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Abstract

The democratisation of record ready mobile devices, capable of audio and video transmission,
coupled with pervasive access to an internet connection, have contributed to an increase in Crowd-
sourced Live Journalism. Crowdsourced Live Journalism consists of amateur live video feed
recorded by the general public, used by a news company, thus providing ample video coverage
to many times uncovered situations. These live contents are usually destined to a mainstream
social network platform. Mainstream social networks usually rest on a centralised architecture,
that is, a data centre owned, operated and maintained by a given social network company. This
originates trust issues not only concerning user privacy (since there is no guarantee user data is
properly handled and not intentionally misused by the company) but also on trusting the content
created and shared on the platform, existing no way to assess contents creation and modification.

Another problem which arises from centralised cloud nature, is the high cost to attain good
user experience in large venues (sports stadiums, conference centres, concert halls). This happens
due to significant delays and limited available bandwidth when communicating with the central
server. Improving the current infrastructure by simply adding more resources would result in an
over costly solution.

Both of the aforementioned problems could be tackled by developing a decentralised Crowd-
sourced Live platform with an edge-cloud network as the underlying infrastructure, formed by an
interconnection of small servers placed near the end-user. This would contribute to the reduction
of the delay experienced by the user on content retrieval and creation, whilst also providing the
necessary flexibility to adapt to the platform’s growing needs.

In this work the related literature was analysed, particularly the fields of Cloud/Edge Com-
puting, virtualisation, monitoring, media and networking by the virtue of their contribution to the
project’s realisation.

Implementation followed, where a scalable Edge Cloud architecture was implemented, using
Kubernetes as the orchestration engine. It is capable of scaling accordingly to the platform’s cur-
rent needs and withstand some components failure, automatically recovering them. Furthermore,
an ad-hoc stream fallback recovery mechanism was developed, enabling a stream’s complete re-
covery in the event of its transcoder malfunction.

Lastly, the solution was validated in a real-world like scenario, attesting its efficacy for a real-
time live streaming platform. Better end to end latency was verified when compared to a traditional
central cloud approach. Along side with lowering central cloud’s bandwidth consumption.

Keywords: crowdsourcing, cloud computing, edge computing, edge architecture
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Resumo

A disseminação de dispositivos móveis equipados com câmaras, capazes de difundir áudio e vídeo,
em conjugação com uma constante ligação à internet, têm contribuído para o aumento do Jornal-
ismo Colaborativo ao Vivo. O Jornalismo Colaborativo ao Vivo, consiste na gravação de vídeo
amador em direto, usado por uma empresa noticiosa. Isto permite a obtenção de vastos conteúdos
em vídeo, que incidem sobre situações que de outra forma ficariam sem cobertura. Estes con-
teúdos têm muitas vezes como destino uma rede social convencional, normalmente assente sobre
uma arquitetura centralizada. Ou seja, uma arquitetura na qual o data centre é mantido, contro-
lado ou pertencente a uma empresa singular. Isto poderá originar problemas de confiança, não
apenas no que toca a dados pessoais de um utilizador (visto que não há qualquer garantia de que
estes são processados e armazenados de forma adequada), bem como no conteúdo criado e partil-
hado na plataforma, devido à falta de mecanismos para garantir a sua proveniência e historial de
modificações.

Outro problema emergente de um ambiente de cloud centralizada, é o elevado custo de propor-
cionar uma boa experiência de utilização em grandes recintos (estádios, centros de conferências,
salas de espetáculos). Isto ocorre devido a um atraso considerável e limite na largura de banda
existentes nas comunicações com o servidor central. Neste caso, a tentativa de melhoria da in-
fraestrutura, simplesmente adicionando mais recursos, resultaria numa solução deveras custosa.

Ambos os problemas acima referidos poderiam ser mitigados ao combinar uma plataforma de
Jornalismo Colaborativo ao Vivo, com uma arquitetura de edge-cloud como infraestrutura subja-
cente, formada por pequenos servidores interconectados, próximos do utilizador final. Isto iria
contribuir para a redução do atraso experienciado pelo utilizador na obtenção e criação de conteú-
dos, ao mesmo tempo permitindo a flexibilidade requerida para o crescimento da plataforma.

Neste trabalho, o estado de arte relevante foi analisado, particularmente os campos de Cloud/
Edge Computing, virtualização, monitorização, media e redes, pela sua determinante importância
para a elaboração do projeto. Seguiu-se a implementação, onde uma arquitetura de Edge Cloud
escalável foi concebida, usando o Kubernetes como “orquestrador”. Esta é capaz de escalar medi-
ante o estado da plataforma e de lidar com a falha de alguns componentes, recuperando-os auto-
maticamente. Ademais, um mecanismo ad-hoc de recuperação da transmissão foi desenvolvido,
permitindo que esta recupere completamente caso haja uma falha com seu transcodificador.

Por último, a solução desenvolvida foi validada aproximando-se de um ambiente real, ates-
tando a sua eficácia para uma plataforma de transmissão em tempo real. Verificou-se um menor
atraso ponta a ponta na transmissão comparativamente com uma solução mais tradicional de cloud
centralizada. Ao mesmo tempo, registou-se um menor consumo de largura de banda na cloud
central.

Keywords: crowdsourcing, computação na nuvem, computação edge, arquitetura edge
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“You must put your head into the lion’s mouth
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Chapter 1

Introduction

During the last decade, mobile devices have seen widespread adoption, which has contributed to

an increase in video traffic on the Internet. Cisco’s 2020 Global Networking Trends predicts video

traffic will represent 82% of all business network traffic by 2022 [8]. Cisco also foresees that 70%

of global population will have at least one mobile device by 2023 [7]. Such devices are equipped

with high definition camera sensors, capable of capturing what’s before its user with great fidelity.

Crowdsourced video streaming has been fostered by the ubiquitous existence of mobile de-

vices with sufficient internet connectivity. It can be seen as a shift on the content creation paradigm,

where regular users with consumer grade equipment stream content to the former Content Provider

(CP) (eg. news outlet, VOD provider, social network platform) [4]. Furthermore, live streams of-

ten need to be transcoded (reencoded in another encoding or bitrate) so they have the correct

encoding, that is, appropriate for the final media platform.

Cloud computing may seem a good paradigm to employ to realtime video encoding, however

it is usually located many hops away, far from the end-user. Realtime applications for instance:

video livestreaming, online gaming, autonomous driving, require a stable, high bandwidth, and

low latency internet connection, from client to server. Failing to meet said requirements, can

introduce significant delay, and interfere with its realtime nature, therefore leading to Quality of

Experience (QoE) degradation.

Live streams are commonly destined to mainstream social network platforms. Mainstream so-

cial networks usually rest on a centralised cloud architecture [14], commonly owned and managed

by a single entity, the social network company. This poses serious trust issues concerning user

privacy, as there is no guaranty user data is properly handled. Moreover, there is no way to assess

content created or shared on the platform, neither its creation nor modification.

Both of the aforementioned problems could be tackled by developing a decentralised Crowd-

sourced Live platform with an edge-cloud network as the underlying infrastructure, formed by an

interconnection of small servers placed near the end user. This would contribute to the reduction

of the delay experienced by the user on content retrieval and creation, whilst also providing the

necessary flexibility to adapt to the platform’s growing needs.
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2 Introduction

1.1 Context

This work focuses on investigating approaches and proposing a solution to combine the use of

centralised cloud infrastructures with the edge cloud paradigm, to overcome the above identified

problems. This was carried out in a corporate environment at MOG Technologies in Maia, Porto.

MOG Technologies is a company inserted in the broadcasting and professional multimedia indus-

try.

1.2 Motivation

The use of an Edge Cloud in large public venues would contribute to a better experience to end-

users of Crowdsourced Live platforms, reducing latency on content upload, at a lower cost than

what could be achieved by solely using a centralised solution, or a permanent solution on the event

site.

1.3 Objectives

The main goal of this dissertation is to devise and implement an architecture combining cen-

tralised cloud infrastructure with benefits of the edge cloud paradigm to support a crowdsourced

live streaming platform with the use case of live journalism. This architecture aims to be able to

better cope with the increase in client demand in large venues, scaling according to the social plat-

form’s needs. Lowering infrastructure costs is also expected when compared to permanent, non

scalable infrastructure on venue. The prototype is to be subjected to real-world like validation.

1.4 Document Structure

Apart from Chapter 1 this document has 4 more chapters.

Chapter 2 is the State of the Art, focusing on Cloud, Edge Computing, Virtualisation, Orches-

tration, Monitoring, Media and Networking.

Chapter 3 discusses a solution to the problem at hand, presenting and explaining its compo-

nents.

Chapter 4 details the validation environment, test list, our expectations and discusses the veri-

fied results.

Finally, in Chapter 5 conclusions are drawn regarding the whole document.



Chapter 2

State of the Art

This chapter focuses on key technologies and solutions found during the literature review. Topics

relevant to the creation of the architecture are discussed, namely: cloud computing, edge comput-

ing, virtualisation technologies, orchestration and monitoring.

Firstly, cloud and edge computing are reviewed as they are the cornerstone of the project.

Secondly, virtualisation technologies are addressed due to the fact they provide isolation of provi-

sioned resources, allowing for cloud scalability as well as resource monitoring. Thirdly, orches-

tration and monitoring are discussed by virtue of their ability to coordinate the different services

and assess their performance.

Finally, crowdsourcing, micro service architecture, media and networking topics are discussed

because of their pertinence in this project’s implementation, covering its many facets .

