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Abstract

Nowadays there is a growing interest in the collection and extraction of relevant information from
data. With this in mind, variables describing the operation of distribution vehicles can be retrieved
in real time with the use of tracking systems. From the analysis of the data gathered, there is
then an interest in identifying the points of interest in the trip of these delivery vehicles, such as
the loading and unloading of cargo, maintenance or refueling. With the identification of these
operations, fleets managers can get exact information about the vehicle state in certain points,
along with the creation of more detailed reports and easier resource management. This automatic
labelling process can also help in adding a layer of intelligence to automotive systems, as the final
objective of a vehicle’s trip can be identified beforehand.

The approach to solve our problem can then be divided into two tasks: an identification task
and labelling task. Various clustering methods are ran against processed raw circulation data to
first find the points of interest, with the output being evaluated considering the context, determining
where the vehicle stops more and for longer periods of time. To then give meaning to this first task,
multiple classifications models are created to label the points found, with each model’s accuracy
being measured to determine which algorithm has the capability to better predict the reason for a
vehicle stopping.

The clustering method used to create the points of interest for the predicting task was found
to highly adapt to the spatial data, which is corroborated by the comparison of the mapping of its
output with a known point of interest dataset. Many classification algorithms also achieved high
accuracy measurements, being attained a value as high as 97% in the case of one of the companies
analysed.

With all this in mind, it can be said that the approach adopted produced a positive outcome,
establishing a whole process from raw circulation data to automatically created and labelled points
of interest in vehicle distribution fleets. By implementing this solution in live scenarios, transporta-
tion and logistics companies can not only analyse the purpose of all stops of the vehicles in their
fleet, enabling routing optimization, but also get a constant and reliable log of their geographical
carbon footprint and its compatibility with the ever-increasing low emission zones.
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Resumo

Atualmente existe um interesse crescente na recolha e extração de informação relevante a partir
de dados. Com isto em mente, variáveis descrevendo o funcionamento de veículos de distribuição
podem ser recolhidas em tempo real com a utilização de sistemas de rastreio. A partir da análise
dos dados recolhidos, há então interesse em identificar os pontos de interesse na viagem destes
veículos de entrega, tais como a cargas e descargas, manutenção ou reabastecimento. Com a
identificação destas operações, os gestores de frota podem obter informações exatas sobre o estado
do veículo em pontos específicos, juntamente com a criação de relatórios mais detalhados e uma
gestão mais fácil dos recursos. Este processo de etiquetagem automática pode também ajudar a
acrescentar uma camada de inteligência a sistemas automóveis, uma vez que o objetivo final da
viagem de um veículo pode ser determinado previamente.

A abordagem para resolver o nosso problema pode ser então dividida em duas tarefas: uma
tarefa de identificação e uma tarefa de rotulação. Vários métodos de agrupamento são executados
usando dados brutos processados para primeiro encontrar os pontos de interesse, sendo o resultado
avaliado considerando o contexto, determinando onde o veículo para mais e por períodos de tempo
mais longos. Para então dar sentido a esta primeira tarefa, múltiplos modelos de classificação
são criados para etiquetar os pontos encontrados, sendo a precisão de cada modelo medida para
determinar qual algoritmo tem a capacidade para melhor prever a razão de paragem de um veículo.

O método de agrupamento usado para criar os pontos de interesse para tarefa de previsão
mostrou alta adaptabilidade aos dados espaciais, o que é corroborado pela comparação do seu
resultado com uma lista de pontos de interesse conhecidos. Vários algoritmos de classificação
também alcançaram valores elevados de precisão, sendo atingido um valor tão alto como 97% no
caso de uma das empresas analisadas.

Com tudo isto em mente, pode ser dito que a abordagem adotada produziu um resultado posi-
tivo, estabelecendo um processo completo desde dados brutos de circulação até pontos de interesse
automaticamente criados e etiquetados em frotas de veículos de distribuição. Ao implementar esta
solução em cenários ao vivo, empresas de transporte e logística podem não só analisar o propósito
de todas as paragens dos veículos da sua frota, permitindo otimização de rotas, mas também obter
um registo geográfico constante e fiável da sua pegada de carbono e a sua compatibilidade com as
zonas de baixas emissões que são cada vez mais comuns.
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Chapter 1

Introduction

The aim of this chapter is to give a contextualization for the problem along with the interest in

addressing it. The objectives of the research and the content of this document are thoroughly

defined.

1.1 Context

Urban distribution vehicles base their operations around their delivery capabilities. Tracking sys-

tems are then used to support these deliveries by gathering data pertaining to their trips. With

the advance in computing technology, these systems have become more capable and affordable,

making it possible to be implemented in a larger scale. These tracking systems bring about many

advantages for distribution vehicles as they make it possible for the optimization of routes taken,

better resource management and more accurate delivery times.

The gathered data is collected every second while the vehicle is in movement and this data

contains many details about the vehicle’s operation such as position, velocity or fuel available. It

is saved in a time series format, more specifically called floating car data (FCD), as the data is

being collected by a sensor contained in the moving vehicle itself as opposed to being positioned

in a stationary location.

As the evolution seen in tracking systems made them more precise with the advance in years,

the same can be said regarding capabilities to store, analyse and process data. Increased computing

power technology lead to a higher feasibility and capability in saving large quantities of data as

storage units became cheaper in price while also increasing storing capacity. These advances in

computing power also contributed to being able to run more complex algorithms and at the same

time handle larger quantities of data with less concerns about computational cost, opening up new

possibilities in the extraction of relevant knowledge from data.

One of the companies to identify an opportunity in this scenario is AddVolt which has as

their main value proposition the electrification of refrigerated chambers used in the transport of

temperature sensitive goods. AddVolt maintains a connection of its roadside systems to its servers,

transmitting data via GSM (Global System for Mobile communication) similar to a IoT (Internet of

1



2 Introduction

Things) system. Through this connection, several variables related to the operation of the vehicle,

cold chamber and AddVolt’s system are collected for analysis and reporting.

With the possibilities opened up from these standpoints, an opportunity emerges for the un-

derstanding of a distribution vehicle’s operation through the analysis of the data gathered from the

tracking systems.

1.2 Motivation

During the process of a delivery from a distribution vehicle, many different situations can occur

as the vehicle operates. There is an interest in identifying those situations such as loading and

unloading cargo, maintenance or refuelling. To achieve that, there is a need in analysing the data

gathered during the vehicles circulation and, from there, to try and find meaningful patterns in the

circulation that make sense in the context of a distribution vehicle.

Due to the frequency of the capture of the vehicle’s position, a large amount of data is gener-

ated which already in itself presents a great potential for the understanding of the vehicle’s delivery

patterns[28].

From this data analysis, there is an opportunity for automatically labelling vehicle stopping

moments, which is a process done manually otherwise. While there is many efforts in creating

projects that label points, both free such as OpenStreetMaps[1] or proprietary such as Google

Maps[5], this is not enough to satisfy the categorization of the points for a distribution vehicle, as

a same point can represent a point of cargo loading for one company and unloading for another.

So, it is important to present a customized solution for each company which completely depends

on the data generated during its circulation.

From the identification of these operations from FCD come many benefits. The use of fleet

management and vehicle tracking systems has been increasingly widespread, being present in

six million vehicles in North America and approximately five million in the European Union

in 2009[13], meaning a solution created from raw FCD has high value since it can be applied

to a high number of systems. Knowing exactly where the vehicle is located at and getting a

description beyond the position of it will help in the management of resources and provide more

detailed freight reports. Beyond that, the vehicle’s compatibility with low emission zones can be

determined, as this solution can also encompass the gauging of the carbon footprint in a given

geographic location. Low emission zones are areas where more polluting vehicles either cannot

enter or have to pay for that entrance, as a measure to improve air pollution[6], which increases

the interest in this analysis given the higher value imposed nowadays in ecological practices by

governing bodies.

1.3 Goals

The main aim of this project is essentially a knowledge retrieval task from FCD, being the final

objective representing the labelled points of interest (POIs) for a distribution vehicle in a way that
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is simple to interpret, being the most simple way to do that by representing these identified POIs

in a map. Two main tasks can be identified from these objectives: the identification of these points

of importance in the vehicle’s operation followed by its labelling.

More specifically, before beginning the first task, the knowledge retrieval process encompasses

the analysis of the data available. There is a need to understand how the vehicles move on the

road in order to identify where we should be looking for candidate POIs by considering how the

vehicle behaves in a certain area. For example, if a vehicle consistently moves at a high speed over

a certain area, that area can be discarded as POI, while if a vehicle stays for a long period of time

in a certain area and it happens frequently over many days it should be paid special attention.

The first task of the project is grouping the points of the vehicle’s circulation to determine

the actual POIs, yet to be labelled. This grouping should be tested using different setups and

approaches in order to find what works best with FCD and be evaluated in strict format as it sets

the base for the next task in the project.

Once the POIs are determined, an additional feature engineering task needs to be carried out to

gather information that can help label these POIs. This additional task is needed as gathering POI

and labelling them have very distinct requirements data-wise. There is a need to give meaning to

the first task by labelling the points found in order to complete the whole process.

1.4 Document Structure

This document is divided in chapters and structured as described in the following statements.

In chapter 2, the state of the art is presented. It starts by introducing data mining concepts and

particular applications to time series. Finally, different solutions to similar problems as one the

being considered are presented.

In chapter 3, the problem and a solution for it is presented, along with the tasks needed to

reach that solution.

In chapter 4, the approach taken for the identification task is explained in detail, building the

basis for the next task, by finding the POI in the vehicle’s circulation.

In chapter 5, the results from the previous chapter are used to build models using classification

algorithms, which assign labels to POIs, therefore completing the process.

To close it out, chapter 6 presents conclusions pertaining to the document as a whole, its

knowledge contribution and possible future work.
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Chapter 2

A review on Machine Learning applied
to Time Series

In this chapter, a review on the concepts relevant to this dissertation is presented. It starts out by

presenting data mining and machine learning. Following that, a more particular analysis on the

time series and its applications is performed, along with possible data mining tasks that can be

performed over this data format. Finally, related work to the problem that will be addressed is

presented along with the approaches taken.

2.1 Data Mining

Data mining is frequently defined as the search for interesting patterns in data. Data mining and

knowledge discovery (KDD) are very intertwined concepts. From the huge amount of data avail-

able nowadays it comes a need for tools capable of automatically uncovering relevant information

from that data and transform it into organized knowledge. It was from this need that the concept

of data mining was born, being the central concept in KDD[32].

To guarantee that the data mining process does not find meaningless or invalid patterns, other

additional steps in KDD process are essential to ensure that appropriate knowledge is retrieved.

The proper preparation and selection of the data along with correct interpretation of the results of

the mining present an equally important task[23].

2.2 Machine Learning

Machine learning is a fast-growing area of study and, like pattern recognition and statistics, it is

one the technologies that supports data mining in the process of finding relevant knowledge. Its

main objective is for computers to learn how to automatically extract complex patterns from data

and use those patterns to make decisions[32]. Machine learning tasks are essentially divided into

two major groups, supervised and unsupervised, which concepts are discussed more in depth in

section 2.4.

