
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Task Prediction and Planning Tool for
Complex Engineering Tasks

Afonso Maria Rebordão Caiado de Sousa

Mestrado em Engenharia Informática e Computação

Supervisor at FEUP: João Carlos Pascoal Faria

Second Supervisor at FEUP: João Pedro Carvalho Leal Mendes Moreira

Supervisor at CERN: Fernando Baltasar dos Santos Pedrosa

Second Supervisor at CERN: Rodrigo Lanza Herrero

July 20, 2023

© Afonso Sousa, 2023

Task Prediction and Planning Tool for Complex
Engineering Tasks

Afonso Maria Rebordão Caiado de Sousa

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

President: Prof. Ana Paiva
External Examiner: Prof. Alberto Silva
Supervisor: Prof. João Carlos Pascoal Faria

Co-Supervisor: Prof. João Mendes Moreira

July 20, 2023

Resumo

A predição e o planeamento de futuras tarefas complexas de engenharia numa organização são
passos essenciais para o planeamento dos recursos humanos e físicos. Isto é particularmente im-
portante numa era de gestão de stocks ’just-in-time’ e de recursos humanos qualificados escassos.

Com base na realidade do CERN, a Organização Europeia para Pesquisa Nuclear, e a sua atual
plataforma de planemaneto de tarefas, PLAN, o presente trabalho aborda os problemas que podem
surgir durante o planeamento de tarefas futuras. Aproveitando e tirando partido dos dados históri-
cos existentes de tarefas planeadas e executadas, pretende-se contribuir para a plataforma acima
mencionada através da aplicação de algoritmos de aprendizagem computacional (machine learn-
ing). Pretende-se também provar a viabilidade de realizar e executar projetos de aprendizagem
computacional em situações com uma quantidade de dados limitada no CERN.

A primeira parte da otimização tem como base a análise da similaridade de dados entre uma
nova tarefa (atividade) e os dados históricos existentes. O modelo preditivo tem como alvo uma
lista ordenada de atividades semelhantes para sugerir ao utilizador para a atividade atual.

A segunda e última parte do trabalho apoia-se em dados relacionados com contribuições co-
muns de equipas de trabalho em atividades passadas para produzir uma lista de contribuições
desejáveis para a nova tarefa.

Esta dissertação acompanha o percurso percorrido para atingir estes objetivos, começando com
uma pesquisa aprofundada sobre os tópicos em questão, para uma compreensão profunda do prob-
lema, o processo de desenvolvimento e todos os altos e baixos que o acompanham, culminando
numa solução final baseada em técnicas como k-Nearest Neighbors e Natural Language Process-
ing, oferecendo resultados muito satisfatórios na sugestão de itens aos utilizadores da plataforma.

Como este projeto foi realizado num cenário do mundo real, os resultados deste trabalho de
dissertação contribuem para aprimorar a aplicação de software da estrutura organizacional em
questão e contribuir para o progresso da sua gestão de recursos humanos e físicos, providenciando
também um exemplo de adaptabilidade e trabalho em direção a uma solução bem-sucedida no
campo da inteligência artificial e machine learning.

Keywords: Predição, Aprendizagem computacional, Quantidade de dados limitada, Otimiza-
ção, Similaridade de dados

i

Abstract

Prediction and planning of future complex engineering tasks across an organization are essential
for human and physical resources planning. This is particularly important in an age of ’just-in-
time’ stock management and scarce qualified human resources.

Based on the reality of CERN, the European Organization for Nuclear Research, and their
existing task-planning platform, PLAN, the present work tackles the problems that may arise while
planning future tasks. Taking advantage and leveraging existing historical records of planned
and executed tasks, this Dissertation revolves around optimizing and applying different machine
learning algorithms to said planning tool. It also intends to prove the viability of carrying out and
executing machine learning projects in low-data situations at CERN.

The first part of the optimization is based on the analysis of data similarity between a new task
(activity) and the existing historical data. The predictive model has as its target a ranked list of
similar activities to suggest to the user for the current activity, so that content can be reused.

The second and final part of the work leans on data regarding the common contributions from
work groups in past activities to produce a list of desirable contributions for the new task.

This dissertation expands on the journey endured to accomplish these goals, starting with a
thorough research on the topics at hand, to a deep understanding of the problem at hand, the de-
velopment process and all the ups and downs that came with it, leading to a final solution that uses
k-Nearest Neighbor and Natural Language Processing techniques and provides very satisfying
results in suggesting new items to PLAN users.

As this project was carried out in a real-world scenario, the results from this thesis will enhance
the software application of the organizational structure at hand and contribute to the progress of
its human and physical resources management while also providing an example of adapting and
working towards a successful solution in the field of AI and machine learning.

Keywords: Prediction, Machine learning, Low-data, Optimization, Data similarity
ACM Classification: CCS - Computing Methodologies - Machine Learning - Machine Learn-

ing Algorithms, CCS - Applied Computing - Operations research - Decision analysis

ii

Ackownledgements

First of all, I want to thank my dissertation supervisors, Prof. João Carlos Pascoal Faria and
Prof. João Pedro Leal Mendes Moreira, for the continuous support, help, and availability shown
throughout the project.

Secondly, I would like to thank the entirety of CERN’s EN-ACE-OSS group for welcoming
me with open arms for the entire duration of my internship. A special thank you to my supervisor
Fernando Baltasar dos Santos Pedrosa who guided me throughout my stay, and to Rodrigo Lanza
Herrero, who helped me with the more technical part of the project.

Finally, I would like to express my deepest gratitude to my family, who was always there for
me for the past two years and offered me the possibility of living abroad. Special thanks to Laura
and to my friends, without whom this dissertation would not have been possible.

Afonso Maria Rebordão Caiado de Sousa

iii

“Homme libre, toujours tu chériras la mer!”

Charles Baudelaire

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 2
1.4 Research Questions . 3
1.5 Document Structure . 5

2 State of the Art 6
2.1 Data Preprocessing . 7
2.2 Supervised Learning Techniques . 8

2.2.1 Decision Trees . 9
2.2.2 Random Forest . 9
2.2.3 Nearest Neighbor Algorithms . 10
2.2.4 Performance Evaluation . 12

2.3 Unsupervised Learning Techniques . 15
2.3.1 Clustering . 15
2.3.2 Association Rules . 18
2.3.3 Performance Evaluation . 19

2.4 Natural Language Processing Techniques . 21
2.4.1 Text Representation and Feature Extraction 21
2.4.2 Text Similarity Measures . 22

2.5 Dealing with Low-data Situations . 23
2.6 Content-Based Recommendation Systems . 23
2.7 Task Management and Resource Planning . 24
2.8 Machine Learning in Task Management and Resource Planning 26
2.9 Summary and Identified Gaps . 27

3 Problem Identification 29
3.1 Overview of PLAN Platform . 29

3.1.1 Brief Description and Purpose . 30
3.1.2 Key Components and Workflow . 30
3.1.3 Model and Architecture . 32

3.2 Use Cases Understanding . 34
3.2.1 Activity Suggestion . 34
3.2.2 Contribution Suggestion . 36

3.3 Summary . 37

v

CONTENTS vi

4 Solution Development 38
4.1 Data Preparation . 38

4.1.1 Data Extraction . 39
4.1.2 Activity Dataset . 40
4.1.3 Contribution Dataset . 41

4.2 Initial Approach . 42
4.2.1 Clustering Methods . 43
4.2.2 Supervised Learning Techniques . 44
4.2.3 Evaluation Method . 45
4.2.4 Performance Evaluation . 46
4.2.5 Challenges and Lessons Learned . 48

4.3 Final Algorithm Development and Optimization 49
4.3.1 Similar activity grouping . 50
4.3.2 Suggestion Generation . 52
4.3.3 Evaluation Method . 57
4.3.4 Model Tuning . 60
4.3.5 Final Model Performance . 61

4.4 Summary . 63

5 Practical Implementation and Deployment 64
5.1 API implementation and performance . 64
5.2 Integration and Interface Design . 67
5.3 Practical Impact . 69
5.4 Maintenance and Future Improvements . 69
5.5 Summary . 70

6 Conclusions 72
6.1 Summary of Findings . 72
6.2 Limitations and Future Work . 73
6.3 Implications and Contributions . 75
6.4 Final Thoughts and Conclusions . 76

References 78

List of Figures

2.1 Decision tree example for vehicle types . 9
2.2 Simple KNN representation - Source [13] . 11
2.3 Silhouette Plot Example with 4 clusters - Source [5] 20
2.4 Aggravated Matrix - Source [8] . 25

3.1 PLAN activity process diagram . 31
3.2 PLAN Home Page . 32
3.3 PLAN Model Diagram . 33
3.4 PLAN Architecture Diagram . 34
3.5 Activity Creation Main Form . 35
3.6 Contribution Creation Tab . 36

4.1 PLAN Table access example . 40
4.2 Activity Dataset . 41
4.3 Contribution Dataset . 42
4.4 Clustering Solution’s Silhouette Plot . 47
4.5 Activity Creation Example . 53
4.6 Returned activities . 53
4.7 Suggested Activity Fields . 54
4.8 Suggested Contributions for Preparation Phase 55
4.9 Association Rule Example . 57
4.10 Similarity Score by Number of Neighbors . 60
4.11 Similarity Score by k-NN weight . 61

5.1 API Request Example . 65
5.2 API Response Example . 66
5.3 PLAN Interface with Suggestions . 68
5.4 PLAN Activity Suggested Interface . 68

vii

List of Tables

2.1 Confusion Matrix Example . 13

4.1 Suggestion System Performance . 62

5.1 API Performance . 67

viii

Abbreviations

AC Accuracy
AI Artificial Intelligence
API Application Programming Interface
CERN Conseil Européen pour la Recherche Nucléaire - European Organization for

Nuclear Research
DBI Davies-Bouldin Index
DBSCAN Density-Based Spatial Clustering of Applications with Noise
FN False Negative
FP False Positive
FNR False Negative Rate
FPR False Positive Rate
GA Genetic Algorithm
IBL Instance-Based Learning
k-NN K-Nearest Neighbors
LHC Large Hadron Collider
LS Long Shutdowns
ML Machine Learning
NLP Natural Language Processing
NN Neural Networks
P Precision
POC Proof of Concept
RI Rand Index
RQ Research Question
SEN Sensitivity
SPE Specificity
SVM Support Vector Machine
TF-IDF Term-Frequency Inverse Document Frequency
TN True Negative
TP True Positive

ix

Chapter 1

Introduction

This chapter serves as an introduction to the dissertation, setting the stage for the research con-

ducted and the results obtained.

Section 1.1 provides the context of the dissertation, explaining the collaboration with CERN

and the need for efficient task planning and resource allocation.

Section 1.2 presents the problem statement, identifying the main difficulties in the PLAN

platform and the project’s primary goal.

The research objectives are outlined in section 1.3.

Section 1.4 establishes the research questions to be answered during this work.

Lastly, the document’s structure is detailed in section 1.5, guiding the reader through the sub-

sequent chapters of the dissertation.

1.1 Context

This dissertation and project are done in close collaboration with the engineering department at

CERN in Switzerland. CERN, the European Organization for Nuclear Research, is a leading

research organization in Geneva. It is one of the world’s largest and most respected centers for

scientific research, known for its particle physics experiments.

CERN is a large organization with a diverse international community of researchers, engineers,

and support staff. CERN has over 2,500 full-time employees and hosts approximately 12,000

visiting scientists and engineers each year [6]. It also encompasses a large physical site with

several installations and facilities. The main campus covers an area of approximately 540 hectares

(about 1,320 acres), including several large buildings and underground experimental areas.

As for any organization or company, especially for large-scale ones, task management, and

resource planning are critical elements of project management and help to ensure that projects

are completed on time, within budget, and to the satisfaction of stakeholders. Task management

involves creating a plan for how tasks will be completed, assigning those tasks to team members,

and tracking progress. Resource planning consists in identifying and allocating the necessary

resources, such as personnel, equipment, and materials, to complete the project.

1

Introduction 2

Research has shown that organizations that effectively manage tasks and resources have a

higher rate of project completion within budget and on schedule.

Thus, CERN has developed its own task planning platform called PLAN. PLAN allows a

user to create tasks that must be done, named activities. Each activity has information associated

with it, like the title, the type of the activity, the location, the facilities, and the person responsible,

among others. Requests can be made to other working groups for their contribution to said activity.

1.2 Problem Statement

There are two main problems or difficulties identified in the context of the PLAN platform that

need to be addressed:

• PLAN Platform Limitations: The PLAN platform currently requires users to manually

input information for activity creation. This process can be time-consuming and error-prone,

leading to inefficiencies in the task management process at CERN. The risk of errors in data

entry can result in inaccurate or incomplete task planning, which negatively impacts the

overall efficiency of project management.

• Difficulty in Generating Meaningful Suggestions for Task Assignments: Developing

a system that generates helpful and relevant suggestions for task assignments is a complex

challenge. Suggestions must be tailor-made for the specific system they are working on, in

our case, for PLAN, considering factors such as available resources, task requirements, and

historical data of similar tasks. This complexity makes it challenging to create a system that

provides meaningful and actionable recommendations to the users.

These two main problems lead to the overarching goal of this work and project: Developing

an intelligent system to enhance macro-scale activity creation and task planning within the PLAN

platform, with the use of machine learning techniques. By addressing these challenges, the pro-

posed system aims once again to improve the efficiency, accuracy, and overall effectiveness of the

task management process at CERN.

1.3 Research Objectives

The main objectives of this research and project have been established to address the challenges

and limitations identified in the problem statement. These objectives are as follows:

• Develop a machine learning-based system to generate suggestions: The main objective

is to design and implement a system that utilizes machine learning techniques to generate

meaningful suggestions for task assignments. This system should take into account the

available data from the PLAN platform and provide accurate and relevant recommendations

to enhance the task planning process.

1.4 Research Questions 3

• Explore the viability of machine learning in low-data situations: Another crucial objec-

tive of this research is to investigate the potential of applying machine learning techniques

to the PLAN system, given its limited historical data. This exploration will involve identi-

fying suitable approaches and techniques for dealing with low-data scenarios, which could

potentially benefit other similar applications in the field.

• Optimize the user experience and interface design: Enhancing the user experience of the

PLAN platform is also an important objective. By incorporating the intelligent suggestion

system and improving the interface design, the goal is to ensure seamless integration and

ease of use for users, ultimately leading to more efficient task management and resource

allocation.

• Evaluate the performance and impact of the proposed system: Conducting a thorough

evaluation of the proposed system’s performance is essential. This evaluation will focus

on accuracy, efficiency, and usability, providing insights into the system’s effectiveness in

improving task planning and resource allocation at CERN.

• Identify potential areas for future improvements and research: Lastly, this research

aims to identify possible directions for future research and improvements in the field of

task management and resource planning using machine learning techniques. By analyzing

the findings and lessons learned from this project, the goal is to contribute to the ongo-

ing development of innovative solutions for complex task planning and resource allocation

challenges.

The establishment of the main objectives leads us to a more concise definition of what ques-

tions we want to answer with the completion of this project. These will be outlined in section

1.4.

1.4 Research Questions

As we said, this dissertation essentially aims to optimize CERN’s task-planning tool, PLAN, by

making suggestions and predictions to improve platform interaction and help users.

In an organization as large and complex as CERN, efficient and accurate task management is

crucial to ensure the success of projects and the overall productivity of the organization. Manual

input of task information in the PLAN system can be time-consuming and error-prone, leading

to inefficiencies and decreased productivity. It is essential to explore ways to utilize the available

data from PLAN databases effectively to improve platform interaction and help PLAN users. This

leads to the following research question:

RQ1: “How can we use machine learning algorithms to improve platform interaction

and to provide assistance to the user?”

Introduction 4

Another important aspect is investigating the potential for applying Machine Learning tech-

niques to the PLAN system, given its low quantity of historical data. This poses a challenge in

developing robust algorithms capable of providing accurate suggestions and predictions. Conse-

quently, we ask:

RQ2: “Can machine learning be used to improve task management and resource

planning in PLAN, considering the low quantity of historical data available?”

As a direct result of the second research question comes a logical third research question where

we aim to discover which are the best machine learning techniques to utilize, if it is indeed possible

to improve task management and resource planning in PLAN.

RQ3: “Which machine learning techniques are most appropriate and efficient in low-

data situations”

Addressing the questions outlined in RQ1, RQ2 and RQ3 has significant implications for

the field of task planning and resource allocation, as well as the broader application of machine

learning in low-data situations. By improving the efficiency, productivity, and success of projects,

organizations can better meet their goals and objectives. Enhancing task planning and resource

allocation can lead to higher efficiency, reduced costs, and improved project and product quality.

Furthermore, the investigation into the potential for applying machine learning techniques to

the PLAN system, considering its low quantity of historical data, could pave the way for similar

advancements in other industries and organizations facing similar data limitations. This analysis

of viability could help researchers and practitioners better understand the possibilities and limi-

tations of machine learning in low-data situations, leading to the development of more effective

techniques and tools for these scenarios.

Addressing these challenges in the context of CERN has the potential to extend beyond the

field of task planning and resource allocation and positively impact society as a whole. Improving

task planning and resource allocation can contribute to the efficiency, quality, and success of vari-

ous industries such as construction, manufacturing, and healthcare. As a result, organizations like

CERN can increase their efficiency and productivity, leading to improved products, services, and

outcomes for society. This, in turn, can contribute to economic growth, job creation, and overall

quality of life.

Lastly, effective task planning and resource allocation can also lead to better decision-making

support for users in situations where they are uncertain about how to complete tasks or whose

contributions to request. The system can provide intelligent suggestions by leveraging machine

learning techniques, helping users make informed decisions, and improving overall task manage-

ment. This not only enhances the efficiency and productivity of the organization but also reduces

the time spent on manual decision-making and increases the likelihood of successful task com-

pletion. Exploring the viability and the specificities of applying machine learning in low-data

situations, as outlined in RQ1, RQ2 and RQ3, plays a crucial role in unlocking these benefits and

driving advancements in the field of task planning and resource allocation.

1.5 Document Structure 5

1.5 Document Structure

This dissertation project is informed by the Cross-Industry Standard Process for Data Mining

(CRISP-DM) methodology, a widely accepted process model that, although initially created for

data mining tasks, is commonly employed across different types of data analysis and machine

learning projects. The structure of the project and the dissertation mirrors the stages of the CRISP-

DM, commencing from the Problem Identification chapter.

This dissertation is organized into six chapters, including the introduction. The chapters are

structured as follows:

1. Introduction: The current chapter, as we’ve seen, provides the context, motivation, problem

statement, and research objectives of the dissertation.

2. State of the Art: Chapter 2 presents a review of the relevant literature, covering data

preprocessing, supervised and unsupervised learning techniques, natural language process-

ing, dealing with low-data situations, content-based recommendation systems, and machine

learning in task management and resource planning. The chapter concludes with a summary

and identification of gaps in the literature.

3. Problem Identification: Chapter 3 corresponds to the "Business Understanding" and "Data

Understanding" stages of CRISP-DM. It dives deeper into the problem at hand, exploring

the task planning platform, PLAN, and understanding both of the use cases that will be

addressed in this work.

4. Solution Development: Chapter 4 aligns with the "Data Preparation", "Modeling", and

"Evaluation" stages of CRISP-DM. It details the journey and approach taken to get to a final

solution to the problem, including data preparation, our initial approach, and final algorithm

development and optimization. This chapter also discusses initial results, performance eval-

uation, and the challenges and lessons learned from the process.

5. Practical Implementation and Deployment: Chapter 5 corresponds to the "Deployment"

stage of CRISP-DM. It focuses on the implementation of the API for CERN deployment,

on the integration of the developed system with the PLAN platform, practical impact, and

maintenance and future improvements.

6. Conclusion: Chapter 6 summarizes the findings, implications, and contributions of the

research. It also discusses the limitations of the study and outlines potential avenues for

future work, ending the thesis with some final thoughts and conclusions.

• References: A list of references cited throughout the dissertation is provided at the end of

the document.

Through the lens of the CRISP-DM methodology, this project ensures a systematic and com-

prehensive approach to the problem at hand, showcasing a balance between theoretical under-

standing and practical application in the field of machine learning.

