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Resumo

A inspeção de estruturas marítimas é dificultada pela acumulação de crescimento marinho nas
estruturas. O crescimento marinho afeta a estabilidade e integridade das estruturas, ao mesmo
tempo em que impede a inspeção adequada da estrutura. Em consequência, as empresas pre-
cisam contratar especialistas que avaliam manualmente cada parte afetada da estrutura e agendam
a manutenção onde é mais necessária. Ambientes adversos subaquáticos tornam difícil a tarefa de
capturar e analisar imagens subaquáticas da estrutura, pois requer veículos especializados como
ROVs para realizar essas operações e porque os ambientes subaquáticos impactam diretamente a
qualidade das imagens. Este trabalho propõe utilizar algoritmos modernos de aprendizagem com-
putacional para efetuar segmentação de imagem com o intuito de identificar regiões de crescimento
marinho em imagens subaquáticas. Isto permitirá reduzir a carga de trabalho manual necessária
para calendarizar processos de manutenção e aumentar o grau de automatização deste processo.
Além disso, é proposto um algoritmo que gera novas imagens a partir de recortes localizados nas
imagens originais como solução para ultrapassar a dificuldade de treinar algoritmos de aprendiza-
gem computacional num dataset de dimensões reduzidas.
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Abstract

Offshore structure inspection is obstructed by marine growth accumulation in the structure. Marine
growth impacts the stability and integrity of offshore structures, while simultaneously preventing
inspection of the structure. In consequence companies need to employ specialists that manually
access each impacted part of the structure and schedule maintenance where it is most needed.
Adverse subsea environments make the task of capturing and analysing underwater images of
the structure difficult because it requires specialized vehicles, like Remotely Operated Vehicles,
to perform these operations and because subsea environments directly impact the quality of the
images. This work proposes to leverage state-of-the-art learning-based algorithms to perform im-
age segmentation in order to identify regions of marine growth within underwater images. This
will allow a reduction in the manual labour necessary to schedule maintenance processes for the
structure and an increase in the degree of automation of the process. In addition, this work pro-
poses an algorithm that generates new images by performing localized crops in the original data
to overcome the challenges of training learning models in a small-scale dataset.
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“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel
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Chapter 1

Introduction

1.1 Context and Motivation

In recent years, Artificial Intelligence (AI) advancements have sparked a revolution with practical

applications across all industries. Deep Learning (DL) algorithms are at the core of these advance-

ments enabling autonomous systems to perform tasks that previously required human intervention

and sometimes with increased proficiency 1. Computer Vision (CV), a subset of AI that aims to

understand and interpret visual data to extract meaningful insights, powered by these advances in

AI is enabling the development autonomous systems capable of facial recognition 2, autonomous

driving 3 or medical imaging analysis [1]. Leveraging these advancements the marine industry

has embraced the potential of CV and is already benefitting from it’s applications [2, 3, 4]. In

particular, CV has proven to be a valuable tool in the field of marine maintenance [5], enabling

efficient and proactive monitoring of critical assets in marine environments [6, 7, 8].

Marine environments encompass vast bodies of water, including oceans, seas, and lakes, which

harbor diverse ecosystems and provide a vital resource for various industries. Within these envi-

ronments, offshore structures play a pivotal role in supporting activities such as renewable energy

generation, oil and gas exploration. According to the International Energy Agency (IEA), in 2021

offshore oil drilling accounted for roughly 25% of global oil production4. Offshore structures,

such as offshore platforms, wind farms, and underwater pipelines, face unique challenges due to

their exposure to harsh conditions, including strong winds, unpredictable weather patterns, cor-

rosive saltwater and biofouling [9, 10]. In particular, biofouling or marine growth (MG) refer to

the accumulation of marine organisms, such as, algae, barnacles and mollusks, on the surface of

submerged structures such as, ship hulls, offshore structures or marine equipment. It is a natural

process, although undesirable because it leads to increased drag and fuel consumption for ships, re-

duced efficiency of underwater structures, corrosion [11], and the introduction of invasive species

1https://www.bbc.com/news/technology-40042581
2https://www.vision-box.com/
3https://www.tesla.com/autopilot
4https://www.iea.org/reports/world-energy-outlook-2022
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2 Introduction

to new habitats. Historically, companies in the Oil & Gas industry have used divers to remove ma-

rine growth from offshore structures, and more recently, around 2 decades ago, companies started

using Remote Operated Vehicles (ROVs) to substitute divers performing marine growth removal

[12, 13]. However, the effectiveness of this solution is hindered by 2 main factors: high cost of

acquiring and maintaining these vehicles and poor control of the ROV [14, 15]. Pedersen et al.

(2022) [15] present a five step process to marine growth removal (Figure 1.1):

Figure 1.1: Five step marine growth removal process (extracted from [15]).

In step 1, regular inspections of the structure are conducted using ROVs equipped with cam-

eras and sensors to gather data on the marine growth present. This data is then analyzed by experts

in step 2, who quantify the extent of the marine growth and make a decision regarding mainte-

nance actions. If maintenance is required, the process moves to step 3, otherwise, the process is

postponed until the next scheduled assessment. In step 3, a more detailed inspection is carried

out in the affected area and in step 4 plans are made for the upcoming removal campaign. Step

5 involves the actual removal of marine growth, which is performed by an ROV equipped with

a high-pressure water jet [16]. Finally, in step 6, a final inspection is conducted to assess the

effectiveness of the cleaning process. This sequential approach ensures systematic monitoring,

assessment, and targeted removal of marine growth from offshore structures.

The objective of this work is to automate the decision process in step 2. The current decision-

making process is manual and time-consuming, to address this, this work proposes the utilization

of state-of-the-art CV algorithms to develop an autonomous system capable of accurately identi-

fying and delineating regions of marine growth within underwater images.

In recent years, significant advancements in CV have demonstrated promising results, with

performance approaching or even surpassing human-level capabilities in certain tasks [17]. One

crucial task within the CV domain is image segmentation, which involves the partitioning of an

image into distinct regions based on shared visual characteristics, such as color, texture, or inten-

sity. Specifically, image segmentation entails assigning a label to each pixel in an image, ensuring

that pixels with the same label exhibit similar characteristics. The primary objective of image

segmentation is to accurately separate different regions and identify object boundaries.
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1.2 Objectives

The proposed research aims to contribute to the advancement of underwater autonomous systems

by leveraging these CV techniques. Overall, the primary goals of this work are as follows:

• Improve inspection capabilities for offshore maintenance by developing a DL-based archi-

tecture to perform image segmentation on underwater imagery in order to identify regions

of marine growth.

• Perform a rigorous comparative analysis of the models utilizing appropriate quantitative

metrics, with the aim of objectively assessing their performance and discerning any potential

variations or advancements in their segmentation capabilities.

• Benchmark the developed models with new data acquired in real scenarios in order to test

the generalization capabilities.

1.3 Work structure

This work aims to provide a comprehensive analysis on the use of Deep Learning image segmen-

tation algorithms in an underwater context. To achieve this, the following sections will be covered:

• Chapter 2 contains a section about deep learning for image segmentation, referring most

popular architectures with their advantages and disandvantages, and a section containing in-

formation about the challenges on underwater vision and a review on the literature proposed

to overcome them. The chapter ends with a critical analysis of the literature and a discussion

on how it relates to this specific work.