5



6 A review on Machine Learning applied to Time Series

2.3 Time Series Data Mining

Data can be captured in multiple ways which also leads to different representations and organiza-

tions in the way the data is stored. In the case of time series, measurements performed sequentially

over a period of time capture the value of variables at a certain day and hour. Due to the way they

are stored, it gives them an importance in being analysed as a whole instead of simply analysing

individual entries[25]. Therefore, small fluctuations in data should be ignored and the retrieval

of relevant knowledge should focus in finding a pattern in a established time scale so that se-

quences of time measurements can be compared. Its main characteristics are then its size, high

dimensionality and the fact that they update continuously.

From the nature of the time series, many challenges arise[21]. High dimensionality along with

growing digital sources of information creates an issue with data representation as there is a need

to reduce the dimensionality of the data while keeping fundamental shape characteristics. Other

problem arises from the comparison of time series sequences. As previously mentioned, time

series should be analysed as a sequence instead of an individual entry, and from there comes the

question of how should that analysis match or distinguish between two time series sequences.

The analysis of time series can have many objectives[31]. Forecasting, in which by analysing

past sequences in time series, it may be possible to predict the values for future sequences. It is

possible to use it in the production control processes in order to detect any anomaly. They can

also be used to determine different types of patterns in data[35]. By monitoring the fluctuation of

the prices of goods monthly, seasonality patterns can be extracted, such as in cases where certain

products can only be produced under a certain weather. Trends can be observed by noticing a

lasting increase or decrease in the data over time, like in the case where a constant increase can

be noticed in global temperature. Finally, cycles can be detected when rise and falls are detected

without a explicit time frame, as seen in stock markets. These features in the data are essential to

identify so the right predictions can be made.

2.4 Machine Learning Tasks

To best extract relevant knowledge from data, different approaches must be tested, as different

problems call for different solutions. In this section, different machine learning tasks are intro-

duced and then their application to time series is acknowledged by referencing implementations

using those types of tasks.

2.4.1 Unsupervised Learning

While it encompasses other learning methods such as association rules, unsupervised learning is

typically used as a synonym for clustering. The learning process is then unsupervised as classes

are found directly in the data from input examples[32], being this class label information typically

not present. For this reason, it is considered as a form of learning by observation as opposed to
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learning by examples, which means many times it can be hard to determine the success of such

learning method as there is not a direct measure of success [33].

2.4.1.1 Clustering

The objective of clustering is the division of data into subsets. These subsets are referred as

clusters, where each object inside a cluster is similar between each other while different from the

objects in another cluster [32]. An example of the result of a clustering task is shown in figure 2.1.

Figure 2.1: An example of a data clustering task[36]. In the left, data is represented before clus-
tering is performed. After the clustering algorithm has ran, each data point has a number assigned,
being this number the cluster this data point belongs to.

A clustering task normally starts out by the identification of the best features available, which

means choosing the subset of data fields that will lead to obtaining the most accurate results, being

this subset for each input example considered a pattern. An accurate result in this context translates

normally into data partitions which the user can interpret to some level. New features might also

be generated by transformation of these original data fields constituting the input. Next, it is

important to define the best measure to compare the proximity between patterns, normally gauged

by a distance function. This distance function is then used to group patterns into clusters[36],

depending on other constraints based on the algorithm chosen. Optimizations can be made by fine

tuning every step, starting from the feature selection. A result is always generated even if no actual

grouping is present, giving the cluster validation step a very important role[50].

According to [32], clustering methods can be briefly classified as:
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• Partitioning methods: a n set of objects is divided into a k number of clusters where k ≤ n.

• Hierarchical methods: can be divided into agglomerative or divisive methods, depending in

how the hierarchical decomposition is built. The agglomerative method starts from a single

object representing a cluster and, from there, other objects or clusters are joint depending on

how close they are, or a termination condition is reached. In the divisive method, a single

cluster containing all objects is divided into smaller clusters until all clusters are left with

one object or a termination condition is reached.

• Density-based methods: can adopt any kind of shape. As long as there are enough objects

in the vicinity the cluster will keep growing, being the number of objects and the radius of

this vicinity normally set by the user.

• Grid-based methods: the object space is divided into a grid where objects in a same cell will

belong to the same cluster.

2.4.1.2 Clustering in Time Series

The time series clustering task can be divided into two sub-tasks[21]. Clustering can be performed

over each complete time series in a set, being the objective to regroup complete time series into

clusters so that they are as similar to each other as possible inside each cluster. This is called whole

series clustering. In the other sub-task, subsequence clustering, clusters are built by using a part

from a single or multiple longer time series.

The research of clustering in time series has been under development over the years and in

many domains. For instance, in [16], in order to detect injuries from sets of time series, pattern

recognition is performed by matching equal patterns with Euclidean distance. Another application

can be found in [26], where self-organizing maps are used for pattern discovery in stock data.

To find abnormal time series subsequences, [37] uses Euclidean distances to measure similarity

between examples, having this work many applications in real life contexts such as medicine, in

the subject of electrocardiograms. Clustering algorithms like k-means are used in [51] to find

intrusions in networks with a high detection rate. Finally, [39] surveys clustering techniques to

analyse gene expression data. From these works presented, there is a clear conclusion that the

areas of application of clustering techniques to obtain knowledge from time series is immense,

highlighting their worth in being pursued.

Having formed a general idea about clustering and its role established in time series, we can

then choose important requirements for a clustering algorithm in order to help determining what

algorithm will perform better in the context of our problem where the data is in a time series

format. Using the criteria established in [32], the algorithm chosen should be able to:

• Discover clusters with an arbitrary shape.

• Deal with noisy data.

• Incorporate new data without having to be reran completely from scratch.
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• Cluster high-dimensionality data due to the nature of time series.

• Produce a result that can be easily interpreted and usable in order to achieve later tasks.

2.4.2 Supervised Learning

The main goal of supervised methods is to learn the relation between input variables, independent

attributes, and a target attribute, known as a dependent variable. It is considered supervised as the

learning of that relation comes from labeled examples which are already partitioned into classes.

From these examples used as training, these relations can be mapped into models. These models

allow us then to conclude on a class given certain input variables for new examples. The two main

supervised models are classification models and regression models[40].

2.4.2.1 Classification

In the case of a classification task, a user-defined notion of grouping is obtained from the training

set, contrary to the case seen in clustering. Typically, a classification task goes through two phases

denominated training phase and testing phase. In the training phase, a model is generated from

the training examples, being this model capable of offering a prediction for a new entry with no

class, which is what occurs in testing phase, where unseen test instances are fed into the model to

be assigned a predicted class[14]. Having the predicted classes assigned to the test examples, it

is essential to determine how accurate the model is in grouping these test examples. To test how

accurately these test examples will be predicted, one possible approach is splitting the training

examples into a validation set which is used to determine prediction error for the model built[33].

The examples used in the validation set should not be included in the training set in order to

obtain an accurate value of the rate of prediction of the model. Figure 2.2 shows the progress of a

classification task.

Figure 2.2: An example of a data classification task. In (a), a dataset with two classes (C1 and C2)
is presented, which will be learnt by an algorithm. In (b), new examples with unassigned classes
are introduced which will be predicted by the model resulting in the class distinction presented in
(c)[21].
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One of the most vitals points in a classification task is determining the capacity of a model

to generalize, in order to be able to predict unseen instances correctly[32]. Training data that is

too big or small might lead the model to learn incorrect deductions if not trained correctly. It

might adapt too much to the training examples leading it to a situation where it learnt only to

predict properly for the training instances, called overfitting. Likewise, there might not be enough

examples for the model to learn the underlying structure in the data, if there is any, which leads

it to a situation of underfitting, where the model simply did not get sufficient training samples to

learn how to predict correctly unseen test instances.

2.4.2.2 Classification in Time Series

Classification in time series works similarly as explained in 2.4.2.1. A training set of time series

with a labelled class is used for training the classifier, which is then used to predict the class for

new time series[21]. Even if the approach is similar to one in a traditional classification task,

special attention should be paid due to the nature of the data[25].

There are many examples of works in the study of classification for time series. [38] proposes

a representation for time series with focus in efficient computation of the data that can be used for

both classification and clustering. In [27], a technique is described for finding patterns relevant

to solving classification problems in time series. Due to the lack of a large amount of labeled

training data in specialized domains, [48] proposes a semi-supervised technique to build accurate

time series classifiers while using a reduced amount of labeled examples. Finally, [49] offers

a approach to reduce the numbers of examples used for training while maintaining accuracy in

the case of a one-nearest-neighbor classifier with Dynamic Time Warping in order to improve

computational costs.

2.5 Floating car data

While the analysis so far has focused on time series, it is also worthy to present FCD as a type

of time series data in order to provide a better context to the problem that will be addressed.

FCD is based on the transmissions from GPS sensors in the vehicle while in movement, providing

access to fields that characterize the movement of the vehicle such as latitude, longitude, altitude

or speed. Each of the data entries containing these fields comes timestamped with the moment

these measurements were performed, being sent at a fixed interval in real time to a system that

will store the data.

This type of data represents a reliable and cost-effective way to collect accurate traffic data,

representing a good addition to fixed-point traffic sensors which involve high installation and main-

tenance costs[20]. A few examples of the research using FCD are the deduction of traffic speeds

such as in [20], estimation of a route’s travel time[44] and incident detection[34].
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2.6 Automatic definition and classification of POIs

The objective of this dissertation project is finding POIs related to a vehicle’s operation and the

categorization of that operation through the analysis of FCD. To better define a proper approach

to solve the problem, similar works must be analysed. Our main point of focus are the approaches

that base their work around the use of data mining methods to both find and categorize POIs.

In [46], the authors aim for the identification of location contexts using POI data. Location

contexts constitute a well defined geographic region with a description, characterizing the area the

person is in. Using a POI database, clustering is performed over this data by taking advantage of

the coordinate fields which form a "cloud" in the geographic space. The Shared Nearest Neighbour

algorithm is used, which constitutes a spatial density-based algorithm and a good option in this

context as it can identify clusters of any shape, density or size.

Figure 2.3: Clustering process performed in [46] to identify location contexts. Having a group
of POIs, a clustering algorithm is ran to group them. The position of each POI in the cluster
determines the area that the location context will occupy. The last step is then to categorize these
locations into different types such as A or B, in the context of this figure.

The testing of the output for the clustering algorithm was done by overlapping the results with

satellite images from Google Earth[7] which is also used for the classification task, as clusters

were manually labelled in order to produce data to train and test decision trees. As the dataset

created was unbalanced, part of the examples in classes had to be duplicated, obtaining a final

result with 92% accuracy.

