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Abstract

The success of Artificial Intelligence (AI) and Deep Learning (DL) is challenging the traditional
medical image analysis paradigm. Most works in this area encompass Supervised Learning (SL)
approaches, which require large amounts of labeled datasets to teach models how to find the func-
tion that best maps the inputs into the desired outputs. The current trend is to use massive networks
with increasing layers to achieve better performance, which requires large datasets to avoid over-
fitting.

Even though there are high amounts of available medical imaging exams, they lack annota-
tions. Furthermore, labeling all images can be cumbersome and expensive, especially in medical
scenarios, since it would require an expert.

Self-Supervised Learning (SSL) is a promising approach to efficiently learn visual represen-
tations without needing labeled data. Unlike SL, it mainly benefits from image characteristics,
such as texture, position, and color, automatically generating a label from the data. Although al-
ready thoroughly explored in generic computer vision scenarios, SSL is still largely unexplored in
medical imaging and computer-aided diagnosis.

To address these issues, we studied MoCo-CXR to identify and mitigate any shortcomings
associated with the algorithm. MoCo-CXR, an adaptation of the momentum contrast (MoCo)
method, was explicitly designed for learning representations from chest radiographs in the CheX-
pert dataset. By employing contrastive learning, MoCo-CXR extracts meaningful representations
from a vast amount of unlabelled data. Our research involved adapting the pretraining phase of
MoCo-CXR and integrating it with downstream image classification using the linear and finetun-
ing approaches proposed by Anton et al.

Seven experiments were performed, initially focusing on the "Pleural Effusion" pathology.
Subsequent experiments extended the study to the remaining observations. We evaluated the im-
pact of MoCo-CXR pretraining augmentations, batch sizes, and learning steps on downstream
image classification. Notably, we found that increasing the number of steps to 100k in finetuning
significantly improved accuracy by 4.41%. The influence of multiple labels was also investigated,
with experiments assessing individual pathology classification, multilabel classification, and eval-
uation on a test set annotated by radiologists.
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Resumo

O sucesso da inteligência artificial e do DL está a desafiar o paradigma tradicional de análise de
imagens médicas. A maioria dos trabalhos nesta área abrange abordagens de aprendizagem super-
visionada, que exigem grandes quantidades de conjuntos de dados anotados para ensinar modelos
como encontrar a função que melhor mapeia as entradas nos resultados desejados. A tendência
atual é usar redes massivas com camadas cada vez maiores para alcançar melhor desempenho, o
que exige grandes conjuntos de dados para evitar overfitting.

Apesar de existirem grandes quantidades de exames de imagens médicas disponíveis, não pos-
suem anotações. Além disso, anotar todas as imagens pode ser uma tarefa morosa e dispendiosa,
especialmente em cenários médicos, considerando a necessidade de um especialista.

A Self-Supervised Learning (SSL) é uma abordagem promissora para aprender representações
visuais eficientemente sem a necessidade de dados com anotações. Ao contrário da aprendiza-
gem supervisionada, a SSL beneficia principalmente das características das imagem, como tex-
tura, posição e cor, gerando automaticamente uma anotação a partir dos dados. Apesar de já ser
amplamente explorada em cenários genéricos de visão por computador, a SSL ainda está pouco
explorada em imagens médicas e diagnóstico assistido por computador.

Para resolver essas questões, realizámos um estudo sobre MoCo-CXR, com o objetivo de iden-
tificar e mitigar quaisquer desvantagens associadas ao algoritmo. MoCo-CXR, uma adaptação do
método MoCo, foi desenhado especificamente para aprender representações de raio-x ao tórax no
dataset CheXpert. Aplicando aprendizagem contrastiva, MoCo-CXR extrai o significado de repre-
sentações de uma vasta quantidade de dados não anotados. Esta pesquisa envolveu a adaptação da
fase de pré-treino do MoCo-CXR, integrando a abordagem de classificação de imagem proposta
por Anton et al. através das metodologas linear e finetuning.

Este estudo envolve a realização de 7 experiências, com o foco inicial na patologia "Pleu-
ral Effusion", embora experiências subsequentes estendam o estudo para as restantes patologias.
De seguida, avaliámos de diferentes pré-treinos, batch sizes, e número de passos na classificação
através de finetuning. A descoberta mais relevante está relacionada com o aumento do número
de passos de finetuning para 100k, resultando numa melhoria de 4.41% na accuracy. Também
foi estudada a influência de diferentes anotações, através de experiências que avaliaram a clas-
sificação de cada patologia individualmente, assim como a classificação de multiplas anotações
em simultâneo, terminando por avaliar os dados num conjunto de teste manualmente anotado por
radiologistas, simulando o desempenho do modelo num cenário real.
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Chapter 1

Introduction

1.1 Context and Motivation

DL has become one of the main components in many intelligent systems worldwide. The medical

scenario is no different. The ability to learn patterns from the vast amount of data available has

made Convolutional Neural Networks (CNNs) a compelling approach to Computer Vision (CV)

tasks such as image classification. However, most works in this area encompass SL approaches,

whose labeling requirement has made it reach its bottleneck [27] due to the intense labor and cost

required for the manual annotation of millions of data samples [21; 36]. In the medical image

scenario, high amounts of unlabeled data are constantly being added to the medical workflow,

generated from exams performed on millions of patients; thus, data is being produced faster than

it is humanly possible to provide annotations, pushing researchers to find alternative approaches

to leverage the existing unlabelled data.

This is where self-supervised methods emerged, becoming a viable alternative due to their

capabilities to learn features from the data and provide supervision tasks without needing labeled

datasets, producing results comparable with the state-of-the-art SL approaches [21].

1.2 Objectives

This study aims to perform an in-depth analysis of MoCo-CXR, [35] an adaptation of the Mo-

mentum Contrast [17] (MoCo) algorithm designed to create models able to learn meaningful rep-

resentations from CheXpert [20], a large dataset of unlabelled chest radiographs. The objective is

to identify and, if possible, suggest solutions for the limitations of the experiments performed on

this SSL algorithm. To achieve this, we will investigate how various characteristics of the algo-

rithm affect the performance of the model on an image classification downstream task, in the two

scenarios proposed by [2]: linear probing and finetuning.

1



2 Introduction

1.3 Structure

Besides the Introduction, this dissertation contains 4 chapters:

Chapter 2 describes the literature review, where several essential concepts associated with the

topic are detailed, introducing the reader to technical terms, as well as the typical steps involved

in an SSL approach.

Chapter 3 describes the architecture and methodology used in the project, with a description

of the selected dataset as well as the experiments performed.

Chapter 4 presents and discusses the obtained results.

Chapter 5 summarizes the key findings and insights derived from the conducted study, provid-

ing a comprehensive understanding of the importance of the investigation.



Chapter 2

Literature Review

Despite the extensive research on SSL techniques in computer vision, their application in the

medical image classification domain remains largely uncharted. Hence, this section describes a

literature review of existing SSL approaches for image classification, specifically exploring their

use in medical scenarios and determining the most effective methodologies for these applications.

2.1 Self-Supervised Learning

SL is by far the most widely known and used DL paradigm. It can be split into regression or

classification, both methods learning to find a computational model that can predict labels of data

not previously seen in a training phase [1]. To achieve better performance and avoid overfitting,

these approaches use massive networks with several deep layers, requiring large datasets with

labeled data, whose collection can be expensive, non-trivial, and time-consuming [21; 36].

SSL has recently gained attention as a way to effectively learn visual representations with-

out needing labeled data. In this approach, annotations are automatically generated from the

unlabelled data and used as pseudo-labels in a supervised way, presenting itself as a promising

solution to mitigate issues associated with labeled datasets in a supervised scenario. Besides, this

approach is particularly relevant in the medical image scenario as it streamlines the workflow pro-

cess, from data generation following a medical exam to the point where the data is prepared for

use by machine learning models, eliminating the costly step of manual labeling.

2.2 Pipeline

SSL algorithms are comprised of two main stages, as described in Figure 2.1; first, we pretrain

the model to learn relevant features in a pretext task. This task aims to automatically generate

labels from the data without human assistance so traditional supervised strategies can be employed.

Subsequently, a downstream task is employed with the knowledge transferred from the pretext

3



4 Literature Review

Figure 2.1: Typical SSL pipeline [22].

Figure 2.2: Solving a jigsaw puzzle being used
as a pretext task to learn representation [21]. (a)

Original Image. (b) Reshuffled image.

Figure 2.3: Color Transformation as pretext
task [7]. (a) Original. (b) Gaussian noise.

(c) Gaussian blur. (d) Color distortion [21].

Figure 2.4: Geometric transformation as
pretext task [7]. (a) Original. (b) Crop and
resize. (c) Rotation. (d) Crop, resize and

flip [21].

task to perform the final training and finetuning. In the words of Li et al. [24], ”The art of self-

supervised learning primarily lies in defining proper objectives for unlabelled data.”, highlighting

the importance of using the pretext tasks related to the downstream task.

Pretext tasks enable a model to learn visual representations and patterns in data, often using

networks with deeper and more complex layers, requiring larger datasets to learn the features.

Pretext tasks are not the final objective of self-supervision, positioning themselves as a pretraining

task to be later passed down to a downstream task.