2.1 Cloud Computing

Cloud Computing is a paradigm that provides ubiquitous, convenient, on-demand computing re-

sources, allowing for its rapid provisioning or release with minimal service provider’s required

interaction [20].

The National Institute of Standards and Technology (NIST) defined a model that serves as a

baseline for cloud comparison and discussion, it is the defacto reference model 1.

NIST’s Cloud model has the following five essential characteristics:

• On-demand self-service A consumer can unilaterally request for computing capabilities,

such as server time and storage. This happens without the need for human interaction on

the service provider’s end.

• Broad Network Access Computing resources are accessible over the network through stan-

dard practices from a wide range of heterogeneous platforms.
1NIST’s statement on cloud computing definition - https://www.nist.gov/news-events/news/2011/1

0/final-version-nist-cloud-computing-definition-published [Last access, 4 February 2020]

3
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• Resource Pooling The provider resources are pooled to serve multiple tenants simultane-

ously, fulfilling their needs independently. The consumer has no control over the exact

location of the provided resources.

• Rapid Elasticity The model scales dynamically depending on the consumer’s current de-

mands. To the consumer appears as if the Cloud has unlimited resources.

• Measured Service Resource usage can be logged, providing a report to the consumer con-

taining metrics on all the measured resources.
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Figure 2.1: Cloud computing service models

Cloud Computing can fall into one of these service models [20], each of them having increas-

ingly more user (consumer) abstraction:

• Infrastructure as a Service (IaaS) Fundamental computing resources are provided to the

consumer, namely processing, storage and networking. The consumer is able to deploy and

run arbitrary software, from operating systems to applications. However, the underlying

cloud infrastructure is abstracted from the consumer by the provider, having the former no

control over it.

• Platform as a Service (PaaS) In this category, the consumer has control over the applica-

tion running on the platform. The platform encompasses the OS, libraries and the cloud

infrastructure.

• Software as a Service (SaaS) The consumer here does not manage any of the existing

layers, getting only to use the provider’s applications running on the cloud infrastructure.
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This is depicted in Figure 2.1, where the layers in blue are managed by the consumer and the

clear ones by the service provider.

2.1.1 Deployment Models

A private cloud is used exclusively by a single organisation and may be located on or off-premises.

Private clouds provide more precise control of the infrastructure, although many times being a

more costly solution. They can be operated by the owning organisation, or by a third-party com-

pany.

A community cloud is jointly used by a specific community of consumers, from companies

that share a common goal or policy. It may be owned, managed and operated by one or more

community organisations or by a third-party. Its location may be on or off-premises.

A public cloud is intended to be used by the general public. It may be owned, managed and

operated by a business, academic or governmental organisation. It exists on premises of the cloud

provider.

A hybrid cloud infrastructure can be defined as a composition of two or more distinct cloud

infrastructures, that remain unique identities but are bound by a communication layer enabling

data sharing.

2.1.2 Edge Computing

Edge Computing, is a paradigm where computation is performed at the edge of the network. It can

be defined as the presence of any computing and network resources located between data sources

and cloud data centres [24].

The Edge is more efficient than the cloud in some computational tasks, where data is produced

at the edge of the network, as it tries to shorten the introduced delay in communications from

user devices to the central cloud infrastructure [26]. The reduced latency, high bandwidth and low

jitter results in better user experience in applications that have real-time requirements or whose

end-users produce a large volume of data. Although it lacks the processing power of the cloud,

data processed at the edge would ease the central cloud, translating to a shorter response time and

lowering bandwidth consumed to the central cloud .

Considering the heterogeneity of consumer media devices, which support different formats

and possess different networking and computational restrictions, in order to the provide the best

QoE while keeping costs and bandwidth consumption at a minimum, media has been transcoded

at the edge before being sent to consumers. This way the Content Provider can possess only the

source version of the requested video, that will then be transcoded dynamically at the edge to a

suitable encoding for the viewer. Furthermore, the reverse also happens, as media production has

shifted, a crowd-source — a regular user with a handheld device and sufficient Internet connectiv-

ity that produces media — can live stream a considerable amount of data to the content provider,

afterwards to be transmitted to viewers [3]. In both these scenarios, media can be processed at the
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edge of the network, thus reducing bandwidth consumption and leveraging the proximity to the

consumer or producer.

2.1.3 Comparison

Cloud computing possesses seemingly infinite resources which can be rented on a per user basis,

depending on the user’s current needs making it formidable for high intensity and short lived

workflows, as the user can benefit from its huge computational power while not having to worry

with colossal expenses such an permanent infrastructure would entail.

Despite all its virtues, Cloud Computing is ill suited for realtime tasks, as the data centre is

many times far away from the consumer, what’s linked to considerable networking delay and low

bandwidth. Edge Computing appears and new alternative to a completely Central Cloud approach,

were less powerful servers are place a the edge of the consumer’s network, therefore enjoying LAN

proprieties, low latency and bandwidth. Tasks can be preprocessed at the edge, what’s called cloud

offloading and only the resulting data, relayed to the central data-centre.

2.2 Virtualisation

Virtualisation technologies are used in Cloud Computing, as they allow the isolation of provisioned

resources, cloud scalability and resource monitoring. Their use leads to lower resource waste, as

a host system shares its hardware resources with all the guest OSs.

These technologies are essential in a cloud environment by virtue of their ability to provide

fault isolation [25] — if a component fails it will not jeopardise others — as well as resource

isolation and cloud scalability. Some of the existing virtualisation models are discussed on the

following subsections.

2.2.1 Virtual Machines

Virtual Machines virtualise the whole stack from hardware to software. This allows great flex-

ibility when there is the need to emulate a machine using a different OS or a distinct hardware

architecture [22]. VMs are easy to replicate (in case of failure, or to attain redundancy), easy to

backup and to migrate to a different location. With VMs it is possible to replicate the functions of

multiple physical servers on a single physical machine.

However, there are some drawbacks to VM use like performance overhead and security is-

sues. The performance overhead is present when compared to running the application on a non

virtualised physical machine thus translating to an increase in execution time [25].

The Hypervisor or Virtual Machine Monitor is the main software that handles the creation and

execution of virtualised instances. It allocates the physical resources to the virtual instances and

provides them, a similar interface to the one present when they run on a real system. The Hypervi-

sor also has to have security guarantees, system isolation must be upheld, that is, a virtual machine

application shouldn’t be able to interact with other machines applications and resources [25].
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Fig. 3. Hypervisor.

Supervisor: A supervisor generally represents security isolation via a centralized en-
tity that exists outside the isolated program. Typically, the isolated program is viewed
as untrusted from the supervisor’s perspective and therefore requires monitoring.
Often, a supervisor is placed on the critical path of execution to intercept monitored
executions and enforce security isolation policies. A supervisor may encompass
enforcement that occurs in a kernel, hypervisor, or a virtualized environment like
the Java Virtual Machine. There are mainly three groups of techniques to enable
supervisor enforcement: (1) hypervisor, (2) library OS, and (3) container.

Hypervisors or virtual machine monitors (VMMs) can be software or hardware that
create and host multiple virtual machines (VMs). They supervise guest VMs and trap
access to critical resources such as protected instructions, memory, or CPU cycles [Chen
et al. 2007; Cheng et al. 2013; Barham et al. 2003; Zhao et al. 2005]. There are two
forms of hypervisors, namely type-1 and type-2, as shown in Figure 3. A type-1 hyper-
visor (bare-metal) runs directly on the host’s hardware. A type-2 hypervisor (hosted)
resides above a conventional host operating system and provides a full set of virtual
hardware resources to the above guest OS. Further, a type-2 hypervisor translates all
communications between the guest OS and the hardware. This translation may not
be direct; that is, in some cases accesses to virtual devices are trapped to a host OS
daemon that uses a device model to interpret the operation. The host OS daemon may
then use host-level system calls to implement updates to the model. While a type-1 hy-
pervisor’s TCB may only contain the hypervisor code itself, the type-2 hypervisor also
includes the underlying commodity OS in its TCB and hence provides weaker security
guarantees.

The Library OS approach implements the OS functionality on which an applica-
tion depends as a user-mode library [Engler et al. 1995; Ammons et al. 2007; Porter
et al. 2011; Baumann et al. 2013; Madhavapeddy et al. 2013; Tsai et al. 2014]. The
traditional OS kernel is refactored into a library, which implements only the OS sys-
tem calls needed by the application as library function calls [Porter et al. 2011]. That
is, a library OS usually executes with an interface restricted to a small set of host
kernel Application Binary Interfaces. Without a shared system call interface, mutu-
ally untrusted applications running on library OS have little opportunity to interfere
with each other. Therefore, by using library OS, the goal of securely isolating mutu-
ally untrusted, multi-process applications can be realized on the same host system,
along with better guarantees of system and application integrity. Figure 4 shows two
generic library OS architectures, which run on an unmodified host OSes or a hypervisor
respectively. Further, compared to the approach of isolating applications in separate
VMs, a library OS is lightweight and incurs far less performance overhead in terms of
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Figure 2.2: Hypervisor types [25]

There are two types of Hypervisors, bare-metal (type-1) and hosted (typed-2) as shown in

Figure 2.2. Type-1 runs directly on top of the physical machine’s hardware, on the other hand a

Type-2 Hypervisor rests on top of a conventional OS, what sometimes implies the provided guest

API is implemented by the means of the host’s own interface [25].

Some widely used Virtual Machine Monitors are: Xen (type-1), VMware Workstation (type-

2), KVM (type1 and type2), Virtualbox (type-2).

