311861204157004
31 Avg Valid loss (loss/batch): 0.3539722056606649 Validation accuracy: 0.8902809415337889
32

33 Epoch 9
34 Avg Train loss (loss/batch): 0.11260964741315593 Train accuracy: 0.9456325689255347
35 Avg Valid loss (loss/batch): 0.40437043996064187 Validation accuracy: 0.8968615540369527
36

37 Epoch 10
38 Avg Train loss (loss/batch): 0.09041992768840758 Train accuracy: 0.956849609207249
39 Avg Valid loss (loss/batch): 0.42275356996688773 Validation accuracy: 0.8986332574031891

Listing A.13: ND2-BFPcombined-Multiclass Training report

Figure A.12: ND2-BFPcombined-Multiclass Learning curve

A.2 Masked Language Models

A.2.1 Implementation code

� �
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1 # -*- coding: utf-8 -*-

2 """mlm_template.ipynb

3

4 Automatically generated by Colaboratory.

5

6 # Masked Language Modeling

7

8 **Instructions:** Update the paths (datasets, any existing checkpoints, etc)

9

10 **Notebook References:**

11 * [Bug-Fix Pairs Datasets](https://sites.google.com/view/learning-fixes/data)

12 * [HF Fine-tuning a masked language model](https://huggingface.co/course/chapter7

↪→ /3)

13 * [HF Masked language modeling](https://huggingface.co/docs/transformers/main/

↪→ tasks/masked_language_modeling)

14 """

15

16 !pip install datasets

17 !pip install transformers

18 !pip install torch

19

20 from google.colab import drive

21 drive.mount(’/content/drive’)

22

23 DATA_PATH = ’/content/drive/My Drive/MLM/data/’

24 MODEL_PATH = ’/content/drive/My Drive/MLM/models/’

25

26 """# Define functions

27

28 ## Model checkpoint

29 """

30

31 model_checkpoint = ’bert-base-cased’

32

33 """## Load Dataset"""

34

35 from datasets import load_dataset

36

37 def my_load_dataset(folder):

38 dataset = load_dataset(’csv’, data_files={’train’: DATA_PATH + folder + ’/train.

↪→ csv’, ’test’: DATA_PATH + folder + ’/test.csv’})

39 print(dataset)

40

41 return dataset

42

43 """## Create model"""

44

45 from transformers import AutoModelForMaskedLM

46
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47 def get_model(model_checkpoint_):

48 model = AutoModelForMaskedLM.from_pretrained(model_checkpoint_)

49 model.cuda()

50

51 return model

52

53 """## Preprocessing the data"""

54

55 from transformers import AutoTokenizer

56

57 def get_tokenizer(model_checkpoint_):

58 return AutoTokenizer.from_pretrained(model_checkpoint_)

59

60 def tokenize_function(sample):

61 result = tokenizer(sample["code"])

62 if tokenizer.is_fast:

63 result["word_ids"] = [result.word_ids(i) for i in range(len(result["input_ids

↪→ "]))]

64 return result

65

66 def get_tokenized_dataset(dataset_, remove_cols=[’id’, ’code’, ’buggy’, ’filename’

↪→ ]):

67 tokenized_dataset = dataset_.map(

68 tokenize_function, batched=True, num_proc=4, remove_columns=remove_cols

69 )

70

71 return tokenized_dataset

72

73 """Concatenate all the code samples and split the concatenated samples into shorter

↪→ chunks defined by chunk_size, which should be both shorter than the maximum

↪→ input length and short enough for your GPU RAM."""

74

75 chunk_size = 256

76

77 def group_texts(examples):

78 # Concatenate all texts

79 concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}

80

81 # Compute length of concatenated texts

82 total_length = len(concatenated_examples[list(examples.keys())[0]])

83

84 # We drop the last chunk if it’s smaller than chunk_size

85 total_length = (total_length // chunk_size) * chunk_size

86

87 # Split by chunks of max_len

88 result = {

89 k: [t[i : i + chunk_size] for i in range(0, total_length, chunk_size)]

90 for k, t in concatenated_examples.items()

91 }
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92

93 # Create a new labels column

94 result["labels"] = result["input_ids"].copy()

95 return result

96

97 """Note that in the last step of group_texts() we create a new labels column which

↪→ is a copy of the input_ids one. That’s because in masked language modeling

↪→ the objective is to predict randomly masked tokens in the input batch, and

↪→ by creating a labels column we provide the ground truth for our language

↪→ model to learn from.

98

99 Now all we need to do is insert randomly [MASK] tokens and train the model!

100

101 ## Fine-tuning with the Trainer API

102

103 Define training hyperparameters and Trainer class

104 """

105

106 from transformers import DataCollatorForLanguageModeling

107 from transformers import TrainingArguments, Trainer

108 from IPython.display import display

109

110 def get_args():

111 return TrainingArguments(

112 output_dir=MODEL_PATH,

113 overwrite_output_dir=True,

114 evaluation_strategy=’epoch’,

115 save_strategy=’epoch’,

116 per_device_train_batch_size=32,

117 per_device_eval_batch_size=32,

118 fp16=True,

119 optim="adamw_torch",

120 learning_rate=2e-5,

121 num_train_epochs=5,

122 weight_decay=0.01,

123 seed=42

124 )

125

126 def get_trainer(model_, tokenizer_, args_, dataset_, data_collator_):

127 return Trainer(

128 model=model_,

129 tokenizer=tokenizer_,

130 args=args_,

131 train_dataset=dataset_["train"],

132 eval_dataset=dataset_["test"],

133 data_collator=data_collator_,

134 )

135

136 """Evaluate on eval set"""
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137

138 import math

139

140 def evaluate_model(trainer_):

141 eval_results = trainer_.evaluate()

142 print(f"Perplexity: {math.exp(eval_results[’eval_loss’]):.2f}")

143

144 """# Train Models"""

145

146 model_name = ’combined’

147 # model_name = ’single’

148

149 dataset = my_load_dataset(model_name)

150 dataset

151

152 tokenizer = get_tokenizer(model_checkpoint)

153 tokenized_dataset = get_tokenized_dataset(dataset)

154 del dataset

155

156 tokenized_dataset

157

158 lm_dataset = tokenized_dataset.map(group_texts, batched=True, num_proc=4)

159 del tokenized_dataset

160

161 lm_dataset

162

163 trainer = get_trainer(

164 get_model(model_checkpoint),

165 tokenizer,

166 get_args(),

167 lm_dataset,

168 DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)

169 )

170

171 display(trainer.train())

172

173 evaluate_model(trainer)

174

175 trainer.save_model(MODEL_PATH + model_name)� �
Listing A.14: Baseline model architecture.

A.2.2 Training reports

1 Epoch 1
2 Training loss: 0.803400
3 Validation loss: 0.697756
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4

5 Epoch 2
6 Training loss: 0.674300
7 Validation loss: 0.610899
8

9 Epoch 3
10 Training loss: 0.618300
11 Validation loss: 0.577367
12

13 Epoch 4
14 Training loss: 0.595700
15 Validation loss: 0.553462
16

17 Epoch 5
18 Training loss: 0.581900
19 Validation loss: 0.546494
20 Evaluation perplexity: 1.73

Listing A.15: BFPcombined MLM training report

1 Epoch 1
2 Training loss: 0.558400
3 Validation loss: 0.494941
4

5 Epoch 2
6 Training loss: 0.476100
7 Validation loss: 0.433146
8

9 Epoch 3
10 Training loss: 0.441100
11 Validation loss: 0.403015
12

13 Epoch 4
14 Training loss: 0.422200
15 Validation loss: 0.393980
16

17 Epoch 5
18 Training loss: 0.421100
19 Validation loss: 0.388629
20 Evaluation perplexity: 1.48

Listing A.16: BFPsingle MLM training report
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J-TAS Action instructions

1 This action analysis Java files and generates a report in [Static Analysis Results Interchange Format (SARIF) format](
↪→ https://www.oasis−open.org/standard/sarif−v2−1−0/). The results can be seen in the *Security tab* of your
↪→ repository.