Chapter 2

State of the Art

This chapter provides a comprehensive review of the state of the art in Machine Learning, focusing

on its application in task management and resource planning, a crucial component of the task

prediction system developed for this thesis. Each section offers crucial insights into the techniques

and challenges encountered during the development of our algorithm.

Section 2.1 explains the process that data must go through before being ready to be used in

any kind of machine learning algorithm.

Section 2.2 dives into supervised learning techniques, emphasizing their utility in data classi-

fication and prediction. These techniques, including Decision Trees, Random Forests, and Nearest

Neighbor Algorithms, have foundational implications in task prediction algorithms, whose essence

lies in classifying and predicting tasks based on certain attributes.

Section 2.3 introduces unsupervised learning techniques such as clustering methods, and asso-

ciation rules. These techniques are instrumental in identifying inherent groupings and associations

within data, a capability crucial for the efficient operation of our algorithm.

Section 2.4 presents Natural Language Processing (NLP) techniques such as text representa-

tion, feature extraction, and text similarity measures. These techniques were crucial for enabling

our algorithm to effectively analyze and understand free text fields.

Section 2.5 offers insights into dealing with low-data situations, a significant challenge in this

research. The strategies explored are detailed here as solutions to enhance the performance of the

algorithm despite limited data.

Section 2.6 provides an overview of recommendation systems, focusing on content-based rec-

ommendation systems. These systems are explored for their potential to accurately suggest tasks

based on the items to suggest and on the user, thereby forming an integral part of the methodology

adopted in this thesis.

Sections 2.7 and 2.8 provide the necessary context for the problem addressed by the algo-

rithm. They offer a thorough review of task management and resource planning, discussing ex-

isting strategies, frameworks, and their limitations. Furthermore, they explore the current state

of machine learning applications in these domains, thus positioning our work within a broader

research landscape.

6

2.1 Data Preprocessing 7

Finally, Section 2.9 synthesizes the discussions from the previous sections, summarizing the

key points and identifying gaps in the existing literature. This section sets the stage for presenting

our work, which aims to address those gaps.

2.1 Data Preprocessing

Before the application of any machine learning techniques, data must undergo a crucial process

known as data preprocessing. This is an essential step that primarily involves cleaning the data,

handling missing values, and transforming data into a suitable form that can be later consumed by

machine learning algorithms.

Data cleaning, which involves removing inconsistencies and errors in the data, is an integral

part of data preprocessing. This is because the quality of the data significantly affects the per-

formance of machine learning models. Furthermore, noisy, inconsistent, or missing data can lead

to misleading outcomes, affecting the overall validity of the results [22]. Some common data

cleaning techniques include:

• Noise Identification and Reduction: Noise in the data can distort the underlying patterns

and relationships, leading to wrong conclusions. Techniques like smoothing, aggregation,

binning, and regression can be employed to identify and reduce noise [22].

• Outlier Detection: Outliers, or extreme values, can significantly skew the analysis. Sta-

tistical methods like the Z-score, IQR (Interquartile Range), and robust statistical metrics,

alongside data mining techniques, can be used to detect and manage outliers.

• Duplicate Removal: Duplicate data entries can artificially inflate the apparent significance

of certain patterns. Various methods exist to detect and remove duplicates, depending on

the nature and complexity of the data.

• Handling Inconsistent Data: Inconsistencies may arise due to various reasons, including

data integration from disparate sources, human errors, or system glitches. Techniques like

data transformation, entity resolution, and the use of rule-based systems can help to rectify

inconsistencies.

Another fundamental aspect of data preprocessing is dealing with missing values. Missing

data is a common occurrence and can be due to various reasons, including errors during data

collection or issues during data transfer. There are several techniques available to handle missing

values before applying any machine learning algorithm, which include:

• Removal: This technique consists in simply removing the entire data point whenever it

contains a missing value.

• Imputation: Imputation replaces the missing values with a certain value. Be it the median,

the mean, or any other values determined by the developer.

State of the Art 8

• Adding a missing value indicator: This method involves creating a new feature that

determines whether or not there is a missing value. This could be useful in situations where

the presence of missing values is informative.

Moreover, the encoding of categorical variables is another essential step in data preprocessing.

Machine learning models generally require numerical input; hence categorical variables in the

data need to be encoded in numerical form. Two main encoding techniques were considered and

tested:

• One-hot encoding: This technique converts every existing category into a new column and

assigns a 0 or a 1 to the column.

• Label encoding: This method replaces each category with a different integer value.

The chosen data preprocessing steps heavily depend on the specificities of the data at hand

and the subsequent machine learning techniques to be applied. The techniques outlined above

have been widely used in the field of machine learning and have shown their effectiveness in

different scenarios. It is important to carefully choose the appropriate preprocessing techniques as

they have a direct impact on the performance and interpretability of the resulting models.

Building on these foundational data preprocessing steps, we transition into the domain of su-

pervised learning. The following section (Section 2.2) explores various techniques within the

realm of supervised learning, such as Decision Trees, Random Forest, and Nearest Neighbors

algorithms. These techniques, each with its unique strengths, will be explored in detail, offer-

ing insights into how they can contribute to our broader goal of task management and resource

planning.

2.2 Supervised Learning Techniques

Supervised learning, one of the most commonly used branches of machine learning, is a method

where an algorithm learns from labeled training data, allowing it to make accurate predictions.

It is renowned for its ability to discover complex data patterns and has been applied in various

domains with considerable success [21].

Supervised learning algorithms use labeled data, that is, input-output pairs, during training

with the aim of learning a function that can accurately map inputs to their corresponding outputs.

Once this function is accurately defined, the algorithm can predict outputs for new, unseen inputs.

This category of machine learning algorithms typically falls into two main categories: re-

gression, for predicting continuous output values, and classification, for predicting discrete output

categories. Widely used supervised learning algorithms include Decision Trees, Random Forests,

and Nearest Neighbor algorithms, each offering unique advantages and mechanisms [35].

Performance evaluation is also an important aspect of supervised learning. Metrics such as

accuracy, precision, recall, and F1-score are frequently used to evaluate the performance and effi-

ciency of these learning algorithms.

2.2 Supervised Learning Techniques 9

In the following subsections, we will dive into further detail on some of the mentioned super-

vised learning techniques.

2.2.1 Decision Trees

A decision tree is a type of algorithm used in machine learning and statistics for both classification

and regression tasks. It is a tree-based model that starts with a single node, called the root node,

and branches out into multiple decision points, called internal nodes, and ends in leaf nodes, which

represent the final decision or prediction.

The tree is built by using a set of rules, called decision rules, that are based on the features

of the data. The decision rules are chosen in a way that they can best split the data into different

groups, called branches, that correspond to different classes or outcomes.

For example, consider a simple decision tree that is used to classify types of vehicles based on

their characteristics, in figure 2.1. The first decision point is "Number of wheels", where a value

of 4 leads the tree to predict the vehicle type is "Car". If the vehicle has 2 wheels, it will move to

the next decision point, "Has motor", where a value of "No" leads the model to predict the vehicle

type is "Bicycle". If the vehicle has a motor, the tree will predict the vehicle type is "Bike".

Figure 2.1: Decision tree example for vehicle types

Decision trees are simple to understand and interpret, even for non-experts, and they can han-

dle both categorical and numerical data. They are also relatively easy to implement and they can

handle missing data. However, decision trees can be very sensitive to small changes in the data

and they can easily overfit to the training data, especially when they are deep and complex.

2.2.2 Random Forest

Random Forest is an ensemble machine learning algorithm that is used for classification and re-

gression tasks. It is a type of decision tree algorithm that is composed of multiple decision trees,

seen in the previous section, 2.2.1.

State of the Art 10

The basic idea behind Random Forest is to combine the predictions of multiple decision trees

to improve the overall performance and reduce overfitting. The decision trees are constructed

using a process called bootstrap aggregating, or bagging, where the algorithm randomly selects a

subset of the data to train each tree. This helps to reduce the variance of the model, as each tree is

trained on a different subset of the data and is less likely to be overfitted to the training data.

Once all of the decision trees have been trained, the Random Forest algorithm makes a final

prediction by combining the predictions of all the trees. For a classification problem, this is done

by taking a majority vote among the predictions of all the trees, and for a regression problem, this

is done by taking the average of the predictions.

Random Forest has several important advantages over other machine learning algorithms. It

is relatively simple to implement and interpret, it can handle both categorical and numerical data,

and it is not sensitive to the scale of the data. It also has the ability to handle missing data, and it

can be used for feature selection.

However, Random Forest can be computationally expensive, especially when working with

large datasets and when many trees are used. Additionally, Random Forest can be less effective

when the number of features is much larger than the number of observations.

2.2.3 Nearest Neighbor Algorithms

Nearest neighbor algorithms are a class of supervised machine learning algorithms that function

based on the premise of instance-based learning, further explained in section 2.5. Unlike other

types of algorithms, where a model is trained and used to make predictions, nearest neighbor

algorithms instead rely on memorizing the training dataset. When it comes to making a prediction

for a new instance, these algorithms look at the instances from the training dataset that are nearest

to the new instance and use them to predict the label of the new instance.

Nearest neighbor algorithms can be particularly effective in scenarios where the quantity of

available data is limited. Instead of requiring a vast amount of data to train a comprehensive

model, these algorithms rely on local approximations using the nearest instances in the dataset,

thus allowing for meaningful predictions even with smaller datasets.

These algorithms can be used for both classification and regression tasks, and despite their

simplicity, they have been proven to perform well on a variety of tasks and has been successfully

applied in a wide range of fields, including computer vision, speech recognition, and, more useful

for this work, recommendation systems.

A famous and widely used variation of nearest neighbor algorithms is the k-Nearest Neighbors

(k-NN), which we review in the following section (2.2.3.1). After that, we explore the existing

distance metrics that can be used for similarity measuring in nearest neighbor algorithms (2.2.3.2).

2.2.3.1 k-Nearest Neighbors (k-NN)

The k-nearest neighbors (k-NN) algorithm is a specific implementation of the nearest neighbor

algorithm, where represents the number of nearest neighbors used for making the prediction. The

2.2 Supervised Learning Techniques 11

value of ’k’ is a hyperparameter that can be tuned to achieve the best performance for a particular

dataset.

The steps involved in the k-nearest neighbors (k-NN) algorithm are as follows [33]:

1. Store the training set

2. Calculate distance: The next step is to calculate the distance between the input sample and

all the samples in the training set. This can be done using various distance measures, such

as Euclidean distance, Manhattan distance, or Cosine similarity, depending on the type of

data. For example, the Euclidean Distance is defined as follows:

√
n

∑
i=1

(xi − yi)2 (2.1)

3. Find the k-nearest neighbors: After calculating the distances, the k-NN algorithm then se-

lects the samples in the training set that are closest to the input sample.

4. Make a prediction: The prediction is made based on the class labels or target values of the

nearest neighbors. Assign the class containing the maximum number of nearest neighbors.

Figure 2.2: Simple KNN representation - Source [13]

In figure 2.2, we can observe the importance of the ’k’ value. If we used k = 3, the new example

would be assigned to class B, and if we instead chose k = 7, it would be class A.

2.2.3.2 Distance Metrics and Similarity Measures

Similarity measures and distance metrics are crucial for the operation of nearest neighbor algo-

rithms, as they quantify the closeness between data points. Three important metrics that are used

State of the Art 12

in a variety of fields, including multi-attribute decision making, are the Gower distance, Euclidean

distance, and Jaccard Dissimilarity distance.

• Gower distance: The Gower distance is a measure of dissimilarity between two data

points. It is made so that it can handle both numerical and categorical variables. Gower

calculates the distances between records based on the sum of the weighted absolute differ-

ences between the values in the columns. The result of this calculation ranges from 0 to 1,

meaning identical and completely dissimilar, respectively.

• Euclidean Distance: The Euclidean distance, originating from the Pythagorean theorem, is

a commonly used metric for numerical data. It computes the straight-line distance between

two points in an n-dimensional space. This method is suitable for continuous numerical data

and is sensitive to changes in the magnitudes or scales of the variables. It is mathematically

defined as: √
n

∑
i=1

(xi − yi)2 (2.2)

Where n is the number of dimensions (attributes or features), and xi and yi are the values of

objects ([30]).

• Jaccard Dissimilarity distance: The Jaccard coefficient is a method used for comparing

the similarity and diversity of sample sets. It measures the similarity between the sets and

is defined by the size of the intersection divided by the size of the union of the sample sets.

The Jaccard Dissimilarity is one minus the Jaccard coefficient. It is defined as:

1−1− |A∩B|
|A∪B|

(2.3)

Where |A∩B| represents the intersection of cluster or sets A and B, the elements common

to both, and |A∪B| represents the union of sets A and B, all elements that are either in A,

B or in both. The Jaccard Dissimilarity is a measure of how dissimilar two sets are. Thus a

value of 0 indicates that they are identical, and 1 indicates they have nothing in common.

2.2.4 Performance Evaluation

Evaluation metrics play a crucial role in assessing the performance of a machine learning model

after it has been trained. These metrics provide a quantitative measure of the model’s ability to

accurately predict outcomes based on the training data. By using evaluation metrics, data scientists

and machine learning engineers can identify areas for improvement, tune the model’s parameters,

and optimize its performance. There are various evaluation metrics available, each designed to

measure specific aspects of a model’s performance.

In this section, we will explore some of the most common evaluation metrics used in machine

learning, especially for supervised learning techniques. We will also discuss the advantages and

2.2 Supervised Learning Techniques 13

limitations of each metric, as well as when and how they should be used to assess the performance

of a machine learning model.

The simplest evaluation metric is accuracy, which is calculated by dividing the number of

correct predictions by the total number of predictions made by the model [25].

Accuracy =
Number of correct results

Total number of predictions
(2.4)

Classification accuracy works well if there is an equal number of samples belonging to each

class. For instance, imagine that the training set consists of 98% samples of class A and 2% of

class B, the model can achieve 98% training accuracy by merely classifying every single sample

as class A [25]. If for this particular model, the number of samples between classes was equal, as

it should be, the accuracy of the model would drop significantly.

For binary classification problems, confusion matrixes give us a matrix as output and describe

the complete performance of the model. Assume we have samples belonging to two classes:

"YES" or "NO" and that we have a model that predicts a class for a given input. We have the

corresponding confusion matrix in table 2.1.

Table 2.1: Confusion Matrix Example

Actual class
YES NO

Predicted class YES True Positive False Positive
NO False Negative True Negative

We find four different terms in the matrix:

• True Positive (TP) - The situation where we predict YES and the actual output is also YES.

• True Negative (TN) - The situation where we predict NO and the actual output is also NO.

• False Positive (FP) - The situation where we predict YES and the actual output is also NO.

• False Negative (FN) - The situation where we predict NO and the actual output is also YES.

The performance of a predicting model can be then given by the analysis of four common

evaluation measures [14]:

• Accuracy (AC) - the percentage of the total number of predictions that were correct. Cal-

culated as follows:

AC =
TP + TN

TP + FP + FN + TN
(2.5)

• Precision (P) - the percentage of predicted positive cases that were actually positive [14].

Calculated as follows:

State of the Art 14

P =
TP

TP + FP
(2.6)

• Recall (R) - the percentage of positive cases that were correctly predicted [14]. Also known

as Sensitivity (SEN) or True-Positive Rate (TPR). Calculated as follows:

R =
TP

TP + FN
(2.7)

• Specificity (SPE) - the percentage of negative cases that were correctly predicted [14]. Also

known as True-Negative Rate (TNR). Calculated as follows:

SPE =
TN

TN + FP
(2.8)

Additionally, we have two more measures similar to the True-Positive Rate and the True-

Negative Rate:

• False Positive Rate (FPR) - the percentage of negative cases that were incorrectly predicted

and considered as positives [25]. Calculated as follows:

FPR =
FP

TN + FP
(2.9)

• False Negative Rate (FNR) - the percentage of positive cases that were incorrectly pre-

dicted and considered as negatives. Calculated as follows:

FNR =
FN

FN + TP
(2.10)

Finally, particularly when dealing with imbalanced datasets, F1-score is a popular metric in

the field of machine learning.

F1-score is often more useful than accuracy, especially if you have an uneven class distribution.

Accuracy works best if false positives and false negatives have similar costs. If the cost of false

positives and false negatives are very different, it’s better to look at both Precision and Recall or

the F1-score.

• F1-score (F1) - the harmonic mean of precision and recall. The F1 score can be interpreted

as a weighted average of the precision and recall, where an F1 score reaches its best value

at 1 (perfect precision and recall) and worst at 0. It is calculated as follows:

F1 =
2 * (P * R)

P + R
(2.11)

Evaluating the performance of supervised learning models via metrics like accuracy, precision,

recall, and F1-score is fundamental in fine-tuning these models. However, our exploration of

machine learning doesn’t stop here.

2.3 Unsupervised Learning Techniques 15

In the next section, we will explore the domain of unsupervised learning, where models must

decipher patterns without labeled data and the assessment of their performance calls for a whole

different set of techniques.

2.3 Unsupervised Learning Techniques

Unsupervised learning is one of the main types of machine learning methods, focusing on uncov-

ering hidden patterns and structures from unlabeled data [26]. Kevin P. Murphy, in "Machine

Learning: A Probabilistic Perspective", highlights the utility of these algorithms in analyzing data

and extracting meaningful insights without requiring pre-existing labels. Unsupervised learning is

often characterized as Knowledge Discovery.

One of the central techniques within unsupervised learning is clustering. This method, ex-

plored in section 2.3.1, aims to separate data into distinct groups or clusters based on their inher-

ent characteristics and differences. Clustering has found utility in numerous applications relevant

to task management and resource planning, where grouping similar tasks can lead to improved

efficiency and productivity.

Another significant technique under unsupervised learning is association rule learning. This

approach, detailed in section 2.3.2, is designed to extract interesting and frequent correlations,

patterns, or associations among sets of items in the data. The implications of this method for

task management are promising, as it could uncover meaningful associations between tasks and

resources, leading to insightful strategies for resource allocation and utilization.

Each of these techniques has its performance metrics, which will be detailed later in section

2.3.3. Understanding these metrics is crucial for evaluating the effectiveness of an unsupervised

learning algorithm and its suitability for specific applications, such as in the realm of task man-

agement and resource planning.

The subsequent sections will explain the specifics of these methods, exploring their strengths,

limitations, and practical applications. This discussion aims to provide an understanding of the

state-of-the-art in unsupervised learning, setting the stage for its exploration in the context of task

management and resource planning.

2.3.1 Clustering

Clustering is a fundamental unsupervised learning technique in machine learning that aims to

group similar data points together. Each group, or cluster, represents a collection of data points that

share common characteristics or features. By identifying these patterns within the data, clustering

can reveal valuable insights that might not be immediately evident otherwise.

Clustering algorithms function by using various metrics or distance measures, which assess the

degree of similarity between data points, similar to the ones described in section 2.2.3.2. These

measures form the basis of how clusters are formed and are key to the successful application of

these techniques.

State of the Art 16

The process of clustering is useful in a variety of domains. In the context of this work, clus-

tering will be instrumental in task management and resource planning by enabling the grouping of

similar tasks together, fostering better understanding and efficiency in process management.

There are many existing clustering algorithms, each with its own strengths and weaknesses.

In this subsection, we will describe three commonly used algorithms: K-means, K-modes, and

DBSCAN.

2.3.1.1 K-means

The k-means algorithm is an unsupervised learning algorithm from the family of clustering algo-

rithms. The goal of the k-means algorithm is to divide a set of n observations into k clusters, where

each observation belongs to the cluster with the nearest mean. The k-means algorithm consists of

the following steps:

1. Initialization: The first step is to initialize the centroids, which are the centers of the k

clusters. This can be done randomly or using some other method, such as the K-Means++

algorithm.

2. Assignment: In this step, each observation is assigned to the nearest centroid based on the

Euclidean distance between the observation and the centroids.

3. Recalculation: The next step is to recalculate the new centroids as the mean of all the obser-

vations in each cluster.

4. Repeat: The assignment and recalculation steps are repeated until the centroids no longer

change or a maximum number of iterations is reached.

