
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Autonomous Control and Positioning of
a Mobile 5G Radio Access Node

Employing the O-RAN Architecture

Gonçalo Moura Tomé Fraguito Queirós

Mestrado em Engenharia Eletrotécnica e de Computadores

Orientador: Prof. Manuel Ricardo

July 28, 2023

© Gonçalo Queirós, 2023

Abstract

Over the years, mobile networks were deployed using monolithic hardware based on proprietary
solutions, where the network functions were part of a single closed unit. In 5G networks, this ap-
proach is still followed by Mobile Network Operators, due to the lack of suitable alternatives. Still,
mobile networks have become more and more complex, especially to enable 5G. This complexity
creates the need to produce, exchange and analyze high amounts of data, perform analytics, and
configure several parameters across different network components. When those components rely
on closed, proprietary solutions, this makes it difficult to deploy, configure, and optimize them.
The concept of Open Radio Access Networks (RANs), including the standards and specifications
proposed by the O-RAN Alliance, brings the possibility of creating open, interoperable networks
based on independent virtualized components connected through standardised open interfaces.
This paves the way for the deployment of RANs based on multi-vendor components, where the
acquisition of metrics and the control of the RAN components can be performed by software ap-
plications such as the O-RAN-specified xApps. Another promising 5G research area is the usage
of Mobile Robotic Platforms for the transportation of radio cells. These cells can be placed on de-
mand to provide increased coverage, being especially useful in emergency scenarios and crowded
events.

The main contribution of this dissertation is a private Standalone 5G Network with a mobile
RAN employing the O-RAN architecture. The mobile RAN consists of a 5G radio node (gNB)
carried by a Mobile Robotic Platform that is able to be autonomously positioned. The proposed
solution employs a novel Mobility Management xApp, which is able to autonomously collect
metrics from the RAN, analyze them, and use an original algorithm to determine and control
the placement of the mobile RAN in order to increase the connection quality between the User
Equipments (UEs) and the gNB. The proposed solution was experimentally validated considering
a realistic use case.

i

ii

Resumo

Ao longo dos anos, as redes móveis foram implementadas usando hardware monolítico baseado
em soluções proprietárias, nas quais todas as funções de rede faziam parte de uma única unidade
fechada. Nas redes 5G esta abordagem ainda é seguida pelos operadores de redes móveis, devido
à falta de alternativas adequadas. No entanto, as redes móveis tornaram-se cada vez mais com-
plexas, especialmente no que toca a novas tecnologias como o caso do 5G. Esta complexidade
cria a necessidade de produzir, trocar e analisar grandes quantidades de dados, realizar análises,
e configurar vários parâmetros em diferentes componentes da rede. Quando esses componentes
dependem de soluções fechadas e proprietárias, isso dificulta a sua implementação, configuração
e otimização. O conceito de redes de acess rádio (RANs) abertas, incluindo as normas e especi-
ficações propostas pela O-RAN Alliance, oferece a possibilidade de criar abertas e interoperáveis
com base em componentes virtualizados, independentes e ligados através de interfaces abertas e
normalizadas. Isto abre caminho à implementação de RANs baseadas em componentes de vários
fornecedores, nas quais a aquisição de métricas e o controlo dos seus componentes podem ser
realizados por aplicações de software, como as xApps especificadas pela O-RAN Alliance. Outra
área de investigação promissora no domínio 5G consiste na utilização de plataformas robóticas
móveis para o transporte de células rádio. Estas células podem ser posicionadas a pedido, por
forma a proporcionar uma maior cobertura, sendo especialmente úteis em cenários de emergência
e eventos lotados.

A principal contribuição desta dissertação é uma rede 5G Standalone privada com uma RAN
formada por um nó móvel que usa a arquitetura O-RAN. A RAN móvel consiste num nó rádio 5G
(gNB) transportado por uma plataforma robótica móvel capaz de se posicionar autonomamente. A
solução proposta usa uma nova xApp de Gestão de Mobilidade, capaz de adquirir autonomamente
métricas da RAN, analisá-las e utilizar um algoritmo original para determinar e controlar o posi-
cionamento da RAN móvel, por forma a melhorar a qualidade da ligação entre os terminais (UEs)
e o gNB. A solução proposta foi validada experimentalmente tendo em consideração um caso de
uso realista.

iii

iv

Acknowledgments

I would like to thank my supervisors, Professor Manuel Ricardo and Dr. André Coelho, and
also Eng. Paulo Furtado Correia for their support and concern during the development of this
dissertation, and their guidance and assistance in the writing of this document.

I would also like to thank all the collaborators from the Center for Telecommunications and
Multimedia (CTM) of INESC TEC for welcoming me and providing the necessary equipment and
space for this dissertation’s development. Their contributions have been crucial to its success.

Lastly, I must thank my friends and family, for their encouragement, and for providing mo-
ments of joy and relaxation throughout the process of developing this dissertation.

This work is co-financed by Component 5 - Capitalization and Business Innovation, integrated
in the Resilience Dimension of the Recovery and Resilience Plan within the scope of the Recovery
and Resilience Mechanism (MRR) of the European Union (EU), framed in the Next Generation
EU, for the period 2021 - 2026, within project Produtech_R3, with reference 60.

Gonçalo Queirós

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Problem . 1
1.3 Objectives . 2
1.4 Contributions . 3
1.5 Document Structure . 3

2 State of the Art 5
2.1 5G Characterization . 5
2.2 5G System Architecture . 8
2.3 RAN Deployment Approaches . 13
2.4 O-RAN . 15
2.5 Related Work . 20

3 System Specification, Design, and Implementation 23
3.1 System Specification . 23
3.2 Proposed Mobility Management xApp . 25
3.3 System Design . 27

3.3.1 Software Packages . 28
3.3.2 Hardware . 30

3.4 System Implementation . 34
3.4.1 OAI 5G Core Network . 35
3.4.2 OAI gNB . 39
3.4.3 OAI 5G UE . 41
3.4.4 FlexRIC . 43

3.5 Summary . 44

4 System Validation 45
4.1 Metodology . 45
4.2 Performance Assessment of Wi-Fi based Backhaul Link 45
4.3 Core Network . 47
4.4 FlexRIC . 49
4.5 gNB . 49
4.6 UE . 52
4.7 Mobility Management xApp . 54
4.8 Use Case Validation . 56
4.9 Discussion . 59

vii

viii CONTENTS

5 Conclusion 61
5.1 Conclusions . 61
5.2 Known Limitations and Future Work . 63

A Functional Testing 65
A.1 Not Deploying the gNB on the Intel NUC . 65
A.2 Not Splitting the gNB into CU and DU . 67

References 69

List of Figures

2.1 Enhancement of key capabilities from IMT-Advanced (in light green) to IMT-2020
(in dark green) [1]. 6

2.2 The importance of key capabilities in different scenarios [1]. 7
2.3 Use case scenarios associated with the three main types of network slices [1]. . . 7
2.4 5G reference architecture, adapted from [2]. 8
2.5 5G NR User Plane Protocol Stack [3]. 9
2.6 5G NR Control Plane Protocol Stack [3]. 10
2.7 N2 Protocol Stack [4]. 11
2.8 N3 Protocol Stack [4]. 12
2.9 N4 Protocol Stack, between a Control Plane function (e.g., SMF) and a User Plane

Function (e.g., UPF) [5]. 12
2.10 Traditional RAN approach [6]. 13
2.11 C-RAN deployment approach [7]. 14
2.12 gNB disaggregation into gNB-CU and gNB-DU [8]. 14
2.13 Separation of gNB-CU into gNB-CU-CP and gNB-CU-UP [8]. 15
2.14 Logical Architecture of O-RAN [9]. 16
2.15 Physical layer functions separation between O-DU and O-RU, considering split

option 7.2x [10]. 18
2.16 A1 protocol stack [11]. 19
2.17 E2 protocol stack [12]. 19
2.18 C-Plane and U-Plane protocol stack [13]. 20
2.19 S-Plane stack [13]. 20

3.1 System architecture of the proposed solution. 23
3.2 Proposed MCI protocol stack. 25
3.3 Architecture of the system designed to implement and evaluate the proposed solution. 28
3.4 E42 interface logical operation, adapted from [14]. 29
3.5 Intel NUC Board NUC5i5MYBE. 30
3.6 HP EliteDesk 800 G2E SFF. 31
3.7 MSI GE 75 Raider Laptop. 32
3.8 USRP B210 with the respective USB 3.0 interface. 33
3.9 USRP B210 SDR devices with the respective W5084K antennas. 33
3.10 Unitree’s GO 1 robot [15]. 34
3.11 Linux IP forwarding and Iptables configurations. 35
3.12 Defined MNC, MCC, and TAC values for AMF container in the docker-compose.yaml

file. 36
3.13 UE IP pool and configuration UPF the perform NAT in the docker-compose.yaml

file. 37

ix

x LIST OF FIGURES

3.14 Interfaces created in Host OS to interact with Docker Networks. 37
3.15 Deployed 5G Core Network Diagram. 38
3.16 Registering UE in Core Network, by adding IMSI, associated Key, and OPc, high-

lighted in red, respectively, to the MySQL Database. 39
3.17 Adding route to Core Network in the gNB Host computer, via the Core Network

Host computer. 39
3.18 Defined MNC, MCC, and TAC values for the gNB in the configurations file. . . . 40
3.19 NGAP setup failure between gNB and AMF, due to non-matching TAC value. . . 40
3.20 Defined AMF IP address and gNB IP address and interface. 41
3.21 UHD discovering the connected USRP B210 board and loading respective firmware. 41
3.22 Necessary changes to allow the UE container to access the USRP B210 SDR board. 42
3.23 Defining the proper UE SIM details values for the IMSI, associated key, and OPc. 43
3.24 Core Network rejecting the UE registration request due to non-matching UE SIM

details. 43

4.1 Architecture of the deployed scenario, in order to test maximum throughput in the
5G link. 46

4.2 SDRs connected using coaxial cables. 46
4.3 Deploying the OAI 5G Core Network, using Docker containers. 47
4.4 Status of the Core Network Docker containers. 48
4.5 Pinging NRF, MySQL Database, AMF, SMF and UPF respectively from Host OS

interface (output truncated). 48
4.6 5G Core Network packet exchange, including PFCP Heartbeat messages exchanged

between the SMF and the UPF. 49
4.7 Initializing the FlexRIC executable (output truncated). 49
4.8 Pinging AMF and UPF, respectively, from gNB Host (output truncated). 50
4.9 Deploying OAI 5G gNB. 50
4.10 USRP B210 SDR transmitting and receiving radio signals, as indicated by the

green and red LEDs, on the top right hand-side. 51
4.11 gNB successfully registered with the AMF via the N2 interface. 51
4.12 gNB’s E2 node registering itself with the FlexRIC (output truncated). 52
4.13 Successfull E2 Setup Request and Response between the gNB’s E2 node and the

FlexRIC. 52
4.14 Successfull UE registration in the Core Network with AMF. 53
4.15 IP TUN interface for the OAI UE created on Host computer (output truncated). . 53
4.16 Ping to external DN from UE (output truncated). 53
4.17 ICMP packet, sent from UE to external DN, encapsulated by the GTP protocol. . 54
4.18 FlexRIC receiving Subscription Request from the xApp (output truncated). . . . 55
4.19 E2 Subscription Request and following E2 Indication messages. 55
4.20 Core Network, FlexRIC, UE, and SDR board deployed in the use case testing

scenario. 56
4.21 The USRP B210 SDR board on top of the Mobile Robotic Platform. 57
4.22 Outdoor test scenario. 57
4.23 Diagram depicting the placement of the Mobile RAN, UE, and obstacle, in order

to test the proposed solution. 58
4.24 Diagram depicting the placement of the Mobile RAN and the UE, in order to test

the implemented solution. 58

LIST OF FIGURES xi

A.1 gNB running in OAI NUC, which is unable to read samples from the SDR fast
enough. 66

A.2 UE being deregistered from the Core Network, due to the Intel NUC performance
limitations. 66

A.3 Deployment approach in which the gNB is split into CU and DU. 67
A.4 DU software crashing after UE initiated RACH Procedure. 68

xii LIST OF FIGURES

List of Tables

3.1 Defenition of the variables used in algorithm Algorithm 1. 26
3.2 Deployed 5G Core Network Functions IP addresses. 38
3.3 Deployed Data Network Component IP addresses. 38

4.1 iPerf results between UE and Data Network using a coaxial connection. 47
4.2 iPerf results for the Wi-Fi based backhaul link established between the Intel NUC

and the HP EliteDesk. 47
4.3 iPerf results between UE and DN in the proposed testbed. 54
4.4 Test results for E2 indication messages, exchanged with a periodicity of 10 ms. . 56

xiii

xiv LIST OF TABLES

Abbreviations

3GPP 3rd Generation Partnership Project
AMF Access and Mobility Management Function
AN Access Network
API Application Programming Interface
ARQ Automatic Repeat reQuest
BBU Base Band Unit
COTS Commercial Off-the-shelf
CP Cyclic Prefix
CPU Central Processing Unit
C-RAN Cloud-RAN
DL Downlink
DN Data Network
eCPRI Enhanced Common Public Radio Interface
eMBB Enhanced Mobile Broadband
eNB eNodeB
ETSI European Telecommunications Standards Institute
gNB gNodeB
gNB-CU gNB Central Unit
gNB-CU-CP gNB Central Unit-Control Plane
gNB-CU-UP gNB Central Unit-User Plane
gNB-DU gNB Distributed Unit
GPRS General Packet Radio Service
GTP-U GPRS Tunnelling Protocol for user data
HARQ Hybrid ARQ
HTTP Hypertext Transfer Protocol
I/Q In-phase and Quadrature
IAB Integrated Access and Backhaul
ICMP Internet Control Message Protocol
iFFT Inverse Fast Fourier Transform
IMSI International Mobile Subscriber Identifier
IMT-2020 International Mobile Telecommunications-2020
IMT-Advanced International Mobile Telecommunications-Advanced
IP Internet Protocol
ITU International Telecommunication Union
ITU-R ITU Radiocommunication Sector
ITU-T ITU Telecommunication Standardization Sector

xv

xvi Abbreviations

KPM Key Performance Metrics
LED Light-Emitting Diode
MAC Medium Access Control
MCC Mobile Country Code
MCI Mobility Control Interface
ML Machine Learning
mMTC Massive Machine Type Communications
MNC Mobile Network Code
NAS Non-Access-Stratum
NAT Network Address Translation
Near-RT RIC Near-Real Time RAN Intelligent Controller
NETCONF Network Configuration Protocol
NFV Network Functions Virtualization
NGAP NG Application Protocol
Non-RT RIC Non-Real Time RAN Intelligent Controller
NR New Radio
NR-Uu 5G Radio Interface
NRF Network Repository Function
NUC Next Unit of Computing
OAI Open Air Interface
O-CU-CP O-RAN Central Unit–Control Plane
O-CU-UP O-RAN Central Unit–User Plane
O-DU O-RAN Distributed Unit
O-RU O-RAN Radio Unit
OPc Operator Code
OS Operating System
OSC O-RAN Software Community
OSI Open Systems Interconnection
PDCP Packet Data Convergence Protocol
PDU Protocol Data Unit
PFCP Packet Forwarding Control Protocol
PHY Physical Layer
PLMN Public Land Mobile Network
PTP Precision Time Protocol
QoE Quality of Experience
QoS Quality of Service
RACH Random Access Channel
RAM Random-Access Memory
RAN Radio Access Network
RF Radio Frequency
RLC Radio Link Control
RoE Radio over Ethernet
RRC Radio Resource Control
RRU Remote Radio Unit
SA Standalone
SCTP Stream Control Transmission Protocol
SDAP Service Data Application Protocol
SDK Software Development Kit
SDN Software Defined Networking
SDR Software-Defined Radio

Abbreviations xvii

SDU Service Data Unit
SFF Small Form Factor
SIM Subscriber Identity Module
SMF Session Management Function
SMO Service Management and Orchestration
SNR Signal-to-Noise Ratio
SSH Secure Shell Protocol
SyncE Synchronous Ethernet
TAC Tracking Area Code
TLS Transport Layer Security
UDP User Datagram Protocol
UE User Equipment
UHD USRP Hardware Driver
UL Uplink
UPF User Plane Function
URLLC Ultra-Reliable and Low Latency Communications
USB Universal Serial Bus
USRP Universal Software Radio Peripheral
VM Virtual Machine
VRAN Virtual RAN

Chapter 1

Introduction

1.1 Context

Mobile networks are constantly evolving in order to improve wireless communications and meet

the ever-increasing Quality of Service (QoS) requirements of users, including increased through-

put, lower latency, and higher availability. Throughout the multiple generations of mobile net-

works, new technologies have been introduced in order to meet those requirements, but the net-

works have become increasingly complex. Such complexity creates the need to properly con-

figure, manage, and optimize the networks, which implies the exchange of data, analytics, and

control messages between different components of the network.

The need to exchange and analyze high amounts of data and configure parameters across

the network motivates the interfaces between the different network components to be open and

available for configuration. However, following the paradigm of previous generations of mobile

networks, the recently released commercial implementations employing the fifth-generation (5G)

New Radio (NR) technology mainly rely on proprietary hardware solutions, especially at the radio

access network (RAN) level.