2

3 We recommend using the [actions/checkout](https://github.com/marketplace/actions/checkout) action to check out
↪→ your repository, and [github/codeql−action/upload−sarif](https://github.com/github/codeql−action/tree/main/
↪→ upload−sarif) to upload the SARIF file. For more information on their usage, check the respective
↪→ READMEs.

4

5 ## Usage
6

7 <!−− start usage −−>
8 ‘‘‘yaml
9 − uses: andrenasx/J−TAS@main

10 with:
11 # Paths to the directories containing the Java source files to analyze.
12 # These paths are relative to the root of the repository, and separated by spaces when multiple paths are provided.
13 # Example: ’src/main/java src/test/java’
14 # Default: ’’
15 paths: ’’
16

17 # Paths of the the Java source files to analyze.
18 # These paths are relative to the root of the repository, and separated by spaces when multiple paths are provided.
19 # Example: ’src/main/java/example/HelloWorld.java src/test/java/example/HelloWorldTest.java’
20 # Default: ’’
21 files: ’’
22 ‘‘‘
23 <!−− end usage −−>
24

25 When no ‘paths‘ nor ‘files‘ are provided, the action will analyze all Java files in the repository.
26

27 ## Workflow examples
28

121
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29 − [Analyse the whole repository](#Analyse−the−repository−on−every−push)
30 − [Analyse specific files](#Analyse−specific−files)
31 − [Analyse specific directories](#Analyse−specific−directories)
32 − [Analyse only the changed files in current commit](#Analyse−only−the−changed−files)
33

34 ### Analyse the repository on every push
35

36 ‘‘‘yaml
37 on: [push]
38 name: J−TAS analysis
39

40 jobs:
41 jtas−analysis:
42 runs−on: ubuntu−latest
43

44 steps:
45 − name: Checkout this repo code
46 uses: actions/checkout@v3
47

48 − name: Run J−TAS
49 uses: andrenasx/J−TAS@main
50

51 − name: Upload J−TAS report
52 uses: github/codeql−action/upload−sarif@v2
53 with:
54 sarif_file: results.sarif
55 category: my−analysis−tool
56 ‘‘‘
57

58 ### Analyse specific files
59

60 ‘‘‘yaml
61 on: [push]
62 name: J−TAS analysis
63

64 jobs:
65 jtas−analysis:
66 runs−on: ubuntu−latest
67

68 steps:
69 − name: Checkout this repo code
70 uses: actions/checkout@v3
71

72 − name: Run J−TAS
73 uses: andrenasx/J−TAS@main
74 with:
75 files: ’src/main/java/com/example/HelloWorld.java src/test/java/com/example/HelloWorldTest.java’
76

77 − name: Upload J−TAS report
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78 uses: github/codeql−action/upload−sarif@v2
79 with:
80 sarif_file: results.sarif
81 category: my−analysis−tool
82 ‘‘‘
83

84 ### Analyse specific directories
85

86 ‘‘‘yaml
87 on: [push]
88 name: J−TAS analysis
89

90 jobs:
91 jtas−analysis:
92 runs−on: ubuntu−latest
93

94 steps:
95 − name: Checkout this repo code
96 uses: actions/checkout@v3
97

98 − name: Run J−TAS
99 uses: andrenasx/J−TAS@main

100 with:
101 paths: ’src/main/java/com/controller src/main/java/com/service’
102

103 − name: Upload J−TAS report
104 uses: github/codeql−action/upload−sarif@v2
105 with:
106 sarif_file: results.sarif
107 category: my−analysis−tool
108 ‘‘‘
109

110 ### Analyse only the changed files
111

112 ‘‘‘yaml
113 on: [push]
114 name: J−TAS analysis
115

116 jobs:
117 jtas−analysis:
118 runs−on: ubuntu−latest
119

120 steps:
121 − name: Checkout repository code
122 uses: actions/checkout@v3
123 with:
124 fetch−depth: 2
125

126 − name: Process files changed in the current commit



J-TAS Action instructions 124

127 id: diff
128 run: |
129 changedFiles=$(git diff −−name−only HEAD^)
130 echo "files=${changedFiles//$’\n’/ }" >> "$GITHUB_OUTPUT"
131

132 − name: Run J−TAS
133 uses: andrenasx/J−TAS@main
134 with:
135 files: ${{ steps.diff.outputs.files }}
136

137 − name: Upload J−TAS report
138 uses: github/codeql−action/upload−sarif@v2
139 with:
140 sarif_file: results.sarif
141 category: my−analysis−tool
142 ‘‘‘

Listing B.1: J-TAS README.md file.



125
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Appendix C

Results details

C.1 VDET-JavaBERT-Multilabel

Table C.1: VDET-JavaBERT-Multilabel test set’s class metrics.

Class TP TN FP FN FPR FNR
113 693 10804 5 25 0.000463 0.034819

129 1162 10271 0 94 0.000000 0.074841

134 364 11138 0 25 0.000000 0.064267

15 157 11357 0 13 0.000000 0.076471

190 2117 9269 43 98 0.004618 0.044244

191 1594 9807 0 126 0.000000 0.073256

197 388 11110 0 29 0.000000 0.069544

23 53 11459 0 15 0.000000 0.220588

319 174 11353 0 0 0.000000 0.000000

36 92 11423 0 12 0.000000 0.115385

369 878 10609 0 40 0.000000 0.043573

400 700 10827 0 0 0.000000 0.000000

470 158 11367 0 2 0.000000 0.012500

606 207 11306 0 14 0.000000 0.063348

643 218 11294 0 15 0.000000 0.064378

690 153 11373 0 1 0.000000 0.006494

78 141 11377 0 9 0.000000 0.060000

789 472 11022 6 27 0.000544 0.054108

80 227 11284 1 15 0.000089 0.061983

89 919 10543 10 55 0.000948 0.056468

90 37 11482 0 8 0.000000 0.177778

False 7573 2956 459 539 0.134407 0.066445

True 2960 7575 537 455 0.066198 0.133236
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Table C.2: VDET-JavaBERT-Multilabel test set’s classification report.

Precision Recall F1-score Support
113 0.99 0.97 0.98 718

129 1.00 0.93 0.96 1256

134 1.00 0.94 0.97 389

15 1.00 0.92 0.96 170

190 0.98 0.96 0.97 2215

191 1.00 0.93 0.96 1720

197 1.00 0.93 0.96 417

23 1.00 0.78 0.88 68

319 1.00 1.00 1.00 174

36 1.00 0.88 0.94 104

369 1.00 0.96 0.98 918

400 1.00 1.00 1.00 700

470 1.00 0.99 0.99 160

606 1.00 0.94 0.97 221

643 1.00 0.94 0.97 233

690 1.00 0.99 1.00 154

78 1.00 0.94 0.97 150

789 0.99 0.95 0.97 499

80 1.00 0.94 0.97 242

89 0.99 0.94 0.97 974

90 1.00 0.82 0.90 45

False 0.94 0.93 0.94 8112

True 0.85 0.87 0.86 3415

micro avg 0.95 0.93 0.94 23054

macro avg 0.99 0.93 0.96 23054

weighted avg 0.95 0.93 0.94 23054

samples avg 0.95 0.93 0.94 23054
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Table C.3: VDET-JavaBERT-Multilabel real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
113 0 585 18 6 0.029851 1.000000

129 0 606 3 0 0.004926 0.000000

134 0 588 21 0 0.034483 0.000000

15 0 601 8 0 0.013136 0.000000

190 0 592 17 0 0.027915 0.000000

191 0 584 25 0 0.041051 0.000000

197 0 606 3 0 0.004926 0.000000

23 0 603 6 0 0.009852 0.000000

319 0 550 59 0 0.096880 0.000000

36 0 609 0 0 0.000000 0.000000

369 0 596 13 0 0.021346 0.000000

400 2 482 63 62 0.115596 0.968750

470 0 608 1 0 0.001642 0.000000

606 0 598 11 0 0.018062 0.000000

643 0 604 5 0 0.008210 0.000000

690 0 593 16 0 0.026273 0.000000

78 0 540 49 20 0.083192 1.000000

789 0 511 98 0 0.160920 0.000000

80 0 601 8 0 0.013136 0.000000

89 31 93 1 484 0.010638 0.939806

90 0 591 14 4 0.023140 1.000000

False 193 127 130 159 0.505837 0.451705

True 124 201 151 133 0.428977 0.517510
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Table C.4: VDET-JavaBERT-Multilabel real-world test set’s classification report.