5. Output: The final output of the k-means algorithm is the cluster assignments for each obser-

vation, along with the final locations of the centroids.

For the current work, the activities would be separated into k clusters and any newly created

activity would be assigned to the cluster it is closest to, so that PLAN would then be able to make

suggestions with common information among the data points of that cluster.

The k-means clustering algorithm is widely recognized as a powerful and widely used tool in

data mining. Despite its widespread use, the algorithm does have some limitations, particularly

with regards to the random initialization of centroids, which can result in unexpected conver-

gence [3].

2.3.1.2 K-modes

The K-modes algorithm is an extension of the K-means algorithm, designed to handle categorical

data. In a dataset consisting of categorical variables, the conventional K-means algorithm is not

suitable due to its reliance on numerical metrics, such as Euclidean distance. To resolve this issue,

the K-modes algorithm was introduced, which modifies the computational aspect of the K-means

2.3 Unsupervised Learning Techniques 17

algorithm to handle and cluster categorical data [16]. The K-modes algorithm follows these main

steps:

1. Initialization: Similar to the K-means algorithm, the first step is to initialize the modes,

which are the centers of the k clusters. This can be done randomly or using other initializa-

tion methods.

2. Assignment: Each observation is assigned to the nearest mode based on the similarity mea-

sure, often, the simple matching dissimilarity measure is used, which counts mismatches in

categorical attributes.

3. Recalculation: The modes of the clusters are then recalculated. The new mode is the most

frequent category value of each attribute across the data points within the cluster.

4. Repeat: The assignment and recalculation steps are iterated until the modes no longer

change or a maximum number of iterations is reached.

5. Output: The final output of the K-modes algorithm is the cluster assignments for each ob-

servation, along with the final locations of the modes.

The k-modes algorithm was first proposed by Zhexue Huang in his seminal paper, where he

laid out the groundwork for handling categorical data through clustering [16]. Huang’s work

provides a detailed exploration of the algorithm and emphasizes its utility in the context of large

datasets. His contributions to this area have greatly influenced our understanding and usage of

the k-modes algorithm, particularly in how we perceive its strengths and limitations. This paper

serves as the foundation for the steps of the k-modes algorithm detailed above and informs our

discussion on the method’s capabilities and potential drawbacks.

In the context of this work, the K-modes algorithm could be used to cluster activities based on

their categorical attributes. Any new activity would be assigned to the cluster whose mode is most

similar, providing a basis for task suggestion and planning within PLAN.

While K-modes is an effective tool for categorical data clustering, it should be noted that, sim-

ilar to K-means, the initial selection of modes can significantly affect the algorithm’s performance

and final clustering results. It also assumes that each cluster is spherical and doesn’t account well

for clusters of different shapes.

2.3.1.3 DBSCAN

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based

clustering algorithm, widely used due to its efficacy in discovering clusters of various shapes and

sizes, and its ability to identify noise [11]. The DBSCAN algorithm operates by defining a cluster

as a high-density region separated by low-density regions. Unlike partitioning and hierarchical

clustering methods, it does not require the user to define the number of clusters a priori. The main

steps of the DBSCAN algorithm are as follows:

State of the Art 18

1. For each point in the dataset, the algorithm starts by exploring its neighborhood to find at

least a minimum number of points (MinPts) within a certain radius (eps). If the condition

is met, a new cluster is created, and the point becomes a core point. Otherwise, the point is

labeled as noise.

2. For each new core point discovered in the previous step, the points within its eps distance

are added to the cluster. If they also have at least MinPts within their eps distance, they also

become core points.

3. The process continues until no new point can be added to any cluster.

DBSCAN’s ability to handle noise and find clusters of different shapes and sizes can be ex-

ceptionally beneficial for the field of task planning. By identifying groups of activities that are

closely related (dense clusters), while also separating out less related activities (noise), the quality

of task planning can potentially be improved. Such enhanced grouping can facilitate more nu-

anced and personalized planning strategies, accounting for individual patterns, preferences, and

habits. The robustness of DBSCAN in distinguishing noise from significant clusters also supports

more reliable decision-making in planning, potentially leading to more efficient and effective task

execution.

However, DBSCAN also has some limitations. The algorithm relies heavily on the eps and

MinPts parameters, and choosing appropriate values can be challenging. Furthermore, DBSCAN

can struggle with datasets that have varying densities.

2.3.2 Association Rules

Association rule learning is a critical component of unsupervised machine learning that focuses on

discovering interesting relationships or associations among a set of items in large databases. This

process can be seen as identifying rules that adequately predict the occurrence of an item based on

the occurrences of other items.

The Apriori algorithm, introduced by Agrawal and Srikant [1], is among the most famous

algorithms used for mining frequent itemsets for boolean association rules. It uses a "bottom-up"

approach, where frequent subsets are extended one item at a time, and groups of candidates are

tested against the data. The algorithm terminates when no further successful extensions are found.

The algorithm has many benefits. First of all, it reduces the computational demand by only

considering itemsets that are likely to be frequent. It also provides a level of adaptability as it

allows the user to define the minimum support and confidence, which can then be tailored based

on the specific needs of the dataset and problem. This adaptability means that the user can control

the number and quality of the rules generated by manipulating these parameters.

In the context of planning and organizing projects, association rule learning can play a crucial

role. If we can generate a set of contributions that often occur together within a project, we can

suggest these associations to users when they are developing new contributions, thereby using past

patterns to inform future work. This use could lead to significant efficiency gains, as it can ease

2.3 Unsupervised Learning Techniques 19

and facilitate the decision-making process by using established patterns, and therefore enhance the

overall planning process.

Nevertheless, it is worth noting that the Apriori algorithm has its downfalls. It may be inef-

ficient in scenarios where datasets have numerous frequent itemsets, long patterns, or where the

minimum support threshold is set very low. However, its simplicity, clarity of rules, and ease of

implementation have ensured its position as a cornerstone in association rule learning.

2.3.3 Performance Evaluation

Correctly measuring the performance of unsupervised learning algorithms, namely clustering al-

gorithms, is critical. This is especially true as clusters are often manually and qualitatively in-

spected to determine whether the results are meaningful [36].

To start us off, the Silhouette Score measures how close each point in a cluster is to points

in the neighboring clusters. This metric has a range of [-1, 1] and is an excellent visual tool for

examining similarities within clusters and differences between clusters. It uses the compactness of

individual clusters (intra cluster distance) and separation amongst clusters (inter cluster distance)

to measure an overall representative score of how well our clustering algorithm has performed [18].

The Silhouette score for a given datapoint i is as follows:

Si =
bi −ai

max(bi,ai)
(2.12)

In equation 2.12, bi is the inter cluster distance, defined as the average distance to the closest

cluster of datapoint i except for which it’s a part of:

bi = min
k ̸=i

1
|Ck| ∑

jεCk

d(i, j) (2.13)

Similarly, in equation 2.12, ai is the intra cluster distance, defined as the average distance to

all other points in the cluster which i belongs to [18]:

ai =
1

|Ci|−1 ∑
jεCi,i ̸= j

d(i, j) (2.14)

A Silhouette Plot represents the cluster label on the y-axis, while the actual Silhouette Score

is on the x-axis. The size of the silhouettes is proportional to the number of samples inside that

cluster. Here is an example with four clusters:

State of the Art 20

Figure 2.3: Silhouette Plot Example with 4 clusters - Source [5]

The Rand Index is another widely used metric. It calculates a similarity between two clusters

by examining all sample pairs and determining the number of pairs that are assigned to the same

or different clusters in both the predicted and actual clusterings [36]. The formula for the Rand

Index is:

RI =
Number of Agreeing Pairs

Number of Pairs
(2.15)

The drawback of the Rand Index is that it requires the availability of ground-truth cluster labels

for comparison with the model’s performance. For CERN’s particular case, this metric is much

less useful than the Silhouette Score as it is unlikely that we are able to obtain cluster labels for

activities or contributions. We are dealing with a pure, unsupervised learning task.

Another measure to evaluate non-labeled clustering problems is the Calinski-Harabasz Index,

also known as the Variance Ratio Criterion. It is defined as the ratio between the within-cluster

dispersion (tr(Bk)) and the between-cluster dispersion (tr(Wk)). The higher the Index (S) is, the

better the model’s performance is.

S =
tr(Bk)

tr(Wk)
∗ nE − k

k−1
(2.16)

where we have:

Bk =
k

∑
q=1

nq(Cq −CE)(Cq −CE)
T (2.17)

Wk =
k

∑
q=1

∑
xεCq

(x−Cq)(x−Cq)
T (2.18)

Building on the above-mentioned performance measures, it is also beneficial to consider the

Davies-Bouldin Index. This index provides an evaluation metric for clustering algorithms by quan-

tifying the average ’similarity’ between clusters [10]. The similarity in this context is a measure

2.4 Natural Language Processing Techniques 21

that combines the distance between clusters and the size of the clusters themselves.

The Davies-Bouldin Index (DBI) is calculated as follows:

DBI =
1
k

k

∑
i=1

max
i ̸= j

(Ri j) (2.19)

In this equation, Ri j is the ratio of the sum of within-cluster distances in cluster i and cluster j

to the distance between the cluster centers. Essentially, a lower Davies-Bouldin Index indicates a

model with better separation between the clusters.

Like the Silhouette Score, the Davies-Bouldin Index does not require the availability of ground

truth labels, making it an apt measure for unsupervised learning scenarios. However, it’s important

to note that DBI focuses on the similarity between a cluster and its nearest neighbor, so it may not

capture the overall structure as effectively if the dataset has complex multi-level clustering.

In conclusion, for non-labeled clustering problems, selecting the appropriate measure to assess

model performance is dependent on the specifics of the data and the goals of the analysis. Indices

such as the Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index offer viable

solutions, each providing different perspectives on the quality of the clustering.

2.4 Natural Language Processing Techniques

Natural Language Processing (NLP) is an evolving field within artificial intelligence that empha-

sizes the interaction between computers and humans using natural language. As Chowdhary de-

scribes in his book "Fundamentals of AI", NLP is fundamentally a set of computational techniques

for automatic analysis and representation of human languages [9].

Natural languages, due to their complexity and infinite set of sentences, present significant

challenges. Ambiguity is one such challenge: words can have multiple meanings, and the inter-

pretation of sentences can change based on the context [9].

The current NLP algorithms have limitations in dealing with these complexities. While they

are efficient at retrieving texts, spell checking, and word-level analysis, interpreting sentences

and extracting meaningful information remain challenging tasks [9]. This is largely due to the

algorithms’ inability to consider background information - the contextual knowledge that humans

naturally bring to language comprehension.

Despite the challenges, the potential and relevance of NLP in today’s digital age is immense.

It is becoming increasingly essential in fields such as online information retrieval, text summariza-

tion, question-answering systems, and improving human-machine communication [9].

In the following subsections, we will describe specific NLP techniques, such as text represen-

tation and feature extraction, and text similarity measures.

2.4.1 Text Representation and Feature Extraction

To process and understand natural language, we need to convert it into a format that is under-

standable by a machine. This process involves the extraction of relevant features from the text,

State of the Art 22

which can be used in various NLP tasks such as sentiment analysis, document clustering, or topic

modeling. Two popular methods of text representation and feature extraction are Term Frequency-

Inverse Document Frequency (TF-IDF) and word embeddings.

TF-IDF is a statistical measure used to evaluate the importance of a word in a document, part

of a corpus. This technique transforms text into a meaningful representation of numbers which

is used to analyze the document. It consists of two parts: Term Frequency (TF) and Inverse

Document Frequency (IDF).

TF refers to the frequency of a word in a particular document. IDF, on the other hand, dimin-

ishes the weight of terms that occur very frequently in the document set and increases the weight

of terms that occur rarely. Thus, TF-IDF tends to filter out common terms such as ’is’, ’of’, and

’that’, in favor of terms that are more useful for distinguishing between documents [24].

Word embeddings are the modern way of representing words as vectors. The goal of word

embeddings is to redefine the high-dimensional word features into low-dimensional feature vectors

by preserving the contextual similarity in the corpus. They are capable of capturing the context of

a word in a document, semantic and syntactic similarity, relation with other words, etc.

2.4.2 Text Similarity Measures

A fundamental task in many NLP applications, including information retrieval, text mining, and

machine translation, is the measurement of similarity between texts [12]. Cosine similarity is a

traditional similarity measurement metric that is often combined with TF-IDF [23].

Cosine similarity is a metric that calculates the cosine of the angle between two non-zero

vectors. In NLP, each vector usually represents a text, where each dimension corresponds to a

distinct word (or sometimes n-gram or concept), and the value in each dimension corresponds to

the weight of that word (often a TF-IDF weight or a count of occurrences) in the text.

Cosine similarity depends on the angle between the vectors, rather than their magnitudes.

Therefore, even if two documents have vastly different lengths, if they express the same topics

(i.e., they use the same words with similar proportions), their cosine similarity will be high.

Cosine similarity is calculated using the following formula [19]:

cos(A,B) =
A ·B

∥A∥∥B∥
(2.20)

Overall, cosine similarity is a very valuable tool in NLP, useful in a wide variety of tasks and

scenarios, including document classification, clustering, information retrieval, and recommenda-

tion systems. It’s also worth noting that cosine similarity is not the only text similarity measure.

Others include the Jaccard index (2.2.3.2), Euclidean distance (2.2.3.2), and Manhattan distance,

each of which may be more appropriate in certain situations. However, cosine similarity is ar-

guably the most common and versatile one, and therefore the focus of this section.

2.5 Dealing with Low-data Situations 23

2.5 Dealing with Low-data Situations

Machine learning models typically need large amounts of data to learn patterns and make accurate

predictions or suggestions. However, in many real-world cases, the available data can be limited.

This presents significant challenges in training robust and reliable models. Several strategies have

been developed to deal with low-data situations, a few of which are discussed in this section.

Data augmentation is a widely employed strategy in many machine learning applications

where data is sparse. It involves creating new synthetic training samples by applying transfor-

mations that preserve the label information [31]. Despite its popularity, this approach may not

always be suitable, particularly in cases where synthetic data can’t be used.

Real-time similarity computation is another method that can be beneficial in low-data situa-

tions. By calculating similarity measures like cosine similarity (section 2.4.2) or Gower distance

(section 2.2.3.2) in real-time, new data points can be compared with existing ones to generate pre-

dictions. This approach sidesteps the need for a traditional training phase, making it suitable for

scenarios where historical data is limited.

In the context of sparse data, instance-based learning (IBL) becomes valuable. This learning

paradigm, often associated with methods such as k-nearest neighbors (section 2.2.3.1), relies on

specific instances or data points rather than a general model learned from the data. This approach

is particularly useful when dealing with limited data, as it also doesn’t require a separate train-

ing phase. However, IBL is often computationally expensive and sensitive to the choice of the

algorithms similarity function [2].

Additionally, feature extraction techniques can help uncover useful information from a limited

amount of data. By transforming the input data into a set of new features that capture the essential

characteristics of the data, these techniques can enhance the performance of machine learning

models.

Lastly, transfer learning is an approach where pre-trained models on large datasets are adapted

for a different but related task [31]. By leveraging the learned representations from a related task,

transfer learning can mitigate the effects of limited data availability, offering a promising approach

to dealing with low-data situations.

In summary, while limited data presents significant challenges in machine learning, there are

many different strategies to navigate such situations. Understanding these techniques and their

applicability to specific tasks is vital for effective machine learning application in real-world, low-

data situations.

2.6 Content-Based Recommendation Systems

Recommendation systems are systems that are designed to recommend things to the user based

on many different factors. A recommendation system deals with a large volume of information

present by filtering the most important information based on the data provided by a user and other

factors that take care of the user’s preference and interest. It finds out the match between user and

State of the Art 24

item and imputes the similarities between users and items for recommendation. Both the users

and the services provided have benefited from these kinds of systems. The quality and decision-

making process has also improved through these kinds of systems.

Content-based recommendation systems, as detailed in Michael Pazzani’s chapter in "The

Adaptive Web," focus on the recommendation of items to a user by leveraging a description of the

item and a profile of the user’s interests [27]. These systems have wide applicability, extending to

various domains such as recommending web pages, news articles, restaurants, television programs,

and items for sale. Fundamentally, content-based recommendation systems incorporate a method

for item description, a mechanism for creating a user profile, and a means of comparing these

items to the user profile to determine recommendations.

In web applications, which is a prevalent setting for modern recommendation systems, the

user interacts with a summarized list of items. The user can then select among these items for

more detailed information or further interaction. As the total number of items often exceeds what

can be comfortably displayed on a webpage, it becomes essential to carefully select a subset of

items or determine a specific order of display for the user. Content-based recommendation systems

tackle this issue by analyzing item descriptions to identify those that align closely with the user’s

interests [27].

However, as per Pazzani’s work, it’s worth noting that content-based recommendation systems

are not without limitations [27]. For example, the performance of such systems might suffer when

the content lacks sufficient information to discriminate between items the user likes and dislikes.

In summary, content-based recommendation systems provide a robust and flexible method

of personalizing recommendations to individual users based on their preferences and interests.

This ability to tailor suggestions becomes particularly crucial in environments like CERN’s task

planning platform, where the goal is to aid users by recommending relevant tasks based on the

item to be suggested, the activity and its information. However, it’s essential to keep in mind the

limitations of such systems, such as their dependence on the content’s sufficiency to discriminate

user preferences effectively. In the next section, we will dive into more detail on existing task

management and resource planning platforms.

2.7 Task Management and Resource Planning

Task management is the process of defining, planning, tracking, and organizing tasks and activi-

ties that need to be completed as part of a project or work. It involves identifying the tasks to be

done, setting priorities, allocating resources, and tracking progress to ensure that tasks are com-

pleted on time and within budget. Task management helps improve work processes’ efficiency

and effectiveness and provides a centralized platform for teams to collaborate and communicate.

Resource planning is the process of identifying, organizing, and allocating the resources (e.g.,

people, equipment, materials, and budget) needed to complete a project or work. It involves

determining the availability of resources, ensuring they are allocated to the right tasks, and tracking

their utilization over time. Resource planning helps organizations optimize their resources, reduce

2.7 Task Management and Resource Planning 25

waste, and ensure that projects are completed on time and within budget. By aligning resources

with project requirements, organizations can ensure they have the right resources at the right time

to achieve project goals.

Task management and resource planning are critical components of project management that

have evolved over time to meet the changing needs of organizations and teams. The history of task

management and resource planning can be traced back to manual methods such as to-do lists and

calendars [20]. Over the years, technology has played an increasingly important role in facilitating

these processes, leading to the development of sophisticated project management software.

In recent years, technological advances have led to the development of cloud-based project

management software that offers increased flexibility and scalability. The increasing availability

of these tools has made it easier for organizations and teams of all sizes to implement effective

task management and resource planning processes.

There are several existing task management and resource planning platforms available in the

market today, including Asana [4], Trello [34], Redmine [29], Jira [17], and MS Project [28],

among others. These platforms vary in terms of their scope, complexity, and target audience, and

can range from simple to-do list apps to comprehensive project management software.

In Cheema’s "The choice of project management software by project managers" [8], the au-

thors propose a study that aims to determine which project management software is the most used

by project managers and which is the most appropriate for a company by comparing the five plat-

forms mentioned above. In a sample of 101 qualified project managers, the most used software

platforms were MS Project and Jira. Then, after setting seven different project management cri-

teria and their importance: Tasks, Collaboration, Project Essentials, Portfolio, Management of

resources, Platform, and Procurement, project managers were inquired about each platform re-

garding the criteria. In figure 2.4, we can see an aggravated matrix that considers the weights of

each criterion and the survey results. The results inferred that JIRA is the best project management

software currently available to manage IT projects.

Figure 2.4: Aggravated Matrix - Source [8]

Overall, the main benefits the existing platforms bring to the process of task management and

resource planning within a company or an organization are the following:

State of the Art 26

• Centralized platform for managing tasks and resources - Task management and resource

planning platforms provide a centralized platform for organizing and tracking tasks and

resources, improving collaboration and communication among team members.

• Improved efficiency and productivity - By automating repetitive and time-consuming tasks,

these platforms can help organizations to improve their efficiency and productivity.