2.2.2 Container based

Containers are a lightweight alternative to hypervisor-based virtualisation, the latter abstracts hard-

ware, virtual device drivers and typically runs a full OS. In contrast, containers emulate only the

user space, as they are run on top of the host’s operating system kernel [22, 27]. The kernel and

OS libraries are shared between all the existing containers. Consequently, containers can achieve

higher density on a single host, as well as smaller disk images when compared to VMs [19]. In

addition, containers are extremely fast to instantiate and can also be quickly paused and resumed.

Conversely, containers also have some disadvantages, due to the shared kernel approach only an

OS that shares the same kernel as the host can be virtualised, i.e. a Linux host can’t run Windows

containers. Also, some of the isolation is lost, as the host kernel is exposed to the containers,

which can lead to a multi-tenant security problem [22, 19].

2.2.2.1 Docker

Docker [9] is an open-source container implementation that incorporates Linux namespaces and

control groups (cgroups) similarly to LXC (see Figure 2.3). It attempts to solve problems, affecting

development and deployment of many modern applications: multiple component applications,

each module’s own set of dependencies, inter-module dependency incompatibilities [21].
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A docker container is an isolated environment created from a docker image, a blueprint that

specifies the required dependencies, configurations and applications pertaining to said environ-

ment.

Contributing to its portability, docker images can be pushed (uploaded) and pulled (down-

loaded) from a registry. Images can be based on other docker images, sparing the need to redo

images from the ground up when only slight adjustments are required.
A Study of Security Isolation Techniques 50:13

Fig. 4. LibraryOS.
Fig. 5. Architectural overview of the
Docker container.

the CPU, memory, and storage. At the same time, library OSes maintain backwards
compatibility with applications [Porter et al. 2011] and support both single-process as
well as multi-process applications [Tsai et al. 2014]. Finally, library OSes facilitate the
secure and efficient isolation of third-party OS extensions [Baumann et al. 2013].

A container is a system abstraction developed to provide an alternate, restricted
execution environment to an application or a group of applications. For instance,
Linux Containers (LXC) [Helsley 2009] is an operating system level container-based
virtualization technology that enables running multiple isolated virtualized environ-
ments on a Linux host. LXC uses Linux namespaces for separating shared resources
among multiple containers as well as the host and provides applications the illusion
of running on separate machines. Currently, Linux implements six different types
of namespaces, namely mount namespace, UTS namespace, Inter-process communi-
cation (IPC) namespace, PID namespace, network namespace and user namespace.
Global system resources are wrapped into abstractions through namespaces and
applications that within the namespaces can only see the global resources associated
with that namespace. Therefore, applications are able to have a unique view on the
resources. Docker [Merkel 2014] is a container-based technique that incorporates
Linux namespaces and control groups (cgroups) [Menage 2004] to create independent
virtual environments. Docker containers are similar to LXC containers, and they
have similar security features. Specifically, Docker uses the PID namespace to provide
a contained application with its own virtual environment, where it can be the root
process (i.e., PID 0). At the same time, in terms of the global PID namespace of the host
OS, the container actually runs as a different PID and does not have systemwide root
privilege. Similarly, Docker also provides the container with its own custom network
namespace and file system. An application and its dependencies can be packaged
into a Docker container, enabling flexibility and portability. Figure 5 provides a
general overview of Docker’s components within the OS. Another example is FreeBSD
Jails [Kamp and Watson 2000], which partition the system into several independent
controlled environments to isolate untrusted processes.

Many security mechanisms may use sandboxing (e.g., intercept all system calls
from a sandboxed application), but may not necessarily be called containers. That is,
containers are an application of sandboxing, the wider technique of confining a security
principal (e.g., an application, a user) to a certain subset of the privileges available
in the operating environment. For instance, TxBox [Jana et al. 2011] inspects system
calls made by the program and its access to system resources and terminates program
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Figure 2.3: Architectural overview of the Docker container [25]

2.2.2.2 Docker Networks

Containers can communicate with each other, in a similar fashion to what virtual machines do,

via virtual networks. A container network can have one of the following types [10], translating to

different levels of isolation:

• None - Disables container networking, only keeps the Loopback inteface

• Bridge - This is the default network driver. A bridge network connects every container

belonging to the network as if the were in a LAN. They are isolated from the host machine.

• Host - Removes network isolation by connecting the containers to the host network. Only

works on Linux hosts.

• Overlay - Provides a network that can connect multiple Docker daemons, thus enabling

containers on different hosts to be easily connect for Swarm communication. Furthermore

no OS level routing is required to maintain an overlay network

• MacVlan - Assigns a MAC address to the container, treating it as a regular physical device.

Suitable for legacy applications which expect connection to a real physical network.

• Third-party network plugins - Non officially maintained network plugins, like CNIs (refer

to 2.5)
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2.2.3 Unikernel

Unikernel, sometimes referred to as LibraryOS, takes a different approach at virtualisation, as it

aims to be more secure and light, only having a slimmed down version of the a traditional OS

kernel. This kernel only includes the bare minimum to allow the core application execution, the

needed system calls and services. The minimalist take on the kernel results in a diminishing of the

attack surface, making it more secure [25]. The vast majority of Unikernel approaches don’t waste

CPU cycles emulating the timer interrupt unlike hypervisor which forgo energy doing nothing [5].

Manco et al. [19] introduce LightVM, a middle ground between hypervisors and containers, a

redesign of Xen’s toolstack optimised for performance, that can boot a minimalistic VM (uniker-

nel) in 2.3 ms. It has also almost constant creation and boot times, regardless the number of

running instances. In spite of its remarkable performance, it is not as easy to use (requiring more

development effort) and does not have the large tools ecosystem containers possess.

Braterrud et al. [5] present IncludeOS a minimal resource usage, single tasking unikernel,

providing developers a novel way to build C++ code directly into a virtual machine at compile-

time. It is easy to develop, only requiring a single include. When compiled, the build system

selects solely the needed services originating a single binary, which can then be booted with the

addition of a boot sector. IncludeOS can be virtualised using any x86 virtualisation environment.

The authors developed a simple DNS server that required 158 KB of persistent memory and

required 5 to 20% less CPU time, when compared to the same binary running on Linux.

2.2.4 Comparison

Virtual Machines emulate the complete hardware and software stack, what makes them highly

versatile as they are able to virtualise different hardware and their OS’s irrespective of the host’s

hardware architecture. They also possess a high degree of isolation, what makes VMs very se-

cure. However, these qualities also make Hypervisor based approaches, slower to start and more

resource intensive than the other two presented alternatives, hence not as suitable for a cloud sce-

nario.

Containers, many times called lightweight VMs, on the other hand only emulate the user

space, sharing the hosts kernel across every container. As a consequence, they are lighter than

conventional VMs, quicker to boot but are limited to virtualise operating systems compatible with

the host’s kernel.

Lastly, Unikernels, take a minimalist approach to virtualisation. They only have what is truly

crucial for the task they were designed for. They don’t even have a complete kernel as they only

really include the bare minimum system calls to perform their mission. This reduced attack surface

makes them more secure as there is less code which can exploited. Conversely, their benefits makes

them rather rigid, as they aren’t as easy to develop for.
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2.3 Orchestration

Managing a plethora of containers, many times scattered among distant and heterogeneous sys-

tems, is a very complex task. Orchestrators provide a solution for this problem, coordinating at

software and hardware level the deployment of a set of virtualised services, in order to fulfil certain

operational and quality objectives [27].

Service Level Agreements describe a fixed set of guaranteed states of the networks topology.

States are validated based on several metrics, namely: user requests, application services state

and resources usage. If validation fails, additional services may be started to redistribute the load,

resources may be scaled up and services can be mirrored or migrated to a different region in order

to increase availability.

Cloud orchestration can be split into two approaches

• Orchestration of software services Services are orchestrated as executable business pro-

cesses that interact both with internal and external SaaS services.

• Orchestration of hardware services It consists in computing resources management to

satisfy cloud provider’s operation requirements. Service Level Agreements are specified

and abided by dynamical workload and resource reallocation.

In order to combine a central cloud with an edge architecture, many services will have to be

coordinated, which can be simplified by using an orchestrator. After the service level agreements

are defined, the orchestrator will find the most advantageous service distribution so that the system

complies to the agreements. There are several orchestration platforms available in the market,

being some of the most prevalent ones introduced bellow.

2.3.1 Docker Swarm

Docker Swarm 2 , is an open source orchestration layer integrated with Docker. It provides cluster

management with a small learning curve to someone well acquainted with Docker. A cluster

is called a swarm and is composed by nodes, being each node an instance of the docker engine

running in swarm mode. There can be one or more nodes running in a physical computer, although

not common in production environments. A node can be of two types: a manager node or a worker

node.

Manager nodes perform orchestration and management functions required to maintain the

desired state of the swarm. A single leader is elected by manager nodes (using raft consensus

algorithm) to conduct orchestration tasks. In addition, a manager can also function as a worker

node, but it can be configured to perform only manager related tasks.

Worker nodes receive and execute tasks dispatched by manager nodes. It reports about the

task it has been assigned to manager nodes so that the manager can maintain the desired state of

each worker.
2Docker Swarm Website - https://docs.docker.com/engine/swarm/ - accessed 06 February 2020

https://docs.docker.com/engine/swarm/
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A service is a definition of the tasks to be executed, as it specifies the container image and the

commands to be executed inside running containers. It is submitted to the manager node, resulting

in dispatched tasks to worker nodes.

Moreover, a task cannot be reallocated to another worker and it can only have one of two

outcomes, succeed or fail.

A service can be from one of two types:

• Replicated Service A replicated service replicates a task a certain number of times, the

same as specified by the replication degree of the task.