Precision Recall F1-score Support
113 0.00 0.00 0.00 6

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

15 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

23 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.03 0.03 0.03 64

470 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

78 0.00 0.00 0.00 20

789 0.00 0.00 0.00 0

80 0.00 0.00 0.00 0

89 0.97 0.06 0.11 515

90 0.00 0.00 0.00 4

False 0.60 0.55 0.57 352

True 0.45 0.48 0.47 257

micro avg 0.33 0.29 0.31 1218

macro avg 0.09 0.05 0.05 1218

weighted avg 0.68 0.29 0.31 1218

samples avg 0.33 0.29 0.30 1218
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C.2 ND1-JavaBERT-Multilabel

Table C.5: ND1-JavaBERT-Multilabel test set’s class metrics.

Class TP TN FP FN FPR FNR
113 219 3878 0 29 0.000000 0.116935

129 268 3789 0 69 0.000000 0.204748

134 109 3981 0 36 0.000000 0.248276

15 32 4073 0 21 0.000000 0.396226

190 710 3295 51 70 0.015242 0.089744

191 558 3455 18 95 0.005183 0.145482

197 94 4017 0 15 0.000000 0.137615

319 63 4060 0 3 0.000000 0.045455

36 20 4082 0 24 0.000000 0.545455

369 262 3803 0 61 0.000000 0.188854

400 210 3916 0 0 0.000000 0.000000

470 42 4064 0 20 0.000000 0.322581

476 86 4039 0 1 0.000000 0.011494

563 68 4056 0 2 0.000000 0.028571

606 62 4018 0 46 0.000000 0.425926

643 46 4035 0 45 0.000000 0.494505

690 96 4013 0 17 0.000000 0.150442

78 36 4067 0 23 0.000000 0.389831

789 118 3979 3 26 0.000753 0.180556

80 50 4055 4 17 0.000985 0.253731

81 21 4084 0 21 0.000000 0.500000

83 18 4084 0 24 0.000000 0.571429

89 166 3894 0 66 0.000000 0.284483

90 18 4085 0 23 0.000000 0.560976

False 2259 1647 104 116 0.059395 0.048842

True 1651 2258 117 100 0.049263 0.057110
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Table C.6: ND1-JavaBERT-Multilabel test set’s classification report.

Precision Recall F1-score Support
113 1.00 0.88 0.94 248

129 1.00 0.80 0.89 337

134 1.00 0.75 0.86 145

15 1.00 0.60 0.75 53

190 0.93 0.91 0.92 780

191 0.97 0.85 0.91 653

197 1.00 0.86 0.93 109

319 1.00 0.95 0.98 66

36 1.00 0.45 0.62 44

369 1.00 0.81 0.90 323

400 1.00 1.00 1.00 210

470 1.00 0.68 0.81 62

476 1.00 0.99 0.99 87

563 1.00 0.97 0.99 70

606 1.00 0.57 0.73 108

643 1.00 0.51 0.67 91

690 1.00 0.85 0.92 113

78 1.00 0.61 0.76 59

789 0.98 0.82 0.89 144

80 0.93 0.75 0.83 67

81 1.00 0.50 0.67 42

83 1.00 0.43 0.60 42

89 1.00 0.72 0.83 232

90 1.00 0.44 0.61 41

False 0.96 0.95 0.95 2375

True 0.93 0.94 0.94 1751

micro avg 0.96 0.88 0.92 8252

macro avg 0.99 0.75 0.84 8252

weighted avg 0.96 0.88 0.92 8252

samples avg 0.96 0.88 0.91 8252
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Table C.7: ND1-JavaBERT-Multilabel real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
113 2 601 2 4 0.003317 0.666667

129 0 606 3 0 0.004926 0.000000

134 0 576 33 0 0.054187 0.000000

15 0 609 0 0 0.000000 0.000000

190 0 603 6 0 0.009852 0.000000

191 0 581 28 0 0.045977 0.000000

197 0 609 0 0 0.000000 0.000000

319 0 559 50 0 0.082102 0.000000

36 0 609 0 0 0.000000 0.000000

369 0 601 8 0 0.013136 0.000000

400 0 485 60 64 0.110092 1.000000

470 0 599 10 0 0.016420 0.000000

476 0 580 29 0 0.047619 0.000000

563 0 605 4 0 0.006568 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 602 7 0 0.011494 0.000000

690 0 547 62 0 0.101806 0.000000

78 3 589 0 17 0.000000 0.850000

789 0 591 18 0 0.029557 0.000000

80 0 607 2 0 0.003284 0.000000

81 0 597 12 0 0.019704 0.000000

83 0 609 0 0 0.000000 0.000000

89 35 94 0 480 0.000000 0.932039

90 0 605 0 4 0.000000 1.000000

False 259 50 207 93 0.805447 0.264205

True 58 259 93 199 0.264205 0.774319
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Table C.8: ND1-JavaBERT-Multilabel real-world test set’s classification report.

Precision Recall F1-score Support
113 0.50 0.33 0.40 6

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

15 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 64

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

563 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

78 1.00 0.15 0.26 20

789 0.00 0.00 0.00 0

80 0.00 0.00 0.00 0

81 0.00 0.00 0.00 0

83 0.00 0.00 0.00 0

89 1.00 0.07 0.13 515

90 0.00 0.00 0.00 4

False 0.56 0.74 0.63 352

True 0.38 0.23 0.28 257

micro avg 0.36 0.29 0.32 1218

macro avg 0.13 0.06 0.07 1218

weighted avg 0.68 0.29 0.30 1218

samples avg 0.39 0.29 0.32 1218
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C.3 ND2-JavaBERT-Multilabel

Table C.9: ND2-JavaBERT-Multilabel test set’s class metrics.

Class TP TN FP FN FPR FNR
113 394 7569 28 73 0.003686 0.156317

129 608 7182 114 160 0.015625 0.208333

134 236 7736 28 64 0.003606 0.213333

15 72 7968 5 19 0.000627 0.208791

190 1394 6256 180 234 0.027968 0.143735

191 1127 6577 149 211 0.022153 0.157698

197 201 7795 33 35 0.004216 0.148305

319 102 7961 0 1 0.000000 0.009709

36 95 7934 9 26 0.001133 0.214876

369 527 7394 49 94 0.006583 0.151369

400 369 7695 0 0 0.000000 0.000000

470 73 7951 10 30 0.001256 0.291262

476 111 7951 0 2 0.000000 0.017699

606 99 7893 20 52 0.002527 0.344371

643 125 7877 16 46 0.002027 0.269006

690 156 7879 11 18 0.001394 0.103448

78 65 7949 17 33 0.002134 0.336735

789 251 7666 59 88 0.007638 0.259587

80 112 7909 23 20 0.002900 0.151515

89 561 7307 86 110 0.011633 0.163934

90 48 7980 14 22 0.001751 0.314286

False 4813 2714 264 273 0.088650 0.053677

True 2723 4802 284 255 0.055840 0.085628
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Table C.10: ND2-JavaBERT-Multilabel test set’s classification report.