• Increased visibility and control - Task management and resource planning platforms offer

increased visibility into project progress and resource utilization, allowing organizations to

make informed decisions and take corrective action when necessary.

• Enhanced resource utilization - By optimizing the allocation and utilization of resources,

these platforms can help organizations to reduce waste and improve project planning and

execution.

However, especially for large-scale organizations, they can have their drawbacks:

• Initial setup and customization - Implementing a task management and resource planning

platform can be time-consuming and require significant effort to customize it to meet the

specific needs of an organization.

• User adoption - Adopting a new task management and resource planning platform requires

buy-in from team members and can be challenging, mainly if they are resistant to change or

prefer to use manual methods.

• Integration with other tools and systems - Task management and resource planning plat-

forms may need to be integrated with other tools and systems used by the organization,

adding to the complexity of the implementation. This is particularly true for a complex

organization with many technologies and systems like CERN.

• Cost - Task management and resource planning platforms can be expensive, particularly for

comprehensive and feature-rich solutions, making it important for organizations to carefully

evaluate their needs and budget before choosing a platform.

2.8 Machine Learning in Task Management and Resource Planning

The integration of machine learning into task management and resource planning has recently

gained significant attention in the field of project management. With the growing amount of data

generated by organizations and the increasing demand for efficient and effective project manage-

ment, machine learning has the potential to revolutionize the way tasks and resources are man-

aged. Machine learning algorithms can analyze large amounts of data, identify patterns, and make

predictions about future behavior, which can inform decision-making and improve the overall

efficiency and effectiveness of task management and resource planning.

2.9 Summary and Identified Gaps 27

Recent advancements in machine learning have enabled the development of sophisticated task

management and resource planning platforms that use predictive analytics, automated resource

allocation, and dynamic project scheduling to optimize project performance. The use of machine

learning in task management and resource planning can help organizations improve project plan-

ning, reduce manual effort, and increase overall project success.

However, while the potential benefits of machine learning in task management and resource

planning are significant, there are also challenges associated with the integration of these tech-

nologies. These challenges include the need for substantial investment in data collection and

preparation, the potential for biased results, and the need for thorough testing and validation of

machine learning models.

Ana Sá’s report [32] focuses on the application of different machine learning approaches in

recommending individuals for a specific task. The study utilizes two popular machine learning

algorithms, Support Vector Machine (SVM) and Naive Bayes classifiers, to analyze the data and

make recommendations. In each experiment, the classifier calculates the probability of a person

performing the task based on various factors. The report aims to explore the effectiveness of

these algorithms in the task recommendation process and provide insights into the strengths and

limitations of each approach.

In [15], the focus is once again on the comparison of two machine learning models, a Neural

Network model, and a Support Vector Machine model, in evaluating the risk level of software

projects. The goal of the study was to determine which approach was more accurate in predict-

ing the outcome of the project, which was defined as "successful", "failed", or "challenged". The

models were developed using a set of relevant data and tested using a comprehensive evaluation

process. The initial results showed that the SVM model had a higher accuracy rate of 80% com-

pared to the NN method, which had an accuracy rate of 70%. The difference in accuracy was

attributed to the NN’s tendency to find the local optima, as reported in reference [19]. However,

after optimizing the NN method using a Genetic Algorithm (GA), the NN-GA method showed an

improvement in accuracy, surpassing the SVM model with a rate of 85% compared to 80%. The

optimization of the NN method with GA reduced the search for a local optima, resulting in the

improvement in accuracy.

The use of machine learning on task management and resource planning platforms can bring

several benefits to organizations. It can be used for predictive task management, automated task

assignment, predictive resource management, personalization, and collaboration. However, it is

worth noting that the use of machine learning on said platforms is still in the early stages of

development.

2.9 Summary and Identified Gaps

The present work explores the area of machine learning (ML), with a particular focus on its ap-

plication in task management and resource planning. It explores different supervised learning

techniques for data classification, unsupervised learning for detecting groups, Natural Language

State of the Art 28

Processing for text comprehension, and strategies for handling low-data situations. The function

of ML in recommendation systems, specifically concerning task recommendations, is also thor-

oughly investigated.

The study critically assesses the state of current strategies in task management and resource

planning, their limitations, and the existing applications of ML in these domains. This review

offers a broader context for the developed algorithm, an integral part of this research.

Notably, this research uncovers gaps in the current field. ML techniques, while possessing

significant potential in managing and predicting tasks, are often complicated in low-data situations.

Although strategies like data augmentation, transfer learning, and pre-trained models offer some

relief, there is a marked need for additional exploration of methods to augment the efficiency of

ML under data-scarce conditions, not only at CERN but in the field of study.

Furthermore, the integration of ML in task management and resource planning presents con-

siderable challenges. These range from the requirement for substantial data collection and prepa-

ration, the potential for biased outcomes, to the need for testing and validation of models.

While the current literature has dedicated significant effort to comparing different ML algo-

rithms such as SVM, Naive Bayes, and NN in task recommendation or risk evaluation, there is

always room for further research in different contexts. The goal is to consistently achieve higher

accuracy rates, potentially through advanced optimization methods, despite some algorithms al-

ready demonstrating superior performance after optimization.

Lastly, it is crucial to note that the application of ML in task management and resource plan-

ning platforms remains in an early stage of development. This provides a wide berth for innova-

tion and improvement, particularly in areas like predictive task management and automated task

assignment.

In light of these identified gaps, the thesis is positioned to make a substantial contribution

by advancing the integration and optimization of ML in the context of CERN, but also for task

management in general.

Chapter 3

Problem Identification

In the current chapter, we introduce the problem that will be addressed in this thesis. We start off

by providing a more in-depth overview of the PLAN platform, in section 3.1, starting off with a

description of the platform and of its purpose.

We then describe the key components and workflow of the PLAN platform, highlighting its

importance in facilitating task management and resource allocation at CERN. Understanding the

functionalities and architecture of PLAN is crucial for developing an effective suggestion system

that can seamlessly integrate with the existing platform and improve the overall efficiency of the

activity planning process.

Then, we discuss the two use cases that the suggestion system aims to address, in section

3.2. The first use case focuses on generating recommendations for activities. The second use

case revolves around suggesting contributions to activities, both automating and speeding up the

process of activity creation in PLAN.

We will finish the chapter with a brief summary, taking us into the development of a solution

for the problem at hand (section 3.3).

3.1 Overview of PLAN Platform

This section provides an overview of the PLAN platform, a comprehensive task-planning tool

designed to facilitate the organization and management of activities at CERN, particularly during

Long Shutdowns (LS) of the Large Hadron Collider (LHC) [7]. We begin with a brief description

and purpose of the platform in section 3.1.1, followed by an explanation of its key components and

workflow (section 3.1.2). Finally, we describe the model and the architecture of PLAN, shedding

light on its underlying structure and organization, in section 3.1.3.

Understanding the PLAN platform’s functionalities and architecture is essential for developing

a robust and effective suggestion system that can seamlessly integrate with the existing platform,

ultimately improving the overall efficiency of the activity planning process at CERN.

29

Problem Identification 30

3.1.1 Brief Description and Purpose

As mentioned previously, PLAN is a comprehensive task-planning tool designed to facilitate the

organization and management of activities at CERN, particularly during Long Shutdowns of the

Large Hadron Collider. The LHC is a powerful particle accelerator that collides particles at nearly

the speed of light, enabling scientists to study the fundamental constituents of matter and the forces

that govern their interactions [7].

Long Shutdowns are scheduled periods of maintenance and upgrade work for the LHC and its

related experiments, typically lasting around two years. These shutdowns are crucial for ensuring

the efficient operation and continuous improvement of the LHC.

The primary goal of PLAN is to define the necessary work and prioritize potential options

based on available resources and the importance of each activity during an LS.

As a platform, PLAN stores all activities for a specific period, facilitating the approval process

and offering a coherent approach to task management. This unified platform allows decision-

makers and support groups to obtain a clear overview of various requests and their potential im-

pacts. By providing a clear and organized view of tasks, PLAN contributes to more efficient

resource allocation and improved project management.

In the context of CERN, efficient task planning is of extreme importance due to the complex

nature of the organization and the multitude of activities that need to be carried out during an LS.

PLAN plays a crucial role in making sure that all tasks are effectively coordinated and resources

are optimally utilized.

3.1.2 Key Components and Workflow

The PLAN platform is designed to handle the complex task of managing and scheduling activ-

ities within CERN, particularly those related to the LHC. The platform consists of several key

components and follows a specific workflow that ensures a smooth and efficient activity planning

process. Here, we briefly discuss the main components and the workflow of the PLAN platform.

The activity process in PLAN can be classified into several stages, as detailed below:

• Created: A group created an activity, added scheduling information, and requested contri-

butions from other groups.

• Prioritization: The group submitted the activity for prioritization.

• Resource Allocation: The Plan coordinator then prioritizes and schedules all activities,

taking into account their impact on the performance of the facilities, the resources needed

from other groups, and the scheduling constraints.

• Under Approval: The Plan coordinator reviews the activity and checks the validity of

contributions before submitting it to the approval process.

• Approved: The activity has been approved by the Plan coordinator and is ready to be exe-

cuted.

3.1 Overview of PLAN Platform 31

• Postponed: The activity has been postponed due to unforeseen circumstances or changes

in priorities

• Approved If: The activity is conditionally approved, pending the fulfillment of certain

criteria or completion of other activities.

• Partially Finished: Some parts of the activity have been completed, while others are still

in progress.

• Canceled: The activity has been canceled due to changes in priorities, lack of resources, or

other reasons.

• Finished: The activity has been successfully completed, and all its objectives have been

met.

A better understanding of the workflow and what makes activities change stage can be had

with figure 3.1.

Figure 3.1: PLAN activity process diagram

Problem Identification 32

It is worth noting that this diagram is used by CERN’s personnel to summarize the flow of

activities in PLAN. As such, some transitions between stages, represented as arrows in Figure 3.1,

are omitted not to overcomplicate the diagram.

The PLAN platform only includes activities that can have an impact on the performance of the

facilities, need support from other groups in terms of resources (such as studies, designs, manu-

facture, tests, and infrastructure modification), or need to be scheduled by facility coordinators.

The platform’s user interface is designed to facilitate efficient communication and collabo-

ration between different groups, providing a clear and accessible way to create, prioritize, and

allocate resources for activities.

In order to provide a better understanding of the PLAN platform’s interface, a screenshot of

its home page is presented in Figure 3.2. This figure showcases the layout and main components

of the platform, allowing users to navigate through the various stages and features of the activity

planning process.

Figure 3.2: PLAN Home Page

The RUN3-LS3 Version 2 codification in Figure 3.2 indicates that we are working on the

second version of PLAN regarding the third long shutdown of the four-year period that is the third

run of the LHC.

3.1.3 Model and Architecture

In this section, we discuss the model and architecture of the PLAN platform, providing an overview

of how it organizes and manages activities and contributions across different Long Shutdowns and

3.1 Overview of PLAN Platform 33

groups within CERN. The PLAN platform is a Java-based application that ensures a high level of

performance and maintainability.

It uses a hierarchical model to organize and manage its activities and contributions. The top

level consists of the PLAN Web tool, which encompasses the entire platform. Within the PLAN

Web tool, there are separate instances for each Long Shutdown (e.g., PLAN LS1, LS2, etc.).

Each Long Shutdown instance contains activities, which in turn include contributions. Figure 3.3

illustrates the hierarchical model of the PLAN platform.

Figure 3.3: PLAN Model Diagram

The architecture of the PLAN platform is designed to ensure the efficient handling of data

and improve the overall performance and maintainability of the platform. It consists of two major

blocks: the write model (DDD) and the read model (CRUD).

DDD stands for Domain-Driven Design. This is a software development methodology that

focuses on the core domain and domain logic of the system being built. Here, PLAN is using it

since write operations are typically more complex and involve business rules and logic. CRUD,

stands for Create, Read, Update, and Delete. In PLAN’s context, the term CRUD is somewhat

misleading as it normally also involves writing operations, but here is used to refer to a simpler

part of the system focused on reading and displaying data.

The write model is responsible for handling the creation and modification of activities and

contributions, while the read model deals with the retrieval and display of information.

These two blocks are connected through a publish/subscribe mechanism, which allows for a

clear separation between writing and reading operations, further enhancing the platform’s effi-

ciency and scalability. Figure 3.4 presents the architectural diagram of the PLAN platform.

Problem Identification 34

Figure 3.4: PLAN Architecture Diagram

3.2 Use Cases Understanding

In this section, we will discuss the two main features or uses cases that the tailor-made suggestion

system aims to address, as identified by CERN. Both these use cases are designed to enhance the

overall efficiency and effectiveness of the activity planning process within the PLAN platform by

providing intelligent suggestions tailored to the specific requirements and constraints of the tasks

at hand.

While both use cases address the need to make accurate and interesting suggestions to PLAN

users in real-time, they differ in the focus of their suggestions. The first use case revolves around

generating recommendations for activities, while the second one pertains to the contributions made

towards those activities.

By addressing these distinct aspects of the planning process, the suggestion system aims to

create a more streamlined and user-centric experience that ultimately enhances productivity and

resource allocation during Long Shutdowns at CERN.

3.2.1 Activity Suggestion

When a user is logged into PLAN and wishes to create a new activity to be done by different

CERN sections and groups, he is presented with the interface shown in Figure 3.5.

3.2 Use Cases Understanding 35

Figure 3.5: Activity Creation Main Form

Fields like the title, location, goal, and impact if the activity is postponed can be manually

described by the user as free text. The remaining values, such as type and responsible group, are

organized into selectable categories.

Although only the information marked with a red asterisk is considered mandatory for creating

an activity, all the information associated with an activity has to be manually entered by the user,

either during activity creation (Figure 3.5) or later during editing.

The primary challenge of this use case is to simplify the activity creation process by lever-

aging historical data from previous PLAN activities. By analyzing and comparing this data, the

suggestion system aims to identify similarities or even exact matches between the new activity and

existing ones. If such similarities are detected, the system can then provide suggestions for filling

out the activity information, reducing manual data entry and improving overall efficiency.

To achieve this, the suggestion system must be capable of accurately identifying relevant pat-

terns and trends within the historical data. This requires the development of a robust and intelligent

algorithm that can not only identify similar activities but also generate meaningful suggestions

based on the available information. Additionally, the system should be designed to seamlessly

integrate with the existing PLAN platform, ensuring a smooth and intuitive user experience.

In summary, this use case focuses on the development of a suggestion system that can facilitate

and automate the process of entering activity information, ultimately improving the efficiency of

the activity planning process at CERN.

Problem Identification 36

3.2.2 Contribution Suggestion

Once an activity has been created in PLAN, additional information can be added, such as schedule,

allocated resources, comments, and documents. The focus of the second use case is on the contri-

butions that CERN teams make to a newly created activity, which can be entered in the resources

tab of the activity. The user is presented with the interface shown in Figure 3.6.

Figure 3.6: Contribution Creation Tab

As shown on the left side of Figure 3.6, contributions to an activity are assigned to one of three

different activity phases: Preparation, Installation, and Commissioning. Contributions are mainly

identified by their group or section (i.e., the CERN team that will make the contribution) and the

contribution type.

The primary challenge of this use case is to facilitate the process of requesting contributions

from other CERN teams by providing users with a list of relevant contributions that may be needed

for the successful completion of the activity.

To achieve this, the suggestion system must also be capable of accurately identifying relevant

patterns within the historical contribution data and generating meaningful suggestions that align

with the specific requirements and information of the activity. This requires the development of a

robust and intelligent algorithm that can analyze and compare past contributions to generate useful

suggestions.

The potential benefits of this use case include not only automating and speeding up the process

of requesting contributions but also helping users better understand what contributions may be

needed for the successful completion of an activity. By providing users with tailored suggestions,

the system can contribute to more efficient and effective resource allocation and overall project

management at CERN.

As for the first use case, this use case focuses on the development of a system that can facil-

itate and automate the process of requesting contributions, also leading to an improvement in the

efficiency of the activity planning process at CERN.

3.3 Summary 37

3.3 Summary

In the current chapter, the focus was on understanding the problem at hand. This goes through

a deep understanding of the PLAN platform, which plays a pivotal role in managing tasks and

allocating resources at CERN, especially during the Long Shutdowns of the LHC. PLAN’s overall

structure, workflow, and key components were elaborated upon.

The significance of PLAN lies in its ability to ensure efficient task planning and improve

project management. The activities and their stages were explained, detailing the activity pro-

cess in PLAN. Furthermore, the model and architecture of the PLAN platform were analyzed,

indicating its Java-based application nature and its hierarchical data management structure.

To be able to come up with an optimal solution, it is essential to comprehend the two use

cases that we want the suggestion system to tackle. The first use case focuses on generating

recommendations for activities. The idea is to reduce manual data entry and improve efficiency

by identifying similarities between the new and existing activities using historical data.

The second use case is about the suggestions for contributions to the activities. This case

will automate the process of requesting contributions and help users understand the contributions

needed for the successful completion of an activity, again using the historical data from previous

contributions.

These two use cases aim to create a more streamlined and user-centric experience, ultimately

enhancing productivity and resource allocation during an LS at CERN.

Chapter 4

Solution Development

Once the platform and the challenges related to this project have been established, the subsequent

phase involves navigating through the process and methodologies employed to arrive at the ulti-

mate solution for the identified problem.

In the current chapter, an understanding of the distinct stages within this process will be pro-

vided. The first step involves the comprehension and preparation of the data for utilization by

machine learning algorithms. This will be explored in section 4.1, where the extraction of data

from CERN’s databases will be explained, alongside the generation of the final datasets.

Then, our focus shifts towards the development of our initial approach, describing the imple-

mentation of techniques accompanied by the motives behind their selection, an evaluation of their

performance, and an analysis of the insights and conclusions derived from the outcomes. This is

presented in section 4.2.

Thereafter, a transition is made towards a new and final approach to address the problem at

hand. The development of this approach is described in detail, including what was done to opti-

mize its potential and performance. Section 4.3 concludes with an evaluation of the performance

of the final solution.

Finally, a summary of the chapter is provided, followed by a transition into the subsequent

chapter, in section 4.4.

4.1 Data Preparation

The journey of constructing a machine learning model begins with data, which serves as the foun-

dation for all other processes. This includes the extraction, preprocessing, and management of

the data. The quality of data directly impacts the outcomes of the model and therefore requires

rigorous attention and meticulous handling.

In this study, the data preparation and management process was designed to facilitate the

application of machine learning techniques to the unique use cases of CERN’s PLAN tool. This

process, which is detailed in Sections 4.1.1, 4.1.2, and 4.1.3, was a multi-step procedure that

38

4.1 Data Preparation 39

started with data extraction and ended in the creation of two meaningful datasets: the Activity

Dataset and the Contribution Dataset.

Section 4.1.1 outlines the data extraction process, which began with establishing a connection

to CERN’s PLAN database and using an SQL client to extract relevant tables. This process was

carefully designed to ensure a systematic and comprehensive extraction of the data, providing a

strong foundation for the subsequent stages.

The next phase, detailed in Section 4.1.2, was the creation of the Activity Dataset. This dataset,

intended to serve as the primary input for our machine learning algorithms, included historical data

on past activities. The process involved carefully selecting relevant fields, merging and transform-

ing original tables, and ultimately, creating a final dataset ready for analysis.

The Contribution Dataset, discussed in Section 4.1.3, was designed to cater to our second use

case. This dataset focused on contributions made to past activities. A similar approach to the one

used for the Activity Dataset was employed, with the necessary fields being identified, irrelevant

columns being dropped, and the remaining datasets being merged to create the final Contribution

Dataset.

Despite the unique challenges presented by the limited availability of data, the process was

designed to maximally utilize the available data to address the study’s objectives. The result

was two comprehensive datasets, each specifically tailored to a distinct use case. These datasets

provide the groundwork for the subsequent stages of the study, paving the way for the application

of machine learning techniques to address the study’s objectives.

4.1.1 Data Extraction

The initial stage in the data treatment process involved retrieving the pertinent tables from CERN’s

PLAN database. Upon receiving a comprehensive list of the available tables within the database

from PLAN developers, a TNS (Transparent Network Substrate) connection was established to

facilitate access to the database using an alias.

