
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Defining Metrics for the Identification
of Microservices in Code Repositories

Domingos Francisco Panta Junior

Mestrado em Engenharia de Software

Supervisor: Jácome Cunha

Second Supervisor: Lázaro Costa

July 19, 2023

Defining Metrics for the Identification of Microservices in
Code Repositories

Domingos Francisco Panta Junior

Mestrado em Engenharia de Software

July 19, 2023

Resumo

Microsserviços tornaram-se o estilo de arquitetura mais utilizado entre todas as estratégias de
desenvolvimento de software disponíveis. No entanto, as pesquisas sobre esse tema estão no início,
o que dificulta a localização de aplicações de microsserviços em escala para análise. Portanto,
há uma grande necessidade de novas investigações, bem como ferramentas para apoiar novos
desenvolvimentos no campo de microsserviços.

O primeiro objetivo deste trabalho é coletar características de microsserviços encontradas na
literatura e traduzi-las em características mensuráveis no código. Com isso, fornecemos um con-
junto abrangente de características, bem como métricas para identificá-las no código.

Um segundo objetivo é usar essas métricas para identificar a base do código seguindo um
estilo de arquitetura de microsserviço. Essa solução é disponibilizada por meio de uma ferramenta
que permite aos usuários encontrar microsserviços em escalas e filtrá-los de acordo com suas
necessidades. Isso pode ser usado para encontrar exemplos de microsserviços em uma linguagem
de programação específica ou para criar corpora para estudos de pesquisa.

Nossa avaliação mostra que nosso algoritmo pode identificar microsserviços com uma precisão
de 85%.

Palavras-chave: Microserviços, Corpus de software, Métricas

i

Abstract

Microservices have become the most used architectural style among all available software devel-
opment strategies. However, it is difficult to find microservice applications at scale for analysis.
Therefore, there is a great need for new investigations as well as tools to support new developments
in the field of microservices.

The first goal of this work is to collect microservices characteristics found in the literature and
translate them into measurable features in the code. With this, we provide a comprehensive set of
characteristics as well as metrics to identify them in the code.

A second goal is to design an algorithm to use such metrics to identify code basis following a
microservice architectural style. This solution is made available through a tool that allows users
to find microservices at scales and filter them according to their needs. This can be used to find
examples of microservices in a specific programming language or to create corpora for research
studies.

Our evaluation shows our algorithm can identify microservices with a precision of 85%.

Keywords: Microservices, Software Corpus, Metrics

ii

Acknowledgements

I would like to thank my family for always being there for me, even from afar, throughout my
academic journey. My wife, Georgia Ricalde, for the love, support, and motivation, without which
I would not finish this work. FEUP and all MESW faculty for the opportunity to join the program
and the knowledge shared from begging until the end. Professor Jacome Cunha, for asking the
right questions to drive this research forward and for all the guidance in making this idea a reality.

Domingos Francisco Panta Junior

iii

“ Learn from yesterday,
live for today,

hope for tomorrow.
The important thing is not to stop questioning.”

Albert Einstein

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Objectives . 2
1.4 Contributions . 3
1.5 Document Structure . 3

2 Systematic Literature Review 4
2.1 Research Method . 4

2.1.1 Planning the Review . 4
2.1.2 Conducting the Review . 5

2.2 Results . 7
2.2.1 RQ1: What are the corpus of microservices currently available for re-

searchers and/or practitioners? . 7
2.2.2 RQ2: What aspects of microservices applications can be used for their

classification as microservices applications? 7
2.2.3 RQ3: Can we define an algorithm to recognize MSAs’ code repositories

based on their characteristics? . 10

3 Metrics 12
3.1 Binary Metrics . 12
3.2 Continuous Metrics . 17
3.3 Conclusion . 21

4 Classification Algorithm 24
4.1 Calculate Scores and Set Classification . 24

4.1.1 Calculate Score . 25
4.1.2 Get Code Repository Classification . 26

5 GitHub Microservice Mining Tool 29
5.1 Solution Design . 29

5.1.1 GitHub . 29
5.1.2 Solution Overview . 29

5.2 Architecture & Technologies . 31
5.3 Model . 31
5.4 Use Cases . 33

v

CONTENTS vi

6 Evaluation 37
6.1 Evaluation Process . 37
6.2 Phase 1 . 38
6.3 Phase 2 . 39
6.4 Analysis . 40
6.5 Threats to Validity . 40

7 Conclusions and Future Work 41
7.1 Conclusions . 41
7.2 Future Works . 42

References 44

A List of Included Publication on the Systematic Literature Review 47

B List of Included Microservices Code Repositories 52

C List of Included Monoliths Code Repositories 55

D Use Case Descriptions And Views for GitHub Microservice Mining Tool 58

List of Figures

2.1 Steps of a typical MSR process [15] . 11

3.1 Documentation Metric . 13
3.2 Database Ownership Metric . 14
3.3 Independently Deployable Metric . 14
3.4 Light-weight Protocol Metric . 15
3.5 Message Broker Metric . 16
3.6 Heavyweight Protocol Metric . 16
3.7 Logging Metric . 17
3.8 MSA Size Metric . 19
3.9 MSA set Size Metric . 20
3.10 Monoliths Size Metric . 20
3.11 MSA Files Metric . 21
3.12 MSA set Files Metric . 21
3.13 Monoliths Files Metric . 22
3.14 MSA AllContents Metric . 22
3.15 MSA set AllContents Metric . 23
3.16 Monoliths AllContents Metric . 23

4.1 Sequence Diagram for the Classification Algorithm 28

5.1 Component Diagram for GitHub Microservice Mining Tool 30
5.2 Deployment Diagram for GitHub Microservice Mining Tool 32
5.3 Class Diagram for GitHub Microservice Mining Tool 32
5.4 Use Case Diagram for GitHub Microservice Mining Tool 34
5.5 Example View 1 . 35
5.6 Example View 2 . 36

D.1 Add/Upload Examples of Repositories View . 62
D.2 List of Repositories Examples View . 63
D.3 Repo Examples Metrics Generation View . 63
D.4 Repo Examples List of Metrics Generated View 64
D.5 Repo Examples Metrics Statistics View . 64
D.6 Search/Mine code repositories from GitHub View 65
D.7 Process Mined Repos Metrics View . 65
D.8 List of Mined Repos Generated Metrics View 66
D.9 List of Mined Code Repositories View . 66
D.10 Upload Repo Examples Diagram . 67
D.11 Start Metrics Generation Sequence Diagram . 67

vii

LIST OF FIGURES viii

D.12 Execute Metrics Operations Sequence Diagram 68

List of Tables

2.1 Research Identification Summary . 6
2.2 Included & Excluded Publications By Digital Library 7
2.3 Manually Collected MSAs Metrics . 10

6.1 Phase 1 Classification Results . 39
6.2 Phase 2 Classification Results . 40

A.1 List of Included Publications . 47

ix

Abbreviations and Symbols

MSA Microservice Application
URL Uniform Resource Locator
API Application Programming Interface
UML Unified Modeling Language
POC Proof Of Concept
GUI Graphical User Interface

x

Chapter 1

Introduction

This chapter starts by presenting and explaining the context in which the topic is inserted. It is

then followed by the definition of the problem aimed to be solved as well as the proposed solution.

Additionally, the structure of this document is described.

1.1 Context

One of the most important phases of any scientific investigation is the validation of the results

obtained. Software corpus paves the way for analysis replication [5], which helps collect metrics

for research validation. In investigations regarding mining code repositories, there are very few

works trying to create software corpora. This is particularly more challenging in the microser-

vices research field because the different services might be spread over many repositories, and

the identification of such services might depend on the documentation about them found in those

repositories. Therefore, even though there are some examples of tools created for either building a

software corpus, such as the work by Giuseppe et al. [21], or facilitating static analysis on it, like

the tool created by Caracciolo et al. [5], there is not a significant amount of research about mining

microservices.

Moreover, examining and connecting data with a view to discover valuable actions in software

projects is the main goal of the Mining Software Repositories (MSR) area of expertise [15]. One

of the motivations behind this is the recurring nature of software projects. When a new project

is started, managers and developers rely on previously acquired experience to intuitively estimate

tasks that have been done in the past. In modern projects, there are plenty of tools available to

support the development process by organizing activities and requirements and producing code.

Thus, the project development is actually recorded in software repositories so that data can be

analyzed and used as a historical reference to support decision-making [15]. The data available

in software repositories are so plural that a whole movement towards this field of research has

emerged because of it [23]. Taking a publicly available project hosted in a code repository such

as GitHub as an example, just by browsing in it, it is possible to see the directories created for

the project, often there is a README.md file by convention, which sometimes is the only source

1

Introduction 2

of documentation to describe the purpose of the project, its functionalities, and usage. Addition-

ally, files and their respective extensions indicate the programming languages of choice. And the

content of the source code files reveals business rules as requirements implemented. Another im-

portant factor is that there is data about the users who contribute to the repository as well as their

interactions.

Finally, research on microservice applications (MSA)1 is a continuously evolving field with

ongoing research and advancements. Therefore, there are already various definitions for MSA.

What most authors agree on is the goal of microservices, which is to have highly cohesive services

defined around business capabilities, that can be deployed independently (self-contained) and use

a lightweight communication protocol such as RESTFul2 or gRPC3 [25]. MSA migrations and

new implementations have been heavily boosted by the advent of cloud computing. While cloud

computing provides precise control over resources used by deployed applications, MSAs have the

required software quality characteristics to take full advantage of that given flexibility. Hence,

the microservice architecture has become the most obvious choice for large applications going

forward. Therefore, there is still much to be learned about this recent architectural style, and

in order to research or implement MSAs, practitioners often need them at scale with a view to

perform experiments, visualize how the actual code of an MSA adheres to the characteristics of

this architecture, etc. Thus, researchers and consultants take great benefit from having many and

varied MSAs available for their work.

1.2 Problem Definition

There is a need for a corpus of MSAs for several reasons. While a researcher might want a

dataset set of MSAs implemented in a specific programming language, another might need to

find out libraries and frameworks used by MSAs. Another example would be a software engineer

looking at how MSAs have their lightweight protocol quality requirement implemented or what

has been implemented in messaging broker technologies. The list of possible usages for identified

applications matching specified criteria is vast. For this reason, the main problem we wish to solve

is how to find MSAs at scale.

1.3 Objectives

The main goals of this research are to:

• Define a collection of characteristics that allow us to identify MSAs.

• Devise a way to identify such characteristics in the source code.

1We use the term microservice to refer to a service of a microservice application, which is an application that follows
the microservice architectural style. In this work, we use the term monolith to refer to other architectures.

2https://restfulapi.net/
3https://grpc.io/

https://restfulapi.net/
https://grpc.io/

1.4 Contributions 3

• Create a method to automatically identify microservices on code repositories.

• Validate the identification method by running it against code repositories.

• Implement a tool to allow users to find and filter (e.g., by programming language) large

amounts of MSAs.

1.4 Contributions

This research project makes the following contributions:

• Systematic Literature Review - State-of-the-art review in which works about microser-

vices related to this topic were grouped and analyzed with the intention of building a set of

heuristics to help distinguish microservices from other architecture styles.

• Microservice Identification Algorithm - The heuristics found in the literature review were

observed in the code of a curated list of MSAs and further utilized to generate metrics about

MSA in an automated fashion.

• Microservice Mining Tool - Implementation of the GitHub Microservice Mining Tool that

incorporates the algorithm and provides a graphical user interface (GUI) to mine microser-

vices from code repositories.

• Algorithm Evaluation - Usage of the created tool and analysis of the algorithm’s produced

results to determine its efficiency.

1.5 Document Structure

In addition to this chapter, where the context surrounding the research topic was presented along

with the problem aimed to be solved, the goals of the work, and the intended contributions to the

research community, there are seven more chapters. In Chapter 2, we present the state-of-the-art

research relevant to the topic in a systematic manner. In Section 5.1, we present the proposed solu-

tion designed to address the problem at hand. In Chapter 3, we present the metrics gathered from

code repositories. In Chapter 4, we present the algorithm designed to identify MSAs. In Chapter 5,

we present the prototype tool implemented. In Chapter 6, we present the evaluation of the results

obtained. In Chapter 7, we draw conclusions and refer to future works.

Chapter 2

Systematic Literature Review

In this chapter, we describe our light-weight systematic literature review aiming to detect literature

about MSA corpus, identification, and mining from code repositories. The goal of this review is

to verify the existence of an MSA corpus, understand how MSAs are distinguished from other

applications, and also how one can design a process for mining MSAs.