When it comes to 5G network implementations, a paradigm that has arisen over the last few

years is the concept of on-demand wireless connectivity. This can be achieved by means of in-

tegrating mobile robotic platforms acting as mobile access points in the network, able to be dy-

namically positioned on-demand, in order to provide better coverage and increase network perfor-

mance.

1.2 Motivation and Problem

Solutions implementing the RAN are typically all-in-one units, in which all the layers of the pro-

tocol stack are seen as black boxes by network operators. This leads to a plethora of challenges,

including: 1) vendor lock-in limitations, as solutions from a given vendor may be not compatible

with solutions from other vendors; 2) restricted configuration options, which difficult fine-tuning

several parameters within the devices; 3) limited inter-node coordination, which prevents joint

1

2 Introduction

control of the RAN components; and 4) increased unit price, since the network equipment mar-

ket is relatively small compared with, for example, industry-grade server market. This makes the

number of units sold also small, and leads to expensive solutions in order to cover their develop-

ment costs. This reality brings multiple challenges when it comes to deploying a 5G network that

needs to be configured in order to meet specific requirements associated with different use cases.

In order to address these limitations, in 2018, the O-RAN Alliance was founded [16]. O-RAN

Alliance is a community that joins mobile operators, vendors, and academic and research institu-

tions with the main goal of leading the industry towards open, interoperable, and virtualized RAN

components, by specifying a set of Application Programming Interfaces (APIs), interfaces, and

standards. O-RAN paves the way for mobile network operators to deploy networks tailored to the

performance requirements of specific use cases, while minimizing the dependence on proprietary

hardware and enabling the implementation of networks whose components can be acquired from

different vendors.

From the network performance point of view, mobile networks should meet the users’ require-

ments, typically defined by means of target QoS levels. Achieving this in some scenarios may

be challenging to fixed RANs, including in crowded events, where the obstruction to the line of

sight between the user equipment (UE) and the radio cells’ antennas can cause significant degra-

dation of the QoS offered, due to network congestion and wireless connectivity failures. Placing

a radio cell (gNodeB) on a mobile robotic platform, which can be repositioned on demand, paves

the way to provide enhanced wireless channel conditions and improved QoS to the UE. However,

such implementation design comes with some problems, namely: 1) how can we assess the net-

work conditions and determine the best placement of the mobile gNodeB; and 2) how can we

incorporate this design paradigm into the existing network architectures.

1.3 Objectives

The main goal of this dissertation was to design, develop, and evaluate a private 5G Standalone

(SA) RAN, based on the O-RAN architecture, composed of a RAN node deployed on a mobile

robotic platform. In order to achieve this, the following specific objectives were defined:

• Specify and design a private 5G SA RAN, based on the O-RAN architecture, consisting of

a mobile RAN node.

• Develop an algorithm, implemented as a Mobility Management xApp, which is able to

retrieve metrics from the RAN and use them to determine better placements for the mobile

RAN node.

• Implement a testbed of the 5G O-RAN based network designed, including the mobile RAN

node and the Mobility Management xApp.

• Test and validate the designed network and collect performance results.

1.4 Contributions 3

1.4 Contributions

The main contributions of this dissertation are three-fold:

• A private 5G SA mobile RAN, based on the O-RAN architecture, controlled by a mobility

management function able to monitor the network and dynamically position the mobile

RAN node for increased performance.

• A Mobility Management xApp capable of autonomous control and placement of the mobile

RAN, in order to increase the 5G connection quality.

• An O-RAN based testbed for research on emerging networks, which can be used to test state

of the art mobility management functions in multiple scenarios.

1.5 Document Structure

This document is structured as follows. In Chapter 2, we present the state of the art and related

work, including the fundamental concepts related to the problem of this dissertation. In Chapter 3,

we introduce the proposed solution, detailing the system specification, design choices, and how it

was implemented. In Chapter 4, we present the tests that were conducted in order to validate and

evaluate the proposed solution and its implementation; finally. In Chapter 5, we draw the main

conclusions and present future work.

4 Introduction

Chapter 2

State of the Art

In this chapter, we present fundamental concepts and existing solutions related to the problem of

this dissertation. In Section 2.1, we present an introduction to 5G, addressing its performance

targets and new technologies introduced while comparing it to previous generations of mobile net-

works. In Section 2.2, the main components and interfaces of the 5G Architecture are presented

and explained. In Section 2.3, we explore different RAN deployment approaches, including O-

RAN, making comparisons between them. In Section 2.4, the O-RAN architecture and specifica-

tions are presented. Finally, in Section 2.5, different solutions for implementing O-RAN compliant

5G network deployments are described.

2.1 5G Characterization

Generation after generation, the network requirements and the capabilities to meet such require-

ments have been growing. When it comes to the fifth-generation (5G) mobile networks, significant

enhancements compared to the fourth-generation (4G) networks have been defined and quantified.

In 2015, the International Telecommunication Union (ITU) Radiocommunication Sector (ITU-

R) published the Recommendation ITU-R M.2083-0 [1], where the initial targets for research

and investigation into the 5th generation mobile communications are set. Those targets include

key capabilities that should be achieved by the 5G technology, such as latency, user-experienced

data rate and connection density. Figure 2.1 depicts the enhancements from International Mobile

Telecommunications-Advanced (IMT-Advanced) (4G requirements) to IMT-2020 (5G require-

ments).

Besides the enhancements of these capabilities over 4G, 5G have introduced the concept of

network slicing. In previous generation networks, like 4G, an “one-size-fits-all” design is followed

when it comes to the network resources and capabilities offered for each User Equipment (UE).

However, if every UE is provided with all the capabilities of the network, such as those shown

in Figure 2.1 for 5G, this may imply wasting network resources, because there are use cases

that do not take advantage of all these capabilities simultaneously. Network slicing consists in

partitioning a single physical shared network infrastructure into multiple virtual networks, named

5

6 State of the Art

Figure 2.1: Enhancement of key capabilities from IMT-Advanced (in light green) to IMT-2020 (in
dark green) [1].

network slices. Each virtual network is designed and optimized for a specific type of application

or communications service [17]. This is achieved by means of virtualization approaches which

allow us to dynamically allocate and schedule the resources of the physical network to be used

by different virtual networks. An analogy of the network slicing concept is to instantiate multiple

Virtual Machines (VMs) (i.e., the network slices) in a single host Operating System (OS) (i.e.,

the 5G network) running on a single computer (i.e., the physical shared network infrastructure).

Network slices are self-contained networks logically separated from each other, with their own

traffic flows, traffic rules and network topologies. From the end-user perspective, each network

slice virtually uses a dedicated network; in practice, multiple network slices transparently share

the same physical hardware.

In 5G, there are three main classes of use case scenarios: Enhanced Mobile Broadband (eMBB),

Ultra-Reliable and Low Latency Communications (URLLC), and Massive Machine Type Com-

munications (mMTC). They are typically met by different network slices, where each use case

takes advantage of different key capabilities that allow them to fulfil their needs when it comes

to network performance. The importance of each key capability for these three use case scenar-

ios, highlighted by different colours, is depicted in Figure 2.2. The three overall use cases are

described as follows:

• eMBB: It represents an evolution of the traditional mobile-broadband services available in

previous generation networks such as 4G. eMBB is focused on enabling larger data transfer

capabilities and enhanced user Quality of Experience (QoE). It also aims at providing a

seamless experience when it comes to wireless coverage, including in dynamic scenarios,

by ensuring not only high peak but also constant data rates in the covered areas, while

taking into account the requirements imposed by high-speed transportation (e.g., high-speed

trains).

2.1 5G Characterization 7

Figure 2.2: The importance of key capabilities in different scenarios [1].

• URLLC: This category is focused on communication services and applications that are time

critical and need ultra-reliable network connectivity, demanding strict requirements when it

comes to latency and network availability. Reference examples include traffic safety, auto-

matic control, remote medical surgery, autonomous driving, wireless control of industrial

manufacturing, and production services.

• mMTC: This use case is characterized by communication services and applications for

a massive number of connected devices transmitting low amounts of non-delay sensitive

data. These devices are typically characterized by their low cost and the need to be energy

efficient, such as remote sensors and actuators massively deployed per unit of area in smart

city environments.

Even though these are the three main categories of use cases envisioned by 5G, they should

be seen as high-level guidelines for network design purposes; there are some scenarios and ap-

plications whose network requirements may not fit exactly into one of these three categories. For

example, some applications may require high network reliability and availability, but may not re-

quire low-latency communication. Figure 2.3 depicts specific use case scenarios and where they

fit in the three main categories of 5G use cases.

Figure 2.3: Use case scenarios associated with the three main types of network slices [1].

8 State of the Art

2.2 5G System Architecture

The responsibility of specifying the technologies that allow meeting the requirements that were

explored in Section 2.1 belongs to the 3rd Generation Partnership Project (3GPP). 3GPP joins

several telecommunications standard development organizations, whose main goal is to develop

and provide mobile broadband standards and technical specifications [18].

Regarding 5G, 3GPP has standardised the 5G New Radio (NR) architecture, by developing

and providing technical specifications for both the 5G Radio Acess Network (RAN) and the 5G

Core Network (CN).

When it comes to the 5G NR architecture, it follows the principles of Software Defined Net-

working (SDN). SDN is a network architecture where the network functions are divided into two

planes: the control plane and the data/forwarding plane [19]. This architecture allows for indepen-

dent scalability and flexible deployments. A high-level reference architecture of 5G is depicted in

Figure 2.4.

Control Plane

User Plane

Figure 2.4: 5G reference architecture, adapted from [2].

In the case of the 5G Architecture, the main components of the data plane, also known as

the user plane, the UE, the RAN, and the User Plane Function (UPF). They are connected to the

Access and Mobility Management Function (AMF) and the Session Management Function (SMF),

which belong to the control plane and are part of the Core Network in the context of 5G. The data

plane is responsible for forwarding data packets to/from the UE.

The RAN is implemented by means of a base station, also called gNodeB (gNB) in the context

of 5G. It ensures wireless connectivity between the UE and the 5G network and is responsible for

network functions involving radio-related communications. Besides allowing radio transmissions

of user data packets, it is also connected to the CN, creating a control link between the UE to the

5G CN.

2.2 5G System Architecture 9

The UPF acts as the default gateway for user data packets forwarded to/from the UE, connect-

ing the network to the Data Network (DN), for example, the Internet. It also acts as an anchor

point for data flows during Intra-/Inter-RAT mobility, while ensuring the data flows are properly

forwarded when the UE connects to a different RAN in the same network. Moreover, the UPF

defines rules, handles and monitors the QoS levels offered by the user plane, and reports traffic

usage.

The control plane is responsible for handling the signalling and control packets and providing

services to mobile subscribers. Even though Figure 2.4 depicts the multiple network functions

associated with the control plane, herein we give special emphasis to AMF and SMF, as they are

in charge of connecting the RAN to the Core Network.

The AMF’s main roles are to establish and manage the 5G control connection between the

CN and the UEs. When a UE first connects to the network, the AMF is in charge of verifying

if the UE is registered in the network and is allowed to use the network’s services. The AMF

also acts as the gateway for the control traffic exchanged between the Acess Network (AN) and

the UE, while forwarding control and signalling messages to/from the remaining 5G core network

functions, such as the SMF. Besides this, mobility events, such as handovers between gNBs, are

managed by the AMF.

The SMF is in charge of managing the data sessions between the UPF and the AN, being

responsible for establishing, modifying, and releasing those sessions. It is also responsible for the

allocation and management of IP addresses for the UE; the IP addresses can be received from the

UPF or an external DN authorized by the SMF. The SMF is also responsible for other IP-related

functions such as implementing Dynamic Host Configuration Protocol (DHCP).

The 5G NR radio protocol stack is used to exchange packets or Protocol Data Units (PDUs)

between the UE and the RAN, via the radio interface between the two, denominated NR-Uu inter-

face in the context of 5G. This protocol stack is similar to the 4G protocol stack when it comes to

the sublayers and protocols used [20]. It has two different configurations: one for exchanging user

plane PDUs and another for exchanging control plane PDUs. The sublayers of the 5G NR protocol

stack for the user plane are depicted in Figure 2.5. The different sublayers and their functions for

the user plane protocol stack are the following:

Figure 2.5: 5G NR User Plane Protocol Stack [3].

10 State of the Art

• Service Data Application Protocol (SDAP): This sublayer functions include mapping the

QoS flow to the respective radio bearer and marking packets with a QoS flow ID (QFI).

Every individual PDU session has a single SDAP protocol entity configured and assigned to

it.

• Packet Data Convergence Protocol (PDCP): PDCP’s main functions are header compres-

sion and decompression, ciphering, and integrity verification. It also allows performing

duplicate discarding, and both out-of-order delivery and reordering, ensuring in-order de-

livery.

• Radio Link Control (RLC): RLC enables segmentation of PDCP PDUs, detection of du-

plicates, and error correction and retransmission using Automatic Repeat reQuest (ARQ).

• Medium Access Control (MAC): This sublayer performs mapping between logical chan-

nels and transport channels, multiplexing of MAC Service Data Units (SDUs) between

logical channels and transport blocks delivered to the physical layer, error correction and

retransmission using Hybrid ARQ (HARQ) retransmissions, and priority handling between

UEs and logical channels of the same UE, using scheduling and logical channel prioritisa-

tion, respectively.

• Physical Layer (PHY): This is the lowest layer on the 5G NR protocol stack and it performs

coding, rate matching, scrambling, modulation, layer mapping, and multi-antenna mapping.

Regarding the 5G NR control plane protocol stack, one of the main differences when compared

with the 5G NR user plane protocol stack, is the replacement of the SDAP protocol by the Radio

Resource Control (RRC) protocol, as depicted in Figure 2.6.

Figure 2.6: 5G NR Control Plane Protocol Stack [3].

RRC’s main functions include the broadcast of system information, key management and se-

curity, mobility management, such as handovers, QoS control, and UE measurement reporting.

As depicted in Figure 2.6, the 5G NR control plane protocol stack also introduces the Non-

Access-Stratum (NAS). This layer creates the N1 interface, which ensures connectivity between

2.2 5G System Architecture 11

the UE and the AMF of the 5G CN (cf. Figure 2.4). NAS is responsible for managing and transmit-

ting signalling and control messages between the UEs and the AMF, supporting mobility functions,

authentication and, identification. It is also responsible for handling and transmitting messages re-

lated to the establishment and management of data connectivity to external networks[21]. The N1

interface acts as a logical interface for the signalling messages exchanged between the UE and the

AMF. The wireless connection between the UE and the RAN is ensured by the 5G NR protocol

stack.

The connection between the RAN and AMF is ensured via the N2 interface (cf. Figure 2.4).

The N2 interface, also known as the NG-c interface, uses the NG Application Protocol (NGAP),

in order to support both (1) non UE-related services, associated to the N2 interface connection

between the AMF and the RAN, and (2) UE-related services, for handling and forwarding sig-

nalling messages related with mobility, authentication, and identification, from the N1 interface

and the NAS layer [22]. The delivery of the NGAP messages is ensured by the Stream Control

Transmission Protocol (SCTP), which utilises multihoming and establishes redundant connec-

tions, increasing reliability. The protocol stack according to the Open Systems Interconnection

(OSI) model for the N2 interface is depicted in Figure 2.7.

Figure 2.7: N2 Protocol Stack [4].

For the UE to communicate with the UPF and reach the DN, the UPF is in charge of forwarding

data packets to/from the RAN using the N3 interface, also known as the NG-u interface. This

interface provides non-guaranteed delivery of PDU Session user plane data between the RAN

and the UPF. N3 implements the General Packet Radio Service (GPRS) Tunnelling Protocol for

user data (GTP-U), which creates GTP-U Tunnels between the RAN and UPF, each carrying

encapsulated PDUs belonging to a given data flow [23]. This allows packets to be multiplexed and

de-multiplexed according to the data flow they belong to. The protocol stack for the N3 interface

is depicted in Figure 2.8.

12 State of the Art

Figure 2.8: N3 Protocol Stack [4].

The N4 interface handles communication between the SMF and UPF. This means that this

interface is responsible for interconnecting a core function that belongs to the Control Plane, in

this case, the SMF, with a core function that belongs to the User Plane, in this case, the UPF, as

depicted in Figure 2.9. As is the case with the N3 interface, the N4 interface also relies on UDP, but

the application protocol that handles signalling and control procedures is the Packet Forwarding

Control Protocol (PFCP). PFCP is used to establish a connection between SMF and UPF, to ensure

the initial configuration of the UPF with rules, such as bandwidth limitations for different UEs or

for different traffic flows, to send reports to the SMF for new traffic flows and to send heartbeat

requests and responses in order to find if the peer PFCP entity is alive[5].

Figure 2.9: N4 Protocol Stack, between a Control Plane function (e.g., SMF) and a User Plane
Function (e.g., UPF) [5].

2.3 RAN Deployment Approaches 13

2.3 RAN Deployment Approaches

Network equipment providers typically do not ensure interoperability between their equipment

and other providers’ equipment when designing RAN implementations relying on closed systems.

Because of that, network operators need to acquire RAN solutions from a single provider. When

it comes to implementing the RAN at a base station, it is usually divided into the Base Band

Unit (BBU), which manages the base station and ensures connectivity with the Core network,

and the Remote Radio Unit (RRU), which is connected to the base station’s antenna. When these

components are closed systems, they use closed interfaces, which may employ proprietary im-

plementations defined by the network equipment provider. This approach is depicted in Figure

2.10.

Figure 2.10: Traditional RAN approach [6].