Figure 2.2, 2.3, and 2.4 exemplify different pretext tasks, displaying how other visual repre-

sentations can be taught to the model. Figure 2.3 describes the color transformation task by which

the model learns to identify what color the dog should be. Figure 2.2 contains a puzzle image,

making the model grab the idea of what the form of a tiger should be, as well as the relationship

between the different body parts of the tiger. Finally, a rotation task is applied in Figure 2.4 to

make the model learn the orientation of the dog image.
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Downstream Tasks are the final objective that leverages the visual features learned in the pre-

text tasks, operating similarly to supervised methods but requiring smaller labeled datasets [22],

being used to evaluate and finetune the features learned in the previous phase. This dissertation

focuses on the specific downstream task of image classification.

2.3 Backbones

In SSL, "backbones" refers to the fundamental architecture models employed in neural networks

for extracting feature representations from input data. This architecture consists of multiple convo-

lutional layers responsible for processing the input data and transforming it into a more meaningful

representation able to capture relevant information for a given task, being initially pretrained on

a large dataset without labels to learn generic and high-quality representations, such as relevant

patterns, textures, and shapes that can be transferred and finetuned for the image classification

downstream task. Several SSL backbones have been proposed and successfully applied to com-

puter vision tasks, namely image classification in the medical image scenario, such as:

• ResNet (Residual Neural Network) - It introduces skip connections, which allow the training

of very deep networks. Architectures like ResNet18, ResNet50, or even deeper networks are

commonly used for frameworks like SimCLR, [7] MoCo [17], and BYOL, [16] including

the medical image scenario.

• Densenet (Densely Connected Convolutional Network) - Contains a dense block where each

layer receives the feature map from all preceding layers, improving the flow of information,

encouraging feature propagation, and reducing the number of parameters compared to tra-

ditional convolutional networks. DenseNet121 is a commonly used backbone with a deep

network.

These backbone architectures are combined with SSL methods that learn representations from

unlabeled data. The most commonly used frameworks for effective feature learning without ex-

plicit labels are:

• SimCLR [7] (Simple Contrastive Learning) - Aims to learn meaningful representations by

maximizing the similarity between different views of the same image and minimizing the

similarity between views of different images.

• BYOL [16] (Bootstrap Your Own Latent) - Utilizes a target network that provides a mov-

ing average of the model’s weights and a prediction network that attempts to predict the

representation produced by the target network, thus learning meaningful representations.

• MoCo [17] (Momentum Contrast) - Contrastive learning frameworks create many negative

pairs for each positive pair, which can be computationally expensive and impractical for

large-scale datasets. MoCo [17] addresses this limitation by introducing a memory bank
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serving as a large queue of negative samples while enabling a large and consistent dictionary

for learning visual representations.

• SwAV [5] (Swapped and Shared Representations) - Clustering-based representation learning

framework that encourages the emergence of semantically meaningful features by forcing

the model to identify which augmentations correspond to the same underlying image after

swapping weights and augmentations across different views.

2.4 Evaluation

To achieve adequate performance in a self-supervised scenario, it is instrumental to first understand

what evaluation metrics will be used. Since the studied SSL approach is tailored for a downstream

task of image classification, the evaluation metrics are similar to those used in a supervised envi-

ronment: accuracy, F1-score, which can be better visualized by plotting a confusion matrix, and

the Area Under the ROC Curve (AUC). Accuracy measures, as a percentage, the relationship be-

tween the number of correct predictions and the total number of predictions, as described in the

following representation:

Acc =
T P+T N

T P+FP+T N +FN
(2.1)

• True Positive (TP) - Number of instances where the model correctly predicts the positive

class as positive.

• True Negative (TN) - Number of instances where the model correctly predicts the negative

class as negative.

• False Positive (FP) - Number of instances where the model incorrectly predicts the positive

class when the actual true label is negative.

• False Negative (FN) - Number of instances where the model incorrectly predicts the negative

class when the actual true label is positive.

Additionally, the F1-score is defined as the harmonic mean of precision and recall. Its formula

can have different weights, with one of the most common measures being the F1-score, calculated

with the ensuing formula:

F1 =
T P

T P+ FP+FN
2

(2.2)

All mentioned metrics aim to reach the numeric value one, measuring how well the model

distinguishes between separate classes. The most commonly used metric to evaluate performance

in the medical self-supervised scenario is the F1-score, even though the remaining metrics are also

calculated and considered for evaluation.
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2.5 Architecture

According to Liu et al. [27], self-supervision can be summarized into three main categories, as

described in Figure 2.5.

Figure 2.5: Comparison between the three SSL architectures [27]

• Generative: Trains an encoder to transform a single input into an explicit vector, passed to

a decoder that attempts to reconstruct the input from the generated vector.

• Contrastive: Trains an encoder to transform inputs (generally two) into an explicit vector,

measuring the similarity between different vectors.

• Generative-Contrastive (Adversarial): Trains an encoder to generate fake samples that are

passed to a discriminator.

These alternatives have their assets and liabilities, and their understanding is essential to justify

their choice for each use case. Previous works [27] have shown the contrastive approach presents

better results for image classification tasks, as its nature complies with the image classification

task by discarding the decoder and assuming the downstream task will be classification.

2.5.1 Generative Self-Supervised Learning

In this approach, a reconstruction loss is employed, allowing an encoder-decoder network to learn

how to reconstruct the provided input.

The success of generative SSL is its ability to recover the original data distribution without

assuming which downstream tasks will be used in further steps, making this model versatile in its

application in classification and generation models. Despite its flexibility in different scenarios,

generative SSL has been found to have poor performance in classification tasks compared to con-

trastive learning, as the latter’s nature complies with the image classification task by discarding

the decoder and assuming the downstream task will be classification.

According to Liu et al. [27], contrastive algorithms like MoCo [17], SimCLR [7], and SwAV

[5], have presented overwhelming performances in several CV benchmarks, while the Natural
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Language Processing (NLP) domain still requires contrastive learning models to conduct text clas-

sification.

2.5.2 Contrastive Self-Supervised Learning

Statistically, contrastive methods are discriminative, while generative models are, as the name

implies, generative. For example, using the joint distribution P(X,Y) of input X and target Y, dis-

criminative models aim to model P(Y|X=x), while generative models calculate P(Y|X=y). Earlier,

generative models were considered the only option for representation learning; however, with the

success of algorithms like MoCo [17] and SimCLR [7], contrastive models have gained popularity.

The objective of contrastive learning is to learn representations by comparing the similarity

between two images using latent representations - a simplified vector representation of the input

data containing essential information to model the input. Traditionally, cosine similarity is used

to measure similarity, with similar samples determined by augmenting the original image and

dissimilar samples determined by comparing with other images. This can be represented through

a Noise Contrastive Estimation (NCE) objective:

LNCE =− log
e f (x)T f (x+)

e f (x)T f (x+)+ e f (x)T f (x−)
(2.3)

where x+ is a positive sample (similar to x), x is a negative sample (dissimilar to x), T is a

hyper-parameter called temperature coefficient, and f can be any similarity function. When mul-

tiple dissimilar pairs are involved, the InfoNCE loss is computed through the following formula:

LinfoNCE =− log
e f (x)T f (x+)

e f (x)T f (x+)+∑
K
k=1 e f (x)T f (xk)

(2.4)

MoCo [17] and SimCLR [7] are two commonly used instance discrimination-based methods

used to differentiate between instances of a different class, learning representation that can be later

finetuned on a downstream task; both methods aim to minimize contrastive loss but differ in how

samples are maintained [17].

SimCLR [7] was proposed by Chen et al. back in 2020, achieving a new state-of-the-art in

self-supervised scenarios [7] with its 76.5% top-1 accuracy, improving upon previous works by

7% [19]. SimCLR [7] employs an end-to-end system where the negative and positive samples

are selected from the same batch and optimized using backpropagation in an integrated manner.

This means that a single image is transformed in multiple ways before a comparison is made to

maximize the agreement with the original image and minimize it with dissimilar images.

In contrast, MoCo [17] abandons the traditional end-to-end training framework [27], storing

negative samples in a queue and processing positive samples in each training batch. Additionally,

a momentum encoder is used to maintain consistency between the current and previous keys [8],

decoupling the batch size from the number of negative samples, significatively enhancing the

negative sample efficiency [27].
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Both approaches have been continuously studied for improvements, with SimCLR [7] enhanc-

ing its end-to-end instance discrimination component by increasing its batch size to 8196 [27; 8],

thus providing a more significant amount of negative samples. Additionally, it includes practical

techniques to improve its performance, such as incorporating a learnable nonlinear transformation

between the representation and the contrastive loss, extending the training steps, and using deeper

neural networks [27]. Furthermore, the MoCo [17] framework was upgraded to MoCo v2 [8] on

a study by Chen et al., using the ImageNet [10] training set, adding an Multi-Layer Perceptron

(MLP) head on top of the linear classifier produced by the CNN, a network architecture to extract

the high-level representations from images, affecting the unsupervised training stage, improving

accuracy from 60.6% to 66.2%. Additionally, the author extends the augmentation used by He et

al. [17] by adding blur augmentation [7], improving the accuracy to 63.4%, resulting in a 2.8%

increase.

Contrastive learning assumes classification as the downstream application; hence it only uti-

lizes the encoder and drops the decoder compared to generative models, making contrastive mod-

els lightweight and well-suited for discriminative downstream tasks.

Since it is still an arising field, contrastive SSL contains issues yet to be solved, including:

1. Lack of good results in NLP [27]. Contrastive Learning does not scale to NLP pretraining,

and research shows generative approaches are more suited to this task.