2.1 Research Method

The research method for this review followed the three main phases of the review process as

specified by Keele et al. [19]: Planning the Review, Conducting the Review, and Reporting the

Review.

2.1.1 Planning the Review

The planning phase was started by identifying and choosing relevant sources for software engi-

neering research. After some experimentation and skimming on some results, the digital libraries

which presented the most relevant articles for the topic were:

• ACM Digital library

• IEEExplore

• ScienceDirect

• Wiley

With the exception of the Wiley digital library, the other selected libraries are among the seven

relevant sources for software engineering listed by Brereton et al. [3] which increased the hopes

for good results in this empirical process.

Following, a search was performed on the selected libraries aiming to identify existing reviews

on the topic, and so the search query for this experiment was: (Mining AND (microservices OR

“micro-services”) and GitHub). Even though the query did produce results for some primary

studies, it did not find any reviews on the topic which ensured the need for this review.

4

2.1 Research Method 5

Research Questions Being the research questions the main portion of a review [19], we took

special care defining them. We started by revisiting the goals defined at Section 1.3, and analyzing

what needed to be known to accomplish them. Therefore, considering that we want to discover

ways of mining microservice applications from source code by empirically building heuristics of

microservices identification so that we can make them easily available for practitioners by means

of a tool, we asked the following questions:

• RQ1: What are the corpus of microservices currently available for researchers and/or prac-

titioners?

• RQ2: What aspects of microservices applications can be used for their classification as

microservices applications?

• RQ3: Can we define an algorithm to recognize MSAs’ code repositories based on their

characteristics?

To answer these questions, we started with the definition of a search query that would contem-

plate all areas of interest of the researched topic, namely microservices, mining software reposito-

ries, and mining code repositories. During the first phase of experimentation on the ACM Digital

library, those terms searched on the full text of all publications available produced over 13,000

results. After skimming over some titles and abstracts, it was clear that many of those publica-

tions were not related to the research topic. Thus, it was necessary to filter the results either by

narrowing down search terms or the section of the publications in which the terms were being

searched. As a result, another experiment was performed matching the terms against the abstract

of the publications which produced 879 results. This rather larger number of papers still had many

publications off-topic. Therefore, it was clear that we should not only restrict the search to the

title and the abstract of the papers but also refine the search query. The result of this refinement

produced a total of 238 publications across all four chosen digital libraries, which had a much

more close relation to the topic. The final refined query used was the following:

((microservice OR “micro-service”) AND (identification OR corpus OR mining OR repository OR

GitHub))

2.1.2 Conducting the Review

During the conduction of the review, the defined search was executed in each one of the digital

libraries selected and all research works resultant of this search were properly identified, extracted,

selected by using inclusion and exclusion criteria, synthesized, and then reported.

Identification of research As detailed in Table 2.1, we identified and extracted from the digital

libraries a total of 238 publications. Given the considerable number of works, they were imported

into Mendeley, a reference management software chosen to support these tasks.

Selection of primary studies

Systematic Literature Review 6

Table 2.1: Research Identification Summary

Digital Library Publications
ACM 109
IEEE 93
ScienceDirect 22
Wiley 14
Total 238

The selection of relevant literature related to the theme was based upon the analysis of titles

and abstracts of the identified research to verify if they met the inclusion or exclusion criteria

presented below.

Inclusion Criteria

• Primary study on the topic.

• Publications about microservices:

- corpus, in which any set of MSAs are presented and can be reused.

- design structure, in which the architecture of MSAs is standardized as a model to be

followed for new developments.

- identification from existing systems, where MSA’s characteristics that distinguish

them from other applications are highlighted.

- commonly used technologies (libraries and frameworks)

- mining, where any process for mining MSAs from code repositories is explained.

Exclusion Criteria

• Publication about systems built on microservices architecture.

• Publications about microservices:

- pitfalls resolution, in which problems related to MSA’s development or maintenance

are presented.

- identification from green field development, where the definition of each MSA candi-

date is determined from business requirements or processes.

Additionally to this criteria, only publications in the English language were considered; any

date of publication up until December of 2022 was valid, as well as any authors, article setting,

research design, or sampling method.

Data Extraction & Synthesis
The data extraction stage of the process is designed to collect all information required to an-

swer the research questions, while the synthesis summarizes the results of included primary stud-

ies, which are selected based on the inclusion and exclusion criteria. As shown by Table 2.2, the

global number of publications considered related to the topic was 44, and 194 of the papers met

2.2 Results 7

the exclusion criteria. This meant only 18.5% of information had a direct bearing on the search

topic. Appendix A lists the included publications. Additionally, the complete list of all publi-

cations is available at https://anonymous.4open.science/r/icsme23-A500/data/

sample/articles.xlsx.

Table 2.2: Included & Excluded Publications By Digital Library

Digital Library Publications Included # Excluded #
ACM 109 18 91
IEEE 93 16 77
ScienceDirect 22 5 17
Wiley 14 5 9
Total 238 44 194

2.2 Results

In this section, the final stage of a systematic review, the contents of the selected articles will be

discussed. The main focus in this stage is to group articles highlighting their main topic in regards

to how they help to answer the research questions.

2.2.1 RQ1: What are the corpus of microservices currently available for researchers
and/or practitioners?

In this systematic review, the only work identified that could be considered to have examples

of microservices as a small dataset used to validate microservice implementations was the work

by Podolskiy et al. [22], where a set of 137 microservices are used to revel MSAs architecture

patterns. Therefore, it is safe to say that there is no software corpus of microservice applications

available for researchers that is scalable, easily accessible, or dynamically updated based on a set

of metrics, which is the ultimate goal of this research.

2.2.2 RQ2: What aspects of microservices applications can be used for their classifi-
cation as microservices applications?

Considering the successful validation of RQ1, the next most important task is to design a solu-

tion to properly identify microservices so that mining them becomes possible. This microservice

identification process was divided into two parts, the first one was to inspect the selected literature

to find MSAs’ most common characteristics. The second part was to manually analyze a set of

MSAs source code to determine what types of metrics could be possible to extract to be used to

search for other MSAs, perhaps and ideally in an automated fashion. This process will be detailed

in this section.

Microservices Characteristics

https://anonymous.4open.science/r/icsme23-A500/data/sample/articles.xlsx
https://anonymous.4open.science/r/icsme23-A500/data/sample/articles.xlsx

Systematic Literature Review 8

While there are several definitions of microservices, many authors agree that they should be

small in size [22, 9, 16, 20] [27], that is, implement limited loosely coupled and highly cohesive

functionality. Also, they should use light-weight protocol for extra-service communication [28]

[22] [14] [12], such as RESTFul and gRPC, and message brokers for interservice communication

[28], such as Kafka and RabbitMQ1. Additionally, they should be independently deployable [22]

[2] [6] [20], and for this, containers technology is used 95% of the time for new MSA implementa-

tions [10]. On top of that, some authors argue that each microservice should have its own database

[7] [30] [26], others go further and state that database sharing is in fact considered architectural

smells [28]. The list below summarizes MSAs characteristics found in this literature view:

• Small in size (found in 31 out of 44 papers)

• Highly cohesive (found in 29 out of 44 papers)

• Light-weight protocol (found in 24 out of 44 papers)

• Independently deployable (found in 37 out of 44 papers)

• Database Ownership (found in 11 out of 44 papers)

• Message broker (found in 12 out of 44 papers)

The details of which characteristics were found in which paper can be found at https:

//anonymous.4open.science/r/icsme23-A500/data/sample/articles.xlsx, in

the tab “included-characteristics”. This list of characteristics is the starting point for a heuristic

process to form a set of (dynamic) metrics to mine MSAs, described in the next section.

From Microservices Characteristics to Search Metrics
Once the most common set of quality attributes of MSAs was known, it was necessary to

verify which ones could be found in the source code so that these heuristics could become metrics.

Therefore, a small set of MSAs code repositories were manually analyzed as a proof of concept

(POC). The goal of this manual analysis was to verify that some characteristics can be detected

in code while others cannot. This small set of MSAs’ repositories was extracted from the bigger

set of 137 microservices in the work of Podolskiy et al. [22], and the extracted data is presented

in Table 2.3. The repositories for this sample can be found in the following URLs (numbers

correspond to the numbers in column “Repo”):

1. https://github.com/zalando/zally

2. https://github.com/icecrime/vossibility-collector

3. https://github.com/sczyh30/vertx-blueprint-microservice

4. https://github.com/uc-cdis/cdis-data-client
1http://kth.diva-portal.org/smash/get/diva2:813137/FULLTEXT01.pdf

https://anonymous.4open.science/r/icsme23-A500/data/sample/articles.xlsx
https://anonymous.4open.science/r/icsme23-A500/data/sample/articles.xlsx
https://github.com/zalando/zally
https://github.com/icecrime/vossibility-collector
https://github.com/sczyh30/vertx-blueprint-microservice
https://github.com/uc-cdis/cdis-data-client
http://kth.diva-portal.org/smash/get/diva2:813137/FULLTEXT01.pdf

2.2 Results 9

5. https://github.com/uber/cadence

6. https://github.com/pingcap/tidb

7. https://github.com/influxdata/chronograf

As a result, it is possible to observe that the characteristics (in the columns) can be quantifiable,

and so this value may be used as a threshold to search MSAs at scale.

• Small in size: can be measured by the contents of the columns:

1. Size: which represents the size of the repositories in kilobytes.

2. Files: the number of files in the “Main Language” of the repository.

3. Contents: the number of files summed with the number of folders

• Highly cohesive: this characteristic can be measured from the source code. For instance,

Jin et al. [18] has proposed a way to do it. However, to calculate it, it is necessary to analyze

the source code, which implies having implementations for each language an MSA may be

written on. This is unfeasible and would limit our approach. Thus, we do not consider this

metric.

• Light-weight protocol: can be measured by the column Rest, which represents the presence

RESTFul related technology, such as HTTP external call in the code.

• Independently deployable: the presence of a “Dockerfile” can suggest that the application

is standalone.

• Database ownership: column “DB” indicates that a database connection configuration was

found, so the application most likely owns a database.

• Message broker: column “Msg” indicates that a message broker configuration was found

or code that shows the existence of a “Producer” or “Consumer” process, which suggests

usage of messaging technology.

In addition, based on our own experience and on the analysis of MSA repositories, we also

consider the following metrics:

• Documentation: column “Ms” represents the presence of the words “microservices” in the

READ.me file or anywhere in the code.

• Heavy-weight protocol: column “Soap” represents the use of a Simple Object Access Pro-

tocol (SOAP) in the repository, which is an anti-pattern for MSAs.

• Logging: represents the presence of technologies related to logging services, which is a

good practice in MSAs.

https://github.com/uber/cadence
https://github.com/pingcap/tidb
https://github.com/influxdata/chronograf

Systematic Literature Review 10

Table 2.3: Manually Collected MSAs Metrics

Repo Size Files Contents Ms DB Dockerfile Rest Msg Soap Logging
1 12236 224 628 No Yes Yes Yes No No No
2 12761 381 601 No Yes Yes Yes Yes No Yes
3 1877 6 474 Yes Yes Yes Yes No No Yes
4 7818 34 54 No Yes Yes Yes No No No
5 58871 381 1916 Yes Yes Yes Yes Yes No No
6 398633 2292 4621 No Yes Yes Yes Yes No No
7 98156 356 1926 No Yes Yes Yes Yes No No

To sum up, the set of MSA’s characteristics extracted from the selected articles, which were

yielded in the search string of this light-weight systematic review, formed a strong pavement to

build a method for microservice identification from source code. This experiment obtained enough

evidence that this manually executed process can certainly be implemented in a more elegant and

automated solution to broaden the universe of examples it may rely upon to produce yet a more

vast, dynamic, and accurate set of metrics for microservice identification.

2.2.3 RQ3: Can we define an algorithm to recognize MSAs’ code repositories based
on their characteristics?

To address RQ3, we need to understand two aspects of software repositories. The first one is what

are the existing types of software repositories, which are shown in the listing below by [15], and

the second is comprehending the MSR process.

• Source control repositories: “They track all the changes to the source code along with

meta-data about each change, e.g., the name of the developer who performed the change,

the time the change was performed and a short message describing the change.”

• Bug repositories: “These repositories track the resolution history of bug reports or feature

requests that are reported by users and developers of large software projects.”