• Chapter 3 explains the specific methods employed to address the problem questions and

achieve the intended goals. It contains a detailed description of the data collection, prepro-

cessing and augmentation, the networks used along with the chosen hyperparameters for

training. The section also highlights any limitations or potential challenges encountered

during the work.

• Chapter 4 presents the findings obtained from the analysis conducted in the previous section.

It includes comparison of the trained models by different evaluation metrics. It also includes

visual comparisons of the results. The section focuses on providing a comprehensive and

objective interpretation of the findings in relation to the research objectives.

• Chapter 5 presents a summary of the key findings of the study alongside a discussion about

the significance and implications of the findings. Additionally, any limitations of the study

are addressed and acknowledged.
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Chapter 2

Literature Review

This chapter centers on the utilization of cutting-edge CV algorithms within the underwater con-

text, specifically focusing on image segmentation. The chapter commences with a theoretical

exploration of deep learning techniques in the realm of image segmentation. It encompasses an

introduction to the image segmentation task, encompassing both classical and modern methods

employed. Subsequently, prominent deep learning architectures are introduced, elucidating their

underlying principles, advantages, and limitations. The following section delves into the exami-

nation of related work that incorporates deep learning algorithms for image segmentation in the

underwater domain. It explores the techniques employed by various researchers to enhance the

performance of these algorithms within an underwater setting. The aim is to provide a compre-

hensive overview of the existing literature and shed light on the advancements made in utilizing

deep learning for underwater image segmentation.

2.1 Deep Learning for Image Segmentation

2.1.1 Definition and Historical Perspective

Image segmentation is a fundamental task in computer vision that involves partitioning an im-

age into distinct regions or segments based on specific criteria. The main objective is to assign

a label or category to each pixel or group of pixels in the image, enabling the differentiation of

various objects or regions of interest. This process facilitates the extraction of meaningful infor-

mation, allowing for accurate analysis, understanding, and interpretation of visual data. Image

segmentation encompasses three primary types: semantic segmentation, instance segmentation,

and panoptic segmentation. Semantic segmentation, the focus of this work, aims to detect the

class or category to which each pixel belongs (Figure 2.1). Instance segmentation goes a step

further by identifying the specific instance or occurrence of an object for each pixel, essentially

detecting and differentiating individual objects within the image. Panoptic segmentation com-

bines the principles of both semantic and instance segmentation, providing class identification for

each pixel while also distinguishing separate instances of the same class.

5



6 Literature Review

Figure 2.1: Semantic segmentation example, bottom left is the original image, top left is the
segmentation result where each type of object is identified by a different color, right is the overlap

of both images.

Classical methods to perform image segmentation include:

• Thresholding: a technique that converts a grayscale image into a binary image by applying

a clip-level or threshold value [18][19]. The primary objective of thresholding is to accu-

rately select the optimal threshold value or values when multiple levels are involved. In the

context of industry applications, a commonly employed method is Otsu’s method [20]. This

method determines the threshold by minimizing the intra-class intensity variance. By ana-

lyzing the distribution of pixel intensities in the grayscale image, Otsu’s method identifies

the threshold that maximizes the separation between object and background, resulting in an

effective binary image representation;

• Clustering: these algorithms aim to identify distinct clusters or groups within an image

based on similarities in color, texture, intensity, or other feature descriptors. One popular

clustering algorithm used for image segmentation is the K-means algorithm [21]. K-means

partitions the image pixels into K clusters, where K is a predefined number. It iteratively as-

signs pixels to clusters based on the proximity to cluster centroids and updates the centroids

until convergence.

• Edge detection: algorithms that aim to locate areas of significant intensity transitions,

which often correspond to object boundaries, edges, or discontinuities in the image [22].

One commonly used method is the Canny edge detection algorithm [23], which involves

multiple stages, including noise reduction, gradient calculation, non-maximum suppression,

and hysteresis thresholding. The Canny algorithm produces high-quality edges by suppress-

ing noise and detecting true edges with subpixel accuracy.

• Region growing: these are algorithms based on the concept of region connectivity. They

aim to group pixels or regions together that have similar values [24][25]. The region growing

process starts with the selection of one or more seed points or seed regions, which serve
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as the initial regions of interest. These seeds are iteratively expanded by incorporating

neighboring pixels or regions that satisfy certain similarity criteria [26]. The criteria can

vary depending on the specific algorithm and application but commonly include intensity

similarity, color similarity, or spatial proximity. As the algorithm progresses, neighboring

pixels or regions are recursively added to the growing region until the similarity criteria are

no longer met.

Modern methods of image segmentation have witnessed significant advancements due to the

rise of DL and convolutional neural networks (CNNs). Unlike traditional algorithms, which of-

ten require manual feature extraction and preprocessing steps [27], DL can learn useful features

and representations directly from the data, offering end-to-end solutions. CNNs are designed to

automatically learn hierarchical features at different levels, starting from low-level edges and tex-

tures to high-level object representations [28][29]. This eliminates the need for explicit feature

engineering, as the model learns to extract the most relevant features for the given task.

2.1.2 Fundamentals

CNNs are a class of deep learning models specifically designed for processing grid-like data such

as images. They are highly effective in capturing and extracting hierarchical patterns and features

from input data. Krizhevsky et al (2012) [30] proposed the use of CNNs, networks mainly com-

posed of convolutional layers for image classification in what became commonly known as the

AlexNet paper. Their network achieved groundbreaking results on the ImageNet dataset [31],

which is a large-scale dataset for image classification that is used as a benchmark for image clas-

sification algorithms. AlexNet contained convolutional layers, pooling layers and fully connected

layers and the success of the architecture paved the way for subsequent advancement in the field.

The main components of a CNN include convolutional layers, pooling layers and fully connected

(FC) layers.

2.1.2.1 Convolutional layer

Convolutional layers are designed to extract local spatial patterns and capture hierarchical repre-

sentations from input data such as images. The key operation in convolutional layers is convo-

lution, where small filters or kernels slide over the input data, computing element-wise multipli-

cations and summations. This process enables the layer to capture local correlations and detect

features regardless of their spatial position. By stacking multiple convolutional layers, CNNs can

learn increasingly abstract and complex representations, making them highly effective in tasks

such as image classification, object detection, and image generation. The inherent architecture

and operations of convolutional layers allow them to leverage the spatial relationships in the data,

making them a fundamental building block for successful computer vision applications.
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Figure 2.2: Convolution example (extracted from [32].

2.1.2.2 Pooling layer

Pooling layers are used to summarize feature maps generated by the convolutional layers. Their

main purpose is to reduce spatial dimensionality of the input while preserving the most relevant

features, they do this by dividing the input into smaller pieces and using a mathematical function

to obtain a single value that is representative of the region [30]. The most popular functions that do

this are average pooling and max pooling. In average pooling, the value that represents the region

is the average of all the values contained within that region, this is useful because it provides

a general representation of the whole region since every value is represented. In max pooling

the value that represents the region is the maximum value of all the values contained within that

region, this means that only the most dominant feature is preserved after this operation. The key

benefits of pooling layers are:

• Enhanced robustness: by only capturing the most relevant features, pooling makes the

network more resistant to shifts or distortions.

• Reducing overfitting: learning only the most salient features allow the network to abstract

and generalize more from the data it is given.