2. Negative Sampling. It is currently a requirement for most contrastive learning, being a

biased and time-consuming procedure. Algorithms such as BYOL [16] and SimSiam [9]

have been developed to avoid the need for negative samples, but [27] states there are still

improvements to be made.

3. Root of Data Augmentation success. Studies [7; 17; 38; 28] have shown data augmentation

of the input images improves contrastive learning’s performance. However, no conclusion

has been reached regarding this apparent boost.

2.5.3 Adversarial (Generative-Contrastive) Self-Supervised Learning

Generative-contrastive or adversarial representation learning is derived from generative learning,

trying to address some issues by reconstructing the original data distribution instead of the samples

by minimizing the distributional divergence [27]. This approach can be effectively demonstrated

using Generative Adversarial Networkss (GANs) [15], where a generator creates fake samples, and

a discriminator tries to distinguish them from the real ones, resulting in a min-max optimization

problem that can be described as follows:

min
G

max
D

EPdata(x)[logD(x)]+Epz(z)[log(1−D(Z))] (2.5)

Generative-contrastive SSL excels in generating, transforming, and manipulating images. In

contrast, it is outperformed in feature extraction by contrastive learning approaches, even though
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studies such as BiGAN [12] and BigGAN [13] have attempted to address this concern. Besides,

Liu et al. [27] shows GANs are prone to collapse during training, leading to developing techniques

such as spectral normalization [29] and W-GAN [3], where it remains challenging to train an

adversarial network effectively.

2.6 Self-Supervised Learning in Medical Image Analysis

SSL is particularly relevant in medical contexts due to the cost of annotations and the need for

specialized, time-consuming, and, therefore, expensive annotation by trained specialists. This

section describes examples of SSL applications in medical scenarios and datasets that will be

used.

Since Chest Radiography is the most common examination in the world, helping medical

professionals through screening, diagnosis, and management of hazardous diseases [20]. Thus,

searching for automatic image classification approaches might improve the global population’s

health through enhanced medical workflow prioritization.

One of the main issues of this imaging modality is the need for specialized training for proper

interpretation, consequently falling in the use case of an area requiring further SSL studies. Be-

sides, contrary to natural image classification, chest X-ray interpretation presents a unique problem

[35]. First, identifying irregularities in just a few pixels may be sufficient for disease diagnosis.

Second, because they are bigger, grayscale, and have consistent spatial patterns across images,

chest X-rays differ from natural images in terms of their characteristics. Finally, compared to nat-

ural photos, there are significantly fewer unidentified chest X-ray images. These variations might

make it more challenging to interpret chest X-rays using contrastive learning techniques, which

were first created for natural image categorization.

Previous contrastive learning methods for X-ray images have limited applications. Most ap-

proaches encompass SL methods with labeled data [26; 32], or semi-supervised [30], using both

labeled and unlabeled data, but those approaches cannot keep up with the increasing amounts of

unlabelled data being added to the medical workflow daily. Chaitanya et al. [6] uses a localized

and a global loss function during pretraining to extract contrastive pairs from the MRI and CT

datasets. However, the proposed method significantly relies on the volumetric characteristics of

MRI and CT scans, therefore not greatly applicable to chest radiography.

2.6.1 Datasets

This dissertation aims to evaluate the performance of the MoCo-CXR [35] algorithm through a

comparative medical imaging study, requiring an initial selection of a dataset for pretraining. Two

datasets were analyzed for selection, CheXpert [20], and MIMIC-CXR [23], both containing 2D

chest radiography images with medical observations. Since our goal was to perform an in-depth

analysis of MoCo-CXR, [35] CheXpert [20] presents itself as a better option due to being the focus

of the studied algorithm.
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CheXpert [20] (Chest eXpert) is a large dataset of 224,316 chest radiographs of 65,240 pa-

tients. Labels for 14 different observations are obtained via an automatic labeler that leverages the

text-free radiology reports available in the dataset. This data was collected from chest radiographic

studies performed between October 2002 and July 2017 at Stanford Hospital, California, and has

already been used for several studies [35].

MIMIC-CXR [23] is a large dataset of 227,835 imaging studies for 65,379 patients of the

Beth Israel Deaconess Medical Center Emergency Department between 2011 and 2016. Each

imaging study contains at least one image, commonly a frontal and lateral view of the patient,

whose identity has been hidden to protect patient privacy, adding to a total of 377,110 images that

were made public and freely available, aiming to facilitate and encourage a wide range of research

in several areas of artificial intelligence, including computer vision, hence proving a valuable tool

for our task of image classification.

2.6.2 Published Works

Although lacking many studies, the self-supervision paradigm for medical image analysis con-

tains some existing examples, namely the work by Azizi et al. [4], which applies self-supervised

pretraining followed by supervised finetuning on image classification on two different tasks, the

first with dermatology examples and the second with chest X-rays. Furthermore, Azizi et al. [4]

introduce a novel method called Multi-Instance Contrastive Learning (MICLe) to construct more

informative pairs for SSL (see Figure 2.6), outperforming robust supervised state-of-the-art pre-

training approaches on ImageNet [10], resulting in an improvement of 6.7% in top-1 accuracy and

1.1% in mean AUC.

The approach consists of three phases visually described in Figure 2.7. Phase one uses the Sim-

CLR [7] algorithm for self-supervised pretraining on ImageNet [10]. In phase two, self-supervised

methods are applied to the unlabeled data to create labels. The final phase is a supervised finetun-

ing process, functioning as the final downstream task, while the first two stages are self-supervised

pretext tasks.

The study highlights a contrastive learning approach in which image augmentations provide

the encoder with two views of the same image, leading to a maximized agreement between the

resulting representations [39]. If multiple images exist, a MICLe approach is used, where two

different images are used to create a similar pair of examples, which is the case of the CheXpert

[20] dataset. Furthermore, it is concluded that the self-supervised pretraining using both ImageNet

[10] and Chexpert [20] data significantly improves performance on a distribution-shifted dataset,

which is paramount to clinical applications [4]. Ultimately, the author mentions the scalability of

SSL due to its lack of annotations and that the next step would be to determine the limit of SSL

for immense datasets.

The global Covid-19 pandemic has put immense pressure on public health systems, thus mak-

ing early patient screening crucial to prevent the spread of the infection and reduce the workload

on healthcare providers. A study by Li et al. [24] proposes a self-knowledge distillation-based
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Figure 2.6: Contrastive learning and MICLe [24]

SSL method for Covid-19 detection, attempting to replace the use of the standard detection sys-

tem, the RT-PCR test, which has a high false-negative rate and is time-consuming, with Chest

X-rays, which are low cost, have short scan time, and low radiation. This study achieves promis-

ing results, with an F1-score score of 0.988, an AUC of 0.999, and a 0.957 accuracy applied on an

extensive open Covid-19 chest X-ray dataset [32].

According to Caron et al. [5], their method for Covid detection is based on triplet networks, a

variation of the Siamese Network [25], used to learn discriminative representations from the Chest

radiography images. Figure 2.8 describes the suggested approach consisting of three networks,

where the target network’s weights are an Exponential Moving Average (EMA) of the weights

of the online network, and the encoders in the Self-Knowledge Distillation (SKD) network and

online network share the weights [37]. The method consists of two components: SSL and a SKD

component. The SKD component can be classified as "regularizing the training using soft targets

that carry the "dark knowledge" of the same network" [24], learning better representation from

different radiography images based on the similarity between visual features, assuming that images

with similar features have similar probabilities generated by the predictor in the SSL component.

Furthermore, Li et al. concludes that the proposed method outperforms state-of-the-art tech-

niques, being especially effective when using ResNet50 [18] network as an encoder, making use

of self-knowledge of images based on similarities of visual features. However, one challenge re-

garding the proposed methods is the lack of testing for datasets unrelated to Covid-19 and for the

classification of multiple annotations since the study only considers a binary classification of a
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Figure 2.7: Three phases used for an SSL approach performed on two separate use cases,
dermatology and chest X-rays [4]

patient being covid-positive.

To create models with better representations and initializations for the diagnosis of diseases

in chest X-rays, Sowrirajan et al. proposes MoCo-CXR [35], which is a modification of the

contrastive learning technique MoCo [17] applied to the CheXpert [20] dataset. The author ad-

dresses the main differences between chest-X ray interpretation from natural image classification

that might affect the applicability of contrastive algorithms. For instance, MoCo [17] uses numer-

ous data augmentation techniques to produce positive image pairs from unlabeled data; however,

random cropping and blurring adjustments might lead to removing disease-related portions of the

image. In contrast, color jittering and random grayscaling would not affect photos that are al-

ready grayscale. Additionally, it is still unknown whether retraining the models using MoCo [17]

can outperform the conventional automated chest X-ray interpretation method, which entails fine-

tuning pretrained models on ImageNet [10] with labeled chest X-ray images. This is due to the

limited availability of chest X-ray images compared to natural images and their larger size.

In their study, Anton et al. [2] further explore the effectiveness of SSL models in the medical

image scenario by assessing the generalisability of seven self-supervised models across nine med-

ical datasets, including those related to chest radiography like CheXpert [20] and MIMIC-CXR

[23], with the Bootstrap Your Own Latent [16] (BYOL) method achieving slightly better results.

However, the researchers acknowledge the need for additional investigation into hyperparameter

variance to draw conclusive findings.