• Archived communications: “These repositories track discussions about the various aspects

of a software project throughout its lifetime.”

• Deployment logs: “These repositories record information about the execution of a single

deployment of a software application or different deployments of the sample application.”

• Code repositories: “These repositories archive the source code for a large number of

projects.”

MSR process
One of the biggest contributions of the MSR Cookbook [17], was to summarize all recommen-

dations of MSR research and define a well-structured four steps process organized in four different

themes to define an agreeable standard in this research field. This process and themes are shown

in Fig. 2.1, and their description highlights the most relevant parts of this topic:

2.2 Results 11

Figure 2.1: Steps of a typical MSR process [15]

• Theme 1: Data Acquisition and Preparation is the starting point of the process. It con-

centrates on gathering raw data from repositories and then pre-processing it. In this case,

most of the data is the source code itself, the most important of all software development

artifacts. In addition, there are plain text data where the software documentation is present.

An important point to mention is the dependency on the Source Control Management (SCM)

system, which in this case is limited to git.

• Theme 2: Synthesis entails the utilization of machine learning algorithms such as clus-

tering, classification, or prediction of the data. Often, during this phase, straightforward

analysis presents better results than complex ones.

• Theme 3: Analysis - cares about the results, and more importantly, their proper interpreta-

tion. This is the most important phase as it dictates the conclusions drawn at the end of the

studies. For this step, manually verifying the generated results is crucial.

• Theme 4: Sharing and replication are about making the study reproducible. Sharing

the process, data, and tools used helps external validation and perhaps the evolution of the

study. This is significant because most studies of MSR apply certain techniques to certain

data sources, and this alone is not enough to provide proof that the results can be replicated

in other data sources.

To summarize, despite the existence of many types of software repositories, this research fo-

cuses only on code repositories. Additionally, the MSR process describes the phases for mining

all types of software repositories, which addresses RQ3. However, the results of the search strings

used in this systematic review did not find any work where such methods are explicitly applied for

mining MSAs. Consequently, this leaves room for further research and experimentation to find out

the results of the utilization of existing MSR processes and associated methods in the unexplored

field which is this current research.

Chapter 3

Metrics

The definition and usage of suitable metrics are at the very core of this research work. This is the

reason why, when defining them, we considered both the literature and observations made from

code repositories sample projects in an iterative heuristic process. In this chapter/section, we will

dive deeper into the details of the data collected from each of one of those 10 metrics mentioned in

Section 5.1. We extracted instances of each metric in an automated fashion to form an expanded

dataset as the one presented at Table 2.3. In order to do that in a systematic manner, we used the

MSR process described at Section 2.2.3 as a reference to manipulate the dataset with the goal of

having data ready to be input into our classification algorithm.

Bearing in mind that the ultimate goal of this research is to correctly identify microservices, or

better yet, distinguish microservices from monolith systems, we decided that at least two datasets

would be required. The first one should be a curated list of microservices. This was identified in the

related work of Podolski et al. [22], which contains 137 samples. For the second one, we needed

a list of monolith systems, which we found in the work of Brito et al. [4]. Next, we pre-processed

the list of code repositories by removing any invalid (e.g. not pointing to a GitHub repository) or

duplicated URLs. As a result, we gathered two equally sized lists of code repositories: Appendix B

with 101 microservices, and Appendix C with the same count of monoliths.

Afterward, we used GitHub Rest API1 to search inside each code repository from our dataset

to verify if they met the criteria used to identify the metrics which we were trying to find. In that

event, 190 repositories were successfully searched from the list of 202, 96 of which were monoliths

and 94 microservices. The remaining 12 were excluded due to a lack of data in response to the

API calls. The summary of this search is presented next with plots generated in RapidMiner2.

3.1 Binary Metrics

We considered 7 out of 10 metrics to be binary because a code repository either has a certain

metric present or not. So, for this type of metric, we searched the code repositories looking for

1https://docs.github.com/en/rest
2https://rapidminer.com/

12

https://docs.github.com/en/rest
https://rapidminer.com/

3.1 Binary Metrics 13

any mention of certain keywords, which were different for each metric. To illustrate the results

of these searches in the code, we will present the keywords used and a bar chart for each metric,

where MSAs are represented on the left and monoliths on the right.

Documentation Metric: For this metric, we searched the code repositories looking for any men-

tion of the keywords “microservice” or “micro-service”. As we can see in Fig. 3.1, for MSAs these

keywords were found in 31% of the repositories (for 29 out of 94) while for monoliths it was less

than 1% (3 out of 96). Therefore, the MSA Mention metric is more likely to be found in MSAs

than it is in monoliths.

Figure 3.1: Documentation Metric

Database Ownership Metric: For this metric, we searched the code repositories looking for any

mention of the keywords “database”, “oracle”, “MySQL”, “SQL Server”, “SQLite”, “Postgres”,

“Cassandra” or “MongoDB” in addition to files having the “.sql” or “.bd” extensions. As we can

see in Fig. 3.2, for MSAs these keywords were found in 97% of the repositories (for 91 out of

94) and for monoliths, it was 98% (94 out of 96). Therefore, the Database Ownership metric was

highly present in both types of repositories and it is equally likely to be found in both.

Independently Deployable Metric: For this metric, we searched the code repositories looking

for any mention of the keywords “docker” or “docker-compose” as well as files written in the

languages Dockerfile or Makefile. As we can see in Fig. 3.3, for MSAs these keywords were

found in 99% of the repositories (for 93 out of 94) while for monoliths it was only in 29% (28 out

Metrics 14

Figure 3.2: Database Ownership Metric

of 96). Therefore, the Independently Deployable metric is much more likely to be found in MSAs

than it is in monoliths.

Figure 3.3: Independently Deployable Metric

3.1 Binary Metrics 15

Light-weight Protocol: For this metric, we searched the code repositories looking for any men-

tion of the keywords “http” or “https”. As we can see in Fig. 3.4, for MSAs these keywords were

found in 99% of the repositories (for 93 out of 94) while for monoliths it was found in 100% of

the cases(96 out of 96). Therefore, the Light-weight protocol Metric was highly present in both

types of repositories, and it is equally likely to be found in both.

Figure 3.4: Light-weight Protocol Metric

Message Broker: For this metric, we searched the code repositories looking for any mention

of the keywords “Kafka”, “RabbitMQ”, “producer”, “consumer”, or “amqp”. As we can see

in Fig. 3.5, for MSAs these keywords were found in 71% of the repositories (for 67 out of 94)

while for monoliths it was found in 33% of the cases(32 out of 96). Therefore, the message broker

metric was much more likely to be found in MSAs than it is in monoliths.

Heavyweight Protocol Metric: For this metric, we searched the code repositories looking for

any mention of the keyword “soap”. Especially for this metric, we were more interested in the

absence of the SOAP protocol since it is considered a heavy-weight protocol. As we can see

in Fig. 3.6, for MSAs these keywords were not found in 94% of the repositories (for 88 out of 94)

while for monoliths it was not found in 84% of the cases(81 out of 96). Therefore, the Heavyweight

protocol metric indicates that the SOAP protocol is being less and less used.

Logging Metric: For this metric, we searched the code repositories looking for any mention of

the keywords “logstash”, “Datadog”, “Syslog-ng”, “Rsyslog”, “rsyslog”, “Logagent”, “Graylog”,

or “Fluentd”. As we can see in Fig. 3.7, for MSAs these keywords were found in 38% of the

Metrics 16

Figure 3.5: Message Broker Metric

Figure 3.6: Heavyweight Protocol Metric

repositories (for 36 out of 94) while for monoliths it was found in 5% of the cases (5 out of 96).

Therefore, the Logging Metric is more likely to be found in MSAs than it is in monoliths.

In summary, we observed that four out of seven metrics had greater chances of being found in

3.2 Continuous Metrics 17

Figure 3.7: Logging Metric

MSAs, which supports the study started at Section 2.2.2. Additionally, the three remaining metrics

had similar chances of being found in both types of repositories.

3.2 Continuous Metrics

Unlike the binary metrics, when looking at the data pulled from GitHub for the continuous metrics,

namely, Size(kb), Files, Files+Folders (see Section 2.2.2), we could not see a clear pattern that we

could use to distinguish MSAs from monoliths in response the question of how small they were.

Therefore, we adapted the method introduced by [1], which presents the following process to

derive thresholds from benchmark data:

1. metrics extraction: metrics are extracted from a benchmark of software systems.

2. weight ratio calculation: for each entity, compute the weight percentage within its system,

i.e., we divide the entity weight by the sum of all weights of the same system. For each

system, the sum of all entities WeightRatio must be 100%.

3. entity aggregation: aggregate the weights of all entities per metric value, which is equivalent

to computing a weighted histogram (the sum of all bins must be 100%).

4. system aggregation: we normalize the weights for the the number of systems and then

aggregate the weight for all systems.

5. weight ratio aggregation: order the metric values in an ascending way and take the maximal

metric value that represents 1%, 2%, ..., 100% of the weight.

Metrics 18

6. thresholds derivation: thresholds are derived by choosing the percentage of the overall code

we want to represent. Considering four categories:

• low risk (between 0 and 70%)

• moderate risk (70 and 80%)

• high risk (80 and 90%)

• very-high risk (> 90%)

Since each value of the continuous metric was already the representation of each system (e.i. if

a system had a size of 450kb, then this value was representative of the whole system globally), the

steps for weight ratio calculation and entity aggregation become obsolete. The remaining measures

were implemented and applied to each of the three metrics considering a low-risk threshold for

the threshold derivation step.

Additionally, we noted that some repositories of microservices had only one microservice

while others had a set of them. Consequently, we needed to differentiate between the two types

of MSA repositories to derive a more helpful threshold for each variety. Thus, we distinguish

applications that contain a single microservice, applications composed of several microservices

(which we refer to as MSAs sets), and applications that follow other architectures. This led us

to consider the databases metric from a different perspective and also to consider the number of

programming languages used:

• Databases: from the literature, it is clear that each MSA should have its database [9, 8, 30].

This means that if a repository has more than one database, it may contain an MSA set.

Thus, we count the number of databases configured as services in each repository by reading

their docker-compose file3. We gathered every database keyword present in our benchmark

data to use as a curated list of classifiable data storage services: sqlserver, kafka, datahub,

hana, MySQL, postgres, Cassandra, spark, mongo, db, neo4j, clickhouse, rabbitmq, redis,

dynomite, bd, subscriber, redpanda, SQL, database, bigtable, datanode, vertical, namenode,

spark, hadoop, pingcap, grafana.

• Programming languages: if the number of programming languages is high, it may mean

that the repository contains a set of MSAs. Thus, we use the following curated list of pro-

gramming languages gathered from our benchmark data to count the number of program-

ming languages present in each repository: JavaScript, Java, Go, PHP, Python, TypeScript,

Groovy, Ruby, R, Lua, Scala, COBOL, Erlang, Kotlin, Swift, C, C#, C++, Perl, ASP.NET,

Objective-C, Visual Basic .NET, Assembly, Blade, CoffeeScript, Cython, Rust, Dart, MAT-

LAB, Awk, Emacs Lisp, Objective-C++, Vala, D, XSLT, q, ActionScript, Elixir, Euphoria,

Visual Basic and ASP.
3https://docs.docker.com/compose/features-uses/

https://docs.docker.com/compose/features-uses/

3.2 Continuous Metrics 19

Finally, we checked if repositories had their count of database services configured and pro-

gramming languages greater than one to classify them as a set of MSA and then generated a

threshold for each one of the three types of repositories.

Next, we will show line charts for the metrics size, files, and files+ folder renamed “All Con-

tents.” The X-axis shows the aggregated weight of the metric with a vertical line marking the

low-risk threshold derivation of 70%, while the Y-axis shows the metrics’ values.

Size Fig. 3.8, Fig. 3.9, and Fig. 3.10 show the distribution of sizes accumulated from 0 up

to 100% to MSAs, MSAs sets and monoliths, respectively. Accordingly, the values selected as

thresholds were 442014, 492578, and 379774 since they are the max values before the aggregated

weight overcame 70% of the total distribution. So they help classify each respective type of system

with a low risk of incorrect type.

Figure 3.8: MSA Size Metric

Files Fig. 3.11, Fig. 3.12, and Fig. 3.13 show the distribution of file count for each repository

accumulated from 0 up to 100% to MSAs, MSAs sets, and monoliths, respectively. Accordingly,

the values selected as thresholds were 4925, 8790, and 3156 since they are the max values before

the aggregated weight overcame 70% of the total distribution. So they help classify each respective

type of system with a low risk of incorrect variety.