• Capturing invariance: by dividing the input into smaller regions, the network learns to

recognize objects independent of their location within the input.

2.1.2.3 Fully Connected layer

In a FC layer, each neuron is connected to every neuron in the previous layer and to every neuron

in the next layer. This allows for unrestricted information flow and enables the layer to learn

complex relationships between features. In CNNs, FC layers are typically placed after one or
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Figure 2.3: Max (left) and Average (right) pooling examples (extracted from [33]).

more convolutional and pooling layers. The output of the preceding layers, often in the form of a

flattened or reshaped feature map, is fed into the FC layer. Each neuron in an FC layer is associated

with a weight parameter that determines the strength of its connection to the previous layer. During

the training phase, these weights are adjusted based on the backpropagation [34] algorithm, which

computes the gradients of the loss function with respect to the network parameters and updates

them accordingly. This optimization process aims to minimize the error or loss of the network’s

predictions. FC layers play a crucial role in learning complex combinations of features from

the extracted representations in the earlier layers. They enable the network to capture high-level

patterns and relationships among the learned features, ultimately leading to better discrimination

and classification performance. The activation function used in FC layers introduce non-linearity

into the network, allowing it to learn and model non-linear relationships in the data. Due to the

unrestricted connectivity they usually have high amounts of parameters and are prone to overfitting

[35].

2.1.3 U-Net

The U-Net is a popular CNN architecture commonly used for image segmentation tasks. It was

introduced by Ronneberger et al. (2015) [36] as a specifically designed network for biomedical

image segmentation by leveraging an encoder-decoder structure with skip connections (Figure

2.4). The encoder, also referred as the backbone, features a series of convolutional and pooling
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layers. These layers gradually reduce the spatial dimensions of the input image while increasing

the number of feature channels. This process allows the network to learn high-level representa-

tions of the input image. The backbone of the network may have implementations of popular CNN

architectures like ResNet [37] or VGG16 [38] due to their strong performance in image classifi-

cation tasks and their ability to capture high-level features. The decoder part of the U-Net is an

upsampling path that aims to recover the spatial resolution lost during the encoding process. Each

upsampling step consists of an upsampling operation followed by a concatenation with feature

maps from the corresponding encoding path. This concatenation is a skip connection that allows

the network to utilize both low-level and high-level features, aiding in precise localization. By in-

corporating skip connections, the network can merge both local and global information, enabling

accurate localization of objects.

Figure 2.4: U-Net architecture [36].

2.1.3.1 Encoder: VGG

The VGG network, short for Visual Geometry Group network, is a widely recognized CNN ar-

chitecture introduced by Simonyan et al (2014) [38]. VGG is known for its simplicity and effec-

tiveness, offering a straightforward and easy-to-understand architecture for image classification

tasks. The key characteristic of the VGG network is its uniform structure, where the convolu-

tional layers consist of small 3x3 filters throughout the entire network. This design choice allows

for deeper networks to be trained while keeping the network architecture simple and manageable.

VGG architectures typically vary in depth, with the original VGG network offering 16 convolu-

tional layers (VGG16, Figure 2.5) or 19 convolutional layers (VGG19). VGG networks utilize a



2.1 Deep Learning for Image Segmentation 11

series of convolutional layers with ReLU activations, followed by max-pooling layers to reduce

spatial dimensions. The final layers of the VGG network usually consist of fully connected layers,

leading to a softmax layer for classification. VGG networks are trained using stochastic gradient

descent (SGD) with weight decay and dropout regularization techniques to prevent overfitting.

Despite its simplicity, the VGG network has achieved remarkable performance in various im-

age recognition tasks, particularly in large-scale image classification challenges such as the Ima-

geNet dataset [31]. The uniform structure of VGG enables it to learn hierarchical representations

of images, capturing both low-level and high-level features effectively. The deep layers of the

VGG network allow it to learn more complex representations, resulting in improved discrimina-

tive capabilities.

Figure 2.5: VGG16 architecture (extracted from [39]).

The VGG network has several variations, primarily based on the number of layers in the net-

work. Here are the different types of VGG networks:

1. VGG16: The VGG16 network consists of 16 convolutional layers. It starts with a series

of convolutional layers with 3x3 filters, followed by max-pooling layers for downsampling.

The architecture then includes three fully connected layers leading to the final softmax layer.

VGG16 gained popularity as one of the early deep CNN architectures and has been widely

used in various image classification tasks.

2. VGG19: The VGG19 network extends VGG16 by adding three additional convolutional

layers, resulting in a total of 19 convolutional layers. The extra layers contribute to increased

model complexity and potentially improved performance.

3. Other Variations: In addition to VGG16 and VGG19, researchers have explored variations

of the VGG network with different depths and configurations. For example, VGG11 and

VGG13 are shallower versions of VGG16, containing 11 and 13 convolutional layers, re-

spectively. These lighter versions are useful when computational resources are limited, as

they offer a trade-off between model complexity and performance.

It’s worth noting that the primary distinction between these variations lies in the number of

layers, while the overall architecture and design principles remain the same. The uniformity in
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architecture across VGG networks has made them easily understandable and adaptable for exper-

imentation and research purposes. The VGG network has also played a significant role in the

development of deep learning research. It has served as a baseline model for benchmarking and

comparison against more complex architectures. Researchers have used VGG as a starting point

for fine-tuning or transfer learning in various domains, allowing for the application of pre-trained

VGG models on different image recognition tasks. While VGG networks are computationally

more expensive due to their depth and the use of 3x3 filters throughout, their simplicity and strong

performance make them a valuable tool in the deep learning toolbox. Researchers and practi-

tioners continue to explore and build upon the ideas introduced by the VGG network, influencing

subsequent developments in CNN architectures and their applications in computer vision.

2.1.3.2 Encoder: ResNet

ResNet, short for Residual Network, is a groundbreaking CNN architecture introduced by He et

al. (2015) [37] that addresses the challenge of training very deep neural networks by mitigating

the vanishing gradients problem, where accuracy saturates or even degrades as networks become

deeper [40]. The key innovation in ResNet is the introduction of residual blocks, which allow

for the learning of residual or residual-like mappings. Unlike traditional CNNs, residual blocks

employ skip or shortcut connections that bypass one or more layers. These connections enable

the network to learn residual functions, capturing the difference between the desired output and

the current output of the network. By propagating the error through these shortcut connections,

ResNet effectively enables the training of extremely deep networks without degrading accuracy.

The residual blocks in ResNet are typically composed of convolutional layers, with batch

normalization and ReLU activation functions (Figure 2.6). The architecture also includes global

average pooling and a fully connected layer at the end for classification. Various versions of

ResNet have been proposed, such as ResNet-18, ResNet-34, ResNet-50 (Figure ??), ResNet-101,

and ResNet-152, which differ in the number of layers and the complexity of the network.

Figure 2.6: Residual block (extracted from [37]).
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ResNet has had a profound impact on the field of deep learning. Its introduction of skip

connections revolutionized the way deep neural networks are designed and trained. ResNet’s

architecture has achieved state-of-the-art results in various computer vision tasks. By enabling the

training of deep networks, ResNet has paved the way for deeper architectures that can learn more

complex representations and achieve higher performance.