14 Literature Review

Figure 2.8: Overview of the method proposed by Li et al. [24]

Additionally, the study suggests that domain-specific pretraining is advantageous since SSL

models trained on chest X-rays achieved better performance. With a dataset domain shift, however,

performance suffers noticeably because even a small change in the domain can significantly affect

the accuracy of the classification. Furthermore, analyzing the encoded features in the study leads to

the conclusion that domain-specific pretraining yields a more targeted feature extraction compared

to conventional ImageNet [10] pretraining. While this can greatly enhance performance for tasks

within the same domain, it comes at the cost of reduced generalizability.

This study distinguishes itself from other research in the field by conducting the first extensive

comparison of pretrained SSL models for their applicability to medical images. Additionally, it

represents one of the initial efforts to assess the transferability of SSL models explicitly pretrained

on ImageNet [10] compared to those pretrained on a medical domain-specific task across various

distinct medical image datasets, providing a way to measure and quantify the benefits of both

approaches directly.

In this work, two models are taken into account that may be used to analyze SSL medical

imaging scenarios. First, using ResNet50 as the primary feature extractor, self-supervised models,

including SimCLR-v1, [7] MoCo-v2, [8] PIRL, [40] SwAV, [5] [5] and BYOL [16] are pretrained

on the ImageNet [10] training set. Second, two domain-specific SS pretrained models are used:

MIMIC-CheXpert [23] and MoCo-CXR [35]. Both were trained on respective chest radiography

datasets and used a DenseNet121 backbone. MoCo-CXR [35] can also use a ResNet18 architec-

ture for feature extraction.

One of the key limitations of this study regarding the CheXpert [20] dataset is the binary

conversion of labels, as the analysis solely focuses on the Pleural Effusion pathology, representing

40.34% of all images in the dataset. Consequently, it overlooks most of the dataset, including 13

other pathologies.
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2.6.3 Conclusions

Considering existing SSL approaches in the medical image analysis field, more specifically in the

analysis of chest radiography, existing studies are limited. However, several works propose new

methods yet to be fully explored, such as MICLe, self-knowledge distillation, and MoCo-CXR

[35] that can be improved using different pretraining tasks, encoders, and finetuning, that might

offer different results in different datasets.
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Chapter 3

Methodology

This section describes the method used in this study, particularly the model architecture, the most

relevant implementation details, and a description of the dataset and associated labels. Finally, all

conducted experiments are described.

3.1 Model Overview

As mentioned in Chapter 1, this dissertation intends to conduct an in-depth investigation into

MoCo-CXR [35], a self-supervised contrastive learning framework that uses data augmentations

to generate views of an image to learn its intrinsic characteristics in an unsupervised fashion [35],

enabling the detection of different pathologies on the CheXpert [20] dataset. A MoCo-based [17]

implementation was chosen due to its efficiency at learning representations from large amounts

of unlabeled data, which aligns with our selection of the CheXpert [20] dataset, and its proven

success with smaller batch sizes when compared to its counterpart algorithms, such as SimCLR

[7].

The chosen approach for this study encompasses two phases, as described in Figure 3.1. First,

a pretraining task based on the work by Sowrirajan et al. [35] allowing the creation of MoCo-

CXR [35] pretrained models with different augmentations, and finally, an image classification task

based on the SSL medical image study by Anton et al. [2], where two different methodologies are

applied, linear probing and finetuning.

Following the authors’ approach, MoCo [17] pretraining is performed on the entire CheXpert

[20] training dataset with pre-initialized ImageNet [10] weights due to its possible convergence

benefits [31] and no extra cost associated with its addition. The MoCo-CXR [35] approach is

similar to any other self-supervised implementation, with the exception of the used augmenta-

tions, which discard random crop and Gaussian blur, which could affect the disease labels in a

chest radiograph scenario. Furthermore, no color jittering and random greyscale were used since

they do not represent meaningful augmentations, as they would not affect photos that are already

grayscale. Sowrirajan et al. [35] uses horizontal flipping and random rotation of 10 degrees as

17
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the main augmentations since they are the most commonly used by other studies on chest radio-

graph models [20]. In this study, we differ by evaluating models containing variations of these two

augmentations.

The second phase consists of a downstream image classification task based on the work by

Anton et al. [2]. The authors test two scenarios: linear probing and finetuning.

ImageNet
pretrained

weights

MoCo pretraining on
unlabeled CheXpert

training dataset

Linear

Finetuning

Pretraining Finetuning

Figure 3.1: Architecture describing the pipeline for the 2 main phases of the used methodology
by combining the approaches from Sowrirajan et al. [35] and Anton et al. [2]

As for the linear approach, the selected pretrained model is frozen and leveraged as a fixed

feature extractor with a multinominal logistic regression fitted on top of the fixed features through

the following representation:

P(y = ci|x) =
eωi·x

∑
K
k=1 eωk·x

(3.1)

• x - Feature representation.

• {ω1, . . . , ωK} - Learned set of weights.

• ωi ∈ Rd - Where d is the dimensionality of the extracted features.

• {c1, ...,cK} - Set of class labels.

For the finetuning approach, all pretrained parameters are refitted, along with an attached linear

classification head

3.2 Implementation Details

This section discusses the applied methods during both phases of the proposed methodology, de-

tailing the approach and preparation for all experiments and the environment used for the project.

3.2.1 Pretraining

In the pretraining phase, an Adam optimizer was selected with a learning rate of 1.25e−5, a weight

decay of 1e−4, and a batch size of 16. The chosen values were adapted from those found on the

MoCo-CXR [35] paper, considering the capabilities of our computational resources as well as the
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effectiveness of the optimizer when using large-scale datasets such as CheXpert [20]. Addition-

ally, pre-processing was performed with data normalization and an image resize (320x320 pixels).

Furthermore, when training the model, it was possible to select the following augmentations:

• Random Horizontal Flip.

• Random Rotation of 10º.

When training different models, random horizontal flip and random rotation functioned as vari-

able hyperparameters to create 4 different models to evaluate augmentation influence. The author

[35] adopts an approach that incorporates all previously mentioned augmentations, asserting these

are commonly employed in training scenarios involving chest radiographs [20; 33]. Regarding the

backbones used, the emphasis is placed on two specific backbones: ResNet18 and Densenet121.

These backbones are simultaneously used by Sowrirajan et al. and Anton et al., aligning our

implementation with the original work of these researchers [35; 2].

3.2.2 Downstream Task

The approach employed for the downstream task was derived from the work of Anton et al. [2].

This task comprises two distinct scenarios, namely the linear probing and finetuning methods,

each with its own selection of hyperparameters. In both cases, when training with ResNet18, a

dimensionality value of 512 is employed for the extracted features (d), while a value of 1024 is

utilized for DenseNet121.

In the linear approach, the authors adopt a strategy inspired by Rricson et al. [14] by applying

an ℓ2 regularization constant to the validation set using 45 logarithmically spaced values ranging

from 1e−6 to 1e−5. The logistic regression model is subsequently retrained on the combined

training and validation sets, using the chosen ℓ2 regularization constant, and evaluated on the

test set. During training, no data augmentation is implemented except for bicubic resampling to

224 pixels, followed by a center crop of 224 × 224. Furthermore, due to resource limitations,

batch sizes of 64 and 128 were selected for ResNet18, while a batch size of 32 was used for

DenseNet121.

In the finetuning approach, the model undergoes training for a variable number of steps, be-

ginning at 5000. The optimization is performed using Stochastic Gradient Descent (SGD) with

Nesterov momentum, where the momentum parameter is set to 0.9. Initially, an early stopping

mechanism was incorporated with a patience of 3, based on the classification accuracy on the

validation set as the relevant metric, checking the accuracy every 200 steps. However, subse-

quent implementations experiment with removing this feature and extending the training duration

instead of interrupting the process, improving the results.

For all models with the finetuned approach, a batch size of 64 and a weight decay of 1e−8

are used during training, while the selected learning rate was 1e−2 on ResNet18 and 4e−2 on

DenseNet121. These values were initially derived from the original paper but have been modified

considering our reduced resource constraints compared to those available to the authors.
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3.3 Dataset

The main focus of this dissertation relies on experiments done on the CheXpert [20] dataset. This

is the most commonly used dataset for medical image analysis when considering chest radio-

graphs, thus being selected for this study. Moreover, the implemented approach aims to explore

and deepen the research performed by Sowrirajan et al. [35] and Anton et al. [2], making it

crucial to utilize a shared dataset with both approaches. CheXpert [20] contains 224,316 chest

radiographs of 65,240 patients labeled for the presence of 14 common pathologies. It is worth

mentioning that this dataset is not manually annotated by radiologists; labels are automatically

extracted from the available medical text reports.

When using the CheXpert [20] dataset, we considered two distinct labeling methodologies: the

default labels provided by CheXpert [20] and the labels generated by CheXbert, [34] a state-of-the-

art improvement over the default labels. Existing label extraction approaches such as CheXpert

[20] typically rely on sophisticated feature engineering based on medical domain knowledge or

manually annotated labels. However, CheXbert [34] is positioned as a strategy that leverages

the vast scale of rule-based systems and the high quality of expert annotations. This approach

achieves superior performance by initially training a biomedically pretrained BERT [11] model on

annotations from a rule-based labeler, followed by finetuning on a limited set of expert annotations

augmented with automated back-translation.

CheXpert [20] was used for this project’s pretraining phase. Although the CheXbert [34] paper

presents itself as a state-of-the-art improvement over CheXpert, [20] it only does so by providing

better labels, which are irrelevant in the pretraining stage since SSL methods do not consider labels

to learn relevant features.