Cloud-RAN (C-RAN) is a different type of approach for deploying the RAN. Instead of using

a BBU at every base station, C-RAN centralizes most of the baseband processing for the RAN in

cloud data centers, which connect to the RRU in the base stations using Fronthaul interfaces. In

these cloud centers, the BBUs are implemented as virtualized nodes aggregated in a pool running

on a single machine. This allows for capacity load balancing and enhanced signal processing

capabilities. Still, this approach does not solve the vendor lock-in problem when the systems and

interfaces rely on proprietary implementations.

14 State of the Art

Figure 2.11: C-RAN deployment approach [7].

Another approach for deploying the RAN functions is Virtual RAN (VRAN). In C-RAN, even

though the BBUs are virtualized, they run on top of proprietary hardware. VRAN’s approach

consists in replacing the proprietary hardware with Commercial Off-the-shelf (COTS) hardware,

on top of which the BBU nodes can be deployed. VRAN partially solves the vendor lock-in

limitations, because it allows running any vendor’s virtualized network functions on any vendor’s

COTS hardware. However, the interfaces between the RRU and the virtualized BBUs are typically

closed; as such, the virtualized software for the BBU and the RRU may not guarantee interoper-

ability between solutions from different vendors.

To address this, an alternative deployment option was standardized by 3GPP. It consists in

disaggregating the gNB, into a gNB Central Unit (gNB-CU) which is connected to one or more

gNB Distributed Units (gNB-DUs) by the F1 interface, as depicted in Figure 2.12.

Figure 2.12: gNB disaggregation into gNB-CU and gNB-DU [8].

The gNB-CU can be further split in order to separate the Control Plane functions and the User

Plane functions between two separate components, the gNB-CU-Control Plane (gNB-CU-CP) and

the gNB-CU-User Plane (gNB-CU-UP), which are connected by the E1 interface, as depicted in

Figure 2.13.

2.4 O-RAN 15

Figure 2.13: Separation of gNB-CU into gNB-CU-CP and gNB-CU-UP [8].

The E1 and F1 (F1-c and F1-u, in case of gNB-CU separation) interfaces are open, allowing

connection between gNB-CUs and gNB-DUs from different vendors. This approach helps to

mitigate the vendor lock-in problem.

The Open Radio Access Network (O-RAN) approach is the most recent paradigm paving the

way for RAN open deployments. As VRAN, O-RAN relies on virtual network functions running

in COTS hardware. O-RAN also builds upon the 3GPP disaggregation of the gNB, while specify-

ing further RAN disaggregation and standardizing new open interfaces. Following this approach,

it is possible to deploy a RAN composed of different vendors’ network functions interacting be-

tween themselves using standardized open interfaces. The O-RAN architecture is the main focus

of this dissertation. We give special emphasis to O-RAN in the following section.

2.4 O-RAN

Traditional 5G RANs typically consist in closed monolithic units implementing all network func-

tions, including all the layers of the 5G NR protocol stack and all network interfaces. This may

lead to multiple challenges, such as vendor lock-in limitations, restricted configuration options,

increased unit price, and limited inter-node coordination. In order to change this approach, the

O-RAN Alliance was founded. O-RAN focuses on reshaping the Radio Access Networks to be

more intelligent, open, virtualized, and fully interoperable [24]. To implement the concept of an

open RAN, one of O-RAN Alliance’s main goals is to promote V-RAN components, consider-

ing the European Telecommunications Standards Institute (ETSI) concept for Network Functions

Virtualization (NFV) [25]. According to the NFV concept, instead of using tailored proprietary

hardware solutions to implement a RAN communications node, COTS hardware is used, on top of

which the network functions are implemented by means of software [26]. Such network functions

can be provided in the form of a virtual environment running on the Host Operating System, in the

form of Virtual Machines or Containers. This allows for minimizing dependence on proprietary

hardware.

By relying on independent RAN components and standardised interfaces between them, while

benefiting from the synergy between hardware and virtualized network functions, O-RAN based

16 State of the Art

networks may be deployed by running any vendor’s software on any vendor’s hardware, as well as

employing a combination of solutions from different vendors. This allows for the deployment of

RANs tailored to specific use cases and enables new players to make part of the mobile networks

market, since software solutions running on top of COTS servers represent an easier and cheaper

approach to develop new carrier-grade products.

Regarding the O-RAN architecture and standards, the O-RAN Alliance builds upon the 3GPP

disaggregation of the gNB presented in Section 2.3. Figure 2.14 depicts the logical architecture

of O-RAN, including its components and interfaces; part of them were standardised by 3GPP

and others were standardised by the O-RAN Alliance. The most important components and their

functions include:

Figure 2.14: Logical Architecture of O-RAN [9].

• O-RAN Central Unit–Control Plane (O-CU-CP): This component implements the 3GPP

gNB-CU-CP. It connects the RAN to the AMF through the N2/NG-c interface and imple-

ments the higher layers of the 5G NR protocol stack for the control plane, namely the RRC

and PDCP layers.

• O-RAN Central Unit–User Plane (O-CU-UP): This component implements the 3GPP

gNB-CU-UP. It connects the RAN to the UPF through the N3/NG-u interface and imple-

ments the higher layers of the 5G NR protocol stack for the user plane, namely the SDAP

and PDCP layers.

• O-RAN Distributed Unit (O-DU): This component implements the 3GPP gNB-DU. It is

responsible for hosting the RLC and MAC layers of the 5G NR protocol stack. When

2.4 O-RAN 17

compared to its 3GPP counterpart, O-DU performs the upper functionalities of the Phys-

ical Layer (High-PHY), such as coding, rate matching, scrambling, modulation and layer

mapping.

• O-RAN Radio Unit (O-RU): O-RU was introduced by O-RAN architecture to enable some

of the functions performed by the 3GPP gNB-DU. This component implements the lower

functionalities of the Physical Layer (Low-PHY), such as precoding, remapping, digital

beamforming, Inverse Fast Fourier Transform (IFFT), and Cyclic Prefix (CP) insertion. O-

RU is typically connected to an antenna array to transmit and receive the modulated signal.

• Near-Real Time RAN Intelligent Controller (Near-RT RIC). Contrary to the previous

components, which were mostly derived from 3GPP standards, the RICs are defined by the

O-RAN Alliance. The main function of the Near-RT RIC is to control and optimize the

RAN. For that purpose, it provides a suitable environment for running multiple xApps. An

xApp is a piece of software that runs in the Near-RT RIC in order to control and fine-tune

the remaining O-RAN components in near-real time (up to 1 s). It collects data from the

RAN (e.g., Key Performance Metrics (KPMs) such as packet loss ratio or radio resource

utilization), while analyzing it and triggering control actions if necessary. The Near-RT RIC

can also run pre-trained Machine Learning (ML) models to better configure the RAN.

• Non-Real Time RAN Intelligent Controller (Non-RT RIC): This component is part of

the Service Management and Orchestration (SMO) framework. It complements the near-

RT RIC by providing additional information, managing ML models, and setting overall

policies in non-real time (more than 1 s). Similarly to the near-RT RIC, the non-RT RIC

also hosts third-party applications (rApps) for controlling the RAN. The rApps are focused

on providing high-level policies, which manage the RAN as a whole, for example, providing

the RAN initial setup. The non-RT RIC is able to control and manage multiple RANs.

The split employed by the O-RAN Alliance is Option 7.2x, which divides the PHY functions

between the O-DU and O-RU. A representation of this split is depicted in Figure 2.15. This split

option was chosen because it allows achieving a balance between the simplicity of the O-RU, and

the data rates and latency required for the interface between the O-DU and O-RU [27]. Despite the

fact that split option 7.2x is the default split for the O-RAN architecture, the O-RAN Alliance also

considers the possibility of using split option 6, for which all PHY functions are performed by the

O-RU, and split option 8, which considers that all PHY functions are performed in O-DU, while

the O-RU is only in charge of Radio Frequency (RF) to baseband conversion [28]. Split options 6

and 8 are not yet fully supported and incorporated by O-RAN.

Some of the O-RAN interfaces are adopted from the 3GPP standards. Xn-c and Xn-u are

used to connect the RAN to other gNBs in the control plane and the user plane, respectively.

X2-c and Xn-u are used to connect the RAN to other eNodeBs (eNBs), the radio base stations

in 4G networks, in the control plane and the user plane, respectively. The F1-c interface is used

to interconnect the O-CU-CP and the O-DU, while managing the transmission of control plane

18 State of the Art

Figure 2.15: Physical layer functions separation between O-DU and O-RU, considering split op-
tion 7.2x [10].

signalling messages. The F1-u interface is used to interconnect the O-CU-UP and the O-DU, in

order to manage the exchange of user datagrams between the two components. Finally, the E1 in-

terface, interconnects the O-CU-CP and the O-CU-UP, while enabling the exchange of signalling

messages. These interfaces have similar protocol stacks as those referred to in Section 2.2. The

control plane interfaces have a protocol stack similar to the N2 interface, only the top layer em-

ploys a specific application protocol for each interface. The user plane interfaces have a protocol

stack similar to the N3 interface, relying on the GTP-U tunnels to transmit user data.

Besides the 3GPP interfaces, the O-RAN architecture includes other interfaces that are stan-

dardised by the O-RAN Alliance. Herein, we cover the main ones, such as the A1 interface. The

A1 interface connects the Non-RT-RIC to the Near-RT RIC and it supports three types of services:

1) Policy Management Service, in order to optimize the Near-RT RIC and the RAN performance

according to the targeted requirements defined in the Non-RT-RIC; 2) Enrichment Information

Service, which provides the Near-RT RIC with additional information, in addition to the infor-

mation that is generally available to it, in order to enhance the performance of its tasks; and 3)

ML Model Management Service, allowing ML models to be transferred between the two types of

RICs, trained on the Non-RT-RIC and executed on the Near-RT RIC [11]. The protocol stack of

the A1 interface is depicted in Figure 2.16.

The E2 interface connects the Near-RT RIC to the E2 nodes (O-CU-CP, O-CU-UP, and O-DU),

and the E2 functions are grouped into two categories. The first category is related to the Near-RT

RIC Services (REPORT, INSERT, CONTROL, and POLICY), which allow for the exposure of

the selected E2 Node data, such as network measurements as well as configuration and control

2.4 O-RAN 19

Figure 2.16: A1 protocol stack [11].

actions. The second category includes Near-RT RIC support functions, which mainly include E2

interface management actions (e.g., E2 Setup and E2 Reset) [12]. The protocol stack of the E2

interface is depicted in Figure 2.17.

Figure 2.17: E2 protocol stack [12].

In order to connect the O-DU to the O-RU, the O-RAN Alliance defines the Open Fronthaul

(FH) Interface. This interface contains the Management (M) Plane and the Control User Synchro-

nization (CUS) Plane. The Open FH M-Plane manages multiple operations related to the life cycle

of the RU, such as start-up installation. It also manages the network device’s configuration, such

as software management, performance management, and configuration management. To perform

these tasks, it relies on the Network Configuration Protocol (NETCONF) running on top of an

encrypted connection, using Secure Shell Protocol (SSH) or Transport Layer Security (TLS) [29].

The FH CUS-Plane can be decomposed in the Control (C) Plane, the User (U) Plane and the Syn-

chronization (S) Plane. The C-Plane is responsible for transferring commands from the high-PHY

in the O-DU to the low-PHY in the O-RU, such as commands for scheduling and beamforming.

20 State of the Art

The C-Plane relies on whether the Enhanced Common Public Radio Interface (eCPRI) or the Ra-

dio over Ethernet (RoE) protocols, in order to ensure communications, which may be used over

Ethernet L2 in the case of the O-RAN architecture. Generically, eCPRI can be used over User

Datagram Protocol (UDP), but when it comes to O-RAN, UDP is not recommended due to the

strict bandwidth and latency requirements [13]. The protocol stack of the C-Plane interface is de-

picted in Figure 2.18. The U-Plane is in charge of exchanging user data in the frequency domain

between the O-DU and the O-RU, using In-phase and Quadrature (I/Q) components, using split

option 7.2x. It uses the same protocols as the C-Plane only the payload is different and its protocol

stack is similar to the C-Plane stack shown in Figure 2.18.

Figure 2.18: C-Plane and U-Plane protocol stack [13].

The last component of the Open FH Interface is the S-Plane. It uses Synchronous Ethernet

(SyncE) and Precision Time Protocol (PTP) to synchronize the O-DU and O-RU clocks. Using

a master-slave architecture, the master clock, typically on the O-DU, can be used to synchronize

the slave clocks, on the O-RU. Despite PTP being able to synchronize clock time/phase and fre-

quency, SyncE is recommended by ITU Telecommunication Standardization Sector (ITU-T) to

synchronize clock frequency, in order to obtain better synchronization. The protocol stack of the

S-Plane interface is depicted in Figure 2.19.

Figure 2.19: S-Plane stack [13].

2.5 Related Work

Since O-RAN standards are recent, there is a relatively low number of related works in the litera-

ture regarding O-RAN implementations.

ColO-RAN [30] is a publicly-available wireless network emulator based on dozens of Software-

Defined Radios (SDRs). It is implemented over the Colosseum testbed, by means of instantiating

a Near-RT RIC based on the O-RAN Software Community (OSC) RIC. The base stations leverage

a joint implementation of the 3GPP DUs and CUs, which are implemented using SCOPE [31], an

2.5 Related Work 21

extended version of srsRAN. srsRAN is an open-source 5G and 4G RAN software package, which

allows users to implement gNBs, eNBs, and UEs.

In [32], the authors have implemented an open-source Open RAN use case in the POWDER

mobile and wireless research platform, focused on network slicing. They have performed their

tests in POWDER’s indoor over-the-air lab and POWDER’s controlled RF environment. Similarly

to ColO-RAN, the authors have implemented the OSC RIC. The base stations are implemented

using an extended version of srsRAN, which includes an E2 agent in the srsRAN base station.

In [33], the authors have implemented their own O-RAN based testbed, with one base station

and three UEs, while defining different slices for each UE. Similarly to the works presented in

[30, 32], the authors have implemented an OSC RIC and the base station relies on an extended

version of srsRAN, that includes the E2 interface.

FlexRIC [34] is a software development kit that enables the implementation of specialized

service-oriented controllers. FlexRIC’s real-time (RT) controller serves the same purpose as the

O-RAN based Near-RT RIC. However, according to its authors, FlexRIC is much less compu-

tationally demanding. FlexRIC is connected to the base station through the O-RAN-defined E2

interface and is able to monitor and control the RAN. FlexRIC implementations are able not only

to connect to a base station, implemented using srsRAN with an E2 Agent, but also simultaneously

connect to another base station implemented by means of the Open Air Interface (OAI) software

package. OAI allows the deployment of a 4G and 5G RANs, as well as 4G and 5G Core Networks.

ProSLICE [35] disaggregates the RAN itself, which is an aspect that none of the previously

mentioned works has addressed. The srsRAN RAN is originally implemented in a monolithic

manner, which means it implements the entire 5G NR protocol stack without the ability to split it

into different components. The OAI RAN allows for the separation between the CU and DU, but

it only supports a single DU connected to each CU. Still, according to the concept of RAN disag-

gregation, each CU should be able to be connected to multiple DUs. The ProSLICE platform aims

for the full-scale realization of the complete O-RAN specification, by extending and enhancing

both the OAI RAN software package and the OSC RIC’s capabilities. Regarding the OAI RAN,

the authors have implemented the disaggregated CU, splitting the CU provided by OAI into the

O-CU-CP and O-CU-UP components, implementing the E1 interface, adding support for multi-

ple DUs, and implementing an E2 Agent onto the E2 nodes (O-CU-CP, O-CU-UP, and O-DU).

Besides this, the authors have introduced several extensions and enhancements to the OSC RIC,

mainly xApps that allow for network slice creation. Despite the fact that the ProSLICE platform

is based on open-source components, the software packages, are not available so far.

The concept of mobile gNBs was explored in [36], where the author implements a 5G SA

network using OAI. The proposed solution deploys the gNB connected to the Core network via a

wireless link, and on-board a mobile robotic platform, a Go1 Edu Robot. To control the position of

the mobile gNB, the author developed an On-Demand Mobility Management Function deployed

as a Network Function into the Core network, which enables the operator to monitor the QoS

of the radio link between the UE and the gNB, and manually control the position of the mobile

robotic platform taking advantage of the video feed from the cameras incorporated in the Go1 Edu

22 State of the Art

Robot.

Even though there are no complete implementations of O-RAN so far, the research into related

work presented herein allowed us to identify the tools available in the literature to deploy an O-

RAN based network, namely, the two open-source 5G RAN software packages, srsRAN and OAI.

For that purpose, they typically use the Universal Software Radio Peripheral (USRP) B210 and

the USRP X310 SDRs.

Regarding the concept of mobile gNBs, the goals of this dissertation mostly align with the ones

achieved in [36], with the main differences being the introduction of the O-RAN specifications and

architecture, the integration of the mobility management function into the O-RAN architecture,

instead of deploying it in the Core network, and the goal to develop the mobility function as an

autonomous process, that is able to reposition the mobile robotic platform without user input.

To the best of our knowledge, there are no solutions in the literature that address the specific

objective of this dissertation of merging the O-RAN architecture with the concept of mobile gNBs,

which allows us to potentially develop new contributions for 5G O-RAN networks.