2.1.3.3 Decoder

The decoder module plays a crucial role in the process of upsampling and reconstructing the fea-

ture maps to obtain a high-resolution output. After the initial downsampling steps in the encoder

module, the decoder module starts with the lowest resolution feature maps and gradually upsam-

ples them using transposed convolutions. These operations perform element-wise between the

convoluted feature maps produced by the encoder module and kernels with values optimized dur-

ing training (Figure 2.7). We can calculate an output of size O x O of a transposed convolution

using the following formula, given an input feature map of size I x I, kernel size K xK, stride s, and

padding p:

O = (I −1)∗ s−2∗ p− (K −1)−1

Figure 2.7: Transposed convolution (extracted from [41]).

The decoder module typically consists of a series of upsampling blocks, where each block

combines the upsampled feature maps with the corresponding feature maps from the encoder

module. This skip-connection allows the decoder to leverage both low-level and high-level infor-

mation, aiding in the precise localization of objects and maintaining fine-grained details. Each

upsampling block in the decoder includes additional convolutional layers for feature refinement

and dimensionality reduction [42]. The decoder progressively expands the spatial dimensions

while refining the feature representations, leading to a reconstructed output that closely resembles

the input image in terms of resolution and semantic content.
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2.1.4 SegNet

SegNet is a deep learning architecture specifically designed for image segmentation tasks, intro-

duced by Badrinarayanan et al (2015) [43]. SegNet features an econder-decoder structure similar

to the U-Net. The encoder module consists of multiple convolutional and pooling layers, gradu-

ally reducing the spatial dimensions of the input image while extracting hierarchical features. The

decoder module, on the other hand, performs upsampling of the low-resolution feature maps to

recover the original input size. What makes SegNet unique is its utilization of pooling indices

obtained during the encoding phase in its skip connections, as displayed in Figure 2.8, which are

then used for precise pixel-wise upsampling in the decoder module. This approach enables SegNet

to retain important spatial information and produce accurate segmentation results.

Figure 2.8: SegNet architecture (extracted from [43]).

The main difference between U-Net and SegNet lies in their computacional consumption.

SegNet reuses memorized pooling indices from the encoder during the upsampling, while U-Net

transfers the entire feature maps for upsampling. The practice of re-utilizing previously memo-

rized values effectively saves memory in the system [44]. In terms of performance the work of

Islam et al (2020) [45] shows U-Net outperforming SegNet for underwater segmentation. The

authors present a novel general-purpose dataset for underwater segmentation and evaluate the

performance of multiple popular architectures, among them the U-Net and SegNet. Figure 2.9

shows SegNet achieving comparable performance when given a powerful feature extractor like

the ResNet and U-Net is fed grayscale images and U-Net outperforming SegNet when given RGB

images as input.

2.1.5 Deeplabv3

DeepLabv3 is a highly influential CNN architecture developed for semantic image segmenta-

tion proposed by Chen et al (2018) [46]. DeepLabv3 builds upon the success of its predeces-

sors, DeepLab [47] and DeepLabv2 [48], and introduces several key innovations that improve its

accuracy and efficiency. The core contribution of DeepLabv3 lies in its use of atrous (dilated)

convolutions, which allow for multi-scale feature integration without significantly increasing the
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Figure 2.9: U-Net vs SegNet results on single class (HD, WR, RO, RI, FV) prediction and com-
bined results (adapted from [45]).

computational cost. By applying atrous convolutions at multiple rates, DeepLabv3 captures both

fine-grained details and global context, enabling precise and comprehensive segmentation. The

network employs a deep backbone network, such as ResNet, to extract high-level feature repre-

sentations. These features are then refined using atrous spatial pyramid pooling (ASPP), which

involves parallel atrous convolutions at different rates to capture multi-scale contextual informa-

tion (Figure 2.10).

Figure 2.10: Convolution (a) vs Atrous Convolution (b) (exctrated from [49]).

DeepLabv3 also incorporates a skip connection module that combines high-resolution features

from earlier stages of the network with the ASPP module’s multi-scale features. The skip connec-

tions help in preserving and integrating fine-grained spatial information, facilitating more accurate

localization of object boundaries. Another notable aspect of DeepLabv3 is its use of dilated con-

volution in the final prediction layer. This allows the network to generate pixel-level predictions



16 Literature Review

at the original image resolution, avoiding the need for upsampling. By maintaining the resolution,

DeepLabv3 produces more precise segmentation results.

DeepLabv3 has demonstrated state-of-the-art performance in various challenging semantic

segmentation benchmarks, including PASCAL VOC [50] and Cityscapes [51] datasets. Its ability

to capture fine details, exploit multi-scale context, and leverage skip connections has made it

highly effective in segmenting objects of varying scales and complex structures.

2.2 Challenges of Underwater Vision

The development of underwater vision systems encounters two significant challenges that pose

technical complexities. Firstly, the acquisition of underwater data is hindered [52] by the require-

ment for specialized vehicles and equipment. Underwater exploration typically relies on ROVs or

Autonomous Underwater Vehicles (AUVs) [53, 54], which come with their own logistical and op-

erational considerations. These vehicles need to be equipped with underwater cameras and sensors

capable of capturing high-quality data in a challenging aquatic environment [55, 56]. The design,

deployment, and maintenance of these systems involve significant technical expertise and infras-

tructure. Secondly, underwater conditions introduce various factors that degrade image quality,

thereby impeding the effectiveness of vision systems [57]. Light refraction and scattering phe-

nomena in water result in reduced visibility and distortion of images. As light travels through

water, it interacts with suspended particles, dissolved substances, and organisms, leading to ab-

sorption and scattering effects as demonstrated in Figure 2.11. This causes the captured images to

suffer from decreased contrast, color shifts, and blurring.

Figure 2.11: Light scattering and absortion examples (extracted from [58]).
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To migitate these effects researchers have developed image enhancement methods that increase

the quality of the images before sending them for further processing. In the work of Want et al.

(2022) [59], the authors present a novel algorithm that incorporates a series of color correction

operations to address the adverse effects of light refraction and other underwater conditions on

image quality. The proposed algorithm employs various techniques, including white balancing,

γ correction, contrast-limited adaptive histogram equalization (CLAHE), bilateral filtering, and

single-scale retinex. These operations are specifically designed to alleviate color distortions, en-

hance contrast, and improve overall image clarity in underwater environments. By sequentially

applying these color correction techniques, the algorithm effectively mitigates the detrimental ef-

fects of light refraction and other underwater conditions, resulting in visually improved and more

accurately representational images for further analysis and processing.

Histogram equalization is a widely employed technique in image processing for enhancing the

contrast and improving the overall appearance of digital images. It aims to redistribute the pixel

intensities across the entire dynamic range, effectively stretching the histogram to span the full

extent of available intensity levels. By equalizing the histogram, the resultant image exhibits a

more balanced distribution of intensities, leading to enhanced details and increased visual distin-

guishability of objects and structures. CLAHE is an advanced variation of histogram equalization

developed to address the limitations of the traditional method, mainly, over-brightness and loss

of information because the histogram is not limited to a particular region. CLAHE addresses this

by performing histogram equalization on small blocks of the image called tiles and limiting the

amount of contrast allowed in each region to prevent over-brightness. In this work, however, the

CLAHE algorithm was not applied due to leading to an improper highlight of image objects. As

evidenced in Figure 2.12, the CLAHE algorithm not only increases contrast and highlight on the

marine growth object located in the bottom right corner, but also, the rest of the image. This phe-

nomenon happens in images with large homogeneous zones, similar to the brown-toned images

that comprise most of the dataset, described in the previous section.