All Contents Fig. 3.14, Fig. 3.15, and Fig. 3.16 show the distribution of allContents(files+folders)

accumulated from 0 up to 100% to MSAs, MSAs sets, and monoliths respectively. Accordingly,

the values selected as thresholds were 7159, 13661, and 3491 since they are the max values before

Metrics 20

Figure 3.9: MSA set Size Metric

Figure 3.10: Monoliths Size Metric

the aggregated weight overcame 70% of the total distribution. So they help classify each respective

type of system with a low risk of incorrect variety.

3.3 Conclusion 21

Figure 3.11: MSA Files Metric

Figure 3.12: MSA set Files Metric

3.3 Conclusion

In summary, we collected data from seven binary and three continuous metrics. Searching the

code repositories to detect its presence for the binary type metric was sufficient. In contrast, for

the continuous metric, a method for threshold derivation was necessary to determine the upper

Metrics 22

Figure 3.13: Monoliths Files Metric

Figure 3.14: MSA AllContents Metric

range limit for each metric. Hence, at this stage, we had enough data about the metrics to use as

input to a classification algorithm to identify MSAs.

3.3 Conclusion 23

Figure 3.15: MSA set AllContents Metric

Figure 3.16: Monoliths AllContents Metric

Chapter 4

Classification Algorithm

Once all metrics for the list of 190 code repositories were successfully processed, we ought to

decide on a method in which we could leverage the collected metrics for the identification of

MSAs as well as MSAs sets. There were two possible paths we could follow: we could create

a model with a machine learning algorithm, or we could design our algorithm. Considering that

the process should be as transparent as possible so that users could know exactly the reasons for

repositories classification, we opted to design our own algorithm. At a broad level, the solution

involves analyzing a code repository by examining 10 metrics, computing a score that reflects the

repository’s performance in those metrics, and employing this score to determine its classification.

Essentially, the solution entails a comprehensive evaluation process that involves measuring the

repository’s implementation of some MSAs’ characteristics and then using this information to

assign it to an appropriate category. Next, we present the pseudo-code of the developed solution

broken-down to the function level. In addition, at the end of this chapter, it is possible to find a

sequence diagram of the same solution providing an illustrative view of the design.

4.1 Calculate Scores and Set Classification

Algorithm 1: This is the starting point of the whole process for the classification. In Line 2, the list

of repositories is retrieved from the database, and an iteration on this list is started in Line 3. Hence,

for each repository, we want to recover the metrics fetched and stored from GitHub, calculate a

score for it, and based on this score and two indicators (hasMsSetInd in Line 7 and hasMonoInd1

in Line 10), define a classification for it. While the MSA set indicator (hasMsSetInd) had been ide-

alized during the analysis of the continuous metrics in Chapter 3, the other indicator (hasMonoInd)

was created during the development, and it intended to flag the system having front-end related

languages, typical HTML and CSS, and one or two programming languages since, from our empir-

ical analysis, other systems usually have up to two programming languages. The score calculation

is executed in the method call to Algorithm 2 in Line 11. Next, a call to the method Algorithm 5

1In the code we use MONOLIT H to refer to other systems not following a microservice architecture.

24

4.1 Calculate Scores and Set Classification 25

to get the classification for the repository is made in Line 12. Finally, the result is set in Line 13

and Line 14 and saved in Line 15.

Algorithm 1 Calculate Scores and Set Classification
1: function CALCULATESCORESANDSETCLASSIFICATION

2: codeRepoMetricsList← repository. f indAll()
3: for each metrics in codeRepoMetricsList do
4: codeRepo← metrics.getCodeRepo()
5: pgls← metrics.getProgrammingLanguages()
6: dbs← metrics.getDatabaseServices()
7: hasMsSetInd← pgls > 1 and dbs > 1
8: langs← metrics.getLanguages()
9: f tLang← HASFRONTENDLANGUAGES(langs)

10: hasMonoInd← dbs≤ 2 and f tLang
11: score← CALCULATESCORE(metrics,hasMsSetInd)
12: class← GETREPOCLASS(score,hasMsSetInd,

hasMonoInd)
13: codeRepo.setClassi f ication(classi f ication)
14: codeRepo.setScore(score)
15: codeRepoService.save(codeRepo)
16: end for
17: end function

4.1.1 Calculate Score

Algorithm 2: Even though some metrics were found in both MSAs and monoliths, such as Light-

weight protocol and Database ownership as presented in Chapter 3, we considered all metrics in

the calculation of the score because we noticed that the higher the number of metrics found, the

more likely it would mean that it was an MSA, and removing those metrics found in both types

of repositories would not change that, but it would reduce the clarity in the reasoning for the

classification repositories as MSAs. Therefore, the score calculation was based on one principle:

each metric may score 0 or 1 point. The score started at 0 in Line 2. It accumulates the points

from Line 6 to Line 8 by calling the method Algorithm 3 for continuous metrics, and Algorithm 4

for binary metrics from Line 9 to Line 15. The total value is returned in Line 16.

Get Numerical Score (Algorithm 3) For continuous metrics, if the value for the metric was

smaller than the threshold value defined for each metric (size, files, or all contents), it scores 1

(Line 3), otherwise 0 (Line 5).

Get Boolean Score (Algorithm 4) For binary metrics, if the value for the metric was true (the

metric was detected in the code repository during the search with GitHub API), it would score 1

(Line 3), otherwise 0 (Line 5).

Classification Algorithm 26

Algorithm 2 Calculate Score
1: function CALCULATESCORE(m, hasMsSetInd)
2: score← 0
3: sT ← threshold.getByMetric(SIZE,hasMsSetInd)
4: f T ← threshold.getByMetric(FILES,hasMsSetInd)
5: cT ← threshold.getByMetric(ALL_CONT ENT S,

hasMsSetInd)
6: score← score+GETNSCORE(m.getSize(),sT)
7: score← score+GETNSCORE(m.getFiles(), f T)
8: score← score+GETNSCORE(m.getAllContents(),cT)
9: score← score+

GETBSCORE(m.isDocker f ile(),DOCKERFILE))
10: score← score+

GETBSCORE(m.isLogsService(),LOG_SERV ICE))
11: score← score+

GETBSCORE(m.isDbConnection(),DATABASE))
12: score← score+

GETBSCORE(m.isMessaging(),MESSAGING))
13: score← score+

GETBSCORE(m.isRest f ul(),REST))
14: score← score+

GETBSCORE(m.isMsMention(),MS_MENT ION))
15: score← score+GETBSCORE(!m.isSoap(),SOAP))
16: return score
17: end function

Algorithm 3 Get Numerical Score
1: function GETNSCORE(metricValue, thresholdValue,metric)
2: if metricValue≤ thresholdValue then
3: return 1
4: end if
5: return 0
6: end function

Algorithm 4 Get Boolean Score
1: function GETBSCORE(metricValue, metric):
2: if metricValue then:
3: return 1
4: end if
5: return 0
6: end function

4.1.2 Get Code Repository Classification

Algorithm 5: Here is where the classification is set not only based on the score but also considering

the indicators defined in Algorithm 1. In Line 2, the target minimum classification score for MSA

is set to 7. This value was chosen after an iterative empirical process classifying MSAs while

4.1 Calculate Scores and Set Classification 27

keeping as few false positives (others classified as MSA) as possible. In Line 3, the first evaluation

of the score is made, and if its value is not greater than 7, the project is immediately considered

not to be an MSA (Line 18). Otherwise, if its indicator to be a microservice set is true – Line 4

and Line 5 – it is classified as an MSA set. Otherwise, on the one hand, if it has not an indicator

that it is another type of system (Line 7), it is classified as an MSA (Line 15); on the other hand,

if it has an indicator that it is another type of system (Line 7), it loses 1 point (Line 8), but if the

score is still greater than 7 (Line 9 and Line 10), then it is classified as an MSA set, if the score is

lower, it is classified as not being an MSA (Line 12).

Algorithm 5 Get Code Repository Classification

1: function GETREPOCLASS(score,hasMsSetInd,hasMonoInd)
2: MS_CLASSIFICAT ION_SCORE← 7.0
3: if score > MS_CLASSIFICAT ION_SCORE then
4: if hasMsSetInd then
5: return MICROSERVICE_SET
6: end if
7: if hasMonoInd then
8: score← score−1
9: if score > MS_CLASSIFICAT ION_SCORE then

10: return MICROSERVICE_SET
11: else
12: return MONOLITH
13: end if
14: else
15: return MICROSERVICE
16: end if
17: else
18: return MONOLITH
19: end if
20: end function

Fig. 4.1 shows the sequence diagram for the classification algorithm highlighting the call to

Algorithm 5 and with some additional details omitted on the pseudo-code for simplicity.

In conclusion, the designed algorithm can utilize the 10 different metrics in its scoring sys-

tem to accumulate up to 10 points. Code repositories with scores over 7 are classified as MSAs

or MSAs set. Otherwise, they are generally considered other architectures. While the 7 binary

metrics are static since they rely upon the premise that those metrics are either found (in code

repositories) or not, the 3 continuous metrics are dynamic and so they can change over time when-

ever the input dataset from which the thresholds are derived changes. Thus, on the one hand, a

porting of the algorithm (70%) will keep it stabilized and prevent it from changing its classification

drastically. On the other hand, the other portion of the algorithm (30%) will learn over time, and

its classification will be influenced by its input data.

Classification Algorithm 28

Figure 4.1: Sequence Diagram for the Classification Algorithm

Chapter 5

GitHub Microservice Mining Tool

In this chapter, we will introduce the solution overview of the proposed tool, as well as the im-

plementation details with a set of Unified Modeling Language (UML) diagrams powered by Pan-

tUML1. This also includes the process of metric collection and threshold derivation shown in

Chapter 3 in addition to the classification algorithm presented in Chapter 4.

5.1 Solution Design

The design of this tool addresses the goal of creating an MSA corpus and making it available to

practitioners. Therefore, this tool’s functionalities start from maintaining repositories, and their

collected metrics, and then using the metrics in the algorithm designed for MSA identification.

Finally, the identified MSAs are presented to practitioners with filtering options. Before that, we

describe the role of GitHub in the implementation of this tool.

5.1.1 GitHub

There are many uses for GitHub as a collaborative tool for software development. Among other

functionalities, GitHub is an internet-based code repository for projects developed using git as

Source Control Management (SCM). According to Vidoni [29], GitHub is the most commonly

used source for MSR. Its robust API which provides access to publicly available repositories is a

reason for that. So there is a huge amount of data available from successful projects, which helps

GitHub continue to be the most significant development platform to date [13]. For this reason, we

chose GitHub to be the code repository platform for the implementation of this tool.

5.1.2 Solution Overview

The GitHub Microservice Mining Tool follows the monolith first design principle supported by

Martin Fowler [11] and many other authors. This is due to the fact that this system is designed to

1https://plantuml.com/

29

GitHub Microservice Mining Tool 30

be small and simple, and these characteristics favor a monolith rather than the case of more com-

plex and bigger systems which would be a better fit with a microservice architecture. As shown

in Fig. 5.1, the solution is composed of six internal components and one external, as described

below:

Figure 5.1: Component Diagram for GitHub Microservice Mining Tool

• Metrics Component: Generates metrics to help search for MSAs by:

1. Pulling/reading metrics data from GitHub by using GitHubApiIntegration component.

2. Maintaining metrics data about ExampleMetrics and MinedMetrics subcomponents in

the database component.

3. Sends the metrics data to be processed into the Algorithm subcomponent of the Iden-

tification component.

4. Pushing/writing the results to the database component.

• GitHubApiIntegration: Implements the integration between the external GitHub API com-

ponent and the system. This component can be replaced with other code repositories APIs.

5.2 Architecture & Technologies 31

• Repo: Maintains data for its subcomponents ExampleRepo and MinedRepo in the database

component.

• Identification Component: Identify MSAs in GitHub throughout its search mechanism by:

4. Pulling/reading MSAs metrics from the Metrics component.

5. Processing those metrics to classified code repositories.

6. Returning classification results to the Metrics component.

• Corpus Component: Shows the MSA corpus to the user and allows them to apply filters.

7. Pulling/reading MSAs repositories URLs from the database component.

5.2 Architecture & Technologies

The tool was built on a monolith architecture using a Model-View-Controller design pattern for

simplicity. The programming language of choice was Java 172 and the framework used was Spring

Boot3 for the Models and Controllers, whereas Thymeleaf4 was the template engine for the views.

