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Resumo

À medida que a tecnologia evolui, as aplicações necessitam de mais disponibilidade e capacidade
de resposta para fornecer um sistema robusto a milhões de utilizadores. Isto é obtido através do
desenvolvimento de aplicações por cima de sistemas geo-replicados que compartilham os dados
da aplicação entre várias réplicas.

No entanto, a construção de sistemas distribuídos induz problemas com a usabilidade das apli-
cações uma vez que haverá sempre um trade-off entre consistência e disponibilidade, juntamente
com falhas na rede que tornam as réplicas incapazes de entrar em contacto umas com as outras.

Em sistemas distribuídos, a consistência forte é frequentemente usada para mitigar a incon-
sistência de dados entre réplicas e garantir uma ordem total de operações para evitar conflitos em
atualizações simultâneas. No entanto, como afeta a disponibilidade, os modelos de consistência
fraca geralmente tornam-se a solução para aplicações que valorizam a capacidade de resposta em
detrimento do nível de consistência. Conflict-free Replicated Data Types (CRDTs) são adequa-
dos para resolver este problema, pois as operações são executadas diretamente em cada réplica e
propagadas por trás, aumentando a disponibilidade.

Em sistemas não distribuídos, as transações são a abordagem padrão para obter garantias
ACID, oferecendo consistência em pedidos concorrentes. Em sistemas distribuídos, a consistência
entre réplicas pode ser alcançada de várias maneiras, sendo, por exemplo, baseada em modelos
como os CRDTs. No entanto, combinar múltiplos CRDTs aumenta a complexidade de preservar
invariantes.

Algumas abordagens foram desenvolvidas para mitigar esse problema, como reparar invari-
antes, misturar consistências ou construir CRDTs consistentes por design. Neste trabalho, explo-
ramos a última abordagem usando a framework de CRDTs pure op-based, que torna o design dos
CRDTs "quase" genérico, mas deixa alguma lógica dependente do tipo de dados para ser feita
manualmente. Implementamos uma framework pure op-based e exploramos como duas aborda-
gens recentes para o design de CRDTs podem ser usadas para realizar CRDTs pure op-based "mais
próximos" do genérico, onde os utilizadores apenas raciocinam sequencialmente, desenvolvendo
um tipo de dados, as suas operações e propriedades semânticas, e um CRDT consistente com a
execução sequencial é automaticamente construído. Este trabalho é também um exercício para
entender e explicar o design distribuído de CRDTs complexos a partir da semântica de tipos de
dados sequenciais.
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Abstract

As technology evolves, applications need more availability and responsiveness to provide millions
of users with a robust system. This is achieved by developing applications on top of geo-replicated
systems that share the application’s data among multiple replicas.

However, building distributed systems induces problems with the usability of applications
since there will always exist a trade-off between consistency and availability, along with network
faults that make replicas unable to contact each other.

In distributed systems, strong consistency is often used to mitigate data inconsistency within
replicas and ensure a total order of operations to avoid conflicts on concurrent updates. However,
as it affects availability, weak consistency models often become the solution for applications that
value responsiveness over consistency. Conflict-free replicated data types (CRDTs) are suitable
to address this problem as operations are executed directly on each replica and propagated in the
background, boosting availability.

In non-distributed systems, transactions are the standard approach to obtain ACID guarantees,
offering consistency on concurrent requests. In distributed systems, consistency within replicas
can be achieved in many ways, such as being based on models like CRDTs. However, it is chal-
lenging to build applications on top of CRDTs.

Some works have been developed to mitigate this problem, such as repairing invariants, mix-
ing consistencies, or building CRDTs consistent by design. In this work, we explore the latter ap-
proach using the pure op-based framework, which makes the design of CRDTs “almost” generic
but leaves some datatype-dependent reasoning to be manually crafted. We implement a pure op-
based framework and explore how two recent approaches for the design of CRDTs can be put
to use to accomplish “closer to“ generic pure op-based CRDTs, where users only reason sequen-
tially, developing a datatype, its operations, and semantic properties, and a CRDT consistent with
sequential execution is automatically constructed. This work is also an exercise in understand-
ing and explaining the distributed design of complex CRDTs from the semantics of sequential
datatypes.
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Chapter 1

Introduction

1.1 Context

Throughout the years, technology has evolved to satisfy users’ daily needs, forcing applications to

handle an increasing amount of data and requests. Regarding this substantially increasing demand,

some applications are expected to be highly available without response delays, to provide users

with the best experience possible. This responsiveness is achieved by building applications on top

of geo-replicated systems, that share data among numerous replicas using a variety of methods to

synchronize the data between them.

However, building applications on top of partitioned systems focused on availability brings

problems with data consistency. To conserve data integrity within replicas, synchronization is

required, resulting in increased communication between them and, consequently, decreased re-

sponsiveness. Programmers can pursue several strategies regarding consistency, by choosing from

strong to weak consistency models. This choice depends on an application’s specific requirements

and trade-offs since some users tolerate seeing stale data in exchange for a system that always

comes up with a response.

Strong consistency models are often preferred in systems where it is important to ensure that

all readers are accessing the most up-to-date version of the data. It is often used in transactional

systems, where the integrity of the data is critical. Thus, it requires synchronization mechanisms

(e.g. locks, transactions) to ensure that all reads and writes are properly ordered. In contrast,

eventual consistency models relax the constraints on when updates become visible to readers,

allowing for increased availability and scalability at the cost of potentially weaker consistency

guarantees.

Strong eventual consistency offers a balance between the two. It guarantees that if two replicas

receive the same set of updates of some shared data, their view of that data is the same, meaning

that they have equivalent states, even after independently solving conflicting updates. This can be

achieved through various techniques, such as using Conflict-free replicated data types (CRDTs)

that use a variety of methods to ensure that conflicting updates can be safely merged, such as

tracking the total order of updates to a record, defining arbitration rules between updates and using

1



Introduction 2

certain data types that support merging. In this context, causal consistency can also be ensured, as

these methods allow operations that depend on each other to be seen and applied by all processes

in the same order.

CRDTs are particularly useful in distributed systems where it is not suitable to use strong

consistency models due to the overhead of coordination and communication. They can provide a

way to ensure the integrity of the data while still allowing increased availability and scalability.

When building a distributed application that needs a distributed data store, it is possible to

combine multiple CRDT objects to build more complex data structures, and express the high-

level application operations as combinations of low-level operations on the underlying CRDT

objects. For example, a distributed store might use a CRDT to represent a set of items, another

CRDT to represent a map of key-value pairs, and another CRDT to represent a list of items.

Combining these CRDTs in a single store makes it possible to create a data structure that can be

updated concurrently by multiple processes without the need for locking or other coordination.

However, preserving high-level application invariants in such architecture is far from trivial and

poses significant challenges. An emerging approach involves constructing custom CRDTs from

sequential code, which entails expanding sequential data types with a distributed specification.

This method offers more flexibility than combining pre-existing CRDTs, as it allows specifying

the behavior of complex data types and their operations, together with custom conflict resolution

strategies that suit the application’s needs.

Certain distributed storage systems provide the capability to group application operations into

atomic blocks. However, this does not ensure strong consistency, as these blocks are executed

locally, and the operations that are synchronized are the inherent ones, potentially leading to state

divergences. Alternatively, some systems adopt a hybrid model where it is possible to enforce

global transactions to have stronger consistency.

1.2 Motivation

It is difficult to ensure that a collection of CRDTs satisfies high-level application requirements.

It is often hard to directly instantiate an application with an existing CRDT, as there is often a

limited set of CRDTs to choose from, with limited operations and invariants, and supporting novel

features often requires significant extensions and redesigns. A recent example is the bounded

counter CRDT [5]. The solution is, therefore, to translate the application’s state into that of an

existing CRDT. However, the CRDT will have its own vision of consistency and its own conflict-

resolution policy that sometimes does not match the assumptions of the high-level applications

written on top of such CRDT.

Having an application structured on top of a composition of replicated data types only makes

the challenge even harder, as the CRDTs will ensure convergence, but each CRDT will operate

independently from each other, and still not necessarily preserve cross-object invariants assumed

by the high-level application.
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Even with careful design and implementation, identifying how an invariant might be violated

can turn out to be as challenging as defining it. Thus, the difficulty lies in how to devise a strategy

to maintain invariants. This is particularly true in systems that operate at a large scale, where there

may be many replicas of the same data and where the invariants may be subject to a high volume

of concurrent updates.

Some frameworks have been proposed that allow for the formal verification of the behavior

of applications composed of basic CRDTs, in order to reason about their behavior and verify that

the distributed system adheres to the desired application invariants. Still, they typically require the

creation of formal abstract specifications of the application and can involve a significant amount

of manual effort to prove that a distributed implementation respects an abstract specification. Ad-

ditionally, these techniques have not yet been widely adopted in mainstream CRDT development

practices. This can make it challenging for developers to use these techniques in practice, as they

may not have access to the necessary tools or the expertise to effectively use them.

Considering these challenges, the creation of generic CRDTs from sequential code becomes a

good alternative. In this approach, users intuitively reason sequentially, developing a datatype, its

operations, and semantic properties, and a CRDT consistent with sequential execution is automat-

ically constructed. This simplifies the process of defining and maintaining application invariants

and ensures that the resulting CRDTs are inherently consistent with a conflict resolution strategy

that preserves application invariants. As a result, this approach makes the advantages of CRDTs

more readily achievable for developers seeking to meet specific application requirements.

1.3 Proposed Work

This work will implement a framework and explore how two recent approaches for the design

of CRDTs can be put to use to accomplish “closer to“ generic CRDTs, where users only reason

sequentially, developing a datatype, its operations, and semantic properties, and a CRDT consis-

tent with sequential execution is automatically constructed. This framework will be also used to

understand and explain the distributed design of complex CRDTs from the semantics of sequential

datatypes.

In order to assess the framework and its practicality, some use cases and complex data types

will be collected and scrutinized. This analysis aims to comprehend how a sequential specification

of classic CRDT examples relates to their distributed behavior. Furthermore, these implementa-

tions will be tested to verify the accuracy of both the generic CRDTs implementation and datatype

specifications, ensuring that the resulting CRDTs not only meet the desired requirements but also

maintain the expected level of correctness and consistency.

1.3.1 Objectives

For a clearer comprehension of the goals of this study, we clarify them into the following three

key objectives:
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1. Explore the challenges of using CRDTs to build complex, large-scale applications and how

these challenges can affect the ability to preserve application invariants.

2. Implement generic CRDT constructions that define a CRDT from a sequential data type.

3. Evaluate how some use cases and complex data types can be implemented using generic

CRDT constructions.

1.4 Document Structure

Besides the introduction presented in chapter 1, this document contains six more chapters.

Chapter 2 describes the basic theoretical knowledge needed to understand the problem of

designing CRDTs that preserve application invariants.

Chapter 3 enunciates related work previously developed to address the problem, along with

the respective trade-offs.

Chapter 4 presents the implementation of a Pure Op-based framework used to transmit and

handle messages among replicas.

Chapter 5 demonstrates our implementation of generic CRDT constructions that are used to

define a CRDT from a sequential data type.

Chapter 6 illustrates examples of classical CRDTs for specific sequential data types, and

demonstrates how they can be obtained by using our generic CRDT constructions.

Chapter 7 discusses the performance of an implemented data type on top of all the generic

CRDT constructions.

Finally, Chapter 8 provides a reflection of what was explored and what could still be done to

improve this research.



Chapter 2

Background

This chapter presents the fundamental theoretical knowledge essential for understanding the chal-

lenges of distributed systems and CRDTs. It explains their key properties and how they work.

2.1 CAP Theorem

Real-world services are expected to possess three desirable properties [11]: Consistency, Avail-

ability, and Partition-tolerance. However, it has been proved that only two of the properties can be

fully ensured. It is impossible to have a partitioned system that simultaneously provides atomic

operations and consistent data while being totally available.

A system has strong consistency if the data is the same for all clients at any point in time as if

there was one single node in the system. This means that operations should be totally ordered in

all replicas, and when a write operation happens, it is instantly shared with all nodes.

To provide availability, a system should always come up with a response for every request it

receives, independently of the number of replicas that are online.

Finally, to have partition tolerance, a partitioned system should be able to tolerate message

losses or node failures, without compromising the correctness of the system responses.

Normally, partition tolerance is prioritized in distributed systems, which leads developers to

reach a suitable balance between availability and consistency, thus, building systems based on

different consistency models.

2.2 Consistency Models

Consistency models describe the consistency level preserved in a distributed system, where multi-

ple nodes may concurrently access and modify the same data. Different consistency models have

different trade-offs regarding availability, performance, and the guarantees they provide regarding

data consistency, as mentioned in the previous section.

5
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2.2.1 Strong Consistency Models

Strong consistency is the strongest model of consistency that ensures that all read and write op-

erations to shared data are assembled in the order in which they were issued, as if executed on

a single centralized replica. Thus, all readers will see a consistent view of the data, even in the

presence of concurrent writes. This is normally achieved using a leader-based approach, where

a chosen node coordinates updates and ensures that all nodes have the same data. Strong consis-

tency is often selected in applications where data integrity and consistent results are required, such

as database systems that handle transactional data like MySQL and PostgreSQL. Transactions are

another usual way to achieve strong consistency as they provide a method to ensure that a set of

operations are executed in a consistent and atomic way. This topic is explored with more detail in

Section 2.3. Nevertheless, these methods can negatively impact performance as they require more

time to process operations because of the additional communication and coordination between

replicas to guarantee that only one consistent state is always observed.

Operations that involve commutative operations, such as adding or multiplying numbers, do

not necessarily require strong consistency in order to maintain the correctness of the system. These

types of operations can be reordered between different replicas, which can improve performance.

Besides that, applications that can tolerate some level of staleness in the data they access, such as

caching systems or social media feeds, do not need strong consistency for the correct operation of

the system. In these cases, weak consistency models may be used.

2.2.2 Weak Consistency Models

Eventual consistency is the weakest model of consistency. It is possible for conflicting updates to

be applied to the same data simultaneously, as the system will solve those conflicts and converge

to a consistent state. As this model allows conflicting updates to occur, it requires a mechanism to

solve those conflicts, such as adopting policies like ”last-writer-wins” or even manual resolution.

This type of consistency is often used in systems where high availability is more important than

strong consistency, including distributed storage systems like Cassandra.

RedBlue consistency is a consistency method introduced by Li et al. [20] for achieving a

balance between the speed and consistency of replicated systems. It allows for systems to be

as fast as possible while still ensuring consistency when necessary. This consistency is a new

approach that addresses this trade-off by dividing operations into two categories: blue operations

and red operations. Operations that are classified as blue can have their order of execution change

between locations. These operations can be performed efficiently and locally without requiring

coordination between sites. On the other hand, red operations must be executed in a consistent

order across all sites.

Strong Eventual Consistency (SEC) is a newer model of consistency proposed by Shapiro

et al. [22] that lies in the middle of strong and eventual consistency. In addition to ensuring that

the system will eventually become consistent, SEC also ensures that nothing will ever compromise

a single object of the system during the execution. Therefore, the need for reverting changes to
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resolve conflicts is eliminated, as it not only consumes resources excessively but also needs a

consensus among replicas to handle conflicts in a consistent manner. In other words, it ensures

that all replicas of a single object in a replicated system will eventually converge to the same

state, regardless of the order in which they receive the same update operations. This condition

is typically implemented using Operational Transformation (OT) or Conflict-free Replicated Data

Types (CRDTs), specialized data structures designed to follow this model.