To visualize the tables, we employed an SQL client, specifically Oracle’s SQL Developer. This

enabled us to establish connections between our client and PLAN’s database and subsequently

utilize SQL queries to view the contents of each table at the time the query was executed.

Next, we capitalized on SQL Developer’s functionality to manually extract query results, gen-

erating CSV files containing the most relevant tables for both of our use cases. For instance, a

query such as SELECT * FROM plan.rm_activity_list; would return every entry in the Activity

List table. Subsequently, a CSV file would be generated from these results for further treatment

and preprocessing using Python. This process is illustrated in Figure 4.1.

Solution Development 40

Figure 4.1: PLAN Table access example

By employing this approach, we ensured that the data extraction process was both systematic

and comprehensive. This foundation enabled us to accurately preprocess and analyze the extracted

data, ultimately leading to more reliable insights and conclusions in our study.

4.1.2 Activity Dataset

The primary data resource for our machine learning algorithms was historical data on past activi-

ties. This dataset was going to serve as the foundational basis for all the algorithms we developed.

To create an optimal CSV file for our activity data, it was necessary to determine the fields that

would be most pertinent to our algorithms. This decision was made based on both arbitrary and

logical criteria. The final dataset included every field displayed in the activity creation interface,

as depicted in Figure 3.5.

The columns designated for our activity.csv file included:

• ACTIVITY_UUID: The unique identifier of the activity;

• TITLE: The title of the activity (Free text);

• GROUP_RESPONSIBLE_NAME: The CERN team responsible for the activity (Categor-

ical);

• RESPONSIBLE_WITH_DETAILS: The individual responsible for the activity and their

associated CERN team details (Categorical);

• ACTIVITY_TYPE_EN: The category of the activity, in English (Categorical);

• WBS_NODE_CODE: The project or study that the activity is associated with (Categori-

cal);

• FACILITY_NAMES: The names of the facilities where the activity will take place (List of

Categorical Values);

4.1 Data Preparation 41

• CREATOR_NAME: The name of the individual who created the activity (Categorical);

• CREATION_DATE: The date when the activity was created (Date format string);

• LOCATION_INFORMATION: The location where the activity will occur (Free text);

• GOAL: The objective of the activity (Free text);

• IMPACT_NOT_DONE: The potential impact if the activity is not completed (Free text).

After identifying the necessary fields for our final dataset, we initiated the processing, merging,

and transformation of the original tables.

We scrutinized every activity-related PLAN table, starting by eliminating columns that would

not contribute to the creation of our final activity dataset. This could be because they contained

only one unique value or because they were deemed logically irrelevant to the final dataset. Infor-

mation regarding contributions and the duration of the activity were omitted, for example.

Then, after merging the resulting datasets based on their IDs, we obtained our final dataset.

An extract of said dataset is depicted in Figure 4.2.

Figure 4.2: Activity Dataset

At the conclusion of this process, our dataset encompassed 1842 activities, corresponding

to the number of activities created since the beginning of RUN3-LS3. This reaffirmed CERN’s

assertion and one of the bigger challenges of this project: the available data was considerably

limited for the application of machine learning techniques. As a result, techniques from section

2.5 were going to be necessitated for further exploration and application.

4.1.3 Contribution Dataset

In order to address our second use case (Section 3.2.2), we needed to create another dataset - this

time focusing on contributions made to past activities.

Our methodology in the creation of this dataset paralleled the approach used in section 4.1.2.

Initially, we had to identify the fields that would be of value for our contribution suggestion algo-

rithms. This decision was informed by an examination of the PLAN tool’s interface, particularly

the resources tab, where contributions are recorded and characterized, as depicted in Figure 3.6.

The two key defining characteristics of contributions were identified as being the Group / Section

and the Contribution Type.

In addition to these, several other fields were considered to potentially hold value for future

usage:

• ID: The unique identifier of the contribution;

Solution Development 42

• ACTIVITY_UUID: The unique identifier of the activity corresponding to that contribution;

• DESCRIPTION: The description of the contribution (Free text);

• PHASE_NAME: The name of the phase associated with that contribution: Preparation,

Installation, Commissioning or None (Categorical);

• ORG_UNIT_CODE: The team that is making the contribution (Categorical);

• ORG_UNIT_TYPE: The type of the team making the contributions: Group or Section

(Categorical);

• STATUS: The status of the contribution (Categorical);

• CONTRIBUTION_TYPE: The type of the contribution (Categorical).

After determining these parameters, we proceeded to discard the unnecessary columns from

the extracted contribution-related PLAN tables. Subsequently, the remaining datasets were merged.

The final determination of the team name for inclusion in the final dataset required a more

nuanced approach. We had to scrutinize the merged contribution dataset and, for each entry, check

whether the contribution was made by a group or a section. Only then could we fetch the name of

the corresponding team. Upon completion of all merges, we finalized our contributions dataset, as

shown in Figure 4.3, where we see a sample of it.

Figure 4.3: Contribution Dataset

Our resulting dataset comprised 11399 contributions, a figure significantly larger than the num-

ber of entries in our activity dataset. However, this greater quantity did not alleviate the limitations

imposed by our initial low data problem. Despite this new dataset’s focus on contributions, the

foundational premise of our second use case was the comparison of a new activity with previous

ones. Thus, the use of our smaller activity dataset remained an unavoidable necessity.

4.2 Initial Approach

When first confronted with the problem at hand, further described in section 3.2, the first technique

that we came up with to develop the suggestion system for PLAN was a hybrid method, comprised

of a clustering model followed up by a supervised learning algorithm.

Clustering methods would help divide and split our existing historical data on activities into

clusters or "groups" by finding underlying patterns and structures in the data.

4.2 Initial Approach 43

From there, supervised learning techniques with the Cluster label of each activity as the target

value would help to accurately predict the group or cluster a new activity would belong to.

Finally, suggestions could be made from the assigned cluster by simply fetching the most

common values from a certain variable within the cluster or by any other suitable approach.

In this present section, we will dive into more detail on the implementation of the clustering

methods (section 4.2.1) to our data and to the training of a supervised learning model to predict the

cluster label for a new activity in 4.2.2. We will end the explanation of our model by explaining

how the values are suggested, in section 4.2.3. We will follow with an explanation on how this ap-

proach was evaluated in section 4.2.4 and the challenges and lessons learned in the implementation

of the hybrid method (4.2.5).

4.2.1 Clustering Methods

The first step in this approach would be to try and identify patterns and underlying structures in the

historical data on PLAN activities so that we can later use the formed groups to make suggestions

or predictions.

This would be tackled by a clustering technique (more in section 2.3.1), which is designed to

do exactly that, to separate the existing data points into different clusters.

In our case, to implement the clustering, we would have to perform some extra data preparation

steps to the activity dataset described in section 4.1.2.

Most of the existing clustering algorithms do not work with missing values (NaNs), as this

would make a distance-based algorithm, such as most of the clustering ones, unable to work

properly.

Therefore, we need to handle these existing missing values in our relevant fields, the ones

listed in section 4.1.2. There are several available ways to handle missing values before applying

any clustering algorithm (section 2.1), namely removal, imputation, and adding a missing value

indicator.

With regards to PLAN historical data, the removal technique cannot be applied, as one of the

main constraints of the project is the fact that we are dealing with limited data, and using this

technique would only aggravate this situation.

Also, the presence of missing values can actually mean something when it comes to CERN

activities. For example, if the activity is not completed, the fact that that value is empty is actually

informative to the system.

But, as this is important for each relevant field and not only for the presence of missing values

in the data point in general, we will use an imputation method where we will replace every missing

variable in the dataset with the "Unknown" value

Then, we need to determine which are the variables that will be used to characterize and try to

group the data. The possible combinations of important variables will be later changed and tested,

but to start us off, we decided to cluster the data based on the five existing categorical variables that

Solution Development 44

would best separate activities into different categories: ’GROUP_RESPONSIBLE_NAME’, ’RE-

SPONSIBLE_WITH_DETAILS’, ’ACTIVITY_TYPE_EN’, ’WBS_NODE_CODE’, and finally,

the ’CREATOR_NAME’.

From there, we need to encode these variables so that we can experiment with different clus-

tering algorithms, some of which do not function properly with categorical data.

To encode our variables, two main encoding techniques were considered and tested, as de-

scribed previously in section 2.1: one-hot encoding and label encoding.

In our case, one-hot encoding isn’t suitable because some of the selected variables have a high

number of categories. This would lead to a very high number of added columns, which wouldn’t

be ideal. As so, we apply label encoding to the selected relevant columns in the activity dataset.

From here, we can apply different clustering algorithms to determine which, if any, has the

best performance and, consequently, will be the one used for our suggestion system.

We will try out two different algorithms: DBSCAN (2.3.1.3) and KModes (2.3.1.2), using

Python’s scikit-learn and kmodes libraries, respectively.

One focal point of our case is that since all of our initial relevant fields for the clustering are

categorical, when experimenting with DBSCAN, the distance calculation used for the clustering

cannot be the Euclidean distance since it would assume that the label-encoded variables are closer

to each other when the number is closer, and that is not true.

We need a distance metric that can handle categorical values. Revisiting what we discussed in

section 2.2.3.2, we decided to experiment with both Gower and Jaccard Dissimilarity distances.

Once we have applied the algorithms to the activity dataset, we have to assess their perfor-

mance. Starting with comparing which clustering algorithm has the best performance and then

trying to improve it, be it by testing what is the optimal number of clusters or testing out different

combinations of relevant values. Finally, we have to determine if the clustering is actually good

enough for future use in our PLAN suggestion system. This analysis will be carried out in section

4.2.4.

From there, we would use the best clustering algorithm to assign each row in the activity

dataset to a cluster label, which will be a new column in the dataset, that will serve as the target in

the supervised learning techniques that we will now describe in section 4.2.2.

4.2.2 Supervised Learning Techniques

Following the integration of an additional column in the activity dataset - which is dedicated to

the cluster number each row has been assigned to during the clustering process - we transition to

the subsequent step in our pipeline. This involves applying a supervised learning algorithm to the

dataset. The goal of this step is to equip our model with the capability to assign a new activity to

a particular cluster that we would then use for the suggestions.

To initiate the application of a supervised learning algorithm, we first define the features and

the target variable. As indicated in previous discussions, our target variable is the cluster identifier

that emerged from the clustering process. The relevant features for this process mirror those

utilized in the clustering operation, which have been elaborated in section 4.2.1. Upon establishing

4.2 Initial Approach 45

these variables, we proceed to partition the data into training and testing sets, adhering to an 80%

- 20% split, respectively.

In our study, we experimented with two distinct classifiers, namely, Decision Tree (2.2.1) and

Random Forest algorithms (2.2.2). For each of these classifiers, the prescribed method involves fit-

ting the classifier to the training data, followed by its evaluation on the testing set. Our supervised

learning model is now able to determine a cluster label for a new activity.

It is essential to underscore that, analogous to the clustering algorithms, supervised learning al-

gorithms require comparative analysis and evaluation. This forms an integral part of our research,

which we will further explore and discuss in section 4.2.4.

4.2.3 Evaluation Method

Having meticulously implemented and rigorously tested the two pillars of our hybrid method,

we proceeded to the stage of making suggestions. To reiterate our earlier explanation, we would

start by applying in real-time our supervised model to the new activity that is being created in

the PLAN platform. Then, we would use the cluster group assigned to fetch the most common

variables within the cluster for the fields that we want to make suggestions on.

We would go through every column in the new activity and, for each missing value, return a

list of the 5 values that appear the most for that column in the assigned cluster. These five values

are ranked based on their frequency of occurrence within the assigned cluster, thereby ensuring

the most relevant suggestions are ranked higher, which ultimately improves user experience and

the utility of our system.

To evaluate the effectiveness of our suggestion system, we have developed a specific evaluation

mechanism. The function takes as input the test data, the original values of the variables, the

complete dataset, and the columns for which we are making suggestions. For each iteration of the

evaluation method, we create a test data set. This function generates a random sample from the

data and then randomly removes values from the suggestion columns in each activity, which will

be replaced with the "Unknown" label when making the cluster prediction. The randomness of the

missing columns will certainly compromise to some extent the cluster label prediction, but this

process is done to mirror the real-world scenario where some information might not be available

when creating a new activity.

Then, we apply our suggestion system to this test set, which produces a set of suggested labels

for the missing values. Our evaluation metrics, specifically precision, recall, and F1 score (section

2.2.4), are then calculated based on these suggested labels and the original values. The precision

metric is weighted using a function that assigns higher importance to labels that are suggested

first in the list, simulating the real-world usage of the suggestion system where earlier suggestions

carry more weight.

This entire process provides a comprehensive evaluation of our suggestion system’s perfor-

mance, giving us insights into the accuracy and efficiency of the model. It is this evaluation

mechanism that guides our refinement and optimization efforts, ultimately enhancing the quality

and efficacy of our hybrid approach.

Solution Development 46

We will expand on the results of our suggestion system performance after analyzing the per-

formance of each step in the hybrid approach, in the Performance Evaluation section (4.2.4).

4.2.4 Performance Evaluation

To better understand the performance of our final solution, we will start by analyzing the perfor-

mance of the clustering model (4.2.4.1), then of our supervised learning classifier (4.2.4.2) and

finally the overall performance of the suggestion system and its success suggesting useful values,

in section 4.2.4.3.

4.2.4.1 Clustering Performance

To analyze the performance of our clustering algorithms, we used two different methods for eval-

uating the quality of a clustering solution: the Davies-Bouldin Index (DBI) and the Silhouette

Score. Both of these methods are explained into detail in section 2.3.3.

When comparing the performance of the DBSCAN and the KModes algorithms, we quickly

realized that the KModes algorithm was the more appropriate one for this problem. We will now

dive into more detail on its performance.

The DBI measures the average similarity between each cluster and the cluster that is most

similar to it. Lower DBI values indicate better data partitioning since they imply that the data

points inside each cluster are close to one another and that the clusters are well-separated (i.e.,

there is little overlap between them). As mentioned, this is further explored in section 2.3.3.

Our model had a DBI score of 2.720. As 0 indicates perfect clustering, where the clusters are

clearly separated between them and the data points inside each cluster are close to each other, a

value of 2.720 isn’t ideal. However, as there is no clear upper bound in this index, we can’t draw

any conclusion at this stage. As so, we will explore the silhouette score coefficient while keeping

in mind that the DBI informed us that the clustering solution might not be the best.

Once again. as described in section 2.3.3, the silhouette score is another method for assessing

the quality of a clustering solution. It quantifies how well each object lies within its cluster, and

a higher silhouette score indicates that the object is well-matched to its own cluster and poorly

matched to neighboring clusters.

It ranges from -1 to 1, where 1 indicates a good clustering solution, 0 shows us that clusters

overlap, and -1 means that there are blatantly wrong cluster assignments in the solution developed.

Our KModes model got a score of 0.142, which is really close to 0. This does once again indicate

that the developed clustering model isn’t very good. We also analyzed the silhouette plot of our

12-cluster model to verify this theory.

4.2 Initial Approach 47

Figure 4.4: Clustering Solution’s Silhouette Plot

As we can see and as it was explained in section 2.3.3, other than the fact that the mean value

of the silhouette score for our model is low, the size of each cluster (this can be seen on the y-axis

of the graph) is very different from cluster to cluster, which is not a good sign. Also, some clusters

even have data points that have a silhouette score bellow 0.0 (this can be seen on the x-axis), which

indicates that there are points that are simply on the wrong cluster.

In addition, the silhouette score kept getting better the fewer fields we used for the clustering

and also kept getting exponentially better the bigger the number of clusters we chose. This may

indicate that the activity data does not have clear groups of data, therefore no good clustering

solution can be achieved.

Overall, we can conclude that the model’s performance is not good enough for use and that

another solution will probably have to be found in the future.

4.2.4.2 Supervised Learning Performance

Even though the clustering model seems to be underperforming, we still decided to implement the

hybrid method until the suggestion phase. As so, the next step in the process was the supervised

learning techniques.

We used the three metrics described in section 2.2.4: Precision, Recall, and F1-score to eval-

uate our two models. When using the decision tree classifier, we got, respectively: 0.924, 0.921,

Solution Development 48

0.920. With random forest, we had the values of 0.814, 0.802, and 0.792, making the decision tree

algorithm the best suited for our supervised learning part of the method.

It is understandable that the metrics return such good results because the supervised learning

model uses the same fields that the clustering used to determine the labels, to assign a label to a

new activity.

Although the decision tree algorithm has a very good performance in assigning a new activity

to its cluster label, we cannot forget that these cluster labels come from a faulty clustering model,

described in the previous section 4.2.4.1.

4.2.4.3 Suggestion System Performance

In order to robustly assess the efficacy of our proposed approach, it is crucial to examine the degree

to which our recommendation system provides pertinent and beneficial suggestions to the users

when they are involved in creating a new activity. To facilitate this, we will utilize the evaluation

system outlined previously in section 4.2.3.

As explained, our evaluation is centered around a comparative analysis of the quintuple-value

lists that our system recommends to the user versus the verifiable true values pertaining to the

fields in question. This examination, facilitated by our hybrid methodology, results in a precision

of 0.353, a recall of 0.473, and an F1-score of 0.404. These figures encapsulate the efficacy of

our system: it is capable of accurately identifying and suggesting 35% of the true values from the

entire pool of suggestions it generates, and it manages to capture 47% of all existing true values.

The F1-score, which offers a harmonic mean of precision and recall, indicates that our system’s

effectiveness in providing suggestions stands at a level of 40%.

These numbers are not adequate for delivery and implementation in CERN’s planning tool

for organization-wide use. This subpar performance is most likely attributable to the ineffective

clustering within our system. It emphasizes the need for a revision of our approach to ensure a

more efficient and accurate suggestion mechanism.

In light of these results, we will now explore what conclusions can be derived from this partic-

ular implementation and its ensuing outcomes. Our objective is to navigate towards a more fruit-

ful approach for our recommendation system, taking into consideration these invaluable lessons

learned from the current model’s performance, which we will expand on in the next section.

4.2.5 Challenges and Lessons Learned

The development and implementation of our hybrid model for providing suggestions has revealed

significant challenges and lessons, especially when dealing with datasets of low volume, as is our

case. These challenges and lessons have profound implications for our approach to the current

problem.

Clustering algorithms strive to identify structures or patterns within datasets by grouping sim-

ilar data points together. However, when dealing with low-volume data, the ability of these algo-

rithms to accurately discern patterns and distinguish clusters can be significantly impaired. Our

4.3 Final Algorithm Development and Optimization 49

clustering model, for instance, exhibited a subpar performance, as evidenced by its Davies-Bouldin

Index score of 2.720 and silhouette score of 0.142. This unsatisfactory clustering quality is likely

attributable to the lack of sufficient data needed for the algorithm to correctly partition the data

points into distinct groups.

This situation highlights the limitations of certain AI models when dealing with low data

volume and it is evident that a different approach is necessary, one that is specifically designed

or better suited to work effectively with limited data. This points us towards exploring machine

learning techniques that do not heavily rely on large amounts of data, or algorithms that are better

equipped to handle sparse data.

The lessons learned from this initial phase are invaluable. It highlights the significance of

having a thorough understanding of the data we’re dealing with and the suitability of the chosen

machine learning models in relation to the volume and quality of data.

Going forward, we will use these insights to refine our approach. We will explore methodolo-

gies that are known to perform better with sparse data and will continuously evaluate and refine

our models to improve their performance.

4.3 Final Algorithm Development and Optimization

After arriving at CERN, getting familiar with the available data, and realizing that it wasn’t enough

to develop a satisfactory clustering solution, we had to figure out a different way of grouping the

activities. This was essential for us to tackle both of the problems described in section 3.2. For

the first use case (3.2.1), we would then use these groups of similar activities to retrieve the most

common values for each of the missing fields in the activity that is being created in PLAN. For the

second one (3.2.2), similarly, those groups of activities and their associated contributions could be

used to fetch the most probable contributions.

Our final algorithm designed to tackle this problem employs a combination of k-Nearest

Neighbors (2.2.3.1) and Natural Language Processing techniques (2.4). The k-NN algorithm,

an instance-based learning algorithm, will allow us to find the most similar activities in the dataset

for a new one based on different criteria, making the most out of the limited data.