Fig. 5.2 shows the system architecture with its main nodes and components:

• ClientMachine: This node is the user’s machine which must have a web browser component

for accessing the application.

• ServerMachine: This node is where the system is run and so as a classic monolith system,

it has the frontend and backend components in it.

• GitHubServer: This is the representation of GitHub where the API for querying code repos-

itories is.

• Database: This node represents an ideal database configuration in a node separated from the

system. However, for this implementation, we used H2 Database Engine5 embedded in the

ServerMachine node for a simplified deployment on the Heroku Cloud Platform6. Still, it

can be changed easily by modifying a configuration file.

5.3 Model

Fig. 5.3 shows the data model for the system which can be split into two major concepts: the

first being the representation of code repositories with the class CodeRepo, and the second the

representation of metrics collected for those repositories with the class CodeRepoMetrics. Each

2https://www.jcp.org/en/jsr/detail?id=392
3https://start.spring.io/
4https://www.thymeleaf.org/
5https://www.h2database.com/html/main.html
6https://www.heroku.com/

GitHub Microservice Mining Tool 32

Figure 5.2: Deployment Diagram for GitHub Microservice Mining Tool

class has two specializations to separate examples of code repositories (those that we know their

types and are using as a starting point: RepoExample) from mined code repositories (those that

we what to search in GitHub and then classify them: RepoMined). The classes Language and

Service support the collection of CodeRepoMetrics. The Threshold class stores the result of the

process presented in Section 3.2 and the ProcessExecution class records each execution of metrics

generation triggered by the user.

Figure 5.3: Class Diagram for GitHub Microservice Mining Tool

5.4 Use Cases 33

5.4 Use Cases

Fig. 5.4 shows the use case diagram for the solution. The only actor is the Software Engineer who

represents any practitioner interested in an MSA corpus. Next, we present a brief description of

each use case scenario in the format of user stories:

UC1 Maintain RepoExample: As Software Engineer, I want to add, list, or remove RepoExam-

ples, so that I can process their metrics.

UC2 Process RepoExample Metrics: As Software Engineer, I want to process RepoExample

Metrics, so that I can use the generated thresholds from continuous metrics to help classify

search/uploaded repositories.

UC3 List/Review RepoExample Metrics: As Software Engineer, I want to list the generated Re-

poExample metrics, so that I can review and check their correctness.

UC4 View RepoExample Metrics Statistics: As Software Engineer, I want to view statistical data

about the generated metrics, so that I can make inferences about my dataset.

UC5 Search/Upload MinedRepo: As Software Engineer, I want to upload a list of MinedRepos

(unclassified repositories) or search them through GitHub API, so that I can process their

metrics.

UC6 Process MinedRepo Metrics: As Software Engineer, I want to process MinedRepo Metrics,

so that I can see their classification which is based on Algorithm 1.

UC7 List/Review MinedRepo Metrics: As Software Engineer, I want to list the MinedRepo met-

rics, so that I can better understand their classification.

UC8 List/Filter Classified MinedRepos: As Software Engineer, I want to list and/or filter clas-

sified MinedRepos, so that I can use them in my research work or any other I may find

suitable.

Additionally, Appendix D shows the basic scenario for each use case, their pre, and post-

conditions, and respective views, such as the example below in the system as well as a sequence

diagram for the most important ones. Also, the code for the solution is available at GitHub Mi-

croservice Mining Tool.

UC1 Maintain RepoExample: As Software Engineer, I want to add, list, or remove RepoExam-

ples.

Scenario: Add one repo example - the view is shown on Fig. 5.5

1 - On the main menu, click on Repo Examples > Add/Upload.

2 - Type the owner of the code repository in the field Owner.

https://github.com/domingospanta/ghmm
https://github.com/domingospanta/ghmm

GitHub Microservice Mining Tool 34

Figure 5.4: Use Case Diagram for GitHub Microservice Mining Tool

3 - Type the name of the code repository in the field Name.

4 - Type the Url of the code repository in the field Url.

5 - Click on the checkbox Microservice if the entered repository is an MSA.

6 - Click on the button Add.

Precondition: N/A.

Post-condition: The repository example is saved in the database.

5.4 Use Cases 35

Scenario: List repo examples - the view is shown on Fig. 5.6

1 - On the main menu, click on Repo Examples > List Examples.

2 - Click on Page Size to choose how many repositories you want to see per page.

3 - The list of repositories is shown.

Precondition: There have been repositories examples added previously to the system.

Post-condition: The repository examples present in the database are listed to the user and

can be filtered by name, owner, or URL.

Figure 5.5: Example View 1

In conclusion, the GitHub Microservice Mining Tool is a materialization of the concepts dis-

covered in Chapter 2. Nonetheless, it is important to note that although these MSA identification

concepts were implemented with GitHub API in this case, the same concepts still apply for any

other platform having an API, such as Atlassian Bitbucket7 or GitLab8.

7https://bitbucket.org/
8https://about.gitlab.com/

https://bitbucket.org/
https://about.gitlab.com/

GitHub Microservice Mining Tool 36

Figure 5.6: Example View 2

Chapter 6

Evaluation

This chapter consolidates the research work by presenting the evaluation results produced through-

out the GitHub Microservice Mining Tool shown in Chapter 5. The tool itself implements the

solution proposed in Section 5.1 with the classification algorithm from Chapter 4, which in turn

uses the metrics displayed in Chapter 3 that were gathered based on the study from Chapter 2.

We divide this evaluation into two distinct phases. The first (Section 6.2) was fundamen-

tal to iteratively evaluate and improve the algorithm. In the second phase (Section 6.3), we

assumed the algorithm was stable, and the goal was to evaluate its capability to correctly iden-

tify MSAs and MSA sets. The links presented are paths from the tool’s repository available at

https://github.com/domingospanta/ghmm. Additionally, we also present a brief analysis of the

results in Section 6.4, and possible threats to its validity in Section 6.5.

6.1 Evaluation Process

The evaluation process followed to validate whether or not the classification algorithm was able to

correctly identify microservices was the following:

1. Upload a list of known MSAs to the tool.

2. Upload a list of known monoliths to the tool.

3. Process their metrics.

4. Run the classification algorithm.

5. Collect the classification results.

6. Create a confusion matrix from the results produced against the known results.

7. Analyze the generated metrics compared to the classification results and adjust the classifi-

cation algorithm if necessary.

8. Repeat.

37

https://github.com/domingospanta/ghmm

Evaluation 38

This process was executed several times with the primary goal of minimizing false positives.

In the next sections, we will share details about the different phases of this process.

6.2 Phase 1

In this phase, the goal was to classify the same repositories from which the threshold had been

generated. In other words, we wanted to verify that given several repositories to the algorithm as

examples, the thresholds generated for the continuous metrics in combination with static binary

metrics were enough for the algorithm to correctly classify those same examples with their correct

type. We executed the evaluation process at least ten times, always making some changes, fixing

some bugs, and improving the algorithm after each iteration. Following, we share the last iteration

of the process in this phase:

1. We uploaded to the tool the complete curated list of 137 MSAs from the work of Podolski

et al. [22]. After removing duplicates, 101 remained: microservices.csv1

2. We uploaded to the tool a list of 101 randomly selected monoliths from the work of Brito et

al. [4]. And there were no duplicates, so all of them remained: monoliths.csv2.

3. We processed their metrics and removed invalid entries (that is, those repositories which

did not return results to the GitHub API). As a result, 94 MSAs and 96 monoliths’ metrics

were successfully collected: phase1_processed_metrics.csv3. In this file one can see the

values collected for each of the metrics (7 binaries, and 3 continuous), as well as the aux-

iliary metrics to defined the indicators, such as DATABASE_SERVICES and PROGRAM-

MING_LANGUAGES used to set the MsSet indicator.

4. We ran the classification algorithm.

5. We collected the classification results: phase1_processed_classification.csv4. In this file,

in addition to the 3 possible classifications of MICROSERVICE, MICROSERVICE_SET,

AND MONOLITH, we can notice the score of each repository and a MESSAGE column

reporting the missing metrics which is directly linked to the calculated score.

6. We created a confusion matrix for these results shown in Table 6.1.

7. We analyzed the classification results of this 10th iteration and stopped the process.
1https://github.com/domingospanta/ghmm/blob/main/data/sample/microservices.csv
2https://github.com/domingospanta/ghmm/blob/main/data/sample/monoliths.csv
3https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_

metrics.csv
4https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_

classification.csv

https://github.com/domingospanta/ghmm/blob/main/data/sample/microservices.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/monoliths.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_metrics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_classification.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/microservices.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/monoliths.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_metrics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_metrics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_classification.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase1_processed_classification.csv

6.3 Phase 2 39

Results As we can notice in Table 6.1, from the 94 MSAs input, the algorithm considered 59

to be MSA and 35 to be MSAs set. From those 59 MSAs, 31 were correctly identified as such,

and while no MSA set was classified as MSA, 5 monoliths were classified as MSA. With that, the

Class Precision for MSA was 0,86. It is essential to notice that even though the algorithm missed

28 out of 59 MSAs, it only classified 5 false positives, which means only a 14% rate. From those

35 MSA sets, 24 were correctly identified, giving it a Class Precision of 1 since none of the others

was classified with this type. The other 11 MSA sets were wrongly classified as monoliths.

Table 6.1: Phase 1 Classification Results

MSA MSA set Other Class Precision

MSA Classification 31 0 5 0,86
MSA set Classification 0 24 0 1,00
Other Classification 28 11 91 0,70

6.3 Phase 2

In this phase, the goal was to classify a new dataset of known MSAs and applications known not

to follow such an architecture utilizing the devised algorithm. Therefore, the evaluation process

was as follows:

1. We uploaded to the tool 60 MSAs from the work of Rahman et al. [24]5: mined_microservices.csv6.

2. We uploaded to the tool 37 monoliths selected by a researcher outside of this project who

did not have any knowledge about this identification approach: mined_monolitics.csv7.

3. We processed their metrics and removed invalid entries. As a result, 35 MSAs and 33

monoliths’ metrics were successfully collected: phase2_processed_metrics.csv8.

4. We ran the classification algorithm.

5. We collected the classification results: phase2_processed_classification.csv9.

6. We created a confusion matrix for these results shown on Table 6.2.

7. We analyzed the generated metrics compared to the classification results.
5The current list of MSAs from this work is available at https://github.com/davidetaibi/

Microservices_Project_List and contains 60 projects (visited on 2023/04/27).
6/data/sample/mined_microservices.csv
7https://github.com/domingospanta/ghmm/blob/main/data/sample/mined_monolitics.csv
8https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_

metrics.csv
9https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_

classification.csv

https://github.com/domingospanta/ghmm/blob/main/data/sample/mined_microservices.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/mined_monolitics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_metrics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_classification.csv
https://github.com/davidetaibi/Microservices_Project_List
https://github.com/davidetaibi/Microservices_Project_List
https://github.com/domingospanta/ghmm/blob/main/data/sample/mined_monolitics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_metrics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_metrics.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_classification.csv
https://github.com/domingospanta/ghmm/blob/main/data/sample/phase2_processed_classification.csv

Evaluation 40

Results In Table 6.2, we can see that the results of this second phase were similar to the first

phase. Our algorithm correctly classified 22 out of 35 MSAs (16 as MSAs and 6 as MSA sets).

There were 4 false positives, so the Class Precision was 0,85, close to 0,86 from the first phase.

The other 13 microservices were classified as other.

Table 6.2: Phase 2 Classification Results

MSA MSA set Other Class Precision

MSA Classification 16 0 3 0,84
MSA set Classification 0 6 1 0,86
Other Classification 13 0 29 0,69

6.4 Analysis

The evaluation showed that the designed algorithm identifies actual microservice repositories with

a precision of 85%, producing only 15% of false positives. This shows that the method utilized

demonstrated an elevated rate of precision. Although there are many false negatives, this is not

a concern. Indeed, our goal was to find repositories containing MSAs, and our algorithm can do

it. What the many false negatives mean is that the algorithm will have to look into much more

repositories that would be necessary to find the correct ones (MSA). However, given the enormous

amount of MSAs available at GitHub, this does not threaten the attempt to create corpora of

arbitrary sizes of MSAs.