• Global Service A replica of the task is run on each available node from the swarm.

2.3.2 Kubernetes

Kubernetes 3 , is an open source orchestration platform released by Google in 2014. It automates

the scheduling of application containers within and across available computer clusters, never tying

them to a specific machine. It is currently the most popular choice for container orchestration [16].

All its operation revolves around trying to achieve a desired state, specified in a declarative

way by the developer. A desired state, indicates what applications to run, the intended number of

replicas, what container images should be used and the amount of resources that should be made

available.

2.3.2.1 Cluster

A Kubernetes Cluster is composed by a master node and one or more worker nodes. The master

is tasked with managing the cluster, scheduling applications, maintain applications’ desired state,

rolling out updates and scaling applications if needed.

The worker node is a virtualised or physical computer in which the cluster applications are

run. Each node has got a kubelet, an agent responsible for managing its node and interacting with

the master node. The nodes communicate with master node using the Kubernetes API, exposed

by the latter. The same API can be also used by end users wanting to directly interact with the

cluster. A container run-time is also present in every worker node, allowing for container images

to be pulled from a registry, container setup and execution.

2.3.2.2 Pods

A pod is the smallest abstraction unit present in Kubernetes, it models a logical host wrapping one

or more application containers (see Figure 2.4). Some resources are shared between a given pod’s

containers, such as, storage volumes, a unique IP address and information about how to run each

container.

Pods run in nodes and can never be subdivided, that is, its containers can not be split and

reallocated to another Pod.
3Kubernetes Website - https://kubernetes.io - accessed 25 January 2020

https://kubernetes.io


12 State of the Art

Figure 2.4: Kubernetes - Pod [17]

2.3.2.3 Deployments

Deployments are stateless high-level objects when compared to Pods. Kubernetes tries to maintain

the desired number of replicas. The presence of replicas facilitates container image updates, while

some of Deployment pods are being updated, the rest stay running, thus enabling zero down time.

If the replicas are running in many nodes, the application can even withstand one of those nodes

unavailability.

2.3.2.4 StatefulSets

Contrary to deployments, which are stateless, therefore interchangeable, where consecutive re-

quests from the same client, can end-up in different pods, StatefulSets are needed in workflows

where state preservation matters. For instance, for database management systems, video transcod-

ing services, or truly any server which depends on state to perform its task.

In a statefulset, each pod receives a unique network name, which means traffic can be di-

rectly routed to a given pod, without depending on the volatile pod IP. If some pod happens to be

recreated, it will be given the same name of the defunct.

2.3.2.5 DaemonSets

DaemonSet pods run on every cluster node. They’re added and removed as nodes connect and

disconnect from the cluster. They are often used for:

• Logging purposes

• Container Networking pods

• Storage mounting

2.3.2.6 Services

Pods are ephemeral, they are started, migrated and killed. Hence, keeping track of their network

addresses presents some challenges.
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An abstraction is needed to decouple pods that require the services of another set of pods (a

sort of backend), without the need for the first to run its pods discovery service. A Service is

introduced as an abstraction which groups a logical set of Pods and a policy by with they can be

accessed. It also performs load-balancing on replicated pods.

There are four types of services, each of them is a superset of the previous:

• ClusterIP - used in intra-cluster communications, assigning the service a cluster internal IP.

• NodePort - exposes the service both internally (cluterIP) and externally to the cluster. The

service is accessible as <NodeIP>:<NodePort>. A free NodePort is assigned automatically

by the orchestrator but a particular one can be also specified, although this can lead to port

collisions.

• LoadBalancer - support for external load balancers in cloud providers.

• ExternalName - exposes a service using an arbitrary name (specified by the services config-

uration attribute, externalName) wich returns a DNS CNAME record. No proxy is used in

this type of service.

2.3.2.7 Persistent Volumes

Similarly to simple docker containers, pods have volumes — the location where data is stored

which isn’t part of the container image – that are bound to a specific pod’s lifetime if the pod is

deleted or migrated, its volume is lost. Difficulties arise in scenarios when data originated from

pods execution must be preserved.

As a solution to this issue, there are PersistentVolumes (PV). They supplant pods lifetime,

keeping its data safe. PVs can be statically provisioned (specified by the cluster admin), or dynam-

ically created. There are many Volume Plugins enabling the provisioning of volumes compatible

with different cloud providers and hosts. Pods interact with PVs mounting them, by the means

of a PersistentVolumeClaim. These can be mounted by several pods allowing for data exchange

(depends on volume plugin compatibility).

2.3.2.8 Pod discoverability - CoreDNS

CoreDNS is another CNCF project, which provides name server functionalities to a Kubernetes

Cluster. It enables pod discoverability through its service’s name, which is translated by a CoreDNS

pod for the service’s IP. The service then selects one of its backends, returning their podIP, thus

concluding the discovery process.

2.3.3 Comparison

Docker Swarm is an easy to use orchestrator, well integrated with the Docker ecosystem. Whith

its simplicity comes a rather reduced feature set.
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On the other hand Kuberbetes brings with it very compelling features. This combined with its

wide adoption and finer grained control makes it a great choice.

2.4 Monitoring

Monitoring in a cloud environment is really important, as it enables to evaluate and improve ser-

vices. It allows to measure several metrics based on resource usage, keeping a record of said

metrics, for future analysis. Those logs contain information used to optimise and calibrate the

system’s performance.

Some import concepts in monitoring are quality of service and quality of experience. Quality

of Service is a concept usually related to network performance based of common network metrics:

throughput, latency, bandwidth. On the other hand Quality of Experience is more complex, as it

takes into account more than a mere technical perspective, by considering the end-users’ subjective

perceived quality [28].

oMon is a monitoring framework developed by Li et al. [18]. It implements monitoring

functions on the VMM layer, thus being completely operating system agnostic, unlike many other

solutions which require the installation of monitoring agents inside guest OSs.

It has got five components: the process monitor, syscall monitor, disk I/O monitor, network

monitor and the correlation and analysis component (which uses data from the previously men-

tioned components to generate a comprehensive analysis).

Taherizadeh et al. [26] present a new approach in the field of Edge Cloud Monitoring, tailored

to real-time applications, such as, online gaming, telemedicine services, environment monitoring

systems and video conferencing.

The authors chose to monitor four QoS metrics, throughput, delay, jitter and packet loss, con-

sidered as important parameters in various video/audio streaming applications. Each Edge node

runs a monitoring service that collects the QoS parameters between itself and each client, after-

wards the data is sent to monitoring server. The monitoring server then reasons about the collected

data, taking action if a given user’s QoE could be improved upon the change of the node it is

connected to. Depending on the use case, the QoS parameters weight can be modified by altering

each of the associated scalars value.

2.5 Container Networks Interfaces

Container Network Interface is a generic plugin based specification for application containers

backed up by CNCF. Different CNI plugins present different solutions to the networking prob-

lem and interface configuration. It is commonly used with orchestrators, to provide or enhance
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networking capabilities. Flannel 4 , Calico 5 , Kube-router 6 and WeaveNet 7 are four CNCF

endorsed CNI plugins.

2.5.1 Flannel

Flannel is one straightforward solution which is simple to configure, capable, and suitable for

most environments [12]. It is developed by CoreOS and consists on a Layer 3 (OSI Layer Stack -

Networking) overlay network where each node is given a sub-network to administer and allocate

its pods within.

Flannel has two main modes of operation, UDP and VXLAN (the default)

Ellingwood [12] recommends its utilisation as a starting point, then changing to another CNI

if features needed are lacking.

2.5.2 Calico

Formally named Project Calico, it takes a OSI layer 3 approach using BGP (Border Gateway

Protocol) routing protocol, which can route packets between hosts through the physical layer, dis-

missing the need for extra encapsulation, present in an overlay based solution. It also implements

network policies, enabling pod network authorisation, based on an additive rule system.

Moreover, there is an hybrid solution combining Flannel VXLAN with Calico’s network pol-

icy, called Canal.

2.5.3 WeaveNet

Weave Net by Weavworks, creates a mesh overlay network [12].

It has UDP multicast support and includes a DNS Server. It also has Network Policies and

encrypted traffic support.

2.5.4 Comparison

Fannel (5500 stars, 1700 forks) is the most popular, based on Github repository stars and forks,

followed by WeaveNet (5900 stars, 582 forks), Calico (1900 stars, 496 forks) and Canal (634 stars,

94 forks) as of 2nd of July 2020.

Kapočius N. [16] tested the performance of CNI options: Flannel, Calico (VXLAN, IPIP, and

pure IP), Kube-router and Weave. The author came to conclusion that overlay techniques add

significant delay, while pure IP approaches (Calico IP, Kube-router) have less introduced delay

when compared to barametal tests. Flannel is the less delay inducing overlay plugin.

Duscatel A. has comprehensive CNI benchmarks with Kubernetes published online [11].

4Flannel GitHub repsitory - https://github.com/coreos/flannel/ - accessed 2 July 2020
5Project Calico Website- https://www.projectcalico.org/ - accessed 2 July 2020
6Kube-router Website - https://www.kube-router.io/ - accessed 2 July 2020
7WeaveNet Website - https://www.weave.works/oss/net/ - accessed 2 July 2020

https://github.com/coreos/flannel/
https://www.projectcalico.org/
https://www.kube-router.io/
https://www.weave.works/oss/net/
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Figure 2.5 shows Cilium correctly detecting the hosts configured MTU, and Flannel is just off

by 1%. Having the MTU auto detected eases the CNI’s instalation process.