Instance-based learning (section 2.5), also known as lazy learning, is a type of machine learn-

ing algorithm that learns directly from the training instances themselves in real-time, without

explicitly building a generalizing model. Instead, it stores the training instances and uses them as

a reference to find similar instances. In the case of k-NN, the algorithm measures the similarity

between instances based on their features and assigns the label or value of the nearest neighbors

to the new instance.

In our scenario, where the quantity of data is limited, k-NN is particularly suitable. By leverag-

ing the available instances as references, k-NN can effectively identify activities that are similar to

a new one, even with a small dataset. It doesn’t rely on assumptions about the underlying distribu-

tion of the data, making it a flexible approach that can handle diverse patterns and characteristics.

Solution Development 50

By combining the strengths of k-NN with NLP techniques, which extract semantic similarity

from activity descriptions and titles, we enhance the similarity measurement and improve the

accuracy of our suggestions. The use of instance-based learning allows us to overcome the data

constraints and provide a practical, data-efficient solution within the PLAN system.

This section will provide more detail into the specifics of this approach, starting with how we

designed our algorithm to find the similar activities for a new one (section 4.3.1), and culminating

in the mechanisms of suggestion generation for both of our problems in section 4.3.2. In section

4.3.3, we will describe the evaluation methods used to assess the performance of our system. Then,

we will explain the process of improving and tuning the hyperparameters used in the algorithm in

section 4.3.4. We will finish the section by analyzing the performance and accuracy of our model

(4.3.5).

4.3.1 Similar activity grouping

To tackle our activity grouping need, we will use a combination of k-NN and NLP. The combi-

nation of both of these measures will not only allow us to dynamically create groups of activities

that are similar to the new one but will also allow us to actually rank activities based on how close

they are to the new one.

As mentioned, the groups of activities will serve as a base for both of our use cases. However,

the first one has some extra challenges that require this method to be more nuanced. In the first

use case, since we want the suggestions to be presented to the user in real-time, the model needs

to be able to handle different amounts of data already entered by the user. Ideally, we even want

it to be able to make suggestions when nothing has been entered, solely based on the user that is

creating the activity.

Going back to the interface the user is presented with when creating a new activity in PLAN

(3.5), once again, we defined the categorical columns ’GROUP_RESPONSIBLE_NAME’, ’RE-

SPONSIBLE_WITH_DETAILS’, ’ACTIVITY_TYPE_EN’, ’WBS_NODE_CODE’, and ’CRE-

ATOR_NAME’ as being the relevant fields that we will use for our k-NN implementation. To

tackle our varying data issue, before applying k-NN, we go through these fields for our new ac-

tivity, and we remove every field that is missing from the distance calculation. By doing so, the

nearest neighbors will be calculated based only on the information we have. It is also important to

note that the ’CREATOR_NAME’ field will always be present since it corresponds to the name of

the user. This is also the information we will use when the user still hasn’t entered any information

for the new activity.

Once we know what fields are to be used for the k-NN algorithm, our system elaborates a

distance matrix with the calculation of the Gower distances (explained in section 4.2.1) of the new

activity to all the existing activities in the dataset. This will give us a measure of how dissimilar

the new activity and every other past activity are. The returned values range from 0 to 1, with 0

meaning that the activities are identical.

However, this dissimilarity calculation is not enough to accurately retrieve all of the most

similar activities to the new one. The ’TITLE’ field is probably the piece of information that best

4.3 Final Algorithm Development and Optimization 51

describes the activities, and we are not using it yet. Not only might it be the most descriptive

information, but it is also most of the time the first information the user will enter in PLAN, and

we want the suggestions made by our system to be accurate and useful as soon as possible.

The ’TITLE’ field is a free text variable, so it can’t be used in the k-NN calculation like the

categorical variables. This is where we integrated Natural Language Processing techniques into

our system. When the ’TITLE’ is available, we compute the Term Frequency-Inverse Document

Frequency (TF-IDF) (2.4.1) embeddings for the ’TITLE’ field of all existing activities. Here,

TF-IDF is a numerical representation of data, that captures the importance of each word in the

document with the title for the new activity relative to the collection of documents of the titles

from past activities. We exclude common English stop words from this vectorization step.

In our case, the decision to numerically represent text with TF-IDF over a more complex

word embedding technique was made because TF-IDF is a simpler approach, which is faster and

computationally less expensive. Even though a word embedding technique would capture the

semantic meaning of words, and as the ’TITLE’ field contains short phrases, a method that uses

less computational resources, such as TD-IDF, is suitable.

Once both our entities have been embedded, we use the cosine similarity (2.4.2) to measure

the similarity between the new activity’s ’TITLE’ embedding and each existing activity’s ’TITLE’

embedding. We now have a second similarity matrix, related to the ’TITLE’ field. The cosine

similarity scores range from -1 to 1, where 1 indicates maximum similarity between the vectors

and -1 indicates maximum dissimilarity.

To obtain the final hybrid similarity measure for activities, we combine the Gower distance

matrix and the cosine similarity matrix. In order to ensure that the two scores have the same range,

we reshape the cosine similarity matrix and convert the Gower matrix to a similarity measure. The

reshaping process involves scaling the cosine similarity values to a range of 0 to 1 by adding 1 to

each value and dividing the result by 2. For the Gower matrix, we transform it into a similarity

measure by subtracting each value from 1. These transformations allow us to have both matrices

in the range of 0 to 1, where higher values indicate greater similarity.

After aligning both metrics to have a consistent format, the next step is to merge them to

create a unified similarity score. This requires deciding the weight assigned to each metric in the

combination process. As previously mentioned, the ’TITLE’ field holds significant importance,

leading us to consider giving a higher weight to the cosine similarity score. However, in order to

evaluate the system’s performance objectively, an analytical assessment will be conducted using

various weight combinations in section 4.3.4.

It is important to note that when only the ’TITLE’ field is available, only the cosine similarity

results are utilized, and conversely when the ’TITLE’ has not yet been entered, the Gower results

from the k-NN method are used.

Once the final hybrid similarity score is obtained, the k-nearest neighbors are determined by

identifying the indices with the highest values in the hybrid matrix. Subsequently, the k-nearest

neighbors are retrieved from the original dataset and organized based on their similarity scores. In

cases where ties exist in the similarity score, an additional sorting criterion is applied, using the

Solution Development 52

CREATION_DATE of the activities. This is done to prioritize more recent activities, as they might

be more relevant and useful than older ones.

After completing the previous steps, we have successfully obtained a set of similar activities.

The size of these activity groups can be adjusted in our final algorithm based on specific require-

ments. However, similar to the analysis conducted for the weights of the matrices, we will also

perform an evaluation to determine the optimal number of activities that yields the best results.

Through this evaluative process (section 4.3.4), we aim to refine and fine-tune our recommen-

dation system to ensure it delivers the most satisfactory outcomes for users. By considering both

the weight combinations of the matrices and the appropriate number of activities, we can enhance

the overall performance and utility of the suggestion system, later explored in section 4.3.5.

Having discussed the foundational aspects of our suggestion system, we will now shift our

focus toward a practical perspective. In the next section, 4.3.2, we will explore how our system

can actually suggest values for the two problems under consideration: suggestions for activity

information (4.3.2.1) and contribution suggestion (4.3.2.2).

4.3.2 Suggestion Generation

As mentioned, in the present section we will describe how our system takes the groups of similar

activities generated from our k-NN and NLP model described in the previous section and uses it

to generate suggestions on the PLAN platform.

To start us off, in section 4.3.2.1, we will describe what our model is able to do to solve our

first use case, where we want PLAN to be able to somehow help the user at the moment where he

is creating a new activity. In the following section, 4.3.2.2, we dive into how our model helps the

PLAN user in requesting contributions from other CERN teams, for an already created activity.

We will provide some examples for each use case.

4.3.2.1 Activity Suggestion

When a user is creating an activity in PLAN, our model intends to play a crucial role in facilitating

the process. To satisfy this requirement, we have implemented two different methods within our

suggestion system. The first method involves simply presenting the user with a ranked list of

similar activities.

Based on the desired number of suggested past activities, the model returns a ranked group of

activities, as described in section 4.3.1. This allows for a more personalized approach by CERN,

as the planning platform can later use the group of activities in various ways, be it by cloning some

fields, an entire activity, or giving options to the users, among others.

Let’s consider an example of an activity in the creation state within the PLAN system, where

the Title, Type of the activity, and Responsible Group have already been entered by the user, in

Figure 4.5.

4.3 Final Algorithm Development and Optimization 53

Figure 4.5: Activity Creation Example

As explained in section 4.3.1, the model would consider the three entered fields and the name

of the user that is creating the activity (in this example, it was myself, part of the EN-ACE-OSS

group) and create a list of the most similar activities. Assuming we have selected to retrieve the

ten nearest neighbors, in this case, the system would return the following activities.

Figure 4.6: Returned activities

The PLAN platform can then offer the user the option to select and clone an activity entirely or

clone specific missing values such as the person responsible, facilities, and more. This flexibility

empowers users to leverage the suggested activities according to their specific requirements.

On the other hand, another possibility offered by our model is to directly suggest values for

the missing fields in the activity. Here, instead of directly returning the list of similar activities,

the model uses it as a group. It iterates through the relevant variables in the activity being created

and calculates the most common instances within the group, considering the categorical nature

of the relevant fields. The model then generates ranked lists of those common values for each

missing piece of information. The number of returned suggestions is configurable to allow for

PLAN developers to later configure it as they wish.

If we take the activity illustrated in Figure 4.5, the system would suggest the following values:

Solution Development 54

Figure 4.7: Suggested Activity Fields

Once again, from here, the user could select the suggested values for the new activity without

having the need for manual entry.

In the subsequent sections, we will dive into the specifics of how the suggestion system en-

hances the user experience when requesting contributions from other CERN teams. The system

provides intuitive and efficient suggestions to streamline the process and improve overall effi-

ciency.

4.3.2.2 Contribution Suggestion

As detailed in section 3.2.2, the second scenario involves contributions to various activities. When-

ever an activity is set up on the platform, as shown in the resources tab (3.6), any approved user can

send contribution requests to different sections or departments at CERN. Much like in the previous

section, our model introduces two features that help make this process quicker and easier.

Our model, based on the general information about the activity entered in the general tab (as

displayed in Figure 3.5), is capable of suggesting the most suitable contributions for the activity.

These suggestions are offered for each of the three phases: Preparation, Installation, and Contri-

bution.

Here, as we don’t have to deal with missing information for the important fields of the sim-

ilarity score calculation (4.3.1), the model can provide a more accurate list of similar activities.

From this list, for each phase, the model pulls together all the contributions related to the similar

activities, from the contribution dataset (4.1.3). It groups them by contribution type and by their

group or section and counts the number of occurrences of each pair. The algorithm is now able to

return a list of configurable size with the most common contributions for the activities similar to

the activity the user is trying to create contributions requests on.

Going back to the example provided in Figure 4.5, in the case where the user finished creating

the activity and filled in the missing relevant variables as follows:

• Responsible: FERNANDO BALTASAR DOS SANTOS PEDR (EN-ACE-OSS)

• Project/Study: OTHER

4.3 Final Algorithm Development and Optimization 55

Our model would take the information from the created activity and use it to generate three

different ordered lists of contributions, one for each activity phase, as we can see in Figure 4.8.

Figure 4.8: Suggested Contributions for Preparation Phase

Suppose we’re interested in identifying the top five potential contributions. In this case, the

model displays the most frequently observed combinations of ’CONTRIBUTION_TYPE’ and

’ORG_UNIT_CODE’ from the activities most closely related to the one in question. Beyond

this, the model also provides information about the confidence level for each contribution, which

indicates how likely each contribution is to be beneficial to the user.

This confidence level is essentially the percentage of times that a particular contribution was

present among the contributions associated with similar activities for the given phase (in this case,

Preparation). Therefore, a higher confidence level means that the contribution has been found

useful more often in similar contexts, suggesting that it could also be useful in the current situation.

However, consider a situation where the user finds one of the suggested contributions useful

and decides to select it. Alternatively, the user might have already manually entered some contri-

butions they believe are necessary for the particular activity. In such cases, it would not be logical

for the model to continue making suggestions based solely on the description of the activity while

overlooking the contributions that have already been input. This emphasizes the importance of the

model’s adaptability, being able to factor in existing inputs when generating further suggestions.

This is where our second contribution-related feature comes in, and where association rules

(2.3.2) become extremely useful. Association rules are techniques often employed in data mining

to uncover interesting relationships or correlations between variables in large datasets. Given that

we have a situation where the user has already chosen certain contributions, these rules can help

in identifying other contributions that are frequently associated or observed with those already

chosen in similar activities across the contributions dataset.

By doing so, the model, armed with the insights provided by association rules, can suggest

contributions that are not only in line with the activity description but also with the already selected

contributions, thereby making the suggestions more contextual and relevant to the user.

Solution Development 56

In our case, when provided with information on an activity and a list of selected contributions

by the user, the model will combine two methods. The one we have described previously for con-

tribution suggestion, based on the retrieved similar activities and their most common contributions,

and an association rules method.

In the context of this analysis, the model begins its operation by constructing a broad set of as-

sociation rules. These rules are derived from the comprehensive contribution dataset, and are con-

strained by predetermined minimum thresholds for both support and confidence. The initial step

of this procedure involves the elimination of any data points in the contributions dataset that pos-

sess missing values in any of the following fields: phase, section or group, and contribution type.

Following this, we proceed to categorize the dataset by constructing unique, three-dimensional

tuples that encapsulate the three aforementioned variables. In essence, this is our approach for

distinguishing contributions. This results in a dataset that encapsulates every type of contribution.

In order to make this dataset compatible with association rule algorithms, we employ a tech-

nique known as one-hot encoding, as referenced in section 4.2.1. Upon successfully transforming

the dataset, the model proceeds to apply the apriori algorithm, outlined in section 2.3.2, culminat-

ing in the establishment of the association rules.

Upon the establishment of this set of rules, the model initiates an iterative process, sequen-

tially examining each association rule. Within each iteration, the model identifies rules whose

antecedents - the ’if’ part of an ’if-then’ rule - align with the contributions already entered by the

user.

When the model discovers such a match, it promptly stores the rule’s consequent - the ’then’

part of the ’if-then’ rule - alongside its associated confidence level. This confidence level is a

statistical metric indicating the rule’s reliability or how frequently items in the antecedent and

consequent occur together.

Then, a configurable size list is generated as before, only this time we prioritize the suggestions

coming from matching association rules. Those selections get put at the top of each phase’s list,

followed by the suggestions retrieved from the similar activities. This is done arbitrarily because,

to suggest contributions, we want to give more importance to suggestions obtained from already

entered contributions than to the ones coming from activity information.

Let’s say that when presented with the suggestions from Figure 4.8, the user finds the contri-

bution from section HSE-RP useful and selects it. The set of association rules is generated from

the contributions dataset, and the model looks for matching contributions. It just so happens that

one of the rules has that same antecedent, as seen in Figure 4.9.

4.3 Final Algorithm Development and Optimization 57

Figure 4.9: Association Rule Example

In this case, the model then takes the consequent of the rule: a contribution from EN-HE-HH

with type Other and adds it to the top of the suggested contributions for its phase: Installation.

Given the dual capabilities of the proposed model, it holds the potential to offer a customized

solution that enhances the process of requesting contributions in PLAN. The model does so by

providing recommendation suggestions that are predicated not only on the activity description,

but also on dynamically responding to the user’s real-time input of contributions. In other words,

as the user progressively adds contributions, the model actively adapts its suggestions, thereby

facilitating the user’s decision-making process regarding the requisition of contributions and en-

gendering an overall increase in efficiency.

Nonetheless, to confirm the accuracy of these suggestions beyond theoretical assumptions, it’s

vital to test and evaluate the model. This will be carried out in the following sections.

4.3.3 Evaluation Method

In the present section, we will describe the methodology used for model evaluation, which includes

the calculation of precision, recall, and F1 score (detailed in section 2.2.4).

To evaluate the performance of our suggestion system, two different evaluation methods had

to be implemented. The first one is to evaluate the accuracy of our general activity suggestions,

and the second one is to evaluate how good our model is in suggesting contributions.

In both cases, the method used is similar to the one described for the initial approach in section

4.2.4.3. However, here we will be using the group of nearest neighbors instead of the cluster. Let’s

start by describing the evaluation system used for the activity suggestion feature.

4.3.3.1 Activity Suggestion Evaluation

Briefly recapitulating, we start the process by creating a test dataset that is a random subset of the

original data frame. It is important to note that, for both evaluation functions, even though we

are using instance-based learning, which typically doesn’t include a training phase, there is still

a concept of training and testing. In our case, we are using all instances except the test instance

Solution Development 58

to calculate the distances or dissimilarities. Thus, we are using a technique called leave-one-out

cross-validation. This is a type of resampling technique where one instance is used as the test set,

and the rest are used as the training set. This process is repeated for each instance in the dataset,

as we will now describe in further detail.

The resulting subset contains the relevant columns that are used for the suggestion, ’GROUP

_RESPONSIBLE _NAME’, ’RESPONSIBLE_WITH_DETAILS’, ’ACTIVITY_

TYPE_EN’, ’WBS _NODE _CODE, and the ’CREATOR_NAME’. Once again, a random number

of values are deliberately removed from each entry in the test data to simulate incomplete data

entries, which is the real-world scenario we will be dealing with in PLAN when a user is creating

a new activity.

The model then takes each incomplete entry from the subset and generates suggestions for

each missing field based on the previously explained k-Nearest Neighbors and Natural Language

Processing techniques. The generated suggestions are ranked, with the top suggestion considered

the most probable.

To evaluate the performance of the model, the generated suggestions are compared with the

original values that were removed from the test data. Precision, recall, and the F1 score are com-

puted as metrics to assess the model’s performance.

Instead of simply looking at whether the true value was among the suggested values, the

precision calculation also takes into account the position of the true value within the suggested

values. The rationale behind this is that the model’s performance should be considered better if

the true value is at the top of the list of suggested values compared to being at the bottom of the

list.

To achieve this, each correct suggestion is assigned a weight based on its position within

the list. The weight of a correct suggestion decreases linearly from the first position (highest

weight) to the last position (lowest weight). The weighting function calculates a weight for a

given position based on the maximum possible position within the list. The weight of a certain

position is calculated as follows:

weightposition =
maxposition − position

maxposition
(4.1)

Where position corresponds to the position in the list we are calculating the weight for,

weightposition is the weight of said position and maxposition is the number of items in the returned

list.

When calculating precision, these weights are used to emphasize correct suggestions that

were ranked higher in the list. This is done by calculating a weighted sum where each correctly

suggested value contributes to the precision based on its calculated weight. This accumulated

weighted sum is then divided by the total number of predictions, giving a weighted precision

measure.

The recall and F1 score are then calculated using this weighted precision measure. The recall

measures the fraction of the true values that were correctly suggested by the model. The F1 score

4.3 Final Algorithm Development and Optimization 59

is a harmonic mean of the weighted precision and recall, serving as a single metric that reflects

both the precision and recall of the model. It balances the trade-off between precision and recall,

providing a single measure of the model’s performance.

The entire process is repeated multiple times to enhance the robustness of the evaluation. The

model’s performance is then represented by the mean precision, recall, and F1 score across all iter-

ations. This methodology offers a comprehensive assessment of the model’s ability to accurately

suggest and rank values for the missing fields.

4.3.3.2 Contribution Suggestion Evaluation

To evaluate the performance of the second use case, the contribution suggestion feature, a method

slightly different from that of the first feature is employed, mainly due to the unique structure of

the data that is processed. The model is engineered to suggest contributions for each of the three

different phases of an activity: Preparation, Installation, and Commissioning.

As before, for each activity in a random subset, this time without the need to input miss-

ing values, the model generates suggestions of contributions for each phase using the k-Nearest

Neighbors algorithm derived from past activity and contribution data.

Each phase of the activity is then evaluated individually. The model’s suggestions for a specific

phase are compared with the actual contributions for that same phase in the given activity in the

test data.