Figure 2.12: (a) Image before CLAHE, (b) CLAHE application.

Zhou et al (2019) [60] propose a GAN-based image enhancement technique. Generative Ad-

versarial Networks (GANs) are a type of neural network that has revolutionized generative mod-

elling. They excel at image generation and are capable of generating high quality images that
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resemble real ones. The authors leverage this ability to generate good quality images from blurry

images which have their quality affected by the underwater environment, effectively diminishing

the impact of the underwater environment on their dataset.

Alongside image enhancement techniques researchers use data augmentation techniques to ar-

tificially increase their datasets. Data augmentation is a technique widely used in deep learning to

increase the size and diversity of training datasets by applying various transformations to existing

data. It aims to enhance the generalization and robustness of models by exposing them to a broader

range of variations and patterns in the data. Data augmentation is particularly valuable when the

available training data is limited or imbalanced, as it effectively expands the dataset without re-

quiring additional data collection. The application of data augmentation involves systematically

modifying the input data while preserving the label or ground truth. Common augmentation tech-

niques include random rotations, translations, scaling, flipping, cropping, and adding noise or

distortions to the images (Figure 2.13).

Figure 2.13: Data Augmentation examples.

In the work of Drews-Jr et al [61] (2021) the authors propose to increase their available data

by mixing their underwater dataset with non-underwater images that have been degraded with

methods based on [62] [63] to display some characteristcs of underwater images like increased

turbidity, this aids the model in abstracting from these charateristics and learning features more

closely related to the classes the authors are actually trying to predict. Furthermore, the authors

employ transfer learning to increase their model performance. Transfer learning is a powerful

technique in DL that leverages knowledge learned from one task to improve performance on a

different but related task. It involves using pre-trained models, typically trained on large-scale

datasets, as a starting point for a new task, instead of training a model from scratch. By transferring

the learned knowledge, the model can benefit from general features and representations that are

applicable to both the pre-training task and the target task, even when the datasets are different.

Transfer learning offers several advantages. First, it enables the use of pre-trained models that have

learned rich representations from vast amounts of data, saving significant computational resources
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and time compared to training from scratch. Second, it allows models to generalize better with

limited labeled data in the target task, as the pre-trained model has already learned useful features.

This is useful because image segmentation tasks don’t usually have high quality and acessible

datasets due to the process of creating the dataset being manual and difficult. Lastly, transfer

learning can help overcome the problem of overfitting, as the pre-trained model has already learned

generalizable features that can benefit the target task.

2.3 Critical Analysis

In regards to the architecture used, U-Net and Deeplabv3 are the networks featured in most ap-

proaches since they have a historical track record of achieving high performance metrics and are

usually at least referenced as a baseline against fine-tuned custom methods. They are versatile

networks because you can switch their backbone between popular CNNs like ResNet or VGG and

compare their results while maintaining the overall structure.

In regards to underwater vision challenges, it is necessary to enable models to abstract from

underwater conditions that negatively impact the quality of the data. This can be achieved through

image enhancement, data augmentation and transfer learning techniques. Also, to the best of the

author’s knowledge, no work has been found that performs segmentation specifically on marine

growth, making it difficult to benchmark this work’s performance with other external results. The

challenges extend beyond the choice of architecture and encompass various aspects related to the

quality of data and data handling processes. While the selection of an appropriate segmentation

architecture is important, it is crucial to acknowledge that the performance and effectiveness of

image segmentation in underwater environments heavily relies on the quality of the available data.



20 Literature Review



Chapter 3

Image Segmentation for Marine
Growth Prediction

Developing a model capable of predicting marine growth in underwater images can help automate

the maintenance process employed to remove marine growth from offshore structures. This chap-

ter will cover the steps taken to generate a quality dataset capable of enabling the models being

developed to reach high performance metrics. Furthermore this chapter will cover all the models

trained and their specificities, along with the hyperparameters chosen for the training.

3.1 A Dataset for Marine Growth Segmentation

Image segmentation datasets require both sample images and segmentation masks to be fully func-

tional, they will be referred as inputs and labels respectivelly. The inputs are the original images

where the predictions are being made, the labels are used to annotate each pixel with a class value

indicating the object or region of interest to which it belongs. The label is typically represented

as a pixel-wise annotation, where each pixel is assigned a class value based on the correspond-

ing object or region of interest. Binary masks are used for binary segmentation tasks, these are

masks where every pixel is set to 1 if it belongs to the region of interest (ROI) and 0 otherwise.

In multi-class segmentation tasks the label encodes more than one class, allowing the model to

differentiate between different classes of objects and regions of interest. The labels are crucial for

image segmentation because they represent the ground truth annotations that the model is trained

to predict and their quality directly impacts the quality of the predictions.

The first task to build the dataset was to generate the segmentation masks, to do this it was

verified that each image was accompanied by several image files, each containing a contour of

a specific species of marine growth present in the original image, according to a marine growth

specialist. A study was conducted to evaluate the amount of species present and the amount of

occurrences per species present in the dataset (Table 3.1) and 25 different species were found

with an average of 13.56 occurrences per species and the most frequent species in the dataset is

the Flustra foliacea with 58 occurrences (Figure 3.2). Due to the reduced size of the dataset,

21
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Figure 3.1: Sample images from the dataset.

performing image segmentation on 25 different classes, one for each species, would be extremely

difficult, in order to circumvent this, a more general class "marine growth" was created that covers

all the previously mentioned species. This way, the segmentation masks generated are binary

meaning that a pixel with a value of 1 is within a marine growth region and a pixel with a value of

0 is located in the background.

Figure 3.2: Distribution of species occurrence in the dataset, with the x-axis corresponding to the
number of each species in table 3.1.

In order to generate the segmentation masks, the contours files were analyzed and processed

with the aim of defining regions of marine growth using the contours as the border between regions

of marine growth and background. Lastly the images for each species are overlapped resulting

in a finished segmentation mask, displayed in figure 3.3. The generated dataset contains 150
underwater images displaying different species of marine growth as displayed in Figure 3.1 with

a resolution of 5184x3456 pixels. Following the mask generation process, the class distribution of

the dataset was studied, having been found that:
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Figure 3.3: Contours of species present in sample (a) of figure 3.1, Flustra foliacea (d), Securi-
flustra securifrons (e), Ascidiacea (f) and the finished segmentation mask (g).

• Class 0 (background) has 2.54× 109 pixels, accounting for 94.77% of the total number of

pixels in the dataset

• Class 1 (marine growth) has 1.41×109 pixels, accounting for 5.23% of the total number of

pixels in the dataset

• The image with the highest marine growth coverage has 25.9% of its total pixels covered by

marine growth

A visual analysis of the images was conducted and 2 distinct types of images were found,

as displayed in Figure 3.4. The first one consists of images with a blue-green color tone in an

environment with rocks and it is around 18.7% of the total size of the dataset; the second type

consists of images with a brown color tone and a sandy environment and comprises 81.3% of the

total size of the dataset. Furthermore, the brown toned images exhibit low variability between

themselves making them difficult to distinguish with a naked eye which can be an indication

of them being prone to overfitting. In consequence, when doing the split of data for training and

testing, the same distribution of blue-green images and brown images was kept in both the training

and test sets.