Figures 2.7, 2.8 and 2.6 compare varied CNI’s performance on TCP, UDP and HTTP, three of

the most used protocols on the Web.

Duscatel concludes, that for low resource nodes, without advanced security features (encryp-

tion and network policy) — our validation cluster case — Flannel is the right choice as it is

performant and of easy configuration. Otherwise if improved security is a must, WeaveNet is the

one, however introducing a hefty overhead.

Flannel was chosen as the CNI for this project.

Figure 2.5: MTU auto-detected by CNIs [11]
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Figure 2.6: CNI HTTP bandwidth [11]

Figure 2.7: CNI TCP bandwidth [11]
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Figure 2.8: CNI UDP bandwidth [11]

2.6 Micro Service Architecture

Micro Service architecture is a modular, distributed and agile emerging architecture where services

are small, isolated and cooperate to achieve a complete system [16]. It contrasts with a monolithic

architecture where the system is tightly coupled, and harder to scale [2]. As each service can exist

by itself, this means separate development teams can work on their service individually, without

constant input from the other teams. They only have to agree on a common communication API.

Cloud systems many times follow a micro service architecture as this lets them make better

use of available resources, by scheduling containers to hosts which better suits their resource

requirements [15].

However, in large complex projects the absence of a clear, global architectural plan can lead

to services identities and dependencies to become less precise [2].

In [13], M. Fowler et al. analyse the differences in scaling a monolithic application when

compared a micro-services architecture. Figure 2.9 illustrates such differences. The authors also

state that the tight coupling in a monolithic approach, hinders flexibility to perform updates in

a cloud environment, as every required change requires the whole application to be rebuilt and

re-deployed.
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Figure 2.9: Scaling Monolitc and Microservice Applications [13]

2.7 Crowdsourcing

Crowdsourcing can be defined as any kind of task where non professionals, contribute sharing

their knowledge and expertise for a common goal [1]. The crowd contributes voluntarily or in

exchange for compensation. It gathers the collective knowledge on a topic, hence it isn’t bound to

a specific field.

Coursourcing can be applied to Journalism, where the users can give their insight on a given

theme or topic, then a journalist could use the gathered crowd information, to produce a news

piece that has a more impartial, transparent, and inclusive take on the subject. Otherwise perhaps

it would simply not exist due to lack of sufficient information. However in crowdsourcing, infor-

mation or work performed won’t be as coherent as if it had been performed by an individual or a

team with an aligned set of processes and norms [1].

This concept can also be applied to media streaming technologies where crowd generated

content can be used to compose multiple views of a concert, for instance, where stream’s spectators

could view adjacent views, this way enjoying a more immersive experience [4].

2.8 Media & Networking

Media recording and playback are quintessential for the development of a multimedia system.

Along with it, networking technologies are key in the efficient transmission of audio and video

between end-users and the cloud content provider. Therefore, the study of these fields is highly

important to achieve the proposed objectives, a performant solution possesses quality coupled with

low resource consumption.

WebRTC and RTP are analysed as they are highly relevant in the real-time live streaming

panorama.
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2.8.1 WebRTC

WebRTC is an open standard for video, audio and generic data (eg. text, files) real-time commu-

nication. It is supported by modern browsers through a JavaScript API and native applications

conforming to the specification [6]. Communications are peer to peer over RTP, mediated by a

PeerConnection, without the need of an intermediate server. A PeerConnection is established by

a signalling protocol (eg. Session Initiation Protocol [SIP]).

It requires both peers to be on the same local network (ie. reachable without NAT), otherwise a

Session Traversal Utilities for NAT (STUN) server can be used to help with the signalling protocol

and a Traversal Using Relay NAT (TURN) to bypass firewall and NAT complications.

2.8.2 Realtime Protocol (RTP)

RTP is a transport protocol for real-time applications, audio video or data over a unicast or multi-

cast connection.

RTP packet has base fixed header, containing most notably: a sequence number, a timestamp

and a payload type header. Moreover, the protocol is extensible allowing for individual implemen-

tations to add extra functionalities, said functionalities require extra information to be supplied as

an extra header, the extension header.

Monitoring and control flow like functions are addressed by Realtime Control Protocol (RTCP) [23]

2.9 Summary

This State of the Art examined many fields relevant to the development of an edge cloud archi-

tecture. The NIST’s cloud computing model was presented defining its main characteristics and

concepts. Afterwards, Edge computing was analysed, comparing it to a regular central cloud, as-

serting it as better suited for applications that have got strict networking restrictions (low latency

and high bandwidth), ones that require a high degree of interaction and where users produce a

large volume of data.

Virtualisation was defined due to its importance, by allowing for failure isolation, resource iso-

lation, cloud scalability as well as resource monitoring. Subsequently, virtual machines, containers

and unikernels were discussed and compared, emerging the containers as the best compromise be-

tween efficiency and ease of use.

Orchestration addresses the problem of coordinating software and hardware in a cluster, repli-

cating services to provide high availability. After a desired state is specified, the orchestrator

performs actions in order to close in the gap between the current state and the desired one. Docker

swarm delivers a easier to use experience to a person already acquainted with Docker, while Kuber-

netes has wide adoption in large and complex projects due to its richer feature set and finer-grained

configurability.

Monitoring involves component evaluation to keep a record of their events, resource usage

and other metrics. These metrics are used to optimise the system’s performance and to know what
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happens within it. Taherizadeh et al. present a novel approach for real-time applications on Edge

Cloud, it uses QoS parameters to determine the best edge node a user can connect to. Li et al.

developed a framework, which operates on the VMM layer, capable of monitoring without the

need for monitoring agents in the guest OS.

Container Network Interfaces is a generic networking specification tailored to containers. Each

of the different implementations has its own pros and cons, making their efficacy dependent on the

use case.

Crowdsourcing can be summarised as amateur contributions to a specific end, be it a news

article of funding a product or idea. The use or the collective knowledge contributes to a more

global an inclusive perspective on a give subject.

Micro Service architecture brings responsibility separation at the architectural level. It brings

better scale prospects to a cloud application, as selected modules can be scaled up, instead of

having to forcefully scale the whole system, this makes better use of available resources.

WebRTC and RTP were also analysed due to their relevance for livestream video infrastructure

implementation.
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Chapter 3

Proposed Solution

Based on the analysis conducted of the relevant state of the art and on the associated comparisons

presented in the previous chapter, it was possible to take decisions concerning the approaches to

adopt and the technologies to select to conceive a solution that would satisfy the identified goals.

More specifically, the following decisions were taken:

– Container based virtualisation was chosen as the virtualisation approach by the virtue of

its ample utilisation, quick startup (a highly sought after attribute in a cloud computing

environment), and good synergy with a Micro Service architecture.

– Kubernetes emerged as the right choice, concerning orchestration, due to its rich ensemble

of features, high popularity, hence leading to the existence of good documentation.

– The chosen CNI was Flannel in VXLAN mode, as it provides a great compromise between

ease of use and performance, falling only shortly behind solutions which require extra tuning

to achieve their full potential.

– WebRTC is utilised for the ingest part of the multimedia data path, on account of its reduced

latency and widespread adoption in mobile devices. It should be noted that a company

related requirement lead to RTMP use on the final portion of the same data path.

This projects main use case is a large event live coverage. For instance, in a Music festival

scenario, a news agency could benefit from several views covering the event, recorded from dif-

ferent perspectives akin to multi-view video. The edge segment would be launched at the start of

the event, live video would be processed at the edge servers, making use of the very low latency

and high bandwidth available at the venue’s local area network. The edge component would scale

automatically as seen fit by the application. Additionally, the live videos would also be recorded

to disk and kept at the edge during the event’s duration

At the end of the event, the edge segment can be teared down as it is no longer needed, for the

time being. At the same time, the event recorded footage can be uploaded to a central data-centre

for safe storage, without any realtime requirements.

23
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This chapter starts by providing some background information on previously existing devel-

opments that have implications or impose restrictions on the proposed solution and that, together

with it, form the overall system capable of implementing crowdsourcing live journalism services.

It then provides a high level description of the complete system, proceeding to detail the different

components of such proposed solution.

3.1 Background

Mogplay is a video streaming platform developed by MOG Technologies. It is a platform suitable

for many use cases from enterprise video market, large event coverage, to a user-centric video

social network (similar to Periscope 1).

This work focus on the Crowdsource Journalism configuration, where regular non-professional

users, transmit their live video/audio feeds to the news company (where the solution is located) in

exchange for a monetary reward. As in everything where money is involved, there has to be trust

in the system’s security and reliability. Therefore, undertaken transactions have to be accessible

in a transparent manner while remaining immutable (ie. once performed, they are appended to the

log and become irreversible). These proprieties are guaranteed by the use of a blockchain, where

a new block is concatenated to the previous chain of blocks, each one representing a transaction

approved by the interested parties through a consensus algorithm.

Mogplay records mobile users streams in persistent storage at the same time that transcodes

the live feed, standardising it, so it can be used in live broadcasting. All the streams converge on

the multi-viewer, where a broadcasting operator chooses which one will be the system’s output, at

any given moment. The output stream can then be transmitted to a traditional broadcast room for

further editing or directly relayed to end viewers.

3.2 Stream Flow

The streamer visits controller website and can login as a journalist, a regular citizen or as an

anonymous user, without the need to authenticate. After choosing one of the above the user is

redirected to the stream page, where it possible to initiate a stream, by pressing the red record

button. At that moment the stream initiation process is triggered, depicted in Figure 3.1. The

streamer’s browser sends a startRecording request to Media Controller’s backend, which in turn

requests Resource Manger for a free transcoder IP. Concurrently a WebRTC session is establish

between the mobile and WebRTC server. Afterwards, when the new transcoder is ready, its IP is

returned the controller and relayed to the streamer’s browser. Finally, the allocated transcoder IP is

sent to WebRTC server, so the server can relay the incoming audio/video stream to the appropriate

transcoder.