Precision Recall F1-score Support
113 0.93 0.84 0.89 467

129 0.84 0.79 0.82 768

134 0.89 0.79 0.84 300

15 0.94 0.79 0.86 91

190 0.89 0.86 0.87 1628

191 0.88 0.84 0.86 1338

197 0.86 0.85 0.86 236

319 1.00 0.99 1.00 103

36 0.91 0.79 0.84 121

369 0.91 0.85 0.88 621

400 1.00 1.00 1.00 369

470 0.88 0.71 0.78 103

476 1.00 0.98 0.99 113

606 0.83 0.66 0.73 151

643 0.89 0.73 0.80 171

690 0.93 0.90 0.91 174

78 0.79 0.66 0.72 98

789 0.81 0.74 0.77 339

80 0.83 0.85 0.84 132

89 0.87 0.84 0.85 671

90 0.77 0.69 0.73 70

False 0.95 0.95 0.95 5086

True 0.91 0.91 0.91 2978

micro avg 0.91 0.88 0.90 16128

macro avg 0.89 0.83 0.86 16128

weighted avg 0.91 0.88 0.90 16128

samples avg 0.91 0.88 0.89 16128
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Table C.11: ND2-JavaBERT-Multilabel real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
113 2 573 30 4 0.049751 0.666667

129 0 609 0 0 0.000000 0.000000

134 0 562 47 0 0.077176 0.000000

15 0 592 17 0 0.027915 0.000000

190 0 601 8 0 0.013136 0.000000

191 0 598 11 0 0.018062 0.000000

197 0 608 1 0 0.001642 0.000000

319 0 566 43 0 0.070608 0.000000

36 0 608 1 0 0.001642 0.000000

369 0 599 10 0 0.016420 0.000000

400 4 474 71 60 0.130275 0.937500

470 0 592 17 0 0.027915 0.000000

476 0 585 24 0 0.039409 0.000000

606 0 599 10 0 0.016420 0.000000

643 0 596 13 0 0.021346 0.000000

690 0 584 25 0 0.041051 0.000000

78 2 588 1 18 0.001698 0.900000

789 0 604 5 0 0.008210 0.000000

80 0 598 11 0 0.018062 0.000000

89 26 88 6 489 0.063830 0.949515

90 0 600 5 4 0.008264 1.000000

False 218 101 156 134 0.607004 0.380682

True 102 221 131 155 0.372159 0.603113
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Table C.12: ND2-JavaBERT-Multilabel real-world test set’s classification report.

Precision Recall F1-score Support
113 0.06 0.33 0.11 6

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

15 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.05 0.06 0.06 64

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

78 0.67 0.10 0.17 20

789 0.00 0.00 0.00 0

80 0.00 0.00 0.00 0

89 0.81 0.05 0.10 515

90 0.00 0.00 0.00 4

False 0.58 0.62 0.60 352

True 0.44 0.40 0.42 257

micro avg 0.36 0.29 0.32 1218

macro avg 0.11 0.07 0.06 1218

weighted avg 0.62 0.29 0.31 1218

samples avg 0.38 0.29 0.32 1218
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C.4 VDET-JavaBERT-Multiclass

Table C.13: VDET-JavaBERT-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 7631 2896 519 481 0.151977 0.059295

15 67 11439 17 4 0.001484 0.056338

23 27 11497 0 3 0.000000 0.100000

36 22 11491 0 14 0.000000 0.388889

78 42 11471 0 14 0.000000 0.250000

80 67 11426 0 34 0.000000 0.336634

89 269 11145 107 6 0.009509 0.021818

90 14 11511 0 2 0.000000 0.125000

113 146 11306 6 69 0.000530 0.320930

129 320 11071 107 29 0.009572 0.083095

134 101 11397 21 8 0.001839 0.073394

190 428 10890 10 199 0.000917 0.317384

191 437 10928 136 26 0.012292 0.056156

197 101 11384 0 42 0.000000 0.293706

319 49 11460 18 0 0.001568 0.000000

369 236 11204 76 11 0.006738 0.044534

400 163 11293 49 22 0.004320 0.118919

470 54 11460 0 13 0.000000 0.194030

606 63 11443 13 8 0.001135 0.112676

643 45 11464 3 15 0.000262 0.250000

690 33 11479 0 15 0.000000 0.312500

789 130 11330 0 67 0.000000 0.340102
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Table C.14: VDET-JavaBERT-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.94 0.94 0.94 8112

15 0.80 0.94 0.86 71

23 1.00 0.90 0.95 30

36 1.00 0.61 0.76 36

78 1.00 0.75 0.86 56

80 1.00 0.66 0.80 101

89 0.72 0.98 0.83 275

90 1.00 0.88 0.93 16

113 0.96 0.68 0.80 215

129 0.75 0.92 0.82 349

134 0.83 0.93 0.87 109

190 0.98 0.68 0.80 627

191 0.76 0.94 0.84 463

197 1.00 0.71 0.83 143

319 0.73 1.00 0.84 49

369 0.76 0.96 0.84 247

400 0.77 0.88 0.82 185

470 1.00 0.81 0.89 67

606 0.83 0.89 0.86 71

643 0.94 0.75 0.83 60

690 1.00 0.69 0.81 48

789 1.00 0.66 0.80 197

accuracy 0.91 11527

macro avg 0.90 0.82 0.85 11527

weighted avg 0.91 0.91 0.91 11527
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Table C.15: VDET-JavaBERT-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 326 25 232 26 0.902724 0.073864

15 0 609 0 0 0.000000 0.000000

23 0 609 0 0 0.000000 0.000000

36 0 609 0 0 0.000000 0.000000

78 0 600 0 9 0.000000 1.000000

80 0 608 1 0 0.001642 0.000000

89 11 371 16 211 0.041344 0.950450

90 0 608 0 1 0.000000 1.000000

113 0 607 0 2 0.000000 1.000000

129 0 609 0 0 0.000000 0.000000

134 0 608 1 0 0.001642 0.000000

190 0 607 2 0 0.003284 0.000000

191 0 609 0 0 0.000000 0.000000

197 0 609 0 0 0.000000 0.000000

319 0 604 5 0 0.008210 0.000000

369 0 595 14 0 0.022989 0.000000

400 0 586 0 23 0.000000 1.000000

470 0 608 1 0 0.001642 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 609 0 0 0.000000 0.000000

690 0 609 0 0 0.000000 0.000000

789 0 609 0 0 0.000000 0.000000
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Table C.16: VDET-JavaBERT-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.58 0.93 0.72 352

15 0.00 0.00 0.00 0

23 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.00 0.00 0.00 9

80 0.00 0.00 0.00 0

89 0.41 0.05 0.09 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.55 0.55 0.55 609

macro avg 0.05 0.04 0.04 609

weighted avg 0.49 0.55 0.45 609
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C.5 ND1-JavaBERT-Multiclass

Table C.17: ND1-JavaBERT-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 2262 1627 128 105 0.072934 0.044360

15 17 4072 12 21 0.002938 0.552632

36 8 4090 4 20 0.000977 0.714286

78 21 4073 7 21 0.001716 0.500000

80 28 4059 9 26 0.002212 0.481481

81 17 4088 1 16 0.000245 0.484848

83 18 4088 1 15 0.000245 0.454545

89 79 3896 141 6 0.034927 0.070588

90 6 4093 2 21 0.000488 0.777778

113 86 3989 37 10 0.009190 0.104167

129 110 3969 8 35 0.002012 0.241379

134 35 4049 18 20 0.004426 0.363636

190 199 3836 13 74 0.003378 0.271062

191 192 3776 117 37 0.030054 0.161572

197 70 4031 3 18 0.000744 0.204545

319 14 4098 0 10 0.000000 0.416667

369 105 3980 15 22 0.003755 0.173228

400 74 4035 10 3 0.002472 0.038961

470 29 4076 2 15 0.000490 0.340909

476 20 4092 5 5 0.001220 0.200000

563 20 4101 0 1 0.000000 0.047619

606 22 4078 4 18 0.000980 0.450000

643 13 4086 3 20 0.000734 0.606061

690 29 4070 19 4 0.004647 0.121212

789 78 4006 11 27 0.002738 0.257143



C.5 ND1-JavaBERT-Multiclass 143

Table C.18: ND1-JavaBERT-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.95 0.96 0.95 2367