[30] has the goal of labelling the purpose of a trip using GPS data. In this case, the POIs are trip

stops (with a minimum duration of five minutes) and were obtained by the use of a density-based

algorithm, DBSCAN. This kind of algorithm was chosen as it can detect clusters with arbitrary

shapes and works well with data having spatial features such as coordinates. An important aspect

is that, from the entries that compose a cluster, aggregations like averages were performed over

the data, using the attributes "time of arrival" and "length of stay" to create new features for a POI,

which then can be used for the classification task. Decision trees were used to identify the trip

purpose after training the model using the POIs that were found and manually labelled.
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Using GPS data along with a travel diary partly filled by the users themselves, [41] has the

objective to further automatize travel imputation in order to improve travel purpose identification

in general and make the creation of these surveys a easier and more accurate task, facilitating

the burden on the users. To achieve this, the authors begin by identifying the different types of

travel purpose and then locations are clustered by activities using an agglomerative hierarchical

clustering approach. Random forests are then used to identify trip purposes such as "being home",

"working" or "recreational activities", obtaining an overall mean accuracy of 80%. An important

point to note is that the model created identified common activities more accurately, being specu-

lated by the authors that this due random forests favoring classes that appear more in the case that

a good model can not be built.

From continuous GPS trajectories collected using mobile phones, [29] aims to firstly identify

moving and stopping points in these trajectories, and then, in the stopping points, distinguish

activity points from non activity points. The data collected has as important features geolocation,

a time stamp and signal quality so records gathered with low signal can be discarded. Trip starts,

ends and trip purposes are inputted by the mobile phone owners. The first step was identifying

moving and stopping points and to this end C-DBSCAN was utilized, a variation of DBSCAN.

While DBSCAN is capable of identifying stop points as clusters using the geographical data, it

did not adapt properly to this context, as this algorithm was developed with no temporal notion

and, due its definition, also created incorrect clusters under movements in a straight road at low

speed. To solve these problems, C-DBSCAN was created by adding a time sequence constraint

and a direction change constraint to DBSCAN. Having the clusters representing stopping points,

identifying them as activity points or not was the next step. The algorithm chosen for this task was

support vector machine (SVM), having as main features stop duration, the mean distance from the

points in a stop cluster to its centroid and the minimum distance from that stop position to home

and work. Stop points were obtained with a 90% accuracy and activity points were distinguished

with a 96% accuracy.

Once again from the collection of GPS data and a travel diary, [52] has the objective to identify

trip ends as they are crucial points to separate trajectories into journey and activity segments.

Firstly, a density based spatio-temporal algorithm is applied to find candidates for stops. This

algorithm is proposed by the authors and has the objective to answer the missing temporal notion

in algorithms like DBSCAN, just like [29], but in this case by using a sliding temporal window.

Trip ends are then identified by the use of a random forest classifier by distinguishing actual trip

ends from stops with a very satisfactory accuracy of 99.2%.

Finally, [47] focuses on stop purpose classification from GPS on the context of commercial

fleets, having then a similar context to the one this dissertation project is inserted in. More specif-

ically, it intends in specifying the purpose of a stop as work related (delivery) or non work related

(maintenance or refuelling, as examples) giving fleet managers access to more complete informa-

tion about the vehicles’ trips. For vehicle stop detection, the authors developed their own spatio-

temporal clustering algorithm that, firstly, associates GPS data entries to a type that characterizes

the vehicle’s movement and then gathers them into groups using these types. Stops are defined
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by chronologically consecutive types "engine off" or "idling" while movements are determined as

type "journey". With this method they were able to properly identify places where the vehicles

were stopped and also where operations were done. For the creation of features for the classifi-

cation task, an extensive list of new features was computed, divided into four groups: stop-wise

features which were obtained by the aggregation of the GPS entries belonging to each stop clus-

ter; POI features such as "distance to closest fuel station" or "distance to closest repair facility"

were obtained by checking a radius around the obtained stop location using an external source

containing POI data; stop cluster features which had fields that characterized the area around a

given stop; finally, sequential features which characterized the consecutive stops of a user in a day.

These features were then used to create a random forest classifier to identify stops as work related

or non work related, obtaining a AUC score of 0.931. The authors also ranked the most relevant

features for the prediction in this classifier, the top five being: average stop duration in cluster,

stop duration, total time with engine off, maximum time with engine off and max stop duration

in cluster. Given the context of this work, the analysis of all the features used and its relevancy is

particularly interesting for solving our own problem.

From the analysis of these works, options for both the definition and classification of POIs

were found. DBSCAN was the most favoured algorithm to form clusters that adapted to the dif-

ferent contexts, but also presented disadvantages such as not having a temporal notion leading to

points being identified incorrectly. For the labelling of the points found, Random Forests con-

stituted a solid answer, but it could be noticed that the most important step in the classification

tasks was the creation of new features from the data composing the clusters along with the use of

external sources to enrich the existing data.
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Chapter 3

Solution Proposal

The goal of this dissertation project is automatizing the process of identifying and labelling the

POIs of an urban distribution vehicle. From this project summary, two tasks can be clearly de-

limited: identification and labeling. From the identification task, various clustering algorithms

will be tested over the dataset from which non labelled POIs will be obtained. To give meaning

to this first task, there is an interest in labeling the points found with the operation performed by

the vehicle with the creation of a classifier which is capable of assigning a meaning to unlabelled

POIs. The following sections will go into more detail about each task and then the datasets are

described along with the features they contain.

3.1 Identifying the POIs

The first step in this project is the identification of the points of interest in the circulation of various

vehicles belonging to a same company. The intent of this step is then determining automatically

where the vehicles normally stop. A POI is then represented by a pair of coordinates where the

vehicle either stops very frequently or stays for long periods of time, meaning it holds some kind

of importance to the vehicle’s circulation routine.

Due to the frequency of the data transmission process, a large amount of data is gathered,

creating a need to initially perform a downsampling operation so longer periods of data can be

analysed with a lower computational burden. This can be achieved by aggregating data with the

use of summary statistics. This process is not enough to prepare the data, being there also a

subsequent step to filter incorrectly gathered data, making it possible for the following processes

to be more precise.

Having the data processed, POIs are then identified by the use of clustering algorithms. The

result of these algorithms are points represented by geographical coordinates (latitude, longitude),

making it possible to represent the output of each algorithm in a map, which helps the analysis

being a more objective process. Nevertheless, these results also have its outcome analysed by the

use of business knowledge, as the points obtained are compared to existing known POIs so a better

grasp of these algorithms performance can be determined.

15
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Figure 3.1: Proposed solution and the two main tasks: clustering and classification.

3.2 Labelling the POIs

Having the POIs identified, the following step is to determine how they should be labelled. By

using the data generated by the clustering algorithm as input, the POIs are given a identifying label,

determining the purpose for stopping of that vehicle in the context of the company’s operations.

To this end, the training of a model capable of predicting these labels is needed.

The first step is then generating features that can be fed to the various classification algorithms.

From the result of the clustering algorithm, new features were already computed, as a cluster is

built from the aggregation of the entries of a vehicle’s circulation. In addition to that, by the use of

OpenStreetMaps[1]’s API, features identifying amenities, shops, buildings and other infrastructure

surrounding the clusters were also obtained, giving more alternatives to the algorithms to identify

patterns in the data.

Finally, by the use of the result of feature engineering, the data is split into train and then test

so as to create and determine the accuracy of the classifiers trained, being this data previously

manually labelled through an interface available to the fleet manager and completed with business

knowledge. Two different approaches to dataset creation are tested and compared, one where each

entry represents a POI and the other where each entry represents a stop of the vehicle in that POI,

with the final objective of determining which produces more accurate models.

The result from this process is then a classifier capable of predicting the purpose of a vehicle’s

stop in a certain point, such as unloading cargo at a client or refueling the vehicle, being the

classifier chosen the one with best accuracy in predicting these labels.

3.3 Data sources and base datasets

Vehicle’s circulation data is gathered by a vehicle bus module, Controller Area Network( CAN

bus), and is sent every second to a remote server which stores the data in a PostgreSQL[8] database.

This data reflects the movement of the vehicle over time, gathering various different metrics on
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both the vehicle state and its refrigeration system. Data from the circulation of the vehicles from

two different companies will be analysed to better test the solution presented as different compa-

nies will have different clients, warehouses and operate in distinct areas, meaning that there is a

higher security in the solution described in the case that both reach satisfactory results.

The data for each company is organized by what the module gathers in a given week, there

being circulation data from October 2017 to February 2020 belonging to different vehicles. A

file for each week normally ranges from 100000 to 600000 lines, occupies from 15 megabytes(

MBs) to 115 MBs and contains 32 columns, being the most relevant to solve the problem at hand

presented in table 3.1.

By performing an initial analysis, it could be identified that this base dataset contains essential

entries for both the clustering and classification task. The clustering task will depend in the geo-

graphical coordinates represented by the latitude and longitude, while the classification task might

find use in the other columns as they currently are or after their processing, where new relevant

features will be ascertained from existing ones, helping the classification algorithms in the cre-

ation of more accurate models. It can also be noticed that a few variables are not reliable for use,

such as altitude, which is not recorded properly, and speed, which has a more precise alternative

in speed_can.
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Field Data Type Description Example
imei TEXT Data gathering device identifier. 358480088123456
registered_at TIMESTAMP Date and time of the gathering of

this record.
2019-10-23 09:27:09

latitude DOUBLE
PRECISION

Latitude of the vehicle’s posis-
tion.

38.8123654

longitude DOUBLE
PRECISION

Longitude of the vehicle’s posi-
tion.

-8.6054321

altitude REAL Altitude of the vehicle’s posi-
tion.

0.0

speed REAL Vehicle’s speed gathered from
the GPS installed.

29.0

speed_can REAL Vehicle’s speed gathered from
the CAN bus.

25.7461

rpm REAL Vehicle’s motor rotations per
minute.

1099.0

compartment_temperature_1 REAL Vehicle’s temperature in com-
partment 1.

-20.0

compartment_temperature_2 REAL Vehicle’s temperature in com-
partment 2.

3.0

compartment_temperature_3 REAL Vehicle’s temperature in com-
partment 3.

16.0

timer_digital_2 REAL Vehicle’s diesel refrigeration
unit timer.

10.0

timer_digital_3 REAL Vehicle’s tail lift timer. 13.0
grid_available REAL Availability of a grid system to

feed current to a refrigeration
unit.

0.0

load_controller_current REAL Current passing from the Add-
Volt system to the refrigeration
unit.

201.783

created_at TIMESTAMP Date and time of the insertion of
this record into the database.

2019-10-23 09:27:13

updated_at TIMESTAMP Date and time of the last update
of this record in the database.

2019-10-23 09:27:13

Table 3.1: Original dataset most relevant features.



Chapter 4

Finding points of interest in the
vehicle’s circulation

In this chapter, the process to find POIs is described in detail. To that end, data is firstly pre-

processed as to make it more usable in both this task and the following one. Subsequently, vari-

ous clustering algorithms results are then shown and analysed, which also includes an evaluation

method that gives a better idea of each algorithms’ performance in this specific context. A process

to identify the best hyper-parameters for the chosen algorithm is presented, and, lastly, conclusions

about the chapter in general are delineated.

4.1 Data pre-processing

Data pre-processing is an essential step for both the clustering and classification tasks. In this con-

text, there is a clear need to make data more convenient to work with as raw data does not always

have the most intuitive values in some of the columns or the information is not as summarized as

it could be.

Data gathering modules are also prone to failure, creating a necessity to filter error cases.