For the image classification downstream task, both CheXpert [20] and CheXbert [34] were

used. Therefore, different linear and finetuned models were trained and compared side by side,

concluding what the CheXbert [34] paper stated, that it provided better results with their improved

labels. Thus, CheXbert [34] labels were confirmed as superior and, from this point on, used for

the remainder of the experiments.

The data is divided into train, validation, and test sets when employing both approaches. Both

training and validation use the same split of the dataset, encompassing 60% of the data, while the

validation set, reserved for calculating the final accuracy, consists of the remaining 40% split of

the dataset.

In later experiments, we tested our best-performing model on a test set annotated by profes-

sional radiologists. Since these labels are the closest we can get to real-world deployments, they

were used to confirm the quality of our models. All three labeling approaches encompass obser-

vations for the presence of 14 common pathologies, as described in Table 3.1.

The same table shows CheXpert [20] and CheXbert [34] have similar percentages of labels,

displaying the similarity between both labeling methods. In contrast, radiologist annotations con-

tain distinct values for each pathology. The difference in size between the datasets may justify

these disparities. Besides, Table 3.1 shows that some pathologies rarely occur in the dataset, such
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Table 3.1: The percentage of positive labels in each dataset for each pathology. In both CheXpert
[20] and CheXbert, [34] uncertain labels are converted into positive labels (U-Ones

Methodology), while the Radiologists’ dataset does not contain uncertainties. The radiologists’
test set only contains 668 images.

Dataset Labels CheXpert [20] CheXbert [34] Radiologists

Atelectasis 30.04 30.56 26.65
Cardiomegaly 15.70 15.43 26.20
Consolidation 19.03 18.07 5.24
Edema 29.20 29.21 12.72
Enlarged Cardiomediastinum 10.38 10.14 44.61
Fracture 4.33 4.12 0.90
Lung Lesion 4.78 4.89 2.10
Lung Opacity 49.76 46.28 46.41
No Finding 10.02 9.46 16.32
Pleural Effusion 43.78 43.39 17.96
Pleural Other 2.76 2.99 1.20
Pneumonia 11.10 10.85 2.10
Pneumothorax 10.11 9.09 1.50
Support Devices 52.40 50.66 47.16

as "Lung Lesion" and "Pleural Other". This means the dataset is imbalanced, and the models will

have problems learning these features. Besides, since most of the values of the mentioned obser-

vations have negative labels, the model might appear to have a high accuracy value when in fact

might only be predicting negative labels. Additionally, the table shows that multiple observations

can be present for each chest radiography; thus, this is a multi-label classification problem.

Each observation is classified as either Positive (1), Negative (0), or Uncertain (-1). Currently,

as described in CheXpert, [20] there are five main methodologies to deal with uncertainty labels:

• U-Ignore - Uncertain labels are ignored during training.

• U-Zeroes - Uncertain labels are mapped to 0.

• U-Ones - Uncertain labels are mapped to 1.

• U-SelfTrained - First, a model is trained using the U-Ignore approach to convergence. Af-

terward, the model is used to make predictions that re-label each uncertainty with the prob-

ability prediction outputted by the model.

• U-MultiClass - Uncertainty labels are treated as their own class.

Each of these methodologies has advantages and disadvantages, which have been thoroughly

explored in the CheXpert [20] paper. In this work, we adopted the U-Ones approach, leaving the

exploration of the other alternatives for future work.
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3.4 Experimental Setup

This section describes all experiments performed in this study and the narrative that led to the

decisions made in the process. All experiments were performed using an NVIDIA RTX 2080 TI

graphics card with 11GB of VRAM. This graphics card is better than those used by most state-of-

the-art studies [2; 35], removing some of their limitations.

3.4.1 Experiment 1: Pretraining Data Augmentation

We start by studying the impact of data augmentation on the MoCo-CXR [35] training process.

To do so, we started by adapting the work from Sowrirajan et al. [35] and attempting to recreate

their model, which used a random rotation of 10 degrees and horizontal flipping, which are the

most commonly used augmentations in chest radiograph classification.

In this process, we decided to create four models to study the influence of each augmentation,

alternating between rotation and horizontal flipping. Additionally, we decided to evaluate these

models using two distinct backbones, ResNet18 and DenseNet121. This approach allows us to

examine the performance of MoCo-CXR [35] across various backbones with varying numbers

of layers. Consequently, this yields eight pretrained models, as outlined in Table 3.2. All these

models were trained for 20 epochs, aligning with the methodology employed by [35].

Table 3.2: Models with different pretraining augmentations and backbones for MoCo-CXR [35].

Model No Augmentation Rotate Flip Rotate Flip

ResNet18 Model1 Model2 Model3 Model4
DenseNet121 Model5 Model6 Model7 Model8

3.4.2 Experiment 2: Batch Size Influence on Downstream Task

For the downstream image classification task, we follow the approach proposed by Anton et al. [2],

who consider linear and finetuned schemes, as described in Section 3.2.2. Note that [2] evaluate

all models solely on the presence or absence of "Pleural Effusion" by converting the multi-label

annotations of CheXpert [20] into a binary format. This involves assigning a value of 1 for "Pleural

Effusion" and disregarding all other labels by converting them to 0, following a methodology

employed by [4].

This experiment focuses on analyzing the effect of different batch sizes on the classification

task, which varies according to the selected backbone since deeper networks such as DenseNet121

require more computational power. Since we do not have enough computational power for exten-

sive testing on DenseNet121 with multiple batch sizes, this study only considers the ResNet18

model on both linear probing and finetuning.
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3.4.3 Experiment 3: Number of Finetuning Steps

Afterward, we studied the finetuning approach, achieving slightly improved results compared to

those reported by the authors [2]. Upon examining their methodology, we discovered that the

authors had limited computational resources, leading them to train the model for 5k steps with an

implemented early stopping with patience of 3 using the classification accuracy on the validation

set, evaluated at every 200 steps. In contrast, since we had more computational resources, we

conducted a study regarding the influence of the number of steps in the finetuning process. Thus,

we trained a model for 200k steps and plotted the metrics calculated on the validation set. We

aimed to determine the optimal number of steps at which training should be concluded through an

extensive run that lasted approximately 36 hours.

3.4.4 Experiment 4: Training Label Quality

As previously mentioned, the CheXpert [20] dataset does not contain manual annotations. Instead,

they are automatically extracted from the available medical reports. Therefore, different labeling

methods might lead to different labels. Additionally, Smit et al. [34] proposed that CheXbert [34]

labels outperformed the standard labels provided by[20], as discussed in section 3.3. As a result,

we designed this experiment with the intention of comparing these two labeling methodologies.

To accomplish this, we used the radiologist test set to perform a comparative analysis between

CheXpert [20] and CheXbert, [34] considering both linear and finetuned approaches, with the

objective of determining which set of labels should be chosen for subsequent experiments.

3.4.5 Experiment 5: Evaluation on Different Pathologies

Due to the predominant focus on the "Pleural Effusion" observation in previous studies conducted

on the CheXpert [20] dataset, and limited investigations into other pathologies, with only 5 out of

the 14 pathologies being explored, we examine the performance of our models on all observations

present in the dataset. However, we excluded "Support Devices" from our analysis as it is not con-

sidered a pathology, resulting in a total evaluation of 13 pathologies. Consequently, a comparative

analysis was carried out on the CheXpert [20] dataset using radiology labels to assess the accuracy

of each model, considering a binary labeling method for each pathology.

3.4.6 Experiment 6: Multilabel Classification

Afterward, we extend the analysis of the multilabel scenario. This resulted in a requirement for

new evaluation criteria, as the labeling system was no longer binary and allowed for the presence of

multiple positive pathologies simultaneously. To address this, we employed two different metrics

to evaluate the performance of our models.

• Exact match ratio - The predicted value is considered correct if and only if all predicted

labels coincide with the real values.
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• Label-wise accuracy - Measures the accuracy of the model for each individual class sepa-

rately rather than aggregating the accuracy across all classes.

These two different metrics evaluate different aspects of the model’s performance. While the

exact match ratio excels at evaluating the model’s capability of being fully correct on all 13 pre-

dictions simultaneously, label-wise accuracy is more effective at finding the model’s proficiency at

predicting each individual label consistently. However, both metrics come with their own limita-

tions: for instance, the first metric does not differentiate between a model that predicts all classes

incorrectly and one that only fails to predict a single class among the 13; the second one is highly

susceptible to imbalanced data, as classes with low occurrence may result in high accuracy if the

model solely predicts the majority class.

3.4.7 Experiment 7: Radiologists’ Test Set

This final experiment aims to assess our models’ performance in real-world deployment scenarios

by evaluating the top-performing model on the radiologists’ test set. This evaluation was previ-

ously conducted for the "Pleural Effusion" pathology, and now we aim to extend the analysis to

multiple observations, as explored in experiments 5 and 6. Therefore, this experiment serves as an

extension of the analysis performed in experiment 4, covering a wider range of observations.

3.5 Conclusion

This work was based on the approaches proposed by [35] and [2], combining their methodologies

applied to the CheXpert [20] dataset multiple labeling systems. CheXpert [20] and CheXbert [34]

labels were utilized for training and validation, while the test set evaluation involved manually

annotated labels by radiologists in subsequent experiments. This combined approach involves

a SSL pretraining phase and an image downstream classification task, considering linear probing

and finetuning. We explored the impact of various factors through multiple experiments, including

pretraining augmentations, dataset labels, training steps, hyperparameters, and multiple simulta-

neous labels. These studies aimed to understand how each model characteristic influenced its

performance comprehensively.