15 0.59 0.45 0.51 38

36 0.67 0.29 0.40 28

78 0.75 0.50 0.60 42

80 0.76 0.52 0.62 54

81 0.94 0.52 0.67 33

83 0.95 0.55 0.69 33

89 0.36 0.93 0.52 85

90 0.75 0.22 0.34 27

113 0.70 0.90 0.79 96

129 0.93 0.76 0.84 145

134 0.66 0.64 0.65 55

190 0.94 0.73 0.82 273

191 0.62 0.84 0.71 229

197 0.96 0.80 0.87 88

319 1.00 0.58 0.74 24

369 0.88 0.83 0.85 127

400 0.88 0.96 0.92 77

470 0.94 0.66 0.77 44

476 0.80 0.80 0.80 25

563 1.00 0.95 0.98 21

606 0.85 0.55 0.67 40

643 0.81 0.39 0.53 33

690 0.60 0.88 0.72 33

789 0.88 0.74 0.80 105

accuracy 0.86 4122

macro avg 0.81 0.68 0.71 4122

weighted avg 0.88 0.86 0.86 4122
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Table C.19: ND1-JavaBERT-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 338 13 244 14 0.949416 0.039773

15 0 606 3 0 0.004926 0.000000

36 0 609 0 0 0.000000 0.000000

78 0 600 0 9 0.000000 1.000000

80 0 609 0 0 0.000000 0.000000

81 0 609 0 0 0.000000 0.000000

83 0 609 0 0 0.000000 0.000000

89 1 385 2 221 0.005168 0.995495

90 0 608 0 1 0.000000 1.000000

113 0 604 3 2 0.004942 1.000000

129 0 609 0 0 0.000000 0.000000

134 0 609 0 0 0.000000 0.000000

190 0 609 0 0 0.000000 0.000000

191 0 609 0 0 0.000000 0.000000

197 0 609 0 0 0.000000 0.000000

319 0 609 0 0 0.000000 0.000000

369 0 605 4 0 0.006568 0.000000

400 0 586 0 23 0.000000 1.000000

470 0 609 0 0 0.000000 0.000000

476 0 608 1 0 0.001642 0.000000

563 0 609 0 0 0.000000 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 607 2 0 0.003284 0.000000

690 0 603 6 0 0.009852 0.000000

789 0 604 5 0 0.008210 0.000000
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Table C.20: ND1-JavaBERT-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.58 0.96 0.72 352

15 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.00 0.00 0.00 9

80 0.00 0.00 0.00 0

81 0.00 0.00 0.00 0

83 0.00 0.00 0.00 0

89 0.33 0.00 0.01 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

563 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.56 0.56 0.56 609

macro avg 0.04 0.04 0.03 609

weighted avg 0.46 0.56 0.42 609
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C.6 ND2-JavaBERT-Multiclass

Table C.21: ND2-JavaBERT-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 4774 2695 283 312 0.095030 0.061345

15 31 8008 6 19 0.000749 0.380000

36 41 7976 26 21 0.003249 0.338710

78 37 8002 7 18 0.000874 0.327273

80 61 7971 12 20 0.001503 0.246914

89 153 7762 81 68 0.010328 0.307692

90 25 8018 7 14 0.000872 0.358974

113 123 7868 35 38 0.004429 0.236025

129 209 7695 88 72 0.011307 0.256228

134 63 7958 5 38 0.000628 0.376238

190 437 7368 162 97 0.021514 0.181648

191 336 7473 151 104 0.019806 0.236364

197 117 7913 17 17 0.002144 0.126866

319 36 8019 9 0 0.001121 0.000000

369 147 7850 8 59 0.001018 0.286408

400 126 7918 20 0 0.002520 0.000000

470 35 7997 8 24 0.000999 0.406780

476 29 8027 3 5 0.000374 0.147059

606 34 7997 14 19 0.001748 0.358491

643 41 7943 63 17 0.007869 0.293103

690 41 7997 11 15 0.001374 0.267857

789 131 7852 21 60 0.002667 0.314136
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Table C.22: ND2-JavaBERT-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.94 0.94 0.94 5086

15 0.84 0.62 0.71 50

36 0.61 0.66 0.64 62

78 0.84 0.67 0.75 55

80 0.84 0.75 0.79 81

89 0.65 0.69 0.67 221

90 0.78 0.64 0.70 39

113 0.78 0.76 0.77 161

129 0.70 0.74 0.72 281

134 0.93 0.62 0.75 101

190 0.73 0.82 0.77 534

191 0.69 0.76 0.72 440

197 0.87 0.87 0.87 134

319 0.80 1.00 0.89 36

369 0.95 0.71 0.81 206

400 0.86 1.00 0.93 126

470 0.81 0.59 0.69 59

476 0.91 0.85 0.88 34

606 0.71 0.64 0.67 53

643 0.39 0.71 0.51 58

690 0.79 0.73 0.76 56

789 0.86 0.69 0.76 191

accuracy 0.87 8064

macro avg 0.79 0.75 0.76 8064

weighted avg 0.88 0.87 0.87 8064
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Table C.23: ND2-JavaBERT-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 330 30 227 22 0.883268 0.0625

15 0 609 0 0 0.000000 0.000000

36 0 609 0 0 0.000000 0.000000

78 0 600 0 9 0.000000 1.0000

80 0 609 0 0 0.000000 0.000000

89 0 385 2 222 0.005168 1.0000

90 0 608 0 1 0.000000 1.0000

113 0 607 0 2 0.000000 1.0000

129 0 606 3 0 0.004926 0.000000

134 0 607 2 0 0.003284 0.000000

190 0 600 9 0 0.014778 0.000000

191 0 599 10 0 0.016420 0.000000

197 0 609 0 0 0.000000 0.000000

319 0 603 6 0 0.009852 0.000000

369 0 602 7 0 0.011494 0.000000

400 0 582 4 23 0.006826 1.0000

470 0 606 3 0 0.004926 0.000000

476 0 608 1 0 0.001642 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 606 3 0 0.004926 0.000000

690 0 607 2 0 0.003284 0.000000

789 0 609 0 0 0.000000 0.000000
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Table C.24: ND2-JavaBERT-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.59 0.94 0.73 352

15 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.00 0.00 0.00 9

80 0.00 0.00 0.00 0

89 0.00 0.00 0.00 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.54 0.54 0.54 609

macro avg 0.03 0.04 0.03 609

weighted avg 0.34 0.54 0.42 609
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C.7 VDET-BFP_combined-Multiclass

Table C.25: VDET-BFPcombined-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 7277 3251 164 835 0.048023 0.102934

15 67 11439 17 4 0.001484 0.056338

23 27 11497 0 3 0.000000 0.100000

36 32 11483 8 4 0.000696 0.111111

78 55 11459 12 1 0.001046 0.017857

80 93 11403 23 8 0.002013 0.079208

89 251 11156 96 24 0.008532 0.087273

90 14 11511 0 2 0.000000 0.125000

113 209 11263 49 6 0.004332 0.027907

129 326 11067 111 23 0.009930 0.065903

134 101 11397 21 8 0.001839 0.073394

190 564 10758 142 63 0.013028 0.100478

191 435 10930 134 28 0.012111 0.060475

197 136 11334 50 7 0.004392 0.048951

319 49 11460 18 0 0.001568 0.000000

369 236 11204 76 11 0.006738 0.044534

400 185 11272 70 0 0.006172 0.000000

470 66 11446 14 1 0.001222 0.014925

606 53 11450 6 18 0.000524 0.253521

643 53 11451 16 7 0.001395 0.116667

690 35 11476 3 13 0.000261 0.270833

789 183 11280 50 14 0.004413 0.071066



C.7 VDET-BFP_combined-Multiclass 151

Table C.26: VDET-BFPcombined-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.98 0.90 0.94 8112