While many algorithms have the capability to deal with such cases, identifying and removing

them can give more leeway for algorithms to achieve better results.

To address these concerns, data is processed and aggregated so that algorithms do not have to

deal with sensor failures and run in less time with the same results, being these procedures further

explained in sections 4.1.1 and 4.1.2.

4.1.1 Data resampling

There is an interest in downsampling the data in order to make it manageable to be analysed over

longer periods of time with a lower computational cost, whilst at the same time aggregating each

entry to represent a time frame that makes sense given the context.

As the raw circulation data being considered constitutes observations made each second, the

frequency of the data was lowered to an observation made each minute, therefore reducing the

19
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Field Description Based on existing features
vehicle_is_on Vehicle is operating. rpm > 300
vehicle_is_driving Vehicle is operating and moving. speed_can > 0, rpm > 300
vehicle_is_idle Vehicle is operating but not

moving.
speed_can == 0 , rpm > 300

vehicle_is_stopped Vehicle is not operating. rpm == 0
tail_lift_is_on Vehicle’s tail lift is raised. timer_digital_3 > 0
tail_lift_startup Vehicle’s tail lift was started up. tail_lift_is_on == True AND

tail_lift_is_on == False on
previous entry

refrigeration_is_on Vehicle’s refrigeration is operat-
ing.

refrigeration_diesel_is_on
== True OR refrigera-
tion_electric_is_on ==
True

refrigeration_diesel_is_on Vehicle’s refrigeration is using
diesel to operate.

timer_digital_2 > 0

refrigeration_diesel_startup Vehicle’s refrigeration using
diesel has started up.

refrigeration_diesel_is_on
== True AND refrigera-
tion_diesel_is_on == False
on previous entry

refrigeration_electric_is_on Vehicle’s refrigeration is using
electricity to operate.

refrigeration_electric_is_on_f-
rom_battery ==
True OR refrigera-
tion_electric_is_on_from_grid
== True

refrigeration_electric_is_on_from_battery Vehicle’s electric refrigeration is
using the battery to operate.

load_controller_current > 0

refrigeration_electric_is_on_from_grid Vehicle’s electric refrigeration is
using the power grid to operate.

grid_available == True

Table 4.1: New features generated from existing columns.

dataset size significantly. This frequency of observation is also meaningful in this situation, as

most vehicles stop times in POIs are in the order of minutes.

While raw circulation data has many information that can be summarized without a significant

loss of detail, to perform this downsampling correctly there is still a need to aggregate existing

features in a way that represents the original data as close as to what it was in the new generated

data.

Using the newly created features in table 4.1, aggregation of the records becomes an easier

process as fields such as load_controller_current and load_controller_state are transposed into

simpler values, reflecting in this case, for example, if the electric refrigeration system was being

used(1) or not(0) at the minute that the example was recorded. As explained, the final result

from this process represents the vehicle’s movement every minute, having the data now in a more

workable time scale.
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4.1.2 Data filtering and constraining

As mentioned, the data gathering modules are prone to errors, not only due to device failures, but

also due to the characteristics of the location where the vehicle is. GPS signals require a direct

path between the receiver and the satellites, making it possible for enclosed spaces to be enough

to completely block GPS signals[9].

By checking and plotting value variation for a few select fields, in this case, latitude, longitude,

rpm and speed_can, repeated error cases can be spotted and filtered out, as these will have worse

consequences when compared to sporadic errors, which can be more easily detected by the noise

identifying capabilities of some of the clustering algorithms.

Figure 4.1: Fields latitude, longitude, rpm and speed_can value amount variation for a vehicle’s
circulation data corresponding to one year. Appendix A contains bigger resolution versions of the
graphics presented here.

As it can be quickly noticed in figure 4.1, in the case of the latitude plot, a value of exactly -44

is seen a significant number of times representing a error in the data gathering of the GPS. Same

can be said for the rpm plot where the value 8159.88 also represents an error in the vehicle’s sensor

due to being physically impossible. Filtering these values assures that the clustering process will

obtain more accurate values, as entries with incorrect coordinates will no longer be candidates for

cluster creation nor will clusters created be composed by entries with invalid RPM values.
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In order to prepare it further for the clustering task, data is also constrained by the use of the

features vehicle_is_stopped and vehicle_is_idle since the POIs of the vehicle will be determined

by the locations where the driver stops frequently.

4.2 Clustering vehicle circulation data

With a data processing method established, we now have a base dataset which we can run the

clustering algorithms against. The objective of this clustering process is finding the POIs in the

circulation data of the vehicle so they can labelled in the following task. These POIs will then

represent the points where the driver stops frequently to, for example, deliver products or refuel

the vehicle, making them the key points to establish the vehicle’s route.

As such, the found clusters should be able to be plotted in a geographical space, making

latitude and longitude the essential features for this task. Using any more features would produce

clusters that could not be accurately translated to a map, making it so that the clustering result

would lose its meaning in the business context.

Having this established, the requirements for an algorithm to accomplish this task appropri-

ately should comply with the following criteria:

1. The algorithm should be able to deal with noisy data;

• Even after the pre-processing done, situations such as traffic jams or sporadic wrongly

recorded data should be able to be dealt with, making the process simpler as a result.

2. The algorithm should be able to find an arbitrary number of clusters;

• The total number of POIs for a vehicle’s circulation is unknown.

3. The algorithm should produce a result that is easily interpreted;

• The classification will work with features created with the results from this task, cre-

ating an interest in a easily understood result.

4. The algorithm should have hyper-parameters that are as simple as possible to optimize;

• The algorithm having easily interpreted hyper-parameters helps streamline a solution

that fits different vehicles.

5. The algorithm is scalable with a large amount of samples;

• Even after resampling the data has a significant amount of samples, specially if the

algorithm is ran against data pertaining to multiple weeks or months.

6. New data should be able to be incorporated without having to rerun the algorithm with the

data in its entirety;
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• There is an interest in incorporating new circulation data in order to find new POIs

while maintaining past ones, as new data is produced every day.

7. The clusters found by the algorithm are not constrained to a shape;

• The algorithm to be used should be able to find clusters with non-convex shapes.

Given these conditions, the previously mentioned clustering methods that seem to best fit this

situation are density-based methods, where clusters are created by a notion of dense and sparse

regions. A parallel can be made to the context of the problem, since POIs are composed by

geographical areas where the vehicle stops regularly, creating dense regions. They also comply

with most of the presented criteria, specially due to being able to deal with noise and find an

arbitrary cluster number. Therefore, they will be given focus. Nevertheless, other algorithms

outside of density-based methods will be analysed as a way to establish a comparison. The data

used to establish a comparison between all algorithms will use one month of a vehicle’s movement,

encompassing 32620 samples.

All the run times presented in the following sections are based on a computer with the follow-

ing specifications:

CPU Intel Core i5-4200H 2800.0 MHz
RAM 4GB DDR3 SDRAM 800.0 MHz (2)

Table 4.2: Relevant specifications of the computer where the algorithms were ran.

4.2.1 K-means

The first clustering algorithm tried was K-Means, using the scikit-learn[42] implementation. In a

general sense, K-Means aims to separate the data into k groups while minimizing within-cluster

sum-of-squares[10] of Euclidean distances, in the case of used implementation. In simpler terms,

it aims to create k clusters separate from each other as much as possible while maintaining the

points contained in each cluster as close as possible.

As the k parameter is user-defined, silhouette score was computed for different k values to try

and find a possible number of optimal clusters. The silhouette coefficient tells us how well defined

the clusters are by comparing the distance of a sample to other samples in the cluster and the

distance of that sample to the nearest cluster that the sample is not a part of[11]. From analysing

the plot in figure 4.2, we can then conclude that the optimal value for k is 30 clusters, if we base our

analysis around the silhouette score. A number of 10 runs with different centroid seeds was done,

being picked the result with the minimum within-cluster sum-of-squares distances, with each run

having a maximum number of 300 iterations.

Due to the use of an Euclidean metric to measure distances between points in this algorithm,

latitude and longitude were converted from the Geographic coordinate system to the Universal

Transverse Mercator(UTM) coordinate system. Both coordinates were then mapped to a two-

dimensional space, making it possible to calculate distances between data points accurately.



24 Finding points of interest in the vehicle’s circulation

Figure 4.2: Silhouette score variation with different k amount of clusters.

From the analysis of the map output in figure 4.3, we can assess that while the clusters are

relatively well grouped due to the optimization of the k value, the clusters obtained do not make

much sense with the objective in mind as specially in more urban areas, where the circulation data

is more dense, the clusters stretch out over distances that are multiple kilometers long, encom-

passing to what could be multiple POIs and traffic data, which the algorithm has no capability of

filtering out.

Therefore:

1. The data grouping outputs a result that makes sense in context of our problem;

• Data points are partitioned into clusters even if they do not belong to a POI.

2. Algorithm parameters are intuitive and easy to optimize;

• The main parameter to optimize, k, is not intuitive in this context as there is no good

method to determine the exact amount of POIs outside of using business knowledge, as

this number varies completely with each vehicle operation. Fine tuning this parameter

is also complex, as increasing or decreasing the k value does not guarantee that better

clusters will be found.
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Figure 4.3: K-Means( k=30) output for one month of circulation data. Each same colored circle
belongs to a same cluster.

3. Results are stable and are as expected;

• The results for this circulation data are stable, giving similar results between runs,

despite the nature of K-Means where different random starts might lead to different

clustering results. Varying the k value also does not produce a result that can be specu-

lated as the data groups in a way that does not correlate with our context and just tries

to partition the data to comply with the numbers of clusters the user has defined.

4. Run times are satisfactory;

• Due to K-Means being a simple and efficient algorithm, run times are extremely fast.

Having these points established, it cannot be said that K-Means constitutes a good solution

to this problem, as stable results and fast run times are not enough to compensate for lackluster

clustering results.
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Cluster Number Sample Number Runtime(s)
30 32620 1.31

Table 4.3: Number of clusters found, amount of samples provided and runtime for the K-Means
algorithm.

4.2.2 Mean Shift

The next algorithm considered was Mean Shift, also using the scikit-learn[42] implementation,

specifically due to not having to specify the number of clusters and having the capabilities to

detect noise. Mean Shift works by finding dense regions in the feature space using a probability

density function, where these dense regions constitute a local maxima of that function in which a

cluster associated to it is delineated[19].

Just like in the case of K-Means, there was an attempt to find the best value for the main

parameter of Mean Shift, bandwidth, by computing silhouette scores once again. Bandwidth rep-

resents the resolution of the analysis of the algorithm. Each data point is used as a seed with a

maximum number of iterations of 300 and a flat kernel is used.

Figure 4.4: Silhouette score variation with different bandwidth values.

From the analysis of the plot in figure 4.4, the value to use for the bandwidth parameter is 500.
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As the feature space preferred is Euclidean[19], coordinates are once again mapped to the UTM

coordinate system.

Figure 4.5: Mean Shift( bandwidth=500) output for one month of circulation data. Each same
colored circle belongs to a same cluster and dark gray colored circles represent noise found in the
data.