Finally, causal consistency is another weak model of consistency when compared to strong

consistency. Instead of ensuring convergence to reach the same state, it ensures that the order of

operations is maintained within a causal relationship. A causal relationship refers to the associa-

tion between two operations that are related in time. Causal consistency ensures that any operation

that is causally related to a previous operation will be seen by all nodes in the same order.

Causal+ consistency (CC+) was defined [21] and designates a balance between availability and

consistency. It follows the basic Causal Consistency model but besides ensuring a causal order

of operations, it also ensures that replicas converge to a common state when conflicts happen

due to concurrent updates. To achieve this, many systems implementing CC+ use Conflict-free

Replicated Data Types (CRDTs) or a "last-writer-wins" rule, where the last update is applied,

while any previous updates are overwritten.

However, none of these approaches guarantee a total order of operations, which can result in

integrity violations.

2.3 Transactions

A transaction is a sequence of one or more operations (such as reading or writing data) executed

together on a database. It ensures that databases remain consistent and can recover from failures,

allowing for reliable execution of operations. Transactions follow a set of properties that ensure

data consistency and integrity.

2.3.1 ACID Properties

ACID properties are a set of guidelines for designing and implementing database transactions. The

acronym ACID stands for Atomicity, Consistency, Isolation, and Durability. These properties are

important as they help ensure that database transactions are reliable and accurate, even in the face

of failures or concurrent accesses:

• Atomicity: When a transaction is executed, all its operations must be successful for the

changes to persist otherwise none will. In the event that any operation within a transaction

fails, the entire transaction is undone, and the database is restored to its previous state.

• Consistency: A transaction must leave the database in a consistent state. The data in the

database must follow all the rules and constraints set by the database schema, such as data

types and foreign key relationships.
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• Isolation: Transactions should not interfere with each other. If one transaction reads data

from the database, it should not be affected by any other transaction written to the database

simultaneously.

• Durability: Once a transaction has been committed, it cannot be lost or undone. If the

database experiences a failure, the transaction will still be recorded and preserved.

However, the level of consistency provided by Serializable transactions, which is the highest

level in traditional ACID databases, cannot be reached while maintaining high availability in sce-

narios where network connectivity is compromised. Weak isolation and consistency guarantees

are often used as a trade-off to improve performance, concurrency and to achieve high availability.

2.3.2 Isolation Levels

Transactional systems usually support different levels of isolation that represent how transactions

are isolated from each other.

Serializability is the strongest isolation level that can be used in transactions. It ensures that

the execution of concurrent transactions will produce the same results as if they were executed in

sequential order by a single machine, which is not ideal in distributed systems.

Weaker isolation models are used to increase the availability of systems such as Read Uncom-

mitted, Read Committed, Repeatable Read, and Snapshot Isolations, the strongest isolation level

after Serializability.

2.3.2.1 Snapshot Isolation

Snapshot isolation (SI) is a level of isolation that provides a consistent view of the database at a

specific point in time and prevents conflicting transactions from committing simultaneously, thus,

avoiding write-write conflicts. Snapshot Isolation enforces a total order of committed transactions

when they are committed. This isolation level is widely adopted by databases because it provides

improved performance compared to serializability. It avoids the need for blocking during read

operations and eliminates the majority of anomalous behaviors, except for the brief fork anomaly

that may occur when one transaction reads an object that has been updated by another transaction,

and the second transaction reads an object updated by the first transaction.

As it ensures a total order for write operations, it may not be the optimal choice for distributed

transactions as it needs increased coordination between nodes.

2.3.2.2 Parallel Snapshot Isolation

Parallel Snapshot Isolation (PSI) is a technique that was implemented in Walter by Sovran et al.

[23] and addresses the need for ensuring consistency in a geo-replicated data store that supports

transactions. It builds upon the guarantees provided by Snapshot Isolation (SI). It allows for greater

flexibility regarding the order in which transactions are committed across different sites. PSI
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allows distinct nodes to have different orders of committed transactions. This is achieved through

the use of asynchronous replication, which guarantees a causal order of transactions among nodes.

It is possible for the long fork anomaly to occur. This scenario can happen when two simul-

taneous transactions, t1 and t2, finish successfully and make updates to distinct pieces of data,

followed by two additional transactions that occur subsequently, where one of them observes the

changes made by t1 but not t2, and the other one notices the changes made by t2 but not t1. Never-

theless, PSI has mechanisms to avoid write-write conflicts by aborting any transactions that try to

modify the same items concurrently, ensuring that multiple transactions do not write to the same

data simultaneously.

2.3.3 Highly Available Transactions

Highly Available Transactions (HAT) [3] are database transactions characterized by providing a

high level of availability by avoiding strong isolation properties such as rolling back in case of

failures. HATs can continue processing and returning valid results on server failures or network

disruptions. This is achieved by using weak isolation and consistency models that do not require

all servers to be in perfect synchrony and instead rely on weaker consistency guarantees, such as

eventual consistency. These transactions are commonly used in distributed key-value stores, with

the degree of isolation and consistency depending on the particular implementation.

However, these ACID isolation levels and distributed data consistencies were evaluated, and

Bailis et al. [3] states that guarantees such as causal consistency and read-your-writes can be

provided. Still, other desirable semantics like Snapshot Isolation and Strong Serializability cannot

be met owing to the lack of means to avoid issues like Lost Update and Write Skew/Short Fork.

2.3.3.1 Transactional Causal Consistency

Transactional Causal Consistency (TCC) is a type of consistency used by Akkoorath et al. [2] in

Cure system, that aims to support interactive transactions which enable both read and write op-

erations to occur within one transaction. TCC ensures that all transactions read from a causally

consistent snapshot of the data store. This means that the snapshot captured contains updates from

previously committed transactions that are causally consistent, in line with the causal+ consis-

tency model (mentioned in 2.2.2), with convergence being achieved using CRDTs. Besides that,

atomicity is ensured when multiple objects are updated within a single transaction.

2.4 Operational Transformation

As presented in [17], the challenge of consistency maintenance in systems where multiple users

can view and edit the same data simultaneously can be achieved using Operational Transformation

(OT) algorithms.

In Operational Transformation (OT), the basic operations supported are insert and delete,

which operate on a linear data structure. When a user performs an operation on their local replica,
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the operation is immediately applied to the local replica and subsequently transmitted to the other

replicas to be consequently applied.

Transformation functions ensure the commutativity of the effect of operations in a state. The

effect of new incoming operations is adapted based on the operations that have already been ap-

plied to repair inconsistencies. This ensures that the intended changes made by users to the shared

data are accurately reflected, aligning with the objective of creating collaborative systems as flexi-

ble and adaptable collaboration platforms. With OT, users have the freedom to edit any part of the

shared data at any given time.

2.5 Conflict-free Replicated Data Types

Conflict-free replicated data types (CRDTs) are abstract data types specifically designed to be

replicated across multiple nodes. As previously mentioned, CRDTs are associated with weak con-

sistency models that aim to guarantee convergence within replicas to increase consistency without

losing availability. They are useful in distributed systems where data may be replicated across

multiple nodes, and where it is important to have consistency and availability even in the presence

of network partitions and other failures. This is achieved with minimal coordination required as

they have these two properties: (i) each replica can be independently and concurrently modified

without any coordination, and (ii) two replicas that receive the same set of updates will reach the

same state in a deterministic way, by ensuring and relying on the commutativity of updates.

CRDTs are typically classified into two different synchronization models - Operation-based

and State-based - that have different trade-offs and are suited for different use cases.

2.5.1 Concurrency Semantics

Concurrency semantics is essentially a function that, given a Directed Acyclic Graph (DAG) of

updates constructed using the happens-before relation, returns the state of the CRDT after applying

these updates. This function plays a crucial role in determining the behavior of the CRDT in

the presence of concurrent updates, thereby enabling the system to maintain consistency across

replicas. Having a distributed system with shared data structures implies handling concurrent

updates. Some updates can be applied in any order and produce the same result. These updates

are called commutative. However, some updates may not commute, meaning that the order in

which they are applied will affect the final result. In such scenarios, the developer must choose the

appropriate semantics for their use case.

When defining concurrency semantics, some relations need to be taken into account, such as:

1. Happens-before relation: if one event happens before another, the first event is guaranteed

to have been completed before the second event starts.

2. Partial order of updates: certain updates are concurrent and are not ordered with respect to

each other. This is the result of having a set of updates only with a happens-before relation.
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3. Total order of updates: all updates in a set are comparable according to some order. Achiev-

ing a total order requires additional rules or coordination to ensure that replicas apply up-

dates consistently ordered.

CRDT designs for types such as registers, sets, counters, graphs, and, more recently, bounded

counters, have concurrency semantics that ensures convergence, in the sense that the CRDT state

is independent from the order according to which concurrent operations are applied. CRDTs can

employ a variety of concurrency strategies, including ”add-wins”, where additions have priority

over deletions, and ”remove-wins”, where deletions have priority over additions.

2.5.2 Synchronization Models

CRDTs ensure that all replicas will converge and obtain the same data, regardless of the order

in which updates are made. This means that the primary focus for developers is to ensure that

updates are distributed to all replicas, which is achieved with synchronization models.

2.5.2.1 State-Based Synchronization

State-based CRDTs replicate data by sending their state to a peer replica. They focus on replicating

the entire state of the data structure at each replica, and when replicas need to merge their states,

they do so by using a merge function that is defined to integrate the state of remote replicas.

There are three requirements to ensure convergence:

• States on replicas are partially ordered, forming a join semi-lattice: for each pair in the set

of states of each replica, it is possible to produce a join. The states are partially ordered

based on a "happens-before" relation.

• Merge function produces a least upper bound: Updates change the state of a replica by

increasing it. For any update u, the updated state u(s) is greater than or equal to the

original state s.

• Replicas form a connected graph.

With these properties, merges of state-based CRDTs tend to converge to one common true

value.

The main advantage of state-based CRDTs is that they are relatively simple to implement and

maintain, but they can result in larger messages or states being transferred during replication. This

trade-off makes them appropriate for situations where the data structure is relatively simple and

the cost of transmitting the entire state can be tolerated.

2.5.2.2 Operation-Based Synchronization

In Operation-based CRDTs, data replication is achieved by transmitting operations to all repli-

cas. When a modification occurs on a replica, it invokes a prepare method, which produces an
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effect function to be executed on other replicas. The effect is thus a closure that modifies

the state in other replicas. Once applied, the replica executes the effect on its local state and

disseminates the updates to other replicas. To ensure convergence, the following requirements

must be met:

• A protocol that guarantees reliable transmissions.

• When the effect function is transmitted according to the causal order, any concurrent

effects must have a commutative relationship. If the causal order is disregarded during

delivery, all effects must exhibit commutativity.

• The effect function must be idempotent if multiple deliveries are possible.

Operation-based synchronization leads to more efficient replication by transferring fewer data

during the replication process but may require more complex implementation.

2.5.2.3 Delta-Based Synchronization

Considering State- and Operation-based synchronization, it becomes clear that transmitting the

entire state of an object is not always necessary when only a portion of it has been altered. On the

other hand, if there are multiple updates to the same state (such as in a counter), it is more efficient

to transmit the state once.

Delta-state CRDTs address this issue by combining both synchronization models and propa-

gating delta-mutators, which update the state based on the latest synchronization date. During the

initial communication between replicas, a full state transfer is necessary.

To further optimize, in the presence of delays, an operation-based log compaction technique

may be beneficial.

2.5.2.4 Pure operation-based synchronization

In operation-based synchronization, the designers have a lot of freedom in defining the prepare

function, which can lead to complex state structures and large messages. Regular operation-based

CRDTs distribute the logic between both the prepare and effect phases. The prepare phase not only

collects the required information but also contains some of the decision-making and coordination

logic.

On the other hand, in pure operation-based CRDTs, the prepare phase is designed to be

generic, and the logic of updating a data type happens during the effect phase. Pure Operation-

based CRDTs, as proposed in [7], were introduced to remark the simplicity and efficiency of

operation-based CRDTs. Here, the transmission of information is exclusively done with opera-

tions through a reliable causal delivery protocol, ensuring the preservation of causality in delivered

messages, which are then incorporated into a partially ordered log (PO-log). The entire logic of

executing the operation in each replica is delegated to the effect function, while the prepare,

which is made generic (i.e., not data type dependent), serves as a preliminary step to transform the
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request into a message before applying updates using effect, and broadcasting the message to

other replicas.

The framework of Pure op-based CRDTs also proposes the concept of stability, where mes-

sages become stable if it is guaranteed that no concurrent updates with that message will arrive

in the future. An extended API called Tagged Causal Stable Broadcast (TCSB) provides extra

causality information upon delivery and is used to inform later when delivered messages become

causally stable, allowing log compaction and consequently reducing the storage overhead.



Chapter 3

Related Work

This chapter provides an overview of the existing approaches for addressing the challenge of

designing high-level applications on top of CRDTs, and in particular how to preserve application

invariants. It explores the trade-offs associated with each approach and specifies which approaches

will be adopted in our research, along with the motivation behind the selection.

3.1 Composing Replicated Data Types

Creating an application that uses currently available Replicated Data Types can present challenges

in real-world scenarios. One limitation of such RDTs is that developers must store and handle

all application data in a general format, like JSON, making it hard to include application-specific

concepts or utilize programming constructs like classes and types which need relations to be main-

tained among them, to successfully represent the application’s state.

When Conflict-free Replicated Data Types (CRDTs) solve conflicts among concurrent opera-

tions, they ensure consistency of operations defined on the specific type (e.g. list properties in a

list CRDT, invariants like ≥ 0 in a bounded counter), but it may not align with the expectations

of developers relatively to high-level invariants of the application. For example, using a standard

list CRDT, if one user moves an element of the list (as a sequence of deletes and inserts) while

another edits it concurrently, then the concurrent edits will be lost. As moving items is common

in applications, Kleppmann [16] describes a “list-with-move” CRDT as a solution.

Developers could build applications based on CRDTs specifically designed for each appli-

cation’s necessities like Kleppmann did. However, designing these types of CRDTs can be a

challenging task that does not scale well for increasingly complex applications.

As current RDTs are insufficient for preserving application invariants, complex applications

can use several data types to represent the desired application state. For example, a social network

application may need to maintain information about users, their friends, and their posts. Some of

these different types of data may need to be combined to represent the overall state of the appli-

cation. Composing different standard CRDTs makes it possible to provide convergence, ensuring

strong eventual consistency guarantees for each data type, consequently enabling the application

14
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to handle concurrent updates consistently. Some libraries have been developed in this direction,

such as Yjs [13], Automerge [1], and more recently, Collabs [25], which provides modularity and

composition for Replicated Data Types.

However, combining different CRDTs with convergence guarantees is not enough for ensuring

application integrity, since updates sent by replicas do not have a global order and, when applied

on each replica, they may not follow the order in which they were issued. As a result, if a replica

emits updates assuming a specific relative order and preserves invariants on its state while applying

operations locally, their distributed application of the same operations can potentially break the

assumed invariants.

Considering our social network example, we can represent friendship relations and user’s

feeds with arrays of sets, giving the composition presented in Figure 3.1.

Figure 3.1: Example of a social media representation (Adapted from [12]).

For both cases, there are high-level application invariants that must be maintained. In the

representation of figure 3.1, it is assumed that friends relationships are symmetrical, and if two

users are already friends, their requests should not be in requests array anymore. It is also

assumed that a user must only see posts on their feed from people they are friends with.

To ensure convergence, this example can be implemented using different combinations of set

CRDTs, each with a specific concurrency semantics. However, as previously said, the convergence

guaranteed by CRDTs is not enough to prevent invariant violations, as they have no intrinsic

knowledge of the high-level application invariants.