Figure 3.4: Different types of images: blue-green toned images (a) and brown toned images (b).
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Table 3.1: Marine growth species occurrences.

Species Occurrences % of Occurrences
Abietinaria abietina 1 0.67%
Actiniaria 1 0.67%
Alcyonidium diaphanum 54 36.0%
Ascidiacea 3 2.0%
Bryozoa 36 24.0%
Bryozoan_hydrozoan turf 6 4.0%
Cirripedia 2 1.33%
Clavelina lepadiformis 3 2.0%
Cliona sp. 2 1.33%
Encrusting Bryozoa 6 4.0%
Flustra foliacea 58 38.67%
Hydrallmania falcata 18 12.0%
Hydrozoa 48 32.0%
Lanice conchilega tube 1 0.67%
Nemertesia 1 0.67%
Nemertesia sp. 3 2.0%
Porifera 2 1.33%
Porifera encrusting 1 0.67%
Scrupocellaria 9 6.0%
Scrupocellaria sp. 21 14.0%
Securiflustra securifrons 11 7.33%
Sertularia sp. 5 3.33%
Vesicularia spinosa 15 10.0%
Icularia spinosa 1 0.67%
Velina lepadiformis 1 0.67%

3.2 Mitigating the Impacts of Underwater Challenges

Underwater visison is linked with adverse conditions that diminish image quality. Light refraction

and scattering induces distortion and reduced visibility in the images, effectively making the seg-

mentation task harder. Several methods have been used to mitigate the damage and restore quality

to the images, caused by the subsea environment [60].

3.2.1 Localized Cropping for Image Segmentation

Data augmentation is a widely used technique that involves applying various transformations to

the existing training data to create additional synthetic examples, increasing the size and diversity

of the dataset. Due to the dataset being limited in terms of size, numerous data augmentation

techniques were employed to artificially increase the size of the dataset, offline data augmentation

refers to the process of pre-generating augmented versions of the training data before the training

phase begins, while online data augmentation refers to the process of performing data augmen-

tation on the fly during the training process. Generating offline data can be benefitial due to to
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increasing the size of the dataset, ensuring higher diversity and more training data, however it may

also lead to overfit if the generated data is too similar to the original data.

For this specific dataset, a custom transformation called EdgeCrop was applied that searched

for zones in the border between regions of marine growth and the background and performed a

crop in that region as displayed in figure 3.5. The goal of this transformation was to artificially

increase the dataset while simultaneously maintaing its intrinsic properties due to all the synthetic

data being generated from data inside the dataset. This method expanded the dataset from 150

images to 876 total images, a 5.84x increase. With this increase in data the new dataset has the

following distribution:

Figure 3.5: Custom transformation generating a new image-mask pair.

• Class 0 (background) has 2.68× 109 pixels, accounting for 93.38% of the total number of

pixels in the dataset

• Class 1 (marine growth) has 1.90×109 pixels, accounting for 6.62% of the total number of

pixels in the dataset

• The image with the highest marine growth coverage has 97.63% of its total pixels covered

by marine growth

The small increase in class 1 distribution is due to the generated images being stored in mem-

ory as 224x224 or 512x512 crops, depending on what input size the models are utilizing, 357x or

68x smaller than the original images with their original resolution of 5184x3456 that account for

the majority of pixels in the dataset. Images are resized on-the-fly before feing fed to the model

due to the computational resources not having enough memory to store images in their full reso-

lution for training. For this work, the resizing has to be done in order to be able to train, however,

other approaches may utilize the resize as a way to speed up training, due to the models having to

process less information. When all images are resized the dataset has the following class distribu-

tion:
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• Class 0 (background) has 1.78× 108 pixels, accounting for 77.37% of the total number of

pixels in the dataset

• Class 1 (marine growth) has 5.20× 107 pixels, accounting for 22.63% of the total number

of pixels in the dataset

• The image with the highest marine growth coverage has 97.63% of its total pixels covered

by marine growth

The EdgeCrop transformation effectively creates an entirely new Expanded Dataset, with ap-

proximately 6x the amount of images and a more balanced distribution of classes.

3.2.2 On-the-fly Data Augmentation

Additional transformations to the data were made when the training data is directly fed into the

model during training, with the transformations being applied to each sample in real-time. The

transformations are typically random and vary from sample to sample, ensuring diversity in the

augmented data presented to the model. The following data augmentation techniques were uti-

lized:

• Vertical Flip: Performing a vertical flip with a probability of 50%,

• Horizontal Flip: Performing a horizontal flip with a probability of 50%,

• Random Rotation: Performing a rotation between -180 degrees and 180 degress with a

probability of 100%,

• Brightness Adjustment: Adjust the brighness of the image between 0.75 and 1.25 of the

original image brightness, with a probability of 100%. This was the only color transfor-

mation applied and as such its’ values where chosen in order to introduce variability to the

dataset without excessively altering the objects of interest that are being predicted.

3.3 Learning-based architecture for Marine Growth Segmentation

The success of training a high-performing image segmentation model is dependent on the appro-

priate selection and fine-tuning of various training parameters, which is thoroughly explored in

this section. Following the literature review of chapter 2, several different models were developed:

• U-Net + ResNet: this model was based on the U-Net architecture featuring a ResNet50

backbone, a popular network in the image segmentation field. The weights were pre-trained

on the ImageNet dataset to provide a better starting point for training
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Figure 3.6: Sample image (a) generating 3 different images, (b), (c) and (d) via online data aug-
mentation.

• U-Net + VGG: this model was based on the U-Net architecture featuring a VGG16 back-

bone, with weights pre-trained on the ImageNet dataset

• DeeplabV3: this model was developed following the architecture previously reviewed and

was chosen due to having high performance on underwater segmentation and being the

state-of-the-art in image segmentation [45]

Initially the models were given images resized to 224x224 to establish a baseline, after that

the models were given images resized to 512x512 in order to evalute their performance on images

with decreased loss of resolution. The analysis on the image sizes’ impact on performance is ex-

plored in-depth in chapter 4. The loss function serves as a crucial component in the optimization

process during model training. It quantifies the discrepancy between the predicted segmentation

and the ground truth, providing a measure of how well the model is performing. By minimizing

the loss, the model adjusts its parameters to improve the accuracy of the segmentation results. The

loss function used in this work was the Dice coefficient loss. It measures the similarity between

the predicted segmentation mask and the ground truth mask by computing the overlap between the

two masks. The Dice loss DCloss is derived from the Dice coefficient DC in equation 3.2, which

is calculated as twice the intersection of the masks divided by the sum of their sizes in equation 3.1.

DC =
2×|A∩B|

A∪B
(3.1)
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DCloss = 1−DC (3.2)

By utilizing the Dice loss, the model is encouraged to produce accurate and precise segmen-

tation results, as it aims to maximize the overlap between the predicted and ground truth masks.

The 2×|A∩B| on the numerator emphasizes the importance of correctly identifying positive pre-

dictions, essentially encouraging the models to get correct predictions instead of avoiding wrong

predictions. Since it is a differentiable loss function, it allows for gradient-based optimization

during the training of deep learning models.