Chapter 3

System Specification, Design, and
Implementation

In this chapter, we present the system specification, design and implementation that was performed

in order to develop the proposed solution.

3.1 System Specification

The main goal of this dissertation was to implement a private 5G network with a mobile radio

cell able to provide wireless connectivity to a UE. This network should be deployed following an

SA architecture. The mobile radio cell should be able to autonomously reconfigure and reposition

itself, in order to continuously provide wireless connectivity to the UE while being able to adapt

to changes in the environment that can hinder the UE’s connection to the network.

AMF

UE UPF

SMF

gNB

Mobile Robotic
Platform Control

NR-Uu

N1 N2

N3

N4

External DN

Near-RT RIC

E2

Mobility
Management xAppE42

MCI

Mobile RAN

Figure 3.1: System architecture of the proposed solution.

23

24 System Specification, Design, and Implementation

In our proposed architecture (cf. Figure 3.1), a UE needs 5G connectivity to establish a con-

nection to an external Data Network. To ensure this, the UE first establishes a connection with a

mobile RAN, which consists of a gNB placed and carried by a mobile robotic platform. The gNB

is equipped with radio antennas, which enable transmitting and receiving 5G radio signals.

After the establishment of the connection between UE and gNB, the UE needs to communicate

with the AMF, in the 5G Core network, via the N1 interface described in Section 2.2 (cf. Figure

2.6). Using the N1 interface, the UE is able to exchange signalling messages with the AMF, in-

cluding authentication messages. The connection between UE and AMF is not a direct connection.

The N1 interface is the reference for the protocols implemented at each end of the connection, but

all messages need to be forwarded by the gNB via the N2 interface.

The N2 interface, also described in Section 2.2 (cf. Figure 2.7), allows for connectivity be-

tween the RAN and the Core Network, through the AMF. This connection needs to be established

and running before the UE initiates the connection to the 5G network; otherwise, any traffic from

the UE to the AMF is not forwarded by the gNB, and the connection between the UE and the 5G

Network is not possible.

After successful authentication in the Core Network, the UE must be able to access other

external data networks. To achieve this, the mobile RAN needs to communicate with the UPF,

which acts as a gateway for the data traffic forwarded to/from the 5G network. This connection is

performed via the N3 interface, as explained in Section 2.2 (cf. Figure 2.8).

The UPF also needs to communicate with the SMF, in the 5G Core network, in order to ex-

change signalling messages and receive control actions associated to the session management of

the data flows exchanged between the UE and external networks. This is ensured via the N4

interface, which was described in Section 2.2 (cf. Figure 2.9).

Since in our solution the RAN is mobile, the connection between the RAN and the 5G Core

Network is wireless based. This does not pose additional challenges since, as we showed in Sec-

tion 2.2, both the N2 interface (cf. Figure 2.7) and the N3 interface (cf. Figure 2.8) operate under

the TCP/IP protocol stack, which means that any wireless communications technology employing

the TCP/IP protocol stack can be used.

Since in our solution the mobile RAN needs to be repositioned on-demand according to the

network conditions, there is a need to deploy a Mobility Management Function that can control

the position of the mobile robotic platform. For that purpose, we can take advantage of the Near-

RT RIC, specified in the O-RAN architecture, to deploy our mobility management function as an

xApp. The xApps communicate with the Near-RT RIC via the E42 interface, a non-standardized

interface similar to the E2 interface. Since one of the main goals of the Near-RT RIC is to collect

information about the status of the network, we can take advantage of this functionality, in order

to feed our mobility management function with metrics regarding the UE connection status. These

metrics allow us to compute a suitable placement for the mobile RAN.

In order to ensure a connection between the gNB and the Near-RT RIC, we implemented an

E2 interface between the two nodes, which was explored in Section 2.4 (cf. Figure 2.17). This

allows us to receive metrics regarding the status of the network in the Near-RT RIC, which can

3.2 Proposed Mobility Management xApp 25

be considered by our xApp. In our solution, the E2 interface leverages on wireless connectivity.

For that purpose, any wireless communications technology using the TCP/IP protocol stack can

be used (cf. Figure 2.17).

To control the placement of the mobile RAN, our xApp should be able to communicate with

the mobile robotic platform. To that end, we propose a novel Mobility Control Interface (MCI),

which connects the xApp in charge of implementing the mobility management function to the

function responsible for controlling the movement of the mobile robotic platform (cf. Figure 3.1).

This interface is characterized by a reliable connection, ensured via TCP, able to exchange data

between the two nodes (cf. Figure 3.2).

TCP

Application

IP

L2

L1

Figure 3.2: Proposed MCI protocol stack.

Since the mobility control of the mobile robotic platform is ensured by an xApp that interacts

with a Near-RT RIC, an alternative approach would be to implement the interface between the

mobile robotic platform and the mobility management xApp via the E2 interface. However, since

most of the commercial mobile robotic platforms available already possess well-defined APIs or

Software Development Kits (SDK), which allow for autonomous control via software applications,

for simplicity, we took advantage of them.

3.2 Proposed Mobility Management xApp

Our Mobility Management xApp collects metrics from the RAN via the Near-RT RIC and imple-

ments a new algorithm that is able to make mobility decisions based on those metrics. This allows

our solution to autonomously place the mobile RAN in a suitable position to provide better 5G

connectivity to a UE, by increasing the connection SNR. Herein, we explain the new algorithm

implemented in the proposed Mobility Management xApp.

Among the metrics that are available to be extracted from the Mobile RAN via the Near-RT

RIC software, the one with the most relevance to assess the quality of the connection established

between the gNB and the UE is the Signal-to-Noise Ratio (SNR). In addition to SNR, we also

retrieve the number of transmitted MAC SDUs for both Uplink (UP) and Downlink (DL) traffic,

in order to know if there is a relevant amount of data being exchanged in the network at each

moment.

26 System Specification, Design, and Implementation

In order to clarify some design choices of the developed algorithm, it is worth considering

that:

1. The Mobility Management xApp is not aware of the UE’s location.

2. The Mobility Management xApp is only able to collect Near-RT SNR values associated

with the current connection between the gNB and the UE.

3. The Mobility Management xApp is unable to assess if changes in SNR are caused due to

distance variations or due to obstructions between the Mobile RAN and the UE.

The pseudocode for the implemented algorithm is presented in Algorithm 1. It assumes the

mobile RAN has only two possible positions: 1) a default position, which is the position of the

gNB when the 5G Network is launched; and 2) a second position, which is the gNB’s target

position defined by the Mobility Management xApp.

The notation used in Algorithm 1 is detailed in Table 3.1:

Notation Definition

SNR
Average SNR measured in the current position in the last N seconds (e.g.,

5 seconds)
.

A_SNR Minimum SNR value to consider the channel quality as acceptable

P_SNR
SNR value measured in the previous position before the change to the current

position.

T hreshold
Value of the difference between P_SNR and SNR bellow which it is not worth

changing the positioning.

t_Position Timestamp indicating when the change to the current position happened.

t_Now Timestamp indicating the current time.

T _1
Maximum value in seconds during which the Mobile Robotic Platform should

stay in the current position if the SNR value is lower than A_SNR.

T _2
Maximum value in seconds during which the Mobile Robotic Platform should

stay in the second position, even if the SNR value is higher than A_SNR.

N_SDUs Number of transmitted DL and UP MAC SDUs in the last N seconds.

SDU_T hreshold
Maximum number of MAC SDUs transmitted, in order to infer the

volume of traffic exchanged with the UE.

Table 3.1: Defenition of the variables used in algorithm Algorithm 1.

The algorithm first checks in line 1 of Algorithm 1, if the value SNR is lower than the minimum

acceptable value A_SNR, as well as lower than the P_SNR minus a specific T hreshold value. The

latter check allows for avoiding moving the mobile robotic platform if the channel quality in the

3.3 System Design 27

current position is better than the last recorded channel quality in the previous position. The

T hreshold is necessary because if the SNR is just slightly worse than in the previous position, it

might not be worth it to move the Mobile Robotic Platform. If both conditions are true, then the

algorithm updates variables and moves the Mobile Robotic Platform to the other position.

In case the SNR is less than A_SNR but still higher than P_SNR, the Mobile Robotic Platform

stays in the same position until T _1 seconds pass, as shown in line 5. After this time, the mobile

robotic platform moves to the other position because, in the period of time that passed, the channel

quality in the other position might have improved and actually be acceptable.

Lastly, it might be advantageous for the Mobile Robotic Platform to be in the default position

(e.g., for charging). As such, in line 9, the algorithm checks if the Mobile Robotic Platform has

been in the second position for longer than T _2 and if the network is not being heavily used,

by assessing if the N_SDUs is lower than SDU_T hreshold. Then, the Mobile Robotic Platform

moves to the default position, even if the channel quality is acceptable in the current position.

If none of the previous conditions are met, the Mobile Robotic Platform stays in its current

position.

Algorithm 1 Algorithm implemented in the Mobility Management xApp for two positions.

1: if SNR<A_SNR AND SNR<P_SNR−T hreshold then
2: P_SNR← SNR
3: t_Position← t_Now
4: Move to the other position
5: else if SNR<A_SNR AND t_Now− t_Position>T _1 then
6: P_SNR← SNR
7: t_Position← t_Now
8: Move to the other position
9: else if t_Now− t_Position>T _2 AND N_SDUs<SDU_T hreshold AND

Current_Position == Second_Position then
10: P_SNR← SNR
11: t_Position← t_Now
12: Move to default position
13: else
14: Stay in Position
15: end if

3.3 System Design

The architecture of the system that was designed to implement and evaluate the proposed solution

is depicted in Figure 3.3. The system is composed of three main logical units. One unit in which

we implement the 5G Core Network, the Near-RT RIC and the Mobility Management xApp.

Another implements the mobile RAN, which consists of the gNB, the USRP SDR board, the

Robotic Control application, and the Mobile Robotic Unit. Moreover, the system includes a unit,

which implements the UE software, connected to a USRP SDR board.

28 System Specification, Design, and Implementation

Mobile RAN

MSI Laptop
(Ubuntu 18.04)

Mobile Robotic Plataform

USRP B210USRP B210

OAI-UE

USB 3.0

HP EliteDesk
(Ubuntu 20.04)

OAI-gNB Robotic
Control

USB 3.0 Ethernet
Cable

Intel NUC
(Ubuntu 20.04)

OAI 5G
Core Network FlexRIC

Mobility
Management

xApp

5G Wireless Link

E42

N2 & N3 E2 MCIWiFi Link

UE

Near-RT RIC and Core Network

Node Running in Docker Container

Node Running in Host OS

Radio Devices

Logical Unit

Figure 3.3: Architecture of the system designed to implement and evaluate the proposed solution.

In the following sections, we will detail the hardware used to implement each component of

the system, as well as explain the choices of software packages that were used.

3.3.1 Software Packages

3.3.1.1 5G Core Network, 5G gNB, and 5G UE

The main open-source 5G software packages available to implement an O-RAN based architecture

are OAI [37] and srsRAN [38]. In order to implement our system, the software package chosen

was OAI for three reasons. First, OAI provides all the components required to deploy a 5G SA

network, including the RAN and Core networks; srsRAN software only allows the deployment of

the RAN, introducing the need to implement the Core network using a different software package,

such as OAI. Second, we wanted to explore the concept of RAN splitting. At the time of designing

our system, srsRAN did not allow splitting the gNB into CU and DU, as OAI does. Despite this,

both OAI and srsRAN developments were evolving towards an O-RAN based architecture [39]

[40]. Third, in order to connect the Near-RT RIC with either OAI or srsRAN, we needed to

install a patch provided by the RIC’s developers onto the RAN software. This patch was crucial

for the proper installation and configuration of an E2 node within the RAN. Without the patch,

establishing a connection between the Near-RT RIC and the RAN was not possible. However, the

3.3 System Design 29

patch for srsRAN is currently available only for the software that implements an eNB; it is not

compatible with the software that implements the gNB. On the other hand, the patch provided by

OAI works for both eNB and gNB. This distinction implies that if we selected srsRAN, we would

be limited to a 4G network, whereas OAI allows us to implement a 5G network.

3.3.1.2 Near-RT RIC

Two main open-source software packages are able to implement a Near-RT RIC: O-RAN Software

Community’s Near-RT RIC [41] and Mosaic5G’s FlexRIC [42]. Considering these two software

packages, the one chosen to implement the Near-RT RIC was Mosaic5G’s FlexRIC. There are sev-

eral reasons for this choice. First, the system requirements in order to run OSC’s Near-RT RIC are

relatively high [43], while for FlexRIC there are no specific system requirements listed; only a few

software prerequisites are mentioned. FlexRIC is a lightweight application that can be launched

from an executable file, which also makes its installation easier. Second, FlexRIC’s documenta-

tion states that it allows the users to extract measurements from different layers of the 5G protocol

stack of the RAN, such as MAC, RLC and PDCP layers. In OSC’s Near-RT RIC documentation,

there is no explicit mention of specific capabilities apart from some test scenarios. Besides this,

FlexRIC provides a new interface named E42, which is used to exchange data between the xApps

and the FlexRIC. The mode of operation is similar to the E2 interface. For example, if an xApp

needs to send a request for metrics to an E2 node, like a gNB, it can send that request through the

E42 interface to FlexRIC. Then, FlexRIC forwards the request via the E2 interface to the gNB,

acting as an intermediary between the xApp and the gNB. This interaction is depicted in Figure

3.4.

Figure 3.4: E42 interface logical operation, adapted from [14].

The E42 interface can be implemented using a simple API that allows users to develop appli-

cations in C and other programming languages; these applications can be used to extract metrics

from the RAN connected to FlexRIC. This allows users to implement any xApp to perform any

30 System Specification, Design, and Implementation

desired task, as long as the required interactions between the xApp and the RAN are supported by

the FlexRIC software.

3.3.2 Hardware

3.3.2.1 Core Network and FlexRIC

Both the OAI 5G Core Network and FlexRIC were deployed in an Intel NUC (Next Unit of Com-

puting) Board NUC5i5MYBE [44] depicted in Figure 3.5.

Figure 3.5: Intel NUC Board NUC5i5MYBE.

The OAI 5G Core Network was deployed using Docker containers. Since the demanded com-

putational requirements are low, it is suitable for deployment in less powerful computers, such as

the Intel NUC.

Similarly, the FlexRIC is not resource intensive, as explained in Section 3.3.1.2. For this

reason, it can be executed alongside the OAI Core Network on the Intel NUC.

The Mobility Management xApp is also deployed alongside FlexRIC, as it needs to be running

in the same computing unit in order to properly use the E42 interface and to reduce latency for

exchanging data with the xApp.

As explained in Section 3.1, both the connection between the RAN and the Core Network, us-

ing the N2 and N3 interfaces, and the connection between the RAN and the Near-RT RIC, through

the E2 interface, use the TCP/IP protocol stack. Considering this, in order to ensure wireless con-

nectivity between the Core Network and the Mobile RAN, a wireless link was established. The

Wi-Fi technology was chosen due to its wide support and ease of implementation.

3.3 System Design 31

3.3.2.2 gNB and UE

The gNB was deployed in an HP EliteDesk 800 G2 Small Form Factor (SFF), with 4 physical

CPU cores and 16 GB of RAM. While not ideal to run the gNB according to the recommended

system requirements of 8 physical CPU cores and 32 GB of RAM, this processing unit proved

to be enough to run the OAI gNB software. As we can see in Figure 3.6, even though the HP

EliteDesk is a Small Form Factor and not a Full Tower Desktop, it is still much larger than the

Intel NUC; for this reason, it is not suitable to be placed on-board the Mobile Robotic Platform.

However, since the mobile RAN is supposed to be a proof of concept and not finalized commercial

unit, this setup does not compromise validating the proposed solution, by placing only the SDR

board on the Mobile Robotic Platform, while controlling its position.

Figure 3.6: HP EliteDesk 800 G2E SFF.

Besides the gNB, our Robotic Control application was also deployed in the HP EliteDesk.

This is due to two reasons. First, the SDK to control the Mobile Robotic Platform is implemented

and intended to be used with C++ applications, while the API provided by FlexRIC is intended

to work with xApps implemented in C or Python. Because of this, we implemented the Mobility

Management xApp in C; it runs alongside the Core Network and FlexRIC on the Intel NUC.

This setup enables the xApp to send control actions to the Robotic Control application, written in

C++, which runs alongside the gNB on the HP EliteDesk. The communications between them use

TCP sockets via the proposed MCI interface (cf. Figure 3.2). The Robotic Control application is

in charge of controlling the movement of the Mobile Robotic Platform, based on the commands

received from the Mobility Management xApp.

32 System Specification, Design, and Implementation

The second reason for deploying the Robotic Control application on the HP EliteDesk is

related to the connection with the Mobile Robotic Platform itself. Despite the chosen Mobile

Robotic Platform offering both a wired connection using Ethernet or a wireless connection through

Wi-Fi, we established an Ethernet-based connection. This approach was preferred over a Wi-Fi

connection to the Mobile Robotic Platform to avoid managing two separate Wi-Fi links on the HP

EliteDesk, which would significantly increase complexity.

The OAI 5G UE software was deployed in an MSI GE75 Raider Laptop, depicted in Fig-

ure 3.7, with 6 physical CPU cores. The UE is computationally demanding, with recommended

requirements of 8 physical CPU cores. Additionally, the UE application is more sensitive to com-

munication errors or delays between the computer hosting it and the SDR, which occur relatively

frequently. In contrast, the gNB application can recover from such errors and delays most of the

time. It is worth noting that the UE application tends to crash or lose connection to the gNB,

requiring frequent relaunching. By deploying the UE application on the computer with more re-

sources, we can reduce the risk of errors or delays occurring between the computer and SDR.