3.2 Supporting Application Invariants

The problem of preserving invariants is mitigated with existing approaches such as:

1. Formally model the semantics of the datatype and the CRDT, and formally check that the

CRDT concurrency semantics does not compromise the application’s semantics and its spec-

ified invariants.
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2. Letting violations occur and propose repairs when it is detected that the system is inconsis-

tent.

3. Using different consistencies depending on the operation performed. Operations that might

violate invariants will have more synchronization than others.

4. Synthesize correct CRDT implementations from an abstract specification that expresses the

necessary invariants.

All of these methods come with trade-offs and require identifying the critical operations and

their effect on the application’s state.

3.2.1 Formal Verification

One way of building applications on top of eventually consistent stores is to use a composition of

replicated data types and transactions over these objects to update them. However, these semantics

are subtle, which makes it difficult to reason about the behavior of the application on concurrent

updates. A new programming concept of a composite replicated data type was introduced by

Gotsman and Yang [12] that formalizes this method of organizing applications.

A composite replicated data type made up of multiple components of replicated data types and

includes composite operations for accessing them through transactions.

Going back to our previous example of a social network, stated in representation 3.1, following

the composite implementation, friend relationships would be represented with sets defined with

conflict resolution policies, such as "remove-wins" or "add-wins" and have operations built with

transactions to guarantee atomicity and causal order of updates, as shown in Figure 3.2.

Figure 3.2: Representation of conflict results for different conflict resolution policies (adapted
from [12]).

The paper puts forth the idea that assigning the ”remove-wins” behavior to requesters is a

suitable solution to preserve the invariant, which holds that if person a and b are friends, then

a cannot appear in the list of requesters for b. In figure 3.2, two users are managing the same
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account, b, and both send friend requests to a concurrently. With the "add-wins" approach, if

a accepts one of the requests, it would only affect the request they see, while the other request

would later be transmitted to all replicas in the system. This would result in get calls in the

implementation, returning b as both a friend and requester of a, violating the integrity invariant.

The ”remove-wins” policy for requesters guarantees that when a user approves or rejects a

request, it also deletes any other identical requests made at the same time.

As this behavior is very subtle, this method abstracts from the internal design of the data type,

allowing developers to define the behavior of the composed CRDT by only referring to the com-

posed operations and not the operations of each constituent CRDT. This helps to reason about

applications built using this method. However, these formalization techniques still require reason-

ing about the distributed behavior of the composed CRDT, while using advanced techniques/tools

and manual verification to be considered useful for a common developer.

3.2.2 Invariant Repair

Avoiding formalizations, some works provide more practical solutions to preserve invariants, such

as IPA introduced by Balegas et al. [6]. It is a system that preserves invariants on weakly consis-

tent replicated databases. This software detects conflicting operations and suggests the required

modifications to them.

The core concept is to improve operations by incorporating updates that preventively ensure

the maintenance of invariants on concurrent updates. These updates execute when there is a need

to correct undesirable states.

(a) Invariant Violation (b) Invariant repair by friendship recreation

(c) Invariant repair by post removal

Figure 3.3: Representation of conflicts and resolutions of two operations.
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Looking into our social network example, if on different replicas, the operation breakup(a,b)

runs concurrently with add_post(a,pb), the system will converge to a state where a has a post

of b without a friendship, violating an invariant as shown in Figure 3.3a.

To prevent this violation, the system can (i) remove the post that was added to a’s wall or (ii)

restore the friendship to its previous state.

To solve the invariant violation by recreating the friendship relation, the system extends the

effects of adding a post to touch friendship f. The touch operation has no discernible impact as it

only modifies metadata to ensure that concurrent execution is identified and handled according to

the specified conflict resolution strategy. Therefore, there is no coordination needed to solve this,

as shown in Figure 3.3b.

Since it is a social network, it makes more sense to solve this specific case with approach

(i). Thus, to prevent the invariant violation by deleting posts in removed friendships, the system

extends the effects of the remove friendship f to preventively remove any concurrent addition of

posts related to f. This does not produce any observable effect because the removal operation

should leave no elements on the wall. Choosing a "remove-wins" strategy for the wall set ensures

that concurrent additions of posts will not have any impact, as Figure 3.3c states.

Despite being a good approach to avoid coordination on maintaining invariants, creating the

specifications needed to find the proper updates that preventively ensure the preservation of invari-

ants can require as much effort as writing the code itself.

Easing specification effort, De Porre et al. [9] introduced Explicitly Consistent Replicated

Objects (ECROs) that are specified through a distributed definition that outlines the application’s

semantics and ensures the replicated state’s consistency via invariants. ECROs have the capability

to previously identify potential conflicting operations (via program analysis of the operation defi-

nitions), which is used during runtime to reorganize conflicting operations in order to maintain the

invariants.

Figure 3.4: Representation of reordering of operations to preserve invariant (adapted from [9]).

Considering the same situation presented in subsection 3.2.1, which is represented in Figure

3.4 in a chronological form. Here, R2 requests friendship to a, and R1 makes the same request,

followed by an acceptance of that request, which removes b from requesters of a and adds

it to its friends. After this concurrent situation, the request made by R2 is sent to R1, and the

acceptance made by R1 is sent to R2. This behavior will lead to an invariant violation where R1
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ends up with a and b being friends and b still belonging to a requesters. Thus, as shown in

Figure 3.4, the ECRO will reorder the operations in R1 and lead to a consistent state that does not

violate the invariant.

However, this solution has a trade-off since it involves the presence of rollbacks, which can re-

sult in a client observing operations being executed in a certain order initially, but later perceiving

them as being applied in a different order. Besides that, it is not always feasible, as ordering op-

erations may not be enough to preserve invariants such as bounded counters. In that case, ECROs

would use more coordination between these operations, leading to stronger system consistency

when needed.

3.2.3 Mixed Consistencies

Anomalies are avoided in systems that enforce strict serializability, meaning that all operations

are executed in the order they occur. However, weaker consistency models like serializability or

snapshot isolation can also lead to increased latency and decreased availability due to the need for

frequent coordination among replicas. An alternative approach is to take advantage of both weak

and strong consistency models, depending on the operation being performed. Redblue consistency

already does this but does not consider invariants, sometimes leading to unnecessary coordination.

Figure 3.5: Preserving invariant with mixed consistency method.

Concerning that, Indigo provides Explicit Consistency proposed by Balegas et al. [4]. Explicit

Consistency aims to extract more information about applications to support properties that enable

the system to avoid coordination. Invariant violations are avoided using reservations, which as-

sign rights to operations on a multi-level lock basis. This alternative consistency model identifies

which operations are unsafe if executed concurrently and allows developers to select "violation-

avoidance" or "invariant-repair techniques."

In our example, add_post(a,pb) and breakup(a,b) represent an I-offender set. An

I-offender set is a set of operations that, if executed concurrently, can result in a violation of

invariant.
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With the "invariant-repair" approach, operations can execute concurrently, but conflict resolu-

tion rules should include code to fix the invariant violation. Here, the merged state might ignore

the newly added post, similar to IPA in the previous example (3.2.2).

In the "violation-avoidance" approach, the system restricts concurrency enough to avoid in-

variant violation. Considering our example, any replica is allowed to execute add_post(a,pb)

as long as all replicas are forbidden to run breakup(a,b). To execute breakup(a,b), it is

necessary to obtain permission on the reservation for breakup(a,b). This guarantees that

deleting a friendship from another user will not execute concurrently with adding an element to

a’s wall.

Another approach is Carol [19], a programming language designed to enable modular and

sequential programming and verification of replicated store operations without the need for un-

derstanding the concurrent execution model. The key idea is a two-state predicate that establishes

a relationship between the locally-viewed store and the hypothetical remote store where updates

from an operation may be eventually applied. In Carol, this predicate allows programmers to de-

clare specific consistency requirements, enabling precise specification of invariants. Programmers

specify guards, which are straightforward data pre-conditions. The algorithm statically translates

those guards, adding coordination when needed to enforce the preservation of invariants.

Although solving the problem of preserving invariants, these approaches limit availability

when too many operations that can lead to invariant violations are executed.

3.2.4 Consistency by Design

Most of the previous approaches propose constructions that yield consistent CRDTs. For instance,

ECROs take a sequential data type and devise a distributed algorithm that guarantees convergence

by reordering and reapplying operations as needed. The approaches catalogued in this section take

a sequential data type, and output a "standard" CRDT.

Katara, an open-source system that uses program synthesis techniques to simplify the creation

of CRDTs, was introduced by Laddad et al. [18]. This system transforms annotated sequential

data type implementations in languages like C/C++ into complete CRDT implementations with

equivalent functionality. Users only need to add a basic function to their sequential data type

annotations that outline the order of conflicting operations. Katara then verifies the synthesized

CRDT candidates against both the sequential semantics and the conflict resolution policy specified

by the user, making the CRDT creation process easier and more attainable.

Program analysis and SMT encoding is used to perform such verification and provide CRDTs

convergent by construction. However, this synthesis technique is usually limited to small CRDTs

and would require expansion to address invariants effectively.

Another similar approach was introduced by Kaki et al. [15], where replicated data types,

called Mergeable Replicated Data Types, are also created from annotated sequential specifica-

tions. Here, the replicated state is represented by versioned data structures that are constantly

changing and originated from a shared original version. The synchronization is made by pairs
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of replicas merging their concurrent versions into a single convergent version that retains the es-

sential characteristics of their parents. This merging process is assisted by additional information

from the lowest common ancestor (LCA) of the merging versions. This provides correct merge

functions automatically for data type definitions that can be combined at any level of complexity.

Yet, this approach does not take into account the invariants of an application.

3.2.5 Semidirect Product

A new CRDT construction technique, the semidirect product of op-based CRDTs is a restricted

kind of Operation Transformation (OT) presented in [24]. It is an advanced composition pattern

that combines two op-based CRDTs integrating their respective operations to create a new CRDT,

handling conflicts between their concurrent operations in a uniform way.

This approach involves using a transformation function which is employed to appropriately

adjust operations from the first CRDT, considering concurrent operations from the second CRDT.

However, it does not take invariants into account.

3.3 Discussion

The main challenge explored in this section is how developers can write familiar sequential code

and translate it to a distributed implementation. One solution to this problem is to introduce

coordination, which allows all replicas to agree on the order of execution. However, as previously

discussed, this approach is expensive for many applications, particularly on a global scale, as it

weakens the benefits of replication by requiring high-latency communication between nodes.

All of the previously discussed approaches have trade-offs, such as manual proof effort or

unavoidable coordination. We will follow the general approach (adopted by ECROs and other

synthesis techniques) of describing a type, its operations, and their properties and consequently

generate a CRDT.

In particular, we will start from a pure op-based framework, identified in [7] as follows:

“The Pure CRDT framework makes the design of op-based CRDTs “almost” generic.

In our experience, making them fully generic is impossible due to the native semantic

discrepancy of the designed data types — making them more generic will be imprac-

tical, as we’ve seen in the PO-Log based CRDTs before compaction”.

We will then follow closely the approach laid out by Explicit Conflict-free Replicated Data

Types [9] towards the design of “closer to“ generic pure op-based CRDTs. As in ECROs, our

approach considers that users define a data type, its possible operations and some associated prop-

erties, and a generic pure op-based construction subsumes a CRDT that is consistent with the

semantics of the data type. In particular, this means that the distributed behavior of the CRDT will

always be explainable as a sequence of operations on the data type. Along the way, and unlike

ECROs, we will also draw connections to the Semidirect Product [24] approach as a way to make

our construction more efficient.



Chapter 4

Implementation of a Pure Op-based
CRDT Framework

Our framework was developed from scratch using the Golang programming language, leverag-

ing a range of beneficial open-source tools and standard-library packages to construct both the

middleware and client processes.

The client is used by the application/data type that leverages the tagged causal delivery service

to establish communication with the middleware process. All requests arrive from the application

at the client process. The middleware process is responsible for executing the necessary tasks to

broadcast and receive messages while guaranteeing tagged causal delivery and stability.

There were alternative options for middleware implementations, such as the one presented by

Bauwens and Boix [8] in Flec, a versatile programming framework designed for the development

and use of CRDTs. Flec’s key strength lies in its portability, with the ability to operate across many

platforms, making it highly adaptable to various environments. However, since the efficiency and

support of the middleware were not the primary focus of this project, and Flec’s code was not

readily accessible, we decided to develop our own implementation.

To implement the tagged causal stable broadcast, the middleware, and client processes ad-

hered to the model outlined in Younes [26], allowing only minimal modifications. Such adherence

enabled a reliable delivery of messages with causality and stability information, essential for the

development of pure operation-based CRDTs [7]. This provides directly enables to reconstruct a

happens-before relation from the PO-Log and provides support for easy PO-log compaction over

time.

We intentionally omitted a network layer because it was not crucial for the scope of our re-

search. Consequently, nodes function as threads, and the message transmission is done using

Golang channels between these threads.

22
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4.1 Tagged Causal Stable Broadcast

As noted earlier, pure operation-based CRDTs need a reliable broadcast protocol. Given this

requirement, besides considering a static group of processes, [26] defines a set of simplifying

assumptions concerning this protocol:

• "No message is delivered more than once"

• "No message is delivered unless it was broadcast"

• "If pi and p j are correct, then every message broadcast by pi is eventually delivered by p j"

• "If one correct process delivers a message m, every correct process eventually delivers m"

In this context, the term ’receive’ refers to a message’s arrival at a certain process via the

communication layer. On the other hand, ’delivering a message’ denotes the process of transferring

an already received message to the client layer for further use.

4.1.1 Causal Broadcast

Causal broadcast represents a delivery mechanism that establishes guidelines for employing the

previously mentioned timing primitives, predominantly logical clocks, to accurately order events

following the ’happens-before’ relation. Existing implementations internalize this information

without making it accessible to the client. However, as specified in the pure op-based CRDT

framework [7], our implementation includes a ’tag’ on each message, transmitting causality infor-

mation among processes, leading to simplified state structures and smaller messages. To accurately

depict the causality between operations, we employ vector clocks.

The algorithm of our causal broadcast implementation has the following assumptions, also

defined in [26]:

• "Each process step takes a finite time to occur"

• "Message transfer delays are unpredictable but finite"

• "Communication channels are reliable"

• "Computation is failure-free"

4.1.2 Causal Stability

Causal Stability is another extension present in the pure op-based framework [7]. Causal stability

is crucial for an efficient implementation of CRDTs, as it ensures that stabilized messages will not

have any concurrent messages in the future. This requirement is essential for compressing the log

of operations over time, which allows replicas to handle messages efficiently without needing to

maintain all operations from the beginning.
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A protocol with this property means that the delivery of a message with a timestamp t ′ con-

current with t at node i is strictly forbidden once t achieves causal stability at i. To achieve causal

stability at a specific node, it is not enough for a message to have been received by all nodes, all

nodes must have also delivered it, and no additional concurrent messages should be delivered at

that node.

Each node i maintains a map Mi (mapping node identifiers to vector clocks), which records

the most recent vector clock received locally from each respective node. This enables establishing

a function that determines the greatest lower bound on messages originating from node j and

delivered to all nodes.

4.2 Architecture

Figure 4.1: Framework architecture (adapted from [26]).

Figure 4.1 depicts the framework’s structure designed to ensure both causality and stability

within the system. It illustrates the essential processes involved and showcases the intra- and

inter-communication flows that occur among nodes. The subsequent sections will delve more

comprehensively into the workings of both client and middleware processes.