In the context of the PLAN system, not all activities necessarily have contributions recorded

for each phase. In such cases, the model’s suggestions do not harm the user’s experience but simply

provide additional information that may not be utilized. Given this, it is deemed unnecessary to

penalize the model for suggesting contributors when none exist in the actual data.

The evaluation metrics - precision, recall, and the F1 score - are computed for each phase. As

with the first feature, these are weighted to favor contributors who are ranked higher on the sug-

gestion list. This is done to emphasize the importance of not just the accuracy of the suggestions

but the order in which they are suggested. The same formula as before, 4.1, is used to determine

the weigths.

After the individual phase evaluations, the precision, recall, and F1 scores for each phase are

averaged to provide an overall score for the activity. This provides a comprehensive measure of

the model’s performance for a given activity.

This process is repeated multiple times, with different subsets of activities for each iteration.

The model’s final performance is then represented by the mean precision, recall, and F1 score

across all these iterations. This method provides a detailed evaluation of the contribution sugges-

tion feature, considering both the correctness and the order of the suggestions across all activity

phases.

These two evaluation methods were essential not only in assessing how the final model per-

formed, which we will look into later, but also, early on, in tuning the model to use optimal

parameters. During the entire development process, we used the evaluation system to determine

Solution Development 60

hyperparameters such as the number of neighbors or the weight of the cosine similarity score

compared to the Gower distance score, as we will see in section 4.3.4.

4.3.4 Model Tuning

In the following two sections, we will expand on the performance of our suggestion system. In the

present section, we will discuss how the optimal parameters were selected for the model. These

include the number of nearest neighbors (k) and the balance between the weights for the k-NN

and for the NLP parts. Finally, in section 4.3.5, we will present the results from our evaluation

functions and interpret them in the context of PLAN.

Firstly, to establish the optimal number of neighbors (k) for our suggestion system, we exe-

cuted a systematic analysis involving the calculation of our performance metrics - precision, recall,

and F1-score - for each value of k within a specified range. Subsequently, we visualized this data

through a comprehensive plot showcasing how each of these metrics varied with the number of

neighbors. The objective of this approach was to examine the relationship between the number of

neighbors in the k-Nearest Neighbors algorithm and the performance of our suggestion system,

thereby allowing us to pinpoint the most effective k value for our application.

Figure 4.10: Similarity Score by Number of Neighbors

The optimal number of neighbors (k) in our k-Nearest Neighbors algorithm, as shown in Fig-

ure 4.10, was determined based on observing the fluctuation of similarity scores across a range

of k values. For k ranging from 2 to 13, the similarity scores consistently maintained within a

relatively narrow range of 0.75 to 0.9. Beyond k=14, however, there was a decline in the similarity

score, which continually decreased as k increased. Based on this analysis, we concluded that a k

value between 10 and 12 would provide an optimal balance between a high similarity score and

4.3 Final Algorithm Development and Optimization 61

a significant amount of neighbors to later retrieve our suggestions from, enabling our suggestion

system to generate useful and relevant suggestions.

In addition to selecting an optimal k, it was necessary to determine the relative weighting of

the Gower distance and the cosine similarity in the calculation of the final similarity score. To

do so, we used a similar method, where we calculated the Precision, Recall, and F1-score metrics

with a varying k-NN weight. The k-NN weight ranged from 0 to 1, while inversely, the similarity

score was given by 1 - k-NN weight. We can see the results in Figure 4.11.

Figure 4.11: Similarity Score by k-NN weight

From our analysis, it becomes apparent that the similarity score decreases as the weight al-

located to the k-NN or Gower distance metric increases. A notable decline in the final score is

observed when the Gower distance’s weight approaches 0.2 or 0.3. This observation suggests that

a weight of approximately 0.7 or 0.8 for the cosine similarity score, which is the inverse of the

Gower distance weight, would be the most appropriate for our application.

This conclusion corroborates our initial supposition that the ’TITLE’ of an activity holds sub-

stantial importance in defining it and, subsequently, in identifying activities of a similar nature.

The cosine similarity score, which predominantly focuses on this ’TITLE’, thus bears significant

influence on the final similarity score. As such, the higher weight assigned to the cosine similarity

score reflects its crucial role in the accuracy and efficiency of our suggestion system.

4.3.5 Final Model Performance

Once the default parameter values have been set, it is time to actually analyze and interpret the

final performance of our suggestion system. The final results obtained with our evaluation sys-

tem (described in the previous section), for a group of 10 nearest neighbors and with the NLP

Solution Development 62

cosine similarity score constituting 80% of the final similarity score used are those present in the

following table.

Table 4.1: Suggestion System Performance

Feature Precision Recall F1-score
Activity field suggestion 85,6% 99,4% 91,6%
Contribution suggestion 75,5% 90,2% 77,6%

As elaborated in section 2.2.4, the recall metric provides an indication of the proportion of

relevant suggestions that our system generates relative to all potential relevant values that could

have been retrieved. Given that our system is designed to produce a list of suggestions, it is

expected that the vast majority of the ground truth values will be found within this list, which is

reflected in the high recall values of 99.4% and 90.2%.

However, within the context of our system, the precision results offer a more meaningful

measure of performance. This is because precision takes into account the inaccuracies within the

suggestions made by the system. In our application, precision signifies the weighted proportion of

correct suggestions made out of all suggestions offered by the system. With a precision rate of 85%

for suggesting missing values for activity information and 75% for predicting useful contributions

for an activity, we are able to meet the requirements set by CERN and PLAN. This implies that, in

a majority of instances, our system will be capable of generating predictions and suggestions that

users find beneficial. In situations where our suggestions do not align with the user’s requirements,

there is no negative impact, as users have the option to disregard these suggestions and manually

enter their preferred values.

Furthermore, it’s worth noting that it’s expected for all metrics to return higher values for

the first feature. This is because we’re only aiming to predict a single true value in this context.

In contrast, when it comes to the contribution suggestion feature, which may involve multiple

contributions, precision and recall metrics will naturally be lower. This is due to the increased

complexity and challenges involved in accurately suggesting all desired contributions for a given

activity.

In conclusion, the rigorously conducted evaluations of our suggestion system’s performance

indicate the substantial success of the algorithm. The optimal balance of parameters identified

through these evaluations - specifically, the number of nearest neighbors (k) and the relative

weighting of Gower distance and cosine similarity - allow our model to deliver accuracy and

relevance in its suggestions.

Notably, our model’s precision score, indicative of its ability to produce beneficial predictions,

demonstrates considerable success in meeting PLAN’s requisites. This demonstrates our system’s

ability to provide beneficial predictions and suggestions the majority of the time, potentially im-

proving the user’s experience while navigating the PLAN system.

Moreover, we understand that our model’s performance can be enhanced further with con-

tinued refinement based on additional user feedback and activity data that will become available

4.4 Summary 63

when it is deployed in PLAN. This allows for our system to be adaptive and continually improve,

reinforcing its relevance and effectiveness.

Lastly, we would like to highlight that the ultimate aim of this suggestion system is not perfec-

tion in predictions but to facilitate the activity creation process for users. Thus, even suggestions

that don’t perfectly match the user’s requirements still offer valuable assistance by easing the time

spent on activity creation.

In summary, the development and evaluation of this suggestion system, tailored specifically

for the PLAN system, have proven successful. We believe it holds the potential to enhance the user

experience and efficiency of activity planning within PLAN once the integration and deployment

are done.

4.4 Summary

This chapter ultimately described the journey taken and all the challenges and obstacles faced

towards the development of the final suggestion system.

Starting off with an exploration of the data journey, encompassing all stages from extraction

from CERN databases to the subsequent revelation that the ultimate datasets were confined in size,

thereby limiting their efficacy for applications in machine learning.

An exposition of the original strategy, consisting of a hybrid technique integrating clustering

and supervised learning, was undertaken in an attempt to fulfill the requirements. However, fol-

lowing the performance evaluation of this strategy, it was promptly understood that the chosen

method could not produce satisfactory outcomes due to the scarcity of data.

Given this setback, it became necessary to revise our approach and conceive a totally differ-

ent strategy, one that would be better suited for scenarios with limited data. This gave rise to the

implementation of a k-Nearest Neighbors (k-NN) algorithm in conjunction with several Natural

Language Processing (NLP) techniques to establish a weighted similarity measure. Iterations,

modifications, and fine-tuning allowed this model to generate precise and accurate recommenda-

tions, therefore offering a viable resolution to the problem.

Chapter 5

Practical Implementation and
Deployment

This chapter focuses on the practical implementation and deployment of the suggestion system

within the PLAN platform at CERN.

Section 5.1 describes the implementation of the API, which acts as a communication channel

between the PLAN platform and the Python-based algorithm developed for the suggestion system.

Section 5.2 discusses the integration of the API with the PLAN platform and the design of the

user interface. The current state of the integration is described along with the motivations and an

example of what the final platform will look like with the suggestion system.

Section 5.3 explores the potential practical impact of the suggestion system. Although still in

the proof of concept phase, we detail what benefits the system might bring to the platform.

Section 5.4 addresses maintenance and future improvements for the suggestion system. It

emphasizes the importance of keeping datasets up-to-date, monitoring API performance, gathering

user feedback, and optimizing system response times.

Finally, section 5.5 summarizes the chapter, leading us into the conclusions chapter.

5.1 API implementation and performance

As described in section 3.1.3, PLAN is a Java-based platform. The algorithm described throughout

section 4.3 to tackle our task prediction problem was developed in Python. Consequently, to be

able to integrate our algorithm with PLAN, we need to ensure the two entities are able to interact

with one another.

To do so, we will use an Application Programming Interface (API). An API is a set of functions

and procedures that define how two applications will communicate between each other. They

can be used, among other things, to enable software component interaction, allowing them to

exchange data and combine capabilities. They are crucial tools for software development because

they enable code modularity and reuse while abstracting complexity.

64

5.1 API implementation and performance 65

In our case, an API is exactly what we need for algorithm integration. It will allow us to

exchange information between PLAN and our algorithm, where PLAN will provide an activity

and its current state, and our algorithm will reply with suggestions.

The API, developed using Flask (a Python framework for designing APIs), encapsulates our

model and translates the four functionalities described in section 4.3.2 into endpoints. An endpoint

is essentially a point where the API establishes a connection between the desired software systems.

The four endpoints are:

• /get_similar_activities: PLAN provides an activity at any point during or after its creation,

and the API returns a list o the k most similar activities.

• /get_activity_suggestion: PLAN provides an activity at any point during or after its cre-

ation, and the API returns the most likely suggestions for the missing fields in the given

activity.

• /get_initial_contributions_suggestions: PLAN provides an activity after its creation, and

the API returns the suggested contributions based on the newly created activity.

• /get_combined_contributions_suggestions: PLAN provides an activity after its creation

alongside the contributions that have already been entered, and the API returns the suggested

contributions based on the newly created activity and its contributions.

As we have already gone over how these functionalities function on the algorithms side, we

will provide and explain an example of the /get_similar_activities endpoint, to contextualize and

understand how an endpoint establishes a connection and allows for information exchange be-

tween PLAN and our model.

Figure 5.1: API Request Example

In Figure 5.1, we can see an example of an API request. A request is a message sent to a

server asking an API to provide a service or information. In our case, requests are sent by PLAN

to the API. PLAN uses the URL seen on top of the figure to send the message and can configure

the number of neighbors he wishes to receive in return by changing the k parameter.

Each request may need to have information in the body of the request. Here, each request

must provide the current state of the activity in its body, in a JSON format, even if there is missing

Practical Implementation and Deployment 66

information. We can see the example of the body of a request at the bottom of Figure 5.1. Note

that for the /get_combined_contributions_suggestions endpoint, the body of the request will also

contain the existing contributions.

Then, once PLAN has sent the configured request message, the API responds with the desired

information. We can see the beginning of the response the API would give to the API request

example we are analyzing, in the following figure.

Figure 5.2: API Response Example

As we can see, for this particular endpoint, the API would send a response back to PLAN, that

not only acknowledges the reception of the request, but also sends back information on the most

similar activities to the one that was provided, in the format of a ranked list.

A new piece of information is added to each activity, which is the similarity score calculated

by our model. For example, in Figure 5.2, we can see that the first returned activity has a similarity

score of 1.0, which means that it is a 100% match with the provided activity. This will help PLAN

make more informed decisions on what to do with the returned activities.

When developing the API, the main focus was to make it have an optimal performance. This

is, for the response time to the request to be the lowest possible, for PLAN to be able to make

the API requests in real-time, as the user navigates through the platform. We ended up with the

5.2 Integration and Interface Design 67

performance from table 5.1. The results were obtained from Postman, a platform for building and

using APIs.

Table 5.1: API Performance

Endpoint Mean response time (ms)
/get_similar_activities 159

/get_activity_suggestions 126
/get_initial_contributions_suggestions 232

/get_combined_contributions_suggestions 1176

As we can see in table 5.1, with the exception of the last endpoint, we have been able to achieve

a low response time, that will allow the users to have an almost instant response to the information

they enter. The /get_combined_contributions_suggestions endpoint has a slower response time

because the algorithm is currently computing all the association rules for each request. This will

be further discussed in section 5.4.

The API’s usability was also a critical aspect of its integration with the PLAN platform. A

comprehensive, well-structured documentation was provided to guide PLAN developers through

the process, detailing API endpoints, request and response formats, and error handling procedures.

In addition, unit testing was conducted to ensure the robustness and reliability of the API. These

measures aimed to offer a seamless developer experience, facilitating efficient integration and

contributing to the overall success of the deployment

In the next section, we will thus describe how the API was integrated and deployed into the

PLAN platform.

5.2 Integration and Interface Design

Once the Application Programming Interface was fully developed and implemented, the next step

in the working process was to integrate it with the task planning platform, PLAN.

The first step in the integration is to go through a proof of concept phase (POC). Proof of

concept is evidence that usually comes from an experiment, which demonstrates that a concept

is feasible. In this case, the POC wants to prove that the suggestion system developed is good

enough and able to seamlessly be featured in the platform.

In this phase, we used Docker to allow both our algorithm and PLAN to be locally container-

ized. By doing so, they are able to communicate with each other on a local machine, allowing

PLAN developers to design and define how the suggestion system will fit into the interface.

From our side, we were charged with creating a docker image and container for the API and

making all code and documentation related understandable and easy to use and modify. From

there, deployment was made, and PLAN developers would use and experiment with the suggestion

system as they wished.

Currently, due to other PLAN features’ priority and PLAN sprints’ time constraints, the inte-

gration and deployment are still in the proof of concept phase. The first feature of the suggestion

Practical Implementation and Deployment 68

system has already been experimented with, and the interface design and interaction with the user

are being refined.

When a user is creating an activity, he will be presented with the following modified interface

from what we have seen in Figure 4.5.

Figure 5.3: PLAN Interface with Suggestions

PLAN now displays the 3 most similar activities to the one being created. They are updated in

real-time as the user enters information. For example, in Figure 5.3, the suggestion system com-

putes the nearest neighbors with information on the responsible group and with the "installation"

word entered in the title. From the returned activities, the user now has the option to apply one of

the activities or to check the full information of the activities before doing so. If he clicks on the

view button from the last presented feature, the following menu will appear.

Figure 5.4: PLAN Activity Suggested Interface

As we can see, the title of the activity has the word "installation" in it, and the responsible

group matches the one entered by the user. From here, if the user deems the activity to be useful

and similar to what he wants to create, he can apply the suggestion, and PLAN will automatically

clone and fill out some of the activity fields.

The design of the interface was carried out with a strong focus on user intuitiveness and ease

of use. The goal was to make the suggestion system a seamless part of the PLAN platform that

adds value without adding complexity. To achieve this, PLAN developers worked on minimizing

the number of steps and decisions the user has to make while maximizing the utility and relevance

of the suggested activities. The result is an interface that presents clear options and actions to the

user, with suggestions dynamically updating as the user inputs data into the system.

This thoughtful integration and user-centric design of the suggestion system sets the stage

for assessing its potential practical impact. The ultimate measure of the system’s effectiveness

lies in how it performs in real-world conditions and the response it garners from the users of the

5.3 Practical Impact 69

PLAN platform. The following section dives into these aspects, providing insight into the tangible

benefits and improvements that could be brought by the system.

5.3 Practical Impact

The suggestion system’s primary intent is to bring a significant practical impact to CERN’s PLAN

platform, transforming the way activities are created and managed. Although currently in the proof

of concept phase, we can project the potential advantages and efficiencies this system is expected

to introduce.

One of the key benefits of the suggestion system is anticipated to be a considerable reduction

in the time spent on creating activities. With the assistance of the system, users can find similar

tasks and clone them, thus eliminating the need to create new ones from scratch. This not only

saves time but also ensures consistency in the way activities are structured and documented. The

same can be said for contribution requests.

Additionally, the system is envisioned to provide valuable decision-making support, particu-

larly when users are uncertain about the specific contributions required for an activity. By present-

ing a list of similar past activities, the system can provide users with an idea of what contributions

might be relevant or necessary, thereby facilitating informed decision-making.

Lastly, the interactive nature of the suggestion system can potentially stimulate user engage-

ment and interest. It is common that user-friendly, responsive interfaces, particularly ones that

proactively offer assistance, tend to attract and retain users. As users interact with the system and

discover its utility, their experience with the PLAN platform could be enriched. This engagement

can also encourage more frequent and effective usage of the platform, consequently leading to

more robust and comprehensive task planning.

While these impacts are currently projected, the potential of the system can only be fully

realized once it is deployed beyond the proof of concept phase. User feedback, combined with

further enhancements and improvements (section 5.4), will help shape the suggestion system into

a robust, user-friendly tool integral to the PLAN platform.

5.4 Maintenance and Future Improvements

The present state of our suggestion system represents a significant milestone, yet it is by no means

the final product. As the system is deployed, continuous maintenance, monitoring, and improve-

ments will be essential to keep it relevant and effective in serving the needs of the PLAN platform

users. This section will discuss some of the key areas of focus for maintaining the system’s effi-

ciency and effectiveness, as well as potential future enhancements.

First of all, keeping the activities and contributions datasets up-to-date is crucial for the ongo-

ing compatibility and relevance of the recommendation system with PLAN. One possible way to

ensure this is to establish a periodic endpoint that updates the tables. Python scripts that serve this

purpose have already been developed, only missing a continuous connection to PLAN databases.

Practical Implementation and Deployment 70

This could be programmed to occur during periods of low user activity, such as overnight, thereby

minimizing the impact on system performance.

Monitoring the API performance is another important area for ongoing maintenance. Regular

performance checks can help identify and rectify any emerging issues promptly, thereby ensur-

ing that the system continues to operate smoothly and efficiently. This includes monitoring the

system’s response times to API requests, particularly during peak usage times.

User feedback is an invaluable resource for improving the system. Addressing feedback, both

positive and negative, can provide vital insights into potential areas for enhancement. These could

range from tweaks to the user interface, making it even more intuitive and user-friendly, to more

substantial changes to the underlying algorithms and methods that drive the recommendation sys-

tem. Not only subjective feedback from users could be used through forms or simple interviews,

but metrics such as the number of times a user uses the activities suggested, or the percentage

of accepted contributions compared to the percentage before the suggestion system was imple-

mented, could be useful for the analysis and refinement of the system. A constant focus on user

experience is key to maintaining user satisfaction and engagement.

Finally, regarding the association rules calculation currently performed for each request, it

would be wise to make this operation periodic. By storing the computed rules for reuse instead

of computing them for each request, the system could significantly reduce the response time for

the /get_combined_contributions_suggestions endpoint. This would, similarly, improve overall

system performance and enhance the user experience.

In summary, while the suggestion system is already providing value, there are numerous op-

portunities for continuous improvement and optimization once the integration is complete and user

feedback starts to exist. By focusing on these areas of maintenance and future development, the

system can continue to evolve and provide even greater benefits to the PLAN platform and its

users.

5.5 Summary

This chapter detailed the implementation and integration of the task prediction algorithm into the

PLAN platform via an API. This API was designed with Flask, to bridge the gap between the

Java-based PLAN platform and the Python-based prediction algorithm, offering four endpoints to

serve specific functionalities.

The performance of the API was optimized to ensure real-time interactions. Although one

endpoint has a slightly slower response time, overall performance met the requirements. The

integration process is still in the proof of concept phase due to other priorities within PLAN.