This minimizes the need to relaunch the UE application, making testing more convenient and less

time-consuming.

Figure 3.7: MSI GE 75 Raider Laptop.

Since the RAN and the UE were deployed in separate host computers, two SDRs were used to

enable a 5G radio connection between the gNB and the UE. As we concluded from the related im-

plementations of other 5G networks in Section 2.5, the most commonly used SDRs are the USRP

B210 [45] and the USRP X310 [46]. According to the OAI wiki [47], these two SDR models

are recommended for implementing OAI based networks. For our system implementation, we se-

lected the USRP B210 SDR, due to its popularity across the community and its cost-effectiveness.

This particular model, depicted in Figure 3.8, utilizes a Universal Serial Bus (USB) 3.0 interface

to establish a connection with the computer acting as a processing unit.

3.3 System Design 33

Figure 3.8: USRP B210 with the respective USB 3.0 interface.

The carrier frequency selected to implement the 5G RAN was 3.6 GHz. We used two W5084K

[48] dipole antennas tailored to this frequency band, which allowed for an optimized wireless

connection between the two SDRs acting as gNB and UE, respectively. The two SDRs with the

respective antennas attached are depicted in Figure 3.9.

Figure 3.9: USRP B210 SDR devices with the respective W5084K antennas.

34 System Specification, Design, and Implementation

3.3.2.3 Mobile Robotic Plataform

The chosen platform to serve as the Mobile Robotic Platform acting as the Mobile RAN was the

Unitree’s GO 1 Robot [15] depicted in Figure 3.10.

Figure 3.10: Unitree’s GO 1 robot [15].

Besides being a capable robotic unit, able to carry payload, the main reason for choosing the

GO 1 robot is the fact that it can be controlled autonomously via simple user-made applications,

which is fundamental in order to implement the proposed solution. In order to support this, Uni-

tree provides an SDK, the unitree_legged_sdk, which allows for both high-level and low-level

control of the GO 1 robot. This SDK allows users to implement C++ programs that are able to

communicate and control the GO 1 robot. Our Robotic Control application is a C++ application

that receives mobility control commands from the Mobility Management xApp, via the MCI in-

terface (cf. Figure 3.2) using TCP sockets, and translates those commands into actual movement

instructions for the GO 1 robot using the unitree_legged_sdk.

The GO 1 robot also hosts a Web page provided by a Hypertext Transfer Protocol (HTTP)

server running in the GO 1 robot. The web page can be accessed in a browser on any computer

connected to the GO 1 robot, and it allows the user to see the video feed in real-time from the

cameras installed on the GO 1 robot, as well as control the movement of the robot using the

WASD keyboard keys to move the mobile robotic platform front, left, backwards and right. This

service may be useful if a user needs to manually fine-tune the position of the Mobile Robotic

Platform.

3.4 System Implementation

In this section, we present the main aspects related to the implementation of our testbed, especially

changes that were performed in the configuration files, in order to properly run each node, changes

3.4 System Implementation 35

performed on the Host OS, as well as general setup requirements.

3.4.1 OAI 5G Core Network

In order to implement the 5G Core Network, OAI provides a few different implementation meth-

ods, including Kubernetes cluster and Docker containers. To deploy our Core Network we chose

to implement it using Docker containers, due to the fact that this option is the one with the most

support and tools available from the OAI software package and due to its ease of implementation.

OAI offers different Core Network options that allow the implementation of 5G Core Network

Functions based on the user’s needs. To deploy our testbed we opted for the minimal deployment,

due to the fact that it included every Network Function we needed to implement our proposed

solution and allowed us to reduce computational resources needed, as it uses fewer containers,

allowing for increased performance on the Core Network. The minimal deployment includes 5

Docker containers, the AMF, SMF, UPF, Network Repository Function (NRF), and MySQL.

The functions of the AMF, SMF, and UPF were already covered in Section 2.2. The NRF

is also a Network Function included in 5G reference architecture (cf. Figure 2.4); as the name

suggests, NRF is responsible for holding information concerning other Network Functions present

in the 5G Core Network. When a new Network Function is deployed in the Core Network, it

registers itself with the NRF, and obtains information about other Network Functions present in

the Core Network from the NRF, such as their IP addresses. With this information, the new

Network Function can then establish direct connections with the remaining Network Functions.

The MySQL Docker container is mainly used to store information pertaining to the identification

of the UEs that are registered in the Core Network.

Besides the 5 containers mentioned, OAI also provides an extra container, named ext-dn, which

acts as a computer located on an external DN connected to the UPF. This container is useful in

order to conduct performance tests between UEs and an external DN, without the influence of

external networks impacting the results of our testing.

After pulling V1.5.0 of the docker images and downloading the remaining files needed, such

as the .sql files for the database and the docker-compose.yaml file, which is used to configure and

instantiate the Core Network, we configured the Host OS in order to properly forward traffic to

and from the Core Network containers. To achieve this we changed IP forwarding rules for the

Linux Host, and the Iptables policies towards docker containers, in order to accept packets from

external connections, as depicted in Figure 3.11.

Core-Network-Host:$ sudo sysctl net.ipv4.conf.all.forwarding=1

net.ipv4.conf.all.forwarding = 1

Core-Network-Host:$ sudo iptables −P FORWARD ACCEPT

Figure 3.11: Linux IP forwarding and Iptables configurations.

36 System Specification, Design, and Implementation

In order to configure the Core Network, the docker-compose.yaml file was used. This file

contains parameters that are passed to each Docker container when they are initialized. The main

parameters that require the user’s attention are the Public Land Mobile Network (PLMN) ID which

consists of two parts: 1) the Mobile Country Code (MCC) and the Mobile Network Code (MNC),

which are mainly used to identify a specific network; and 2) the Tracking Area Code (TAC), which

is used to identify the area a gNB belongs to – the Core Network can manage multiple gNBs in

different locations, which are grouped in different areas identified by their TAC. The actual values

chosen for these fields are not important unless they are reserved values, since we are dealing

with a private 5G Network. However, it is important to ensure that the values configured in the

Core Network match the values configured in the gNB; otherwise, the connection between the two

might not be successful, especially if the TAC values do not match. The values used in the docker-

compose.yaml file to deploy our testbed were 208 for the MCC, 95 for the MNC, and 0xA000 for

the TAC, as depicted in Figure 3.12.

version: ’3.8’

services:

(...)

oai−amf:
container_name: "oai−amf"
image: oaisoftwarealliance/oai−amf:v1.5.0
environment:

(...)

− MCC=208

− MNC=95

(...)

− PLMN_SUPPORT_MCC=208

− PLMN_SUPPORT_MNC=95

− PLMN_SUPPORT_TAC=0xa000

Figure 3.12: Defined MNC, MCC, and TAC values for AMF container in the docker-compose.yaml
file.

When a UE connects to the 5G Network, it gets an IP address that is used to send and receive

the User Plane traffic. Other external Data Networks do not know the structure of the Private 5G

network. As such, we did not have defined routes in order to reach the UEs based on their IP

inside the 5G Network. To that end, the UPF, acting as a gateway between the 5G Network and

other external Data Networks, must perform Network Address Translation (NAT) on the UE IPs,

in order to enable communication with external networks. This configuration must also be set in

the docker-compose.yaml file. Figure 3.13 depicts the configuration needed for NAT as well as the

UE IP pool used in our 5G network.

3.4 System Implementation 37

version: ’3.8’

services:

(...)

oai−spgwu:
container_name: "oai−spgwu"
image: oaisoftwarealliance/oai−spgwu−tiny:v1.5.0
environment:

(...)

− NETWORK_UE_NAT_OPTION=yes

− NETWORK_UE_IP=12.1.1.0/24

Figure 3.13: UE IP pool and configuration UPF the perform NAT in the docker-compose.yaml file.

After properly configuring the docker-compose.yaml file with the mentioned fields, required

docker networks, container IP addresses, and routes, we can launch our 5G Core Network. When

it is launched, besides creating the containers, it also creates two interfaces on the Host OS, in

order to interact with the two Docker Networks. In our case, they are named demo-oai for the

network hosting the containers belonging to the Core Network and oai-traffic, which connects the

UPF to the ext_dn container, as depicted in Figure 3.14.

Core-Network-Host:$ ifconfig

demo−oai: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.70.129 netmask 255.255.255.192 broadcast 192.168.70.191

inet6 fe80::42:29ff:fef3:79cb prefixlen 64 scopeid 0x20<link>

(...)

oai−traffic: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.71.129 netmask 255.255.255.192 broadcast 192.168.71.191

inet6 fe80::42:d3ff:fe1f:cbf2 prefixlen 64 scopeid 0x20<link>

Figure 3.14: Interfaces created in Host OS to interact with Docker Networks.

If everything was properly configured, and the docker containers are in a healthy state, our

OAI 5G Core Network is up and running. A network diagram representing the implemented Core

Network is depicted in Figure 3.15. Also, an IP address scheme of the implemented components

in the Core Network and Data Network is presented in Table 3.2 and Table 3.3. This information is

useful when analysing Wireshark logs, in order to easily identify which Core Network component

a packet originated from and which component is its destination.

38 System Specification, Design, and Implementation

Namf

AMF

Nsmf

SMF

Nnrf

NRF

UPF (SPGWU)

MySQL EXTERNAL-DN

.130

.134

.133.132

192.168.70.128/26
demo-oai

.134

192.168.71.128/26
oai-traffic-net

.131 .135

N3

N4
N2

Figure 3.15: Deployed 5G Core Network Diagram.

Core Network Function IP
NRF 192.168.70.130

MySQL 192.168.70.131
AMF 192.168.70.132
SMF 192.168.70.133
UPF 192.168.70.134

Table 3.2: Deployed 5G Core Network Functions IP addresses.

Data Network Component IP
UPF 192.168.71.134

EXTERNAL-DN 192.168.71.135
Table 3.3: Deployed Data Network Component IP addresses.

The last configuration needed to fully set up our 5G Core Network is to register the UE on

the Core Network. The registration is performed by adding the OAI UE Subscriber Identity Mod-

ule(SIM) details to the MySQL database, including the International Mobile Subscriber Identity

(IMSI), its related key, and the Operator Code (OPc). This can be done by adding the information

in the oai_db.sql files before starting the Core Network; it can also be performed in runtime, after

starting the Core Network, by logging inside the MySQL Docker container as shown in Figure

3.16. The values registered in the Core Network must match the ones used by the UE; otherwise,

the UE is not able to authenticate itself in the Core Network.

3.4 System Implementation 39

Core-Network-Host:$ docker exec −it mysql /bin/bash

bash−4.4# mysql −uroot −plinux −D oai_db

(...)

mysql> INSERT INTO users VALUES

−> (’ 2089500007487 ’,’380561234567’,’55000000000001’,NULL,’PURGED’,50

,40000000,100000000,47,0000000000,1, 0xfec86ba6eb707ed08905757b1bb44b8f

,0,0,0x40,’ebd07771ace8677a’, 0xC42449363BBAD02B66D16BC975D77CC1);

Query OK, 1 row affected (0.00 sec)

Figure 3.16: Registering UE in Core Network, by adding IMSI, associated Key, and OPc, high-
lighted in red, respectively, to the MySQL Database.

3.4.2 OAI gNB

In order to deploy the OAI gNB we used a specific version from the OAI Repository [49], more

specifically version 2022.41. This version is necessary in order to install the FlexRIC patch that

implements an E2 node on OAI’s gNB software, as explained in [42].

Even though the computers running the gNB and the Core Network are connected via a Wi-Fi

link, since the Core Network is implemented using Docker containers with IP addresses belonging

to digital Docker networks hosted on the Intel NUC, the computer hosting the gNB, and conse-

quently the gNB, are not able to reach the components of the Core Network by default, even if

given their IP addresses. In order to address the issue, we need to configure routes in the gNB

Host, so that it can reach the Core Network, via the Core Network Host, as shown in Figure 3.17.

gNB-Host:$ sudo ip route add 192.168.70.128/26 via 10.42.0.16 dev

wlxc04a001bcb9b

gNB-Host:$ ip r

(...)

192.168.70.128/26 via 10.42.0.16 dev wlxc04a001bcb9b

Figure 3.17: Adding route to Core Network in the gNB Host computer, via the Core Network Host
computer.

As mentioned in Section 3.4.1, the MCC, MNC, and TAC values must be the same in the con-

figuration files of both the Core Network and the gNB. To this end, we modified the gnb.sa.band78

.fr1.106PRB.usrpb210.conf configuration file, used to launch the gNB with the particular USRP

B210 SDR model we used in our testbed. In Figure 3.18, the MCC, MNC, and TAC values match

the ones introduced in the Core Network (cf. Figure 3.12).

40 System Specification, Design, and Implementation

(...)

gNBs =

(

{

////////// Identification parameters:

(...)

// Tracking area code, 0x0000 and 0xfffe are reserved values

tracking_area_code = 0xa000;

plmn_list = ({mcc = 208; mnc = 95; mnc_length = 2; snssaiList =({sst=1})});

Figure 3.18: Defined MNC, MCC, and TAC values for the gNB in the configurations file.

If the values in the Core Network configuration file and the gNB configuration file do not

match, the NGAP setup between AMF and gNB over the N2 interface fails, as shown in the

Wireshark capture in Figure 3.19.

Figure 3.19: NGAP setup failure between gNB and AMF, due to non-matching TAC value.

Besides configuring the proper values for MCC, MNC, and TAC fields, we also need to con-

figure the gNB configuration file with the IP address of the AMF, as well as set the IP that the gNB

should use in order to communicate with the AMF and SMF. Since the gNB is running on the Host

OS, and the computers that run the Core Network and gNB are connected through a Wi-Fi link,

the gNB IP and interface as the host’s physical interfaces, as depicted in Figure 3.20.

To enable a connection between the OAI gNB software and the USRP B210 SDR, we utilize

the USRP Hardware Driver (UHD), a user-space library that is able to communicate and controls

all the devices of the USRP family, allowing users to transmit and receive waveform samples

to and from USRP devices, as well as fine-tune radio parameters such as sampling rate, central

3.4 System Implementation 41

(...)

////////// AMF parameters:

amf_ip_address = ({ ipv4 = "192.168.70.132";

(...)

NETWORK_INTERFACES :

{

GNB_INTERFACE_NAME_FOR_NG_AMF = "wlxc04a001bcb9b";

GNB_IPV4_ADDRESS_FOR_NG_AMF = "10.42.0.1/24";

GNB_INTERFACE_NAME_FOR_NGU = "wlxc04a001bcb9b";

GNB_IPV4_ADDRESS_FOR_NGU = "10.42.0.1/24";

Figure 3.20: Defined AMF IP address and gNB IP address and interface.

frequencies, and gain [50]. This driver also allows the Host OS to detect and load the proper

firmware and configuration on the USRP board according to its model. As recommended by OAI,

we installed UHD version 4.4.0 and downloaded the proper firmware images for our SDR board.

Figure 3.21 shows the UHD driver detecting and the USRP B210 board used and loading the

proper firmware.

gNB-Host:$ uhd_config_info −−version
UHD 4.4.0.HEAD−0−g5fac246b
gNB-Host:$uhd_find_devices

[INFO] [UHD] linux; GNU C++ version 9.4.0; Boost_107100; UHD_4.4.0.HEAD−0−
g5fac246b

[INFO] [B200] Loading firmware image: /usr/local/share/uhd/images/usrp_b200_fw

.hex...

− − − − − − − − − − − − − − − − − − − −
− − UHD Device 0

− − − − − − − − − − − − − − − − − − − −
Device Address:

serial: 307B5FD

name:

product: B210

type: b200

Figure 3.21: UHD discovering the connected USRP B210 board and loading respective firmware.

3.4.3 OAI 5G UE

Similar to the OAI gNB software, the OAI UE software is intended to be launched from an appli-

cation running in the Host OS. However, even after trying multiple versions and branches of the

OAI UE software on three different versions of the Ubuntu OS (18.04, 20.04, and 22.04), which

were recommended on different tutorial implementations on the OAi Wiki, we were unable to get

the OAI UE fully operational using the intended application.

42 System Specification, Design, and Implementation

The OAI UE software uses Linux TUN interfaces, which are used in order to create an IP

interface with user space programs [51]; they allow for IP communications between the Host OS

running the UE software and the 5G Network. However, in our implementation, despite the UE

successfully registering itself in the Core Network, the TUN interface was unable to be created by

the software, preventing sending and receiving IP traffic.

In order to overcome this, we used a Docker container to deploy the UE. Besides the Docker

containers offered by OAI to implement the Core Network, OAI also has available two additional

Docker containers to implement the gNB and UE. These two containers are only mentioned and

used when deploying the 5G Network in rfsimulator mode. Rfsimulator allows emulating a radio

interface, by carrying the time-domain samples between UE and gNB over a network interface,

without the need for SDRs, which is useful to test the 5G network using just one computer and

without the influence of the wireless channel medium. Moreover, if we analyze the entrypoint.sh

script for the UE Docker container, we can conclude that the software was compiled in order to

also allow for deployment with radio units such as the USRP boards. In order to enable the option

for the OAI UE Docker container to use the USRP boards, we need to add an environment variable

to the docker-compose.yaml file that launches the UE Docker container, give the container access

to the Host USB ports, in order for the container to communicate with the USRP B210 board, and

deploy the container on the Host’s network, instead of a Digital Docker network, in order for the

Container to create a Linux TUN interface on the Host OS. These necessary changes to the OAI

UE docker-compose.yaml are depicted in Figure 3.22.

version: ’3.8’

services:

oai−nr−ue:
image: oaisoftwarealliance/oai−nr−ue:develop
privileged: true

container_name: rfsim5g−oai−nr−ue
environment:

(...)