The client process serves as a basis for our generic pure op-based CRDTs, which we will

delve deeper into in the forthcoming Chapter 5. This process plays an intermediary role, enabling

communication between the CRDTs and the middleware and, consequently, with other nodes

within the network. The middleware is responsible for ensuring causality and stability information

to the pure op-based CRDTs.
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In the system, the client process serves as the entry point for all requests originating from the

application layer. It directs these requests to the broadcast queue, where they are subsequently

broadcasted to the other middlewares within the network. The middleware not only receives mes-

sages from the local client but also receives messages from all other nodes across the network

via their respective middlewares. To uphold causality and stability, the middleware assesses each

incoming message and uses the delivery/stability queue to send them to the client while preserving

their order and applying appropriate tags.

Listing 4.1 specifies the interface and the implemented structure of a client object. It contains a

generic CRDT which implements a CrdtI interface containing the methods Effect, Stabilize,

and Query used to handle delivered messages, handle stabilized messages, and retrieve the state

of the CRDT, respectively. The specification of these procedures on each generic CRDT will be

further explained in the subsequent Chapter 5.

1 type CrdtI interface {

2 // Effect callback called when a message is ready to be delivered.

3 Effect(msg communication.Operation)

4 // Stabilize callback function is called when a message is set to stable.

5 Stabilize(msg communication.Operation)

6 // Query made to a client which returns the current state of the CRDT

7 Query() any

8 }

9

10 type Client struct {

11 Crdt CrdtI

12 id string

13 clients map[string]chan any

14 middleware *middleware.Middleware

15 VersionVector communication.VClock

16 }

Listing 4.1: Implemented client structure.

Listing 4.2 shows the implementation structure of the middleware, instantiated upon client cre-

ation. The communication between the two processes is made using two Go channels, causalQ

and bcastQ, which function as FIFO queues. The causalQ channel is used to send causally

ordered messages to the client, while the bcastQ channel is employed for transmitting messages

to the middleware, enabling it to broadcast them to the other nodes’ middleware. All the necessary

fields for the communication flow and message handling are described in Figure 4.1.

1 type Middleware struct {

2 client string // client id

3 channels map[string]chan any // all channels of the network

4 DeliveredVersion communication.VClock // last delivered vector clock

5 ReceivedVersion communication.VClock // last received vector clock

6 bcastQ chan communication.Message // channel to receive messages

7 causalQ chan communication.Message // channel to causally deliver messages

8 DQ []communication.Message // messages awaiting causal predecessors

9 Observed VClocks // vector clocks of observed network



Implementation of a Pure Op-based CRDT Framework 26

10 StableVersion communication.VClock // stable vector clock

11 SMap SMap // unstable messages already received by

the client.

12 }

Listing 4.2: Implemented middleware structure.

4.3 Client Process

The process of preparing and receiving messages is shown in Algorithm 1. The state is represented

by a vector clock Vi, with a length equal to the number of nodes in the network. Every position

starts at 0 and is incremented when receiving messages.

Algorithm 1 TCSB algorithm at the client process for node i (adapted from [26]).

Require:
1: Vi : I→ N # delivered vector clock

Ensure:
2: Vi = j 7→ 0| j ∈ I

3: procedure prepare(op,value)
4: Vi =Vi[ i ]+1
5: Effect(i,Vi,op,value)
6: (i,Vi,op,value)→ bcastQ # enqueues message to bcast queue
7: end procedure

8: on causalQ → (type, j,Vm,op,value) # dequeues message from causal queue
9: if type = dlv then

10: Vi[ j ] =Vm[ j ]
11: Effect(i,Vi,op,value) # crdt handles delivered message
12: else if type = stb then
13: Stabilize( j,Vm,op,value) # crdt handles stabilized message
14: end if
15: end on

16: function QUERY

17: return Query() # queries crdt state
18: end function

Queries are made through the query method of the Client and requests are made via the

prepare method. This method is responsible for converting the user request (operation type and

value) into a message that the middleware process broadcasts to each node within the network,

and applying the operation locally.

This message is then placed into the bcastQ FIFO queue, as depicted in Figure 4.1, and the

Effect method is invoked.
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The local context operates as a vector clock, denoting the last messages received at the client

process. It establishes the causal dependencies of the message being prepared. The responsibility

of maintaining a record of these dependencies lies with the client process, ensuring the causal

tracking of messages.

Messages are delivered to the client through the causalQ FIFO queue, the sender’s entry in

Vi is updated and Effect is invoked, or Stabilize is invoked, depending on the type of the

message assigned by the middleware.

4.4 Middleware Process

The Middleware process is described in Algorithms 2 and 3, and ensures causality and stability.

Each node has a vector clock Ri used for keeping track of the received messages, another vector

clock Vi for delivered messages, and a queue DQi with messages that do not respect causality,

waiting to be delivered. Vector clocks Ri and Vi have the vector clock values of the last received

and delivered messages, respectively, and have their entries initialized at 0, while DQi is set to

empty.
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Algorithm 2 TCSB algorithm at the middleware process for node i (adapted from [26]) - Part 1.

Require:
1: Vi : I→ N # delivered vector clock
2: Ri : I→ N # received vector clock
3: DQi : # delivery queue

Ensure:
4: Vi = j 7→ 0| j ∈ I
5: Ri = j 7→ 0| j ∈ I
6: DQi : /0

7: on bcastQ → (i,Vi,op,value) # dequeues message from bcast queue
8: Vi[ i ] =Vi[ i ]+1
9: updatestability(i,Vi,op,value)

10: broadcast(i,Vi,op,value) # broadcasts message to all other nodes
11: end on

12: on receive( j,Vm,op,value) # receives message from network
13: Ri[ j ] = Ri[ j ]+1
14: if Vm[ j ] =Vi[ j ]+1 ∧ Vm[k ]≤Vi[k ], ∀ k ̸= j then # checks causality
15: (dlv, j,Vm,op,value)→ causalQ # enqueues message to causal queue
16: updatestability( j,Vm,op,value)
17: deliver( j,Vm,op,value) # checks if waiting messages can be delivered
18: else
19: DQ = DQ+( j,Vm,op,value) # waits on DQ until causality is satisfied
20: end if
21: end on

22: procedure deliver
23: while ( j,Vm,op,value) = getDQmsg() do # gets waiting message
24: if Vm[ j ] =Vi[ j ]+1 ∧ Vm[k ]≤Vi[k ], ∀ k ̸= j then # checks causality
25: Vi[ j ] =Vi[ j ]+1
26: (dlv, j,Vm,op,value)→ causalQ # enqueues message to causal queue
27: updatestability( j,Vm,op,value)
28: updateDQ() # removes delivered message and resets get
29: end if
30: end while
31: end procedure

Messages arrive at the middleware from the network and from the client process through the

bcastQ queue. When a message is received from the client, Vi is updated, and the message is

broadcasted to all other nodes.

Upon receiving a message from the network, the entry Ri[ j] is incremented. The system then

verifies if all causal predecessors of the message have already been delivered. If not, the message

is added to DQi for future dispatch. However, if all predecessors have been delivered, the message

is forwarded to the client via the causalQ queue. The updatestability method is invoked to

refresh the stability status of messages. The deliver method then traverses DQi. This traversal
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is necessary because the delivery of a message could potentially trigger the readiness of other

queued messages if one of their causal predecessors has been received and delivered.

The algorithm for causal stability is described in Algorithm 3. It employs a stability matrix,

denoted as Mi, a stable vector clock, SVi, and a map of stable dots, referred to as SMapi.

Algorithm 3 TCSB algorithm at the middleware process for node i (adapted from [26]) - Part 2.

Require:
32: Mi : I→Vi # stability matrix
33: SVi : I→ N # stable vector clock
34: SMapi : D→M # stable dots map
Ensure:
35: Mi = j 7→Vi| j ∈ I
36: SVi = j 7→ 0| j ∈ I
37: SMapi = /0

38: procedure updatestability( j,Vm,op,value)
39: Mi[ i ] =Vi

40: if i ̸= j then
41: Mi[ j ] =Vm

42: end if
43: SMapi[ ( j,Vm[ j ]) ] = ( j,Vm,op,value) # stores message as stable dot
44: NewSV = calculateSV( j) # calculates the greatest lower bound vector clock
45: if NewSV ̸= SVi then
46: StableDots = NewSV SVi # obtains new stable messages
47: stabilize(StableDots) # sends stable dots that became stable
48: SVi = NewSV
49: end if
50: end procedure

51: procedure stabilize(SD)
52: S =sort(SMapi[d ]d ∈ SD) # sort stable dots by causality
53: for ( j,Vm,op,value) ∈ S do
54: (stb, j,Vm,op,value)→ causalQ # enqueue stable message to causalQ queue
55: end for
56: SMap = SMap−SD # removes stable dots that became stable from map
57: end procedure

The matrix Mi has a space value of N x N when the network has N nodes, where row j contains

the last delivered message from node j. SVi is a vector clock with N entries where each position

is the minimum of the same column in Mi, which represents the greatest lower bound vector clock

of the matrix. SMapi saves the messages that are delivered but have not yet achieved stability.

As shown in Algorithm 2, updatestability is called every time middleware receives a

message. Here, the row Mi[i] is updated with the received message vector clock, and the message

is added to the SMapi. A new stable vector is computed by identifying the greatest lower bound

vector clock within the matrix Mi. The vector clocks of the stable dot messages that have become

stable are obtained by excluding vector clocks until the current stable vector from the new stable
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vector. Subsequently, these messages are sorted in accordance with their causality and dispatched

to the client via the causalQ queue designated as a stable message, consequently, the stable dots

map and the current stable vector are updated.

Some functions and optimizations of the algorithm have been omitted, given that their speci-

fication is not relevant to our objective. For a comprehensive view of the entire algorithm, please

refer to [26].



Chapter 5

Generic CRDT Constructions

Given the pure operation-based framework outlined in the previous Chapter 4, we will now define

four generic CRDT constructions that instantiate the Effect, Stabilize, and Query methods

of the CRDT interface. These constructions are generic in the sense outlined at the end of Chap-

ter 3: they receive a sequential data type and implement a replicated type that follows the CRDTI

interface, as depicted in Figure 5.1.

Figure 5.1: Application layer architecture.

As outlined in Chapter 4, the Effect method is triggered by the Client, (through the CRDTI

instantiation as depicted in Figure 5.1) to allow the generic CRDTs to handle local or delivered

operations made to the data type that it instantiates. Meanwhile, when a stabilization message is

delivered to the client process informing that a previously delivered operation became stable, the

Stabilize method comes into play to allow the operation to be handled by the generic CRDT.

The Query method is also invoked by the client when a user wants to obtain the CRDT state.

The following sections delve further into the specific purpose and implementation details of

each of our four generic CRDT constructions.

31
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5.1 Commutative CRDT

If all concurrent operations for a given data type commute, the design of a pure operation-based

CRDT becomes straightforward in the sense that the distributed effect of each operation corre-

sponds to simply applying the sequential operation. This is because the particular order in which

concurrent operations are applied won’t affect the eventual state of the data type due to the commu-

tative property of concurrent operations; non-concurrent operations are guaranteed to be applied

in causal order by the middleware.

Commutative data types only need to implement the Apply method of the Commutative-

DataTypeI interface, specifying how an operation is applied to the state.

5.1.1 Algorithm

The CRDT Effect method only invokes the Apply method from the data type to update the

state, and the CRDT Query method returns the CRDT state as shown in Algorithm 4.

Here, the CRDT Stabilize method is empty, because commutative operations do not re-

quire logging and, therefore, log compaction is unnecessary.

Algorithm 4 Commutative CRDT algorithm.

Require:
1: State : any # crdt state

2: procedure Effect(op)
3: State = Apply(State,op) # data type applies operation to stable state
4: end procedure

5: procedure Stabilize(op)
6: # ignores stable operations
7: end procedure

8: function Query
9: return State # returns state

10: end function

The fundamental insight behind CRDTs lies in the commutativity of concurrent operations.

This means that the main challenge in creating a CRDT is figuring out how to reinterpret a data

type’s non-commutative sequential operations as commutative effects within a distributed environ-

ment. Any existing CRDT can then be implemented via our commutative interface. Two details

are worth noting:

1. Translating a sequential data type into a commutative CRDT often requires changing the

abstract type interface and its operations. Classic examples are the Multi-value Register

(MVR), which models a distributed register that can hold multiple concurrent values and
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whose abstract type can be more naturally seen as a set, or the Replicated-Growable Array

(RGA), which models distributed lists by assuming unique stable position identifiers instead

of indices, and list operations on identifiers instead of indices. The latter will be explained

in more detail in Chapter 6.

2. Given that the middleware already supplies causal information, numerous traditional CRDT

examples such as MVR, RGA, and others can be simplified by removing some of the

causality-related meta-information suggested in their original designs. This aspect was al-

ready explored for various CRDTs with the introduction of Pure op-based CRDTs [7].

5.2 ECRO-like CRDT

The previous construction allows to turn a commutative data type into a CRDT, but does not give

any additional insight into how a data type with non-commutative operations can be turned into a

CRDT.

This generic CRDT emulates the principles adopted by ECROs, as outlined in [9]. Here, a

user-defined arbitration order is established among operations. In an effort to maintain this order

for concurrent updates, operations are rearranged as needed. This results in the execution of

operations in identical order across all replicas and guarantees operation stabilization, essential

for log compaction.

The ECRO approach is fully generic and can be used to turn any data type into a CRDT,

without considering the semantics of its operations. The ECRO will ensure convergence by deter-

ministically ordering operations in each replica and rolling back updates when inconsistencies are

found. Regardless of the particular actions or changes an operation might embody, all replicas will

ultimately process the same sequence of operations. The semantic information about operations

is only used as an optimization. In particular, the original ECRO work [9] uses program analy-

sis on the defined data type to infer which operations commute. This knowledge helps minimize

the number of rollbacks and avoid unnecessary relations between commutative operations, thus

optimizing the processing time for operations.

5.2.1 Data Type Interface

The data type interface of the ECRO CRDT, specified in Listing 5.1 is an extension of the com-

mutative data type interface, designed to give additional information about updates. In addition to

the Apply method, it also incorporates the ArbitrationOrder method to establish a desired

arbitration order for concurrent updates. This method takes two operations and returns a boolean

indicating whether the first is smaller or equal to the second. The Commutes method accepts

two operations and returns a boolean to indicate whether these operations are commutative. This

method allows algorithm optimization, as (even causally dependent) commutative operations can

be applied in any order. These two methods together provide the generic CRDT with the capacity

to calculate a desired order of updates.
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Concrete examples of the instantiation of these methods are presented in the following Chapter

6.

1 type EcroDataTypeI interface {

2 // Apply operations to a given state.

3 Apply(state any, operations []communication.Operation) any

4

5 // Check if two operations are ordered

6 ArbitrationOrder(op1 communication.Operation, op2 communication.Operation) bool

7

8 // Check if two operations commute

9 Commutes(op1 communication.Operation, op2 communication.Operation) bool

10 }

Listing 5.1: Data type interface of ECRO CRDT.

5.2.2 Algorithm

As shown in Algorithm 5, this generic CRDT features an operation log, Unstable_ops, rep-

resented by a directed graph that maintains causal and arbitration relations between operations.

The Stable_st represents a stable state of the data type, where all operations applied to this

state causally precede any future operations. Meanwhile, the Unstable_st represents the state

resulting from the application of all log operations to the last stable state.

The need for the two states sheds light on the main compromise behind the ECRO approach

and helps to explain the choice of nomenclature: the stable state is the most recent state in which

all replicas agree, while unstable operations are tentatively applied to the unstable state by each

replica, but may need to be rolled back and recalculated as new operations arrive.

Integrating remote operations When a new operation arrives, it is handled by Effect, which

adds the operation to the directed graph as a vertex. This new operation is then compared, in the

addEdges method, with every other operation in the graph, and commutativity is checked. If the

operations are not commutative, two scenarios may arise: either the new operation is causally after

the current operation, or it is concurrent with it. In the case of the former, a ‘happens-before’ edge

is added. For the latter an ‘arbitration’ edge is added to the graph, following the arbitration order

specified by the data type.