1Periscope - A livestreaming platform for iOS and Android, owned by Twitter - https://www.pscp.tv/ -
accessed 18 June 2020

https://www.pscp.tv/
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Succeeding the streams transconding, they’re sent to the video switcher via RTMP, where they

become available for consumption.

Figure 3.1: Stream Flow

3.3 Architecture

Mogplay is based on a micro service architecture, so that every component is self contained,

enabling its exchange should the need arise. This kind of architecture also allows for a specific

component’s replication, without the need to scale up the whole system. The system is composed

by three subsystems, the streaming subsystem, recordings and the broadcast subsystem. Each of

the three subsystems is in turn subdivided into its basic services.

The basic services are translated into Kubernetes’ Pods or equivalent higher level constructs,

inter-connected by the CNI in a multi-node cluster.
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Figure 3.2: Mogplay Architecture

Figure 3.2 depicts the services pertaining to Mogplay. Bellow each of them has its purpose

and responsibilities explained. From the figure it’s possible to understand how a stream unfolds

following the data path form the Recorders to to the Multi-Viewer.

1. Media Controller

This component is responsible for managing main application level operations, such as:

creating/stopping streams and user authentication. It is where the streamer and the multi-

viewer operator web GUIs reside.

It receives and transmits requests trough an Express 2 HTTP Web server and Web Sockets.

The HTTP server is accessible externally through the cluster ingress while the Web Sockets

are solely for intra-cluster message exchange.

2. Resource Manager
2Express - A minimalist web framework for NodeJS - https://expressjs.com - accessed 27 June 2020

https://expressjs.com


3.3 Architecture 27

Formed by an Express Web server serving a HTTP API, it hands out transcoders and keeps

track of their availability. Additionally, if there is no free transcoder to be allocated to a new

stream, resource manager issues a Pod creation asynchronous request to Kubernetes API

Server. It waits for the transcoder full initialisation before relaying the new pod’s podIP to

the request’s issuer, Media-Controller.

Table 3.1: Resource Manager’s HTTP API

Route HTTP Verb Description

/giveOne GET Gives a free transcoder, creating one if required

/freeOne GET
Free the specified transcoder, scaling down the

transcoder count if adequate

/listVMs GET Lists transcoder list

/pods/all GET Lists all pods

In Table 3.1 it’s possible to see resource manager’s HTTP API, detailing the route, HTTP

method to be used and a short description of its functionality.

Going into a little more detail, /listvms response has a JSON structure akin to Listing 3.1,

where for every transcoder pod its pod IP, node IP (hostIP), usage flag, pod name and

streamer hash are listed.

1 {

2 "10.244.1.120": {

3 "podIP": "10.244.1.120",

4 "hostIP": "10.00.40.208",

5 "inUse": true,

6 "name": "transcoder-3-axjc9h",

7 "hashUser": "hpaU2botIDGiMUVhAAAA"

8 },

9 "10.244.1.122": {

10 "podIP": "10.244.1.122",

11 "hostIP": "10.00.40.208",

12 "inUse": false,

13 "name": "transcoder-2-swho9e",

14 "hashUser": ""

15 },

16

17 ...

18 }

Listing 3.1: Endpoint /listVMs response example
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At startup, Resource Manager issues the creation of a preset number of transcoders, cur-

rently set to 3. For ease of use instead of performing raw HTTP requests to interact with

Kubernetes API, a request wrapping NodeJS library was used, @kubernetes/client-node

which in turn makes the following request POST /api/v1/namespaces/{namespace}/pods.

Moreover, this module has subscribed to any pod deletions, mainly to handle issues related

to transcoder pod crashes, so if anything happens Kubernetes will inform it. Afterwards,

a new transcoder will be created to take the old one’s place, this will be further explained

in 3.4.

3. Streaming Server - Janus

Implemented using Janus 3, “a general purpose WebRTC server” as stated by its creators,

whose modular design — extensible using Meetecho’s provided plugins or even community

developed ones — meant we could tailor our server to our needs, while keeping its footprint

rather small, only including functionalities we really needed.

It’s the receiver of the several mobile streams, functioning as a WebRTC Peer. After ini-

tiating a new WebRTC stream successfully, the server is instructed to relay received RTP

streams (audio + video) to the controller designated transcoder. Where the audio and video

will be processed to better suit the event coverage purposes. Such purposes would be that ev-

ery livestream would have the same encoding, resolution and framerate so when the broad-

cast stream was switched the experience would remain smooth.

4. Media Transcoder

Each transcoder service, receives two RTP streams (1 audio, 1 video) from WebRTC Server,

which are then processed by a GStreamer 4 instance, resulting on two normalised streams

destined to the Video Switcher which afterwards can be broadcasted through the Multi-

viewer if its operator so desires. The requests to start transcoding are handled by a simple

Express Web Server.

5. Video Switcher

Receives every RTMP stream after having been processed by transcoders, in turn makes

them available to any compatible player. Media Controller is who controls which stream is

broadcast to end viewers, using HTTP requests through the Multi-Viewer. It also has /stats

with some debug information about currently active streams.

It’s accessible by a NodePort service, enabling both internal and external communications

with the cluster. HTTP external connections are delivered to the service by the Ingress

Controller, which redirects packets destined to https://switcher.mogplay.local

3Janus - https://janus.conf.meetecho.com - accessed in 24 June 2020
4GStreamer - An opensource media framework - https://gstreamer.freedesktop.org/ - accessed in 24

June 2020

https://switcher.mogplay.local
https://janus.conf.meetecho.com
https://gstreamer.freedesktop.org/
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6. Media Recorder

This component handles the stream recording process, by saving to "disk" (a Persistent

Volume 2.3.2.7) every WebRTC’s RTP packet is received as a partial file. These files can

then be merged into a single video container file (eg. mp4, mkv). To benefit from our Edge

approach media recorder files are kept at the event site, until event termination, when partials

files can be combined and the resulting files transferred to the central cloud for definitive

storage. It should be noted that after the event, our system real-time needs can be relaxed,

due to absence of streams of any kind.

7. Media Server

Media server, implements Access Control to the recordings NFS share. A video can only

be downloaded upon supply of a authorisation token, which directly identifies the intended

recording, giving access to it for a limited time.

For this purpose, a NGINX 5 instance was used.

8. Multi-viewer

It is operated by a broadcasting producer authenticated in the platform. The producer can

preview the current streams, dragging them from the list to four larger viewers, and choose

to which of the them to be the final broadcast.

9. Application Database

It stores application related data, such as: users, events, platform permissions, in a PostegreSQL 6

relational database management system.

10. Blockchain ledger

The blockchain is where both stream related metadata and video purchases are stored. There

are only two components which write to the blockchain, the Media Controller at the start of

a stream — information streamer’s identity, geolocation, associated event — and the Media

recorder when the stream ends, adds a stream termination timestamp.

11. Streamer

The streamer is a regular user which uses their mobile device to record a livestream about

some phenomenon in their close vicinity. Comunication with Media Controller happens

over a secure channel, using HTTPS. Along with it the mobile establishes a WebRTC con-

nection with the WebRTC server, for audio and video transmission.

12. Prometheus

5NGINX - https://www.nginx.com/ - accessed 26 June 2020
6PostegreSQL Website - https://www.postgresql.org/ - acessed 5 July 2020

https://www.nginx.com/
https://www.postgresql.org/
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Prometheus 7 is a time series data base (TSDB) 8 created by SoundCloud in 2012, and part

of the CNCF since 2016. It deals with most steps of the monitoring flow, apart from data

visualisation, such as: metrics gathering (through endpoint scrapping), data storing, alerting,

and data querying (using its own query language, PromQL).

Our prometheus scrapes metrics from two services:

• NodeExporter (a DeamonSet) exposes OS and host hardware metrics such as: cpu,

memory, processes, disk I/O, filesystem usage.

• Kube-State-Metrics (a Deployment) exposes cluster metrics, such as: node informa-

tion, pods resource utilisation and other Kubernetes object information.

13. Grafana

Grafana 9 addresses data visualisation, enabling the creation of user-friendly real-time dash-

boards, which help us get a better grasp of resource bottlenecks and system anomalies. It is

compatible with different data sources, from relational (SQL), non relational to timeseries

databases. Additionally, it allows queries to be embedded into the dashboards, this way,

speeding its creation process.

3.4 Fault Tolerance

Kubernetes pairs up well with a micro-service approach to system architecture. Such systems can

become fault tolerant, that is, to carry on working in case of one of more services failure, recov-

ering automatically. Using higher level abstraction, instead of plain pods, ensures the orchestrator

can have more insight on your pod requirements, due to their more semantic attributes. If an pod

fails, Kubernetes won’t recreate it and reschedule it automatically, unless this pod was managed

by a Deployment or a StatefulSet. In Mogplay every component is a Deployment or a Statfulset,

except from Media Transcoders — as they are created and deleted by Resource Manager — and

the blockchain (which is external to the cluster). That means that if any of those crashes, the

orchestrator will recreate them, thus repairing the missing "coggs in the machine".