By analysing the result in figure 4.5, we can notice that the clusters found partition the data

a lot more distinctly compared to the K-Means output( Figure 4.3), specially as the number of

clusters found were a much higher value too, from 30 as shown in table 4.3 to 60 in table 4.4.

While finding a higher number of clusters is not exactly beneficial, as they could be wrongly

found, in the context of geographical data where we know that a POI rarely stretches over multiple

kilometers, these results seem more promising.

After a better study of the output in figure 4.5, we can also see that the noise detected is

correctly distinguished as it constitutes data where the vehicle is stopped in traffic. Nevertheless,

only 8 of the samples were detected as noise, meaning the algorithm does not adapt to the context

of the data as much as it would be liked, considering coordinates where the vehicle could only be
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Cluster Number Sample Number Runtime(s)
60 32620 124.35

Table 4.4: Number of clusters found, amount of samples provided and runtime for the Mean Shift
algorithm.

in traffic are still grouped into clusters.

Therefore:

1. The data grouping outputs a result that makes sense in context of our problem;

• A small amount of data points are correctly recognized as not belonging to possible

POIs but the amount is almost negligible. As such, while the clusters span over dis-

tances that make sense, they also encompass large quantities of wrong data.

2. Algorithm parameters are intuitive and easy to optimize;

• The main parameter to optimize, bandwidth, is hard to optimize due to the little corre-

lation it has with the context of the data.

3. Results are stable and are as expected;

• The results vary a lot given different bandwidth values and it is also hard to notice a

pattern in these changes between different bandwidth values.

4. Run times are satisfactory;

• Run times are extremely slow due to Mean Shift algorithms having quadratic complex-

ity on the number of data points and possibly needing multiple iterations to converge[17].

While Mean Shift gave better results compared to K-Means, it has not yet reached a solution

that fits our problem satisfactorily, as while the number of clusters is not user-defined and noise is

detected, almost all noise goes unnoticed. The exceedingly large run time also makes a solution

using this algorithm not feasible, specially as we want to run the algorithm over multiple months

or even years of data and not just over a month of circulation data.

4.2.3 DBSCAN

DBSCAN was the next promising algorithm to be experimented with. DBSCAN equiparates

clusters to dense regions, where a certain amount of objects have to be in the neighborhood of

each other for them to form the clusters, being this amount parameterizable[50].

In the scikit-learn[42] implementation, there are two main parameters to define: epsilon, which

sets a neighborhood in the format of a radius around a point where it can find another and therefore

expand the cluster, and minimum_samples, which imposes a minimum number of objects in a

neighborhood for them to be considered a cluster.
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In this case, choosing the parameters is a different situation from the two cases already pre-

sented, as from an initial analysis, it can be noticed that both parameters have a direct correlation

with our context: epsilon represents how big of a area do we want a POI to expand by with every

point included and minimum_samples the minimum amount of instances that occur in that area. In

the context of our problem this can be translated to a minimum minute count of the vehicle in that

area for it to be considered a POI, as after pre-processing, each instance in the data set corresponds

to one minute of operation, which was established in subsection 4.1.1, where the observations fre-

quency was lowered from seconds to minutes. As such, parameters were defined by the use of

business knowledge, having established epsilon with a value of 100, meaning there is a maximum

radius of 100 metres to establish the neighborhood around a point and minimum_samples with 60,

which implies that a vehicle has to remain a non-sequential total time of one hour in an area for it

to be considered a POI.

In this case the distance metric used the haversine formula to calculate the distance between

each data point so latitude and longitude could be used without converting to another coordinate

system, as this formula determines the distance between two geographic coordinates on a sphere.

Cluster Number Sample Number Runtime(s)
34 32620 12.53

Table 4.5: Number of clusters found, amount of samples provided and runtime for the DBSCAN
algorithm.

From the output in figure 4.6, the first aspect noticed was the noise detected, which in this case

is composed by 368 examples, making a complete difference in what clusters are found compared

to past results.

With the parameters having direct correlation to our data, we guarantee a result that makes

more sense than the previous presented: points where the vehicle stopped due to the traffic are

identified as noise, considering a vehicle will rarely stay for multiple minutes in a same point dur-

ing traffic, being even harder for it to stay for the amount of time designated in minimum_samples

to end up considered as a POI.

By delimiting the maximum area, we also ensure that the POIs span over a area where clusters

can be clearly defined. Setting an epsilon too high could make a cluster encompass multiple POIs,

while setting it too low could make the algorithm detect multiple POIs where there is only one.

Therefore:

1. The data grouping outputs a result that makes sense in context of our problem;

• Data is distinctly separated into clusters and noise, creating clearly defined POIs that

span over sensible distances and filtering out data pertaining to vehicle stops due to

traffic.

2. Algorithm parameters are intuitive and easy to optimize;
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Figure 4.6: DBSCAN( epsilon=0.1, minimum_samples=60) output for one month of circulation
data. Each same colored circle belongs to a same cluster and dark gray colored circles represent
noise found in the data.

• The parameters to optimize, epsilon and minimum_samples, have a direct correlation

with the circulation data, making their choice intuitive by the use of business knowl-

edge.

3. Results are stable and are as expected;

• The results obtained are consistent between executions. Varying the parameters also

produces expected results as existing clusters either expand, diminish or disappear and

new ones appear, making it easy to detect the pattern in the cluster variance.

4. Run times are satisfactory;

• Run times evidentiate a great performance of the algorithm.
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DBSCAN shows a huge step up compared to the other two algorithms, complying with all the

restrictions set for a clustering algorithm in section 4.2. As such, it seems to be a very good solu-

tion for our problem, as we expect the algorithm to maintain a good performance even when run-

ning it over data for multiple months of a vehicle circulation, as DBSCAN is specifically adapted

to be efficient even on large datasets[22].

4.2.4 OPTICS

To try and refine the result obtained by using DBSCAN, the OPTICS algorithm was also consid-

ered. OPTICS works as an extended DBSCAN algorithm where minimum_samples constitutes the

only required parameter. Instead of assigning cluster membership, an ordering of the examples for

a maximum_epsilon is created[15]. From this information, clusters with varying densities can be

extracted.

In the case of the scikit-learn [42] implementation, using a DBSCAN cluster extraction method

over the OPTICS output produces the same result as the one presented in the DBSCAN subsection

4.2.3, in the case that max_epsilon is equal to DBSCAN’s epsilon. From the analysis produced by

OPTICS, more information can be extracted with the trade-off of a higher computational cost and

execution time which can be seen in table 4.6.

Cluster Number Sample Number Runtime(s)
34 32620 148.70

Table 4.6: Number of clusters found, amount of samples provided and runtime for the OPTICS
algorithm.

Delivery vehicles normally have specific spots to deliver its cargo or to park, meaning that

the stop points inside a POI do not vary significantly. As such, the advantages that come from a

varying radius to detect POIs are not necessary considering business needs. This along with the

higher execution times, that come as a trade-off, make this solution not as desirable, even if a more

thorough analysis of the data is produced.

4.3 Establishing a clustering algorithm evaluation measure

Analysing the output from clustering algorithms constitutes an hard process, as it can be trouble-

some to determine how the data should be partitioned and if those partitions make sense. Fortu-

nately, as the tested algorithms only had the input of two different features, latitude and longitude,

the process was able to be evaluated by investigating the output in a interactive map and confirm-

ing how the various algorithms behaved. The expected final result of the algorithm is also simple

to identify, as the points where the vehicle stop normally represent areas or structures of some

significance.
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There is an interest in establishing a more objective method to measure the success of an

algorithm in clustering the circulation data into a POI, which will increase the support for the

conclusions reached in the previous section for each clustering algorithm tested.

Calculating the silhouette coefficient helped creating a better output in the case of K-Means

and Mean Shift, where choosing the parameters was not very intuitive, giving a better understand-

ing of how these algorithms partition the data. Nevertheless, the silhouette coefficient cannot be

used as performance measure for the algorithms, as this score does not exactly assess how a good

cluster is formed from the point of the view of our problem.

With this objective in mind established, for the circulation data used to create the clusters in

section 4.2, a list of already known POIs was used to determine if each dataset entry should belong

to a POI or not.

By creating a radius around these known POIs, a new feature was added to each dataset exam-

ple identifying if that entry is located inside a radius of 80 metres around a POI. This new field lets

us then determine if a dataset entry should belong to a cluster or not. With this new information

determined, we can then establish how well the different algorithms group the data according to

our problem. As such, the following outcomes were established:

• True Positives(TP) - this entry should belong to a POI and was assigned to a cluster

• False Positives(FP) - this entry should be considered noise but was assigned to a cluster

• False Negatives(FN) - this entry should belong to a POI but was considered noise

• True Negatives(TN) - this entry should be considered noise and was identified as such

TP FP FN TN Accuracy
K-Means 26366 6254 0 0 0.808277

Mean Shift 26366 6247 0 7 0.808491
DBSCAN 26318 5934 48 320 0.816616

Table 4.7: Distribution of outcomes and accuracy for clustering algorithms experimented in sec-
tion 4.2 for the same dataset(Sample Number=32260).

The accuracy values in table 4.7 are calculated using the following formula:

Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

K-Means algorithm does not detect any noise, meaning that all data is assigned to a cluster

leading to a static accuracy value that is based on the distribution of the data. As such, any

algorithm that does not have any noise detecting capability will achieve this same accuracy value

and will not be able to improve it under this evaluation measure.

Mean Shift improves the score from the first case minimally due to the negligible amount of

correctly detected noise.
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Finally, DBSCAN catches correctly a much higher amount of samples as noise which is both

reflected in the higher accuracy score and in the visual result presented in figure 2.1. As expected,

it obtains the best accuracy between the three options presented.

Figure 4.7: Circulation data distribution between POI and noise. Blue points represent data that
should clustered by the algorithms to form POIs while dark gray points should be left out of
clusters as they constitute noise.

Another meaningful exercise is to plot a map of using this new feature, making it possible to

see the visual distribution of noise and data that should belong to a POI. If we compare the output

obtained in figure 4.7 to the DBSCAN output in figure 4.6, we identify an equivalence between

the blue points, which represent data that should be clustered into POIs, and the colored points in

the DBSCAN output, which constitute clusters found.

By further analysis of both outputs, we also observe that in this output some areas that are

considered noise, like in the area around Odivelas and Cascais, are identified as clusters in the

case of the DBSCAN output. After a closer inspection of these points, using business knowledge,

these points can actually be confirmed as a POI, meaning that in the case of DBSCAN, the value
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of false positives is not accurate to reality as the algorithm detects POIs beyond the ones already

known. In addition to this, another part of false positives detected are not prejudicial to the actual

process of finding POIs, as while these data points are considered part of a cluster when they

should not, they are grouped due to the high density of points in the area they are in, meaning they

will belong to a cluster containing an actual POI.

With these points established, while we cannot say this accuracy score is representative of a

real performance value in obtaining all actual existing POIs in the circulation data analysed, it

can be used to compare the relative performance between algorithms tested. Another opportunity

that comes from the computation of this new feature is the optimization of parameters for the

algorithms based on this accuracy value that is directly correlated with our context, which can

lead to a better understanding of how parameters should vary with the increase in the amount of

data.