15 0.80 0.94 0.86 71

23 1.00 0.90 0.95 30

36 0.80 0.89 0.84 36

78 0.82 0.98 0.89 56

80 0.80 0.92 0.86 101

89 0.72 0.91 0.81 275

90 1.00 0.88 0.93 16

113 0.81 0.97 0.88 215

129 0.75 0.93 0.83 349

134 0.83 0.93 0.87 109

190 0.80 0.90 0.85 627

191 0.76 0.94 0.84 463

197 0.73 0.95 0.83 143

319 0.73 1.00 0.84 49

369 0.76 0.96 0.84 247

400 0.73 1.00 0.84 185

470 0.82 0.99 0.90 67

606 0.90 0.75 0.82 71

643 0.77 0.88 0.82 60

690 0.92 0.73 0.81 48

789 0.79 0.93 0.85 197

accuracy 0.91 11527

macro avg 0.82 0.92 0.86 11527

weighted avg 0.92 0.91 0.91 11527
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Table C.27: VDET-BFPcombined-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 275 64 193 77 0.750973 0.218750

15 0 606 3 0 0.004926 0.000000

23 0 609 0 0 0.000000 0.000000

36 0 608 1 0 0.001642 0.000000

78 2 598 2 7 0.003333 0.777778

80 0 607 2 0 0.003284 0.000000

89 4 385 2 218 0.005168 0.981982

90 0 608 0 1 0.000000 1.000000

113 0 607 0 2 0.000000 1.000000

129 0 609 0 0 0.000000 0.000000

134 0 583 26 0 0.042693 0.000000

190 0 608 1 0 0.001642 0.000000

191 0 606 3 0 0.004926 0.000000

197 0 608 1 0 0.001642 0.000000

319 0 590 19 0 0.031199 0.000000

369 0 598 11 0 0.018062 0.000000

400 0 572 14 23 0.023891 1.000000

470 0 600 9 0 0.014778 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 609 0 0 0.000000 0.000000

690 0 609 0 0 0.000000 0.000000

789 0 568 41 0 0.067323 0.000000
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Table C.28: VDET-BFPcombined-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.59 0.78 0.67 352

15 0.00 0.00 0.00 0

23 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.50 0.22 0.31 9

80 0.00 0.00 0.00 0

89 0.67 0.02 0.04 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.46 0.46 0.46 609

macro avg 0.08 0.05 0.05 609

weighted avg 0.59 0.46 0.41 609
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C.8 VDET-BFP_single-Multiclass

Table C.29: VDET-BFPsingle-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 7311 3210 205 801 0.060029 0.098743

15 67 11439 17 4 0.001484 0.056338

23 27 11497 0 3 0.000000 0.100000

36 34 11481 10 2 0.000870 0.055556

78 55 11459 12 1 0.001046 0.017857

80 93 11403 23 8 0.002013 0.079208

89 269 11145 107 6 0.009509 0.021818

90 14 11511 0 2 0.000000 0.125000

113 153 11302 10 62 0.000884 0.288372

129 292 11103 75 57 0.006710 0.163324

134 101 11397 21 8 0.001839 0.073394

190 585 10734 166 42 0.015229 0.066986

191 437 10929 135 26 0.012202 0.056156

197 136 11334 50 7 0.004392 0.048951

319 46 11461 17 3 0.001481 0.061224

369 236 11204 76 11 0.006738 0.044534

400 185 11272 70 0 0.006172 0.000000

470 66 11446 14 1 0.001222 0.014925

606 63 11443 13 8 0.001135 0.112676

643 53 11451 16 7 0.001395 0.116667

690 33 11478 1 15 0.000087 0.312500

789 183 11280 50 14 0.004413 0.071066
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Table C.30: VDET-BFPsingle-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.97 0.90 0.94 8112

15 0.80 0.94 0.86 71

23 1.00 0.90 0.95 30

36 0.77 0.94 0.85 36

78 0.82 0.98 0.89 56

80 0.80 0.92 0.86 101

89 0.72 0.98 0.83 275

90 1.00 0.88 0.93 16

113 0.94 0.71 0.81 215

129 0.80 0.84 0.82 349

134 0.83 0.93 0.87 109

190 0.78 0.93 0.85 627

191 0.76 0.94 0.84 463

197 0.73 0.95 0.83 143

319 0.73 0.94 0.82 49

369 0.76 0.96 0.84 247

400 0.73 1.00 0.84 185

470 0.82 0.99 0.90 67

606 0.83 0.89 0.86 71

643 0.77 0.88 0.82 60

690 0.97 0.69 0.80 48

789 0.79 0.93 0.85 197

accuracy 0.91 11527

macro avg 0.82 0.91 0.86 11527

weighted avg 0.92 0.91 0.91 11527
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Table C.31: VDET-BFPsingle-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 292 62 195 60 0.758755 0.170455

15 0 588 21 0 0.034483 0.000000

23 0 609 0 0 0.000000 0.000000

36 0 609 0 0 0.000000 0.000000

78 2 599 1 7 0.001667 0.777778

80 0 607 2 0 0.003284 0.000000

89 8 379 8 214 0.020672 0.963964

90 0 608 0 1 0.000000 1.000000

113 0 602 5 2 0.008237 1.000000

129 0 607 2 0 0.003284 0.000000

134 0 571 38 0 0.062397 0.000000

190 0 607 2 0 0.003284 0.000000

191 0 608 1 0 0.001642 0.000000

197 0 609 0 0 0.000000 0.000000

319 0 603 6 0 0.009852 0.000000

369 0 607 2 0 0.003284 0.000000

400 0 578 8 23 0.013652 1.000000

470 0 608 1 0 0.001642 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 609 0 0 0.000000 0.000000

690 0 609 0 0 0.000000 0.000000

789 0 594 15 0 0.024631 0.000000
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Table C.32: VDET-BFPsingle-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.60 0.83 0.70 352

15 0.00 0.00 0.00 0

23 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.67 0.22 0.33 9

80 0.00 0.00 0.00 0

89 0.50 0.04 0.07 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.50 0.50 0.50 609

macro avg 0.08 0.05 0.05 609

weighted avg 0.54 0.50 0.43 609
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C.9 ND1-BFP_combined-Multiclass

Table C.33: ND1-BFPcombined-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 2201 1673 82 166 0.046724 0.070131

15 17 4078 6 21 0.001469 0.552632

36 8 4091 3 20 0.000733 0.714286

78 21 4069 11 21 0.002696 0.500000

80 22 4054 14 32 0.003441 0.592593

81 17 4084 5 16 0.001223 0.484848

83 18 4081 8 15 0.001956 0.454545

89 71 3900 137 14 0.033936 0.164706

90 5 4093 2 22 0.000488 0.814815

113 86 3976 50 10 0.012419 0.104167

129 131 3871 106 14 0.026653 0.096552

134 34 4055 12 21 0.002951 0.381818

190 217 3808 41 56 0.010652 0.205128

191 188 3850 43 41 0.011045 0.179039

197 70 4026 8 18 0.001983 0.204545

319 21 4089 9 3 0.002196 0.125000

369 105 3981 14 22 0.003504 0.173228

400 77 4035 10 0 0.002472 0.000000

470 27 4076 2 17 0.000490 0.386364

476 22 4090 7 3 0.001709 0.120000

563 20 4101 0 1 0.000000 0.047619

606 21 4078 4 19 0.000980 0.475000

643 11 4089 0 22 0.000000 0.666667

690 28 4076 13 5 0.003179 0.151515

789 84 4004 13 21 0.003236 0.200000



C.9 ND1-BFP_combined-Multiclass 159

Table C.34: ND1-BFPcombined-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln 0.96 0.93 0.95 2367