Resource manager, in order to prevent stream failure upon transcoder crash, assigns a new

transcoder pod therefore keeping the stream live. It subscribes to transcoder pods deletion events,

making sure that the transcoder is replaced if it was active, also notifying media controller. Oth-

erwise it just issues a new transcoder creation request as is depicted by Figure 3.3. Media Con-

troller’s main server upon receiving a transcoderFailed warning from resource-manager, proceeds

to propagate it to the correct streamer. Finally, this streamer asks Janus to update the first’s RTP

redirection destination to the new transcoder IP. As a results this automatically recovers the dis-

turbed stream. The same functionality could be extend to accommodate the change of a stream’s

7Prometheus Website - https://prometheus.io - acessed 23 June 2020
8Time Series Data Base - A database management system that records discrete values thought time. This data is

suitable for graph plotting
9Grafana Website - https://grafana.com - accessed 23 June 2020

https://prometheus.io
https://grafana.com
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transcoder for other reasons, such as to upgrade to a more capable transcoder better suited for

higher quality video.

Figure 3.3: Resource Manager - Transcoder Recovery

3.5 Monitoring

As stated previously, Prometheus is used to collect and save cluster and host nodes information,

which can be used to get a better insight the systems resource usage.

A Grafana dashboard was created to consume Prometheus data, this way making it more easy

to be comprehended. Figure 3.4 shows some of the existing graphics. Such graphics were used to

take bandwidth, CPU and memory consumption data, described in Chapter 4.

Figure 3.4: Developed Grafana Dashboard
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3.6 Cluster Networking

Pods communicate differently, depending whether the requests are internal, between cluster ser-

vices or if they’re external to the cluster,

3.6.1 Internal

Pods internally communicate using services and podIPs from all nodes without using NAT. Inter-

node communications are assured via an overlay network, provided by Flannel, following the CNI

specification.

3.6.2 External - Ingress

An Ingress lets external HTTP/HTTPS traffic access the cluster in a controlled way. Traffic arriv-

ing at the ingress, depending on the Host HTTP request header are then routed to its corresponding

kubernetes service. NGINX Ingress controller is the one being used.

Table 3.2: MOGPlay Ingress Routes

Route Service
controller.mogplay.local Media Controller
resource-manager.mogplay.local Resource Manager
webrtc.mogplay.local WebRTC Server
switcher.mogplay.local Switcher
media-server.mogplay.local Media Server
prometheus.mogplay.local Prometheus
grafana.mogplay.local Grafana

3.7 Storage

Most of the pods information is volatile as there is no need to keep information about most pro-

cesses, as they are used to transmit, process or visualise the live streams. These streams generate

artifacts which have to endure for long after the system’s shutdown, so they need to be kept on a

PersistentVolume.

3.7.1 Network File System

A Network File System content endures pod termination and is writable by multiple pods simul-

taneously, which grants NFS great versatility. This data persistence means data can be preloaded

to a NFS volume to later be access by pods mounting that volume.

Grafana data, prometheus collected data, and original (unprocessed) video recordings are kept

on a network file system.

The NFS is accessible from any of the nodes, as long as they possess adequate utilities to

mount an NFS share.
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3.8 Development Environment

Kubernetes in Docker (Kind) 10 was used to facilitate the development stage. It supports multi-

node cluster, similarly to what is commonly used in production environments. The nodes are

virtualised using docker containers running on the host machine. Pods are then run against said

nodes, which allowed to test some of the multi-node cluster features in a single computer. Addi-

tionally, it made easier the transition to a production level cluster on physical machines.

Helm 11 is a Kubernetes package manager, which it calls charts. Charts can be downloaded

from remote repositories, allowing its publication and sharing. Along with it, Helm also groups

deployment’s yaml files giving it a name and version number, which simplifies its installation,

deletion, and modification. Sub-charts can be added to a main chart as dependencies, akin to

what happens in a regular packager manager. Furthermore it has got a templates engine, that

processes chart templates at installation time, replacing template values by concrete values present

in specified configuration files.

3.9 Limitations

Our solution currently only works if the mobiles and WebRTC Server are located on the same

LAN. In order to make it possible over a Wide Area Network (eg. internet) which is most of the

times behind NAT and firewall, a TURN and STUN server would need to be configured. We chose

not to due to the possible introduced delay and inherently added complexity. Furthermore, the

available bandwidth might not have been constant and sufficient for high quality video streaming

3.10 Summary

In this chapter implementation background was presented, the main use case described, the archi-

tecture was depicted, explaining each component’s functions as well as a stream workflow.

Additionally, the solution’s fault tolerance mechanisms were elucidated. namely the orches-

trator’s rescheduling of failing components, trying to reach the declared desired state, as well as

the our custom fit stream recovery implementation.

Container Networking was described, cluster storage discussed and relevant development en-

vironment tools were listed.

The implementation limitations were also exposed and the reason of their existence explained.

10Kind - https://kind.sigs.k8s.io/ - accessed 26 June 2020
11Helm - https://helm.sh/ - accessed 26 June 2020

https://kind.sigs.k8s.io/
https://helm.sh/
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Chapter 4

Validation

This chapter describes the work that was conducted during this dissertation to allow assessing

the validity of the proposed solution. To perform a more complete evaluation, it was decided to

conceive two different testing environments, each one implementing/simulating a specific cluster

configuration. The first one takes a more traditional cloud approach, deploying the solution at

the company premises, that is, a centralised approach. While the second configuration splits the

cluster into two sites, a central site (company premises) and an Edge site (at the event venue).

Firstly, it starts by describing the different setups, explaining their configuration, what sets

them apart. Secondly, the procedures used to configure the cluster are described. Afterwards,

measured metrics are shown, compared and evaluated. Finally, conclusions on the validation

experiments are drawn and this chapter summarised.

4.1 Environments

In Environment 1 central cloud, every cluster node is far away from the event site, where the

streamer and operator are, this will serve as the baseline for our comparison. This will be the case,

as its the most common configuration on a cloud application.

Environment 2 has Cristal (master node) and Imperial (cloud worker node) at the company

premises, while Desperados (edge worker node) is at the event location. We predict shortened

delay and increased bandwidth between streamers, Janus and the transcoders, what will result in

lower end to end stream delay.

Both of the environments are depicted in Figure 4.1 and Figure 4.2 where each edge displays

the approximate existing delay between its extremities.

35
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Figure 4.2: Edge Cloud Environment

4.1.1 Host Bandwidth Tests

All the computers are connected by a 1 Gbps switch. So to have and idea of the real bandwidth

between the client and nodes, tests were performed using iperf3.

The results were slightly lower than the theoretical limit from Client: to Cristal (910 Mbps),

to Desperados (907 Mbps) and to Imperial (917 Mbps).

4.1.2 Cluster Setup

Each of the three servers possesses a x86 Intel platform running Ubuntu 18.04 Long Time Support

(Tables 4.2 and 4.3). Required Kubernetes dependencies and auxiliary CLI tools were installed

(Table 4.1), namely Docker Container Engine, Kubelet, Kubeadm and Kubectl.

Docker is the previously discussed container engine in the State of the Art, subsubsection 2.2.2.1.

Kubelet is the program responsible for receiving and handling master control plane’s requests,

launching pods, and managing them, its execution is what makes a host a Kubernetes Node.
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Furthermore, Kubeadmn (Kube Admin) bootstraps Kubelet’s initial configuration. It aids with

cluster creation, the creation of a master node, as well as with a new node’s join to the cluster.

Finally, Kubectl (Kube Control) is a CLI that eases the cluster users interaction with Kuber-

netes API. It allows for Kubernetes object lists retrieval, object creation, edition and deletion.

The cluster was created in Cristal, using kubeadm init, followed by the execution of kubeadm

join on the other two machines. It should be noted that Kubernetes does not provide an included

CNI implementation, so subsequently, Flannel install configuration files were applied to Cristal,

what resulted in a Flannel daemonset and consequnetly a Flannel CNI pod in every node. With

this the VXLAN overlay network was set, bridging the nodes, thus completing the cluster setup.

Table 4.1: Validation Cluster Software Stack

Name Version
Docker 19.03.6

Kubernetes 1.18.3
Kubeadm 1.18.3
Kubelet 1.18.3
Kubectl 1.17.3
Helm 3.1.0

Table 4.2: Cluster Machines Specifications

Name CPU Cores/Threads Memory Role
Cristal Intel Core i7-2600 4/8 8 GB Master

Desperados Intel Core i7-4790S 4/8 16 GB Edge
Imperial Intel Core i7-2600K 4/8 8 GB Central Cloud

Table 4.3: Cluster Machines Operating System

Name OS Linux Kernel Version
Cristal Ubuntu 18.04.4 LTS 4.15.0-88-generic

Desperados Ubuntu 18.04.3 LTS 5.3.0-59-generic
Imperial Ubuntu 18.04.4 LTS 4.15.0-88-generic

4.1.3 Traffic Control (TC)

To validate our hypothesis, that an Edge cloud cluster has better performance than a full cloud

configuration, geographical distance was emulated. This was done by introducing delay using tc,

a Linux system administration utility used to show and manipulate kernel traffic settings. It was

used to modify the CNI’s network interface queue delay between the central nodes, edge node and

the streamer & operator machine.

NetEm (Network Emulator) is a tc queuing discipline that allows to simulate various network

delays or disruptions, some of them: packet corruption, delay, jitter, duplication, limited rate and

reordering. Most of them can be configured based on a mathematical distribution or a percentage.
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Tc filters were used to specify which were the destination IPs whose packets we wanted to

delay, because not every packet being transmitted via an interface was intended to be delayed.