4.4 Parameter optimization for the chosen algorithm

As established in subsection 4.2.3, DBSCAN has two main parameters to optimize: epsilon rep-

resenting the maximum radius around a point for it to catch another stops from the vehicle to be

integrated in a same cluster and minimum_samples which in this context sets the minimum amount

of minutes a vehicle has to stay in the area considered, considering each dataset entry represents

one minute of operation, as settled in subsection 4.1.1.

By using business knowledge, a sensible value for the distance between stop points can be

determined, as the coordinates where the vehicle stops in a same POI do not vary a lot, making

the determination of a value for the parameter epsilon not complex. However, the same cannot be

said for min_samples, as the minimum number of minutes that a vehicle has to stay in an area for

it to be considered a POI will vary with the amount of circulation data that is being analysed.

As such, using the accuracy measure established in section 4.3, there is an interest in opti-

mizing the min_samples value given increasing quantities of data while trying to maximize per-

formance value. In this situation, the performance value will be compared between the same

quantities of data, as there is no guarantee of a increase in performance given more data, consider-

ing DBSCAN constitutes an unsupervised learning method, meaning that the accuracy could drop

if the algorithm does not work as well with newly added data.

The following conditions were then set to determine the best min_samples value given increas-

ing data quantities:

• The min_samples chosen obtains the best accuracy value for this data quantity.

• With one month of circulation data, at least eighteen clusters have to be detected, being this

number determined by the observation of figure 4.7.

• The number of clusters detected between each data increase has to be at least the same or

higher.
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• The min_samples values to be tested for each data quantity starts with 30( thirty minute stay

of a vehicle in the cluster area) and increase sequentially using that same value until the

conditions set above are met.

Samples Outlier Nr. Run Time Min. Samples Cluster Nr. Accuracy
8181 94 3.52844 30 18 0.747097

16399 366 6.95666 60 24 0.809257
24390 442 9.75323 60 26 0.823124
32620 368 13.7619 60 34 0.816616
65371 1109 24.9171 90 42 0.748574
96698 2078 42.039 150 43 0.761857

128374 2510 53.4637 150 47 0.761408
160267 3057 71.565 150 50 0.769784
191786 3221 90.1038 150 54 0.774478
224309 3133 108.165 150 58 0.766737

Table 4.8: Best minimum samples value given increasing circulation data representing one to three
weeks and then one to seven months of vehicle movement.

By observing table 4.8, we can notice how a best minimum samples parameter, for the condi-

tions set, varies with different quantities of data. With the initial amount of data, the min_samples

value has to be increased accordingly to deal with first POIs being found. With vehicle circulation

delivery routines being repeated, a threshold for the value of this parameter is reached at three

months of circulation data, as the essential POIs belonging to the vehicle’s circulation are mostly

identified. This is supported by that in first three months of circulation, 43 clusters are found while

in the following four months only 15 more are discovered. These 15 new clusters are result from

either new delivery points for the vehicle being added or past points being visited enough to be

promoted to a point of importance.

With this, a value representing a stop time of two and half hours in a POI is reached for the

parameter min_samples, which can be used to create the datasets for the classification task in a

more accurate way.

4.5 Summary and Conclusions

During this chapter, the clustering process was described. Firstly, data was resampled in order to

reduce its size so algorithms can perform faster over a longer period of data. Following that, invalid

data was filtered out, making it now possible to apply the clustering algorithms over it. From

there, desired constraints for the clustering algorithms were presented along with the analysis of

the results of various algorithms. In order to decide with more confidence on the algorithm that

will be used to find the POIs, an accuracy value was calculated using known POI data in section

4.3, being these values compared with the visual results obtained in section 4.2. Specifically in the

case of DBSCAN, its result was compared with the distribution of data in a known POI dataset,
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showing the success of this algorithm in distinguishing between clusters and noise. Finally, a

process to optimize the parameters of DBSCAN was established.

A proper decision in an appropriate clustering algorithm is essential, as this step is the corner-

stone for the classification task. Label prediction will be performed over datasets created using

this algorithm, meaning that a model created using data that was incorrectly generated will make

predictions based on wrong data, invalidating the analysis that can be made from that process.

With everything established in this chapter, DBSCAN was then chosen as the clustering algo-

rithm to build into the next task. From the highly intuitive hyper-parameters due to its correlation

to our context and results that answer accordingly to algorithm’s parameters with relatively low

running times, this algorithm presented the best choice between the ones tested.



Chapter 5

Labelling points of interest found in the
vehicle’s circulation

In this chapter, the process to label POIs is described in detail. To tackle the classification task,

feature engineering is done, creating new fields from which the classification algorithms can draw

new assessments. The classification setup that is used to analyze the algorithms is explained and

the results for the algorithms tested are presented. From the models created using these algorithms,

one will present better prediction capabilities, being then used to label the vehicle’s stop points.

5.1 Feature Engineering

Feature engineering is an essential step for the success of the classification task, being the objective

finding data that the classifier can understand. The features available create a direct impact in the

prediction abilities of the algorithm, as data is used as the foundation for model creation.

Many factors in the data can constrain the capability for models to predict, not just the quantity

of features but how they are grouped too; well summarized data can lead to simpler models which

are faster to create, easier to understand and easier to optimize for.

In this case, two main sources for features were identified: data generated from the aggregation

of the fields belonging to examples that compose each cluster and data retrieved from third party

sources based on the geographical location of the cluster. Following sections will dig deeper into

what kind of features were created or retrieved.

5.1.1 Features generated from the clustering task

The clustering task grouped entries from the dataset generated from raw data, meaning there is an

opportunity to create new fields based on the features mentioned in table 4.1 and the notion that

each entry represents one minute of operation.

As DBSCAN does not produce clusters with centroids, a medoid is determined instead. A

medoid constitutes a representative "central" point of the cluster that exists in the dataset[45],

which in this case is determined by calculating the entry that minimizes the total haversine distance

37
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Feature Description
latitude Representative latitude value for cluster.
longitude Representative longitude value for cluster.
min_latitude Latitude value for the bottom boundary of the cluster.
max_latitude Latitude value for the top boundary of the cluster.
min_longitude Longitude value for the left boundary of the cluster.
max_longitude Longitude value for the right boundary of the cluster.
stop_time Total time that the vehicle has stopped in the cluster in min-

utes.
registered_at Timestamp of creation of the last example that was inte-

grated into the cluster.
vehicle_is_idle Total time that the vehicle has spent idle in the cluster in

minutes.
vehicle_is_stopped Total time that the vehicle has spent stopped in the cluster

in minutes.
refrigeration_diesel_is_on Total time that the vehicle’s diesel refrigeration has been

on in the cluster in minutes.
refrigeration_electric_is_on Total time that the vehicle’s electric refrigeration has been

on in the cluster in minutes.
refrigeration_electric_is_on_from_battery Total time that the vehicle’s electric refrigeration has been

on from the battery in the cluster in minutes.
refrigeration_electric_is_on_from_grid Total time that the vehicle’s electric refrigeration has been

on from the grid in the cluster in minutes.
Table 5.1: New features generated from the data grouping performed by the clustering algorithm.

to every other point in the cluster. The latitude and longitude of that data point is then used to

represent the cluster.

The field stop_time was obtained by counting the number of entries in the cluster, while in the

case of vehicle_is_idle, vehicle_is_stopped, refrigeration_diesel_is_on, refrigeration_electric_is_on,

refrigeration_electric_is_on_from_battery and refrigeration_electric_is_on_from_grid, the fea-

tures were obtained by running a sum aggregation over the entries composing the cluster on the

fields with the same name from table 4.1, values which were originally formatted as Boolean

values.

5.1.2 Features collected from third parties

Using the latitude and longitude characterizing a cluster, new fields can be obtained, in this case

by using those coordinates to query outside sources. As such, the Overpass API[12] is used,

considering it is a good open source option which allows to retrieve worldwide geographic data

from a database copy of OpenStreetMaps[1], with the possible shortcoming of some of the data not

being mapped due to built by community effort. By sending a query to this API, custom selected

parts of the OSM map data are served, being these queries written in a specific query language,

Overpass QL.
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Key Description / Values retrieved

Amenity
Describes useful infrastructures of the community.
bar, cafe, fast_food, food_court, ice_cream, pub, restaurant, college, kindergarten, mu-
sic_school, school, university, car_wash, vehicle_inspection, charging_station, fuel, park-
ing, parking_entrance, parking_space, clinic, hospital, pharmacy, social_facility, casino,
cinema, community_centre, nightclub, baking_oven, conference_centre,internet_cafe,
kitchen, prison, marketplace, vending_machine, shop, loading_dock, post_depot

Building
Describes a man-made structures with different uses.
apartments, farm, hotel, house, residential, commercial, industrial, manufacture, office,
retail, supermarket, warehouse, bakehouse, hospital,greenhouse, garage, garages, parking,
service

Craft
Describes places where goods are produced or processed.
bakery, caterer, hvac, confectionery, electronics_repair, electrician

Highway
Describes the type of roads.
motorway, trunk, primary, secondary, living_street, pedestrian, service, rest_area

Landuse
Describes the use for the area.
commercial, construction, industrial, residential, retail, farmyard, green-
house_horticulture, aquaculture

Office
Describes the type of business that is carried out.
company, coworking, engineer, logistics

Shop
Describes a place where goods are sold.
bakery, beverages, butcher, cheese, chocolate, confectionery, convenience, dairy, farm,
frozen_food, greengrocer, health_food, ice_cream, pastry, seafoodshopfood, depart-
ment_store, general, kiosk, mall, supermarket, wholesale, car, car_repair, car_parts, fuel,
gas, truck_repair, deli, wholesale

Tourism
Describes places with specific interest to tourists.
hotel, hostel, motel

Power
Describes places where electric power generation or distribution occurs.
substation, transformer, generator

Table 5.2: Key:Value pairs retrieved to be used as features by querying OSM.

Firstly, map features[2] to retrieve were identified by determining what structures or areas

would make sense to visit given a transport vehicle with a electric refrigeration system. In OSM,

map points are tagged using a key and value combination, where keys are used to describe a topic,

category or type of feature and values are specific forms of that key. The tags retrieved are listed

in table 5.2.

Following that, a query to the API using the format specified in figure 5.1 was built in order

to retrieve all the relevant tags listed. Using the coordinates of each cluster, these features were

retrieved in a radius of 50 and 100 metres.

By parsing the response received (figure 5.2), the existence of the structures or places described

was determined and quantified, creating around 520 new fields. The templates used for feature

creation are specified in table 5.3. With this process finished, we had an idea of how the area

around a POI was composed, which is essential to the categorization of the point itself, considering

there is no guarantee that where the vehicle stops constitutes the POI itself.
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Feature Template Description Example
{key}:{value}_{distance}m Checks if key:value structure exists in a radius

of distance metres.
amenity:fast_food_50m

nr_{key}:{value}_{distance}m Counts how many key:value structures exist
in a radius of distance metres.

nr_amenity:fast_food_50m

nr_{key}_types_{distance}m Counts how many different value exist in key
structures in a radius of distance metres.

nr_amenity_types_100m

nr_{key}_total_{distance}m Counts the total amount of structures belong-
ing to key in a radius of distance metres.

nr_amenity_total_100m

Table 5.3: Templates used to create mentioned features using the key:value pairs retrieved.