The anticipated practical impact of the suggestion system includes reduced time spent on ac-

tivity creation, enhanced decision-making support, and increased user engagement. To maintain

its effectiveness, continuous system maintenance, and future improvements are necessary, which

include data updates, performance monitoring, user feedback, and algorithmic enhancements.

5.5 Summary 71

Overall, the chapter illustrates how the suggestion system has begun to offer value to the

PLAN platform and its users, and it highlights numerous opportunities for further improvements

and optimization.

Chapter 6

Conclusions

This chapter serves as the conclusion of this dissertation, providing a concise summary and review

of the project’s key findings and methodologies in section 6.1. It highlights the main accomplish-

ments and outcomes achieved throughout the research, offering a comprehensive overview of the

work conducted.

Section 6.2 discusses the limitations and challenges faced during the project, which may have

imposed certain constraints on its advancement. It also presents the potential for future research

and development.

In section 6.3 the implications and contributions of the research are discussed, emphasizing its

relevance and applicability to both CERN and the broader scientific community.

Finally, section 6.4 concludes the dissertation by reflecting on the journey undertaken to reach

the final solution. It provides a thoughtful analysis of the lessons learned, challenges encountered,

and achievements made throughout the research process.

6.1 Summary of Findings

The goal of the research journey undertaken for this thesis was to create a suggestion system that

would improve the usability and usefulness of PLAN, the task planning platform used by CERN.

The key goal of this project was to design an algorithm that can successfully offer activity and

contribution suggestions despite the limitations of the available data (chapters 1 and 3, section

4.1).

The initial approach was a hybrid model that leveraged the strengths of clustering techniques

and supervised learning. The motivation behind this methodology was straightforward. We antic-

ipated that the clustering methods would be able to detect the underlying patterns and structures

in the historical data on activities, grouping them into distinct categories. Subsequently, the super-

vised learning algorithm would predict the group or cluster to which a new activity would belong,

thereby enabling us to generate suggestions based on the common characteristics of activities

within the identified cluster (section 4.2).

72

6.2 Limitations and Future Work 73

However, this initial approach encountered significant challenges. The performance of the

clustering model was subpar, with a high Davies-Bouldin Index score and a low silhouette score in-

dicating poor quality of clustering. This less-than-satisfactory outcome was primarily attributable

to the sparse nature of the available data, demonstrating that the chosen approach was less effective

when dealing with data sets of low volume (sections 4.2.4 and 4.2.5).

Due to this situation, we had to review our methodology and think of some different ap-

proaches that would be more appropriate given the characteristics of our data. Our new strat-

egy brought us to the combination of the instance-based learning algorithm k-Nearest Neighbors

(k-NN) and Natural Language Processing (NLP) methods. When dealing with sparse data, this

method proved to be noticeably more adaptable and effective (section 4.3).

The instance-based learning, inherent to the k-NN algorithm, leveraged the available instances

as references, effectively identifying activities that were similar to a new one, even within the con-

straints of a small dataset. Additionally, the integration of NLP techniques enhanced the similarity

measurement by extracting semantic similarity from activity titles, thus improving the accuracy of

our suggestions (section 4.3).

The end result was a practical and data-efficient API that could generate helpful suggestions

within the PLAN system, effectively meeting CERN’s requirements. The developed algorithm

demonstrated a good precision measure for the suggestions, signifying the success of the chosen

approach (section 4.3.5). However, it is important to acknowledge that every solution has its

limitations, and ours was no exception. The nature of these limitations, as well as the potential

ways to overcome them, will be discussed in section 6.2.

As the suggestion system is still in its proof-of-concept phase, comprehensive user feedback

and experiences have yet to be collected (section 5.2). Nonetheless, the preliminary feedback re-

ceived from CERN’s supervisor, Fernando Pedrosa, and from Rodrigo Lanza, a PLAN developer,

has been very positive, which is promising for future user experience.

In summary, this thesis has documented a successful journey in the development of a sugges-

tion system for PLAN, where significant advances were made from the initial algorithmic approach

to the final solution. The key challenge of sparse data was addressed through a strategic change in

methodology, and the resulting solution met the required criteria. As we continue to improve and

refine this system, we look forward to unlocking further potential and maximizing its impact on

PLAN’s functionality and user experience.

6.2 Limitations and Future Work

The work presented in this thesis has successfully navigated through various challenges to develop

a suggestion system for PLAN. However, it’s essential to acknowledge certain limitations that were

encountered during this journey, as well as identify the potential for future work to enhance the

effectiveness of the developed system.

One of the key limitations since the beginning was the scarcity of data, which restricted the

types of algorithms that could be effectively employed and influenced the performance of the final

Conclusions 74

solution. In machine learning, the volume and quality of data play a crucial role in the performance

and accuracy of the models (2.5). The initial approach using clustering and supervised learning

failed to deliver satisfactory results due to the small dataset size. Although the final solution using

k-NN and NLP managed to perform well with the limited data, it’s important to acknowledge that

the performance of the system could potentially be improved with larger data volumes.

The quality of the data, particularly the activity titles, also posed a limitation. The efficiency

of the NLP part of the approach heavily depends on the descriptiveness and consistency of these

titles. If the titles are not detailed or descriptive enough, this could lead to inaccuracies in the

suggestions provided by the system. The data quality issue might suggest a need for guidelines or

standards in activity title creation to improve the performance of the suggestion system.

Another limitation that modified the project timeline and progress was the dependence on the

PLAN development team for the integration. The integration process being dependent on a third

party, which I couldn’t control, led to a delay in moving beyond the proof-of-concept phase, also

leading to not having any user experience or feedback (5.2).

Moving forward, there are several paths for potential future work to improve the performance

and utility of the suggestion system. One major area of focus would be refining the NLP tech-

niques employed (4.3.1). Although TF-IDF was used to extract semantic similarity from activity

titles, there’s room for improvement. More advanced NLP techniques such as synonym detection,

disambiguation, or even the utilization of sophisticated models like BERT or Word2Vec could en-

hance the semantic understanding, thereby improving the quality of similarity measures and the

precision of the suggestions.

The suggestion system could also be improved by addressing the potential latency issue asso-

ciated with the k-NN algorithm. As the dataset grows in size, the computation time for the k-NN

algorithm could increase, leading to slower response times. Future work could investigate strate-

gies to optimize the k-NN computation, such as using indexing methods and approximate nearest

neighbor techniques, or even to consider other approaches.

Finally, keeping the datasets updated with the latest activities and contributions in PLAN is

crucial for the system to remain relevant and accurate. Establishing a periodic endpoint to update

the system’s tables could ensure compatibility with PLAN. Furthermore, implementing a mech-

anism for continuous monitoring of API performance, addressing user feedback once we have

it, and refining user experience or algorithms based on the feedback could lead to considerable

improvements in the system’s performance and usability (5.4).

In conclusion, while the development of the suggestion system for PLAN has been a successful

endeavor, there are limitations to acknowledge and plenty of opportunities for future work. By

understanding these limitations and actively working towards addressing them, we can strive to

improve the suggestion system’s performance, utility, and user experience in the future.

6.3 Implications and Contributions 75

6.3 Implications and Contributions

The work undertaken in this thesis provides several implications and contributions to both the field

of artificial intelligence applications in task management and, more specifically, to CERN’s PLAN

platform.

Through the development of the suggestion system, this project has contributed to addressing

our first research question: "How can we use machine learning algorithms to improve platform

interaction and to provide assistance to the user?". The successfully implemented system that

combines k-Nearest Neighbors and Natural Language Processing techniques has proven that ma-

chine learning can indeed enhance user interaction on a task planning platform such as PLAN. By

offering data-driven suggestions during the process of activity creation, the system enables a more

seamless and efficient interaction for the users, thereby improving their user experience (1.4).

This project has also made a significant contribution to answering our second research ques-

tion: "Can machine learning be used to improve task management and resource planning in PLAN,

considering the low quantity of historical data available?" Despite the challenging constraints the

limited historical data presented, this project has demonstrated the feasibility of applying AI to

improve task management and resource planning in PLAN with the promising precision results of

the final model, that showed an 85% success rate in predicting activity information and 75% for

contribution requests suggestion (1.4).

In regards to our third and final research question: "Which machine learning techniques are

most appropriate and efficient in low-data situations", having ran through different approaches and

techniques during the development process, the strategic approach of combining k-NN and NLP

methods has proven that even with sparse data, it is possible to achieve satisfactory accuracy and

precision when making suggestions (1.4).

While this research focused primarily on the development of a suggestion system for CERN’s

PLAN platform, the underlying techniques utilized, specifically the combination of k-Nearest

Neighbors and Natural Language Processing, can have broader applications. For instance, these

methods can be used to improve autocomplete features in various business applications. As for

our first use case, form field completion is a common task in such applications, and the ability to

accurately predict and suggest likely entries can greatly enhance user experience. This approach

could work for any form-based business application.

The second area of broader application is related to our second use case and is in the context

of recommending items to add to lists. A good example of this is the creation of a purchase

order, which typically involves selecting from a list of articles. By applying the same k-NN and

NLP techniques, we can analyze the historical data of previous orders, identifying patterns and

associations between items and contextual information. With this information, we could suggest

relevant items to users based on their current selections, reducing the time required to complete

the order and potentially upselling additional products that may be relevant to the user.

Beyond the successful development of the suggestion system, another vital contribution of

this work is the foundation it has laid for future AI-based improvements in the PLAN system or

Conclusions 76

other platforms at CERN. The methods developed, and lessons learned from this project form an

invaluable basis for subsequent projects that aim to use machine learning in low-data contexts,

which was one of CERN’s main goals. The knowledge acquired from this journey serves as a

robust starting point for future development in this area, accelerating the pace of AI usage in such

environments.

The project’s success highlights how AI may improve platform usability and task management

even with a small amount of data, opening up new opportunities for AI applications across a variety

of industries.

This project has not only been about improving a specific platform but also about demonstrat-

ing that with the right approach, even seemingly insurmountable challenges, such as limited data,

can be overcome. It is evidence that artificial intelligence (AI) and machine learning are strong

technologies that can be used in a variety of contexts to enhance user experience and operational

effectiveness.

6.4 Final Thoughts and Conclusions

As this thesis work comes to an end, this section will conclude and reflect on the advances made

and the lessons learned.

At the beginning of this project, the aim was to explore the usage of machine learning in

task management, taking into account the unique challenge of a limited quantity of historical

data within the PLAN system at CERN. Throughout this journey, from the initial approach to the

final execution, the objective was consistently met with innovative problem-solving, the drive for

continuous learning, and a deep dive into machine learning algorithms that could aptly adapt to

the constraints of low data volume.

In successfully developing a functional suggestion system that not only enhances the PLAN

platform but also sets the groundwork for future AI implementations in low-data environments,

this thesis has made significant contributions to the field and to the operations at CERN. However,

the research went beyond its technical aspects, providing an enriching personal experience that

enhanced problem-solving skills and broadened knowledge.

Working on this project as an intern at CERN was also a significant part of this learning

journey. The experience of working in a diverse and dynamic environment like CERN provided

invaluable insights into collaboration, cross-disciplinary communication, and real-world problem-

solving.

Beyond the technical skills and knowledge, this journey has also reinforced life skills such as

perseverance, adaptability, and collaboration. Encountering and overcoming problems, adapting

to changing circumstances, and working closely with a diverse team of professionals were all

integral parts of this experience.

As this project comes to an end, the learnings, experiences, and accomplishments serve as

stepping stones for future work in the field of machine learning. It is with immense gratitude and

6.4 Final Thoughts and Conclusions 77

a sense of fulfillment that I conclude this thesis, eagerly looking forward to the future challenges

and opportunities that await in the world of data science.

In conclusion, this project demonstrated that, indeed, machine learning could make significant

contributions to task management and resource planning, even in low-data environments, given the

right approach and techniques. Through continuous learning, we successfully developed a sug-

gestion system for the PLAN platform at CERN, thereby answering our initial research questions

positively and paving the way for future work in this area.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules,
1994.

[2] David W Aha, Dennis Kibler, Marc K Albert, and J R Quinian. Instance-based learning
algorithms. 6:37–66, 1991.

[3] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algo-
rithm: A comprehensive survey and performance evaluation, 8 2020.

[4] Asana. Why asana? https://asana.com/guide/resources/info-sheets/wh
y-asana, 2023.

[5] Baeldung. Silhouette plots. https://www.baeldung.com/cs/silhouette-value
s-clustering, 2023.

[6] CERN. Cern - about. https://home.cern/about/who-we-are/our-people,
2023.

[7] CERN. Cern lhc. https://home.cern/science/accelerators/large-hadro
n-collider, 2023.

[8] Muhammad Umar Cheema and Qudsia Zearlish. The choice of project management software
by project managers; with the moderating impact of top management support, 2022.

[9] K. R. Chowdhary. Natural language processing. Fundamentals of Artificial Intelligence,
pages 603–649, 2020.

[10] David Davies and Don Bouldin. A cluster separation measure. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-1:224 – 227, 05 1979.

[11] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. 1996.

[12] Wael Gomaa. A survey of text similarity approaches. International Journal of Computer
Applications, 68:13–18, 4 2013.

[13] Sudhanshu Gupta. K-nearest neighbor(knn) algorithm for machine learning. https://me
dium.com/@sudhanshugupta_66164/k-nearest-neighbor-knn-algorithm
-for-machine-learning-1b506eb2c4a4, 8 2021.

[14] Wen Ming Han. Discriminating risky software project using neural networks. Computer
Standards and Interfaces, 40:15–22, 6 2015.

78

https://asana.com/guide/resources/info-sheets/why-asana
https://asana.com/guide/resources/info-sheets/why-asana
https://www.baeldung.com/cs/silhouette-values-clustering
https://www.baeldung.com/cs/silhouette-values-clustering
https://home.cern/about/who-we-are/our-people
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://medium.com/@sudhanshugupta_66164/k-nearest-neighbor-knn-algorithm-for-machine-learning-1b506eb2c4a4
https://medium.com/@sudhanshugupta_66164/k-nearest-neighbor-knn-algorithm-for-machine-learning-1b506eb2c4a4
https://medium.com/@sudhanshugupta_66164/k-nearest-neighbor-knn-algorithm-for-machine-learning-1b506eb2c4a4

REFERENCES 79

[15] Yong Hu, Jiaxing Huang, Juhua Chen, Mei Liu, and Kang Xie. Software project risk man-
agement modeling with neural network and support vector machine approaches, 2007.

[16] Zhexue Huang. Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Mining and Knowledge Discovery, 12:283–304, 1998.

[17] Jira. What is jira used for? https://www.atlassian.com/software/jira/guid
es/use-cases/what-is-jira-used-for, 2023.

[18] Tushar Joshi. Evaluating clustering algorithm — silhouette score. https://tushar-jos
hi-89.medium.com/silhouette-score-a9f7d8d78f29, 2021.

[19] Fatih Karabiber. Cosine similarity. https://www.learndatasci.com/glossary/
cosine-similarity/.

[20] Harold Kerzner. Project management: A systems approach to planning, scheduling, and
controlling. John Wiley Sons, 2009.

[21] S B Kotsiantis. Supervised machine learning: A review of classification techniques, 2007.

[22] Sotiris Kotsiantis, Dimitris Kanellopoulos, and P E Pintelas. Data preprocessing for super-
vised learning, 2014.

[23] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad Setiawan. Cosine
similarity to determine similarity measure: Study case in online essay assessment.

[24] Christopher D. Manning, Prabhakar. Raghavan, and Hinrich. Schütze. Introduction to infor-
mation retrieval. Cambridge University Press, 2008.

[25] Aditya Mishra. Metrics to evaluate your machine learning algorithm. https://toward
sdatascience.com/metrics-to-evaluate-your-machine-learning-algor
ithm-f10ba6e38234, 2018.

[26] Kevin P Murphy. Machine learning a probabilistic perspective, 2012.

[27] Michael J. Pazzani and Daniel Billsus. Content-based recommendation systems. The Adap-
tive Web: Methods and Strategies of Web Personalization, pages 325–341, 2007.

[28] Microsoft Project. Project management software | microsoft project. https://www.micr
osoft.com/en-us/microsoft-365/project/project-management-softwar
e, 2023.

[29] Redmine. Redmine - wiki. https://www.redmine.org, 2023.

[30] Natasha Sharma. Importance of distance metrics in machine learning modelling. https:
//towardsdatascience.com/importance-of-distance-metrics-in-machi
ne-learning-modelling-e51395ffe60d, 2019.

[31] Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. Text data augmentation for deep
learning. Journal of Big Data, 8, 12 2021.

[32] Ana Sá and Sousa Carneiro Da Silva. Suggesting human resources for project tasks, 2021.

[33] Kashvi Taunk, Sanjukta De, Srishti Verma, and Aleena Swetapadma. A brief review of
nearest neighbor algorithm for learning and classification. IEEE, 2019.

https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for
https://tushar-joshi-89.medium.com/silhouette-score-a9f7d8d78f29
https://tushar-joshi-89.medium.com/silhouette-score-a9f7d8d78f29
https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.redmine.org
https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d
https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d
https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d

REFERENCES 80

[34] Trello. Trello makes it easier for teams to manage projects and tasks. https://trello
.com/tour, 2023.

[35] Hastie Trevor, Tibshirani Robert, and Friedman Jerome. Overview of Supervised Learning,
pages 9–41. Springer New York, 2009.

[36] Eugenio Zuccarelli. Performance metrics in machine learning — part 3: Clustering. https:
//towardsdatascience.com/performance-metrics-in-machine-learnin
g-part-3-clustering-d69550662dc6, 2021.

https://trello.com/tour
https://trello.com/tour
https://towardsdatascience.com/performance-metrics-in-machine-learning-part-3-clustering-d69550662dc6
https://towardsdatascience.com/performance-metrics-in-machine-learning-part-3-clustering-d69550662dc6
https://towardsdatascience.com/performance-metrics-in-machine-learning-part-3-clustering-d69550662dc6

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Research Questions
	1.5 Document Structure

	2 State of the Art
	2.1 Data Preprocessing
	2.2 Supervised Learning Techniques
	2.2.1 Decision Trees
	2.2.2 Random Forest
	2.2.3 Nearest Neighbor Algorithms
	2.2.4 Performance Evaluation

	2.3 Unsupervised Learning Techniques
	2.3.1 Clustering
	2.3.2 Association Rules
	2.3.3 Performance Evaluation

	2.4 Natural Language Processing Techniques
	2.4.1 Text Representation and Feature Extraction
	2.4.2 Text Similarity Measures

	2.5 Dealing with Low-data Situations
	2.6 Content-Based Recommendation Systems
	2.7 Task Management and Resource Planning
	2.8 Machine Learning in Task Management and Resource Planning
	2.9 Summary and Identified Gaps

	3 Problem Identification
	3.1 Overview of PLAN Platform
	3.1.1 Brief Description and Purpose
	3.1.2 Key Components and Workflow
	3.1.3 Model and Architecture

	3.2 Use Cases Understanding
	3.2.1 Activity Suggestion
	3.2.2 Contribution Suggestion

	3.3 Summary

	4 Solution Development
	4.1 Data Preparation
	4.1.1 Data Extraction
	4.1.2 Activity Dataset
	4.1.3 Contribution Dataset

	4.2 Initial Approach
	4.2.1 Clustering Methods
	4.2.2 Supervised Learning Techniques
	4.2.3 Evaluation Method
	4.2.4 Performance Evaluation
	4.2.5 Challenges and Lessons Learned

	4.3 Final Algorithm Development and Optimization
	4.3.1 Similar activity grouping
	4.3.2 Suggestion Generation
	4.3.3 Evaluation Method
	4.3.4 Model Tuning
	4.3.5 Final Model Performance

	4.4 Summary

	5 Practical Implementation and Deployment
	5.1 API implementation and performance
	5.2 Integration and Interface Design
	5.3 Practical Impact
	5.4 Maintenance and Future Improvements
	5.5 Summary

	6 Conclusions
	6.1 Summary of Findings
	6.2 Limitations and Future Work
	6.3 Implications and Contributions
	6.4 Final Thoughts and Conclusions

	References