4.2 Results

Considering both scenarios presented above, the following metrics were gathered: Nodes band-

width consumption, pods bandwidth consumption, end to end stream delay, Pod CPU usage and

memory usage are discussed bellow and can have its source data consulted in Appendix A

A third simple configuration is used, deemed as optimal, nevertheless unviable for a real like

scenario. In this scenario, every node and the client belong to the same Local Area Network. This

brings with it a rather insignificant delay (lesser than 1ms) and high bandwidth, only impacted by

the switch connecting the computers.

It worth noting that each transcoder consumes approximately 1 CPU thread, this means Des-

perados with its 8 threads,is only able to sustain at most 7/8 streams at a comfortable CPU utilisa-

tion level. Over this threshold, it will struggle to keep up with the demand.

End to end latency was measured from the moment the video is recorded at streamer’s mobile,

until it is watched on the multi-viewer, again outside the cluster. The values present in Figure 4.3

are the average delay in seconds having precision to the hundredths of a second. Furthermore,

each scenario’s bar is the average of n streams (at most four) being displayed on multi-viewer’s

four preview slots, whilst the rest still contribute to system stress.

Delays from one to four concurrent streams are very similar in every scenario, with Central

Cloud having just bit more latency than the other two approaches.
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Figure 4.3: Average End to End delay

With the increasing number of streams, the the delay gap between the central cloud, the edge

and LAN scenarios widens considerably. At twelve streams the central cloud has on average six

seconds more delay.
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Figure 4.4 shows the consumed pod bandwidth for the main media streaming pods: WebRTC

Server, Video Switcher and one of the active Transcoders (as they all use the same resources,

transcoding each one stream). Only these were plotted as the rest remained more or less constant

bandwidth consumption, irrespective of the number of active streams.

With one stream, the Switcher is receiving 2.36 MB/s, increasing linearly until 6 streams are

reached with values of approximately 14.2 MB/s.

Transcoder curves IN and OUT bear constant values, as they depict the values consumed for

one only active transcoder, 0.58 MB/s and 2.34 MB/s respectively.

Additionally, the WebRTC curves represent the bandwidth used by receiving the mobile stream-

ers and naturally the consequent RTP forwarded streams to each respective transcoder. It also

increases linearly, but with a slower slope than the Switcher curves.
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Figure 4.4: Pod bandwidth consumption

Figure 4.5 shows the aggregate consumed bandwidth for each worker node. We can observe

a mirrored symmetry on the abscissa axis, denote the same level of inbound and outbound traffic.

Desperados is the node which requires higher bandwidth availability, largely surpassing Imperial’s

requirements. This happens due all the video processing are being performed at the edge.

4.3 Summary

Experimental validation environment was detailed, the machines configuration presented and the

cluster configuration was described in a step by step fashion.
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Figure 4.5: Node bandwidth consumption

Afterwards, the three contemplated scenarios were analysed and its results discussed, a LAN

environment, a traditional central cloud setup and an Edge powered configuration. For each of

them end to end stream latency, nodes bandwidth and individual pods bandwidth consumption

were measured. End to end latency, arguably the most important metric in a real-time system was

similar for fewer streams but its difference widthened with the increase of concurrent streams.

Apart from the LAN configuration, a unlikely scenario to be found in the wild, the Edge configu-

ration emerged as the fastest, largely surpassing the Central Cloud approach.

The bandwidth measurements also benefit the edge scenario in detriment of the more tradi-

tional approach, as all the heavier deployment tasks are handled at Desperados.

All in all, our implementation behaves as indented and our hypothesis was validated, Realtime

livestreaming platform greatly benefits from an Edge Cloud architecture.



Chapter 5

Conclusions and Future Work

In this chapter conclusions are made, concerning the implemented architecture, additionally future

work is also discussed.

These days, the growth in mobile devices number combined with constant internet connectivity

fostered Crowdsourced Video Streaming. Live streams often need to be transcoded so they have

the correct encoding, that is, appropriate for the final media platform. These are many times

destined to social network platforms, which use are built on top of a centralised cloud architecture.

With this two problems arise, trust issues in social network platforms combined with the high

latency and low bandwidth usual of their centralised data centre design. These problems were miti-

gated by developing an architecture witch supports a decentralised Crowdsourced Live Journalism

platform.

5.1 Goals Fulfilment

The proposed goals were achieved as the state of the art focusing on the key areas an topics to

implement the envisioned architecture was successfully performed as well as the definition and

implementation of a scalable architecture adequate for a Crowdsourced Live Journalism platform

was attained.

Mogplay was improved, porting the existing solution — a container based infrastructure —

into an orchestrated infrastructure managed by Kubernetes. Said infrastructure is easily config-

urable through deployment template configuration files and highly scalable. Moreover, monitor-

ing mechanisms, Prometheus and Grafana were introduced, to assess the system’s overall perfor-

mance, enabling us to have a better overall idea of its resource footprint. It also helped us identify

some anomalous behaviours.

Finally, a non trivial fallback mechanism was developed. The live stream, upon its transcoder

hard failure, is successfully recovered in a transparent manner for the end-user, resulting in re-

markably better user experience, than what was previously in place.

41
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Validation tests were performed, resulting in encouraging results for our edge cloud approach,

as it presented lower delay than a solely cloud alternative. Expended bandwidth also concen-

trates on the edge node, what means internet bandwidth consumption to the central data centre is

minimal.

5.2 Future Work

Concerning future work, more components of the system could be replicated, thus enabling an

even higher degree of horizontal application scaling. This would improve the current prototype,

allowing for colossal event coverage and possibly increasing the supported resolutions and video

encodings.

Additionally, performing a larger scale stress test to assess which components are bottleneck-

ing the system would be beneficial. Most likely the WebRTC Server and the Video Switcher, as

they are the services were all the streams converge.

Moreover, determining to which transcoder a new stream should be allocated to could be

largely improved, taking into account a transcoder’s current utilisation or even the mobile device’s

capabilities by assigning a more powerful transcoder to higher-end devices. Also, stream scaling

decision enhancements would greatly contribute to better resource optimisation.

Finally, extra versions of the broadcast stream could be transcoded to popular resolutions

and bitrates, this would mean an end viewer would be able to enjoy the broadcast in the best

possible bitrate for its device and network constraints. If enough resources are available the four

previewed streams could receive the same treatment, therefore even if the outputted stream were

to be switched, multiple versions would already be available.



Appendix A

Validation Data

In this chapter, the source data in which graphs displayed in Chapter 4 are based, can be

consulted bellow.

Table A.1: Nodes Bandwidth Consumed (MB/s)

Streams
Imperial Desperados

In (+) Out (-) In (+) Out (-)

1 0.937 0.057 2.1 1.29

2 0.948 0.062 3.45 2.39

4 0.813 0.064 5.4 4.15

6 0.822 0.074 6.65 5.63

8 0.687 0.062 6.98 6.03

10 0.889 0.099 8.47 7.75

12 0.0675 0.081 5.7 5.49

Table A.2: Pods Bandwidth Consumed (MB/s)

Streams
WebRTC Server Transcoder (Active) Switcher

In (+) Out (-) In (+) Out (-) In (+) Out (-)

1 0.268 2.1 0.933 2.36 2.36 2.25

2 0.535 0.529 0.578 2.34 4.69 3.81

4 1.07 1.06 0.803 2.34 9.39 8.1

6 1.58 1.56 0.702 2.36 14.2 8.94

8 2.08 2.05 0.554 2.35 16.2 8.19
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Table A.3: End to End delay LAN (s)

Streams Delay (s) Average

1 1 1.21 1.210

2
1 1.95

1.940
2 1.93

4

1 1.97

1.975
2 1.98

3 1.99

4 1.96

6

1 1.96

1.973
2 1.98

3 1.99

4 1.96

8

1 5.02

5.028
2 4.09

3 5.09

4 5.91

10

1 7.83

7.408
2 7.90

3 6.98

4 6.92

12

1 11.07

9.990
2 10.95

3 8.01

4 9.93
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Table A.4: End to End delay Central Cloud (s)

Streams Delay (s) Average

1 1 1.91 1.910

2
1 1.96

1.950
2 1.94

4

1 1.23

1.408
2 1.21

3 1.99

4 1.20

6

1 6.00

5.835
2 5.17

3 6.17

4 6.00

8

1 9.90

9.220
2 8.95

3 10.04

4 7.99

10

1 14.14

14.770
2 14.96

3 15.01

4 14.97

12

1 19.04

18.295
2 17.02

3 18.00

4 19.12
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Table A.5: End to End delay Edge (s)

Streams Delay (s) Average

1 1 1.16 1.160

2
1 1.92

1.920
2 1.92

4

1 1.18

1.193
2 1.20

3 1.18

4 1.21

6

1 6.91

6.478
2 6.04

3 6.01

4 6.95

8

1 8.04

8.233
2 7.95

3 8.88

4 8.06

10

1 9.87

9.168
2 8.04

3 8.87

4 9.89

12

1 12.91

12.108
2 11.78

3 11.94

4 11.80

Table A.6: Pods CPU (cores) and RAM (MiB)

Streams
Janus Transcoder (one active) Switcher

CPU RAM CPU RAM CPU RAM
0 0.005 19.570 0.000 54.450 0.000 4.390
1 0.020 25.980 0.690 153.140 0.112 12.000
2 0.050 24.000 0.800 147.000 0.150 12.000
4 0.090 25.000 0.700 150.000 0.240 12.000
6 0.135 31.670 0.700 149.000 0.404 15.250
8 0.155 34.370 0.646 114.130 0.400 15.810

10 0.187 39.130 0.672 161.480 0.313 16.640
12 0.210 41.150 0.664 196.950 0.262 17.390
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