USE_B2XX: 1

(...)

devices:

− ’/dev:/dev’

network_mode: host

Figure 3.22: Necessary changes to allow the UE container to access the USRP B210 SDR board.

Besides these changes for using the USRP board, we also need to set the UE SIM values to

the same values that were registered in the MySQL database at the Core Network (cf. Figure

3.16); otherwise, the UE is not able to authenticate itself in the Core Network, since the SIM

details are not registered. To do this, we also need to add environment variables to the OAI UE’s

docker-compose.yaml file with the IMSI, associated key, and OPc values, as shown in Figure 3.23.

3.4 System Implementation 43

version: ’3.8’

services:

oai−nr−ue:
(...)

environment:

FULL_IMSI: ’2089500007487’

FULL_KEY: ’fec86ba6eb707ed08905757b1bb44b8f’

OPC: ’C42449363BBAD02B66D16BC975D77CC1’

Figure 3.23: Defining the proper UE SIM details values for the IMSI, associated key, and OPc.

If the OAI UE SIM details do not match the SIM details registered in the Core Network

database, the Core Network rejects the UE registration request as depicted in the Wireshark log of

Figure 3.24, making it impossible for the UE to connect and send/receive traffic through the 5G

Network.

Figure 3.24: Core Network rejecting the UE registration request due to non-matching UE SIM
details.

3.4.4 FlexRIC

The FlexRIC application is deployed on the same computer as the OAI 5G Core Network. After

applying the FlexRIC patch to the OAI gNB software, as mentioned in Section 3.4.2, installing the

required dependencies, and compiling the FlexRIC software, it is only necessary to indicate the

IP address to connect to the FlexRIC, both in the FlexRIC Host computer (the Intel NUC) and the

gNB Host computer (the HP Elitedesk). This file is located in /usr/local/etc/flexric/flexric.conf and

its default value is the Loopback Interface address (127.0.0.1). The IP address should match the

44 System Specification, Design, and Implementation

FlexRIC Host’s IP address in the Wi-Fi interface. If this change is not performed in the FlexRIC

Host, the FlexRIC application is launched with the IP address of the computer’s Loopback Inter-

face address, making it unreachable from outside networks. If this change is not performed in the

gNB Host, the gNB will send the E2 Setup Request packets to its own Loopback interface address,

which also makes the connection between gNB and FlexRIC impossible. The necessary change to

the /usr/local/etc/flexric/flexric.conf file in both computers is depicted in Figure 3.1.

[NEAR−RIC]
NEAR_RIC_IP = 10.42.0.16

#NEAR_RIC_IP = 127.0.0.1 The default IP was defined to the loopback interface

Listing 3.1: Configuring FlexRIC’s IP in the configuration file of FlexRIC Host and gNB Host.

3.5 Summary

To implement the proposed solution we divided the system into three logical units. The first one

consisted of the OAI 5G Core Network, FlexRIC, and Mobility Management xApp, which were

deployed on an Intel NUC mini-computer. The second used an HP EliteDesk to host the Robotic

Control application and the OAI gNB software connected to a USRP B210 SDR board, placed on

top of a Unitree GO 1 robot acting as a Mobile Robotic Platform. The third acted as a UE, by

hosting the OAI 5G UE software on an MSI Laptop, which was also connected to a USRP B210

SDR board.

The Intel NUC was connected to the HP EliteDesk via a Wi-Fi link, allowing for the gNB

to communicate with the Core Network using the N2 and N3 interfaces, and to communicate

with the FlexRIC via the E2 interface. This connection is also used by the Mobility Management

xApp, in order to send mobility control commands to the Robotic Control application, through the

proposed MCI interface, which in turn converts them into actual movement instructions for the

GO 1 robot. The connection between the UE was ensured by a 5G radio connection between the

SDRs connected to the UE and gNB. It is important to ensure that every parameter is correctly

configured in the Core Network, FlexRIC, gNB, and UE, otherwise one or more aspects of the

proposed solution might not work as intended.

It is worth noting that other work, not presented in this Chapter, was conducted but not im-

plemented in the final proposed solution, due to performance or stability issues. In Appendix A,

we present some of that work, as well as the reasons for not being included in the final proposed

solution.

Chapter 4

System Validation

This chapter focuses on the validation of the proposed solution. Section 4.1 presents the testing

methodology. Section 4.2, discusses the performance of the Wi-Fi backhaul link. Sections 4.3

to 4.7 focuses on testing and validating the correct functioning of the individual components of

the proposed solution, as well as their correct interoperability. Section 4.8 presents the system

validation in a real-world use case scenario. Finally, in Section 4.9, we analyze and discuss the

achieved results.

4.1 Metodology

In the system validation phase, a first test was performed, in order to ensure that the Wi-Fi link

between gNB and Core Network was not the bottleneck from the network performance point

of view. The subsequent tests focused on validating the components of the 5G Network, both

individually and jointly, in order to ensure their interoperability. The order in which the tests

were conducted is important, as the system deployment must follow a specific order, starting

by deploying the Core Network and FlexRIC, followed by the gNB, and finally the UE, Robotic

Control application, and Mobility Management xApp. The final test aimed at evaluating the system

in a realistic scenario, in order to validate a typical use case for the proposed solution.

The testing methodology consisted of first describing the test itself and the setup used to per-

form it. This was followed by a functional validation, using tools such as ping and Wireshark, in

order to check for connectivity and ensure the proper protocols and interfaces were being used.

Finally, when applicable, we assessed the network performance by using the iPerf tool [52] to

measure throughput and packet loss ratio.

4.2 Performance Assessment of Wi-Fi based Backhaul Link

This test was performed in order to ensure that the connection between the UE and an external

Data Network was not constrained by the Wi-Fi based backhaul link, used to connect the gNB to

45

46 System Validation

the Core network. This would happen if the throughput achievable on our Wi-Fi based backhaul

link was lower than the one achieved in the 5G link between UE and gNB.

In order to ensure that the backhaul link does not lead to a potential bottleneck, we performed

two tests. First, we measured, using the iPerf tool, the throughput achieved in the Wi-Fi based

backhaul link established between the Intel NUC and HP EliteDesk computers. Second, we de-

ployed a 5G Network to assess potential bottlenecks associated with the design of the proposed

solution.

In this test, we deployed the Core Network on the same computer as the gNB, to avoid any

bottleneck between these two components, and used a cable-based coaxial connection between a

UE and a gNB. Figure 4.1 depicts the test setup used.

MSI Laptop
(Ubuntu 18.04)

USRP B210USRP B210

OAI-UE

USB 3.0

HP EliteDesk
(Ubuntu 20.04)

OAI-gNB

USB 3.0

OAI 5G
Core Network

N2 & N3

5G Link Using Coaxial Connection

Figure 4.1: Architecture of the deployed scenario, in order to test maximum throughput in the 5G
link.

The decision to connect the SDRs via a coaxial cable-based connection instead of antennas was

made in order to ensure the best case scenario, avoiding performance losses caused by distance

and over-the-air unpredictable interferences. The SDRs connected by a coaxial cable are depicted

in Figure 4.2.

Figure 4.2: SDRs connected using coaxial cables.

The iPerf test results between a UE and a Data network using the test scenario in Figure 4.1

are depicted in Table 4.1.

4.3 Core Network 47

Connection Type DL (Throughput; Packet Loss Ratio) UL (Throughput; Packet Loss Ratio)
UDP 24.52 Mbit/s; 2,89% 8.49 Mbit/s; 7.43%
TCP 12.39 Mbit/s; Non-Applicable 8.64 Mbit/s; Non-Applicable
Table 4.1: iPerf results between UE and Data Network using a coaxial connection.

The iPerf test results for the Wi-Fi link established between the HP EliteDesk (hosting the

gNB) and the Intel NUC (hosting the Core Network) are depicted in Table 4.2.

Connection Type DL (Throughput; Packet Loss Ratio) UL (Throughput; Packet Loss Ratio)
UDP 34.6 Mbit/s; 2.9% 37.0 Mbit/s; 2.6%
TCP 32.3 Mbit/s; Non-Applicable 31.4 Mbit/s; Non-Applicable

Table 4.2: iPerf results for the Wi-Fi based backhaul link established between the Intel NUC and
the HP EliteDesk.

The results show the throughput achieved with the Wi-Fi based backhaul link used is higher

than the one achieved in the link established between the UE and the gNB using a coaxial ca-

ble, with some margin. This means that the Wi-Fi based backhaul link used does not limit the

throughput obtained in the access network.

4.3 Core Network

This test is aimed at ensuring that the Core Network was working properly. A 5G Core Network

with problems potentially causes most of the other components of the 5G Network to not be able

to connect to the 5G Network.

To deploy the OAI 5G Core Network, we deployed the Docker containers by running the com-

mand in Figure 4.3 from the folder containing the docker-compose.yaml, configured as explained

in Section 3.4.1. The -d flag was used to run the containers in detached mode, running them in the

background without printing the output to the terminal.

Core-Network-Host:/Core_network_folder$ docker compose up −d

Figure 4.3: Deploying the OAI 5G Core Network, using Docker containers.

After waiting some time for the Docker containers to initialize, we checked their status to

ensure that they were working in a healthy state, as shown in Figure 4.4.

48 System Validation

Core-Network-Host:$ docker ps

(output truncated)

IMAGE STATUS

oaisoftwarealliance/trf−gen−cn5g:latest Up 52 seconds (healthy)

oaisoftwarealliance/oai−spgwu−tiny:v1.5.0 Up 52 seconds (healthy)

oaisoftwarealliance/oai−smf:v1.5.0 Up 53 seconds (healthy)

oaisoftwarealliance/oai−amf:v1.5.0 Up 53 seconds (healthy)

mysql:8.0 Up 55 seconds (healthy)

oaisoftwarealliance/oai−nrf:v1.5.0 Up 54 seconds (healthy)

Figure 4.4: Status of the Core Network Docker containers.

Then, we verified that all the containers had IP-based connectivity using the interfaces created

in the Host OS (cf. Figure 3.14). For that purpose, we used the ping tool from each interface to

each Core Network container IP according to Table 3.2; the results are depicted in Figure 4.5.

Core-Network-Host:$ ping −I demo−oai 192.168.70.130

64 bytes from 192.168.70.130: icmp_seq=1 ttl=64 time=0.062 ms

Core-Network-Host:$ ping −I demo−oai 192.168.70.131

64 bytes from 192.168.70.131: icmp_seq=1 ttl=64 time=0.065 ms

Core-Network-Host:$ ping −I demo−oai 192.168.70.132

64 bytes from 192.168.70.132: icmp_seq=1 ttl=64 time=0.059 ms

Core-Network-Host:$ ping −I demo−oai 192.168.70.133

64 bytes from 192.168.70.133: icmp_seq=1 ttl=64 time=0.100 ms

Core-Network-Host:$ ping −I demo−oai 192.168.70.134

64 bytes from 192.168.70.134: icmp_seq=1 ttl=64 time=0.054 ms

Figure 4.5: Pinging NRF, MySQL Database, AMF, SMF and UPF respectively from Host OS
interface (output truncated).

Since all the pings were successful, we conclude that the 5G Core Network was fully opera-

tional. An additional check that can be made is to use Wireshark in order to analyze the packets

being exchanged in the demo-oai interface, which allows for connectivity between the different

5G Docker containers. For illustrative purposes, in Figure 4.6, we can see the PFCP protocol,

described in Section 2.2 which is used, in this case, for a heartbeat message exchanged between

the SMF and the UPF.

4.4 FlexRIC 49

Figure 4.6: 5G Core Network packet exchange, including PFCP Heartbeat messages exchanged
between the SMF and the UPF.

4.4 FlexRIC

Regarding the FlexRIC application, when it is deployed, no additional test is necessary beyond

confirming the successful launch of the application, as shown in Figure 4.7. When launched, the

FlexRIC application remains on standby and waits for any incoming connection requests from an

E2 Node, such as the gNB, as depicted in Figure 3.4.

Core-Network-Host:/path_to_flexRIC/build/examples/ric$./nearRT−RIC
Setting the config −c file to /usr/local/etc/flexric/flexric.conf

Setting path −p for the shared libraries to /usr/local/lib/flexric/

[NEAR−RIC]: nearRT−RIC IP Address = 10.42.0.16, PORT = 36421

[NEAR−RIC]: Initializing

(...)

Figure 4.7: Initializing the FlexRIC executable (output truncated).

When the FlexRIC executable is launched without errors, and with the Host OS IP address

assigned, then it is fully operational and the gNB can be started.

4.5 gNB

To ensure the correct functioning of the gNB, it should be connected and properly registered in

the 5G Core Network. Moreover, the gNB should be connected to the FlexRIC and registered as

50 System Validation

an E2 node. Ensuring these connections is important because the connection to the Core Network

and the FlexRIC are separate and independent from each other; if one is working as expected, it

does not imply that the other is also working correctly.

In order to assess the connectivity between the gNB and the 5G Core Network, we need to

check the connection between the gNB Host and the AMF and UPF, as these are the components

of the Core Network that gNB needs to communicate with. We tested this by pinging these com-

ponents from the Host OS of the gNB, as shown in Figure 4.8, after configuring the needed route

(cf. Figure 3.17).

gNB-Host:$ ping 192.168.70.132

64 bytes from 192.168.70.132: icmp_seq=1 ttl=64 time=8.01 ms

gNB-Host:$ ping 192.168.70.134

64 bytes from 192.168.70.134: icmp_seq=1 ttl=64 time=6.54 ms

Figure 4.8: Pinging AMF and UPF, respectively, from gNB Host (output truncated).

After connectivity with the Core Network has been established, the OAI 5G gNB executable,

nr-softmodem, was executed. The command used to launch the gNB is depicted in Figure 4.9.

The -O flag indicates that the program should use a configuration file, which is specified by the

file’s location. The –gNBs.[0].min_rxtxtime 6 flag specifies that a minimum time for transmitting

and reading samples should be used. The –sa flag states that the gNB runs in Standalone mode.

The -E flag specifies that the program should use 3/4 of the sampling rate frequency. Finally, the

–continuous-tx flag configures the gNB to not disable the transmission even if the reception is

activated; according to OAI, this is used to increase stability, because some USRP devices create

self-interference when the transmission is disabled [53].

gNB-Host:$ sudo ./nr−softmodem −O ../../../targets/PROJECTS/GENERIC−NR−5GC/CONF
/gnb.sa.band78.fr1.106PRB.usrpb210.conf −−gNBs.[0].min_rxtxtime 6 −−sa −E
−−continuous−tx

Figure 4.9: Deploying OAI 5G gNB.

After launching the gNB, if the software does not print errors, the gNB starts transmitting and

receiving radio signals via the SDR equipment. It is possible to confirm if the SDR USRP B210

board is working correctly by verifying if the transmission and reception Light-Emitting Diodes

(LED) light up. If that is the case, as depicted in Figure 4.10, the OAI gNB software is working

properly with the SDR.

4.5 gNB 51

Figure 4.10: USRP B210 SDR transmitting and receiving radio signals, as indicated by the green
and red LEDs, on the top right hand-side.

The fact that the gNB’s SDR is working, does not mean that it is correctly integrated on the

5G Network. In order to check if the gNB was successfully registered in the Core Network, we

can observe the packets being exchanged, using Wireshark. As shown in Figure 4.11, the gNB

successfully registered itself with the AMF via the N2 interface.

Figure 4.11: gNB successfully registered with the AMF via the N2 interface.

The last test aimed at ensuring that the remaining gNB functions were working as expected,

mainly the E2 node. For that purpose, we checked the success of the connection between the

gNB’s E2 node and FlexRIC. To validate this we observed the output from the terminal where

FlexRIC was running and verified that the gNB’s E2 was registered with the FlexRIC, as depicted

in Figure 4.12.

52 System Validation

(...)

fd created with 6

Received message with id = 3584, port = 20459

[E2AP] Received SETUP−REQUEST from PLMN 208.95 Node ID 3584 RAN type ngran_gNB

[NEAR−RIC]: Accepting RAN function ID 142 with def = MAC_STATS_V0

[NEAR−RIC]: Accepting RAN function ID 143 with def = RLC_STATS_V0

[NEAR−RIC]: Accepting RAN function ID 144 with def = PDCP_STATS_V0

(...)

Figure 4.12: gNB’s E2 node registering itself with the FlexRIC (output truncated).

We can also verify that the E2 connection between the gNB and the FlexRIC was successful

by observing the Wireshark captures between the two components, which are depicted in Figure

4.13.

Figure 4.13: Successfull E2 Setup Request and Response between the gNB’s E2 node and the
FlexRIC.

4.6 UE

To test the proper functioning of the UE we ensured not only its connection to the 5G network but

also run performance tests.

Due to the fact that we implemented the OAI 5G UE as a Docker container, we launched and

checked its status as we did for the Core Network (cf. Figure 4.3), but from the UE Host computer.