Chapter 4

Results and Discussion

This chapter presents the results of the 7 experiments described in Section 3.4, along with a con-

cluding section summarizing the findings of those experiments. The initial 4 experiments focus

on the "Pleural Effusion" pathology within the CheXpert [20] dataset, involving variations in pre-

training augmentations and downstream image classification hyperparameters. Subsequently, the

following 2 experiments extend the analysis to include the remaining 12 pathologies described in

Section 3.3. These experiments explore the binary classification of each pathology or a multilabel

scenario. The final experiment evaluates the previously obtained best-performing models on the

radiologist’s test set, providing insight into the real-world performance of our models if deployed.

4.1 Experiment 1: Pretraining Data Augmentation

In this experiment, our objective was to replicate the pretraining methodology employed in MoCo-

CXR [35] while exploring the influence of various data augmentations. This involved creating 8

different models, as outlined in Section 3.4.1 on Table 3.2. The performance of these models was

then evaluated through a downstream image classification task, as detailed in Section 3.2.2. This

experiment was conducted using 2 different backbone architectures, ResNet18 and DenseNet121,

resulting in the total of 16 models showcased in Tables 4.1 and 4.2. These experiments were

conducted using the CheXpert [20] dataset and its original automatic labeling system, and the

metric selected for evaluation was accuracy, consistent with the approach used by Anton et al. [2].

Additionally, for the finetuning approach, training was performed for 5k steps, employing an early

stopping mechanism with a patience of 3 and evaluation at every 200 steps. This aligns with the

methodology used in [2], allowing for comparative analysis.

Among both backbones, the best performance was obtained with the finetuned model pre-

trained solely with rotation, with the DenseNet121 rotation model outperforming all others, reach-

ing an accuracy value of 76.90%. As for the linear classification task, the Flip augmentation model

on the ResNet18 backbone achieved the highest performance, reaching an accuracy of 68.94%. In

contrast, the optimal linear model for the DenseNet121 backbone was achieved without any addi-

tional augmentations.

25
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When comparing the 4 different augmentations on the linear approach, the model with only

the flip augmentation achieved consistently high results, although the differences appeared to be

low and inconsistent between different runs. On the finetuned approach, there were high variances

within different augmentations, which were not consistent when comparing both backbones.

When comparing both classification methods, we can conclude that finetuned models were

overall better, as the best linear model was outperformed by the best-finetuned model on both

backbones. Besides, the average accuracy value for each method was always superior on the

finetuned method, with a particularly high value of 75.53% on the DenseNet121 method. The

observed lower accuracy values in the linear model were expected, as the model only learns the

last layer, while the finetuning approach requires re-learning the whole model.

Table 4.1: Accuracy on the CheXpert [20] validation set obtained by different pretraining data
augmentations strategies with the ResNet18 backbone. Both Linear and finetuning approaches

are considered.

Method/Augmentation No Augmentation Rotate Flip Rotate Flip Avg
Linear 68.07 68.15 68.94 67.83 68.25
Finetuning 71.93 75.85 68.56 63.04 69.85

Table 4.2: Accuracy on the CheXpert [20] validation set obtained by different pretraining data
augmentations strategies with the DenseNet121 backbone. Both Linear and finetuning

approaches are considered.

Method/Augmentation No Augmentation Rotate Flip Rotate Flip Avg
Linear 67.53 66.93 67.52 66.60 67.15
Finetuning 76.66 76.90 72.37 76.19 75.53

When looking at the author’s results, we were unable to replicate them. While the accuracy

of our linear model with rotation and flip was 67.83%, Anton et al. achieved the value of 74.76%

(6.93% more accurate). Furthermore, when comparing the finetuned model, our model outper-

formed theirs by 1.15%. The difference between our results and the original authors might be due

to inherent algorithm randomness factors and each graphics card can behave differently. Besides,

the study only mentions the use of labels from the CheXpert [20] dataset, which contains several

versions with different labels and image resolutions, which will affect the results and make an

exact comparative analysis quite challenging.

4.2 Experiment 2: Batch Size Influence on Downstream Task

In this experiment, we investigated the impact of various batch sizes on the model’s accuracy.

To conduct this analysis, we opted for the ResNet18 backbone architecture as it requires less

computational power. This enabled us to test and compare models with increased batch sizes,

reaching up to 128 in the linear approach and 64 in finetuning. In contrast, if DenseNet121 was

selected, the maximum batch size that could be tested in our environment was limited to 32.
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During the testing of models using the finetuning method, we consistently paired an increase

in batch size with a corresponding increase in the learning rate. The initial experiment based on

the work by Anton et al. [2] contained a batch size of 64 and a learning rate of 1e−4 for ResNet18.

Subsequently, all our conducted experiments involved doubling or halving the current batch size,

with the same operation being performed to the learning rate.

Table 4.3: ResNet18 backbone testing with linear image classification for different pretraining
conditions and hyperparameters. Values represent the model accuracy on the CheXpert [20]

dataset as a percentage value.

Batch Size No Augmentation Rotate Flip Rotate Flip Avg

16 67.92 68.73 68.25 67.94 68.21
32 68.16 68.85 68.20 67.78 68.25
64 68.07 68.15 68.94 67.83 68.25
128 68.24 68.22 68.83 68.10 68.35

On the linear approach, 4 different batch sizes were investigated (Table 4.3), with the highest

accuracy value obtained with a batch size of 64 on the model with a horizontal flip augmentation,

reaching 68.94%. No relevant differences are found either between different augmentations or

different batch sizes, as the average value from the worst performing batch size (batch size 16

with 68.21% accuracy) is only inferior to the best performing model (128 with 68.35%) by 0.14%.

Consequently, we conclude that the correlation between batch size and performance is not clear

on the linear model, and no significant gains are found through batch size variance. Therefore,

we decided to keep the batch size used by the author (batch size of 64) for a better comparative

analysis.

Table 4.4: ResNet18 backbone testing with downstream image classification for different
pretraining conditions and hyperparameters. Values represent the model accuracy on the

CheXpert [20] dataset as a percentage value. Training was performed for 5k steps without early
stopping.

Batch Size No Augmentation Rotate Flip Rotate Flip Avg

16 72.69 72.74 72.04 72.46 72.48
32 74.43 74.43 73.80 74.49 74.29
64 76.21 76.85 76.73 76.15 76.48

On the finetuning approach, only 3 batch sizes were tested (Table 4.4), resulting in a notice-

able improvement every time the batch size is doubled, as all pretraining augmentations obtain

improved performance, with the top model containing a rotation augmentation on a batch size of

64. Consequently, we can conclude an increase in batch size results in a performance improvement

for 5k steps training. However, since we could not further increase the batch size due to resource

constraints, we are unsure what the optimal batch size for ResNet18 finetuned training should be.

Thus, such investigation could be a future work improvement of our study in scenarios with fewer

resource constraints.
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4.3 Experiment 3: Number of Finetuning Steps

Finetuning models obtained inconsistent results between different runs and augmentations. We

hypothesized this might be due to the early stopping mechanism implemented by the author due

to their lack of computational resources, which interrupted the run when no further gains were

made after 3 verifications were done every 200 steps. This means no improvements after 600

steps would cause the run to terminate.

Tables 4.5 and 4.6 reveal that activating the early stopping mechanism significantly diminishes

the performance of the model. This effect is more pronounced in the case of ResNet18 finetuning,

where the average accuracy without early stopping was 76.48% (6.63 increase with early stop-

ping removal). The difference is less noticeable in the DenseNet121 approach with only a 1.3%

variation, as the early stopping mechanism was triggered solely by the flip augmentation model,

concluding training at 3k steps (60% of the total run). In contrast, Table 4.5 displays 3 models

that ended earlier, with the rotate and flip augmentations model finishing after only 1k steps (20%

of training completed), resulting in a significantly lower average value (63.04%). These reduced

average accuracy values, coupled with the lowest observed accuracy, coincided with the run that

terminated earlier (rotation and flip model on ResNet18 with 1k steps and 63.04% accuracy). This

prompted us to conduct further experiments to determine the optimal number of steps.

Table 4.5: ResNet18 backbone finetuning comparison between early stopping addition and
removal. Values represent the model accuracy on CheXpert [20] labels as a percentage value.

Finetuning No Augmentation Rotate Flip Rotate Flip Avg
w/o early stop 76.21 76.85 76.73 76.13 76.48
w/ early stop (steps) 71.93 (2k) 76.85 (5k) 68.56 (2.6k) 63.04 (1k) 69.85

Table 4.6: DenseNet121 backbone finetuning comparison between early stopping addition and
removal. Values represent the model accuracy on CheXpert [20] labels as a percentage value.

Finetuning No Augmentation Rotate Flip Rotate Flip Avg
w/o early stop 76.66 76.90 76.47 76.19 76.56
w early stop (steps) 76.66 (5k) 76.90 (5k) 72.37 (3k) 76.19 (5k) 75.53

This way, we opted to conduct additional training runs on the ResNet18 backbone with rotation

and flip augmentations extending the duration to 10k, 25k, and even 50k steps. These extended

training runs led to substantial performance improvements, with accuracy values reaching 77.92%,

78.86%, and 79.87%, respectively. Since the performance was continuously increasing, we de-

cided to perform a long run for 200k steps (see Figure 4.1). The ResNet18 model was selected

since both backbones were expected to perform similarly, and ResNet18 would take significantly

less time to execute and achieve the same goals.