After all the edges and vertices are added to the graph, the operation can be immediately ap-

plied to the unstable state Unstable_st if it commutes with all operations or does not commute

but is causally after them. If these conditions are not met, a rollback is needed, and for that, an

adapted topological sort is performed to order the log operations taking into account the newly in-

serted operation, and the result is applied to the last stable state Stable_st, updating the unstable

state Unstable_st.

Stabilizing operations When an operation becomes stable, the Stabilize method is invoked.

It starts by verifying whether the ordered operations that precede the stabilized operation have also
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already stabilized. If so, all operations up to and including the received one can be deleted from

the log and applied to the stable state because it is guaranteed that no upcoming operations will

affect their order.

Querying the state When a query is made to the state of the replica, the method Query is

invoked, returning the current unstable state, which is the most recent state available at a local

replica but not necessarily consistent with the other replicas.
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Algorithm 5 ECRO-like CRDT algorithm (adapted from [9]).

Require:
1: Stable_st : any # crdt stable state
2: Unstable_ops : G⟨O,E⟩ # graph of unstable operations
3: Unstable_st : any # crdt unstable state
4: Sorted_ops : [] # sorted ops calculated by the last topological sort

5: procedure Effect(op)
6: O = O∪op
7: is_sa f e = addEdges
8: if is_sa f e then
9: Sorted_ops = Sorted_ops∪op

10: Unstable_st = Apply(Unstable_st,op)
11: else
12: Sorted_ops = incTopologicalSort(Sorted_ops,op)
13: Unstable_st = Apply(Stable_st,Sorted_ops)
14: end if
15: end procedure

16: function addEdges
17: is_sa f e = true
18: for v ∈ O∧ v ̸= op∧¬ Commutes(v,op) do
19: if isDescendant(v,op) then # checks if op is causally after op
20: E = E ∪E⟨v,hb,op⟩
21: else if isConcurrent(v,op) then # checks if op is concurrent with op
22: is_sa f e = false
23: if ArbitrationOrder(v,op) then # checks if v is ordered before op
24: E = E ∪E⟨v,ao,op⟩
25: else if ArbitrationOrder(op,v) then # checks if op is ordered before v
26: E = E ∪E⟨op,ao,v⟩
27: end if
28: end if
29: return is_sa f e
30: end for
31: end function

32: procedure Stabilize(op)
33: if pre f ixStable(Stable_ops,op) then # checks if previously sorted operations are stable
34: E = E \ Outgoing(op)
35: E = E \ Incoming(op)
36: O = O \ op
37: Sorted_ops = Sorted_ops \ op
38: Stable_st = Apply(Stable_st,Sorted_ops[ :index(op)] ) # apply new stable ops
39: end if
40: end procedure

41: function Query
42: return Unstable_st # returns unstable state
43: end function
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5.2.3 Topological Sort

Algorithm 6 shows the implementation of our adapted topological sort which is based on Kahn’s

Algorithm [14] used to order log operations of the ECRO CRDT.

Incremental topological sort The incTopologicalSort function is recursively designed to

perform an incremental topological sort, which improves efficiency by attempting to execute the

actual topologicalSort function fewer times and on a subgraph of the unstable log, over a

reduced number of vertices.

The function incTopologicalSort takes two arguments: sorted_ops, which is a list of

sorted operations, and op, the operation to be incorporated into the sorted list.

The function operates by evaluating the leading element of the incoming list with the operation

being added. If the new operation is causally after the leading operation, then the leading operation

can be prepended to the result of a recursive call of the function without the leading element and

with the new operation. The same happens if the new operation does not commute and respects

the arbitration order with the leading element.

Otherwise, if the new operation does not commute and is ordered before all operations it is

prepended to the list of sorted operations.

If none of these conditions are satisfied, the adapted topological sort is carried out with the

remaining sorted operations.

Adapted topological sort Since our approach only maintains a directed graph, it requires a

sorting process that is a modified version of a standard topological sort designed to work with

cyclic graphs. Given that adding edges to the graph may create cycles, the process is adapted to

manage such occurrences.

The process begins by checking for the existence of a minimum vertex. If no such vertex exists,

it implies the presence of cycles within the graph. To resolve these cycles, the algorithm employs

a deterministic approach by identifying and discarding an ’arbitration edge’ with the minimum ID.

Once this edge is discarded, if none of the vertices emerges as the minimum, the procedure is

repeated until all cycles are resolved. When a minimum vertex is found, it is added to the list of

sorted ops, to be further returned when the number of ordered operations is the same as received

ones.

It is important to note that this algorithm does not minimize the number of edges removed.

Efficiency The complexity of our algorithm can be defined as O(|V|2 x |E|), where V are

the vertices and E are the edges. One viable approach could have been to implement an approx-

imation of the Feedback Arc Set algorithm, as studied in [10], where the complexity of such a

solution is O(|V| x |E|), and the edges are minimized. Given our primary focus beyond such

optimizations, we decided to maintain our original implementation, as the potential minimization

and efficiency gains are not crucial for our purposes, although having a significant impact on our

benchmarks, discussed in Chapter 7.
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While less efficient than randomly removing an ’arbitration order’ edge, our approach provides

greater predictability regarding the edges it removes. Other cycle elimination trade-offs could be

explored, as discussed in [9].
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Algorithm 6 Adapted Topological sort for ECRO-like algorithm.

1: function incTopologicalSort(sorted_ops,op)
2: if length(sorted_ops) = 0 then
3: return op
4: end if
5: x = sorted_ops[0]
6: if isDescendant(x,op) ∧ ¬ Commutes(x,u) then
7: return x : incTopologicalSort(sorted_ops[1 : ],op)
8: else if ArbitrationOrder(x,op) ∧ ¬ Commutes(x,u) then
9: return x : incTopologicalSort(sorted_ops[1 : ],op)

10: else if ArbitrationOrder(op,y) ∧ ¬ Commutes(y,u) forallforallforall y ∈ sorted_ops then
11: return op : sorted_ops
12: end if
13: return topologicalSort(u∪ sorted_ops)
14: end function

15: function topologicalSort(ops)
16: order = []
17: removedVertices = []
18: removedEdges = []
19: inDegree = map[]
20: edges = edges∪ e∧ inDegree[e.Target] = inDegree[e.Target]+1 forallforallforall e.Source ∈ ops∧

e.Target ∈ ops
21: while length(order) ̸= length(ops) do
22: for vertex,degree ∈ inDegree do
23: if degree = 0∧ vertex /∈ removedVertices∧ vertex < minVertex then
24: minVertex = vertex
25: end if
26: end for
27: if vertex =⊥ then
28: for edge ∈ edges do
29: if edge /∈ removedEdges∧ edge.Type = ao∧ edge.Id < minEdge.Id then
30: minEdge = edge
31: end if
32: end for
33: removedEdges = removedEdges∪minEdge
34: Removed_edges = Removed_edges∪minEdge
35: continuecontinuecontinue
36: end if
37: order = order : minVertex
38: removedVertices = removedVertices∪minVertex
39: end while
40: return order
41: end function
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5.2.4 Divergences from the original approach

The original approach of ECROs always upholds a Directed Acyclic Graph (DAG). In their ap-

proach, an addition of an edge always leads to a check of whether it leads to a cycle in the graph.

If it does, an ’arbitration order’ edge is discarded to break the cycle, and that choice is propagated

across all replicas to guarantee that all replicas remove the same edges, to guarantee convergence.

While this simple decision privileges the algorithm’s efficiency, it does not directly fit the standard

pure op-based framework, as it requires additional coordination and a tailored adaptation of the

framework to propagate removed edges across replicas. In order to stay within the classical pure

op-based CRDT framework, we have opted for a slightly different design.

Many other approaches are discussed and left open-ended in the original paper [9]. Their

choice is arbitrary and, as in our implementation, it does not ensure the minimization of edge

removals (e.g., two replicas may remove different edges to solve the same cycle). With this in

mind, it becomes clear that the ECRO approach only guarantees causal dependencies. Preserving

the arbitration order is a "best effort" approach.

Another difference of our approach is that, for simpler implementation, we assume that the

data type comes annotated with commutativity information, while the original ECRO paper uses

program analysis to automatically infer such information. Moreover, we consider that updates

are total functions (that can be applied to any state), while they assume partial functions, thus

supporting other kinds of edges to attempt to find sequences of non-failing operations. They also

consider and identify cases where synchronization among replicas is necessary, introducing locks.

5.3 Semidirect CRDT

A particularly different approach to constructing CRDTs, greatly inspired by OT, is put forward

by the Semidirect Product proposed in [24].

The Semidirect Product introduces a distinction in the way operations are handled. Its key

insight is to systematize the distributed effect of operations by “repairing” them with previously

received concurrent operations. Unlike OT, which considers algorithms for repairing general op-

erations, the Semidirect Product can be seen as a greatly simplified form of OT that only considers

two classes of operations, which we will name A and B, such that all concurrent operations in each

class commute. Updates from class B are higher than updates from class A in the arbitration order.

Consequently, updates from A are repaired with updates from B, and not vice versa.

The main practical difference of the Semidirect towards ECROs is that it leverages the data

type semantics to repair operations in a way that ensures convergence without rollback. Naturally,

it does so by imposing a more rigid structure on the underlying data type.

5.3.1 Data Type Interface

The data type interface of the Semidirect CRDT, specified in Listing 5.2 is also an extension of

the commutative data type interface, designed to give additional information about updates. In
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addition to the Apply method, it also incorporates the IsB method to establish what operations

belong to class B. The RepairRight method accepts two operations and returns the second

operation repaired accordingly to the first.

Concrete examples of the instantiation of these methods are presented in the following Chapter

6.

1 type SemidirectDataTypeI interface {

2

3 // Apply operations to a given state.

4 Apply(state any, operations []communication.Operation) any

5

6 // Check if is a class B operation

7 IsB(op communication.Operation) bool

8

9 // Repair op2 to the right op1

10 RepairRight(op1 communication.Operation, op2 communication.Operation)

communication.Operation

11 }

Listing 5.2: Data type interface of ECRO CRDT.

5.3.2 Repair right operation

The core principle of the Semidirect Product involves defining an arbitration order between the

two classes, such as "add-wins" or "rem-wins". The data type always needs to be equipped with a

new “repair right” operation.

For two classes of updates A and B, and a < b with a ∈ A∧ b ∈ B, and where ";" means the

composition of operations, the operation, read as ”repairs right” and denoted by ▷, must satisfy

the following property:

a ; b = b ; b▷a

For instance, add x ▷ rem x implies that the rem x operation is repaired with the knowl-

edge that add x was previously applied. Thus the rem x is repaired to the right of the add x

operation. If two class B operations add x t and add x t1, were previously applied, the rem

x would be repaired in right-associative fashion: add x t1 ▷ (add x t ▷ rem x). These

scenarios are typical for an "Add-wins" Set, where add operations repair rem operations.

It is also assumed that the effect of two concurrent class B operations is independent of their

order (they are commutative). Moreover, given two concurrent operations (b1 | | b2) the ”repair

right” operation must satisfy a second property:

b1 ▷b2 ▷a = b2 ▷b1 ▷a

Finally, if two class B operations can be compressed into just one (b1;b2 = b12), meaning that

it would have the same effect as applying both operations, the ”repair right” operation satisfies an

optional third property, that can be used for log compaction:
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b12 ▷a = b2 ▷b1 ▷a

We chose not to implement this property as it is not straightforward to incorporate compaction

properties into a generic algorithm, and it’s usually simpler to implement this on a case-by-case

basis for specific CRDTs.

5.3.3 Algorithm

As shown in Algorithm 7, this generic CRDT features an operation log, B_ops, with class B opera-

tions, represented by a set of operations because of the existence of the second property mentioned

before. The state State represents the state resulting from applying all repaired operations to the

state.

Integrating remote operations When a new operation is handled by Effect, the repair process

is conducted by invoking the generic CRDT’s repairRight method, which iterates over the

class B operations that have been received to date and applies the necessary repairs in line with

the RepairRight method as defined by the data type. Once the operation of class A has been

repaired, it is applied to the state. If the operation is classified as a class B operation, as determined

by the data type using the isB() method, the operation is then added to the log of B operations.

This log serves as a reference for repairing future A operations.

Stabilizing operations Here, when an update of the class B of operations is stabilized, the

Stabilize method simply removes the operation from the log.

Querying the state The state is retrieved by invoking the Query method, which simply returns

the current state.
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Algorithm 7 Semidirect CRDT algorithm (adapted from [24]).

Require:
1: B_ops : {} # set of class B operations
2: State : any # crdt state

3: procedure Effect(op)
4: repOp = repairRight(op)
5: State = Apply(State,repOp)
6: if isB(op) then # checks if op is from class B
7: B_ops = B_ops∪op
8: end if
9: end procedure

10: procedure Stabilize(op)
11: if isB(op) then
12: B_ops = B_ops \ op
13: end if
14: end procedure

15: function repairRight(op)
16: for o ∈ B_ops do
17: if isConcurrent(o,op) then
18: op = RepairRight(o,op) # data type repairs op to the right of o
19: end if
20: end for
21: end function

22: function Query
23: return State # returns state
24: end function

5.3.4 Scalability beyond two classes

The Semidirect CRDT does not naturally scale for more than two classes of updates. Extend-

ing this to a third set of operations requires a more complex set of repairs among all concurrent

operations.

The original semidirect CRDT works as a combinator that takes two CRDTs, say containing

operations of class A and B, and produces a new CRDT. The operations of this composite CRDT

are not a mere union of A and B operations but rather B ▷ A operations union with A and B

operations.

Incorporating a third CRDT with class C operations into the composite CRDT, it is not suffi-

cient to just have repairs where A < C and B < C. It would demand that all operations in class A (B

▷ A and A operations) and operations in class B be repairable by class C operations, which leads

to more complex requirements.
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5.3.5 Divergences from the original approach

Our implementation of the Semidirect CRDT introduces some differences from the original con-

cept.

The original proposal essentially accepts two CRDTs (whose concurrent operations are com-

mutative), both sharing the same state, and produces a composite CRDT supporting the operations

of both. We have adapted this concept to the scenario where we have a sequential data type and

two classes of operations.

Their approach has to maintain some causal information itself, to be independent of the under-

lying CRDTs it is combining, and besides that, it assumes partial operations. In contrast, we rely

on the causal information offered by the middleware and consider total operations.

A third key distinction is seen in the application of stabilization. Stabilization is introduced by

them as an extension or optimization of the construction. In our implementation, stabilization is

directly inherited from the middleware.

5.4 Continuous Semidirect

The Semidirect approach embodies a binary arbitration criterion, for example, prioritizing oper-

ations in a class B over operations in a class A by applying the previously shown “repair right”

operation (▷). This results in a discrete system with two distinct classes of operations, such that

A < B. In particular, this imposes a very rigid partitioning of the order of updates. In this section,

we explore and propose a more general semidirect construction that scales beyond two classes of

updates.

5.4.1 Generalization Problem

Consider a naive attempt to generalize the Semidirect approach for three classes of updates A, B,

and C, and updates a, b and c with a ∈ A, b ∈ B and c ∈ C, in a scenario with two replicas rep0

and rep1.

Assuming that the expected order between the updates is a;b;c, and that we have the natural

generalization of the Semidirect, both replicas converge when the updates are broadcasted, as

represented in Figure 5.2a. However, in the case of Figure 5.2b, both replicas diverge.