If the container is running in a healthy state, we need to make sure that the SDR acting as the UE

can establish a connection with the SDR connected to the gNB. For this, we placed them in radio

range of each other until the LED lights on the UE’s SDR lit up in the same way as those on the

4.6 UE 53

gNB, as we demonstrated in Figure 4.10. When the LEDs on both SDRs light up, the SDRs are

synchronised and can start exchanging information.

An additional step in order to validate the UE’s correct functioning is to check if it is registered

with the 5G Core Network; this can be verified by using Wireshark, as depicted in Figure 4.14.

Figure 4.14: Successfull UE registration in the Core Network with AMF.

After the UE is registered in the Core Network, it is assigned an IP address to send and receive

IP traffic through the 5G network. This IP address can be checked as depicted in Figure 4.15

UE-Host:$ ifconfig

oaitun_ue1: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1500

inet 12.1.1.151 netmask 255.255.255.0 destination 12.1.1.151

Figure 4.15: IP TUN interface for the OAI UE created on Host computer (output truncated).

To test if the UE’s interface is working properly, we can ping the external DN, as shown in

Figure 4.16. If the ping test is successful, this means the UE has connectivity to outside networks

using the 5G Network.

UE-Host:$ ping −I oaitun_ue1 192.168.71.135

64 bytes from 192.168.71.135: icmp_seq=48 ttl=63 time=17.8 ms

Figure 4.16: Ping to external DN from UE (output truncated).

Moreover, we inspected the Core Network using Wireshark. In Figure 4.17, we can observe

the GTP protocol being used to encapsulate the Internet Control Message Protocol (ICMP) packets

54 System Validation

from the UE to the external DN. The ICMP packets from the UE to DN are encapsulated by the

GTP protocol and sent to the UPF, which in turn de-encapsulates them and forwards data traffic to

the DN.

Figure 4.17: ICMP packet, sent from UE to external DN, encapsulated by the GTP protocol.

In order to access the maximum throughput that a UE can achieve using the developed 5G

network, we performed both TCP and UDP tests using the iPerf tool. The results for throughput

and Packet Loss Ratio between the UE and the external DN are depicted in Table 4.3. In the case

of the DL tests, the iPerf server is launched on the UE and the iPerf client is launched on the DN;

this order is changed for the UP tests.

Connection Type DL (Throughput; Packet Loss Ratio) UL (Throughput; Packet Loss Ratio)
UDP 22.6 Mbit/s; 8.65% 4.2 Mbit/s; 0%
TCP 3.64 Mbit/s; Non-Applicable 4.11 Mbit/s; Non-Applicable

Table 4.3: iPerf results between UE and DN in the proposed testbed.

Although the throughput results are low, especially using a TCP connection, they show that

there is 5G connectivity ensured by the developed network.

4.7 Mobility Management xApp

After all other components of the 5G Network were deployed and fully operational, we assessed

the correct functioning of the developed Mobility Management xApp. In this test, we evaluated if

the xApp is able to obtain data from the E2 node on the gNB. For that purpose, the xApp needs to

communicate with the FlexRIC software, which allows generating an E2 subscription request and

sending it to the E2 node (cf. Figure 3.4): this process can be observed in Figure 4.18.

4.7 Mobility Management xApp 55

(...)

[iApp]: SUBSCRIPTION−REQUEST xapp_ric_id−>ric_id.ran_func_id 142

[E2AP] SUBSCRIPTION REQUEST generated

[NEAR−RIC]: nb_id 3584 port = 30142

(...)

Figure 4.18: FlexRIC receiving Subscription Request from the xApp (output truncated).

After the subscription request is made, the E2 node is able to send E2 indication messages

with the periodicity defined in our xApp, in this case: 10 ms. In our case, these E2 indication

messages contained the near-RT metrics regarding the MAC layer, as it was the service model we

subscribed to in the E2 Subscription Request, in order to acquire the values of the SNR, as well

as the transmitted and received MAC SDUs. These values are used by the algorithm described in

Section 3.2 running in the Mobility Management xApp, in order to determine a suitable position

for the Mobile Robotic Platform. The E2 Subscription Request to the E2 RAN node and the

following E2 Indication messages are shown in the Wireshark logs in Figure 4.19.

Figure 4.19: E2 Subscription Request and following E2 Indication messages.

The periodicity of 10 ms used for the E2 indication messages is defined within FlexRIC’s API,

with the other options being 1 ms, 2 ms, and 5 ms. We wanted to test how accurately the xApp

can receive these messages within the chosen interval of 10 ms, especially due to the fact that we

may need to consider additional delays imposed by the Wi-Fi link. This test is important, because,

in our Mobility Management xApp, the way we measure the average SNR over, for example, 1

second, is to calculate the average SNR value from 100 consecutive E2 indication messages (100

× 10 ms = 1 s)). This means that if there is a significant delay in the E2 indication messages, it

can impact the intended timings on the Mobility Management xApp.

56 System Validation

To that end, we conducted a test in which we measure the time it takes to receive 100 consecu-

tive E2 indication messages, which should amount to 1 s of total time. This test was conducted for

60 s, allowing us to measure a total of 6000 E2 indication messages. The test results are presented

in Table 4.4.

Value for 100 indication messages Average value for 1 indication message
Average value 1.023388 s 10.23388 ms
Highest value 1.213530 s 12.13530 ms
Lowest value 0.950583 s 9.50583 ms

Table 4.4: Test results for E2 indication messages, exchanged with a periodicity of 10 ms.

As we can see, using the Wi-Fi link, the expected time of 10 ms between each E2 indication

message, defined in FlexRIC’s API, is very close to the actual time taken to receive each E2

indication message.

4.8 Use Case Validation

To test the proposed solution implemented in a real system, we carried out a use case testing sce-

nario in an outdoor environment, following the architecture presented in Figure 3.3. For logistical

reasons, during this test, we changed the roles of the HP EliteDesk and MSI Laptop computers: the

MSI Laptop was used to deploy the gNB and Robotic Control application, and the HP EliteDesk

was used to deploy the UE. The deployment of the Core Network, FlexRIC, UE, and SDR board

is depicted in Figure 4.20.

Figure 4.20: Core Network, FlexRIC, UE, and SDR board deployed in the use case testing sce-
nario.

In Figure 4.21, we can see the SDR securely placed on top of the Mobile Robotic Platform.

4.8 Use Case Validation 57

Figure 4.21: The USRP B210 SDR board on top of the Mobile Robotic Platform.

In Figure 4.22, a wide view of the testing scenario used to conduct the tests is depicted.

Figure 4.22: Outdoor test scenario.

This test aimed at validating if the developed system worked as a whole, considering end-to-

end connectivity between the UE and an external DN, while the positioning of the Mobile RAN

was controlled autonomously by the Mobility Management xApp, in order to increase the channel

quality, especially in terms of the SNR values. For this, we placed the Mobile RAN approximately

one meter away from the SDR board connected to the UE, which was defined as the default

position of the Mobile RAN. The Mobile RAN was positioned to move parallel to the UE. After

initiating the 5G Network, UE, and Mobility Management xApp, we placed an obstacle between

the two SDR boards, which obstructed the line of sight between them: this obstruction made the

SNR of the connection drop. The test scenario is depicted in the diagram of Figure 4.23.

58 System Validation

Mobile RAN

USRP B210

Default PositionSecond Position

USRP B210OAI-UE

OAI-gNB

O
bstacle

Figure 4.23: Diagram depicting the placement of the Mobile RAN, UE, and obstacle, in order to
test the proposed solution.

The test was successful. When the obstacle was introduced between the SDR boards, the

Mobility Management xApp detected a reduction in the connection’s SNR to a value lower than 30

dB. Then, the xApp sent a control command for the Mobile RAN to move to the second position.

In the second position, due to the fact that there were no obstructions between the SDRs, the value

of the SNR was above 30 dB, and the Mobility Management xApp instructed the Mobile RAN to

stay in the second position.

Besides this, we also conducted another test scenario in which we placed the Mobile RAN in

a default position, further away from the UE, as depicted in Figure 4.24.

Mobile RAN

USRP B210

Default PositionSecond Position

USRP B210OAI-UE

OAI-gNB

Figure 4.24: Diagram depicting the placement of the Mobile RAN and the UE, in order to test the
implemented solution.

This test was also successful. When the Mobility Management xApp was launched, it imme-

diately detected that, in the default position, the value of the SNR was lower than 30 dB, due to

4.9 Discussion 59

the longer distance between the SDRs. Then, it sent a control command in order for the Mobile

RAN to move to the second position, which, being closer to the UE, led to an increase in the SNR

value to around 30 dB. Sometimes this value decreased below 30 dB, but since the value was still

greater than the value measured on the default position, the Mobility Management xApp instructed

the Mobile RAN to stay in the second position.

4.9 Discussion

The tests conducted allowed us to validate the deployed 5G Network and its performance. The

objectives of this dissertation were achieved by means of the autonomous control and positioning

of a mobile 5G RAN node, which is able to improve the quality of the 5G connection between the

UE and the 5G Network in different use case scenarios, such as dynamic obstruction of the line of

sight or variable distance between the UE and the gNB.

The use of the O-RAN architecture enabled open interfaces such as E2, which allowed us to

obtain the needed metrics from the RAN and use them in the proposed algorithm, employed in our

Mobility Management xApp to position the mobile RAN.

The first test performed allowed us to ensure that the Wi-Fi based backhaul link does not hinder

the performance results. The subsequent tests allowed us to validate each component of the 5G

Network, both individually and regarding their correct interoperation. Moreover, they allowed us

to assess the performance achieved with the proposed solution. The final test allowed us to validate

the proposed solution in a real-world environment while ensuring that the Mobility Management

xApp is able to autonomously reposition the mobile RAN in order to enhance the 5G connection

quality.

The experimental evaluation carried out allowed us to conclude that the proposed solution is

a valuable contribution when it comes to the implementation of mobility management functions

in a real-world 5G Network. By taking advantage of the O-RAN architecture, which provides the

flexibility to integrate novel xApps in the 5G network, a user can easily develop custom xApps

to manage and monitor the network, without the need to modify the individual components or

protocol implementations in the RAN.

60 System Validation

Chapter 5

Conclusion

5.1 Conclusions

The goal of this dissertation was to develop a private 5G Standalone RAN, based on the O-RAN

architecture, composed of a RAN node deployed on a mobile robotic platform, as well as a solution

to autonomously control the placement of the RAN by taking advantage of the benefits of the O-

RAN architecture. The proposed solution allowed us to overcome some of the limitations in

commercial network deployments.

On the one hand, the O-RAN architecture plays a crucial role in improving overall access

and interoperability in the RAN, by providing open and standardized interfaces. These interfaces,

such as the E2 interface, allow operators to control and extract metrics from the RAN via simple

and easy to develop xApps, without having to rely on closed proprietary systems. On the other

hand, the use of mobile RAN nodes, which can be dynamically controlled according to the users’

requirements and environment, allows 5G Networks to offer better QoS and QoE in multiple

scenarios. The ability to autonomously place the RAN nodes provides higher flexibility compared

to static network deployments, allowing the network to enhance the management of dynamic

conditions, such as unexpected bursts of traffic, dynamic obstacles, and variable distances between

the UEs and the RAN.

The proposed solution takes advantage of both the O-RAN architecture, and the concept of

mobile networks, and implements a 5G SA network architecture based on a mobile RAN, which

is placed and carried by a Mobile Robotic Platform. Due to the mobile nature of the RAN, our

solution implements a wireless-based backhaul connection in order for the gNB to establish com-

munications with the 5G Core Network and the Near-RT RIC. The open-source software used to

implement the 5G Core Network and RAN was Open Air Interface, while to implement the Near-

RT RIC we relied on the FlexRIC software. In order to enable 5G communications between the UE

and gNB, the hardware used was the USRP B210 SDR board. Finally, in order to autonomously

control the placement of the mobile RAN we developed a Mobility Management xApp.

The proposed Mobility Management xApp is able to collect metrics from the RAN, namely

the SNR values of the 5G connection, and compute control actions in order to better place the

61

62 Conclusion

Mobile Robotic Platform, increasing the connection quality between gNB and UE.

Throughout the development of the proposed solution, we faced a number of implementation

challenges. The first one was the time spent in order to get a functional 5G Network using OAI’s

software. OAI is very complex in terms of code and implementation, making it difficult to have a

5G Network working properly, because problems would arise even if just one configuration field

or flag is missing or not properly configured. This is exacerbated by the fact that some of its doc-

umentation lacks organization, and there is a general lack of certain pieces of information. Even

though the documentation present on the GitLab page of OAI has been updated multiple times

throughout the development of this dissertation, improving along the way, there are still numerous

problems with it, ranging from contradicting information on how to properly setup components of

the 5G Network, to complete lack of information regarding the necessity and purpose of certain

flags needed for the proper functioning of the software. Besides this, OAI software is also very

demanding in terms of hardware requirements, making the software hard to run and leading to

occasional crashes and errors.

Similarly to OAI, the documentation on FlexRIC’s Gitlab page is also very scarce. The main

problem in developing the proposed xApp was the fact that there was no documentation regarding

the metrics that can be extracted from the RAN and the corresponding variables within the FlexRIC

API. As such, we had to extensively analyze and understand most of the code base in order to

locate the structs that contain the required information. Despite being much less resource intensive

and more stable than OAI’s 5G software, there are some scenarios that can cause the FlexRIC

software to crash.

The SDRs used also posed an additional challenge to the implementation of the proposed

solution. This is mainly due to the problems related to sending/receiving samples to/from the

SDRs. This can be justified by many reasons, but especially due to the use of a USB connection.

During the execution of the software running on the 5G network nodes connected to the SDRs,

sometimes the software stopped receiving samples from the SDR device. Even relaunching the

software yielded the same result, and the only way to fix this problem was to unplug and replug the

USB connection between the SDR and the Host Computer. This behaviour caused the software to

crash or return errors.

The main challenges mentioned and other minor difficulties made it arduous to test the system

as a whole, due to time constraints, as well as stability problems: even if a single system com-

ponent malfunctioned or had stability issues, it would force us to stop testing and relaunch the

whole testbed. In spite of that, we were able to conduct the necessary tests in order to validate

the proposed solution. These tests included validating each component individually and also their

correct interoperability. Moreover, a test scenario using a real-world use case was carried out, in

order to validate the system as a whole

Although there are several improvements that can be made to the proposed solution, the ob-

jectives of this dissertation were fully achieved, resulting in three main contributions: 1) a Private

5G SA Network, based on the O-RAN architecture, deploying a mobile RAN node that can be

dynamically positioned for increased performance; 2) a Mobility Management xApp, capable of

5.2 Known Limitations and Future Work 63

autonomously controlling the placement of the mobile RAN, by analyzing the SNR values and

other metrics collected from the RAN, in order to provide better 5G connectivity to a UE, and

3) a baseline testbed implementation, which can be adapted to test other mobility management

functions and scenarios, including solutions based on ML.

5.2 Known Limitations and Future Work

Even though the present dissertation achieved all the proposed objectives, there are still some

system limitations and room for improvements.

The first limitation is related to the movement of the Mobile Robotic Platform. Currently, it is

not aware of any environmental information such as terrain hazards and obstacles, moving blindly

according to the controls of the Mobility Management xApp. One important improvement would

be to integrate a system using computer vision and sensing information, in order to provide the

Mobile Robotic Platform with information about its surroundings, preventing it from causing or

sustaining any type of damage. This information would also allow for the development of more

complex Mobility Management xApps.

The second limitation pertains to the computing units and SDR models used to implement

the proposed solution: the USRP B210 boards. Although being one of the SDR models recom-

mended by OAI, this model has limited performance compared to the other recommended models.

Besides that, the computing units used to run alongside this SDR model did not meet the hardware

requirements listed by OAI. Moreover, these boards also caused stability problems, mainly due

to the USB connection established with the Host computer, which caused problems transmitting

and receiving samples, even when no other USB devices were connected to the Host computer. In

future works, the use of more powerful computing units and more advanced USRP models em-

ploying Ethernet-based fronthaul connections, such as the X310, N300, N310, N320, and X410 is

recommended.

The third limitation is related to the use of the Wi-Fi link between gNB and Core Network.

In our case, and as demonstrated with the test in Section 4.2, the Wi-Fi connection used en-

sured enough capacity to meet the throughput requirements associated with the 5G RAN. With

better equipment, the performance enabled by the 5G technology is potentially orders of magni-

tude higher, and a Wi-Fi connection may not be suitable to act as a link between gNB and Core

Network, especially in environments with other networks sharing the medium. One possible alter-

native is to use Integrated Access and Backhaul (IAB)[3]. Besides exploring RAN splitting into

CUs and DUs, IAB enables wireless connectivity between a fixed base station, acting as an IAB-

donor, and a mobile IAB-node, through the NR Uu interface, making the entire connection from

UE to Core Network only rely on the 5G technology. This may be considered as part of future

work.

64 Conclusion

Appendix A

Functional Testing

This appendix is used to present some tests that were performed during the development of this

dissertation; they helped us to reach the final system that was used to deploy the proposed solution

(cf. Figure 3.3). These tests mainly helped us to eliminate deployment options that were initially

considered, developed, deployed, and tested but ended up not being used due to performance and

stability issues.