Figure 5.1: Example of a query performed to the Overpass API to retrieve relevant structures
around each POI.
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Figure 5.2: Excerpt of a response to a query performed to the Overpass API.
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5.2 Labelling vehicle circulation data

With feature engineering done, the final step was then modelling the data by the use of predictive

algorithms. Using business knowledge, clusters representing POIs were labelled, reaching five

different labels, described in table 5.4, constituting then a multiclass classification problem.

Label Description
client Location where a distribution vehicle’s goods are delivered.
warehouse Location where the distribution vehicle’s loads its cargo and/or stays in standby.
gas_station Location where the vehicle refuels.
maintenance Location where the vehicle’s current state is ascertained.
parking Location where the vehicle’s stops temporarily before resuming operations.
other Non-identified location.

Table 5.4: Possible classes identified in the POIs.

Vehicles working under different contexts require different evaluations. Distinct features are

needed to identify the vehicle’s operation, depending what is meant to be delivered, for example.

As such, to better test the setup created, circulation data for two companies will be considered.

Depending on the areas they operate in, even different target classes can be identified. The anal-

ysis will expand in the circulation data of one of the companies, concluded by a comparison with

the results achieved in the other, so each of the algorithms’ performance can come under higher

scrutiny. The first company(Company A) operates in Portugal in the delivery to fast food restau-

rants while the second(Company B) is based in Germany and focuses in the transport to bakeries,

meaning that the models created will reach their conclusions using distinctive features in both

cases. The geography of Germany also creates the need for an additional label, parking. The dis-

tances the vehicles have to cover between the POIs is higher when compared to Portugal, making

these points of rest important places in the case of the vehicles operating in Germany.

Furthermore, two different datasets for the same circulation data will be compared: one where

each entry represents a POI and another where each entry is a stop in that POI. This is done in

order to decide if the classification should be performed directly over the result of clustering or if

the content of each cluster needs be expanded in order to produce more robust models. In both of

these cases, the algorithms will have access to the same fields with the main variation being in the

features presented in sub-section 5.1.1, as operation data will be aggregated differently, with the

stops dataset constituting a break down of the cluster data.

To choose the fields to use, feature selection is performed on the data to filter the most rel-

evant features for algorithms that do not have ability to do so, enacting an essential step in the

labelling process due to the high number of columns created by the data enrichment process. This

relevancy is based around mutual information, a measure to quantify the dependence between two

variables[43].

With the datasets identified and labelled, various algorithms can be tested using the data gen-

erated, producing different models which will have better or worse performances in predicting the

labels for each example. This performance will be evaluated using an accuracy metric, as the cost



5.2 Labelling vehicle circulation data 43

of a wrong classification is equal: identifying a client as a warehouse or a warehouse as client

carries the same risk.

In order to test the robustness of the models created by each algorithm, they have to be trained

and tested using differing datasets. As such, k-fold cross-validation is used, being the data split

into mutually exclusive k subsets of similar size, where every single data subset is used to test

the models created with the rest of the partitions left[32]. The process is then ran a k number of

times, where the performance for each model created is measured by the correct predictions over

the designated test subsets. By averaging this performance value, we get an idea of how well the

models created with each algorithm adapt with different circulation data and if their effectiveness

is maintained with unseen data. The number of folds chosen was 10 as it represents an option

associated with relatively low bias and variance[32] that will not make run times exceedingly

long with the large array of algorithms that will be tested. A cross validated grid search is also

performed over the algorithms to fine tune the hyper-parameters of each algorithm, using the

evaluation approach already mentioned.

Figure 5.3: Experimental setup for the classification task.

The setup described is summarized in figure 5.3, being the results for each algorithm presented

in the following sections. In all cases, sci-kit[42] implementations of the algorithms were used,
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except for the instance of XGBoost[4].

5.2.1 Decision Tree

The first classifier tested was a decision tree due to it representing a lightweight solution, with easy

to analyse model output. Decision trees are represented by tree-like structures where each non-leaf

node encompasses a test on a dataset feature, being each branch the outcome of that process. Each

leaf node is a class label, representing a final decision given a path of sequential decisions[32].

In this case, the feature selection capabilities of the algorithm are trusted to pick the correct

fields. After running the parameter optimization step, information gain was used to measure the

quality of a node’s split and a minimum amount of 2 samples to split nodes was set. The maximum

depth for the trees created was 4, which was determined by trying to reach a solution that wouldn’t

lead to the creation of overfitted trees.

Figure 5.4: Confusion matrix encompassing predictions for the test sets of the ten Decision Tree
models generated for the stops (Left, Sample Size=1606, Run Time=0.6 seconds) and clusters
(Right, Sample Size=76, Run Time=0.1 seconds) dataset.

The accuracy mean over all folds in the case of stops dataset was 90.3% ± 2.1% while in the

clusters dataset was 81.96% ± 9.8%. As such, it can quickly concluded that there is a necessity in

breaking down each cluster into stops for results with higher accuracy and less variance between

models created with different data. The worse results in the clusters dataset can be attributed to

the low number of samples with a very skewed class distribution (table 5.5) when compared to the

stops dataset. Without relying in a synthetic way to balance the classes, three warehouse POIs can

be expanded into 343 times the vehicle has stopped in a warehouse, increasing the representation

of this label from around 4% in the clusters dataset to 21% in the stops dataset, for example. Either

way, both datasets will be tested with the next algorithms to prove if this balance is consistent in

the stops dataset.
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True class distribution warehouse maintenance client gas_station other
Stops dataset 21.36% 8.66% 53.11% 9.65% 7.22%
Clusters dataset 3.95% 9.21% 78.95% 3.95% 3.95%

Table 5.5: True class distribution in the stops and clusters dataset.

As mentioned before, a decision tree classifier creates a result that can be easily interpreted.

As such, an example of a model created with the circulation data being tested can be seen in figure

5.5.

Figure 5.5: Example of a decision tree model created using one of the training folds.

This model highlights right away the main objective of this company in the root node, which

is the delivery of edible items to fast food restaurants. After that, when stop times of the vehicle

are over an hour, the points where the vehicles stay overnight are identified with the warehouse

class. Another point of delivery to clients is distinguished with the existence of a mall nearby,

as these places normally have fast food joints. Sites where the vehicle refuels are also picked

out by the number of gas stations nearby, making indisputable the capabilities of this decision

tree classifier in picking out relevant features when there are over 300 available. With this analysis

made, the importance of this visualization is emphasized, as we can be more assured of the models

created when we know tree structure and the fields picked out to create it make sense in the

context of operation of the vehicle. Furthermore, features derived from the vehicle’s operation and

third parties are being used, showing the importance of the feature engineering step in the whole

process.
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5.2.2 Naive Bayes

The following analysed classifier was Naive Bayes, as just like in the case of the decision tree, it

presents a light and fast option. In this classifier, it is assumed that each of the different attributes

produce a independent influence to the determination of a class[32], which cannot be said in the

case of the dataset used.

In this case, as mentioned in 5.2, feature selection is performed to select the fifteen most im-

portant fields based on its score using mutual information as a measure of field relevance. In

this case, the features retrieved were related to vehicle operation timers such as stop_time, vehi-

cle_is_stopped, refrigeration_diesel_is_on, and the presence of amenities connected to the various

vehicle’s activities like amenity:fast_food_50m, amenity:fuel_50m or amenity:parking_50m and

their amount, nr_amenity:fast_food_50m.

Figure 5.6: Confusion matrix encompassing predictions for the test sets of the ten Naive Bayes
models generated for the stops (Left, Sample Size=1606, Run Time=0.3 seconds) and clusters
(Right, Sample Size=76, Run Time=0.1 seconds) dataset.

The accuracy mean over all folds in the case of stops dataset was 77.3% ± 1.9% while in

the clusters dataset was 72.9% ± 11.2%, then reflecting Naive Bayes expectation of independent

features.

5.2.3 k-Nearest Neighbors

k-Nearest Neighbors assigns a class to a unknown tuple by analysing the k tuples in the training

set most close to it. Each tuple is represented in space by the content of the features that compose

it, being the idea of "closeness" defined in this implementation by the Euclidean distance between

points[32]. The interest in this algorithm comes from its simplicity, establishing then a baseline

result equally like the first two algorithms tested.

Feature selection, as done in subsection 5.2.2, is once again performed, as k-NN has no capa-

bilities to do so and the k-parameter is optimized to k=7, being this value determined by the use
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Figure 5.7: Confusion matrix encompassing predictions for the test sets of the ten k-NN models
generated for the stops (Left, Sample Size=1606, Run Time=0.3 seconds) and clusters (Right,
Sample Size=76, Run Time=0.1 seconds) dataset.

of the already mentioned grid search cross-validation. The distance measure between points used

was, as mentioned, an Euclidean distance measure.

The accuracy mean over all folds in the case of stops dataset was 82.8% ± 2.3% while in the

clusters dataset was 79.3% ± 5.2%.

5.2.4 Support Vector Machines

Due to its very satisfactory results in classification tasks[24], Support Vector Machines were also

tested. Training data is mapped into a higher dimension where hyperplanes representing a decision

boundary between classes are established, allowing then test data to be identified[32].

After the feature selection is done (subsection 5.2.2), the parameter optimization step led to a

C value of 50 and the use of a radial basis function(RDF) kernel.

The accuracy mean over all folds in the case of stops dataset was 67.4% ± 2.4% while in the

clusters dataset was 80.5% ± 7.9%.

5.2.4.1 Neural Networks

Another possible good option tried were neural networks, where between input and outputs, con-

nections with an associated weight are created, being these connections’ weight defined in the

training phase as to make class label predictions possible[32].

This classifier is created with the data resulting from the feature selection(section 5.2.2) and

configured with one hidden layer with 100 units, using an hyperbolic tan activation function and

500 maximum iterations, as determined by the cross-validation grid search setup.

The accuracy mean over all folds in the case of stops dataset was 95.0% ± 2.0% while in the

clusters dataset was 83.3% ± 9.7%.
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Figure 5.8: Confusion matrix encompassing predictions for the test sets of the ten Support Vector
Machine models generated for the stops (Left, Sample Size=1606, Run Time=4.3 seconds) and
clusters (Right, Sample Size=76, Run Time=0.1 seconds) dataset.

Figure 5.9: Confusion matrix encompassing predictions for the test sets of the ten Neural Net
models generated for the stops (Left, Sample Size=1606, Run Time=28.2 seconds) and clusters
(Right, Sample Size=76, Run Time=1.9 seconds) dataset.

5.2.5 Random Forests

Given the competitive results obtained by ensemble methods[24], three different types were run,

with random forests being the first of those ensembles tested.

In this algorithm, different decision trees with randomized parameters are created using the

training data and then these models are used to vote for the popular class in each unseen case[32].