5.4 Continuous Semidirect 45

rep0 : b ; c

rep1 : a

rep0 : b ; c ; c▷b▷a = b ; b▷a ; c = a ; b ; c

rep1 : a ; b ; c

(a) Example 1

rep0 : c ; a

rep1 : b

rep0 : c ; a ; c▷b

rep1 : b ; c ; b▷a

(b) Example 2

Figure 5.2: Distributed behaviors of a generalization.

We argue that the second example illustrates the difficulty of composing semidirect CRDTs.

Due to the repair process, the behavior of the CRDT is not an ordering of the updates issued by the

users (as was the case, for example, in ECROs). However, this behavior also occurs in the original

semidirect model, with only two classes, resulting in less intuitive distributed behavior.

Divergence insights The divergence occurs precisely when we have causal updates that violate

the arbitration order (as demonstrated in 5.2b). When this does not occur (as seen in 5.2a), the

CRDT converges and corresponds to an ordering of the issued updates.

Even if we assume that all operations in a class C can repair all operations in a class B, and

all operations in a class B can repair all operations in class A (ensuring that "As repaired by Bs are

repairable by Cs" as in 5.2a), we do not have guarantees of convergence (as shown in 5.2b). Again,

this happens when we have causal dependencies contradicting the arbitration order.

5.4.2 Generalization Approach

Our proposal in this section is, therefore, to derive a general CRDT construction that follows the

arbitration order. On one side, we consider that causally dependent updates always respect the

arbitration order. Some CRDTs, such as the RGA, whose study motivated this construction, al-

ready satisfy this restriction. We believe that this restriction is not mandatory, and later conjecture

that it can be relaxed in future work (Chapter 8.2). On the other side, this restriction enables a

simple semidirect construction that extends beyond two classes of updates. In fact, it is no longer

necessary to focus on disjoint classes of updates, but we can simply rely on the notion that updates

are repaired across the continuum offered by a total arbitration order.

When such an arbitration order is chosen, applying operations following the causal order does

not disrupt the arbitration order and vice versa. This allows maintaining the log of operations

always ordered, which guarantees that operations arriving at a replica are repaired by an ordered

sequence of operations. Therefore, given two concurrent updates (u1 | | u2) where u1 ≤ u2, the

following properties need to be met:
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u1 ; u2 = u2 ; u2 ▷u1

u2 ▷u1 ≤ u2

This means that operations only repair lower operations regarding the defined arbitration order.

Consequently, the operation resulting from this repair process will always be less than or equal to

the operation with the higher standing in the arbitration order.

Our refined semidirect construction can be perceived as a specialized variant of Operational

Transformation (OT), where updates are exclusively repaired in alignment with the arbitration

order. Hence, this could be interpreted as a unidirectional repair model within the broader OT

paradigm, which typically encapsulates the concept of bidirectional repair for operations.

5.4.3 Algorithm

As Algorithm 8 shows, the state is composed of an array of operations, Ops, and a state State,

as in the previous generic Semidirect CRDT 5.3.

Integrating remote operations When an operation is received, the method RepairRight de-

fined by the data type is used to repair the operation concerning all concurrent operations currently

in the log Ops. The final operation, obtained from the repair, is then applied to the state, and the

received operation is added to the operations’ log Ops in an order that respects the arbitration

defined by the data type in the ArbitrationOrder method. This insertion is performed by it-

erating from the end of the array towards the beginning. As the likelihood of locating the position

for the new operation is higher at the end of the array, this method enhances efficiency.

Stabilizing operations When a message is stabilized, the Stabilize method is invoked and

proceeds to remove that operation from the operations’ log Ops, given that the prefix (all opera-

tions preceding it respecting the arbitration order) of the operation in question is also stable.

Querying the state The state is retrieved by invoking the Query method, which simply returns

the current state.
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Algorithm 8 Continuous Semidirect algorithm.

Require:
1: Ops : [ ] # log of operations
2: State : any # crdt state

3: procedure Effect(op)
4: repOp = repairRight(op)
5: State = Apply(State,repOp)
6: for i,o ∈ Ops do # iterates starting at the end of the array
7: if ArbitrationOrder(o,op) then
8: insert(Ops, i,op) # insert op at index i
9: end if

10: end for
11: end procedure

12: procedure Stabilize(op)
13: if prefixStable(op) then
14: Ops = Ops \ op
15: end if
16: end procedure

17: function repairRight(op)
18: for o ∈ Ops do
19: if isConcurrent(o,op) then
20: op = RepairRight(o,op) # data type repairs op to the right of o
21: end if
22: end for
23: end function

24: function QUERY

25: return State # returns state
26: end function

5.5 Continuous Semidirect and ECRO

The construction from the previous section will only help explain part of the RGA, namely con-

cerning inserts. In this section, we explore how to extend an existing semidirect CRDT with

new operations that cannot necessarily be repaired. This construction was again motivated by

the RGA, and arose from the study on how it handles deletes. Our rationale will be to show

that we can construct a CRDT that combines the Continuous Semidirect logic (Section 5.4) for

base repairable updates with the ECRO logic (Section 5.2) for additional general updates. This

integration allows an elegant tradeoff between both approaches, and design semidirect CRDTs

that are extensible without having to limit expressiveness. It is also worth noting that a probably
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more intuitive approach would be to extend ECROs to support a “repairable“ property in addi-

tion to commutativity, and repair operations when possible instead of rolling back. We argue that

such approach, however, would lead inevitably to the same design, as the semidirect approach

only works if all updates are repairable; a more dynamic setting where only certain concurrent

operations were repairable would not ensure convergence, since the order in which concurrent

operations were executed in different replicas would affect if they were repaired or rolled back.

The general intuition for this construction is that the data type updates are separated into two

classes of repairable/A or non-repairable/B, where A updates always come before in the

arbitration order, which is what happens, for instance, on RGA, considering inserts as opera-

tions of the class A and deletes as operations of class B. This entails that the construction shall

guarantee that class A operations will always be applied before concurrent class B operations. The

most intriguing detail is what shall happen when a B operation is causally before an A operation:

we cannot exceptionally treat such A operation as part of the ECRO, since it could repair or be

repaired by other A operations.

5.5.1 Repair Left operation

In order to guarantee consistency and preserve causality, we introduce a new “repair left” operation

between class A and class B operations, denoted by ◁. Given an a∈ A and b∈ B, where b happens-

before a, the operation, which can be read as ”repairs left” is defined by:

b ; a = a◁b ; b

For instance, add x ◁ rem x implies that the add x operation is repaired with the knowl-

edge that rem x will be applied right after. Thus, the add x is repaired to the left of the rem x

operation. If two operations rem x t and rem x t1, were previously applied, the add x would

be repaired in left-associative fashion: (add x ◁ rem x t) ◁ rem x t1.

We will notice later that, for examples like the RGA, the two styles of repair are not necessarily

associative, meaning that we assume that:

(a1 ▷a2)◁b ̸= a1 ▷ (a2 ◁b)

This means that the repair order matters, and consequently, in our construction, a ”repair left”

operation (◁) will always need to precede a ”repair right” operation (▷).

5.5.2 Data Type Interface

Listing 5.3 shows the methods that a data type must implement to use this generic CRDT. It in-

cludes the Apply, isB and RepairRight methods to enable semidirect to handle the operations

specified in isB. All of these methods have the same function as in the previous semidirect CRDT

5.3.
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Besides that, the ArbitrationOrder method is also needed to provide the semidirect infor-

mation on how to maintain its operations ordered in the log. This method takes two operations and

returns a boolean indicating whether the first is smaller or equal to the second. The Commutes

method from ECROs is also needed with the same function and should take into account opera-

tions from both classes A and B.

Finally, the behavior of the ”repair left” operation should be specified in the RepairLeft

method.

1 type SemidirectECRODataI interface {

2

3 // Apply operations to a given state.

4 Apply(state any, operations []communication.Operation) any

5

6 // Check if two operations are ordered

7 ArbitrationOrder(op1 communication.Operation, op2 communication.Operation) bool

8

9 // Check if two operations commute

10 Commutes(op1 communication.Operation, op2 communication.Operation) bool

11

12 // Check if is a class B operation

13 isB() bool

14

15 // Class A operations repair class A operations

16 RepairRight(op1 communication.Operation, op2 communication.Operation, state any)

communication.Operation

17

18 // Class B operations repair Class A operations

19 RepairLeft(op1 communication.Operation, op2 communication.Operation)

communication.Operation

20 }

Listing 5.3: Data type interface of Semidirect ECRO CRDT.

5.5.3 Algorithm

This approach has two states, a stable state Stable_st maintained by the Continuous Semidi-

rect’s logic and an unstable state Unstable_st maintained by the ECRO’s logic.

The ECRO logic has the same behavior as in the generic ECRO CRDT approach when a class

B operation arrives: it applies the operation instantly or does a rollback, if the operation does not

commute or does not have only causal relations with the previous operations in the log.

The behavior of the Continuous Semidirect CRDT is also the same. The operation it handles

is repaired to the right regarding the A operations in the log. The key part is in the ”repair left”

operation, which repairs class A operations regarding class B operations in the log, before sending

them to the semidirect’s logic.

The Algorithm 9 shows the complete generic CRDT, which includes the Continuous Semidi-

rect and ECRO logics.



Generic CRDT Constructions 50

Integrating remote operations When a received operation is handled by Effect, if it is a class

B operation, the ECRO’s Effect behavior is performed: the operation is added to the graph of B

operations B_ops, and edges are added accordingly to the causal and order relations with the B op-

erations previously added to the log. The operation is applied to the unstable state Unstable_st

if it is considered safe. Otherwise, the unstable state is rolled back by ordering the log B_ops

and applying the log operations into the stable state, resulting in a new updated unstable state

Unstable_st.

In the event that a class A operation is received, the method RepairLeft defined by the

data type is used to perform a ”repair left” on the operation concerning all causally precedent B

operations currently in the log B_ops, which will later be applied to the state. The result operation

is then handled by the Continuous Semidirect’s Effect behavior: the operation is repaired to

the right by the RepairRight method, which repairs the operation concerning all concurrent

A operations currently in the log A_ops, and is subsequently added to the log respecting the

arbitration order defined by the data type on ArbitrationOrder.

Finally, the received operation is repaired to the right by the RepairRight method to ensure

consistency between the stable and unstable states. This operation is then directly applied to the

unstable state if it is concurrent and commutative with all of the B operations in the log B_ops.

Otherwise, a rollback is needed: our incremental topological sort is conducted on the B operations,

and they are subsequently applied to the stable state, updating the unstable state.

This rollback verification is needed because the unstable state has to be consistent with the

following rules:

1. Concurrent and non-commutative operations enforce a rollback, since when B and A opera-

tions are concurrent, operation A has to be applied before B (which was previously applied

to the unstable state. Thus, a ”repair left” of A in the unstable state is not possible).

2. Non-concurrent operations enforce a rollback because, as previously mentioned, we assume

that the associative property between repair operations does not exist. Thus, when B is

causally before A, the ”repair left” operation must be performed before the ”repair right”

operation.

Stabilizing operations When the Stabilize method receives a stabilized operation, the first

course of action is to check the received operation is a B operation, if so, it is applied to the stable

state, updating it. Otherwise, it is an A operation, and the continuous semidirect’s Stabilize

behavior is performed: the operation is removed from the log A_ops if its prefix of A operations

is stable.

Querying the state The state is retrieved by invoking the Query method, which simply returns

the current unstable state. As we adopt the compromise inherent in ECROs where doing a rollback

when conflicting operations arrive, doing a query has no intrinsic complexity.
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Algorithm 9 Continuous Semidirect + ECRO CRDT algorithm.

Require:
1: B_ops : [ ] # log of B operations
2: A_ops : G⟨O,E⟩ # log of A operations
3: Unstable_st : any # unstable state updated by ecro
4: Stable_st : any # stable state updated by semidirect

5: procedure Effect(op)
6: if isB(op) then # checks if op is a class B operation
7: ecro.Effect((op, /0)) # performs ecro’s Effect behavior
8: return
9: end if

10: repLe f tOp = repairLeft(op)
11: contSemidirect.Effect(repLe f tOp) # performs continuous semidirect’s Effect behavior
12: repRightOp = repairRight(op)
13: if isConcurrentAndCommutative(repRightOp,B_ops) then
14: Unstable_st = Apply(Unstable_st,repRightOp)
15: else
16: Unstable_st = Apply(Stable_st, incTopologicalSort(B_ops))
17: end if
18: end procedure

19: procedure Stabilize(op)
20: if isB(op) ∧ prefixStable(op) then
21: Stable_st = Apply(Stable_st,op)
22: B_ops = B_ops \ op
23: return
24: end if
25: contSemidirect.Stabilize(op) # performs continuous semidirect’s Stabilize behavior
26: end procedure

27: function repairRight(op)
28: for o ∈ A_ops do
29: if isConcurrent(o,op) then
30: op = RepairRight(o,op) # data type repairs op
31: end if
32: end for
33: end function

34: function repairLeft(op)
35: for o ∈ B_ops do
36: if isDescendant(o,op) then
37: op = RepairLeft(o,op) # data type repairs causality of op
38: end if
39: end for
40: end function

41: function Query
42: return Unstable_st # returns unstable state
43: end function
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Concrete CRDT Instantiations

This Chapter shows how some data types that we have implemented can be instantiated on top

of the Commutative, ECRO-like, Semidirect, and SemidirectECRO generic CRDT constructions

introduced in the previous Chapter 5. This involves specifying the functions of the interfaces of

the generic CRDT that a data type uses.

Implementing diverse data types provides practical insights into the complexities involved in

building upon each generic CRDT, while also understanding the key distinctions and trade-offs

among the various methodologies.

6.1 Notations

To specify how data types are implemented, we use certain notations to aid readability and com-

prehension.

Methods are typically designated with their names followed by arguments enclosed in square

brackets. For instance, inc and [add, v] represent a function without arguments and with

arguments, respectively. When denoting elements in a list, the notation m[j] is employed, where

j represents the index of the required element.

Slicing of lists is expressed using the o[x:] or o[:x] notations, denoting a cut from the list

starting at index x until the end, or from the beginning of the list until index x, exclusive.

Causality precedence is denoted using ≺. Thus a≺ b means that a precedes/happened-before

b in causal order. Lastly, the nil value is denoted by ⊥.

6.2 Commutative Data Types

This section presents the implemented commutative data types using the commutative generic

CRDT defined in 5.1. The implemented examples of commutative CRDTs include both sequen-

tial types, whose operations are naturally commutative, and classic CRDT designs specifically

engineered to ensure operation commutativity.

52
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6.2.1 PNCounter

The implementation of this data type is trivial, as its operations are commutative. This data type

only implements the method Apply, defined in Figure 6.1, of the generic CRDT interface.

st : 0

Apply(inc,st) = st +1

Apply(dec,st) = st −1

Query(elem,st) = st

Figure 6.1: Specification of PNCounter data type.

This method simply increments or decrements the state, which is an integer, when an inc or

dec operation is received, respectively. Figure 6.1 also shows how the Query is implemented,

which only returns the state of the data type.

6.2.2 ”Add-wins” Set

The ”Add-wins” Set is a classic CRDT. By default, the addition and removal of elements are not

commutative operations on sets, leading to several possible distributed designs; the ”add-wins”

semantics is one such design that guarantees commutative effects. Therefore, to distinguish from

data types with sequentially commutative operations, we directly instantiate the general CRDT

interface.

Data type modifications One of the modifications in the ”Add-wins” Set data type involves

maintaining the state st as a set, with each element e forming a pair of a value and a timestamp.