After analyzing Figure 4.1, we can observe a gradual increase in performance that eventually

reaches a plateau around the 100k steps mark, suggesting that the model has reached its learning

limit. The authors acknowledge their limitations regarding the lack of computational resources,
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(a) Accuracy on validation set (b) Loss on validation set

Figure 4.1: Accuracy and loss plotted on a 200k steps run of a ResNet18 rotation and flip model

and these experiments were able to find the true limitations of this method. Consequently, further

experiments were performed with 100k steps when attempting to reach the optimal finetuning

model, represented by Figure 4.2, obtaining 80.54% accuracy and when evaluated on the validation

set.

This way, by studying the influence of the number of finetuning steps, we were able to con-

clude that it indeed plays a significant role. Consequently, we determined that the default 5k steps

performed by the authors should be increased to 100k, improving the accuracy of the rotate and

flip augmentations model on the ResNet18 backbone by 4.41% (from 76.13% to 80.54%).

4.4 Experiment 4: Training Label Quality

In this experiment, a comparison between CheXpert [20] and CheXbert [34] labeling systems

was performed. To do so, the ResNet18 rotate and flip model was selected. Table 4.7 displays

CheXbert’s [34] labels as performing slightly better under radiologist test set labels, aligning with

the claims of the author that proposed CheXbert [34].

Therefore, since CheXbert [34] labels performed better and presented a closer approach to the

state-of-the-art, previous experiments were remade with CheXbert [34] labels. Therefore, exper-

iment 1 was repeated considering the lessons learned from Experiment 3, running the finetuned

(a) Accuracy on validation set (b) Loss on validation set

Figure 4.2: Accuracy and loss plotted on a 100k steps run of a ResNet18 rotation and flip model.
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Table 4.7: Difference between CheXpert [20] and CheXbert [34] on a ResNet18 model with
rotation (10º) and horizontal flip pretraining augmentations . These results were calculated on the

radiologist’s test set and are evaluated using the accuracy metric. The finetuned models were
trained for 100k steps.

CheXpert CheXbert

Linear 81.19 81.29
Finetuning 79.89 80.66

model for 100k steps, resulting in Tables 4.8 and 4.9 exploring ResNet18 and DenseNet121 back-

bones, respectively.

After discovering CheXbert [34] labels, we decided to remake previous experiments with the

new labels, therefore calculating the new linear and finetuning models on tables 4.8 and 4.9.

In the finetuning approach, there was a significant increase in accuracy, which can be seen

both through the average increase of accuracy on all pretraining augmentations, as ResNet18 went

from 76.48% to 80.47%, while DenseNet121 raised from 76.56% to 80.54%. Additionally, the

best model on ResNet18 changed from 76.85% to 80.57%, replacing the best model from solely

the rotation augmentation to the one also containing horizontal flip. On the DenseNet121 back-

bone, although the best performance was also significantly superior (from 76.90% to 80.56%), the

best model remained the rotation pretraining augmentation. Although all finetuned models reach

similar performances, the ResNet18 model containing rotation and flip augmentation performs the

best, being selected as the best-found model and used in further experiments.

In the linear approach, the results do not increase in the same degree. While ResNet18’s

average slightly increases from 68.25% to 68.46%, the best-performing model solely achieves

68.72% accuracy (in contrast with the previous 68.94%).

Regardless, when comparing the different augmentations in both linear and finetuning ap-

proaches, the differences in performance are not consistent, and the influence of each augmen-

tation is not clear and highly influential. This is especially true in the finetuning process, where

accuracy values are noticeably closer with no significant deviations from the average value. This

might be due to the long training process of 100k steps that re-trains the whole network after the

pretraining phase.

Note that even though this experiment focuses on comparing results between the 2 labeling

approaches, the models are trained and evaluated on the same validation set but with different la-

bels, meaning results are not directly comparable. Besides, both approaches use different amounts

of finetuning training steps with no early stopping, hence the significant increase in accuracy. The

comparisons should highlight general differences between different approaches and register the

new scores obtained with more recent labels and optimized finetuning. Table 4.7 is where the

comparison between both labeling approaches is done, since there the comparison is performed

on the same test set manually labeled by the radiologists.
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Table 4.8: ResNet18 linear probing and finetuning accuracy with multiple pretraining
augmentations using CheXbert [34] labels. Hyperparameters used are the same as previous

experiments.

Method/Augmentation No Augmentation Rotate Flip Rotate Flip Avg

Linear 68.56 68.72 68.03 68.51 68.46
Finetuning 80.50 80.28 80.51 80.57 80.47

4.5 Experiment 5: Evaluation on Different Pathologies

In this experiment, 13 pathologies were evaluated, in contrast to previous experiments, which

only evaluated "Pleural Effusion". "Support Devices" was excluded from the evaluation as it is

not classified as a pathology, resulting in the assessment of the remaining 13 pathologies in the

CheXpert [20] dataset.

Table 4.10 presents the results obtained with the ResNet18 model with augmented rotation and

flip on all these pathologies with either linear probing or finetuning on CheXbert [34] labels. This

model was selected since it was the best-performing model in pretraining. For this experiment, the

multiple metrics on the table are useful for finding issues in the imbalanced dataset, which can be

seen when the F1-score is low (7 pathologies have an F1-score lower than 1%), and accuracy is

high.

The best accuracy results for linear and finetuned models were obtained for the "Pleural Other"

pathology with the same value of 98.26%. However, when looking at Table 3.1, we can see that

this pathology only contains 2.99% positive labels in CheXbert, [34] being a minority class in an

imbalanced dataset. Looking at the F1-score, we can see that the value is only 0.38%, which alerts

us of this problem.

When evaluating through the F1-score, "Pleural Effusion" was the best-performing model.

Although it did not excel in other metrics, this pathology performed well. Moreover, when com-

paring the accuracy between different models, the "Lung Opacity" pathology obtained the worst

results on either linear probing and finetuning, even though it is the most common pathology on

both CheXpert [20] and CheXbert [34] labels (49.76% and 46.28% label occurrence). A high per-

centage of positive labels does not inherently make models better at predicting the correct labels.

Finetuning accuracy values are better overall than linear since all models were trained for 100k

steps. This aligns with the conclusions reached in Experiment 3, further proving the importance

of optimized finetuning steps.

This experiment can be further extended in the future with different hyperparameter tuning

per pathology. This experiment serves as a simple initial step to evaluate the problems within the

dataset. This data should be analyzed in conjunction with Table 3.1, which confirms that some

pathologies contain a very low amount of positive labels, such as the "Pleural Other" observation,

which makes the model biased. These challenges might be mitigated by using resampling and

loss-weigthing techniques.



32 Results and Discussion

Table 4.9: DenseNet121 linear probing and finetuning approaches with multiple pretraining
augmentations using CheXbert [34] labels. Hyperparameters used are the same as previous

experiments.

Method/Augmentation No Augmentation Rotate Flip Rotate Flip Avg

Linear 67.04 67.46 66.85 66.17 66.88
Finetuning 80.54 80.56 80.53 80.54 80.54

4.6 Experiment 6: Multilabel Classification

Afterward, a multilabel classification experiment was performed, where the model had to predict

all 13 pathologies simultaneously. This model was evaluated for the finetuning approach and was

tested for different amounts of steps on CheXbert [34] labels.

The label-wise accuracy values were quite similar in all experiments, showing that the amount

of correctly predicted labels only changed by a small margin of 0.9% between the worst and best

models. In contrast, by analyzing the exact-match ratio, we can see that this slight change in the

number of correctly predicted labels significantly increases the value of this metric. This factor

shows the model is improving at optimizing the overall precision rather than paying attention to

the accuracy of every individual label, not being effective at capturing the nuances and patterns

specific to each label. This might be due to the imbalance of this dataset since the majority class

might dominate the predictions, resulting in a model that struggles with predicting the minor-

ity classes. This is another situation that might be improved with data resampling or even loss

weighting to increase the weight of a minority class.

4.7 Experiment 7: Radiologists’ Test Set

The best model found in each experiment was tested on the radiologists’ dataset as a final ex-

periment. This way, Table 4.12 displays linear and finetuning performance in the same way as

Table 4.10, on ResNet18 backbone with flip and rotation pretraining augmentations, as described

in Experiment 7.

Regarding the F1-score, "Pleural Effusion" was the best-performing model, increasing the

metric value from 75.45% to 80.66% (5.21% increase). When comparing the F1-score obtained

for all pathologies, no immediate correlation was found when comparing both labeling systems,

as some F1-scores were increased while others lowered their value.

When considering both finetuned and linear accuracy, the best model changed from "Pleu-

ral Other" to "Fracture", with this last pathology increasing its accuracy values from 96.05% to

99.10%. The accuracy values follow the same behavior as the F1-score, with both alternate in-

creases or decreases in performance compared to prior CheXbert [34] validation set results.
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Table 4.10: Performance of trained ResNet18 rotate and flip pretrained model on 13 different
pathologies on CheXbert [34] labels. The first 2 columns represent different metrics for the

finetuned model trained for 100k steps, while the third column contains the accuracy for linear
probing setting. Hyperparameters used are equivalent to those on the "Pleural Effusion" task. The
last column represents the percentage of positive labels from CheXbert pathologies according to

Table 3.1.