A.1 Not Deploying the gNB on the Intel NUC

The main design choice that needs to be addressed herein is the use of the Intel NUC to deploy

the Core Network instead of the gNB, as it would be a better fit for the latter – since the Intel

NUC is a mini-computer, it would easily be carried by the Mobile Robotic Platform alongside

the SDR board. This restricted us to using the HP EliteDesk as the Host for the gNB, which it

cannot be placed on the Mobile Robotic Platform. For this reason, we placed the USRP B210

SDR on-board the Mobile Robotic Platform, connected to the HP EliteDesk via USB 3.0. Despite

this inconvenience, this setup allowed us to validate the proposed solution as the radio unit that

propagates and receives the 5G radio signal is still mobile. From the point of view of the UE and

Core Network, there is no difference between our setup, and one where the entire RAN (gNB Host

computer + USRP B210 radio unit) is placed on-board the Mobile Robotic Platform.

This design choice was made due to the lack of computational power available in the Intel

NUC to deploy the OAI gNB. As shown in Figure A.1, during the runtime of the OAI gNB, the

program prints the character L multiple consecutive times. This happened especially when the

network was loaded with traffic exchanged between the UE and the Data Network. This character

is printed when the gNB software is unable to read a sample quickly enough from the SDR device,

leading to the loss of samples and communications errors.

65

66 Functional Testing

Figure A.1: gNB running in OAI NUC, which is unable to read samples from the SDR fast enough.

These performance issues were very rare with the HP EliteDesk while occurring almost con-

stantly in the Intel NUC, leading to successive communications errors, including when it comes to

control signalling messages.This implies disruption between UE and gNB, causing the UE to be

deregistered from the 5G Network, as shown in Figure A.2.

Figure A.2: UE being deregistered from the Core Network, due to the Intel NUC performance
limitations.

A.2 Not Splitting the gNB into CU and DU 67

This setup made it impossible to test the UE connection to the 5G network under load and led

us to rely on the HP EliteDesk to host the gNB instead.

A.2 Not Splitting the gNB into CU and DU

As explained in Section 3.3.1, one of the main reasons for choosing OAI over srsRAN to deploy

the 5G RAN was the fact that it allowed for RAN splitting, by separating the gNB into a CU and

DU. This deployment option was highly preferred because it makes the proposed solution more

compliant with the O-RAN architecture; ultimately, we decided not to use it for the final proposed

solution.

Initially, after installing the FLexRIC patch on the OAI software, when we tried to launch the

nr-softmodem software to deploy the gNB, with the option to deploy it as a CU or DU, the program

yielded an error, related to the ID of the CU or DU node passed to the library that implements the

E2 node. When the OAI gNB is launched in CU or DU mode, its RAN ID variable, used in the

code, is set to 0, but the E2 library implemented by FlexRIC expects a value different than 0, so

the program returns with an error. After some changes to the source code, we were able to develop

a small patch, which made it so that the RAN ID variable was different than 0, and the software

executed as expected, for both CU and DU deployments.

After being launched, both nodes worked as expected, the CU registering itself with the Core

Network, the DU registering itself with the CU, and both of them registering as E2 nodes with the

FlexRIC. However, whenever we launched an xApp, after the E2 subscription request reached the

CU, the software implementing the CU crashed with a segmentation fault. At this point, it became

clear that the FlexRIC software was not developed and tested considering OAI’s RAN split option.

Despite this setback, and due to the fact that the only metrics that were needed for the Mobility

Management xApp pertained to the MAC layer and can be obtained from the DU, we decided to

deploy a RAN based on a regular OAI CU and a DU implementing the FlexRIC’s patch and our

own patch. This deployment approach is depicted in Figure A.3.

Our Patch

OAI-gNB-DU
(2022_w41 branch)

FlexRICE2OAI-gNB-CU
(2022_w41 branch)

FlexRic Patch

F1

USRP B210

OAI 5G
Core Network

N2 & N3

Figure A.3: Deployment approach in which the gNB is split into CU and DU.

Even though this deployment worked successfully, there was one major issue with it. Some-

times, the Random Access Channel (RACH) Procedure, which takes place when a UE tries to first

connect to a gNB triggered failures, causing the software executing the DU to crash.

68 Functional Testing

Figure A.4: DU software crashing after UE initiated RACH Procedure.

This problem seemed to happen at random, approximately 80% of the time. Also, this problem

never occurred when executing the gNB as a single unit. Due to this, the already high instability

of the system when using a full gNB, and due to the limited time to test the system, we decided

not to split the RAN in our proposed solution, as it would make it even more difficult to test and

validate the proposed solution considering this new point of failure.

References

[1] IMT Vision – Framework and overall objectives of the future development of IMT for 2020
and beyond. Recomendation ITU-R M.2083, September 2015.

[2] System architecture for the 5G System (5GS), 3GPP TS 23.501 V16.14.0, September 2022.

[3] NR; NR and NG-RAN Overall description; Stage-2, 3GPP TS 38.300 V16.10.0, September
2022.

[4] NG-RAN; NG general aspects and principles , 3GPP TS 38.410 V16.4.0, October 2021.

[5] Technical Specification Group Core Network and Terminals; Interface between the Control
Plane and the User Plane Nodes , 3GPP TS 29.244 V16.11.0, March 2023.

[6] Faisal. C-RAN vs Cloud RAN vs vRAN vs O-RAN- A simple Guide. Available: https://
telcocloudbridge.com/blog/c-ran-vs-cloud-ran-vs-vran-vs-o-ran/.

[7] Michael Wang. 5G, C-RAN, and the Required Technology Breakthrough. Avail-
able: https://medium.com/@miccowang/5g-c-ran-and-the-required-
technology-breakthrough-a1b2babf774, June 2018.

[8] NG-RAN; Architecture description, 3GPP TS 38.401 V16.10.0, September 2022.

[9] O-RAN Architecture Description, O-RAN.WG1.O-RAN-Architecture-Description-v06.00,
March 2022.

[10] O-RAN Control, User and Synchronization Plane Specification 9.0, O-RAN.WG4.CUS.0-
v09.00, July 2022.

[11] O-RAN A1 interface: General Aspects and Principles 3.0, O-RAN.WG2.A1GAP-v03.00,
October 2022.

[12] O-RAN Near-Real-time RAN Intelligent Controller Architecture & E2 General Aspects and
Principles 2.02, O-RAN.WG3.E2GAP-v02.02, July 2022.

[13] O-RAN Control, User and Synchronization Plane Specification 10.0, O-RAN.WG4.CUS.0-
v10.00, October 2022.

[14] FlexRIC Wiki. Available: https://gitlab.eurecom.fr/mosaic5g/flexric/-/
wikis/Create-a-xApp.

[15] Unitree Go 1 Product Page. Available: https://shop.unitree.com/
products/unitreeyushutechnologydog-artificial-intelligence-
companion-bionic-companion-intelligent-robot-go1-quadruped-
robot-dog?variant42363559641321.

69

https://telcocloudbridge.com/blog/c-ran-vs-cloud-ran-vs-vran-vs-o-ran/
https://telcocloudbridge.com/blog/c-ran-vs-cloud-ran-vs-vran-vs-o-ran/
https://medium.com/@miccowang/5g-c-ran-and-the-required-technology-breakthrough-a1b2babf774
https://medium.com/@miccowang/5g-c-ran-and-the-required-technology-breakthrough-a1b2babf774
https://gitlab.eurecom.fr/mosaic5g/flexric/-/wikis/Create-a-xApp
https://gitlab.eurecom.fr/mosaic5g/flexric/-/wikis/Create-a-xApp
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog?variant=42363559641321
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog?variant=42363559641321
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog?variant=42363559641321
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog?variant=42363559641321

70 REFERENCES

[16] O-RAN Alliance. Available: https://www.o-ran.org/.

[17] Shunliang Zhang. An Overview of Network Slicing for 5G. IEEE Wireless Communications,
vol. 26, no. 3, pp. 111-117, June 2019. doi:10.1109/MWC.2019.1800234.

[18] 3GPP. Available: https://www.3gpp.org/about-us.

[19] ONF White Paper. Software-Defined Networking-The New Norm for Networks. April 2012.

[20] Erik Dahlman, Stefan Parkvall, and Johan Skold. 5G NR: The Next Generation Wireless
Access Technology. Academic Press, Inc., USA, 1st edition, 2018.

[21] Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3, 3GPP TS 24.501 ver-
sion 16.12.0, June 2022.

[22] NG-RAN; NG Application Protocol (NGAP) , 3GPP TS 38.413 V16.11.0, September 2022.

[23] General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U), 3GPP
TS 29.281 V16.2.0, March 2021.

[24] O-RAN Alliance, Who we are. Available: https://www.o-ran.org/who-we-are.

[25] O-RAN Use Cases and Deployment Scenarios, O-RAN White Paper, February 2022.

[26] ETSI. Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges.
October 2012.

[27] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melo-
dia. Understanding O-RAN: Architecture, interfaces, algorithms, security, and research chal-
lenges. February 2022. doi:https://doi.org/10.48550/arXiv.2202.01032.

[28] O-RAN Deployment Scenarios and Base Station Classes 3.0, O-RAN.WG7.DSC.0-v03.00,
October 2021.

[29] O-RAN Management Plane Specification 10.0, O-RAN.WG4.MP.0-v10.00, October 2022.

[30] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melo-
dia. ColO-RAN: Developing Machine Learning-based xApps for Open RAN Closed-
loop Control on Programmable Experimental Platforms, December 2021. URL: https:
//arxiv.org/abs/2112.09559, doi:10.48550/ARXIV.2112.09559.

[31] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melodia. SCOPE: An
Open and Softwarized Prototyping Platform for NextG Systems. In Proceedings of the
19th Annual International Conference on Mobile Systems, Applications, and Services, Mo-
biSys ’21, page 415–426, New York, NY, USA, June 2021. Association for Computing
Machinery. URL: https://doi.org/10.1145/3458864.3466863, doi:10.1145/
3458864.3466863.

[32] David Johnson, Dustin Maas, and Jacobus Van Der Merwe. NexRAN: Closed-Loop RAN
Slicing in POWDER -A Top-to-Bottom Open-Source Open-RAN Use Case. In Proceed-
ings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation &
CHaracterization, WiNTECH’21, page 17–23, New York, NY, USA, January 2021. Associa-
tion for Computing Machinery. URL: https://doi.org/10.1145/3477086.3480842,
doi:10.1145/3477086.3480842.

https://www.o-ran.org/
http://dx.doi.org/10.1109/MWC.2019.1800234
https://www.3gpp.org/about-us
https://www.o-ran.org/who-we-are
http://dx.doi.org/https://doi.org/10.48550/arXiv.2202.01032
https://arxiv.org/abs/2112.09559
https://arxiv.org/abs/2112.09559
http://dx.doi.org/10.48550/ARXIV.2112.09559
https://doi.org/10.1145/3458864.3466863
http://dx.doi.org/10.1145/3458864.3466863
http://dx.doi.org/10.1145/3458864.3466863
https://doi.org/10.1145/3477086.3480842
http://dx.doi.org/10.1145/3477086.3480842

REFERENCES 71

[33] Pratheek S. Upadhyaya, Aly S. Abdalla, Vuk Marojevic, Jeffrey H. Reed, and Vijay K.
Shah. Prototyping Next-Generation O-RAN Research Testbeds with SDRs, May 2022. URL:
https://arxiv.org/abs/2205.13178, doi:10.48550/ARXIV.2205.13178.

[34] Robert Schmidt, Mikel Irazabal, and Navid Nikaein. FlexRIC: An SDK for next-generation
SD-RANs. In ACM, editor, CONEXT 2021, 17th International Conference on Emerging
Networking EXperiments and Technologies, 7-10 December 2021, Munich, Germany (Vir-
tual Conference), Munich, 2021. doi:http://doi.org/10.1145/3485983.3494870.

[35] Ahan Kak, Van-Quan Pham, Huu-Trung Thieu, and Nakjung Choi. ProSLICE: An Open
RAN-based approach to Programmable RAN Slicing. In 2022 IEEE GLOBECOM, IEEE
Global Communications Conference, 4–8 December 2022, Rio de Janeiro, Brazil, Hybrid:
In-Person and Virtual Conference, Accelerating the Digital Transformation through Smart
Communications, Rio de Janeiro, December 2022.

[36] David Maia. Control and Positioning of a 5G Radio Access Node Deployed in a Mobile
Robotic Platform. Master’s thesis, Faculdade de Engenharia da Universidade do Porto, July
2022.

[37] Open Air Interface. Available: https://openairinterface.org/.

[38] srsRAN Project. Available: https://www.srslte.com/.

[39] OAI Project. Available: https://openairinterface.org/oai-5g-ran-
project/.

[40] srsRAN O-RAN gNB Overview. Available: https://docs.srsran.com/
projects/project/en/latest/knowledge_base/source/oran_gnb/
source/index.html.

[41] OSC Near-RT RIC Documentation. Available: https://docs.o-ran-sc.org/
projects/o-ran-sc-it-dep/en/latest/index.html.

[42] FlexRIC Repository. Available: https://gitlab.eurecom.fr/mosaic5g/flexric.

[43] OSC’s Near-RT RIC Installation and Requirements. Available: https:
//openaicellular.github.io/oaic/oran_installation.html.

[44] Intel NUC Board NUC5i5MYBE Specifications. Available: https://www.intel.com/
content/www/us/en/products/sku/84862/intel-nuc-board-nuc5i5mybe/
specifications.html.

[45] USRP B210 Product Page. Available: https://www.ettus.com/all-products/
ub210-kit/.

[46] USRP X310 Product Page. Available: https://www.ettus.com/all-products/
x310-kit/.

[47] OAI System Requirements. Available: https://gitlab.eurecom.fr/oai/
openairinterface5g/-/wikis/OpenAirSystemRequirements.

[48] W5084k Dipole Antenna Datasheet. Available: https://www.farnell.com/
datasheets/3812050.pdf.

https://arxiv.org/abs/2205.13178
http://dx.doi.org/10.48550/ARXIV.2205.13178
http://dx.doi.org/http://doi.org/10.1145/3485983.3494870
https://openairinterface.org/
https://www.srslte.com/
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/
https://docs.srsran.com/projects/project/en/latest/knowledge_base/source/oran_gnb/source/index.html
https://docs.srsran.com/projects/project/en/latest/knowledge_base/source/oran_gnb/source/index.html
https://docs.srsran.com/projects/project/en/latest/knowledge_base/source/oran_gnb/source/index.html
https://docs.o-ran-sc.org/projects/o-ran-sc-it-dep/en/latest/index.html
https://docs.o-ran-sc.org/projects/o-ran-sc-it-dep/en/latest/index.html
https://gitlab.eurecom.fr/mosaic5g/flexric
https://openaicellular.github.io/oaic/oran_installation.html
https://openaicellular.github.io/oaic/oran_installation.html
https://www.intel.com/content/www/us/en/products/sku/84862/intel-nuc-board-nuc5i5mybe/specifications.html
https://www.intel.com/content/www/us/en/products/sku/84862/intel-nuc-board-nuc5i5mybe/specifications.html
https://www.intel.com/content/www/us/en/products/sku/84862/intel-nuc-board-nuc5i5mybe/specifications.html
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/x310-kit/
https://www.ettus.com/all-products/x310-kit/
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirSystemRequirements
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirSystemRequirements
https://www.farnell.com/datasheets/3812050.pdf
https://www.farnell.com/datasheets/3812050.pdf

72 REFERENCES

[49] OAI Repository. Available: https://gitlab.eurecom.fr/oai/
openairinterface5g.

[50] UHD Wiki. Available: https://kb.ettus.com/UHD.

[51] Universal TUN/TAP device driver Documentation. Available: https://
www.kernel.org/doc/html/v5.8/networking/tuntap.html.

[52] iPerf Website. Available: https://iperf.fr/.

[53] Merge Request addressing the addition of the –continuous-tx flag to increase sta-
bility. Available: https://gitlab.eurecom.fr/oai/openairinterface5g/-/
merge_requests/1439.

https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://kb.ettus.com/UHD
https://www.kernel.org/doc/html/v5.8/networking/tuntap.html
https://www.kernel.org/doc/html/v5.8/networking/tuntap.html
https://iperf.fr/
https://gitlab.eurecom.fr/oai/openairinterface5g/-/merge_requests/1439
https://gitlab.eurecom.fr/oai/openairinterface5g/-/merge_requests/1439

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Problem
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 State of the Art
	2.1 5G Characterization
	2.2 5G System Architecture
	2.3 RAN Deployment Approaches
	2.4 O-RAN
	2.5 Related Work

	3 System Specification, Design, and Implementation
	3.1 System Specification
	3.2 Proposed Mobility Management xApp
	3.3 System Design
	3.3.1 Software Packages
	3.3.2 Hardware

	3.4 System Implementation
	3.4.1 OAI 5G Core Network
	3.4.2 OAI gNB
	3.4.3 OAI 5G UE
	3.4.4 FlexRIC

	3.5 Summary

	4 System Validation
	4.1 Metodology
	4.2 Performance Assessment of Wi-Fi based Backhaul Link
	4.3 Core Network
	4.4 FlexRIC
	4.5 gNB
	4.6 UE
	4.7 Mobility Management xApp
	4.8 Use Case Validation
	4.9 Discussion

	5 Conclusion
	5.1 Conclusions
	5.2 Known Limitations and Future Work

	A Functional Testing
	A.1 Not Deploying the gNB on the Intel NUC
	A.2 Not Splitting the gNB into CU and DU

	References