Figure 6.2 illustrates the representation of the state and its elements. It also outlines the Effect

method: the add operation simply adds an element to the set, whereas a rem operation removes

an element from the set, given that the timestamp t’ of the element to be removed is causally

prior to the timestamp t of the removal operation. This mechanism ensures that values added and

removed concurrently are not discarded from the state.
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st : {}

e : (v, t)

Effect([add,v, t],st) = st ∪ (v, t)

Effect([rem,v, t],st) = st \ (v′, t ′)withwithwith v′ = v∧ t ′ ≺ t

Stabilize([add,v, t],st) = st \ (v′, t ′)∧ st ∪ (v′,⊥)withwithwith (v′, t ′) ∈ st ∧ t ′ = t

Query(elems,st) = {v withwithwith (v, t) ∈ st }

Figure 6.2: Specification of ”Add-wins” Set data type.

Keeping a set of values along with their timestamps may gradually escalate memory usage.

As illustrated in Figure 6.2, once an add operation has stabilized, the timestamp linked to that

operation’s value can be pruned from the set. The Query method simply returns a set of values

present in the state without its timestamps.

6.2.3 Replicated Growable Array (RGA)

The RGA is another classic CRDT that models lists. Since insert and delete operations on

lists are not directly commutative, the RGA also follows a specific design to ensure commutative

effects. As before, we implement it directly on top of the general CRDT interface. In a sequential

list, operations typically specify the positions where the insertion or deletion takes place. However,

the index of a list element may change if other elements are inserted or deleted concurrently,

leading to inconsistencies.

Data type modifications To increase the independence among list operations, RGA assigns a

unique identifier to each element of the list, which is assumed to be unique and ordered in line

with causality. In our implementation, this id is represented by a tuple that uses the timestamp

(vector clock) and an origin id, both arriving as metadata of the operation from the middleware.

To compare ids, an ID() function combines the sum of all values of the vector clock and the origin

id of the message. Consequently, if the sum is equal between updates from different replicas, they

are ordered by their replicas’ ids.

Besides that, operations use the timestamp (vector clock) as reference tre f to insert the new

element with a given timestamp t after an existing element of the list or at the head of the list if no

timestamp is specified.

Insert operations The behavior of Effect is shown in Figure 6.3. When it receives an insert

operation, it uses the find method to locate the element with tre f in the state, and the shift

method handle concurrent updates by shifting the index where the value will be inserted depending

on the values concurrently inserted referencing the same element. This method ensures that if two
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concurrent insertions occur, the latter insert will occur on the left of the former if it has a higher

timestamp t.

Delete operations A delete operation also uses tre f to refer to the timestamp of the element

in the list to be deleted. However, it is not safe to permanently delete elements, as concurrent

insertions may be using that element as a reference and consequently will not be able to locate the

insertion position. To solve this, RGA uses tombstones, which instead of permanently deleting

the elements, tombstone them by putting their value to ⊥. This approach solves the occurrence

of concurrent inserts referencing this element. The state of this data type is an array of elements.

Each element e is a tuple consisting of the timestamp of the element referenced tre f , the element’s

value v, and its timestamp id.

Stabilization An element designated as a tombstone is only omitted in response to a query and

is permanently deleted only when the delete operation has been stabilized. It is worth noting that

in the classic RGA, the timestamps and necessary stabilization information is maintained within

itself. However, in our approach, we delegate this responsibility to the middleware, retrieving the

necessary information from it.

st : [ ]

e : (tre f ,v, t)

Effect([insert, tre f ,v, t],st) = ififif tre f =⊥ thenthenthen(tre f ,v, t) : st

else ifelse ifelse if find(tre f ,st) =−1 thenthenthen st

elseelseelse st[ : i ] : (tre f ,v, t) : st[ i : ]

withwithwith i = shift(find(tre f ,st), tre f ,st)

Effect([delete, tre f , t],st) = st[ j ] = (t ′re f ,⊥, tre f )withwithwith j = find(tre f ,st) ∧ j ̸=−1

shift(index,(i, t,st)) = ififif i = |st|∨ ID(t ′)< ID(t)withwithwith (t ′re f ,v
′, t ′) = st[ i ] thenthenthen i

elseelseelse shift(i+1, t)

find(index,(t,st)) = ififif t ′ = t withwithwith (t ′re f ,v
′, t ′) ∈ st thenthenthen i

elseelseelse −1

Stabilize([delete, t],st) = st \ st[ j ]withwithwith j = find(t,st)∧ j ̸=−1

Query(elems,st) = {v withwithwith (tre f ,v, t) ∈ st ∧ v ̸=⊥}

Figure 6.3: Specification of commutative RGA data type.
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6.3 ECRO-like Data Types

This section presents the data types implemented using the ECRO generic CRDT specified in 5.2.

Here, classic CRDTs and real use-case scenarios are implemented.

6.3.1 ”Add-wins” Set

The classic ”Add-wins” Set CRDT was presented in the previous Section as a commutative data

type. Using the ECRO generic CRDT, we can simply implement its sequential operations without

worrying about their concurrent behavior, and obtain a similar CRDT.

Figure 6.4, specifies the implementation of this generic CRDT interface methods. Apply

method receives add and rem operations, aiming to either append or delete an element from the

state.

Since these two operations are not commutative, an arbitration order must be established be-

tween them in case of concurrency. As Figure 6.4 shows, in the context of an ”add-wins” scenario,

the Order method defines that remove operations precede add operations. Meanwhile, the

Commutes method states that operations of the same kind, as well as operations involving distinct

values, always commute.

st : {}

Apply([add,v, t],st) = st ∪ (v, t)

Apply([rem,v, t],st) = st \ (v′, t ′)withwithwith v′ = v

Order(res,(op,op′)) = op = rem∧op′ = add

Commutes(res,((op,v, t),(op′,v′, t ′))) = op = op′∨ v ̸= v′

Figure 6.4: Speficication of ECRO ”Add-wins” Set.

6.3.2 Replicated Growable Array (RGA)

The classic RGA CRDT was also implemented in the last Section as a commutative CRDT. It is

also possible to sequentially implement its operations on top of the ECRO approach, leading to a

similar CRDT.

As before, the state of this data type is an array of elements. Each element e is a tuple con-

sisting of the timestamp of the element referenced tre f , the element’s value v, and its timestamp

t. A unique identifier is assigned to each element of the list, represented by a tuple, vector clock,

and origin id. Operations use a reference timestamp tre f to insert the new element with a given

timestamp t after an existing element of the list or at the head of the list if no timestamp is specified.

Insert operations The behavior of Effect is shown in Figure 6.5. Similarly to the commutative

implementation, when it receives an insert operation, it uses the find method to locate the
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element with tre f in the state. However, the shift method previously used to order concurrent

insertions referencing the same element is no longer needed.

Delete operations The behavior of a delete operation also uses tre f to refer to the timestamp

of the element in the list to be deleted. However, now it is possible to instantly delete the operation

instead of tombstoning it like before.

Order of operations An arbitration order is established between all operations in case of con-

currency, which does not happen in the classic RGA, where insert operations are always ap-

plied before delete operations. As Figure 6.5 shows, in this context, the ArbitrationOrder

method specifies that operations with higher unique ids, calculated by combining the sum of the

values of the vector clock with the origin id, take precedence over those with lower ids. Therefore,

in the case of concurrent operations referencing the same element, those having higher ids are

positioned closer to the reference element than the ones with lower ids.

Commutativity of operations The Commutes method states the commutative between oper-

ations. While delete operations remain consistently commutative with each other, similar to

the original commutative RGA, there are subtle changes in the interplay of delete and insert

operations. For instance, a [delete,tre f , t] operation commutes with an [insert,t ′re f ,v
′, t ′]

operation only when the position being deleted tre f is distinct from the insertion position t’ and its

reference position t ′re f . This is specified by the two last lines of the Commutes method in Figure

6.5.

This contrasts with the classic RGA, where an insert operation followed by a concurrent

delete operation of the same position is allowed. This is because it is implicitly stated within

the distributed behavior of Effect that insert operations always take precedence over the

delete operations. In this approach, this precedence is enforced explicitly through the use of the

arbitration order.

Moreover, the commutativity of two insert operations is dependent on all four involved

positions being different, defined by the last line of Commutes specification. This is another

change from the classic RGA, which allows sequential inserts at the same position. This difference

exists because the distributed behavior of Effect explicitly considers shifts. Here, that behavior

is captured by the arbitration order.
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st : [ ]

e : (tre f ,v, t)

Apply([insert, tre f ,v, t],st) = ififif tre f =⊥ thenthenthen(tre f ,v, t) : st

else ifelse ifelse if find(tre f ,st) =−1 thenthenthen st

elseelseelse st[ : i ] : (tre f ,v, t) : st[ i : ]

withwithwith i = find(tre f ,st)

Apply([delete, tre f , t],st) = st \ st[ j ]withwithwith j = find(tre f ,st) ∧ j ̸=−1

find(index,(t,st)) = ififif t ′ = t withwithwith (t ′re f ,v
′, t ′) ∈ st thenthenthen i

elseelseelse −1

Order(res,((op, tre f ,v, t),(op′, t ′re f ,v
′, t ′))) = ID(t)< ID(t ′)

Commutes(res,((op, tre f ,v, t),(op′, t ′re f ,v
′, t ′))) = (op = delete∧op′ = delete) ∨

(op = delete∧op′ = insert ∧ tre f ̸= t ′re f ∧ tre f ̸= t ′ ) ∨

(op = insert ∧op′ = delete ∧ tre f ̸= t ′re f ∧ t ̸= t ′re f )∨

(op = insert ∧op′ = insert ∧ tre f ̸= t ′re f ∧ t ̸= t ′re f ∧ tre f ̸= t ′)

Figure 6.5: Specification of ECRO RGA data type.

6.3.3 Social Network

To explore the practical application of generic CRDTs and how they can solve application invari-

ants, as presented in Chapter 3, we modeled a data type presented in [12] that simulates a social

network. In this model, two maps are employed to represent the state st, one representing friends

and the other representing friend requests. The key of each map represents a user, while the as-

sociated value stands for the set of friends or requests linked to that user. Friendship relations are

bidirectional, and if two users share a friendship, neither can appear in the other’s friend request

list.

As Figure 6.6 shows, the Apply method handles the accept, breakup, request, or

reject operations of the data type. accept adds from user to the set of friends of to and

vice versa and removes any request that might exist between these two users, breakup does the

same but for removing a friendship. request adds from user to the set of requests of to, and

reject removes a request that to previously made to from.

Order of operations Given that many of these operations are not commutative, an arbitration

order is established using the generic CRDT Order method to reorder them in case of conflict.

This hierarchical arrangement gives priority to accept operations over breakup, requests
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over rejects, and finally, accepts over requests, ensuring a predictable ordering of updates

to the state. However, this ordering may vary depending on the application needs.

The suggested solution for this example discussed in 3.2.1 was to implement a set of requesters

as a "remove-wins" set, which would remove a request at any concurrent addition. Here, we opt

for a different "add-wins" policy, by prioritizing accepts over requests, while also prioritizing

requestss over concurrent rejects.

Commutativity of operations To instruct the generic CRDT about which operations are com-

mutative, this data type establishes that commutativity applies when operations are of the same

type when the combined argument pair (from, to) differs between two operations, and if the

pair of operations is breakup and reject, as they modify different data structures.

The specification of these two methods are detailed in Figure 6.6.
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st : { f riends : I →{},requesters : I →{}}

Apply([accept, f rom, to],st) = if to ∈ requesters[ f rom] then

f riends[to]∪ f rom∧ f riends[ f rom]∪ to ∧

requesters[to] \ f rom∧ requesters[ f rom] \ to

else st

Apply([breakup, f rom, to],st) = if f rom ∈ f riends[to] then

f riends[to]\ f rom∧ f riends[ f rom]\to

else st

Apply([request, f rom, to],st) = if f rom /∈ f riends[to]∧ f rom /∈ requesters[to] then

requesters[to]∪ f rom

else st

Apply([reject, f rom, to],st) = if f rom ∈ requesters[to] then

requesters[to]\ f rom∧ requesters[ f rom]\to

else st

Order(res,(op,op′)) = (op = breakup∧op′ = accept) ∨

(op = reject∧op′ = request) ∨

(op = request∧op′ = accept) ∨

(op = reject∧op′ = accept)

Commutes(res,((op, f rom, to),(op′, f rom′, to′))) = (op = op′) ∨

( f rom ̸= f rom′∧ to = to′) ∨

( f rom = f rom′∧ to ̸= to′) ∨

(op = re ject ∧op′ = breakup) ∨

(op = breakup∧op′ = re ject) ∨

Figure 6.6: Specification of ECRO Social Network.

6.4 Semidirect Data Types

This section presents the data types implemented using the Semidirect generic CRDT specified in

5.3. Here, only data types with classes of updates commutative in isolation can be implemented.
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Thus, we analyze different implementations of the ”Add-wins” Set.

6.4.1 ”Add-wins” Set

As shown in [24], the ”Add-wins” Set can also be implemented as a semidirect CRDT. The im-

plementation in this section explains such a design.

Almost ”Add-wins” Set We can start by defining a sequential set data type, and implement the

expected element addition and removal operations. Since additions commute with additions, and

removals with removals, we can then easily make this set an “almost ”add-wins” CRDT using

our semidirect construction. However, the resulting CRDT would not model exactly the original

”add-wins” behavior due to a small detail: adds would potentially win over all concurrent removes,

including adds that have been undone by other causally-after removes. This behavior is shown in

Figure 6.7 where two replicas concurrently perform add(x) ; rem(x) operations, resulting in a state

containing x, consequently breaking causality.

rep0 : {}

rep1 : {}

rep0 : add0(x); rem0(x); add1(x); rem1(x) = {x}

rep1 : add1(x); rem1(x); add0(x); rem0(x) = {x}

Figure 6.7: ”Add-wins” Set behavior breaking causality.

”Add-wins” Set To fix the previous behavior, the proposal in [24] is to slightly change the state

to be a set of values tagged with a unique timestamp, and the remove operation to include an

additional argument that is a set T of timestamps of concurrent adds. The semantics of the rem

operation is then to remove the respective element for all pairs whose timestamp is not in T.

When a rem is first emitted, the set T is initially empty, but as rem operations are repaired by

concurrent add operations, they add the timestamp of the add to T. The Query method will return

the set of values v that occur at least once in the internal state.

In other words, in an ”add-wins” set CRDT, if there are concurrent add and rem operations for

an element v, the add operation will "win" because the rem operation will only remove add mes-

sages that happened before it. If any [add,v,t] operations are concurrent with a [rem,v,t’]

operation, they will not be removed, and v will continue in the set.

Figure 6.8 presents the behavior of the methods of the generic Semidirect interface. The

Apply method handles add and rem operations, where add operations simply add elements to

the state, and rem operations delete elements from the state if its value v is the same and its

timestamp does not belong to the T set of the rem operation.
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The crucial aspect of this data type’s implementation lies in the RepairRight method. This

method, as shown in the previous Chapter 5, is always called by iterating through the class B

operations of the data type, defined by RepairRight. Thus, it will always be called with an add

followed by a rem operation, meaning that add operations repair right (▷) rem operations. This

method, as shown in Figure 6.8, adds the concurrent timestamp t of add operation to the rem set

T. This adjustment ensures that these add operations are preserved when a repaired rem operation

is applied to the state.

st : {}

e : {v,{}}

Apply([add,v, t],st) = st ∪ (v, t)

Apply([rem,v,T, t],st) = st \ (v′, t ′) with v′ = v∧ t ′ /∈ T

RepairRight(res,([add,v, t], [rem,v′,T, t ′])) = if v = v′ then [rem,v′, T ∪{t}, t ′]

isB(res,op) = if op = add then true

else false

Figure 6.8: Specification of Semidirect ”Add-wins” Set data type.