Regarding the hyperparameters, there are 3 choices to be made: the batch size, the number of

epochs and the learning rate. The number of epochs is the number of complete passes through the

entire dataset, it needs to be provide a balance between overfitting and underfitting, allowing the

model to update long enough for it to reach high performance while simultaneously ending the

training when the model starts to overfit. For this work the number of epochs chosen was 50. The

batch size refers to the number of samples processed before updating the model’s weights, bigger

batch sizes imply faster training times because their processing is done in parallel and sometimes

better performance due to less sample noise, however the system needs more memory to process

all the samples in parallel. For this work the batch size chosen was 3. Lastly, the learning rate

determines the step size the optimizer takes when updating the weights, increased learning rates

increase convergence speed but may lead to an overshoot response resulting in a system unable to

converge. For this work the chosen learning rate was 10−3. The optimizer chosen was the Adam
optimizer [64] due to its popularity in segmentation tasks. The idea behind the Adam optimizer

is to adaptively adjust the learning rate for each parameter based on its historical gradients. This

adaptive learning rate helps the optimizer converge faster and more reliably, especially when deal-

ing with large-scale, high-dimensional problems. The weights can be updated using the following

equation:

wt+1 = wt −
lrm̂t√
v̂t + ε1

(3.3)



Chapter 4

Experimental Results

The following chapter encompasses an in-depth examination of the results acquired through the

experiments detailed in the preceding chapter. It initiates with a comprehensive analysis of the per-

formance metrics employed, elucidating their significance and relevance. Subsequently, a metic-

ulous assessment is conducted, encompassing both quantitative and qualitative analyses across

diverse models and varying training conditions. Lastly, the chapter concludes by providing a com-

prehensive discussion and interpretation of the obtained results, addressing their implications and

potential implications within the scope of the research.

4.1 Experimental setup

Evaluation metrics play a crucial role in assessing the performance and effectiveness of image

segmentation algorithms. These metrics provide quantitative measures to evaluate how well the

segmented regions align with the ground truth annotations or the desired segmentation masks. In

this section, we will discuss some commonly used evaluation metrics for image segmentation. In

binary classification tasks, labels can be of 2 types: positive with the value 1, in this work’s the

positive value refers to pixels belonging to regions of marine growth as previously mentioned, and

negative with the value 0, referring to pixels belonging to regions of background or non-marine

growth regions.

Models’ predictions and the ground truth can be compared in a confusion matrix as displayed

in figure 4.1. Models predictions in binary segmentation can be of 4 types:

• True Positive (TP), when the ground truth label is positive and the model prediction is

positive,

• True Negative (TN), when the ground truth label is negative and the model prediction is

negative,

• False Positive (FP), when the ground truth label is negative and the model prediction is

positive,
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• False Negative (FN), when the ground truth label is positive and the model prediction is

negative.

Figure 4.1: Confusion matrix

Using these types of predictions several metrics can be developed in order to evaluate models:

• Pixel Accuracy: The first intuitive metric to evaluate segmentation models is the pixel ac-

curacy. This metric is calculated using the following formula:

PA =
T P+T N

T P+T N +FN +FP
(4.1)

Pixel accuracy is calculated in equation 4.1 by dividing the amount of correct predictions

(T P+T N) by the total amount of predictions (T P+T N+FN+FP). While it is one of the

most popular metrics for image classification tasks, it has usually has some class imbalance

problems in segmentation tasks. This is because classes are usually not evenly distributed

in images. Using a sample segmentation mask (image (a) in figure 4.2) from the original

dataset described in the previous chapter as an example, with a marine growth coverage per-

centage of 2.31%, a model predicting the image (b) 4.2 would have 97.69% pixel accuracy

which would seem a good prediction but in reality when looking at both images it is appar-

ent it is not an appropriate prediction. This is due to the amount of marine growth being just

2.31% of the total image and pixel accuracy taking into account the TN when calculating the

metric. As a result of this work’s dataset being heavily imbalanced as previously described,

this metric will not be used.

• Intersection over Union (IoU): This metric, also reffered to by Jaccard Index, measures

the overlap between the predicted segmentation and the ground truth. It is calculated using

the following formula:
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Figure 4.2: Sample segmentation mask (a) and dummy prediction (b)

IoU =
T P

T P+FN +FP
(4.2)

It calculates the area of overlap of the predicted segmentation and the ground truth, divided

by the area of union between the ground gruth and the prediction segmentation. A higher

IoU score indicates a better match between the predicted and ground truth segmentations.

This metric was used extensively during this work to evaluate all the models developed.

Figure 4.3: IoU visual example.

• Dice coefficient: This metric, often reffered to by F1-score, is a widely used evaluation

metric in image segmentation tasks as previously mentioned. It measures the similarity or

overlap between the predicted segmentation and the ground truth. The Dice coefficient is

calculated as twice the intersection between the predicted and ground truth regions divided

by the sum of their sizes (equation 4.3):

DC =
2T P

2T P+FN +FP
(4.3)
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To evaluate the models according to these metrics and also train the models the PyTorch frame-

work with version 1.13.1 was used, due to its popularity among the community, ease of use and

available support online. The system used to train is equipped with an Intel HM175 chipset and

GeForce GTX 1060 with 8GB DDR4 for faster training on the GPU.

4.2 Marine Growth Segmentation

4.2.1 Initial Dataset Experiments

Initially models were developed and trained on the original dataset of 150 images. This was

done to establish a baseline to define a point of reference for further improvents on the models

and/or data. In the context of these experiments 4 models were developed, V GG16224, V GG16512,

DeeplabV 3512 and ResNet512.

The obtained results from the developed models are presented and analyzed in this section,

shedding light on their performance in segmentation. The evaluation metrics used to assess the

models’ effectiveness are the DC loss and the IoU. The graphs in figure 4.4, accompanied by ta-

ble 4.1 conclude that the models reach DC loss of around 0.6 and test IoU of 0.35. This means

that the overlap between model prediction and ground truth is approximately 35%. The ResNet512

is the most overfitted model due to having high discrepancy of performance in the train and test

sets, which can be a result of a small dataset or low variability. It was expected that the V GG16224

would be outperformed by the other models due to having to perform segmentation on images with

a resolution of 224x224 that have a higher degree of loss of quality due to resizing than 512x512

images. However, this was not the case and the model achieves comparable performance with the

other models.

Table 4.1: Quantitative performance on the initial dataset, better performance is characterized by
higher IoUs and lower DC Losses.

Model Train IoU Test IoU Train DC Loss Test DC Loss
V GG16224 0.303 0.347 0.604 0.592
V GG16512 0.415 0.331 0.473 0.589

DeeplabV 3512 0.376 0.365 0.511 0.564
ResNet512 0.514 0.238 0.330 0.665
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Figure 4.4: DC Loss (top) and IoU curves (bottom) for the train (left) and test (right) sets of
the initial dataset. In blue ResNet512, in red DeeplabV 3512, in green V GG16224 and in black
V GG16512.