The main parameter to optimize in this case was the number of randomized trees to create

which in this case stopped at 1000, as the rest of the parameters were already established from the

optimization made for the decision tree classifier, and were therefore reused.
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Figure 5.10: Confusion matrix encompassing predictions for the test sets of the ten Random Forest
models generated for the stops (Left, Sample Size=1606, Run Time=24.1 seconds) and clusters
(Right, Sample Size=76, Run Time=16.3 seconds) dataset.

The accuracy mean over all folds in the case of stops dataset was 91.4% ± 2.0% while in the

clusters dataset was 87.0% ± 9.7%.

5.2.6 AdaBoost

The second ensemble classifier tried was AdaBoost, in which the focus is further refining a base

classifier so as to predict better the harder cases with each iteration[3]. These harder cases will

have a higher weight which leads to them be reused as training data, as to prepare the model better

in predicting those cases[32].

The classifier that was the target of optimization in this case was the decision tree classifier

presented in 5.2.1, meaning that the maximum depth was set to 4 to try not to cause overfitting in

the results that this meta classifier will create. A maximum number of estimators to create was set

to a 1000.

The accuracy mean over all folds in the case of stops dataset was 97.0% ± 1.0% while in the

clusters dataset was 85.9% ± 4.9%.

5.2.7 XGBoost

The third and final ensemble method tested was XGBoost, due its recent wide recognition in

tackling a multitude of different classification challenges. This algorithm also works around a

decision tree ensemble, where in each iteration a new model is created with the intent in optimizing

a regularized objective function which assesses the quality of the predictions on the training data

and the complexity of the model created, in order to cope with overfitting[18].

The parameters for the trees created have once again a maximum depth of 4 and feature selec-

tion, as mentioned in subsection 5.2.2, is also performed, being produced a tree based model.
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Figure 5.11: Confusion matrix encompassing predictions for the test sets of the ten AdaBoost
models generated for the stops (Left, Sample Size=1606, Run Time=457.3 seconds) and clusters
(Right, Sample Size=76, Run Time=4.9 seconds) dataset.

Figure 5.12: Confusion matrix encompassing predictions for the test sets of the ten XGBoost mod-
els generated for the stops (Left, Sample Size=1606, Run Time=3.5 seconds) and clusters(Right,
Sample Size=76, Run Time=0.6 seconds) dataset.

The accuracy mean over all folds in the case of stops dataset was 95.8% ± 1.5% while in the

clusters dataset was 87.0% ± 7.9%.

5.3 Summary and Results

In this chapter, a way to classify the clusters found in chapter 4 was presented. With this, new

or existing unidentified points where a vehicle stops can be distinguished in the context of its

operation, therefore giving meaning to the previous task.
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Algorithm Testing reason
Decision Tree

Lightweight algorithms to serve as baseline classifiers.Naive Bayes
k-NN
Support Vector Machines

Good adaptation to many classification problems.
Neural Networks
Random Forests

Ensemble methods high accuracy prediction capabilities.AdaBoost
XGBoost

Table 5.6: Testing reason summary for each algorithm.

Firstly, the feature engineering process was described, where new fields were created from the

data aggregation with the points composing each cluster and from the collection of geographical

data from an external source. Two datasets for the circulation data of a company were presented,

in order to determine if the grouping produced from the clusters provided a satisfactory solution

or if the data should be broken down to a finer granularity as a POI is composed by the multiple

vehicle stops in a point. A setup to test how each classifier would work with unseen data was

described and several algorithms were tested using the accuracy metric as a measure, as wrongly

predicting a point’s label has a same cost independently of the class.

The mains reasons for testing each algorithm are summarized in table 5.6 and the results of

the algorithms for each dataset are presented in figure 5.13 and 5.14.

Figure 5.13: Accuracy mean over all models created by each algorithm in the stops dataset.

From the analysis of both graphs, we can notice right away that the clusters dataset produces
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Figure 5.14: Accuracy mean over all models created by each algorithm in the clusters dataset.

worse prediction models except in the case of support vector machines, with also a much bigger

variance in predictions capabilities between models created by a same algorithm with different

data. As such, it can clearly concluded that for the dataset creation for the classification task,

clusters obtained have to be expanded into stops in order to create a dataset with much more

samples available that will make possible the creation of models that will achieve higher accuracy

results.

In the case of the results in the stops dataset, two ensemble methods, AdaBoost and XGBoost,

obtain the higher accuracy results with lower variance along with Neural Networks, being the clear

winners in terms of prediction capabilities. Still, between these three algorithms, a big advantage

can be definitely noticed in the XGBoost cross validation setup as it only takes 3.5 seconds to

run, when compared to the 28.2 seconds of the Neural Nets and the much greater 457.5 seconds

in the case of AdaBoost for the same dataset. Another point that should be also remarked is the

relatively high accuracy value in the case of the Decision Tree algorithm while being a baseline

classifier, specially as the models analysed, like in the case of figure 5.5, make sense in the context

of vehicle’s operation and are also used as a base estimator in the AdaBoost classifier.

One final analysis to be performed is the comparison of the results presented until now, be-

longing to a Portuguese company, to ones obtained in the German company mentioned in 5.2, as

a way to assess the quality of the results of a same setup in a completely different data context.

In general, the results obtained in both companies are similar, with mostly what seems to be

a lower variance between the models created in company B by the k-fold cross validation, except

for the case of Naive Bayes, which does not adapt with the data very well in both cases to begin
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Algorithm(Stops dataset) Company A( Portugal) Company B( Germany)
Decision Tree 90.3% ± 2.1% 92.1% ± 0.3%
Random Forest 91.4% ± 2.0% 89.1% ± 0.3%
Naive Bayes 77.3% ± 1.9% 76.5% ± 7.9%
Neural Net 95.0% ± 2.0% 94.3% ± 1.1%
k-Nearest Neighbors 82.8% ± 2.3% 90.2% ± 0.7%
Support Vector Machine 67.4% ± 2.4% 86.4% ± 0.6%
AdaBoost 97.0% ± 1.0% 97.9% ± 0.6%
XGBoost 95.8% ± 1.5% 94.6% ± 1.0%

Table 5.7: Algorithm model accuracy comparison between the company operating in Portugal and
Germany in the stops dataset.

with.

With these results, there is more assurance that these algorithms can indeed find patterns in

data to identify the vehicle stop points in different contexts and will work in predicting the class

for unidentified data. While AdaBoost using Decision Trees produces more accurate results, XG-

Boost should be also an option given the very fast execution times while still keeping a high

accuracy. The whole process from raw circulation to identified POIs is then complete, opening up

possibilities for application in real life scenarios.
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Chapter 6

Conclusions

The work presented established a process to make use of floating car data being retrieved to auto-

matically detect and label the points of interest of a delivery vehicle.

To achieve this, a review on existing work was performed first, where the many uses of circula-

tion data to find and categorize POIs were delimited, specifically also in the case of a commercial

fleet. From processed raw circulation data, a setup where multiple clustering algorithms were tried

and evaluated was presented, with DBSCAN coming on top due to its very high adaptation to the

data’s context. Finally, to give meaning to these points found, models created by classification

algorithms such as AdaBoost and XGBoost shown a high performance in predicting the objective

for the vehicle’s stop.

Considering the results obtained, it can be said the whole process adopted was successful in

obtaining the desired solution. With a correct input, apart from rare cases, the POIs found by the

clustering algorithm always make sense as the chosen algorithm’s parameters closely match the

business requirements. The detection of these points is based on how long they stay in a certain

area, which in turn is also what defines them as a point of importance in the vehicle’s operation in

the first place.

While the labelling process is not as certain, it still has possibilities to grow and become more

robust. As the dataset that behaved best with the classification algorithms is based on the vehicle

stops and not in the datapoints themselves, it can expand with more circulation data added, opening

up the possibility for the creation of more consistent models.

6.1 Main Contribution

The main contribution from this work is the establishment of a complete process from raw circu-

lation data to labelled POIs, specifically in a context of commercial distribution vehicles. From

the literature review realized in the chapter 2, this type of data has not yet received the attention it

deserves, possibly due to the difficulty in obtaining it, as there is privacy concerns regarding the

identification of companies’ operation points. The closest case found[47], presents a similar prob-

lem and approach to the solution, but ultimately limits itself to a binary classification problem,

55
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where vehicle stops are described simply as work related or not, while in our case the type of stops

is more clearly defined and can vary according to the needs of the data.

6.2 Limitations

The main current limitation of the work presented is the need to create a model for each com-

pany. Currently, to properly identify a label such as "Client", the context of the operations of the

company have to be taken into account, and, therefore, personalized models have to be created.

This leads to the necessity of producing a training dataset for each company, which constitutes

a completely manual process, and thus does not scale well with a high amount of companies to

analyse.

6.3 Future Work

With the positive outcome shown, the main next focus should be the implementation of the setup

described in real life scenarios, like the mapping of POIs for trucks belonging to a company and

serving them to fleet managers. With the models created, unidentified POIs can be labelled auto-

matically and statistical information about that point can be presented using the features generated

from each entry in the vehicle’s operation. This statistical information can range from stop time

of the vehicle in the POI to the time the electric refrigeration system was used, opening up the

possibilities of calculating other new features like the vehicle’s carbon footprint, which nowadays

constitutes a important value to keep track of to accompany the increasing environmental policies

and newly created low-emission zones. There is also an opportunity in the creation of more com-

plete datasets with the input from fleet managers on wrongly classified points, which would to

help the creation of models that predict better.

In the data pre-processing step, as it stands right now, each entry represents a minute of circu-

lation of a vehicle. There is then an interest in performing further aggregation of the data, where

the dataset used for the clustering task would have each minute of operation grouped into stops.

These stops would hold as much weight as the minutes of operation they contain and would then

lower the load on the clustering algorithm without affecting the outcome. The clustering algo-

rithm result would already be in a vehicle’s stops format as well, making it usable right away for

the classification task.

In both the case of the clusters and stops dataset, it can be noticed that the class distribution is

uneven, as shown in table 5.5. As such, methods to cope with class unbalance, such as the creation

of synthetic samples, can be tried to determine how they affect the accuracy scores obtained.

Also in the classification task, seeing as AdaBoost based on Decision Trees models obtained the

best average predicting score, this algorithm could be trained with Neural Nets now being the base

estimators. Neural Nets obtained the highest accuracy value outside of ensemble methods, making

it a good candidate to produce better predicting models.
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This automatic labelling process also sets up new possibilities in the energy management of

the electric refrigeration systems, as vehicles moving towards a warehouse, for example, do not

need the energy management system to adopt a behaviour as conservative as if it was moving to a

client, considering warehouses normally constitute end points for a vehicle’s trip.
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Appendix A

Data pre-processing graphics

A.1 Latitude

Figure A.1: Field latitude value amount variation for a vehicle’s circulation data corresponding to
one year.
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A.2 Longitude

Figure A.2: Field longitude value amount variation for a vehicle’s circulation data corresponding
to one year.
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A.3 Revolutions per minute (RPM)

Figure A.3: Field rpm value amount variation for a vehicle’s circulation data corresponding to one
year.
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A.4 Vehicle Speed

Figure A.4: Field speed value amount variation for a vehicle’s circulation data corresponding to
one year.
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