6.5 Continuous Semidirect + ECRO Data Types

This section presents the RGA data type implemented using the Continuous Semidirect plus ECRO

generic CRDT specified in 5.5. Here, we implement the RGA data type that satisfies the restric-

tions imposed by this generic construction.

6.5.1 Replicated Growable Array (RGA)

We now illustrate that it is possible to faithfully explain the behavior of the classic RGA CRDT

as an instance of our combined semidirect plus ECRO construction. Intuitively, we will separate

RGA operations into two classes: inserts will be handled by the semidirect logic, and deletes will

be handled by the ECRO logic.

Figure 6.9 shows the Apply method, which is the same as in the ECRO implementation,

where it is possible to sequentially define the operations.

Continuous semidirect inserts Here, the insert operations are the class A operations, thus,

are handled by the continuous semidirect logic previously presented in 5.4.

The most important remark in this construction is that it is possible to define an arbitration

order for insert operations such that causally-dependent inserts always respect the arbitration order,

therefore allowing the use of our Continuous Semidirect.
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Figure 6.9 shows how the arbitration order is defined for these operations. If the element of

reference tre f is equal in both operations, they are not commutative and are consequently ordered

by their unique ids, which are calculated using ID function. This method, as mentioned before

calculates the unique id by summing each replica value in the vector clock, and combines it with

the origin id of the update which enables ordering updates consistently with causality, a property

required by the Continuous Semidirect.

Insertion operations can also be non-commutative if they modify the same references, in that

case, the ordering is done respecting causality, which is the same as ordering by their unique ids.

If none of the previous conditions are met, it means that the operations are commutative and can

be ordered by any rule, we defined id < id’, but it could be any other deterministic rule.

Figure 6.9 shows the implementation of the repair methods. The RepairRight method, used

to repair insert operations, checks if the operations reference the same element. If the operations

are out of order, op’ is repaired to the right of op, by putting op as its reference. Otherwise,

nothing is repaired. This is the same behavior as in the classic RGA, where insert operations are

shifted accordingly to concurrent insertions for the same reference. Here, a sequential specification

of operations is possible due to the responsibility of fixing concurrent insertions being held by the

”repair right” operation.

Context-aware repair We introduce a new function called pos which checks if the referencing

element of the operation being ”repaired to the right” exists in the stable state.

This function is necessary since the first property introduced in Subsection 5.3.2 is not always

respected with nonexistent positions.

Since referenced positions can be erased by previous delete operations, and given that

delete operations are stabilized, this impacts whether causal insert operations are ”repaired to

the left” or not. This behavior subsequently influences the ”repair to the right” actions of that

insert operation, potentially leading to inconsistencies.

The classic RGA does not have this problem as it assumes that inserts are always after existent

positions.

ECRO deletes In the classic RGA, insert operations occur before delete operations, and

this ordering is the reason why tombstones are used. This is aligned with our approach of placing

insert operations in the semidirect CRDT and delete operations in the ECRO, where insert

operations are modified to be applied knowing that a delete operation will be applied right after.

The complexity here is that, unlike pairs of insert operations, pairs of insert and delete

operations do not necessarily adhere to the arbitration order (where insert < delete). This is

the motivation for employing the repairLeft function in our implementation.

The RepairLeft method is used to repair insert operations that reference elements that

have delete operations causally preceding it. Thus, it defines a behavior for insertions on nonex-

istent positions. Consequently, the reference element of the operation being repaired is changed
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to ∅, meaning an empty timestamp, which will result in discarding the insertion on the Apply

method.

It is worth mentioning that as delete operations are commutative, they do not cause rollbacks

in the ECRO logic of the Semidirect plus ECRO CRDT.

Finally, Figure 6.9 also shows the implementation of Commutes method. This method defines

the commutative relations between both operations and is defined as in the ECRO generic CRDT

6.3.2.

st : [ ]

e : (tre f ,v, t)

Apply(op,st) = ECRO.Apply(op,st)

ArbitrationOrder(res,(op, tre f ,v, t),(op′, t ′re f ,v
′, t ′)) = ififif op = op′ = rem then true

else ifelse ifelse if tre f = t ′re f then ID(t)< ID(t ′)

else ifelse ifelse if t = t ′re f ∨ tre f = t ′ then ID(t)< ID(t ′)

elseelseelse ID(t)< ID(t ′)

RepairRight(res,(op, tre f ,v, t),(op′, t ′re f ,v
′, t ′),st) = ififif tre f = pos(t ′re f ,st)∧ t > t ′

thenthenthen (op′, tre f ,v′, t ′)

elseelseelse (op′, t ′re f ,v
′, t ′)

RepairLeft(res,((op, tre f ,v, t),(op′, t ′re f ,v
′, t ′))) = ififif tre f = t ′re f thenthenthen (op′,∅,v′, t ′)

elseelseelse (op′, t ′re f ,v
′, t ′)

Commutes(res,((op, tre f ,v, t),(op′, t ′re f ,v
′, t ′))) = ECRO.Commutes()

pos(res, t,st) = ififif t ∈ st thenthenthen t

elseelseelse -1

isB(res,op) = if op = delete then true

else false

Figure 6.9: Specification of Continuous Semidirect + ECRO RGA data type.



Chapter 7

Test and Evaluation

This chapter outlines the tests and evaluations conducted on the implemented data types. For

this, we developed a framework that generates random sequences of updates for a given number

of replicas, while concurrently profiling sequences of tests to gather benchmark data. This dual

approach allows us to assess both the functionality and performance of the implemented data

types.

7.1 Testing Framework

To simulate real use-case scenarios, we have built a framework to generate test vectors, that is,

sequences of updates, respecting the following conditions:

1. Each replica sends messages with random intervals below two seconds.

2. Each message contains a randomly selected character from a pool of twenty possible op-

tions.

3. The operations performed are also random choices accordingly to the number of operations

of the data type.

This ensures randomness and unpredictability in the process of generating messages. However,

as previously mentioned, our implementation does not have a network layer. Therefore, to properly

test the implemented causal delivery of the middleware presented in Chapter 4, we simulate delays

in messages by maintaining an array of arrived messages in the middleware.

This system employs a randomness factor based on the number of messages to delay, which

is predetermined in the test. Upon reaching this number, each time a new message arrives at the

middleware, it is added to the array, and a random message from the array is selected. Once

the middleware has received the expected number of messages, also predefined in the test, any

remaining messages within the array are randomly retrieved for handling. This approach ensures

a randomized acquirement of messages, to simulate the unpredictability of sending messages in a

network.

65
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7.1.1 Testing convergence

One of the key characteristics of CRDTs is their ability to ensure eventual consistency. Therefore,

once all replicas have received the same messages, they are expected to achieve a consistent state

among each other.

To validate this characteristic in the implemented data types, when all replicas have received

a number of messages equal to the expected number outlined in the test, all system replicas are

queried. Subsequently, we confirm the consistency of their states by comparing them.

7.1.2 Testing consistency

We also assess whether the final state of the data types align with a sequential execution of the

updates performed by the replicas. To achieve this, we calculate all topological sorts with updates

from the start of execution and verify if the final state corresponds to the result of applying one of

the sequences obtained from the topological sort.

7.2 Benchmarking Framework

In order to evaluate the use of resources of our implemented generic CRDTs, we used the built-

in Golang profiling tool, which uses statistical sampling to collect performance data about our

CRDT programs running in the previous testing framework and provide insights into the overall

performance of the program, as well as the resource consumption of individual functions.

It is worth noting that since Golang uses statistical sampling, the results are an approxima-

tion. Besides that, the benchmark tests are performed locally, as previously said in Chapter 4,

using threads to represent replicas and Go channels to simulate communication among replicas.

Consequently, these two factors may have influenced the results obtained.

We now evaluate the performance of different designs of the RGA data type, as it is our

most complex example that covers all of the implemented generic CRDTs. In this scenario, the

operation type is determined by a random selection between insert and delete.

7.2.1 Results

Figure 7.1 shows the results obtained for a system with 5 and 50 replicas, respectively. The dashed

lines in the graph represent the memory usage per operation, while the solid lines depict the CPU

time consumed per operation.

It is worth noting that our implementations are not optimized and may not necessarily reflect

the best possible performance of each approach.

ECRO-like As it was earlier explained in Section 5.2 of Chapter 5, our ECRO generic construc-

tion was not implemented following the original approach of broadcasting discarded edges of the

log, which comes with the tradeoff of reduced efficiency. In order to improve the accuracy of

the comparison with the original approach we implemented a new version of this generic CRDT
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that follows the original idea presented in [9]. While this advancement significantly decreases the

topological sort algorithm’s complexity, which became O(V+E) (following Kahn’s algorithm), the

procedure for adding edges becomes more complex. Now, every time a new edge is introduced, it

requires a cycle check through the execution of a Depth First Search (DFS), which also exhibits

a complexity of O(V+E). Despite these changes, this implementation still does not represent the

efficiency of the original approach. However, it does exhibit considerable improvements over our

initial version, which can be observed in the comparative benchmarks shown in Figure 7.2.

Comparing the second version of ECRO with the other approaches, as shown in Figure 7.1,

it is evident that as the number of operations increases, both memory usage and CPU time corre-

spondingly rise, due to the complexity of the topological sort and the cycle checking, since both

topologicalSort and addEdges methods are the ones with more usage rates.

However, a system with five replicas does not experience the same rate of resource usage as

a system with fifty replicas. This difference can be explained by the stabilization process, since

operations achieve stability more quickly in a system with fewer replicas. This impacts the size of

the log, which in turn affects the number of rollbacks as well as the time and memory consumed

by functions. The management of vector clocks may also influence system performance, as the

size of vector clocks scales with the number of replicas, increasing the size of the operations’

metadata, and the time to manage vector clocks’ information.

Continuous Semidirect + ECRO Similar to the ECRO approach, the benchmark results demon-

strate improved performance in systems with fewer replicas, which can again be explained by the

quicker stabilization of operations and small vector clocks in systems with a smaller number of

replicas.

Both evaluations show that merging the Continuous Semidirect and ECRO approaches yields

better performance than using the ECRO approach alone. It is important to note that our cycle

checking and topological sort implementations may be dominating and inflating the benchmarks

of the ECRO approach. However, the performance of the combination of Semidirect and ECRO

would be better even with an efficient implementation. This is due to maintaining a smaller log,

requiring less computation in conflict detection, and the reduced need to perform rollbacks.

A key aspect to consider is the significantly reduced number of rollbacks. This is because op-

erations managed by Semidirect can be immediately applied, while only those handled by ECRO

need a rollback.

A potential strategy to further enhance the efficiency of this data type could involve imple-

menting the log compaction feature of the Semidirect approach. This would further improve the

log compaction carried out by the stabilization process of the Pure operation-based framework.

Continuous Semidirect + Commutative Given that all delete operations are commutative in

RGA, we can eliminate the ECRO log and unstable state from our generic Continuous Semidirect
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and ECRO approach. In this context, the system does not maintain an unstable state and conse-

quently, does not perform rollbacks. Instead, the responsibility of applying delete operations is

assigned to the Query method, when it is requested, as in the classic implementation of RGA.

We studied this approach to understand the impact of maintaining an unstable state and having

to perform rollbacks every time a conflict occurs. In the case of the RGA, the resource usage

would only be made by insertions, removals, and operation repairs. As shown, in Figure 7.1, there

is a notable difference between this approach, without rollbacks, and the previous approach, with

rollbacks and an unstable state, where the former has better performance regarding resource usage.

Consequently, this approach would be more advantageous for systems that do not execute a high

volume of queries.

Classic Implementation It is noteworthy that the traditional implementation of RGA outper-

forms all other approaches. This is largely expected, as its design has been carefully tailored and

optimized for attaining a specific behavior. This superior performance is attributed to the fact that

it does not utilize an operation log, operations are applied immediately upon arrival, and its state

and effect are optimized to store and make use of the extensively studied minimal necessary infor-

mation to ensure convergence. Naturally, tailoring and optimizing a dedicated CRDT design for a

specific data type, such as the RGA requires significant expertise and effort.

Discussion We find it very elegant that our Continuous Semidirect and ECRO variant achieves

the same behavior as the classical RGA. In a way, the rules behind its design help explaining the

complex distributed behavior of the RGA, and may hopefully guide future explorations of existing

and novel CRDTs. It would also be interesting to further explore how close a more optimized

version of our generic CRDT construction can get to the original RGA design. In particular,

the Semidirect log could be compacted by ignoring ordering among commutative inserts. The

challenge here would be to devise general rules on how to perform it automatically for the generic

construction, or even more interesting, how to synthesize efficient code – equivalent to the classical

design – from the generic construction.
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Figure 7.1: Benchmarks for RGA data type.
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Figure 7.2: Benchmarks for different ECRO implementations in 5 replicas



Chapter 8

Conclusions and Future Work

8.1 Conclusion

The primary goal was to investigate and understand the challenges of building distributed appli-

cations with CRDTs while preserving their invariants. Throughout our investigation, we studied

the obstacles of composing CRDTs regarding the sequential execution of the application. We ex-

plored different solutions to solve the problem, such as variations in the levels of consistency and

the ability to repair invariants. A direction that emerged from our exploration was the possibility

of building CRDTs that are consistent by design and built from the specification of a sequential

data type.

We explored this approach by implementing some generic CRDT constructions capable of

building a CRDT from sequential data types: Commutative, ECRO-like, Semidirect, Continuous

Semidirect, and Continuous Semidirect plus ECRO.

Throughout the course of this work, we have delved into each one of the implemented CRDT

constructions, developing a comprehensive understanding of the underlying principles and trade-

offs of the existing approaches, such as the classic commutative CRDTs and the recent approach

called ECROs. Besides the latter, we looked into another recent one called Semidirect, which we

successfully extended, with some restrictions, to more than two classes of updates. Moreover, we

combined it with the already existing approach ECROs. This combination effectively extends both

approaches, inheriting the best intents from each: repairing operations and only doing state roll-

backs when strictly necessary. Although it does come with some restrictions, it holds a promising

concept in the domain of constructing CRDTs from sequential data types that are consistent by

design.

8.2 Future Work

Our decision to present the final approach as a combination of Continuous Semidirect and ECRO-

like with the restrictions presented in 5.5 is based on our discovery of a Semidirect subcase that can

elucidate the behavior of the RGA, thereby enabling us to understand how it works. Our restriction

70
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that causality is consistent with arbitration order is motivated by the fact that it is sufficient to

produce a CRDT that is consistent with applying the emitted updates in a sequence that respects

causal order. However, this design is not a requirement for achieving convergence, which suggests

that other more relaxed generalizations of the Semidirect Product may exist. This leaves room for

potential extensions and relaxations of our assumptions to capture and explain the behavior of a

larger suite of CRDTs.

In addition, this work represents a preliminary analysis where our construction was largely

guided by the analysis of RGA. It would be interesting to implement other examples, such as

explaining the behavior of the Social Network example presented earlier. In fact, explaining the

behavior of the examples that use a composition of CRDTs presented in [12] using the Semidirect

approach remains an open challenge. Another apparently simple but albeit challenging task would

be to be able to express the behavior of the “add-wins” set without having to adapt the data type.

Lastly, we developed the generic CRDT constructions under the assumption that the distributed

properties are provided by the users who implement a data type. As data types become more com-

plex, understanding the properties of operations and determining repairs may not be straightfor-

ward and a significant burden. There are existing tools designed to automatically infer properties

from sequential code, including commutativity such as [9], [18] and [27]. It would be useful to

explore the extent to which we could infer repairs alongside other necessary properties using these

tools.

Moving forward with this work, and to share our findings, a poster has been submitted and is

planned to be presented at the Inforum conference.
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