Overall these results show that the models are not achieving high performance on segmenta-

tion, to understand why this is happening a visual analysis of the models’ predictions was made on

figure 4.5 that contains 6 samples from the original test dataset and each models’ prediction along-

side the original image and ground truth. It can be concluded that regions of marine growth that

have a bigger size such as the one depicted in the sample on rows 4 and 6 are more easily detected

by the models with almost all the models detecting these shapes, at least partially. Smaller sized

regions on the other hand, such as the ones displayed in rows 1, 3 and 5, are harder for the models

to detect and almost all models provide mostly inaccurate predictions. The visual analysis suggests

that the models’ have more difficulty identifying smaller regions of marine growth, which is, to a

certain point expected because these are zones that are more complicated to identify. However, the

fact that the dataset is mostly comprised of images with small shapes of marine growth scattered

through the image and only approximately 5% of the total pixels being marine growth can explain

the poor segmentation results. With these issues in mind, it can be concluded that increasing the

distribution of marine growth in the dataset can be beneficial for training these models.

4.2.2 Expanded Dataset Experiments

This section covers the performance of the models on the expanded dataset. Addressing the issues

in the previous section, the dataset was expanded utilizing the EdgeCrop function described in the

previous chapter. It is expected that this section describes better results than the previous section

given that the dataset is approximately 6x bigger and the distribution of marine growth is more

balanced.
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Figure 4.5: Qualitative analysis of 6 samples from the original dataset. Columns from left to right
are original RGB, ground truth and DeeplabV 3512, ResNet512, V GG16224, V GG16512 predictions.

The table 4.2 describes the performance of the developed models on the expanded dataset.

Analyzing the figure 4.6 and table 4.2 and comparing them with the ones on the previous section

it can be concluded that with the exception of the V GG16224 model that attained the best per-

formance across all metrics, the performance is approximately the same with higher degrees of

overfit. The best model trained on this dataset exhibits a DC loss approximately 10% lower and

a test IoU approximately 7% higher than the best model results on the previous sections, which

can be explained by the increase in the amount of training data. However, these models present

more overfit due to the increase in train IoU and train DC loss in relation to the previous section

performance, but approximately the same performance on the validation IoU and test loss.

Table 4.2: Quantitative results for the expanded dataset better performance is characterized by
higher IoUs and lower DC Losses.

Model Train IoU Test IoU Train Loss Test Loss
V GG16224 0.452 0.389 0.441 0.508
V GG16512 0.415 0.331 0.473 0.589

DeeplabV 3512 0.417 0.342 0.469 0.560
ResNet512 0.439 0.324 0.445 0.590
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Figure 4.6: DC Loss (top) and IoU curves (bottom) for the train (left) and test (right) sets of
the expanded dataset. In blue ResNet512, in red DeeplabV 3512, in green V GG16224 and in black
V GG16512.

The experimental analysis conducted on the expanded dataset revealed contrasting results be-

tween the visual assessment and numerical evaluation of the segmentation predictions, as depicted

in Figure 4.7. The augmentation technique employed, known as EdgeCrop, involved augmenting

the dataset by introducing localized crops focusing on the border regions between the foreground

and background. While this approach successfully increased the dataset size and improved class

balance, it also led to a predominant inclusion of images with reduced visual context compared to

the original images, due to their cropped nature with a fraction of the original image’s dimensions.

To ensure consistency, the same samples were utilized for comparing the visual analysis of the

models trained on the expanded dataset with those trained on the original dataset. However, it is

important to note that the models trained on the expanded dataset were exposed to significantly

reduced visual context and higher class distribution due to the abundance of cropped images in the

dataset, which can explain worse performance on samples present on the original dataset.

4.3 Testing in Real World Scenario

Due to the models exhibiting a degree of overfit, further testing was done to evaluate the gener-

alization capabilities on entirely different data. The data acquired are images containing marine

growth surrounding underwater structures [65]. Figure 4.8 displays some predictions the best

performing model made on this data. Since the data didn’t have segmentation masks, numerical

metrics, such as DC loss and IoU were not able to be calculated, leaving only the option of visual

analysis of the segmentation results. In most samples the model either, fails to predict anything or
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Figure 4.7: Qualitative analysis of 6 samples from the expanded dataset. Columns from left to right
are original RGB, ground truth and DeeplabV 3512, ResNet512, V GG16224, V GG16512 predictions.

predicts incorrectly; this can be explained in different ways. The first one is that the model lacks

generalization capabilities, indicating it is most likely overfit to this work’s dataset. Another one

could be the lighting conditions, as this new dataset features very dark images and the models are

trained on images with better lighting conditions. Finally, this work’s dataset species of marine

growth may not be the same ones present in the new data, which the model isn’t trained to identify.

4.4 Conclusion

The original dataset used in this study is characterized by its small scale and contains the presence

of marine growth regions with intricate shapes. These shapes suffer a loss in quality when resized

down to the desired dimensions, posing a challenge for the models to learn accurate predictions.

Consequently, the models exhibited difficulty in consistently predicting these shapes, showing

limited capability to detect smaller-sized regions of marine growth with detailed and irregular

boundaries. However, data augmentation techniques were employed as a mitigation strategy to

address these issues. The augmentation process involved generating new images that specifically

emphasized the borders between marine growth regions and the background, thereby augmenting

the dataset and balancing the distribution of marine growth instances. It was observed that only
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Figure 4.8: Visual analysis on new data.

one model, namely V GG16224, demonstrated improved performance with the application of data

augmentation, while other models showed an increased degree of overfitting.

Considering that the selected models are state-of-the-art in image segmentation and have ex-

hibited higher performance in underwater segmentation tasks, as discussed in Chapter 2, these

findings suggest that further improvement in this specific task primarily relies on enhancing the

dataset quality and diversity.
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Chapter 5

Conclusion and Future Work

This work explores the underwater vision field utilizing state-of-the-art deep learning algorithms.

It proposes to identify regions of marine growth within underwater images to facilitate mainte-

nance processes in offshore structures. The main obstacles to overcome in this work were the

negative effects that the underwater environment has on images and the lack of data. To surpass

these challenges, several methods were studied and the EdgeCrop transformation was developed

that searches for zones between foreground and background and generates new data by cropping

the original image in that zone. This effectively enlarged the dataset approximately 6x and pro-

vided a more balanced distribution of classes.

In regards to model performance, DeeplabV 3512 was the best model trained on the original

dataset, having achieved test DC loss of 0.564 and test IoU of 0.365. ResNet512 is showing signals

of being overfit due to displaying high performance metrics on the train set, achieving train IoU

and train DC loss of 0.514 and 0.330, but having the lowest performance on the test set of all

the 4 models with 0.238 IoU and 0.665 DC loss. On the expanded dataset the model V GG16224

achieved the best segmentation metrics across both train and test set, with DC test loss of 0.508

and test IoU of 0.389, the DC loss obtained with this model is 10% lower and the test IoU 4%

higher than the best results achieved in the original dataset. This model, however, demonstrated a

degree of overfitting due to being unable to identify marine growth in an entirely new dataset.

To take this research to the next step, a promising approach would be to expand the original

dataset. The dataset contains high resolution images that don’t display significant damage by the

underwater environment, however, the small size of the dataset coupled with only 5% of it being

marine growth doesn’t enable the models to effectively learn the complex patters that represent the

objects being identified. Additionally, due to the complex and detailed shapes of the objects being

predicted, an increase on the computational resources available may prove beneficial by decreasing

the resize from the original resolution to the resolution of images being fed to the model. Overall,

this work makes significant advancements in building the infrastructure and baselines for a model

capable of performing segmentation on marine growth, however, there is significant room for

improvement, specially on the data used to train the models.
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