15 0.74 0.45 0.56 38

36 0.73 0.29 0.41 28

78 0.66 0.50 0.57 42

80 0.61 0.41 0.49 54

81 0.77 0.52 0.62 33

83 0.69 0.55 0.61 33

89 0.34 0.84 0.48 85

90 0.71 0.19 0.29 27

113 0.63 0.90 0.74 96

129 0.55 0.90 0.69 145

134 0.74 0.62 0.67 55

190 0.84 0.79 0.82 273

191 0.81 0.82 0.82 229

197 0.90 0.80 0.84 88

319 0.70 0.88 0.78 24

369 0.88 0.83 0.85 127

400 0.89 1.00 0.94 77

470 0.93 0.61 0.74 44

476 0.76 0.88 0.81 25

563 1.00 0.95 0.98 21

606 0.84 0.53 0.65 40

643 1.00 0.33 0.50 33

690 0.68 0.85 0.76 33

789 0.87 0.80 0.83 105

accuracy 0.85 4122

macro avg 0.77 0.69 0.70 4122

weighted avg 0.88 0.85 0.86 4122
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Table C.35: ND1-BFPcombined-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 270 42 215 82 0.836576 0.232955

15 0 603 6 0 0.009852 0.000000

36 0 609 0 0 0.000000 0.000000

78 1 564 36 8 0.060000 0.888889

80 0 607 2 0 0.003284 0.000000

81 0 609 0 0 0.000000 0.000000

83 0 609 0 0 0.000000 0.000000

89 2 382 5 220 0.012920 0.990991

90 0 607 1 1 0.001645 1.000000

113 0 605 2 2 0.003295 1.000000

129 0 608 1 0 0.001642 0.000000

134 0 608 1 0 0.001642 0.000000

190 0 607 2 0 0.003284 0.000000

191 0 607 2 0 0.003284 0.000000

197 0 602 7 0 0.011494 0.000000

319 0 609 0 0 0.000000 0.000000

369 0 603 6 0 0.009852 0.000000

400 0 586 0 23 0.000000 1.000000

470 0 595 14 0 0.022989 0.000000

476 0 608 1 0 0.001642 0.000000

563 0 607 2 0 0.003284 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 595 14 0 0.022989 0.000000

690 0 602 7 0 0.011494 0.000000

789 0 597 12 0 0.019704 0.000000
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Table C.36: ND1-BFPcombined-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.56 0.77 0.65 352

15 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.03 0.11 0.04 9

80 0.00 0.00 0.00 0

81 0.00 0.00 0.00 0

83 0.00 0.00 0.00 0

89 0.29 0.01 0.02 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

563 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.45 0.45 0.45 609

macro avg 0.03 0.04 0.03 609

weighted avg 0.43 0.45 0.38 609
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Table C.37: ND1-BFPsingle-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 2229 1655 100 138 0.056980 0.058302

15 18 4074 10 20 0.002449 0.526316

36 9 4091 3 19 0.000733 0.678571

78 23 4072 8 19 0.001961 0.452381

80 35 4034 34 19 0.008358 0.351852

81 19 4085 4 14 0.000978 0.424242

83 18 4080 9 15 0.002201 0.454545

89 54 4017 20 31 0.004954 0.364706

90 5 4095 0 22 0.000000 0.814815

113 86 3980 46 10 0.011426 0.104167

129 126 3908 69 19 0.017350 0.131034

134 52 3971 96 3 0.023605 0.054545

190 230 3800 49 43 0.012731 0.157509

191 169 3876 17 60 0.004367 0.262009

197 72 4031 3 16 0.000744 0.181818

319 20 4090 8 4 0.001952 0.166667

369 105 3981 14 22 0.003504 0.173228

400 68 4041 4 9 0.000989 0.116883

470 27 4077 1 17 0.000245 0.386364

476 21 4091 6 4 0.001464 0.160000

563 21 4101 0 0 0.000000 0.000000

606 21 4078 4 19 0.000980 0.475000

643 13 4086 3 20 0.000734 0.606061

690 28 4079 10 5 0.002446 0.151515

789 83 3965 52 22 0.012945 0.209524
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Table C.38: ND1-BFPsingle-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.96 0.94 0.95 2367

15 0.64 0.47 0.55 38

36 0.75 0.32 0.45 28

78 0.74 0.55 0.63 42

80 0.51 0.65 0.57 54

81 0.83 0.58 0.68 33

83 0.67 0.55 0.60 33

89 0.73 0.64 0.68 85

90 1.00 0.19 0.31 27

113 0.65 0.90 0.75 96

129 0.65 0.87 0.74 145

134 0.35 0.95 0.51 55

190 0.82 0.84 0.83 273

191 0.91 0.74 0.81 229

197 0.96 0.82 0.88 88

319 0.71 0.83 0.77 24

369 0.88 0.83 0.85 127

400 0.94 0.88 0.91 77

470 0.96 0.61 0.75 44

476 0.78 0.84 0.81 25

563 1.00 1.00 1.00 21

606 0.84 0.53 0.65 40

643 0.81 0.39 0.53 33

690 0.74 0.85 0.79 33

789 0.61 0.79 0.69 105

accuracy 0.86 4122

macro avg 0.78 0.70 0.71 4122

weighted avg 0.88 0.86 0.86 4122
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Table C.39: ND1-BFPsingle-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 253 74 183 99 0.712062 0.281250

15 0 560 49 0 0.080460 0.000000

36 0 606 3 0 0.004926 0.000000

78 3 592 8 6 0.013333 0.666667

80 0 602 7 0 0.011494 0.000000

81 0 609 0 0 0.000000 0.000000

83 0 608 1 0 0.001642 0.000000

89 1 377 10 221 0.025840 0.995495

90 1 606 2 0 0.003289 0.000000

113 0 599 8 2 0.013180 1.000000

129 0 609 0 0 0.000000 0.000000

134 0 608 1 0 0.001642 0.000000

190 0 608 1 0 0.001642 0.000000

191 0 602 7 0 0.011494 0.000000

197 0 603 6 0 0.009852 0.000000

319 0 608 1 0 0.001642 0.000000

369 0 607 2 0 0.003284 0.000000

400 0 586 0 23 0.000000 1.000000

470 0 607 2 0 0.003284 0.000000

476 0 609 0 0 0.000000 0.000000

563 0 609 0 0 0.000000 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 605 4 0 0.006568 0.000000

690 0 609 0 0 0.000000 0.000000

789 0 553 56 0 0.091954 0.000000
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Table C.40: ND1-BFPsingle-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.58 0.72 0.64 352

15 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.27 0.33 0.30 9

80 0.00 0.00 0.00 0

81 0.00 0.00 0.00 0

83 0.00 0.00 0.00 0

89 0.09 0.00 0.01 222

90 0.33 1.00 0.50 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

563 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.42 0.42 0.42 609

macro avg 0.05 0.08 0.06 609

weighted avg 0.37 0.42 0.38 609
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Table C.41: ND2-BFPcombined-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 4843 2683 295 243 0.099060 0.047778