Pathology
Finetuning

Linear Labels
Accuracy F1-score

Atelectasis 84.74 0.33 84.74 30.56
Cardiomegaly 88.35 44.63 86.26 15.43
Consolidation 93.93 0.16 93.93 18.07
Edema 80.42 52.30 76.83 29.21
Enlarged Cardiomediastinum 96,57 0.31 96.57 10.14
Fracture 96.05 0.48 96.08 4.12
Lung Lesion 95.82 0.00 95.82 4.89
Lung Opacity 66.59 65.28 62.44 46.28
No Finding 90.82 32.55 90.44 9.46
Pleural Effusion 80.57 75.45 68.51 43.39
Pleural Other 98.26 0.38 98.26 2.99
Pneumonia 97.79 0.00 97.79 10.85
Pneumothorax 92.44 27.69 91.92 9.09

4.8 Conclusions

These experiments led to some interesting conclusions regarding the self-supervised scenario of

the MoCo-CXR [35] paradigm. First, we started by evaluating the effect of MoCo-CXR [35]

pretraining augmentations on downstream image classification tasks, concluding the effect of

each augmentation would not significantly increase the model’s final performance. Afterward,

an analysis was performed studying the effect of different batch sizes on both linear and finetun-

ing approaches, obtaining inconclusive results, thus selecting the values proposed by the author

for further experiments.

During experiment 3, a study was conducted to investigate the optimal amount of finetuning

steps on image classification tasks and their impact on model performance. This resulted in a new

discovery extending the work by [2], concluding the training should resume for 100k steps instead

of 5k, and the early stopping mechanism should be removed to improve accuracy (by approxi-

mately 4.41%). Subsequently, a study on the difference between CheXpert [20] and CheXbert

[34] labels was performed by evaluating their results on a test set manually annotated by chest

radiology professionals, concluding CheXbert [34] labels are indeed an improvement over those

provided by the original published paper.

While the first 4 experiments targeted a single observation, "Pleural Effusion", the most com-

monly explored pathology in the dataset, the last 3 experiments investigated 12 other existing

pathologies within the CheXpert [20] dataset. This includes the exploration of a multilabel sce-
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Table 4.11: Multilabel finetuning classification performance with ResNet18 with rotation and flip
augmentations on the pretraining phase.

Steps Exact-match ratio Label-wise Accuracy

5k 15.15 88.76
10k 16.33 89.08
100k 20.44 89.66

nario with a model predicting all pathologies simultaneously. The last experiment evaluates the

best-found model in the radiologist’s test set, assessing the performance of our models in a real-

world deployment scenario.

Through all these experiments, we reached our top performance for the "Pleural Effusion" ob-

servation with a ResNet18 backbone model pretrained with a 10º Rotation and Horizontal flipping

for 20 epochs and finetuned for 100k steps with an accuracy of 79.89% on the test set provided by

radiologists.

Regardless, there are still many experiments to be performed in this scenario, such as a deeper

analysis of different augmentations and hyperparameter tuning. Besides, our methodology can be

further tested in different datasets outside the chest radiograph scenario, extending the original

study from Anton et al. [2] and attempting to learn in which scenarios this methodology offers the

best results.
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Table 4.12: Performance of trained Resnet18 rotate and flip pretrained model on 13 different
pathologies on the radiologists’ test labels. The first 2 columns represent different metrics for the
finetuned model trained for 100k steps, while the last column contains the accuracy of the linear
model. Hyperparameters used are equivalent to those on the pleural effusion linear and finetuned

tasks. The last column represents the percentage of positive labels on the radiologist’s test set
according to Table 3.1

Pathology
Finetuning

Linear Labels
Accuracy F1-score

Atelectasis 73.50 1.28 73.35 26.65
Cardiomegaly 78.89 33.74 73.80 26.20
Consolidation 94.76 0.00 94.76 5.24
Edema 88.92 50.11 87.28 12.72
Enlarged Cardiomediastinum 55.54 0.71 55.39 44.61
Fracture 99.10 0.00 99.10 0.90
Lung Lesion 97.90 0.00 97.90 2.10
Lung Opacity 76.35 67.47 69.16 46.41
No Finding 86.53 40.41 84.28 16.32
Pleural Effusion 79.89 80.66 81.29 17.96
Pleural Other 98.80 0.00 98.80 1.20
Pneumonia 97.90 0.00 97.90 2.10
Pneumothorax 97.46 15.01 98.50 1.50
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Chapter 5

Conclusions

The DL scenario for medical imaging has been greatly dominated by SL approaches, requiring

large amounts of labeled data, an expensive task that interrupts the medical workflow. To work

around these limitations, SSL has emerged as an alternative for CV tasks such as image classi-

fication. Moreover, SSL has different architectures with several models with optimal use cases,

concluding that contrastive learning is the model that is best suited for image classification tasks.

Regarding the application of SSL algorithms in the medical field, studies are limited; however,

approaches such as MICLe for datasets with multiple views of the same image have presented

promising results in the area, specifically in the analysis of chest X-rays. The limited existing use

cases for medical image classification make room for improvement by trying different approaches,

mixing the positive results obtained from these different works on different datasets, and perform-

ing a comparative analysis through the use of the traditional metrics for classification problems,

such as accuracy and F1-score.

To further explore this scenario, we conducted a study on MoCO-CXR, [35] with the initial

objective of examining the impact of each intrinsic characteristic of the algorithm, aiming to iden-

tify and, if possible, mitigate any shortcomings associated with the algorithm. MoCo-CXR [35]

is an adaptation of the MoCo [17] method specifically designed for the task of learning repre-

sentations from chest radiographs on the CheXpert [20] dataset. It aims to extract meaningful

representations from large amounts of data in an unsupervised fashion through a contrastive learn-

ing approach. The selected dataset, CheXpert, [20] contains 224,316 chest radiographs of 65,240

patients automatically labeled for the presence of 14 common pathologies.

To perform this study, we started by adapting the work from MoCo-CXR [35] on the pretrain-

ing phase and integrate it with the downstream image classification proposed by [2], who consider

2 different evaluation methodologies, linear probing, and finetuning. On linear probing, the se-

lected pretrained model is frozen and leveraged as a fixed feature extractor with a multinomial

logistic regression fitted on top of the fixed features. When finetuning, all pretrained parameters

are refitted, along with an attached linear classification head.

The proposed methodology was then applied to the CheXpert [20] dataset through 2 different

labeling systems, CheXpert [20] and ChexBert [34]. The former refers to the default labeling
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system proposed by CheXpert’s authors [20], while the latter is a state-of-the-art improvement.

While both approaches are generated using a rule-based system that extracts information from

radiology reports, CheXbert [34] undergoes additional processing with a pretrained BERT [11]

model and finetuning with CheXbert [34] annotations. Furthermore, we make use of a third dataset

with manually annotated labels from professional radiologists.

This way, 7 experiments were performed. The first 4 focused on the "Pleural Effusion" pathol-

ogy, since it was the main focus of the authors [35; 2], while the last 3 experiments extend the

study to the remaining 13 observations, excluding "Support Devices", as it was not considered a

pathology.

We started by evaluating the influence of 4 MoCo-CXR [35] pretraining augmentations on

downstream image classification models, both on linear and finetuning approaches, as proposed

by [2]. In this experiment, ResNet18 and DenseNet128 backbone architectures were used and no

significant difference was found between the selected augmentations. As a next step, we studied

the influence of batch size on the same scenario, starting from 16 and reaching up to 128, with no

significant correlation between batch size and performance being discovered.

Experiment 3 investigated the influence of the number of learning steps in downstream image

classification finetuning, with the removal of the early stopping mechanism implemented by the

authors, leading to the conclusion that further improvements of 4.5% accuracy could be achieved

by training by 100k steps instead of 5k, reaching the optimal value for the algorithm. Further-

more, experiment 4 was conducted to confirm that CheXbert [34] labels would lead to improved

results when compared to the default CheXpert [20] dataset labels, by testing the performance of

the previous best model (ResNet18 with 10º rotation and horizontal flip augmentations). It was

indeed proved that CheXbert [34] obtained slightly better accuracy improvements on both linear

and finetune approaches. Therefore, we decided to use CheXbert [34] labels for the remaining

experiments.

The last 3 experiments conducted a study on the influence of multiple labels, selecting the

best "Pleural Effusion" performing model’s pretraining augmentations and hyperparameters as a

base for this study. The first of these experiments individually evaluated a linear and finetun-

ing model for each pathology, reaching an accuracy of 98.26% on both classification tasks for

"Pleural Other". Even though these accuracy values are high, they might be associated with some

bias resulting from imbalanced datasets. Afterward, an experiment was made considering a sin-

gle model with a multilabel task simultaneously predicting all pathologies, being evaluated with

20.44% exact-match ratio and 89.66% label-wise accuracy. The final experiment solely evaluated

the best model for all pathologies on the radiologists’ test set, with the objective of assessing the

performance of our findings in a real-world deployment scenario.

Although we were able to conduct these 7 experiments and perform an in-depth exploration of

MoCO-CXR, [35] there are still unexplored aspects that can identify and mitigate shortcomings

of this methodology. A future study can be conducted investigating the influence of the number

of epochs on the pretraining phase, as our selected value was 20, aligning with the work from

MoCo-CXR [35] authors. Besides, the CheXpert [20] dataset is imbalanced, and several measures
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can be taken to attempt to mitigate this issue, either by experimenting with resampling and loss

weighting techniques on the minority classes. It would also be interesting to explore how the

amount of pretraining images influences the performance of MoCo-CXR [35] on the downstream

image classification task.
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