6.5 Threats to Validity

Although the designed algorithm worked well for the used datasets in both validation phases, it

may not produce similar results given a completely different dataset. We can affirm, however, that

70% of the metrics utilized are stable (binary metrics). In contrast, the other 30% (continuous

metrics) are more affected by changes in the dataset, and so influence the final results. This also

implies that they (and the algorithm) can evolve given more correctly classified software projects.

Moreover, in phase 2 of the evaluation, we gave the tool a new set containing monoliths and MSAs

in similar amounts, and it achieved a precision of 85%, which can be considered high.

There is the risk of overfitting our algorithm. However, in the second phase of our evaluation,

we gave the algorithm a new dataset containing more than 60 projects, and it produced a precision

similar to the results of phase 1. Thus, we expect the results to hold.

The validation process, as well as the result report, was manually executed by the authors,

which is error-prone. Nevertheless, we make our source code available, a deployment for testing,

and all the datasets used for further validation.

Chapter 7

Conclusions and Future Work

In this closing chapter of the dissertation, we will share our conclusions derived from the per-

formed work. Additionally, we will explore potential research directions that might emerge as a

result of this study.

7.1 Conclusions

From a thorough literature review, we have identified and analyzed a range of works related to

the microservices architectural style. Based on this analysis, we have constructed a comprehen-

sive set of characteristics that can effectively distinguish microservices from other architectural

approaches.

Furthermore, we have developed a set of metrics to provide a quantifiable framework for iden-

tifying microservices in code repositories. The metrics encompass various aspects, such as light-

weight protocol, independent deployability, database ownership, message broker usage, docu-

mentation, protocol weight, logging practices, size considerations, the number of files, and overall

content analysis. These metrics serve as reliable indicators for identifying microservices.

Additionally, we have devised a microservice identification algorithm. This algorithm utilizes

the set of metrics developed, enabling the accurate identification of actual microservice reposito-

ries with a high precision rate of 85%. This algorithm represents a valuable method for software

engineers and researchers to efficiently identify microservices in code repositories.

Finally, as a practical utilization of the concepts and techniques proposed in this research,

we have also implemented the GitHub Microservice Mining Tool. This tool integrates the set of

metrics and the microservice identification algorithm, providing a user-friendly interface to mine

microservices from code repositories. The tool leverages the insights gained from our literature re-

view and algorithm development, offering a valuable resource for practitioners seeking to analyze

and extract microservices from existing codebases.

41

Conclusions and Future Work 42

7.2 Future Works

Although this thesis dissertation has made significant contributions to the identification and mining

of microservices, there are some routes for further research and development in this domain. The

following suggestions outline potential directions for future work:

Metrics Refinement and Extension: The set of metrics developed in this research serves as

a solid foundation for microservice identification. However, further refinement and extension of

these metrics could enhance the accuracy of microservice recognition.

Algorithm Enhancement: Although our algorithm achieves a meritorious precision rate, ongo-

ing research can focus on optimizing and enhancing the algorithm’s performance. Incorporating

machine learning techniques, such as neural networks or clustering algorithms, may offer oppor-

tunities for more accurate and automated identification of microservices within code repositories.

Mixed Codebases Evaluation: The current evaluation of our algorithm and tool was performed

on a specific set of code repositories. Conducting evaluations on diverse codebases, containing

more programming languages, domains, and project sizes, could provide a more complete under-

standing of the algorithm’s effectiveness and applicability.

By pursuing these future research directions, we can continue to advance the field of mi-

croservices architecture and empower software engineers with improved tools and insights for the

effective development and maintenance of microservice-based systems.

7.2 Future Works 43

©©

References

[1] Tiago L Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from bench-
mark data. In 2010 IEEE international conference on software maintenance, pages 1–10.
IEEE, 2010.

[2] Alan Bandeira, Carlos Alberto Medeiros, Matheus Paixao, and Paulo Henrique Maia. We
need to talk about microservices: An analysis from the discussions on stackoverflow. In
2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
pages 255–259. IEEE Press, 2019.

[3] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil.
Lessons from applying the systematic literature review process within the software engineer-
ing domain. Journal of systems and software, 80(4):571–583, 2007.

[4] Miguel Brito, Jácome Cunha, and João Saraiva. Identification of microservices from mono-
lithic applications through topic modelling. In Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing, SAC ’21, page 1409–1418, New York, NY, USA, 2021.
Association for Computing Machinery.

[5] Andrea Caracciolo, Andrei Chis, Boris Spasojevic, and Mircea Lungu. Pangea: A workbench
for statically analyzing multi-language software corpora. In 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, pages 71–76. IEEE, 2014.

[6] Rui Chen, Shanshan Li, and Zheng Li. From monolith to microservices: A dataflow-driven
approach. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pages 466–
475. IEEE, 12 2017.

[7] José Correia and António Rito Silva. Identification of monolith functionality refactorings for
microservices migration. Software: Practice and Experience, n/a, 2022.

[8] Mohamed Daoud, Asmae El Mezouari, Noura Faci, Djamal Benslimane, Zakaria Maamar,
and Aziz El Fazziki. A multi-model based microservices identification approach. Journal of
Systems Architecture, 118:102200, 2021.

[9] Thatiane de Oliveira Rosa, João Francisco Lino Daniel, Eduardo Martins Guerra, and Al-
fredo Goldman. A method for architectural trade-off analysis based on patterns: Evaluating
microservices structural attributes. In Proceedings of the European Conference on Pattern
Languages of Programs 2020. Association for Computing Machinery, 2020.

[10] Umesh Deshpande, Nick Linck, and Sangeetha Seshadri. Self managed data protection for
containers. In Proceedings of the 14th ACM International Conference on Systems and Stor-
age. Association for Computing Machinery, 2021.

44

REFERENCES 45

[11] Martin Fowler. Bliki: Monolithfirst. https://martinfowler.com/bliki/
MonolithFirst.html, Jun 2015.

[12] Paolo Di Francesco. Architecting microservices. In 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). IEEE, 4 2017.

[13] GitHub. Where the world builds software. https://github.com, 2023.

[14] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Ludovico Iovino,
and Amleto Di Salle. Towards recovering the software architecture of microservice-based
systems. In 2017 IEEE International Conference on Software Architecture Workshops (IC-
SAW), pages 46–53. IEEE, 4 2017.

[15] Ahmed E. Hassan. The road ahead for mining software repositories. In 2008 Frontiers of
Software Maintenance, pages 48–57, 2008.

[16] Sara Hassan, Rami Bahsoon, and Rick Kazman. Microservice transition and its granularity
problem: A systematic mapping study. Software: Practice and Experience, 50:1651–1681,
2020.

[17] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid Holmes, and
Michael W Godfrey. The msr cookbook: Mining a decade of research. In 2013 10th Working
Conference on Mining Software Repositories (MSR), pages 343–352. IEEE, 2013.

[18] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua Zheng. Service
candidate identification from monolithic systems based on execution traces. IEEE Transac-
tions on Software Engineering, 47:987–1007, 5 2021.

[19] Staffs Keele and other. Guidelines for performing systematic literature reviews in software
engineering. Technical report, Technical report, ver. 2.3 ebse technical report. ebse, 2007.

[20] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao, Jidong Ge,
and Zhihao Shan. A dataflow-driven approach to identifying microservices from monolithic
applications. Journal of Systems and Software, 157:110380, 2019.

[21] Giuseppe Antonio Pierro, Roberto Tonelli, and Michele Marchesi. Smart-corpus: an or-
ganized repository of ethereum smart contracts source code and metrics. arXiv preprint
arXiv:2011.01723, 2020.

[22] Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B Kent. The
weakest link: Revealing and modeling the architectural patterns of microservice applica-
tions. In Proceedings of the 30th Annual International Conference on Computer Science and
Software Engineering, pages 113–122. IBM Corp., 2020.

[23] Wouter Poncin, Alexander Serebrenik, and Mark van den Brand. Process mining software
repositories. In 2011 15th European Conference on Software Maintenance and Reengineer-
ing, pages 5–14, 2011.

[24] Mohammad Imranur Rahman, Sebastiano Panichella, and Davide Taibi. A curated dataset of
microservices-based systems. SSSME-2019, 2019.

[25] Chris Richardson. Microservices patterns: with examples in Java. Simon and Schuster,
2018.

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://github.com

REFERENCES 46

[26] Yamina Romani, Okba Tibermacine, and Chouki Tibermacine. Towards migrating legacy
software systems to microservice-based architectures: a data-centric process for microser-
vice identification. In 2022 IEEE 19th International Conference on Software Architecture
Companion (ICSA-C), pages 15–19. IEEE, 3 2022.

[27] Khaled Sellami, Ali Ouni, Mohamed Aymen Saied, Salah Bouktif, and Mohamed Wiem
Mkaouer. Improving microservices extraction using evolutionary search. Information and
Software Technology, 151:106996, 2022.

[28] Jacopo Soldani, Giuseppe Muntoni, Davide Neri, and Antonio Brogi. The µtosca toolchain:
Mining, analyzing, and refactoring microservice-based architectures. Software: Practice and
Experience, 51(7):1591–1621, 2021.

[29] M Vidoni. A systematic process for mining software repositories: Results from a systematic
literature review. Information and Software Technology, page 106791, 2021.

[30] Evgeny Volynsky, Merlin Mehmed, and Stephan Krusche. Architect: A framework for the
migration to microservices. In 2022 International Conference on Computing, Electronics &
Communications Engineering (iCCECE), pages 71–76. IEEE, 8 2022.

Appendix A

List of Included Publication on the
Systematic Literature Review

Table A.1: List of Included Publications

Type Authors Title Year Publisher

Conference

Paper

Bandeira A,Medeiros

CA,Paixao M,Maia PH

We Need to Talk about Microser-

vices: An Analysis from the Dis-

cussions on StackOverflow

2019 IEEE

Conference

Paper

Wei Y,Yu Y,Pan

M,Zhang T

A Feature Table Approach to De-

composing Monolithic Applica-

tions into Microservices

2020 ACM

Conference

Paper

Santos A,Paula H Microservice Decomposition

and Evaluation Using Depen-

dency Graph and Silhouette

Coefficient

2021 ACM

Conference

Paper

Eski S,Buzluca F An Automatic Extraction Ap-

proach: Transition to Microser-

vices Architecture from Mono-

lithic Application

2018 ACM

Miscellaneous Josélyne MI,Tuheirwe-

Mukasa D,Kanagwa

B,Balikuddembe J

Partitioning Microservices: A

Domain Engineering Approach

2018 ACM

Conference

Paper

Sellami K,Saied

MA,Ouni A

A Hierarchical DBSCAN

Method for Extracting Mi-

croservices from Monolithic

Applications

2022 ACM

47

List of Included Publication on the Systematic Literature Review 48

Conference

Paper

Morais G,Bork D,Adda

M

Towards an Ontology-Driven

Approach to Model and Analyze

Microservices Architectures

2021 ACM

Conference

Paper

Santos N,Salgado

CE,Morais F,Melo

M,Silva S,Martins

R,Pereira M,Rodrigues

H,Machado RJ,Ferreira

N,Pereira M

A Logical Architecture Design

Method for Microservices Archi-

tectures

2019 ACM

Miscellaneous Márquez G,Astudillo H Identifying Availability Tactics

to Support Security Architectural

Design of Microservice-Based

Systems

2019 ACM

Conference

Paper

Auer F,Felderer

M,Lenarduzzi V

Towards Defining a Microservice

Migration Framework

2018 ACM

Conference

Paper

Carrasco A,van Bladel

B,Demeyer S

Migrating towards Microser-

vices: Migration and Architec-

ture Smells

2018 ACM

Conference

Paper

Yang Z,Wu S,Zhang C A Microservices Identification

Approach based on Problem

Frames

2022 IEEE

Conference

Paper

Schroer C,Wittfoth

S,Gomez JM

A Process Model for Microser-

vices Design and Identification

2021 IEEE

Conference

Paper

Zaragoza P,Seriai

AD,Seriai A,Shatnawi

A,Derras M

Leveraging the Layered Archi-

tecture for Microservice Recov-

ery

2022 IEEE

Journal Arti-

cle

Furda A,Fidge

C,Zimmermann O,Kelly

W,Barros A

Migrating Enterprise Legacy

Source Code to Microservices:

On Multitenancy, Statefulness,

and Data Consistency

2018 IEEE

Conference

Paper

Chen R,Li S,Li Z From Monolith to Microservices:

A Dataflow-Driven Approach

2017 IEEE

Conference

Paper

Selmadji A,Seriai

AD,Bouziane

HL,Mahamane

RO,Zaragoza P,Dony C

From Monolithic Architecture

Style to Microservice one Based

on a Semi-Automatic Approach

2020 IEEE

Conference

Paper

Amiri MJ Object-Aware Identification of

Microservices

2018 IEEE

List of Included Publication on the Systematic Literature Review 49

Conference

Paper

Zhang Y,Liu B,Dai

L,Chen K,Cao X

Automated Microservice Identi-

fication in Legacy Systems with

Functional and Non-Functional

Metrics

2020 IEEE

Conference

Paper

Volynsky E,Mehmed

M,Krusche S

Architect: A Framework for the

Migration to Microservices

2022 IEEE

Miscellaneous Francesco PD Architecting Microservices 2017 IEEE

Conference

Paper

Romani Y,Tibermacine

O,Tibermacine C

Towards Migrating Legacy Soft-

ware Systems to Microservice-

based Architectures: a Data-

Centric Process for Microservice

Identification

2022 IEEE

Conference

Paper

Daoud M,Mezouari

AE,Faci N,Benslimane

D,Maamar Z,Fazziki AE

Towards an Automatic Identi-

fication of Microservices from

Business Processes

2020 IEEE

Conference

Paper

Yedida R,Krishna

R,Kalia A,Menzies

T,Xiao J,Vukovic M

Lessons learned from hyper-

parameter tuning for microser-

vice candidate identification

2021 IEEE

Journal Arti-

cle

Jin W,Liu T,Cai

Y,Kazman R,Mo

R,Zheng Q

Service Candidate Identification

from Monolithic Systems Based

on Execution Traces

2021 IEEE

Journal Arti-

cle

Daoud M,Mezouari

AE,Faci N,Benslimane

D,Maamar Z,Fazziki AE

A multi-model based microser-

vices identification approach

2021 ScienceDirect

Journal Arti-

cle

Li S,Zhang H,Jia Z,Li

Z,Zhang C,Li J,Gao

Q,Ge J,Shan Z

A dataflow-driven approach to

identifying microservices from

monolithic applications

2019 ScienceDirect

Journal Arti-

cle

Christoforou A,Andreou

AS,Garriga M,Baresi L

Adopting microservice architec-

ture: A decision support model

based on genetically evolved

multi-layer FCM

2022 ScienceDirect

Miscellaneous Correia J,Silva AR Identification of monolith func-

tionality refactorings for mi-

croservices migration

2022 Wiley

Miscellaneous Trabelsi I,Abdellatif

M,Abubaker A,Moha

N,Mosser S,Ebrahimi-

Kahou S,Guéhéneuc

YG

From legacy to microservices:

A type-based approach for mi-

croservices identification using

machine learning and semantic

analysis

2022 Wiley

List of Included Publication on the Systematic Literature Review 50

Journal Arti-

cle

Balalaie A,Heydarnoori

A,Jamshidi P,Tamburri

DA,Lynn T

Microservices migration patterns 2018 Wiley

Conference

Paper

Brito M,Cunha J,Saraiva

J

Identification of Microservices

from Monolithic Applications

through Topic Modelling

2021 ACM

Conference

Paper

Oliveira J,Pinheiro

D,Figueiredo E

JExpert: A Tool for Library Ex-

pert Identification

2020 ACM

Conference

Paper

Carvalho L,Garcia

A,Colanzi TE,Assunção

WK,Lima MJ,Fonseca

B,Ribeiro M,Lucena C

Search-Based Many-Criteria

Identification of Microservices

from Legacy Systems

2020 ACM

Conference

Paper

Costa DI,e Silva Filho

EP,da Silva RF,de

C. Quaresma Gama

TD,Cortés MI

Microservice Architecture: A

Tertiary Study

2020 ACM

Conference

Paper

Granchelli G,Cardarelli

M,Francesco

PD,Malavolta I,Iovino

L,Salle AD

Towards Recovering the

Software Architecture of

Microservice-Based Systems

2017 IEEE

Journal Arti-

cle

Schiewe M,Curtis

J,Bushong V,Cerny T

Advancing Static Code Analysis

With Language-Agnostic Com-

ponent Identification

2022 IEEE

Journal Arti-

cle

Sellami K,Ouni A,Saied

MA,Bouktif S,Mkaouer

MW

Improving microservices extrac-

tion using evolutionary search

2022 ScienceDirect

Journal Arti-

cle

Abdellatif M,Shatnawi

A,Mili H,Moha

N,Boussaidi GE,Hecht

G,Privat J,Guéhéneuc

YG

A taxonomy of service identi-

fication approaches for legacy

software systems modernization

2021 ScienceDirect

Journal Arti-

cle

Soldani J,Muntoni

G,Neri D,Brogi A

The µTOSCA toolchain: Min-

ing, analyzing, and refactoring

microservice-based architectures

2021 Wiley

Journal Arti-

cle

Hassan S,Bahsoon

R,Kazman R

Microservice transition and its

granularity problem: A system-

atic mapping study

2020 Wiley

List of Included Publication on the Systematic Literature Review 51

Conference

Paper

Podolskiy V,Patrou

M,Patros P,Gerndt

M,Kent KB

The Weakest Link: Revealing

and Modeling the Architectural

Patterns of Microservice Appli-

cations

2020 ACM

Conference

Paper

Deshpande U,Linck

N,Seshadri S

Self Managed Data Protection

for Containers

2021 ACM

Miscellaneous de Oliveira Rosa

T,Daniel JF,Guerra

EM,Goldman A

A Method for Architectural

Trade-off Analysis Based on Pat-

terns: Evaluating Microservices

Structural Attributes

2020 ACM

Appendix B

List of Included Microservices Code
Repositories

URL

1 https://github.com/instana/robot-shop

2 https://github.com/Netflix/conductor

3 https://github.com/Netflix/titus-control-plane

4 https://github.com/Netflix/genie

5 https://github.com/uber/cadence

6 https://github.com/microservices-demo/microservices-demo

7 https://github.com/Open-IoT-Service-Platform/platform-launcher/

8 https://github.com/apache/incubator-airflow/

9 https://github.com/cfpb/cfgov-refresh

10 https://github.com/Yelp/Tron

11 https://github.com/Yelp/paasta

12 https://github.com/Yelp/kafka-utils

13 https://github.com/Yelp/task_processing

14 https://github.com/Yelp/casper

15 https://github.com/linkedin/Burrow

16 https://github.com/linkedin/WhereHows

17 https://github.com/DataDog/integrations-core

18 https://github.com/DataDog/dd-trace-rb

19 https://github.com/DataDog/dd-trace-dotnet

20 https://github.com/DataDog/integrations-extras

21 https://github.com/DataDog/trace-examples

22 https://github.com/dotnet-architecture/eShopOnContainers

23 https://github.com/NrgXnat/xnat-docker-compose

24 https://github.com/square/shuttle

52

List of Included Microservices Code Repositories 53

25 https://github.com/apache/ignite

26 https://github.com/apache/beam

27 https://github.com/apache/arrow

28 https://github.com/apache/pulsar

29 https://github.com/apache/incubator-skywalking

30 https://github.com/apache/james-project

31 https://github.com/apache/bookkeeper

32 https://github.com/apache/flink

33 https://github.com/apache/myfaces-tobago

34 https://github.com/apache/predictionio

35 https://github.com/apache/incubator-griffin

36 https://github.com/apache/metron

37 https://github.com/apache/trafficcontrol

38 https://github.com/spotify/bigtable-autoscaler

39 https://github.com/andreaskoch/dockerized-magento

40 https://github.com/arvatoSCM/dockerize-magento2

41 https://github.com/sameersbn/docker-gitlab

42 https://github.com/SAP/InfraBox

43 https://github.com/zammad/zammad-docker-compose

44 https://github.com/lucirr/docker-compose-portal

45 https://github.com/reportportal/reportportal

46 https://github.com/onap/portal

47 https://github.com/datosgobar/portal-base

48 https://github.com/cBioPortal/cbioportal

49 https://github.com/WeblateOrg/docker-compose

50 https://github.com/ONLYOFFICE/Docker-CommunityServer

51 https://github.com/owncloud-docker/server

52 https://github.com/zalando/zally

53 https://github.com/metabrainz/listenbrainz-server

54 https://github.com/pingcap/tidb-docker-compose

55 https://github.com/ansjin/terminus

56 https://github.com/cloudfoundry-incubator/stratos

57 https://github.com/spryker/docker-shop-suite/

58 https://github.com/devicehive/devicehive-docker

59 https://github.com/FriendsOfREDAXO/redaxo-mit-docker

60 https://github.com/okfn/docker-ckan

61 https://github.com/adaptdk/drupal-docker-compose

62 https://github.com/theodorosploumis/drupal-docker

63 https://github.com/poldracklab/open_fmri

64 https://github.com/eoinsha/node-seneca-base

List of Included Microservices Code Repositories 54

65 https://github.com/Mogtofu33/docker-compose-drupal

66 https://github.com/inspirehep/inspire-next

67 https://github.com/pardahlman/docker-rabbitmq-cluster

68 https://github.com/alexellis/faas-example-voting-app

69 https://github.com/simplesteph/kafka-stack-docker-compose

70 https://github.com/cms-sw/cms-docker/

71 https://github.com/bitrixdock/bitrixdock

72 https://github.com/enonic-cloud/docker-compose-enonic-cms

73 https://github.com/cortex-cms/cortex-starter

74 https://github.com/icecrime/vossibility-stack

75 https://github.com/GeoNode/geonode

76 https://github.com/jazzband/website

77 https://github.com/Landoop/fast-data-connect-cluster

78 https://github.com/xchem/fragalysis-stack

79 https://github.com/sprintcube/docker-compose-lamp

80 https://github.com/mgcrea/docker-compose-tick-stack

81 https://github.com/damsonn/node-docker-compose

82 https://github.com/cytopia/devilbox/

83 https://github.com/phaldan/compose-lampn

84 https://github.com/StackStorm/st2-docker

85 https://github.com/dashersw/cote-workshop

86 https://github.com/Accenture/reactive-interaction-gateway

87 https://github.com/uc-cdis/compose-services

88 https://github.com/testdrivenio/flask-microservices-main

89 https://github.com/nklmish/microservice-demo

90 https://github.com/kbastani/spring-cloud-microservice-example

91 https://github.com/sivaprasadreddy/spring-boot-microservices-series

92 https://github.com/cer/microservices-examples

93 https://github.com/ewolff/microservice

94 https://github.com/apssouza22/java-microservice

95 https://github.com/mjhea0/microservice-movies

96 https://github.com/launchany/microservices-nginx-gateway

97 https://github.com/markglh/composing-microservices-with-sbt-docker

98 https://github.com/microservices-patterns/ftgo-application

99 https://github.com/callistaenterprise/blog-microservices

100 https://github.com/spring-petclinic/spring-petclinic-microservices

101 https://github.com/sczyh30/vertx-blueprint-microservice

Appendix C

List of Included Monoliths Code
Repositories

URL

1 https://github.com/miansen/Roothub

2 https://github.com/huanglu20124/invoice

3 https://github.com/Lab41/Dendrite

4 https://github.com/pibigstar/parsevip

5 https://github.com/OCR4all/OCR4all

6 https://github.com/moocss/EasyCMS

7 https://github.com/Vino007/javaEEScaffold

8 https://github.com/GdeiAssistant/GdeiAssistant

9 https://github.com/purang-fintech/seppb

10 https://github.com/muralibasani/kafkawize

11 https://github.com/qianqianjun/Educational-management

12 https://github.com/wsk1103/movie-boot

13 https://github.com/JoeyBling/bootplus

14 https://github.com/forTribeforXuanmo/sword-forum

15 https://github.com/justinscript/travel.b2b

16 https://github.com/superman544/JavaOJSystem

17 https://github.com/514840279/danyuan-application

18 https://github.com/iminto/baicai

19 https://github.com/krishagni/openspecimen

20 https://github.com/justinscript/shopping.plat

21 https://github.com/cym1102/nginxWebUI

22 https://github.com/Jannchie/biliob_backend

23 https://github.com/INCF/eeg-database

24 https://github.com/Lotharing/SDIMS

55

List of Included Monoliths Code Repositories 56

25 https://github.com/kanban/kanban-app

26 https://github.com/Frodez/BlogManagePlatform

27 https://github.com/finallysmile3/ExamSystem

28 https://github.com/cloudfoundry-attic/login-server

29 https://github.com/atlasapi/atlas

30 https://github.com/metasfresh/metasfresh-webui-api-legacy

31 https://github.com/tangdu/smh2

32 https://github.com/qiao-zhi/jwxt

33 https://github.com/jiangzongyao/kettle-master

34 https://github.com/jdmr/mateo

35 https://github.com/shuxianfeng/movision

36 https://github.com/leluque/university-site-cms

37 https://github.com/ghostxbh/uzy-ssm-mall

38 https://github.com/OpenGeoportal/OGP2

39 https://github.com/litblank/hammer

40 https://github.com/choerodon/agile-service-old

41 https://github.com/kai8406/cmop

42 https://github.com/gliderwiki/glider

43 https://github.com/hslooooooool/form_flow

44 https://github.com/mozammel/mNet

45 https://github.com/easy-ware/api-manager

46 https://github.com/lvr1997/ershoujiaoyi

47 https://github.com/Ryan–Yang/CBoard-boot

48 https://github.com/GZzzhsmart/P2Pproj

49 https://github.com/HIIT/dime-server

50 https://github.com/doooyo/Weixin_Server

51 https://github.com/justinbaby/my-paper

52 https://github.com/edgexfoundry/core-data

53 https://github.com/mofadeyunduo/online-judge

54 https://github.com/MiniPa/cjs_ssms

55 https://github.com/AURIN/online-whatif

56 https://github.com/fishstormX/fishmaple

57 https://github.com/opendevstack/ods-provisioning-app

58 https://github.com/parasoft/parabank

59 https://github.com/MaritimeConnectivityPlatform/IdentityRegistry

60 https://github.com/zhangyanbo2007/youkefu

61 https://github.com/starqiu/RDMP1

62 https://github.com/yunchaoyun/active4j-flow

63 https://github.com/yorkmass/Yark-AdminMS

64 https://github.com/vector1989/EMAS

List of Included Monoliths Code Repositories 57

65 https://github.com/768330962/poet_ready_system

66 https://github.com/EUSurvey/EUSURVEY

67 https://github.com/suyeq/steamMall

68 https://github.com/zlren/noah-health

69 https://github.com/Prasad108/TutesMessanger

70 https://github.com/busing/circle_web

71 https://github.com/UDA-EJIE/udaLib

72 https://github.com/bbaibb1009/wxcrm

73 https://github.com/khasang/delivery

74 https://github.com/TexnologiaLogismikou/Fiz

75 https://github.com/uq-eresearch/oztrack

76 https://github.com/wang007/live-server

77 https://github.com/zxwgdft/paladin-boot

78 https://github.com/shenshaoming/byte_easy

79 https://github.com/nimble-platform/business-process-service

80 https://github.com/codemky/uni

81 https://github.com/ushahidi/SwiftRiver-API

82 https://github.com/softservedata/lv257

83 https://github.com/aramsoft/aramcomp

84 https://github.com/bao17634/Warehouse-system

85 https://github.com/shigenwang/membership

86 https://github.com/SafeExamBrowser/seb-server

87 https://github.com/Seenck/jeecg-bpm-3.8

88 https://github.com/GraffiTab/GraffiTab-Backend

89 https://github.com/surajcm/Poseidon

90 https://github.com/loongw513029/buscloud

91 https://github.com/tcrct/duang

92 https://github.com/ZFGCCP/ZFGC3

93 https://github.com/WilsonHu/sinsim

94 https://github.com/crypto-coder/open-cyclos

95 https://github.com/sfx478076717/goldenarches

96 https://github.com/zndo/oss-admin-parent

97 https://github.com/dp2-g56/Dp2-L02

98 https://github.com/cable5881/Fund

99 https://github.com/wangwang1230/te-empl

100 https://github.com/ElectiveTeam/elective_system

101 https://github.com/Rocklee830630/WMSystem

Appendix D

Use Case Descriptions And Views for
GitHub Microservice Mining Tool

UC1 Maintain RepoExample: As Software Engineer, I want to add, list, or remove RepoExam-

ples.

Scenario: Add one repo example - the view is shown on Fig. D.1

1 - On the main menu, click on Repo Examples > Add/Upload.

2 - Type the owner of the code repository in the field Owner.

3 - Type the name of the code repository in the field Name.

4 - Type the Url of the code repository in the field Url.

5 - Click on the checkbox Microservice if the entered repository is an MSA.

6 - Click on the button Add.

Precondition: N/A.

Post-condition: The repository example is saved in the database.

Scenario: Add a list of repo examples - the view is shown on Fig. D.1 and the sequence

diagram on Fig. D.10

1 - On the main menu, click on Repo Examples > Add/Upload.

2 - Click on Choose file.

3 - Select the CSV file.

4 - Click on Upload.

Precondition: The user has a CSV file in the format of this example1containing the reposi-

tories to be added.
1https://github.com/domingospanta/ghmm/blob/main/data/sample/microservices.csv

58

https://github.com/domingospanta/ghmm/blob/main/data/sample/microservices.csv

Use Case Descriptions And Views for GitHub Microservice Mining Tool 59

Post-condition: The list of repository examples are saved in the database.

Scenario: List repo examples - the view is shown on Fig. D.2

1 - On the main menu, click on Repo Examples > List Examples.

2 - Click on Page Size to choose how many repositories you want to see per page.

3 - The list of repositories is shown.

Precondition: There have been repositories examples added previously to the system.

Post-condition: The repository examples present in the database is listed to the user and

can be filtered by name, owner, or URL.

Scenario: Remove repo example - the view is shown on Fig. D.2

1 - On the main menu, click on Repo Examples > List Examples.

2 - Click on Page Size to choose how many repositories you want to see per page.

3 - On the left side of each line, click on the archive icon to delete the line.

Precondition: There have been repositories examples added previously to the system.

Post-condition: The repository example is removed from the database.

UC2 Process RepoExample Metrics: As Software Engineer, I want to process RepoExample

Metrics.

Scenario: Start RepoExamples Metrics Processing - the view is shown on Fig. D.3 and the

implementation details on sequence diagrams illustrated by Fig. D.11 and Fig. D.12

1 - On the main menu, click on Repo Examples > Process Metrics.

2 - Click on the Start button.

Precondition: There have been repositories examples added previously to the system.

Post-condition: The system fetched data about the repositories on GitHub to generate their

metrics.

UC3 List/Review RepoExample Metrics: As Software Engineer, I want to list the generated Re-

poExample metrics.

Scenario: List RepoExample Metrics - the view is shown on Fig. D.4

Use Case Descriptions And Views for GitHub Microservice Mining Tool 60

1 - On the main menu, click on Repo Examples > List Metrics.

2 - Click on Page Size to choose how many repositories you want to see per page.

Precondition: The RepoExamples Metrics have been previously processed.

Post-condition: The repository examples metrics present in the database are listed to the

user and can be filtered by name, owner, or URL.

UC4 View RepoExample Metrics Statistics: As Software Engineer, I want to view statistical data

about the generated metrics.

Scenario: Show RepoExample Metrics Statistics - the view is shown on Fig. D.5

1 - On the main menu, click on Repo Examples > Metrics Statistics.

Precondition: The RepoExamples Metrics have been previously processed.

Post-condition: Statistics about MSAs and monoliths are shown.

UC5 Search/Upload MinedRepo: As Software Engineer, I want to upload a list of MinedRepos

(unclassified repositories) or search them through GitHub API.

Scenario: Search MinedRepo - the view is shown on Fig. D.6

1 - On the main menu, click on Identification > Search/Upload.

2 - Type the search term on the field Search String according to GitHub API search

query2.

3 - On the field Programming Languages, hold down the control key and click on the

desired programming languages for the search.

4 - On the field Quantity, type the number of code repositories you want to find.

5 - Click on the Clear current list checkbox if you want to erase any previous search/u-

pload.

6 - Click on Search.

Precondition: N/A

Post-condition: The desired quantity of code repositories is searched on GitHub and saved

to the database.

Scenario: Upload MinedRepo - the view is shown on Fig. D.6

2https://docs.github.com/en/rest/search?apiVersion=2022-11-28#search-repositories

Use Case Descriptions And Views for GitHub Microservice Mining Tool 61

1 - On the main menu, click on Identification > Search/Upload.

2 - Click on Choose file.

3 - Select the CSV file.

4 - Click on Upload.

Precondition: The user has a CSV file in the format of this example3 containing the mined

repositories to be added.

Post-condition: The list of mined repositories are saved in the database.

UC6 Process MinedRepo Metrics: As Software Engineer, I want to process MinedRepo Metrics.

Scenario: Start MinedRepos Metrics Processing - the view is shown on Fig. D.7

1 - On the main menu, click on Identification > Process Metrics.

2 - Click on the Start button.

Precondition: There have been mined repositories added previously to the system.

Post-condition: The system fetched data about the repositories on GitHub to generate their

metrics.

UC7 List/Review MinedRepo Metrics: As Software Engineer, I want to list the generated Mine-

dRepo metrics.

Scenario: List MinedRepo Metrics - the view is shown on Fig. D.8

1 - On the main menu, click on Identification > List Metrics.

2 - Click on Page Size to choose how many repositories you want to see per page.

Precondition: The MinedRepos Metrics have been previously processed.

Post-condition: The repository examples metrics present in the database are listed to the

user and can be filtered by name, owner, or URL.

UC8 List/Filter Classified MinedRepos: As Software Engineer, I want to list and/or filter classi-

fied MinedRepos.

Scenario: Show Classified MinedRepos - the view is shown on Fig. D.9

1 - On the main menu, click on Corpus > Mined Repos.

2 - Click on Page Size to choose how many mined repositories you want to see per page.

3https://github.com/domingospanta/ghmm/blob/main/data/sample/mined_microservices.csv

https://github.com/domingospanta/ghmm/blob/main/data/sample/mined_microservices.csv

Use Case Descriptions And Views for GitHub Microservice Mining Tool 62

Precondition: The MinedRepos Metrics have been previously processed.

Post-condition: The mined repositories present in the database are listed to the user with

their respective classification and can be filtered by name, owner, or URL.

Figure D.1: Add/Upload Examples of Repositories View

Use Case Descriptions And Views for GitHub Microservice Mining Tool 63

Figure D.2: List of Repositories Examples View

Figure D.3: Repo Examples Metrics Generation View

Use Case Descriptions And Views for GitHub Microservice Mining Tool 64

Figure D.4: Repo Examples List of Metrics Generated View

Figure D.5: Repo Examples Metrics Statistics View

Use Case Descriptions And Views for GitHub Microservice Mining Tool 65

Figure D.6: Search/Mine code repositories from GitHub View

Figure D.7: Process Mined Repos Metrics View

Use Case Descriptions And Views for GitHub Microservice Mining Tool 66

Figure D.8: List of Mined Repos Generated Metrics View

Figure D.9: List of Mined Code Repositories View

Use Case Descriptions And Views for GitHub Microservice Mining Tool 67

Figure D.10: Upload Repo Examples Diagram

Figure D.11: Start Metrics Generation Sequence Diagram

Use Case Descriptions And Views for GitHub Microservice Mining Tool 68

Figure D.12: Execute Metrics Operations Sequence Diagram

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 Systematic Literature Review
	2.1 Research Method
	2.1.1 Planning the Review
	2.1.2 Conducting the Review

	2.2 Results
	2.2.1 RQ1: What are the corpus of microservices currently available for researchers and/or practitioners?
	2.2.2 RQ2: What aspects of microservices applications can be used for their classification as microservices applications?
	2.2.3 RQ3: Can we define an algorithm to recognize MSAs' code repositories based on their characteristics?

	3 Metrics
	3.1 Binary Metrics
	3.2 Continuous Metrics
	3.3 Conclusion

	4 Classification Algorithm
	4.1 Calculate Scores and Set Classification
	4.1.1 Calculate Score
	4.1.2 Get Code Repository Classification

	5 GitHub Microservice Mining Tool
	5.1 Solution Design
	5.1.1 GitHub
	5.1.2 Solution Overview

	5.2 Architecture & Technologies
	5.3 Model
	5.4 Use Cases

	6 Evaluation
	6.1 Evaluation Process
	6.2 Phase 1
	6.3 Phase 2
	6.4 Analysis
	6.5 Threats to Validity

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Works

	References
	A List of Included Publication on the Systematic Literature Review
	B List of Included Microservices Code Repositories
	C List of Included Monoliths Code Repositories
	D Use Case Descriptions And Views for GitHub Microservice Mining Tool