15 38 8004 10 12 0.001248 0.240000

36 53 7981 21 9 0.002624 0.145161

78 35 8003 6 20 0.000749 0.363636

80 71 7940 43 10 0.005386 0.123457

89 185 7764 79 36 0.010073 0.162896

90 22 8014 11 17 0.001371 0.435897

113 127 7881 22 34 0.002784 0.211180

129 201 7726 57 80 0.007324 0.284698

134 80 7929 34 21 0.004270 0.207921

190 409 7447 83 125 0.011023 0.234082

191 352 7519 105 88 0.013772 0.200000

197 116 7910 20 18 0.002522 0.134328

319 35 8019 9 1 0.001121 0.027778

369 152 7844 14 54 0.001782 0.262136

400 123 7921 17 3 0.002142 0.023810

470 41 7999 6 18 0.000750 0.305085

476 33 8024 6 1 0.000747 0.029412

606 36 7997 14 17 0.001748 0.320755

643 38 8004 2 20 0.000250 0.344828

690 46 7990 18 10 0.002248 0.178571

789 139 7856 17 52 0.002159 0.272251
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Table C.42: ND2-BFPcombined-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.94 0.95 0.95 5086

15 0.79 0.76 0.78 50

36 0.72 0.85 0.78 62

78 0.85 0.64 0.73 55

80 0.62 0.88 0.73 81

89 0.70 0.84 0.76 221

90 0.67 0.56 0.61 39

113 0.85 0.79 0.82 161

129 0.78 0.72 0.75 281

134 0.70 0.79 0.74 101

190 0.83 0.77 0.80 534

191 0.77 0.80 0.78 440

197 0.85 0.87 0.86 134

319 0.80 0.97 0.88 36

369 0.92 0.74 0.82 206

400 0.88 0.98 0.92 126

470 0.87 0.69 0.77 59

476 0.85 0.97 0.90 34

606 0.72 0.68 0.70 53

643 0.95 0.66 0.78 58

690 0.72 0.82 0.77 56

789 0.89 0.73 0.80 191

accuracy 0.89 8064

macro avg 0.80 0.79 0.79 8064

weighted avg 0.89 0.89 0.89 8064
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Table C.43: ND2-BFPcombined-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 296 47 210 56 0.817121 0.159091

15 0 607 2 0 0.003284 0.000000

36 0 606 3 0 0.004926 0.000000

78 1 597 3 8 0.005000 0.888889

80 0 602 7 0 0.011494 0.000000

89 2 382 5 220 0.012920 0.990991

90 0 608 0 1 0.000000 1.000000

113 0 604 3 2 0.004942 1.000000

129 0 606 3 0 0.004926 0.000000

134 0 565 44 0 0.072250 0.000000

190 0 606 3 0 0.004926 0.000000

191 0 607 2 0 0.003284 0.000000

197 0 609 0 0 0.000000 0.000000

319 0 608 1 0 0.001642 0.000000

369 0 603 6 0 0.009852 0.000000

400 0 574 12 23 0.020478 1.000000

470 0 603 6 0 0.009852 0.000000

476 0 609 0 0 0.000000 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 609 0 0 0.000000 0.000000

690 0 609 0 0 0.000000 0.000000

789 0 609 0 0 0.000000 0.000000
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Table C.44: ND2-BFPcombined-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.58 0.84 0.69 352

15 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.25 0.11 0.15 9

80 0.00 0.00 0.00 0

89 0.29 0.01 0.02 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.49 0.49 0.49 609

macro avg 0.05 0.04 0.04 609

weighted avg 0.45 0.49 0.41 609
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Table C.45: ND2-BFPsingle-Multiclass test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 4768 2719 259 318 0.086971 0.062525

15 36 8004 10 14 0.001248 0.280000

36 44 7986 16 18 0.002000 0.290323

78 32 8007 2 23 0.000250 0.418182

80 67 7969 14 14 0.001754 0.172840

89 182 7705 138 39 0.017595 0.176471

90 23 8018 7 16 0.000872 0.410256

113 123 7888 15 38 0.001898 0.236025

129 200 7664 119 81 0.015290 0.288256

134 68 7956 7 33 0.000879 0.326733

190 414 7380 150 120 0.019920 0.224719

191 346 7483 141 94 0.018494 0.213636

197 121 7909 21 13 0.002648 0.097015

319 35 8020 8 1 0.000997 0.027778

369 162 7833 25 44 0.003181 0.213592

400 119 7926 12 7 0.001512 0.055556

470 40 7994 11 19 0.001374 0.322034

476 28 8024 6 6 0.000747 0.176471

606 33 7991 20 20 0.002497 0.377358

643 39 7991 15 19 0.001874 0.327586

690 41 8000 8 15 0.000999 0.267857

789 126 7860 13 65 0.001651 0.340314
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Table C.46: ND2-BFPsingle-Multiclass test set’s classification report.

Precision Recall F1-score Support
Not Vuln. 0.95 0.94 0.94 5086

15 0.78 0.72 0.75 50

36 0.73 0.71 0.72 62

78 0.94 0.58 0.72 55

80 0.83 0.83 0.83 81

89 0.57 0.82 0.67 221

90 0.77 0.59 0.67 39

113 0.89 0.76 0.82 161

129 0.63 0.71 0.67 281

134 0.91 0.67 0.77 101

190 0.73 0.78 0.75 534

191 0.71 0.79 0.75 440

197 0.85 0.90 0.88 134

319 0.81 0.97 0.89 36

369 0.87 0.79 0.82 206

400 0.91 0.94 0.93 126

470 0.78 0.68 0.73 59

476 0.82 0.82 0.82 34

606 0.62 0.62 0.62 53

643 0.72 0.67 0.70 58

690 0.84 0.73 0.78 56

789 0.91 0.66 0.76 191

accuracy 0.87 8064

macro avg 0.80 0.76 0.77 8064

weighted avg 0.88 0.87 0.88 8064
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Table C.47: ND2-BFPsingle-Multiclass real-world test set’s class metrics.

Class TP TN FP FN FPR FNR
Not Vuln. 295 43 214 57 0.832685 0.161932

15 0 608 1 0 0.001642 0.000000

36 0 605 4 0 0.006568 0.000000

78 1 599 1 8 0.001667 0.888889

80 0 601 8 0 0.013136 0.000000

89 7 378 9 215 0.023256 0.968468

90 0 608 0 1 0.000000 1.000000

113 0 603 4 2 0.006590 1.000000

129 0 607 2 0 0.003284 0.000000

134 0 599 10 0 0.016420 0.000000

190 0 605 4 0 0.006568 0.000000

191 0 609 0 0 0.000000 0.000000

197 0 606 3 0 0.004926 0.000000

319 0 608 1 0 0.001642 0.000000

369 0 600 9 0 0.014778 0.000000

400 0 582 4 23 0.006826 1.000000

470 0 588 21 0 0.034483 0.000000

476 0 609 0 0 0.000000 0.000000

606 0 609 0 0 0.000000 0.000000

643 0 609 0 0 0.000000 0.000000

690 0 602 7 0 0.011494 0.000000

789 0 605 4 0 0.006568 0.000000
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Table C.48: ND2-BFPsingle-Multiclass real-world test set’s classification report.

Precision Recall F1-score Support
Not Vuln 0.58 0.84 0.69 352

15 0.00 0.00 0.00 0

36 0.00 0.00 0.00 0

78 0.50 0.11 0.18 9

80 0.00 0.00 0.00 0

89 0.44 0.03 0.06 222

90 0.00 0.00 0.00 1

113 0.00 0.00 0.00 2

129 0.00 0.00 0.00 0

134 0.00 0.00 0.00 0

190 0.00 0.00 0.00 0

191 0.00 0.00 0.00 0

197 0.00 0.00 0.00 0

319 0.00 0.00 0.00 0

369 0.00 0.00 0.00 0

400 0.00 0.00 0.00 23

470 0.00 0.00 0.00 0

476 0.00 0.00 0.00 0

606 0.00 0.00 0.00 0

643 0.00 0.00 0.00 0

690 0.00 0.00 0.00 0

789 0.00 0.00 0.00 0

micro avg 0.50 0.50 0.50 609

macro avg 0.07 0.04 0.04 609

weighted avg 0.50 0.50 0.42 609
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